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Abstract 

 In biologically-conformal radiation therapy, or dose painting, functional imaging is used to define 

biological targets for radiotherapy dose escalation. There is still much uncertainty about which imaging 

target is optimal for dose painting, and how dose should be prescribed inside the target volume. The goal 

of this dissertation was to investigate and characterize the properties of different biological imaging 

methods that make them good or poor candidates to serve as dose painting targets, and to evaluate how 

dose is likely to be prescribed to target volumes. Using spontaneous sinonasal tumors in canines treated 

with radiation therapy as research models, we related FDG, FLT, and Cu-ATSM PET uptake—surrogate 

measures of metabolism, proliferation, and hypoxia, respectively—to radiation resistance using outcome 

analysis and voxel-wise spatial analysis. We also investigated the similarities and spatio-temporal 

stability of the different tracer uptake patterns. Overall, we found that FLT-based biomarkers, especially 

those acquired during the course of radiation therapy, were the best biomarkers at predicting outcome 

following radiation therapy. Using spatial analysis, we found that all tracers had comparable 

performances in identifying resistant tumor subvolumes, and that there was large interpatient 

heterogeneity in how well PET tracer distributions could identify resistant subvolumes. We also 

demonstrated that spatial distributions of Cu-ATSM and FLT uptake measured during therapy were very 

similar to those measured at baseline, indicating FLT and Cu-ATSM PET as spatially-robust targets for 

dose painting. Finally, we demonstrate how FDG, FLT, and Cu-ATSM dose painting prescriptions are 

likely to be applied in human head-and-neck tumors, and confirm the feasibility of accurately delivering 

dose painting plans with tomotherapy. Overall, we did not find a single imaging method that stood out as 

the most promising target for dose painting. Rather, all tracers demonstrated evidence both for and against 

their use as dose painting targets. However, through these studies, we now have a greater understanding 

of the characteristics and limitations of dose painting according to different biological targets, which can 

help guide the development of future dose painting studies.  
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1. Introduction 

Biologically-conformal radiation therapy, or dose painting, is an emerging paradigm in radiation 

therapy in which dose prescriptions are tailored to match underlying biological heterogeneities within 

tumors. Biological imaging of solid tumors, such as with positron emission tomography (PET), is used to 

define biological imaging targets for radiation dose escalation. The overall objective of this dissertation 

was to evaluate the properties of several potential imaging-based targets and to determine their suitability 

as dose painting targets.  

This chapter introduces the basic principles of dose painting, and describes why dose painting is 

anticipated to eventually supplant traditional intensity-modulated radiation therapy (IMRT) for many 

tumor sites. The theoretical basis for dose painting will be described in the context of tumor modeling 

studies, and results from experimental dose painting trials in humans will be discussed. Additionally, the 

remaining uncertainties in dose painting will be described, followed by a description of an experimental 

trial in canines that the majority of this dissertation work will be drawn from. Finally, the specific aims of 

this thesis will be explained, followed by an outline of the remainder of the dissertation. 

1.1. Rationale for dose painting 

Prescriptions of uniform dose to tumor volumes are the current standard for radiation therapy. 

Typically, tumor volumes are manually delineated by physicians according to computed tomography 

(CT) images, and then the entire tumor volume is prescribed to a single dose level. For IMRT, inverse 

treatment planning software is then used to optimize the weights of different radiation fields such that 

uniformity of the physical dose distribution is maximized inside the tumor volume (plus margins), while 

dose to the surrounding normal tissue is minimized. Overall, a great deal of effort is expended to ensure 

uniform dose coverage of target volumes. The method of prescribing uniform doses to target volumes is 

currently employed in nearly all radiation oncology facilities, yet the method fails to account for the fact 

that tumors are spatially heterogeneous in composition (1). In fact, it has become apparent over the last 
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few decades that tumors are far from homogeneous, exhibiting biological complexities and 

heterogeneities matching, or even exceeding, that of normal tissue (1-2). Even multiple biopsies from the 

same tumor can differ substantially in both phenotype and genotype (3-4).  

Spatial variations in biological properties such as cell cycle phase, proliferation rates, acidity, 

oxygenation, and repair capabilities can result in heterogeneous patterns of radiosensitivity (5). Even 

small niches of resistant tumor cells can prove detrimental to radiation therapy plans, as only a small 

number of surviving cells may be necessary to repopulate a tumor (5). This principle is best exemplified 

by the property of tumor hypoxia: hypoxic tumor cells can require up to 3 times the dose as normal tumor 

cells for equivalent cell kill (5). Hypoxic cells generally make up only a small portion of a tumor—about 

15% on average (6)—but can be seriously detrimental to patient outcome (7). Ideally, dose prescriptions 

to tumors would be high enough to control even the most radioresistant cells, but normal tissue tolerances 

do not allow for such prescriptions. Clearly, targeting the most radioresistant subregions of tumors would 

be a more efficient method of killing tumors than the method of treating tumors as having uniform 

biological composition. In the past, however, accurately identifying resistant tumor subpopulation in vivo 

was not possible, and therefore uniform dose prescriptions have remained the clinical standard.  

Recent advances in molecular imaging may allow for discernment of spatial variations in 

radiosensitivity throughout tumor volumes. When only CT images of tumors are used for treatment 

planning purposes, spatial heterogeneities in radiosensitivity cannot be resolved. Under these 

circumstances (which are standard in current clinical practice) uniform dose prescriptions are indeed best, 

as dose inhomogeneities in target volumes would just as likely be distributed to sensitive regions as to 

resistance regions, resulting in an overall inferior treatment (8). However, supplementing anatomical 

imaging with molecular imaging, such as positron emission tomography (PET), may help uncover spatial 

patterns of radiosensitivity, and identify targets for dose escalation. For example, studies of 2-deoxy-2-

[
18

F]fluoro-D-glucose (FDG) PET in lung tumors suggest that tumor subregions with affinity for FDG 

might be more radioresistant than regions with little FDG uptake (9). PET images can be fused together 
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with treatment planning CT images, and regions of elevated FDG uptake could then be targeted for dose 

escalation during treatment planning.  

In addition to insufficiently addressing tumor heterogeneity, current uniform dose prescriptions 

appear to be too low for controlling certain tumor types. In lung tumors, for example, biologically 

effective doses (BED) of greater than 100 Gy are likely needed achieve 70%–90% local control rates (10-

11), but standard treatment schedules for lung cancer often include prescriptions of only 60-70 Gy in 2 Gy 

fractions; this results in BED of only 70-85 Gy (12). Any increase in total tumor dose, however, is 

undermined by a simultaneous increase in normal tissue complications, which may result in overall 

inferior outcome (13). Consequently, local recurrences most often occur at primary tumor sites—the 

regions receiving the highest dose—highlighting the need for higher dose prescriptions (14-17). To 

counteract this problem, simultaneous integrated boosts (SIBs) have been increasingly used in treatment 

planning protocols, but these boosts are only based on past clinical experience and not on patient-specific 

biology. Furthermore, it is unlikely that the entire tumor volume needs to be boosted to higher dose 

levels. Rather, it is probable that only small niches of radioresistance within the tumor actually require 

significant dose escalation. 

 The practice of biologically-conformal radiation therapy, or dose painting, attempts to address 

two factors that render uniform dose prescriptions as insufficient: spatial heterogeneities in tumor 

radiosensitivity, and insufficient tumor dose levels. In dose painting, non-uniform dose is prescribed to a 

tumor volume, tailored to match the spatial heterogeneity of an underlying biological property linked with 

radioresistance (see Figure 1.1) (18). This enables higher doses to be delivered to tumor subregions of 

suspected radioresistance while decreasing dose to radiosensitive tumor subregions, and maintaining or 

even reducing normal tissue dose. The basic principles for dose painting were proposed over a decade ago  
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Figure 1.1. An example of how dose painting can be implemented in a head-and-neck tumor. 

(18-19), and numerous modeling studies have subsequently predicted its superiority over uniform-dose 

prescriptions (see Table 1.1). 

1.2. Modeling and planning studies 

Early investigators used tumor control probability (TCP) models based on survival of clonogenic 

cells to evaluate the effects of dose inhomogeneities, and showed that for a fixed mean tumor dose, 

uniform dose distributions maximize TCP for tumors of uniform radiosensitivity (20-21). In 1987, 

Brahme and Ågren used a single-hit multi-target tumor cell model to determine the optimal physical dose 

distribution for eradicating tumors with heterogeneous cell populations (19). Not surprisingly, they found 

that heterogeneous tumors are best treated with heterogeneous dose distributions. They even speculated 

that molecular imaging may one day provide the means to "allow a more specific localization of different 

types of human tumor cells," and even recognized that perfusion and cell density effects would need to be 

corrected for in molecular images. At the time, however, available imaging methods were not able to 

distinguish resistant tumor subpopulations from sensitive subpopulations, and, consequently, uniform 

dose prescriptions were adopted as the clinical standard, which has persisted until now. 

 In 2000, Clifton Ling and colleagues introduced the concept of biological target volumes (18). 

They proposed that functional imaging, such as PET or magnetic resonance imaging (MRI), could be 

0 5SUV

Biological Imaging Dose Prescription Dose Painting Plan

0 80Gy 0 80Gy

Prescription 
function

Dose 
optimization
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used to define biological subvolumes with radiosensitivity values that differed from the rest of the tumor. 

These biological target volumes could then be prescribed more or less dose, depending on their 

radiosensitivity values. These principles have since been extrapolated to the voxel level, wherein 

individual voxel radiosensitivity values—representing averages of the voxel’s cellular population—could 

be extracted from voxel imaging values (eg, from PET imaging), and each voxel could then receive its 

own unique dose prescription. Voxel-based dose painting is often called dose painting by numbers (22).  

 The superiority of non-uniform dose prescriptions over uniform dose prescriptions for 

heterogeneous tumors has been demonstrated in numerous modeling studies. Popple et al. and Yang et al. 

used TCP modeling to show that non-uniform dose distributions result in greater tumor control in 

conditions of spatially-varying oxygenation or radiosensitivity (23-24). Other similar modeling studies 

are listed in Table 1.1. Many planning studies have demonstrated the feasibility of using treatment 

planning software—both commercial  and customized  treatment planning software—to create treatment 

plans consisting of non-uniform dose distributions derived from functional images. This has been 

demonstrated for a variety of imaging methods, including FDG PET (25), 3'-deoxy-3'-
18

F-

fluorothymidine (FLT) PET (26), copper(II)-diacetyl-bis(N4-methylthiosemicarbazone) (Cu-ATSM) PET 

(27), 
18

F-fluoromisonidazole (FMISO) PET (28), 
18

F-fluoro-ethyl-tyrosine (FET) PET (29), 
11

C-choline 

PET (30), and for DCE-MRI parametric maps (31). All of the modeling and planning studies listed in 

Table 1.1 are practically unanimous in their conclusions: dose painting is not only feasible, but would 

increase tumor control rates if radiosensitivity levels could be accurately measured via imaging. 

Furthermore, tumor modeling predicts that voxel-based dose painting would be superior to uniform 

boosts to biological target volumes if radiosensitivity values can be accurately measured at the voxel level 

(23, 32).  
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Table 1.1. Dose painting studies. 

REFERENCE DESCRIPTION  REFERENCE DESCRIPTION 
   

PLANNING & MODELING STUDIES  REVIEW & CONCEPT PAPERS 

Brahme A, et al. 1987 (19) Modeling, non-uniform dose   Ling C, et al. 2000 (18) Review/concept  

Webb S, et al. 1993 (8) Modeling, non-uniform dose   Bentzen S, et al. 2005 (22) Review/concept  

Stavreva N, et al. 1996 (33) Modeling, non-uniform dose   Galvin J, et al. 2007 (34) Review  

Chao KS, et al. 2001 (35) Planning, Cu-ATSM boost   Bentzen S, et al. 2008 (36) Review/concept  

Popple RA, et al. 2002 (24) Modeling, hypoxia, TCP   Lawrence R, et al. 2008 (37) Review  

Alber M, et al. 2003 (38) Planning, optimization   Sovik A, et al. 2009 (39) Review  

Brahme A, et al. 2003 (40) Modeling, response-based DP   Lambin P, et al. 2010 (41) Review/concept, NSCLC  

Solberg T, et al. 2004 (25) Planning, FDG boost, feasibility   Thorwarth D, et al. 2010 (42) Review, hypoxia  

Das S, et al. 2004 (43) Planning, feasibility, SPECT, EUD   Thorwarth D, et al. 2010 (44) Review/concept  

Yang Y, et al. 2005 (23) Modeling, TCP   Supiot S, et al. 2010 (45) Review  

Schwartz D, et al. 2005 (46) Planning, FDG boost   Bentzen S, et al. 2011 (47) Review/concept  

Malinen E, et al. 2006 (31) Planning, DCE-MRI, TCP   van der Heide, et al.  2012 (48) Review, MRI  

Vanderstraeten B, et al. 2006 (49) Planning, FDG boost, optimization   Gregoire V, et al. 2012 (50) Review/concept  

Vanderstraeten B, et al. 2006 (51) Planning, FDG, DPBN   Hoeben B, et al. 2013 (52) Review, HN, adaptive  

Sovik A. et al. 2007 (53) Planning/modeling, hypoxia, TCP   Geets X, et al. 2013 (54) Review, hypoxia  

Sovik A, et al. 2007 (55) Planning/modeling, DCE-MRI, TCP/NTCP     

Thorwarth D, et al. 2007 (28) Planning, FDG & FMISO, TCP   DOSE PAINTING CLINICAL TRIALS 

Chen G, et al. 2007 (56) Planning, optimization   Douglas J., et al. 2006 (57) Mid-tx FDG, GBM, 40 pts 

Thorwarth D, et al. 2008 (58) Planning, FMISO, IMRT vs IMPT vs Tomo   Madani I, et al. 2007 (59) FDG boost, HN, 41 pts 

Gillham C, et al. 2008 (60) Planning, adaptive FDG   Miwa K, et al. 2008 (61) 11C-MET  boost,, GBM, 3 pts  

Lee N, et al. 2008 (62) Planning, FMISO boost, feasibility   Pinkawa M, et al. 2010 (63) 18F-choline, prostate, 66 pts  

Lin Z, et al. 2008 (64) Planning, FMISO boost, test-retest   Duprez F et al. 2011 (65) &... 
Adaptive FDG DPBN,  HN, 21 pts 

Kim Y, et al. 2008 (66) Modeling, prescription, TCP/NTCP   Madani I, et al. 2011 (67) 

Flynn R, et al. 2008 (68) Planning, IMRT vs IMPT, Cu-ATSM   Fodor A, et al. 2011 (69) FDG boost, pleural mesothelioma, 12 pts  

Petit SF, et al. 2009 (70) Planning, FDG, prescription   Piroth M, et al. 2012 (71) FET boost, GBM, 22 pts  

Petit SF, et al. 2009 (72) Planning/modeling, hypoxia   Berwouts D, et al. 2013 (73) Adaptive FDG DPBN, HN, 10 pts, 

Feng M, et al. 2009 (74) Planning, adaptive FDG     

Bowen S, et al. 2009 (75) Planning, Cu-ATSM, prescription function   FUTURE & ONGOING CLINICAL TRIALS 

South C, et al. 2009 (76) Modeling, TCP   Hamming-Vrieze, O. (PI) (77)  FDG boost, HN, 268 pts (NCT01504815)  

Jingu K, et al. 2010 (78) Planning/modeling, FDG, NTCP   De Ruysscher D. (PI) (79) FDG boost, NSCLC, 106 pts (NCT01024829), 

Kissick M, et al. 2010 (80) Planning, motion   Kong S (PI) Mid-tx FDG boost, NSCLC, 42 pts (RTOG 1106) 

Deveau M, et al. 2010 (27) Planning, feasibility, tomotherapy   Vera P (PI) FMISO boost, NSCLC, 75 pts (NCT01576796) 

Korreman S, et al. 2010 (81) Planning, feasibility, VMAT   Ghent Univ. (multiple studies) FDG, HN (NCT01427010, NCT01341535, NCT01287390) 

Kim Y, et al. 2010 (82) Modeling, prescription, TCP/NTCP   Xiaolong F (PI) FDG boost, esophageal SCC, 40 pts (NCT01843049) 

Rickhey M, et al. 2010 (83) Planning, IMPT, FET, feasibility     

Le, Maitre A, et al. 2010 (84) Modeling, TCP, FDG + FMISO     

Troost E, et al. 2010 (26) Planning, FLT response     

Niyazi M, et al. 2010 (30) Planning, TCP, choline, prostate     

Shi K, et al. 2011 (85) Planning, optimization, FMISO     

Meijer G, et al. 2011 (86) Planning, FDG, DPBN vs boost     

Aristophanous M, et al. 2011 (87) Planning, 4D FDG     

Hendrickson K, et al. 2011 (88) Planning/modeling, FMISO boost, TCP     

Rodal J, et al. 2011 (89) Planning, dosimetry     

Witte M, et al. 2011 (90) Planning, optimization     

Hardcastle N, et al. 2011 (91) Planning, IMRT vs VMAT, NTCP     

Chang JH, et al. 2012 (92) Planning, 11C-choline, TCP     

Dirscherl T, et al. 2012 (93) Planning, TCP-based, 18F-choline     

Toma-Dasu I, et al. 2012 (94) Planning, FMISO, feasibility     

Bowen S, et al. 2012 (95) FDG, FLT, Cu-ATSM, prescription     

Bender E. 2012 (32) Modeling, optimization, prescription     

Hardcastle N, et al. 2012 (96) Modeling, optimization, prescription     

Chang JH, et al. 2013 (97) Planning/modeling, FMISO, TCP/NTCP     

Rusten E, et al. 2013 (98) Planning, dynamic FDG boost     

Teoh M, et al. 2013 (99) Planning, FDG boost, IMRT vs VMAT     

Vogelius I, et al. 2013 (100) Planning/modeling, prescription, TCP     

Hakansson, K, et al. 2014 (101) Planning, optimization     

Olteanu, L, et al. 2014 (102) Planning, dosimetry     

Park, Y, et al. 2014 (103) Planning , optimization    

Alfonso, J et al. 2014 (104) Modeling, CSCs    
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1.3. Clinical studies 

 Few clinical trials have actually treated patients with dose painting plans (see Table 1.1). In a trial 

with glioblastoma multiforme (GBM) patients undergoing radiation therapy, Douglas and colleagues were 

the first to adapt physical dose distributions during therapy to match mid-treatment FDG PET uptake 

patterns and deliver additional boosts to those regions (57). They treated MRI-defined target volumes to 

59.4 Gy in 1.8 Gy fractions, and then treated residual FDG-avid volumes at mid-treatment (defined after 

45-50.4 Gy) with an additional 20 Gy in 10 fractions, for a total of 79.4 Gy. In 40 patients, they observed 

no significant differences in clinical outcome when compared to a historical control.  

 Researchers at Ghent University have run a series of dose painting clinical trials in patients with 

head-and-neck (HN) tumors investigating FDG PET as a dose painting target. In their first published 

study, 41 HN cancer patients received IMRT between 2003 and 2005, with 69 Gy prescribed to the 

macroscopic tumor (59). The PET-avid regions were then boosted uniformly to either 72.5 Gy or 77.5 Gy. 

The trial was halted early due a treatment-related death, but a comparison of the two boost arms found 

that the higher boost (77.5 Gy) actually resulted in worse overall survival than the lower boost (72.5 Gy) 

(P=0.06). This trial was followed up by another dose painting trail in HN cancer patients wherein voxel 

doses were prescribed according to their FDG uptake values (ie, dose painting by numbers), and then 

adapted during therapy to match mid-treatment FDG PET images (65). In their treatment protocol, a 

linear prescription function was used to convert PET voxel intensity values into voxel doses (voxel doses 

ranged between 72.5 Gy to 95.9 Gy), re-imaging and re-planning occurred after 10 fractions, and then 

uniform dose was prescribed to tumors after 20 fractions. The study included two treatment arms: one 

arm with a median dose of 80.9 Gy to the target volume (N=7), and the other arm with a median dose of 

85.9 Gy (N=14). Due to the development of mucosal ulcers in 36% of the patients (N=5) in the higher 

dose group, they concluded that 80.9 Gy was the maximum tolerated dose (67). They also conducted a 

third trial with 10 HN cancer patients, and demonstrated the feasibility of performing three-phase 
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adaptive dose painting in HN tumors using longitudinal FDG imaging (73). They are currently 

performing several more dose painting trials in HN cancer patients (see Table 1.1).  

 Dose painting studies have also been conducted in other tumor sites. Miwa and colleagues 

demonstrated the feasibility of boosting regions of high 
11

C-methionine PET uptake in 3 patients with 

GBM tumors (61). Pinkawa and colleagues performed simultaneous integrated boosts of 4 Gy (from 76 

Gy to 80 Gy) to the regions of elevated 
18

F-choline PET uptake in 66 patients with prostate tumors (63, 

105). Piroth and colleagues boosted high 
18

F-fluoro-ethyl-tyrosine (FET) PET uptake regions by 12 Gy 

(from 60 Gy to 72 Gy) in 22 GBM patients (71). Fodor and colleagues uniformly boosted high FDG PET 

regions by 6.5 Gy (from 56 Gy to 62.5 Gy) in 12 malignant pleural mesothelioma patients (69). 

Preliminary results from an ongoing dose painting trial have been reported by van Elmpt et al., in which 

20 lung cancer patients were randomized between a control treatment arm and an FDG PET boost arm, 

both of which were boosted in an isotoxic manner (ie, until normal tissue dose constraints were met) (79). 

For the control arm, the boost volume was defined as the entire primary tumor, and for the experimental 

arm, the boost volume was defined as the region inside the 50% FDG SUVmax isocontour. Patient 

outcome and toxicities have yet to be reported. 

1.4. Uncertainties in dose painting 

 Despite the multitude of modeling and planning studies affirming dose painting's advantage over 

traditional radiation therapy, the few clinical trials that have been conducted have been modest in their 

boosting technique and are often small in sample size. This is likely due to the many uncertainties—

biological and technical—associated with dose painting, which collectively make dose painting a 

potentially risky method. Many of dose painting's technical uncertainties can likely be overcome, such as 

motion (80), setup uncertainties (90, 106), imaging uncertainties (107), and treatment planning (27) . 

However, the main uncertainties hindering dose painting are what to target, and how. Targeting the wrong 

part of the tumor (ie, a sensitive region) at the expense of a resistant region would most certainly be 

inferior to standard uniform-dose prescriptions. Furthermore, it is uncertain how high the dose 
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modulations should be within tumor volumes (ie, how much higher should the maximum voxel dose be 

than the minimum voxel dose?), as this question is inherently related to how confident we are in assessing 

what to target. These biological-based uncertainties are currently the main obstacles for dose painting.  

1.4.1. Uncertainty in target definition 

 Dose painting requires an imaging target, from which boost dose prescriptions can be derived. 

Currently, it is unknown which imaging target is optimal for dose painting. Many researchers have 

proposed different biological targets for dose painting, including PET tracer uptake distributions and MRI 

parametric maps (22, 44, 47). For dose painting to be successful, the imaging target needs to be strongly 

correlated with spatial patterns of resistance. Three of the most commonly proposed targets in dose 

painting are tumor hypoxia, cellular proliferation, and glucose metabolism, all three of which were 

investigated as part of this dissertation work. 

 Glucose metabolism, as assessed by FDG PET, is the most commonly considered candidate target 

for dose painting. FDG PET has proven to be valuable in lesion detection, tumor staging, and tumor 

segmentation (108) , and has been used in most of the dose painting clinical trials (57, 59, 65, 73, 79). 

Furthermore, FDG is the most clinically-used PET radiotracer. Consequently, empirical evidence has 

accumulated suggesting FDG's potential as an effective dose painting target. For example, post-treatment 

residual tumor is most often located in regions with the highest pre-treatment FDG uptake for several 

tumor sites (9, 14, 95, 100, 109). On the other hand, FDG uptake is influenced by a variety of biological 

properties, including inflammation, proliferation, hypoxia, cell density, and perfusion (110-111), some of 

which can decrease its utility as a dose painting target. 

 Another promising PET tracer for oncology is FLT. FLT PET is a marker of tumor proliferation, 

and has been shown to have better specificity for tumor disease than FDG PET, primarily due to its 

uptake being independent of inflammation (112-113). Specifically, FLT is imported into the cell via 

thymidine kinase 1 activity, which is active during the S phase of the cell cycle. FLT uptake therefore 
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represents the fraction of cells in S phase (114). However, the relationship between proliferation and 

radioresistance is not very clear. While highly proliferative tissues were associated with increased 

radiosensitivity as early as 1906 (115), this relationship is not always observed in tumors. For example, a 

meta analysis of 476 patients' tumor biopsies prior to radiation therapy found no significant association 

between potential cell doubling times and patient survival (116). Despite the ambiguous relationship 

between pre-treatment proliferation rates and patient outcome, accelerated repopulation of surviving 

cancer cells during therapy has been shown to influence treatment outcome (117). In addition, drastic 

changes in uptake of FLT have been observed in tumors after the onset of radiotherapy (118-119). This 

has created interest in using changes in FLT uptake from pre- to mid-therapy as an early response 

indicator (26, 120-121). Extending this idea to the voxel level, the change in a voxel's FLT uptake during 

therapy could be indicative of the voxel's response to therapy, so that maps of voxel responses could then 

be used to define biological targets for dose painting. 

 The case for tumor hypoxia as a dose painting target is well established in literature. In cultured 

cells and murine cancer models, hypoxic tumor cells require 2-3 times the dose as normoxic cells for 

equivalent cell kill (5). Using oxygen electrode measurements in human tumors, oxygen partial pressures 

(pO2) within tumors prior to radiation therapy have been shown to be prognostic: tumors with pO2 ≤ 2.5 

mmHg have significantly worse loco-regional control that those with pO2 > 2.5 mmHg (7, 122-123). The 

molecular mechanisms that cause oxygen to act as a radiosensitizer are not entirely understood. It is 

assumed that molecular oxygen combines with free radicals resulting from ionizations, creating a reactive 

species that can cause irreparable damage to DNA (124). It is also unclear the distinction between acute 

hypoxia and chronic hypoxia, as studies have found both exist within tumors (125-126). Tumor hypoxia 

can be imaged in vivo with hypoxia radiotracers such as Cu-ATSM (127) or FMISO (128), among others 

(129). In fact, Cu-ATSM PET imaging has been shown to be prognostic following radiation therapy for 

HN tumors (130-131), as well as for cervical (132-133), lung (134), and rectal (135) tumors. 
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 Other dose painting targets have been proposed. These include diffusion-weighted MRI (136), 

epidermal growth factor receptor (EGFR) imaging with radiolabeled monoclonal antibodies (41), and 

amino acid imaging (71). Brahme proposed using changes in biological imaging patterns from pre-

treatment to mid-treatment to guide target volume definition (40). Given the numerous potential imaging 

targets for dose painting, and the heavy reliance of dose painting on the efficacy its imaging target, 

imaging target uncertainty is perhaps the largest hindrance to the clinical success of dose painting. 

1.4.2. Uncertainty in dose prescriptions 

Even with well-defined dose painting targets, it is unclear how dose should be prescribed to target 

volumes. For uniform boosts to biological subvolumes, it is uncertain the degree to which target 

subvolumes should be boosted above the baseline tumor dose. For voxel-based dose painting, a 

prescription function is required to convert voxel image intensity values into voxel dose prescriptions 

(75). The prescription function embodies the relationship between the imaging method and the underlying 

biological target, and the relationship between the biological target and radioresistance. Clearly, the 

prescription function is strongly dependent on the imaging method, and represents a very complex 

relationship. Consequently, there is much uncertainty about what the best prescription function for voxel-

based dose painting would be. Several methods have been proposed, including prescription functions 

based on TCP (23), sigmoidal functions (75), and linear functions (51). At this time, only linear 

prescription functions have been used in clinical studies (65, 73, 79).  

 A further prescription uncertainty is how to adapt dose prescriptions to biological differences 

between patients (ie, interpatient variability). For example, would certain biological properties be more 

effective as targets in some patients than others? Would certain patients benefit from hypoxia-based dose 

painting, while other patients would benefit more from proliferation-based dose painting? And should all 

patients receive the same maximum voxel dose, the same minimum voxel dose, or the same integral/mean 

dose? These questions are difficult to answer, and may not be answered until after extensive clinical 
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experience. Clearly, interpatient variability could impede the development of and complicate the 

evaluation of different prescription methods in different clinical trials.  

1.5. Canine imaging and radiation therapy (CIRT) trial 

 The goal of this dissertation work is to address some of the uncertainties regarding target 

selection for dose painting. The large majority of this dissertation work will come from the canine 

imaging and radiation therapy (CIRT) trial. Detailed descriptions of the CIRT trial can be found in 

previous publications (95, 137-139). Canine patients with spontaneous sinonasal tumors of stage I-III 

were eligible for the study, baring distant metastases or brain involvement. Patients received IMRT via 

tomotherapy with curative intent. The CIRT study included two treatment arms. Arm A received the 

standard-of-care prescription at the University of Wisconsin Veterinary Teaching Hospital, including 10 

fractions of 4.2 Gy to the planning target volume (PTV). Arm B was the boost cohort, which included 10 

fractions of 4.2 Gy to the PTV with an integrated boost of 0.8 Gy per fraction to the gross tumor volume 

(GTV), for a total of 50 Gy to the GTV. 10 patients completed treatment in arm A and 12 patients 

completed treatment in arm B. Patient characteristics are listed in Table 1.2. 
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Table 1.2. Patient characteristics from the CIRT trial 

  Number of patients 

Histology Adenocarcinoma 13 

 Squamous cell carcinoma 1 

 Chondrosarcoma 7 

 Osteosarcoma 1 

Age 0-5 6 

 5-10 8 

 11+ 8 

Starting weight (kg) 5-10 2 

 11-20 3 

 21-30 8 

 31+ 9 

Sex Female 11 

 Male 11 

Treatment Boost (50 Gy) 12 

 Standard-of-care (42 Gy) 10 

Stage (140) D1 3 

 D2 12 

 D3 7 
 

 

 The treatment and imaging schedule is diagramed in Figure 1.2. Patients had pre-treatment 

[
18

F]FDG, [
18

F]FLT , and [
61

Cu]Cu-ATSM PET/CT scans on consecutive days beginning 3 days before 

the onset of therapy. Patients received a second FLT PET/CT scan after two fractions of IMRT (8.4 or 10 

Gy) and a weekend break. Patients received a second Cu-ATSM PET/CT scan following the third fraction 

of IMRT (12.6 or 15 Gy). One patient missed the mid-treatment FLT scan due to equipment failure. 

Patients were injected with 150-370 MBq of tracer. After injection, patients were kept in a kennel to limit 

physical activity. PET/CT scans were acquired on a Discovery VCT (GE Healthcare, Waukesha, WI) 

scanner. FDG and Cu-ATSM PET scans were acquired 60 minutes and 180 minutes post-injection, 

respectively; both were 20-minute 3D static acquisitions over a single 15 cm bed position. FLT scans 

were 90-minute 3D dynamic acquisitions over a single 15 cm bed position. Patients were anesthetized 

during imaging and treatment sessions with an initial propofol bolus injection, and then maintained on 

isoflurane inhalation plus 100% oxygen. Emission data were attenuation corrected and reconstructed 

using ordered subset expectation maximization (2 iterations, 35 subsets, and 3 mm postfiltering). The 

image grid was 256×256×47 with 2.0×2.0×3.3 mm
3
 voxel sizes. Voxel activity measurements were 
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converted to standardized uptake values (SUVs) for analysis. For FLT scans, SUVs were calculated by 

averaging frames from 60–90 minutes. To achieve reproducible positioning across PET/CT scans and 

IMRT treatment sessions, patients’ maxillae were positioned into custom dental molds that were affixed 

to the scanner and treatment couches, and patients' bodies were immobilized with vacuum mattresses, as 

shown in Figure 1.3 (137). 

 Following treatment, patients were scheduled for follow-up FDG PET/CT scans at 3 and 6 

months. Patients without progressive disease within the first 6 months received an additional CT scan at 9 

months, and an additional FDG PET/CT scan whenever they presented with clinical signs suspicious of 

recurrence (eg, epistaxis). 

 For data analysis, veterinarians contoured gross tumor volumes (GTVs) and planning target 

volumes (PTVs) based on CT images, which were then propagated to PET images through registration 

(either rigid or deformable, depending on the study) and resampling. The PTV included the GTV, plus 

regions of suspected microscopic extensions. For each PET image, SUV metrics were calculated within 

the GTV, including the maximum voxel SUV in the GTV (SUVmax), the mean SUV of a 1 cm
3
 sphere 

centered at SUVmax (SUVpeak), the mean SUV of the GTV (SUVmean), and the total summed SUV in the 

GTV (SUVtotal). 

   
Figure 1.2. Imaging and treatment schedules for treatment arms A and B of the CIRT trial 
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Figure 1.3. Canine patients were immobilized during imaging and radiation therapy using a custom-built bite block with patient-

specific dental molds and vacuum mattresses.   

 

1.6. Specific aims and dissertation outline 

The objective of this dissertation was to characterize and address several of the limitations and 

uncertainties currently facing dose painting. As a primary uncertainty in dose painting is imaging target 

definition, we evaluated the properties of several imaging targets —glucose metabolism, proliferation, 

and hypoxia— as they relate to dose painting target definition. The work in this dissertation is unique in 

that the data from the CIRT trial is both rich (eg, high quality imaging and outcome data) and broad (eg, 

multi-tracer PET imaging), which allowed us to address several questions about target definition that have 

not been addressed before, and required the development of unique methods of data analysis. This 

dissertation is split into three specific aims, with respective sub-aims. 

Specific Aim 1: To evaluate the suitability of FDG, FLT, and Cu-ATSM PET for target definition 

in biologically-conformal radiation therapy 

Sub-aim 1a: To assess the spatio-temporal stability of FLT and Cu-ATSM PET distributions in 

tumors during radiotherapy (Chapter 2) 

Sub-aim 1b: To evaluate the robustness of PET-based target definition in two tumor histologies: 

sarcomas and carcinomas (Chapter 3) 
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Sub-aim 1c: To characterize the spatial relationships between regional recurrence and FDG, FLT, 

and Cu-ATSM PET distributions (Chapter 4) 

Specific Aim 2: To assess how different quantitative imaging biomarkers relate to clinical outcome 

for canine patients following radiation therapy 

Sub-aim 2a: To assess univariable relationships between imaging biomarkers and progression-

free survival (Chapter 5) 

Sub-aim 2b: Using multivariate analysis, assess each biomarkers relative contribution in 

predicting progression free survival (Chapter 5) 

Specific Aim 3: To investigate the feasibility of creating and delivering PET-based dose painting 

plans 

Sub-aim 3a: To characterize how voxel-based dose painting prescriptions are likely to be 

distributed in human head-and-neck tumors (Chapter 6) 

Sub-aim 3b: To evaluate the dosimetric accuracy of tomotherapy-delivered dose painting plans 

(Chapter 6) 

 The remainder of this dissertation is organized as follows: Chapter 2 characterizes the spatio-

temporal stability of FLT and Cu-ATSM PET distributions in canine tumors during radiation therapy, in 

order to evaluate if FLT and Cu-ATSM PET are spatially robust targets for dose escalation (139). Chapter 

3 characterizes how similar or dissimilar pre-treatment FDG, FLT, and Cu-ATSM PET distributions were 

in canine tumors according to the tumor's histologic tumor type (sarcoma vs. carcinoma), to assess how 

dose painting plans change according to different biological targets (141). Chapter 4 describes the degree 

to which PET imaging can predict the location of tumor recurrence following radiation therapy using 

voxel-based regression methods. Chapter 5 contains survival analysis results for the CIRT trial, 

identifying the best imaging biomarkers of resistance to radiation therapy. Chapter 6 describes the 
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feasibility of dose painting; specifically, it describes how FDG, FLT, and Cu-ATSM dose painting 

prescriptions are likely to be distributed in human HN tumors, and demonstrates how accurately we can 

deliver simulated dose painting plans with tomotherapy. Finally, Chapter 7 summarizes the significant 

findings of this dissertation, and discusses how this dissertation work contributes to the advancement of 

dose painting. 
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2. Spatio-temporal stability of Cu-ATSM and FLT PET 

distributions during radiation therapy 

 This chapter addresses Specific Aim 1 of the dissertation, which is to evaluate the characteristics 

of different PET radiotracers that make them good or poor candidates as dose painting targets. 

Specifically, this chapter discusses the how Cu-ATSM and FLT PET distributions change in canine 

tumors during the course of radiation therapy, both in terms of magnitude and spatial distribution, and the 

implications of these changes for dose painting target definition. This work has been published in the 

International Journal of Radiation Oncology • Biology • Physics (139). 

2.1. Motivation 

 The relationship between tumor hypoxia and radioresistance has long been established (142). 

Consequently, PET hypoxia tracers make for an appealing dose painting target. There is concern, 

however, over the spatio-temporal stability of hypoxia maps, particularly in the context of dose painting 

(22, 42). Tumor hypoxia levels have been shown to fluctuate over time (125). If hypoxic locations change 

between pre-treatment measurements and the onset of therapy—or if hypoxic locations change during 

therapy—the quality of dose painting plans could greatly deteriorate: sensitive regions could be 

overdosed while resistant regions underdosed. To ensure that hypoxic regions are indeed preferentially 

targeted, hypoxia imaging would need to be repeated frequently and dose painting plans adjusted 

accordingly, which may not be technically or economically feasible. The spatial stability of hypoxia 

distributions has previously been investigated using repeated FMISO PET scans, but with conflicting 

results: Nehmeh et al., Lin et al., and Roels et al. found poor spatial stability in serial FMISO images (64, 

143-144), while Okamoto et al. found very high spatial stability (145). Therefore, the stability of hypoxic 

targets prior to and during radiotherapy remains uncertain. 
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 FLT PET imaging for proliferation may also assist in the identification of resistant or sensitive 

tumor subvolumes. Accelerated repopulation of tumor cells after the onset of radiation therapy has been 

shown to be detrimental to patient outcome, indicating a possible relationship between during-treatment 

proliferation and resistance to radiation therapy (117). Also, drastic changes in FLT PET uptake have 

been observed after the onset of radiotherapy (118-119), with one study demonstrating that early FLT 

response was associated with better patient outcome (120). For this reason, maps of FLT PET voxel 

responses might provide useful information for biological target definition, and it is therefore important to 

characterize how proliferation maps change in tumors during radiotherapy.  

 The goal of this study was twofold: to assess the spatial and absolute stability of Cu-ATSM PET 

during radiotherapy as a surrogate for tumor hypoxia stability, and to measure changes in FLT PET 

during radiotherapy as a surrogate for changes in cellular proliferation.  

2.2. Methods and materials 

 The study included 22 canine patients from the CIRT trial. Histopathology revealed 13 

adenocarcinoma, 7 chondrosarcoma, 1 squamous cell carcinoma, and 1 osteosarcoma tumor. Details of 

the imaging and treatment protocol are found in section 1.5. For this study, only pre- and mid-treatment 

Cu-ATSM and FLT scans were used from each patient.  

2.2.1. Tracer production 

 61
Cu (t1/2=204.5 min) was produced via the 

60
Ni(d,n)

61
Cu reaction at the University of Wisconsin 

Cyclotron. [
61

Cu]Cu-ATSM tracer was synthesized via the process outlined by Avila-Rodriguez (146). 

Analytic high performance liquid chromatography of [
61

Cu]Cu-ATSM  showed radiochemical purity 

>95% and specific activity typically between 1-3 Ci/µmol. [
18

F]FLT tracer was also provided by the 

University of Wisconsin Cyclotron. 
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2.2.2. Data analysis 

 We assessed the spatial stability of Cu-ATSM and FLT SUV distributions from pre- to -mid-

treatment. For each patient, pre- and mid-treatment CT images were deformably registered using the 

optical flow algorithm (147), and the resulting transformations were applied to their respective PET data. 

This allowed for voxel-based comparisons of pre- and mid-treatment tracer distributions. To quantify 

tracer spatial stability, voxel-based Spearman rank correlation coefficients (ρ) were calculated for Cu-

ATSM (ρCu-ATSM) and FLT (ρFLT) within each patient’s GTV, comparing pre- and mid-treatment voxel 

SUV distributions. Spearman correlation coefficients were preferred over Pearson correlation coefficients 

because SUV distributions were often not normally distributed. Population-averaged ρ were calculated 

using the Fisher transformation, and two-sided paired t-tests compared patients' ρCu-ATSM and ρFLT. We 

also investigated whether or not ρCu-ATSM and ρFLT were influenced by tumor volume, or by the level of 

uptake heterogeneity within the tumor, which we quantified using the standard deviation of the SUV 

distribution within the GTV (SUVSD). 

 In addition to assessing voxel correlations, we quantified the degree of spatial overlap between 

the high-uptake regions at pre- and mid-treatment. For each tumor, various thresholds were used to 

segment high-uptake regions. Thresholding was not performed as a percentage of the SUVmax as is 

typically done in PET segmentation—this type of thresholding can result in extremely small volumes for 

some tumor distributions. Instead, we performed volume-based thresholding of the sorted SUV 

distribution, from 10% to 90%, in 10% increments. For instance, a 70% threshold would include 30% of 

the GTV's highest uptake voxels. For each threshold level, both pre- and mid-treatment high-uptake 

volumes were segmented, and Dice coefficients quantified the degree of spatial overlap. The Dice 

coefficient is defined as the ratio of the intersection of two regions to the average volume of the two 

regions. After calculating each patient's Dice coefficients for both tracers and all threshold levels, two-

sided paired t-tests determined if, across the population, Dice coefficients for Cu-ATSM were 

significantly different than Dice coefficients for FLT. 
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 We investigated whether or not the magnitudes of Cu-ATSM and FLT uptake were significantly 

lower at mid-treatment than at pre-treatment. SUVmax, SUVpeak, and SUVmean were calculated for pre- and 

mid-treatment PET scans (mid-treatment SUV measurements were assessed prior to deformable 

registration). Two-sided paired t-tests determined if changes in the SUV measures from pre- to mid-

treatment were statistically significant across the population, with a significance level of p ≤ 0.05.  

2.3. Results 

 A patient's pre- and mid-treatment PET/CT images are shown in Figure 2.1. Voxel scatter plots 

comparing pre- and mid-treatment Cu-ATSM and FLT PET distributions are shown for four patients in  

 

Figure 2.1. Example sagittal PET/CT slices are shown from a carcinoma patient's pre- and mid-treatment Cu-ATSM (middle) and 

FLT (bottom) scans. An isosurface is shown for anatomical reference. This patient is the same patient as Patient 1 in Figure 2.2, 

and had ρCu-ATSM and ρFLT values similar to the population averages. 

bite block

sinuses

brain
nose

ρρCu-ATSM=0.88
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Figure 2.2. Voxel-based scatter plots comparing pre- and mid-treatment Cu-ATSM SUV distributions (top row) and FLT SUV 

distributions (bottom row) for four different patients — two carcinomas and two sarcomas. Spearman rank correlation 

coefficients are shown in upper-left corners. 

Figure 2.2. The population-averaged ρCu-ATSM (±SD) was 0.88±0.07 for all patients, 0.88±0.08 for 

carcinoma patients, and 0.88±0.07 for sarcoma patients. The population-averaged ρFLT was 0.79±0.13 for 

all patients, 0.76±0.14 for carcinoma patients, and 0.84±0.12 for sarcoma patients. All patients' ρCu-ATSM 

and ρFLT are shown in Figure 2.3. Carcinoma and sarcoma populations were not significantly different in 

terms of ρCu-ATSM or ρFLT values. Using paired t-test we found that patients' ρCu-ATSM were consistently 

higher than their respective ρFLT values (P=0.001). We did not find significant correlations between tumor  

Figure 2.3. Quartile box plots of all patients' ρCu-ATSM (left) and ρFLT (right), representing the degree of tracer spatial stability 

through mid-treatment, separated by histologic tumor type.  
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volume and ρCu-ATSM or ρFLT (R≈0.2), or between SUVSD and ρCu-ATSM or ρFLT (|R|<0.2), indicating that 

tracer stability was not likely impacted by tumor volume or tumor heterogeneity. 

Figure 2.4 shows the population-averaged Cu-ATSM and FLT Dice coefficients—quantifying the 

degree of overlap between pre- and mid-treatment high-uptake regions—plotted as a function of 

segmentation method. For example, using a 70% threshold (ie, the hottest 30% of the tumor volume), 

77% of the pre-treatment Cu-ATSM-avid regions, on average, overlapped with the mid-treatment Cu-

ATSM-avid regions. For FLT and a 70% threshold, the average overlap was 69%. Paired t-tests found 

that for a threshold of 30% and for all thresholds greater than 50%, patients' Cu-ATSM Dice coefficients 

were consistently greater than their respective FLT Dice coefficients (P<0.01).  

 Resulting pre- and mid-treatment SUVmean and SUVmax measurements are presented in Figure 2.5. 

On average, Cu-ATSM SUVmean decreased by 18% at mid-treatment, or 1.2%/Gy when normalized by the  

prescribed dose. FLT SUVmean decreased by 24% (2.5%/Gy) at mid-treatment. The average decreases in  

 
Figure 2.4. Population-averaged Dice coefficients quantifying the overlap between high-uptake regions at pre- and mid-treatment 

plotted as a function of segmentation method. Also shown are standard errors and results from paired t-tests comparing patients' 

respective Cu-ATSM and FLT Dice coefficients. 
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SUVmax were 9% (0.6%/Gy) for Cu-ATSM and 36% (3.8%/Gy) for FLT. Table 2.1 shows results from 

paired t-tests comparing pre- and mid-treatment SUV measures. On average, patients had significantly 

lower FLT uptake after two fractions of hypofractionated IMRT regardless of histology. A significant 

reduction in Cu-ATSM uptake was observed for carcinoma patients, while sarcoma patients showed no 

significant changes in Cu-ATSM uptake. Dose level (42 Gy vs. 50 Gy) had no significant effect on 

changes in Cu-ATSM and FLT SUV measures. 

 

 

 

 

Figure 2.5. Parallel line plots comparing each patient's pre-treatment (solid square) and mid-treatment (empty circle) SUV 

measures for Cu-ATSM SUVmean and SUVmax (left) and FLT SUVmean and SUVmax (right), separated by histology. Also included 

are quartile box plots representing population distributions of respective SUV measures.  
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Table 2.1. Results from paired t-tests comparing patients' pre- and mid-treatment SUV measures. Significant values (P ≤ 0.05; 

bolded) indicate significant decreases in SUV measures at mid-treatment. 

Tracer SUV measure 
Carcinoma  

(N=14) 

Sarcoma  

(N=8) 

All patients  

(N=22) 

pre vs. mid 

Cu-ATSM 

SUVmean P=0.006 P=0.34 P=0.004 

SUVmax P=0.08 P=0.83 P=0.17 

SUVpeak P=0.02 P=0.81 P=0.05 

pre vs. mid 

FLT 

SUVmean P=0.02 P=0.008 P=0.003 

SUVmax P=0.02 P=0.01 P=0.004 

SUVpeak P=0.04 P=0.02 P=0.01 

 

 

2.4. Discussion 

2.4.1. Spatial stability of tracer distributions 

 We assessed the spatial stability of Cu-ATSM and FLT distributions during treatment in canine 

sinonasal tumors. These patients were ideal for this study for several reasons: anesthesia during imaging 

eliminated motion— motion blurring can cause two images to appear more similar than they really are 

(148); the bone surrounding the nasal cavity guided accurate image registration—registration inaccuracies 

can significantly degrade voxel-based correlations (149); and precise immobilization techniques enabled 

repeatable positioning.  

 Overall, spatial distributions of Cu-ATSM uptake were very stable from pre- to mid-treatment. 

Only three patients had ρCu-ATSM values less than 0.8. Even the highest uptake regions of the tumors 

(thresholds of 90%) had high average overlap (67%) between pre- and mid-treatment. Therefore, in 

canine sinonasal tumors, Cu-ATSM dose-painting targets are spatially stable early during radiotherapy, so 

that neither multiple PET scans prior to therapy, nor treatment adaptation based on additional PET 

imaging early in therapy, are necessary. Our results are consistent with results from Okamoto et al., who 
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found average voxel correlations from FMISO test-retest scans to be 0.89 in HN cancer patients (145). In 

contrast, Nehmeh et al. found average voxel-based correlations from FMISO test-retest scans in HN 

cancer patients to be 0.6 over the whole tumor volume, and 0.3 when only the most hypoxic subvolumes 

were considered (144).  

 On average, pre- and mid-treatment FLT distributions were strongly correlated. This indicates 

that, for most patients, the most proliferative regions of the tumor generally remained the most 

proliferative regions early in therapy. This was surprising considering that FLT uptake at mid-treatment 

was often low (the average mid-treatment SUVmean was only 1.2), and one would expect correlations to 

deteriorate as tumor uptake approached background levels. Considerable inter-patient heterogeneity in 

ρFLT, however, was observed, with three patients' ρFLT values lower than 0.6. In addition, patients' ρFLT 

were significantly lower than their respective ρCu-ATSM, and FLT Dice coefficients were significantly lower 

than Cu-ATSM Dice coefficients for the high-uptake thresholds. Even the highest measured ρFLT (0.91) 

was only slightly better than the average ρCu-ATSM (0.88). And the highest FLT uptake regions (threshold 

of 90%) only had moderate overlap (49%) from pre- to mid-treatment. This indicates that proliferative 

response to radiation is not spatially uniform throughout the tumor, and that magnitude of intratumor 

heterogeneity in proliferative response appears to vary considerably across patients. Further investigations 

is warranted on whether intratumor proliferative response heterogeneity could provide useful information 

for defining dose painting targets, some of which are described in Chapters 4 and 5. 

2.4.2. Changes in tracer uptake magnitude 

 The reason for histology-dependent changes in Cu-ATSM SUV measures is uncertain. Other 

animal models have also demonstrated cell-line dependence in reoxygenation patterns (150). The 

reduction in Cu-ATSM uptake, however, may also be a consequence of cell kill. SUV values are affected 

not only by the biological property of interest (eg, hypoxia), but by the number of tumor cells available to 

take up the tracer (ie, cellular density). Consequently, decreases in SUV during therapy cannot be fully 

attributed to either biological changes or anatomical changes alone, but rather some combination of the 
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two. Based on our analysis of megavoltage CTs acquired during therapy (data not shown), carcinoma 

tumors had a greater tendency to shrink during therapy than sarcomas. This suggests that cell kill may 

have been a larger factor in carcinomas than in sarcomas, perhaps influencing the histology-specific 

changes in Cu-ATSM SUV.  

 We observed significant drops in FLT SUV measures for both histologies during treatment. Other 

studies have found similar results (118-119). This reduction in proliferation could be interpreted as 

radiation-induced DNA damage checkpoint control (151), but may also represent a drop in cell density. It 

is interesting to note that FLT uptake decreased significantly in both carcinoma and sarcoma tumors, 

while Cu-ATSM uptake decreased only in carcinoma tumors. If the lower tracer uptake were primarily 

due to cell kill, one would have expected that, regardless of histology, both FLT and Cu-ATSM uptake 

would have simultaneously decreased. In addition, we would have expected that tumors with large 

changes in Cu-ATSM uptake would also experience similarly large changes in FLT uptake (ie., Cu-

ATSM response would correlate with FLT response across patients). However, this was not observed: 

changes in FLT SUV were not correlated with changes in Cu-ATSM SUV (R≈0.2, data not shown). This 

suggests that changes in FLT uptake were driven primarily by functional response rather than anatomical 

response. 

2.4.3. Limitations 

 There are uncertainties in the interpretations of this study's results, particularly in application to 

human cancers. While humans and dogs have many biological similarities—they are more similar in 

growth rate, vasculature, treatment response, and gene expression profile that humans and mouse models 

(152)—the use of anesthesia and 100% O2 during imaging may affect tracer uptake (153-154) (although 

patients were awake and breathing air during the 3-hour Cu-ATSM uptake period). Cu-ATSM also has 

less binding affinity for serum albumin in dogs than in humans, potentially influencing uptake (155). 

There is also uncertainty regarding Cu-ATSM's specificity for hypoxia. The understanding of Cu-ATSM's 

uptake mechanism has evolved over time (156), but has recently been shown to be caused by impaired 
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mitochondrial electron transport chain function—a consequence of cellular hypoxia (157). Nonetheless, 

studies have found certain tumor types to have poor spatial correlations of Cu-ATSM and FMISO uptake 

patterns, especially with shorter Cu-ATSM uptake periods (158). We used a 3-hour uptake period for Cu-

ATSM based on preliminary analysis we performed in canine patients: we found that Cu-ATSM uptake at 

24 hours post-injection had higher spatial correlations to Cu-ATSM uptake at 3-hours post-injection than 

at 1-hour post-injection (R≈0.85; data not shown). Finally, we emphasize that while tracer distributions 

were spatially stable early during treatment, tracer distributions at later mid-treatment time points are 

likely to be less stable.  

2.5. Conclusion 

 In this chapter, we aimed to evaluate the spatio-temporal stability of Cu-ATSM and FLT PET 

distributions in canine sinonasal tumors during fractionated radiation therapy. We found that spatial 

distributions of Cu-ATSM and FLT PET remained mostly stable after a few fractions of IMRT, despite 

significant decreases in mid-treatment SUV measures. FLT PET spatial distributions were mostly stable, 

but they were significantly less stable than Cu-ATSM PET spatial distributions. As targets for dose 

painting, Cu-ATSM and FLT PET appear to be spatially robust targets in canine sinonasal tumors, and 

would be unlikely to require repeated imaging and replanning early during fractionated radiation therapy. 

This is the first study to report on the spatial stability of Cu-ATSM and FLT PET uptake distributions 

during therapy. 
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3. Patterns of FDG, FLT, and Cu-ATSM PET uptake in sarcoma 

and carcinoma tumors in canines 

 This chapter also addresses Specific Aim 1 of the dissertation, which is to evaluate properties of 

FDG, FLT, and Cu-ATSM PET as they relate to target definition in dose painting. Specifically, this 

chapter describes the similarities and dissimilarities in FDG, FLT, and Cu-ATSM PET uptake 

distributions in sarcoma and carcinoma canine tumors, and describes how dose painting plans are likely to 

differ according to different biological targets. This work has been published in the Journal of Nuclear 

Medicine (141). 

3.1. Motivation 

 Biological heterogeneity within tumors, or intratumor heterogeneity, occurs when a single tumor 

has regional variations in biological—and even genetic—properties (159). Intratumor heterogeneity 

presents a challenge for advanced or targeted therapies where specific biological processes are targeted: 

certain tumor regions might express the biological target while other tumor regions might not. With 

increasing interest in therapies that target specific biological mechanisms, measuring intratumor 

heterogeneity may, in the future, help inform treatment selection, and could influence staging and 

treatment response assessment.  

 In biologically conformal radiotherapy, it is uncertain which biological property should be 

targeted for dose escalation. Tumors in which different biological targets (eg, cellular hypoxia and 

glucose metabolism) have similar spatial distributions would be robust targets for dose painting: targeting 

one phenotype would result in a similar treatment plan as targeting other phenotypes. However in tumors 

where different biological targets cluster in different regions of the tumor, dose painting treatment plans 

would be sensitive to the choice of biological target. Measuring spatial distributions of different 
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biological targets could help identify tumor types that are most likely to gain from dose painting 

treatments. 

 The purpose of this study was to measure and compare spatial distributions of three different 

biological properties in tumors—glucose metabolism, cellular proliferation, and hypoxia—in two 

different tumor histologies. Surrogates of these properties were measured using PET radiotracers FDG, 

FLT, and Cu-ATSM, respectively. We compared sarcoma and carcinoma canine tumors in terms of FDG, 

FLT, and Cu-ATSM PET uptake patterns, including a comparison of uptake magnitudes and an analysis 

of spatial relationships between the three tracer distributions. 

3.2. Materials and methods 

 Twenty canine patients of from the CIRT trial were included in the study. This included 12 

adenocarcinoma patients, 6 chondrosarcoma patients, 1 squamous cell carcinoma patient, and 1 

osteosarcoma patient. The imaging and treatment schedule, and details of image acquisition and 

processing, are found in section 1.5. This study used patients' pre-treatment FDG, FLT, and Cu-ATSM 

PET/CT images.  

3.2.1. Data Analysis 

 The magnitudes of FDG, FLT, and Cu-ATSM uptake were compared between sarcoma (N=7) 

and carcinoma (N=13) tumors. SUVmax, SUVpeak, and SUVmean were calculated for each patient, and then 

compared between sarcoma and carcinoma patient populations. Two-sided Mann-Whitney U-tests were 

used to determine significant differences. In addition, F-tests were used to compare variances of SUV 

measures between sarcomas and carcinomas.  

 For this study, patients' images were registered using rigid registration: all CT images were 

cropped to include only the volume of interest, and then rigidly registered to a single reference CT image 

in Amira® (Visage Imaging Inc., San Diego) using mutual information. The resulting transformations 

were then applied to their respective PET data. This allowed for a voxel-based comparison of FDG, FLT, 
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and Cu-ATSM uptake distributions in each tumor. Voxel-based Spearman rank correlation coefficients 

were calculated for each tracer combination: FLT:Cu-ATSM, FDG:Cu-ATSM, and FDG:FLT. Spearman 

rank correlation coefficients were used instead of Pearson correlation coefficients to avoid assumptions of 

linearity and normality. Correlation coefficients were averaged for sarcomas and carcinomas using the 

Fisher transformation, and two-sided t-tests determined significant differences between the two tumor 

histology z-score distributions.  

 In addition to a voxel-based analysis, tracer uptake patterns in sarcoma and carcinoma tumors 

were compared by analyzing the degree of overlap between tracer-avid uptake regions. Tracer-avid 

volumes were created for each tracer by applying a threshold of each tracer’s SUVmax within the GTV, 

resulting in three tracer-avid volumes per tumor. From these three volumes we calculated the percent 

overlap relative to the total thresholded volume (ie, the intersect relative to the union). As the best 

threshold for segmenting tumor volumes is unknown, we applied several different thresholds, from 10% 

to 90% of SUVmax in 10% increments. At each threshold level, the percent overlap was quantified. These 

overlap percentages were then averaged for both tumor histologies, and t-tests determined if the degrees 

of overlap were significantly different between histologies. To better visualize the histology-averaged 

tracer overlap, we created Venn diagrams (160) for each threshold level.  

3.3. Results 

3.3.1. Magnitude of Tracer Uptake 

 Table 3.1 shows SUV measures when averaged over the sarcoma and carcinoma populations, 

with P-values resulting from Mann-Whitney U-tests. Carcinomas had significantly higher FDG SUVmax 

than sarcoma tumors (11.1 vs 5.0; P=0.01), as well as higher Cu-ATSM SUVmean (2.6 vs 1.2; P=0.02 ). 

Differences in FDG SUVmean and SUVpeak were approaching significance (P=0.057). For all SUV  
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Table 3.1. Histology-averaged SUV measures   

Tracer 
SUVmean 

 SUVmax 
 SUVpeak 

 

Sarc Carc P Sarc Carc P Sarc Carc P 

FDG 2.3 4.5 0.057  5.0 11.1 0.014  3.9 8.3 0.057  

FLT 1.3 2.7 0.38 2.8 7.6 0.13 1.9 5.3 0.27 

Cu-ATSM 1.2 2.6 0.022 4.6 7.4 0.15 3.3 5.5 0.13 

Sarc = sarcoma; Carc = carcinoma 

 

measures, carcinomas had higher average uptake than sarcomas. Box plots of patients' SUVmean and 

SUVmax measurements are shown in Figure 3.1. It is evident from Figure 3.1 that the interpatient range, or 

variance, in SUV measures was much larger for carcinomas than sarcomas. This was confirmed by F-

tests, which found the variances to be significantly different between histologies (P<0.01) in all cases but 

Cu-ATSM SUVmax and SUVmean. The average tumor volumes were not significantly different between 

histologies.  

3.3.2. Spatial Correlations 

 Figure 3.2 shows voxel-based SUV scatter plots for three carcinoma patients on the left, and three 

sarcoma patients on the right. Four of the seven sarcoma tumors had FLT:Cu-ATSM scatter plots that 

appeared to be bifurcated, with one arm of low hypoxia and varying degrees of proliferation, and another 

arm with low proliferation and varying degrees of hypoxia. The other three sarcoma tumors had fan-

shaped scatter plots. Carcinoma tumors, on the other hand, generally had high linear correlations between 

phenotypes. Box plots of patients' voxel-based Spearman correlation coefficients, separated by tumor 

histology, are shown in Figure 3.3. Fisher-averaged correlation coefficients and t-test results are shown in 

Table 3.2. Carcinomas had significantly higher intertracer correlations than sarcomas for all tracer 

comparisons. The greatest differences between the two histologies were the FLT:Cu-ATSM correlations, 

where the average correlation coefficient was 0.38 for sarcomas, and 0.83 for carcinomas (P < 10
-4

).  
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Figure 3.1. Quartile box plots representing distributions of SUVmean (top row) and SUVmax (bottom row) for FDG (left column), 

FLT (middle column), and Cu-ATSM (right column) PET scans, separated by tumor histology. 

 

3.3.3. Overlapping Volumes 

 Examples of tracer-avid volumes using a 70% threshold are shown for 12 tumors in Figure 3.4. 

Tracer-avid regions generally overlapped in carcinoma patients, but were spatially separated in sarcoma 

patients. Figure 3.5 shows Venn diagram representations of intertracer overlap, averaged for carcinomas 

and sarcomas, using nine different SUV thresholds. Low thresholds (≤ 30%) and high thresholds (90%) 

showed no significant differences between histologies. For thresholds between 40-80%, however, 

significant differences were observed between sarcomas and carcinomas; t-test results are shown in Table 

3.3. No significant differences were observed between sarcomas and carcinomas in terms of FDG:FLT 

overlap for any threshold. Overlap between Cu-ATSM:FDG and Cu-ATSM:FLT were significantly 

.Table 3.2. Histology-averaged Spearman correlation coefficients. 

Tracers  
Sarcoma 

Avg ρ 

Carcinoma 

Avg ρ 
P 

FLT:Cu-ATSM 0.38 0.83 <0.0001 

FDG:Cu-ATSM 0.69 0.82 0.04 

FDG:FLT 0.61 0.80 0.02 
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different between the histologies for thresholds of 40-80%, with carcinomas having greater average 

overlap. The regions where all three tracers overlapped were also significantly larger in carcinomas for 

thresholds of 40-70%. 

 

 
Figure 3.2. Voxel-based SUV scatter plots for three carcinoma patients on the left, and three sarcoma patients on the right, 

illustrating intratumor tracer correlations. Each point represents a voxel inside the tumor, with its position and color representing 

the voxel's SUV values from the three PET scans.   
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Figure 3.3. Quartile box plots representing distributions of voxel-based Speaman correlation coefficients for sarcoma and 

carcinoma patient populations, comparing FLT and Cu-ATSM (left), FDG and Cu-ATSM (middle), and FDG and FLT (right).   

 

 

Figure 3.4. Three-dimensional representations of twelve patients' GTVs (gray outline) with tracer-avid volumes inside. The 

tracer-avid volumes presented in these images were created by applying a 70% threshold to each respective tracer, with FDG in 

red, Cu-ATSM in blue, and FLT in green. Venn diagrams in the upper right corners help visualize the degree of overlap.  
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Figure 3.5. Venn diagrams representing average degrees of overlap between tracer-avid volumes for various thresholds, averaged 

for carcinomas (top row) and sarcomas (bottom row). FDG volumes are represented by red, Cu-ATSM by blue, and FLT by 

green.    

 

Table 3.3. Comparison of overlapping tracer-avid volumes for sarcomas and carcinomas 

Region of Overlap 
P-values for thresholds of: 

40% 50% 60% 70% 80% 

FLT ∩ Cu-ATSM 0.02 <0.001 <0.001 0.004 0.04 

FDG ∩ Cu-ATSM 0.05 0.004 0.002 0.006 0.03 

FDG ∩ FLT - - - - - 

FLT ∩ FDG ∩ Cu-ATSM 0.04 0.002 0.001 0.002 - 

Significant values indicate that carcinomas had significantly greater overlap of respective tracers than sarcomas;P 

values greater than 0.05 are not shown, indicated by (-).  

 

 

3.4. Discussion 

 In comparing FDG, FLT, and Cu-ATSM uptake patterns in canine nasal tumors, we found that 

sarcoma tumors had significantly lower FDG and Cu-ATSM uptake than carcinoma tumors. Two other 

studies—one in canines (161) and one in human lung cancer patients (162)—compared FDG uptake in 

sarcoma and carcinoma tumors and found similar results. Lower FDG and Cu-ATSM uptake may be 

indicative of a less aggressive phenotype in sarcoma tumors. However, the low uptake may also be caused 

by a lower tumor cell density, which is characteristic of chondrosarcoma tumors (163). 
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 Spatial correlations of FDG, FLT, and Cu-ATSM PET were heterogeneous across patients, with 

Spearman correlation coefficients ranging from 0.14 to 0.98. Carcinoma tumors had significantly higher 

correlations and colocalizations of tracers than sarcoma tumors. The greatest discordance between the two 

histologies was the FLT:Cu-ATSM correlations. In four of the seven sarcoma patients, there were 

distinctive bifurcations in the FLT:Cu-ATSM scatter plots (three of these patients also had minor 

bifurcations in their FDG:Cu-ATSM scatter plots), which have not been reported in literature. The two 

branches, when mapped back into three-dimensional image space, resulted in two spatially contiguous 

tumor regions. This suggests that significant phenotypic heterogeneity exists in sarcoma tumors, with 

distinct regions of proliferation, distinct regions of hypoxia, and varying levels of metabolism. It is also 

possible that one branch of the bifurcation is due to normal tissue uptake. We have observed that the 

ethmoturbinates located caudally in the canine nasal cavity consistently had nonspecific uptake of FDG 

and Cu-ATSM, with SUVs around 2-4. When we contoured out regions where the GTV overlaps with the 

ethmoturbinates, the scatter plot bifurcations indeed become less pronounced (data not shown). However, 

the correlations in sarcoma tumors remained significantly lower than in carcinoma tumors regardless of 

ethmoturbinate inclusion. 

 The biological underpinnings of the observed uptake patterns are unclear. Based on analysis of 

DCE-CT scans acquired in the same patient population, tracer uptake patterns did not appear to be 

spatially correlated to perfusion parameters (164). Assuming that high FDG, high FLT, and high Cu-

ATSM uptake indicates the colocalization of metabolism, proliferation, and hypoxia, the high intertracer 

correlations in carcinomas may be explained by increased cellular hypoxia inducible factor 1 (HIF-1) 

activity, which can activate metabolic enzymes and transporters and drive proliferation (165). This 

reasoning may be supported by a study by Kaira et al., where human lung carcinoma patients were found 

to have significantly higher HIF-1α expression than lung sarcoma patients (162). Conversely, the low 

intertracer correlations observed in sarcomas may be due to a preference of sarcoma cells to undergo cell 

cycle arrest under hypoxic conditions, thereby lowering proliferation rates (166). However, as a voxel’s 
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SUV only reflects an average of the many cellular processes occurring within its macroscopic volume, we 

cannot explain the trends with certainty. Interestingly, while sarcoma tumors had significantly more 

phenotypic heterogeneity than carcinoma tumors, canine sarcoma nasal tumors are reported to respond 

better to treatment than carcinoma tumors (167). This is in contrast to other studies that have shown 

intratumor heterogeneity, although defined and measured differently,  to be associated with worse 

outcome (168). 

 Treatments designed to specifically target certain tumor phenotypes (e.g. dose painting) may 

result in very different outcomes for carcinoma and sarcoma tumors. In carcinomas, where proliferative, 

hypoxic, and metabolic phenotypes were colocalized, targeting one phenotype appears likely to 

simultaneously target the other two phenotypes. Alternatively, in sarcomas, each tracer accumulated in 

different regions of the tumor, and targeting a single phenotype would likely miss tumor regions with 

high expression of the other two phenotypes. Consequently, dose painting in canine carcinoma tumors 

could be considered a safer bet than dose painting in sarcoma tumors. It may also be the case that in 

different tumor histologies the relationships between various biological properties and treatment 

resistance may be different. This was observed in a study involving a smaller subset of this patient 

population, where we observed histology-dependence when associating distributions of different pre-

treatment tracers with follow-up FDG distributions (95).  

 This is the first study to have reported comparisons of three tracer distributions in two different 

tumor histologies. Results from previous studies comparing two tracers in two or more histologies were in 

agreement with our results—namely that spatial correlations of different biological properties are 

histology-specific (169-171). Tumor types that have demonstrated poor correlations between metabolic 

activity and hypoxia include, in rodents, colon adenocarcinoma (172) and Lewis lung carcinomas (173), 

and in humans, lung squamous cell carcinoma (170) and sarcomas (171). On the other hand, high 

correlations have been found in head-and-neck (171) and lung adenocarcinoma (170) patients. Hansen et 

al. compared FDG and Cu-ATSM distributions in six sarcoma and three carcinoma canine tumors and 
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found moderate to strong voxel correlations, but reported no comparisons between histologies (174). 

Studies that have investigated FLT and hypoxia correlations in tumors have found varying degrees of 

correlation in human oropharyngeal tumors (149), high correlations in a 9L gliosarcoma rat model (175), 

and low correlations in non-small cell lung cancer (NSCLC) xenografts in mice (176). For intratumor 

correlations of FDG and FLT, Nyflot et al. reported high correlations in oropharyngeal tumors (149), 

while Huang et al. reported low FDG:FLT overlap in NSCLC xenografts (176). Other studies have found 

FDG uptake to be strongly influenced by proliferation rate (177). These reports, coupled with our 

findings, suggest that tumors of different histologies have substantially different relationships among 

biological properties, although trends do appear to occur within individual histologies.   

 Many of the limitations of this study have been addressed in section 2.4.3. An additional 

limitation specific to this study is that we grouped together all sarcoma tumors (six chondrosarcomas and 

one osteosarcoma) and all carcinoma tumors (twelve adenocarcinomas and one squamous cell carcinoma) 

for analysis. They were grouped together because of their similarities in tracer uptake patterns, however 

we recognize that genetic profiles can vary drastically between different sarcomas and carcinoma 

subtypes (178). Therefore, phenotypic patterns may have different trends in different subtypes.  

3.5. Conclusion 

 Distributions of Cu-ATSM, FLT, and FDG uptake were spatially disparate in sarcoma tumors, 

whereas in carcinoma tumors, the uptake distributions of all three PET tracers were spatially colocalized. 

Additionally, carcinoma tumors demonstrated much greater interpatient heterogeneity in the magnitude of 

tracer uptake for all three tracers. This implies that the interrelationship between hypoxia, proliferation, 

and metabolism may be significantly different in sarcoma and carcinoma canine tumors. Consequently, 

targeting a single biological property via dose painting may result in very different outcomes for different 

tumor histologies. Canine carcinoma tumors represent a tumor type that is likely to be robust to how the 

dose painting target is defined: regardless of which PET tracer is used, dose painting dose distributions 

for carcinomas would be similar. Canine sarcoma tumors represent a tumor type in which it is very 
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important to select the best dose painting target, as large differences exist between the locations of 

different biological targets. It is unclear if tumor types with similar properties exist in humans, but 

identifying those that are robust to target definition may help in selection of patients most likely to benefit 

from dose painting. 
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4. Predicting location of recurrence using PET imaging and voxel 

regression modeling 

 This chapter also addresses Specific Aim 1, which is to evaluate properties of FDG, FLT, and Cu-

ATSM PET as they relate to target definition in dose painting. This chapter aimed to address one of the 

most important properties of a dose painting target: the spatial relationship between imaging patterns and 

resistance to radiation therapy. Voxel-based regressions were used to relate PET imaging patterns to post-

treatment recurrent tumor location, in order to evaluate which PET tracer is the best spatial biomarker of 

resistance. 

4.1. Motivation 

 The success of dose painting is contingent on the ability of biological imaging to reliably and 

consistently identify resistant tumor subvolumes before (or during) radiation therapy. Unlike traditional 

imaging biomarkers of resistance in which tumor imaging summary statistics (eg, maximum standardized 

uptake value) are correlated with clinical outcome, imaging targets for dose painting need to spatially 

correlate with spatial patterns of resistance. As tumor radioresistance cannot be directly measured, 

location of recurrence is often used as a surrogate measure of tumor resistance (100, 179-180). Pre- and 

post-treatment images are coregistered, and the locations of tumor recurrence on the post-treatment image 

are mapped back to the pre-treatment image. Patterns of recurrence are then compared to the pre-

treatment imaging patterns. For example, using positron emission tomography (PET) imaging in non-

small cell lung cancer tumors, Aerts et al. found high spatial overlap between post-treatment 2-deoxy-2-

[
18

F]fluoro-D-glucose (FDG) uptake and pre-treatment FDG uptake (14, 179). In head-and-neck tumors, 

Soto et al. found that 8 out of 9 patients' recurrence volumes resided primarily within regions of high pre-

treatment FDG uptake (109). Results such as these have encouraged the use of FDG as a target for dose 

painting, and consequently clinical trials of FDG dose painting have been conducted in head-and-neck 
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and lung tumors (59, 65, 79). Other PET radiotracers, such as FLT and Cu-ATSM, may also demonstrate 

promise as spatial markers of radioresistance.  

 The goal of this work was to assess how accurately pre-treatment FDG PET imaging, as well as 

pre- and mid-treatment FLT and Cu-ATSM PET imaging, predicts the location of residual or recurrent 

tumor in canine sinonasal tumors. This work builds off of a previously-published exploratory study, in 

which Bowen and colleagues performed voxel regressions of pre-treatment FDG, FLT, and Cu-ATSM 

uptake values against 3-month post-treatment FDG uptake values in 9 canine patients (95). In that study, 

they found that pre-treatment FDG PET performed better than FLT and Cu-ATSM PET at predicting 

post-treatment FDG PET distributions. This work builds on these results by increasing the number of 

patients, adding additional predictor variables in mid-treatment FLT and Cu-ATSM PET images, and 

expanding the statistical methods of analysis. 

4.2. Methods 

Nineteen of the 22 patients from the CIRT trial were evaluable for this study. Three patients were 

excluded from analysis: two because no residual/recurrent tumor was visible in follow-up PET/CT 

images, and one because the tumor did not shrink following treatment.  Details of the imaging and 

treatment protocol are found in section 1.5. For this study, patients’ pre- and mid-treatment PET images 

were used, as well as post-treatment FDG PET images. All analysis was performed inside the GTV, with 

the ethmoturbinates manually segmented and removed from analysis due to non-specific uptake of FDG 

and Cu-ATSM. 

4.2.1. Regression analysis 

 Similar to Bowen et al. (95), we used voxel regression methods to assess how well PET uptake 

patterns predicted the location of tumor recurrence. For each tumor, pre-treatment FDG (FDGpre), FLT 

(FLTpre), Cu-ATSM (Cu-ATSMpre) and mid-treatment FLT (FLTmid) and Cu-ATSM (Cu-ATSMmid) voxel 

SUVs were regressed against follow-up FDG voxel values (FDGpost), which was used as a surrogate for 
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residual/recurrent tumor. Ratios of mid-treatment voxel values to pre-treatment voxel values for FLT 

(RFLT) and Cu-ATSM (RCu-ATSM) images were also used as predictor variables. Two types of regression 

were considered. In linear regression models, voxel SUVs from patients' post-treatment FDG images were 

used as response variables. In logistic regression models, recurrent tumor was segmented in the post-

treatment FDG PET image, and the response variables were converted to binary variables — 1 if the 

voxel was within the segmented volume, and 0 otherwise. The segmentation of post-treatment images was 

performed using an in-house automatic segmentation algorithm that combines gradient, region-growing, 

and textural feature methods (181). Simple regression models and a multivariable regression model were 

created for each patient. For multivariable models, all 5 PET images were included as predictor variables 

(ratio variables were not included, as the multivariable model already accounts for absolute differences 

between pre- and mid-treatment voxel values). As patients had multiple follow-up FDG PET scans, the 

time point at which the tumor was the smallest was used for the response variable.  

 To evaluate how well pre- and mid-treatment PET distributions predicted recurrent tumor, 

goodness of fits of the regression models were calculated. For linear regression models, the coefficient of 

determination (R
2
) was calculated. For logistic regression models, pseudo R

2
 was used. Pseudo R

2
 was 

calculated according to the correlation between the model's predicted response and measured response 

values:  

            
         

  
   

          
   

 ,                         (4.1) 

 where yi is the ith response value,     is the model-predicted probability, and    is the mean response 

value. It should also be noted that pseudo R
2
 for logistic regression and R

2
 from linear regression are not 

directly comparable, but do have similar interpretations. Significance testing of the regression coefficients 

was not performed due to the very high spatial correlations between neighboring voxels, which resulted in 

exaggerated significance values. Similar to Bowen et al., two-tailed t-tests were used to assess if the 

population of regression coefficients from all patients were significantly different from zero (95). 
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 Using correlation analysis, we investigated if any clinical measures or imaging biomarkers could 

predict which patients would have high or low R
2
 (ie, which patients would be good or poor candidates 

for dose painting). Clinical measures that were tested as predictors of R
2
 values included histologic tumor 

type and dose level. Imaging biomarkers that were tested included tumor volume, maximum and mean 

SUV from pre- and mid-treatment images, relative changes in maximum and mean SUV from pre- to 

mid-treatment, and relative change in 1D tumor size. 

4.2.2. Predictive modeling 

 Given the limitations of linear regression (eg, linearity), we also created advanced prediction 

models to evaluate how accurately the location of recurrence for a "new" patient could be predicted given 

the imaging data of all the other patients. For each patient, 4 prediction models were created/trained based 

on the other 17 patients' combined data, and then applied to the test patient (ie, leave-one-out cross 

validation). One patient was excluded due to missing FLTmid data. Each model was trained on patients' 

pre- and mid-treatment PET images, with FDGpost as the response/predicted variable.  

 The 4 models included a multivariable linear regression (LR) model (as a basis for comparison), a 

classification and regression tree (CART) model (182-183), a linear mixed-effects regression (LMER) 

model, and a multivariable linear regression model that included neighborhood structures surrounding 

each voxel as additional covariates to account for autocorrelation between neighboring voxels. The 

autocorrelation model was defined as follows: 

    
    

                    
    

                    

    

    ,                     (4.2) 

where     
    

 is the post-treatment FDG SUV at voxel i, PETmi is the SUV at voxel i for the mth PET 

image, βk are the 10 regression coefficients (2 for each PET image), Ni is the neighborhood surrounding 

voxel i, and PETmj is the SUV of the jth voxel in Ni for PET image m. For this study, we used the first-
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order neighborhood surrounding voxel i to define Ni, meaning only those voxels sharing a side with voxel 

i.  

 For each patient, predicted FDGpost values were compared to true FDGpost values, and prediction 

accuracy was quantified using R
2
. When pooling the 17 patients' data for training the models, only 249 

voxels were randomly sampled and used from each patient so that each tumor was equally represented in 

the pooled model, regardless of tumor size (249 voxels was the size of the smallest tumor). Fitted R
2
 (or 

pseudo R
2
) values were calculated based on the model fit of the 17 patients × 249 voxels = 4,233 voxels. 

For testing prediction accuracy, R
2
 was calculated by applying the fitted model to all the voxels of the 

tested patient. The procedure was repeated 100 times for each patient, and the average of the resulting R
2
 

values were reported. These steps were then repeated using binary response variables (ie, segmented post-

treatment FDG images) instead of continuous response variables. The same 4 models were trained for 

each patient, except logistic regression was used instead of linear regression, and prediction accuracy was 

quantified according to pseudo R
2
. 

4.3. Results 

An example patient's PET/CT images and simple linear regression plots are shown in Figure 4.1. In 

Figure 4.2, example images from 3 adenocarcinoma patients' pre-treatment PET/CT imaging, during 

treatment CT and mega-voltage CT (MVCT) imaging, and post-treatment FDG PET/CT imaging are 

shown. These 3 patients demonstrated various ways by which tumors shrank during and after treatment. 

All 3 tumors appeared anatomically similar at pre-treatment, nearly filling one side of the nasal cavity. 

However, Patient 1's tumor began to shrink by the end of therapy, resulting in multiple fragmented 

patches of residual tumor. Patient 2's tumor demonstrated slower, more elastic shrinking, resulting in a 

single, nearly-spherical mass of residual tumor. Patient 3's tumor represented a mix between elastic tumor 

shrinkage and patchy tumor shrinkage, and began responding anatomically immediately after the onset of 

therapy. 
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4.3.1. Regression results 

Results from simple linear and logistic regressions for all patients are shown in Figure 4.3. Overall, 

linear regression coefficients were significantly different from zero across the population for all pre- and 

mid-treatment tracers (P<0.05) according to t-tests. RFLT coefficients were significantly less than zero  

(P=0.038), whereas RCu-ATSM coefficients were not significantly different from zero (P=0.055). Likewise, 

for logistic regression, regression coefficients for all pre- and mid-treatment tracers were significantly 

different from zero (P<0.05), except for FLTpre (P=0.38). Again, RFLT coefficients were significantly less 

than zero (P=0.028), whereas RCu-ATSM coefficients were not (P=0.33).  

 
Figure 4.1. An example patient is shown, illustrating the simple linear voxel regression method. Pre- and mid-treatment PET 

voxel values (top row) were regressed against follow-up FDG voxel values. Response maps (RFLT and RCu-ATSM; bottom row) 

were also regressed against follow-up FDG. For logistic regression, post-treatment voxel values were dichotomized using a in-

house segmentation method (outlined in white).  

 Figure 4.3 shows R
2
 and pseudo R

2
 for all patients' linear and logistic simple models. There was 

large variability between patients in goodness of fits, with R
2
 and pseudo R

2
 values ranging from 0.00 to 

0.85, with an overall median of 0.12.  For linear regression, the median R
2
 for FDGpre was 0.19, while the 

median R
2
 values for FLTpre, Cu-ATSMpre, FLTmid, and Cu-ATSMmid were all around 0.10. Median R

2
 for 
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RFLT and RCu-ATSM were less than 0.05. For logistic regression, median pseudo R
2
 values for FDGpre, 

FLTpre, Cu-ATSMpre , FLTmid, and Cu-ATSMmid varied between 0.06 to 0.10, and RFLT and RCu-ATSM had 

median pseudo R
2
 less than 0.03.   

 

 
Figure 4.2. Example pre-treatment sagittal PET/CT images (left), CT and MVCT images at 3 and 10 fractions, respectively 

(middle), and post-treatment FDG PET/CT images (right) are shown for 3 example patients. The three patients demonstrate 

different ways by which tumors shrink during and after therapy. 
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Figure 4.3. Results from simple linear (top row) and logistic (bottom row) voxel regressions for all patients. Regression 

coefficients (left) and goodness of fits (right) are shown.  

 

 

Figure 4.4. R2 and a pseudo R2 for each patient's multivariable linear and logistic regression models, respectively.  
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Figure 4.5. Scatter plots illustrating that different predictor variables' R2 were correlated across patients (left). Likewise, 

regression coefficients for different predictor variables were correlated across patients (right). Only results from pre-treatment 

simple linear regression models are shown here. 

 

 Figure 4.4 shows all patients' R
2
 and pseudo R

2
 from multivariable linear and logistic regressions, 

respectively. Multivariable models had better goodness of fits than simple regression models: the median 

R
2
 for the linear model was 0.31, and median pseudo R

2
 for the logistic model was 0.24. 

 No clinical measures or imaging biomarkers were correlated with patients' respective R
2
 (R < 

0.3). We found that patients with low R
2
 for a single predictor variable had similarly low R

2
 for all 

predictor variables, even for multivariable models. In other words, the R
2
 of different regression models 

(for different predictor variables) were correlated across patients (R > 0.75). This is illustrated for all three 

pre-treatment simple linear regression models in Figure 4.5. Likewise, if a patient had low regression 

coefficient for a single predictor variable, the other predictor variables were likely to also have low 

regression coefficients (see Figure 4.5). 

4.3.2. Predictive modeling results 

 Figure 4.6 shows results from each patient's predictive modeling. For each patient, the fitted R
2
 

and fitted pseudo R
2
 are shown—these indicate how well the models described the other 17 patients' data. 

The prediction R
2
 and prediction pseudo R

2
 indicate how well the prediction models performed when 
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but often had the worst performance in predicting a "new" test patient. Overall, advanced prediction 

models did not improve the prediction accuracy when compared to multivariable linear regression 

models.   

 

 

Figure 4.6. Prediction modeling results for each patient, for both continuous response variables (top row) and binary response 

variables (bottom row). For each patient, fitted R2 are shown, indicating how well the four models fit the 17 other patients' data 

that they were trained on. Prediction R2 are also shown, indicating how well the trained models predicted the response values for 

the test patient. Patients are sorted according to the prediction R2 for the linear regression model. LR = multivariable linear 

regression; CART = classification and regression tree; LMER = linear mixed effects regression; Auto = regression with 

neighborhood structures. 
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4.4. Discussion 

 In this study, we used canine sinonasal tumors as models for determining which radiotracer 

uptake distribution — FDG, FLT, or Cu-ATSM — best correlated with location of tumor recurrence as a 

surrogate for measuring spatially-resolved resistance to radiation therapy. Bowen et al. previously 

published an exploratory voxel regression study evaluating 9 of the patient used in this study, and 

reported pre-treatment FDG uptake distributions as being the best predictor of post-treatment FDG uptake 

distributions (95). In this study, we made several additions to the methods of analysis, including the 

addition of mid-treatment FLT and Cu-ATSM images as predictor variables, implementing logistic 

regression with segmented follow-up FDG images as binary response variables (removing potential 

autocorrelation between pre- and post-treatment FDG), and creating advanced prediction models 

accounting for non-linearity, patient-level variables, and autocorrelation among neighboring voxels. We 

also increased the statistical power of the study by increasing the number of evaluable canine patients 

from 9 to 19.  

 Overall, we found large variability among patients in how well pre- and mid-treatment PET 

imaging predicted the locations of tumor recurrence. For simple regression models, FDGpre had the 

highest median and mean R
2
 values of the tested predictor variables, suggesting it might be the most 

suitable target for dose painting. This is in agreement with the results reported by Bowen et al. (95). On 

the other hand, when FDGpost was dichotomized and logistic regression was performed, the R
2
 values for 

FDGpre were nearly identical to those of the other predictor variable. Unsurprisingly, we found that 

multivariable models resulted in better goodness of fits (R
2
 and pseudo R

2
) than simple regression models. 

Regardless of regression method, however, there was a cluster of 5 patients whose R
2
 were at or below 

0.20. Unfortunately, patients’ R
2
 values were not correlated with any imaging biomarkers or clinical 

measures that we tested. Biomarkers that could predict which patients would "behave well" under dose 

painting would be valuable for selecting patients most likely to benefit from dose painting.  
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 The interpretation and implications of a low or high R
2

 for such regression models, or the 

thresholds at which an R
2
 could be considered adequate for dose painting, are not straightforward. Bender 

addressed these issues using a tumor control probability model, and reported that when the voxel-based 

correlation coefficient between a particular imaging method and the theoretical probability of recurrence 

risk was greater than 0.45 (corresponding to an R
2
 of 0.20), voxel-based dose painting would result in 

greater tumor control than uniform dose prescriptions (32). Clearly, the measure of post-treatment FDG 

SUV used in our study was not a direct measure of recurrence risk, but if we were to use an R
2
 threshold 

of 0.20 for the simple linear regression models, we would find that roughly half of the 19 patients would 

benefit from dose painting. For the other half of the population, however, dose painting might actually be 

worse than uniform dose prescriptions. These results, of course, depend on the tracer used (see Figure 

4.3), and regression method used for analysis (linear vs logistic vs multivariable), but do suggest that all 

patients may not be good candidates for dose painting. These results highlights the need to identify 

objective measures that can predict which patients would make good or poor candidates for dose painting 

based on a given biological imaging target. 

 Voxel-based predictors based on ratios of PET images from pre- to mid-treatment (RFLT and RCu-

ATSM) were not good at predicting recurrent tumor location: R
2
 and pseudo R

2
 values were close to 0 for 

simple linear and logistic regression models. We originally hypothesized that biological changes 

occurring early during radiation therapy might correlate to tumor resistance. This hypothesis was 

supported by the analysis of clinical outcome for the canine patients which is presented in Chapter 5: mid-

treatment FLT SUVmax and relative changes in FLT SUVmax from pre-treatment to mid-treatment were the 

most predictive of progression-free survival. In this study, we did not find response maps of FLT uptake 

to be significant spatial predictors of residual/recurrent tumor location. A mathematical problem with 

ratio maps, however, is that response values can become inflated in regions with initially-low voxel 

values (ie, denominators close to zero), so that even fluctuations in image values due to statistical noise 

can appear as large response values. This may have confounded the utility of RFLT and RCu-ATSM as 
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predictors. Other techniques of quantifying spatially-resolved changes in longitudinal PET images may be 

more appropriate, such as absolute SUV changes (this was included in the multivariable regression 

models), or other methods (184). 

 Advanced predictive models did not provide an improvement over multivariable linear regression 

models at predicting a "new" patient's post-treatment FDG values. These prediction models were used to 

account for potentially confounding factors that aren't accounted for in linear regression, such as patient 

categorical variables, non-linearity, and autocorrelation among neighboring voxels. For the models with 

continuous response data, the fitted R
2
 for the pooled data were generally higher than for the multivariable 

linear models shown in Figure 4.4 However, the better fitting did not result in high prediction accuracy, as 

median prediction R
2
 values for the different models were less than 0.15. CART performed the best at 

describing the training data (see Figure 4.6) , but often having the poorest prediction performance—likely 

a consequence of over fitting. Overall, prediction R
2
 were approximately the same as the regression R

2
 

shown in Figure 4.4, and contained large interpatient variability. 

 We observed that tumors were highly variable in their anatomical response to radiation therapy. 

This is demonstrated in Figure 4.2. Using during-treatment CT and MVCT imaging, we were able to 

observe tumor shrinkage over time. Some tumors experienced anatomical response almost immediately 

following the onset of IMRT, whereas others did not shrink at all during the 2-week course of IMRT. Of 

those that did shrink, some tumors appeared to shrink elastically: the tumor died or contracted at the 

edges, resulting in a single mass of residual tumor near the center. Other tumors, however, did not shrink 

elastically, but rather had patchy or fragmented anatomical responses, containing spatial clusters of dying 

tumor and spatial clusters of resistant tumor. Yet other tumors responded in  manner that appeared to be a 

mixture of the two types. It is unclear why different tumors responded so differently during treatment. 

Clearly, these types of responses have implications for adaptive IMRT, in which dose distributions are 

shaped to match the spatial patterns of tumor anatomical (or biological) response. The tumors with patchy 

regions of response could indicate the existence of tumor subregions with distinct biological states.  



54 

 

 Several other studies have correlated imaging patterns to recurrent tumor location. The studies by 

Aerts et al. and Soto et al. in lung and head-and-neck tumors, respectively, have already been discussed in 

the introduction. Abramyuk et al. and Shusharina et al. performed similar studies in 10 and 19 patients, 

respectively, who had lung cancer and experienced loco-regional failure following radiation therapy. Both 

studies found high degrees of spatial overlap between recurrence volumes and pre-treatment FDG uptake 

(180, 185). Petit et al. used logistic voxel regression to relate pre-treatment FDG uptake to post-treatment 

FDG uptake in 39 NSCLC tumors, and found increased FDG uptake at baseline predicted a greater 

probability of post-treatment FDG uptake (70). Vogelius et al. found that recurrent tumor was most likely 

to originate in the regions of elevated FDG uptake in 39 HN cancer patients undergoing radiation therapy 

(100).  

 A primary assumption to the methods of this study—which is a common assumption to all of the 

previously-mentioned spatial analysis studies—is that, following image registration, the tumor cells in a 

voxel location do not change or move location between pre-treatment imaging and post-treatment 

imaging. It is unclear how frequently this assumption is valid. Deformable registration methods attempt to 

account for tumor morphological changes over time, but deformable registration algorithms assume that 

the tumor’s mass is preserved, which is not the case for tumors undergoing treatment. Canine sinonasal 

tumors benefit from the fact that rigid registration can be very accurate due to the surrounding bony nasal 

cavity, and (based on our experience) the turbinates inside the nasal cavity serve as a sort of scaffolding to 

hold the tumor in its place, restricting tumor movement over time. An additional limitation of the study is 

the degree to which post-treatment FDG uptake is a valid marker of recurrent or residual tumor, and 

whether it corresponds to resistant tumor. Numerous studies have found that post-treatment FDG uptake 

does correlate with poor clinical outcome (186-188), however, non-specific uptake of FDG after therapy 

could still be a confounding factor in this study.  
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4.5. Conclusion 

 The property of greatest importance for a dose painting imaging target is its spatial concordance 

with tumor resistance. In this study, we used location of residual/recurrent tumor following radiation 

therapy as a surrogate measure of spatially-varying resistance, against we correlated imaging patterns of 

three PET radiotracers. Using voxel regression models, we found that FDG, FLT, and Cu-ATSM PET 

were able to predict the locations of recurrence in some canine tumors, but were poor predictors of 

recurrence locations in other tumors. We also showed that no individual PET tracer outperformed the 

other PET tracers in terms of correlations with patterns of recurrence. These results highlight the need for 

methods of pre-selecting candidates for dose painting and for the development of better molecular 

imaging probes of resistance. 
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5. Quantitative imaging biomarkers of resistance to radiation 

therapy 

 This chapter addresses Specific Aim 2: the assessment of quantitative imaging biomarkers of 

resistance to radiation therapy. In this chapter, quantitative imaging biomarkers are extracted from pre- 

and mid-treatment FDG, FLT, and Cu-ATSM PET image, and then evaluated for their ability to predict 

progression-free survival following radiation therapy in the canine patients of the CIRT trial. Imaging 

values that correlate with resistance may help inform dose painting target definition. This work has been 

accepted for publication in the International Journal of Radiation Oncology • Biology • Physics (189) 

5.1. Motivation 

 Outcome following radiation therapy can be highly variable across different patients, even in 

tumors with similar clinical presentation (190). The underlying mechanisms and causes of this variability 

are poorly understood, and treatment outcome remains difficult to predict. Better methods of predicting 

outcome following radiation therapy could greatly improve patient management by helping physicians 

better tailor treatments to patient-specific biology.  

 There is great interest in identifying biomarkers of tumor resistance to radiation therapy. 

Numerous studies have investigated genetic, molecular, and anatomical biomarkers of radiation resistance 

in different tumor types (191-192). Many of these biomarkers are biopsy-based and therefore limited by 

sampling, invasiveness, and intratumor heterogeneity. PET imaging, however, non-invasively provides 

spatially-resolved quantitative measurements of tumor biological processes. Using different PET 

radiotracers, different phenotypic states can be assessed and compared in vivo. Therefore, there is great 

promise for molecular imaging biomarkers to improve treatment outcomes in radiation oncology (193). 

 Given that multiple factors affect resistance to radiation therapy, a direct comparison of multiple 

imaging biomarkers may shed further light on the characteristics of tumor resistance. This study aimed to 
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concurrently evaluate the predictive value of numerous quantitative imaging biomarkers derived from 

multi-tracer PET imaging in tumors before and during radiation therapy. In addition to traditional 

quantitative PET imaging metrics (ie, standardized uptake values), advanced imaging metrics containing 

spatiotemporal and response information were also tested for their predictive value. 

5.2. Methods and Materials 

 This study included 22 canine patients from the CIRT trial, including 13 adenocarcinoma 

patients, 7 chondrosarcoma patients, 1 squamous cell carcinoma patients, and 1 osteosarcoma patient. The 

imaging and treatment schedule and protocol are described in detail in section 1.5. For this study, all pre- 

and mid-treatment PET scans were used for each patient, as were follow-up CT scans. 

5.2.1. Imaging biomarkers 

 Numerous imaging biomarkers were extracted from each patient's imaging set. Table 5.1 

describes the imaging biomarkers used for analysis. These included the conventional SUV measures 

(SUVmean and SUVmax) measured at pre-treatment and mid-treatment, as well as response and 

spatiotemporal variables. Response variables, quantifying the relative change from pre-treatment to mid-

treatment, were calculated according to 

  
  

    
      

 

    
   

,                                              (5.1) 

 

where X is either the SUVmean or SUVmax of tracer T, evaluated at pre-treatment and mid-treatment. For 

spatiotemporal variables, voxel-based Spearman correlation coefficients ( ) quantified the relative spatial 

agreement between two different tracer distributions, T1 and T2, at baseline (      ). Spearman correlation 

coefficients also quantified the relative spatial stability of a tracer T from pre-treatment to mid-treatment 

(        
 ). The computation of   has been described previously (139, 141) (see sections 2.2.2 and 3.3.2).  
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Table 5.1. Imaging biomarker definitions. 

Variable Description 

Volume Gross tumor volume (cm
3
) 

SUVmean Mean SUV in the GTV 

SUVmax Maximum voxel SUV in the GTV 

        
    Fractional change in FLT SUVmean from pre-treatment to mid-treatment 

       
    Fractional change in FLT SUVmax from pre-treatment to mid-treatment 

        
        Fractional change in Cu-ATSM SUVmean from pre-treatment to mid-treatment 

       
        Fractional change in Cu-ATSM SUVmax from pre-treatment to mid-treatment 

         Spatial (voxel) correlation between pre-treatment FDG and FLT uptake distributions  

             Spatial (voxel) correlation between pre-treatment FDG and Cu-ATSM uptake 

distributions  

             Spatial (voxel) correlation between pre-treatment FLT and Cu-ATSM uptake 

distributions  

        
    Spatial (voxel) correlation between pre-treatment and mid-treatment FLT uptake 

distributions  

        
        Spatial (voxel) correlation between pre-treatment and mid-treatment Cu-ATSM uptake 

distributions  
 

5.2.2. Statistical analysis 

 Progression-free survival was assessed according to the RECIST criteria. Kaplan-Meier analysis 

with log-rank tests for significance were applied to the following categorical variables: dose level (42 Gy 

vs. 50 Gy), histologic tumor type (sarcoma vs. carcinoma), sex, and the tumor stage as defined by Adams 

et al. (140). For continuous variables, such as patient age and the imaging biomarkers of Table 5.1, Cox 

proportional hazards (PH) regression was used to assess their impact on progression-free survival. 

Univariable Cox PH regression was performed for each continuous variable, and hazard ratios (HR) with 

their respective 95% confidence intervals (CI) were calculated. 

 A full multivariable regression model was not developed in this study due to the limited number 

of patients and the high number of predictor variables. However, we investigated bivariable Cox PH 

regression models that contained 2 predictor variables, thus following the recommended ratio of ~10 

patients per explanatory variable (194-195). This was done by creating regression models for all possible 

combinations of 2 explanatory variables, considering both categorical and continuous variables. Of the 
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SUV measures, only SUVmax was used due to the strong correlations (R>0.9) between SUVmax and 

SUVmean. The best bivariable model was selected according to the Pseudo R
2 
(196). P values less than 0.05 

were considered statistically significant. 

5.3. Results 

 The average time to disease progression was 14.3 months, the median was 12.5 months, and the 

range was 3 months to 35 months. Four cases were censored: two due to death unrelated to disease, and 

two who were alive without progressive disease at the time of the analysis, but had the longest 

progression-free intervals. 

 Figure 5.1 shows PET/CT images from an example patient during the course of therapy. Figure 

5.2 shows results from Kaplan-Meier analysis for categorical variables. Dose level, histologic tumor type, 

sex, and tumor stage were found not to be significant predictors of time to progression after radiation 

therapy. Table 5.2 summarizes the results of univariable Cox PH regression for continuous variables. 

Large tumor volume (HR [95% CI] = 1.01 [1.00, 1.02]; P=0.011), high mid-treatment FLT SUVmean (2.76 

[1.19, 6.40]; P=0.018), and high mid-treatment FLT SUVmax (1.36 [1.09, 1.68]; P=0.006) were found to 

be significant independent predictors of worse outcome. Positive         
    values (ie, increases in FLT 

SUVmean from pre-treatment to mid-treatment) were significantly associated with better clinical outcome 

(0.11 [0.02, 0.64]; P=0.013). Figure 5.2 also shows Kaplan-Meier plots (for display purposes only) for the 

group of continuous variables found to be significant predictors according to univariable Cox PH 

regression analysis. 
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Figure 5.1. Patients underwent pre-treatment FDG, FLT, and Cu-ATSM PET/CT imaging (in no particular order). Mid-treatment 

FLT and Cu-ATSM PET/CT scans were acquired before fractions 3 and 4, respectively. Following therapy, CT scans were 

acquired at 3, 6, and 9 months, and at time of recurrence (up until progressive disease was detected). Sagittal slices of a canine 

patient's PET/CT images are shown above. 

 

Figure 5.2. Top: Results of Kaplan-Meier analyses with log-rank tests for categorical variables. Categorical variables were not 

predictive of outcome. Bottom: For display purposes only, variables that were significant predictors of outcome according to Cox 

proportional hazards (PH) regression were dichotomized using an optimal cut point, and plotted according to Kaplan-Meier 

method. P values are from Cox PH regression. 

 

Significant Continuous Variables

Volume (cm3) Mid FLT SUVmean Mid FLT SUVmax Response FLT SUVmean

Dose Histologic Tumor Type Sex Stage

Categorical Variables
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Table 5.2. Results of univariable Cox proportional hazard regression for continuous variables against progression-free survival. 

Variable 
Hazard 

Ratio 

95% Confidence  

Interval 
P 

Volume (cm
3
) 1.01 [1.00, 1.02] 0.011 

Age 1.01 [0.87, 1.17] 0.911 

Pre FDG*    

SUVmean 1.12 [0.91, 1.40] 0.287 

SUVmax 1.09 [0.99, 1.20] 0.080 

Pre FLT    

SUVmean 1.07 [0.86, 1.35] 0.543 

SUVmax 1.02 [0.95, 1.01] 0.565 

Pre Cu-ATSM    

SUVmean 1.28 [0.84, 1.94] 0.245 

SUVmax 1.08 [0.95, 1.23] 0.226 

Mid FLT    

SUVmean 2.76 [1.19, 6.40] 0.018 

SUVmax 1.36 [1.09, 1.68] 0.006 

Mid Cu-ATSM    

SUVmean 1.63 [0.88, 3.02] 0.124 

SUVmax 1.06 [0.96, 1.17] 0.288 

        
     0.11 [0.02, 0.64] 0.013 

       
     0.15 [0.02, 1.11] 0.064 

        
       

  0.63 [0.10, 3.97] 0.620 

       
       

  0.94 [0.19, 4.58] 0.941 

          5.08 [0.41, 62.2] 0.204 

              0.99 [0.04, 25.8] 0.997 

              3.82 [0.62, 23.7] 0.150 

        
     3.28 [0.17, 61.6] 0.428 

        
       

  2.36 [0.02, 275] 0.724 

* see Table 5.1 for variable definitions 

 

 Table 5.3 presents the two bivariable models with the highest Pseudo R
2
. Both models indicate 

that significantly worse outcome was associated with large reductions in FLT uptake (ie, negative 

response values) in combination with high mid-treatment FLT SUVmax. The relationships between 

patients' clinical outcome and their various FLT measures are illustrated in the scatter plots of Figure 5.3. 
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Table 5.3. The two bivariable models with the highest Pseudo R2. 

Variable 
Hazard 

Ratio 
P Pseudo R

2
 

Model 1   0.44 

Mid FLT SUVmax* 1.28 0.022  

        
     0.17 0.041  

Model 2   0.43 

Mid FLT SUVmax 1.38 0.002  

       
     0.11 0.042  

* see Table 5.1 for variable definitions 

 

 

 

 

Figure 5.3. Scatter plot matrix illustrating the relationships between patients' treatment outcome (top row) and various FLT 

measures. Each column and row corresponds to a different measure, as indicated by the labels in the diagonals. Crosses (+) 

indicate censored patients.  
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5.4. Discussion 

 Using multi-tracer PET imaging in canines with spontaneous tumors, we were able to directly 

compare numerous imaging biomarkers as predictors of time to progression after radiation therapy. 

Motionless imaging and accurate image registration enabled us to extract non-conventional 

spatiotemporal imaging measures, which we compared against conventional SUV measures for their 

predictive value.  

 The best predictors of time to progression after radiation therapy were FLT-based biomarkers. 

FLT response and mid-treatment FLT SUV were both found to be significant predictors of outcome in 

univariable and multivariable analysis. Whereas high mid-treatment FLT SUV was found to be associated 

with worse clinical outcome, the relationship between FLT-response and patient outcome was counter to 

our expectations: tumors with large relative reductions in FLT uptake had worse outcomes than tumors 

with small relative changes. FLT response during radiation therapy has been previously investigated in 

humans (120, 197-200); unfortunately, several of these studies are small and there is no consistent picture 

emerging at this point in time. In a series of 12 lung cancer patients, Trigonis et al. found that higher mid-

treatment FLT, but not baseline FLT, was associated with worse local-regional control, which is 

consistent with our findings. However, FLT response was not a significant predictor of outcome (199). In 

another small study, Wieder et al. did not find significant relationships between histopathological tumor 

response and FLT uptake at baseline or at mid-treatment in 10 rectal cancer patients undergoing 

neoadjuvant chemoradiotherapy (198). Hoeben et al. found that for 33 head-and-neck cancer patients, 

early FLT response during radiation therapy was not predictive of patient outcome (120). However, when 

they included 15 chemoradiotherapy patients in their analysis, large reductions in FLT SUV became 

associated with better 3-year disease-free survival (but not overall survival). For tumors treated with 

chemotherapies, studies have generally found that large FLT reductions during treatment predicts better 

clinical outcome (201-202). The heterogeneity between the findings of these studies could be due to their 

limited statistical power compounded by differences in treatment schedules (hypofractionated vs. 
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conventional), imaging time points (our patients were imaged after the second fraction, including a 

weekend break), treatment type (radiotherapy alone vs. chemoradiotherapy), tumor histology, and species.  

 It is unclear what radiobiological principles are driving the relationships between FLT biomarkers 

and patient outcome. It is not surprising that baseline FLT uptake was not significantly associated with 

clinical outcome in this study, as high baseline proliferation rates have been previously shown to be 

associated with both favorable and poor clinical outcome following radiation therapy (116). However, we 

did find that high FLT uptake at mid-treatment was associated with worse clinical outcome. It is tempting 

to speculate that these tumors could have contained a greater number of remaining viable cells after 

receiving ~10 Gy of radiation dose, or the population of surviving cells in these tumors were rapidly 

proliferating. We also found that tumors with large reductions in FLT uptake at mid-treatment relative to 

baseline had a shorter time to progression than tumors with small changes or increases in FLT uptake, and 

this relationship was independent of pre-treatment or mid-treatment FLT uptake levels (see Figure 5.3). 

This is consistent with a hypothesis where tumors with pronounced responses at the beginning of 

treatment could be more likely to regrow rapidly following radiation therapy, resulting in shorter 

progression-free intervals. Indirect support for this hypothesis comes from the recent study by Brink et 

al., who found that marked tumor regression during fractionated radiation therapy for non-small cell lung 

cancer was associated with worse clinical tumor outcome in a series of 99 patients (203).  

 In addition to FLT PET biomarkers, tumor volume was a predictor of adverse clinical outcome 

following radiation therapy. Dose level, histology, sex, age, and tumor stage were not significant 

predictors of outcome. Past veterinary studies have found conflicting results on the prognostic 

significance of tumor histology, patient age, and tumor stage in canine nasal tumors following radiation 

therapy (140, 204-205). It is possible that the low patient number, and thus the low statistical power, 

prevented us from detecting predictive relationships that would have been observed in a larger population. 

Interestingly, we did not find Cu-ATSM and FDG biomarkers to be significant predictors of outcome; 

although, FDG SUVmax was borderline significant (P=0.08). 
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 None of the spatial imaging biomarkers were significantly associated with patient outcome. The 

baseline voxel correlation coefficients (        ,              , and             ) represented how 

similar the spatial distributions of the three tracers were, so that a low correlation coefficient indicated 

spatial heterogeneity of phenotypes within a tumor (141). We hypothesized that higher PET heterogeneity 

would predict worse response to therapy; however, this was not supported by our analysis. The voxel 

correlations from pre-treatment to mid-treatment (        
       

 and         
   ) represent the spatial stability of 

Cu-ATSM and FLT uptake distributions during treatment. We recently showed that values of         
       

 

were very high for these patients, with an average correlation of 0.88 (139). Values of         
    were also 

high (0.79), but significantly lower than         
       

. We hypothesized that larger spatial stability of a 

tumor's Cu-ATSM or FLT maps during treatment might be associated with tumor resistance to radiation. 

However, we did not find PET spatial stability to be significantly associated with clinical outcome. 

 The cost and logistics of conducting multiple scans at baseline and during therapy restricted the 

total sample size in this exploratory study. This in turn limited our ability to investigate biomarkers in 

subpopulations of tumors (eg, sarcomas), and to create a complex multivariable model. Multivariable 

models can become unstable when there are less than 10 observations (ie, patients) per explanatory 

variable (194-195). On the other hand, it is important to assess whether different explanatory variables 

contain redundant or complementary predictive information. For example, many quantitative PET 

features have been shown to be highly correlated to tumor volume (206). Therefore, we tested bivariable 

models, selected according to a goodness of fit statistic. Another caveat of the study is the large number 

of hypotheses tested in this study, which increases the likelihood of type I error. Consequently, these 

results should be considered as hypothesis-generating, and need to be tested in a larger cohort.  
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5.5. Conclusions 

 Using extensive imaging of spontaneous tumors in canines, we explored a number of molecular 

imaging biomarkers as potential predictors of resistance to radiation therapy. In addition to tumor volume, 

pronounced tumor proliferative response measured with FLT PET, especially when associated with high 

residual FLT PET at mid-treatment, was a predictive biomarker of poor outcome following radiation 

therapy. This suggests that FLT imaging, especially FLT imaging performed during radiation therapy, 

may be useful for identifying tumor resistance, and further investigation is warranted into the relationship 

between longitudinal FLT imaging during treatment and resistance to radiation therapy. Neither FDG 

PET nor Cu-ATSM PET were significant predictors of outcome in the CIRT trial. Biomarkers of spatial 

stability or correlations between tracers were also not predictive of outcome. 
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6. Characterization of non-uniform dose prescriptions based on 

different biological targets 

This chapter addresses Specific Aim 3, which is to determine the feasibility of creating and 

delivering dose painting prescriptions and plans. In this chapter, we created and characterized dose 

painting prescription maps based on FDG, FLT, and Cu-ATSM PET in human head-and-neck (HN) 

tumors. We also describe the degree to which dose can be added to high-uptake tumor subregions by 

sacrificing dose to low-uptake subregions. Furthermore, we tested how accurately voxel-wise dose 

painting plans based on Cu-ATSM PET in canine tumors can be delivered via tomotherapy. 

6.1. Motivation 

 Dose painting allows for dose redistribution rather than dose escalation. Dose redistribution is 

accomplished by lowering dose in radiosensitive tumor subvolumes and transferring that dose to 

radioresistant tumor subvolumes, meanwhile preserving the overall mean tumor dose. This is important 

because tumor dose escalation can also lead to increased normal tissue toxicities. The degree of dose 

trade-off between sensitive and resistant tumor subvolumes for dose escalation has yet to be characterized 

in literature.  

 Creating voxel-wise dose painting prescriptions requires a prescription function — a 

mathematical function that converts image voxel values into prescribed voxel doses (75). The optimal 

dose painting prescription method remains unknown. The majority of prescription methods that have been 

proposed in literature or implemented in clinical trials have assumed that all tumor voxels receive some 

minimum dose (ie, a uniform base dose), on top of which a non-uniform boost is added such that the 

voxel boost doses are linearly proportional to voxel image values. Substantial differences exist, however, 

between the constraints used in the various linear prescription methods. For example, in a HN dose 

painting trial from Ghent University, patient prescriptions were such that target volumes received a 
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minimum of 72.5 Gy, with maximum voxel doses constrained to either 90.9 Gy or 95.9 Gy (65, 67). 

Other studies have used different minimum and maximum dose constraints (43, 51, 73). Some planning 

studies have developed prescription methods that constrain the mean tumor dose instead of constraining 

the maximum voxel dose (31, 55, 68). For example, Deveau et al and Korreman et al evaluated dose 

painting plans with base doses of 60 Gy and mean boosts of 30 Gy, redistributed according to PET voxel 

intensity values (27, 81).  

 It is important to characterize different dose painting prescription methods, as the optimal method 

of dose painting remains unknown despite ongoing clinical trials. Previous studies have described the 

feasibility of dose painting treatment planning and optimization for various imaging targets (28-29, 43), 

and its sensitivity to various treatment planning parameters (27, 68, 81). A characterization of how the 

choices of imaging target and prescription function parameters impact dose prescriptions has not been 

previously performed. The goal of this study was to evaluate how non-uniform dose boosts would be 

distributed within HN tumors for various degrees of boosting, for different PET radiotracers, and for 

different prescription methods. Additionally, we aimed to characterize the dosimetric trade-off between 

low-uptake and high-uptake tumor subvolumes. Finally, we demonstrate the accuracy of dose painting 

delivery via tomotherapy. This work can help inform the development of protocols for future dose 

painting trials in HN tumors.   

6.2. Methods  

6.2.1. Patients 

 The study included 10 patients with head-and-neck squamous cell carcinoma (HNSCC). All 

patient imaging protocols were approved by Institutional Review Board and use of experimental tracers 

was approved by the radiation Drug Research Committee at the University of Wisconsin. 
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6.2.2. Imaging 

 Imaging protocols have been described in a previous report (149). Briefly, patients underwent 

PET/CT imaging with radiotracers FDG, FLT, and Cu-ATSM prior to chemoradiation. PET/CT scans 

were acquired on separate days over a period of less than 2 weeks. Patients were scanned on a Discovery 

LS PET/CT scanner (GE Healthcare, Waukesha, WI), with thermoplastic masks used for immobilization 

during FLT and Cu-ATSM scans. FDG PET scans were whole-body acquisitions, 1 frame per bed 

position, 5 minutes per frame, acquired 40-60 minutes after injection of 5.2 MBq/kg. FLT PET 

acquisitions consisted of 3 frames over a single bed position, 10 minutes per frame, acquired 60 minutes 

after injection of 150 MBq. Cu-ATSM acquisitions consisted of 3 frames over a single bed position, 15 

minutes per frame, acquired 120-180 minutes after injection of 110 MBq. One patient did not receive an 

FLT PET/CT scan, and one patient did not receive a Cu-ATSM PET/CT scan. 

 PET images were reconstructed with CT attenuation correction using 3D ordered-subset 

expectation-maximization (2 iterations, 28 subsets, 5 mm full-width-at-half-max (FWHM) loop-filtration, 

and 3 mm FWHM post-filtration). The image grid was 128 × 128 × 35, with 3.91 × 3.91 × 4.25 mm
3
 

voxel sizes. Voxel activity values were converted to standardized uptake values (SUVs) for analysis. The 

gross tumor volume (GTV) was contoured by a radiation oncologist using treatment planning contrast-

enhanced CT and FDG PET images. The GTV was expanded by 2 mm to better conform to the uptake 

distributions of all three PET radiotracers, yielding the dose painted volume (DPV). All dose painting 

prescriptions were performed in the DPV. FLT and Cu-ATSM PET/CT images were rigidly registered to 

the treatment planning CT, and DPVs were propagated to each PET image. 

6.2.3. Dose prescriptions 

 Two voxel-based dose prescription methods for non-uniform boosting were considered: the 

redistribution method and the max-dose method. Both methods assumed the DPV received some uniform 

base dose —the minimum dose received by all voxels in the DPV. This is illustrated in Figure 6.1. On top 

of the base dose, a non-uniform boost was added, such that  
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             , (6.1) 

where Di is the dose prescription to voxel i, Dbase is the base (or minimum) dose to the DPV, and Bi is the 

boost to voxel i. For both prescription methods, Bi was linearly proportional to the PET SUV value at 

voxel i.  

 For the redistribution method, the boost was constrained to have a fixed mean dose (Bmean) (47). 

As Bmean and the minimum voxel dose (Dbase) were both constrained, the maximum voxel boost dose 

(Bmax) delivered to the tumor varied among patients according to the unique distributions of voxel SUVs 

for each patient. For the redistributions method, the prescription function for the boost dose to a tumor 

was 

    
     

       
      , (6.2) 

 

Figure 6.1. Tumor dose was prescribed such that all DPV voxels received a base dose (Dbase), on top of which a non-uniform 

boost was added. Depending on the prescription method, the mean boost (Bmean) or maximum boost (Bmax) dose was constrained. 

  

where Bi is the boost dose to voxel i, , SUVi is the SUV at voxel i, SUVmean is the mean SUV in the DPV, 

and Bmean is the mean boost dose prescribed to the DPV.  
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 For the max-dose method, both Bmax and Dbase were constrained. Consequently, all tumors had the 

same Bmax, but the mean boost dose, Bmean, varied across patients according to the unique distributions of 

voxel SUVs for each patient. The prescription function for a non-uniform boost using the max-dose 

method was 

    
    

      
    , (6.3) 

where SUVmax is the maximum voxel SUV in the DPV, Bmax is the maximum boost dose allowed for a 

voxel, and Bi and SUVi are as previously defined. This method results in the voxel with highest uptake 

(i.e., SUVmax) receiving a boost of Bmax. A variant of this method has been used in previous dose painting 

clinical trials (65, 73).  

6.2.4. Prescription analysis 

 For each patient, theoretical voxel-wise prescriptions were created for each of the three tracers 

using both redistribution and max-dose prescription methods. For the redistribution method, resulting 

boost dose prescriptions are reported as fractions of Bmean so that results can be applied to any arbitrary 

value of Bmean. Likewise, for the max-dose method, resulting boost prescription maps were normalized by 

Bmax, so that results can be applied to any arbitrary value of Bmax. Prescription dose-volume histograms 

(PDVHs) were created to illustrate how boost prescription maps would be distributed inside the DPV, 

analogous to conventional dose-volume histograms but for prescriptions. Probability maps of PDVHs 

were also generated to show patient variability in dose-volume relationships; these were created by 

binning PDVHs and fitting Weibull distributions to the 10 (or 9) patients' PDVH values at each bin. 

Weibull probability distributions were used because of their flexibility in fitting different distribution 

shapes at different points along the PDVHs. 

 The sensitivity of the boost prescription maps to the contouring of the DPV was also assessed. 

For each patient, the DPV mask and PET images were resampled from 128×128 to 256×256, then the 

DPV was expanded by a single layer of voxels to create the DPVplus, or contracted by a single layer of 
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voxels to create the DPVminus. Nearest neighbor resampling was used so as to not change PET image 

gradients. For both cases, new dose painting boost prescription maps were generated as described above 

and compared to the original prescriptions.  

6.2.5. Example prescriptions 

 Example dose prescriptions were created for the HN patients using clinically-relevant values of 

Bmean, Bmax, and Dbase. For the redistribution method, a Dbase of 72.5 Gy was used with a Bmean of 8.4 Gy — 

these values were loosely adapted from Duprez et al (65). For the max-dose method, a base dose of 72.5 

Gy was used with a Bmax of 18.4 Gy — these values were also derived from Duprez et al. Prescriptions 

were then repeated such that the dose modulation was doubled. For the redistribution method, the Dbase 

was lowered to 64.1 Gy and the Bmean was doubled to 16.8 Gy (resulting in the same mean tumor dose — 

80.9 Gy). For the max-dose method, the Dbase remained at 72.5 Gy and Bmax was doubled to 36.8 Gy. 

6.2.6. Dosimetry using canine data 

 For evaluating the feasibility of planning and delivering dose painting plans, Cu-ATSM images 

from five canine patients from the CIRT trial were used to create simulated dose painting plans, which 

were then delivered via tomotherapy. For imaging details of the canine patients, please refer to section 

1.5. Dose painting prescriptions were created inside the GTV according to the following constraints: 1) 

Dbase was constrained to 4.2 Gy per fraction, 2) Bmean was constrained to 0.8 Gy per fraction for a total  
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Figure 6.2. For canine patients, Cu-ATSM images were converted to dose prescriptions using a linear function (capped at 10.0 

Gy per fraction), which were discretized into 8 nested contours, and then transferred to tomotherapy treatment planning system 

for optimization. 

 mean dose of 5.0 Gy per fraction, and 3) if Bmax exceeded 10.0 Gy per fraction, iterative methods were 

used to cap voxel prescriptions to 10.0 Gy per fraction while preserving the Bmean of 0.8 Gy per fraction  

(see Figure 6.2 for an example). The PTV was uniformly prescribed to 4.2 Gy per fraction. Voxel dose 

prescriptions were converted into 8 contours representing dose levels and imported into tomotherapy 

treatment planning system for optimization, following the methods outlined by Deveau et al. (27). One 

fraction from each optimized plan was delivered to the tomotherapy phantom using 1.05 cm jaw width  
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Figure 6.3. Axial slices from a patient's FDG, FLT, and Cu-ATSM PET/CT images. The DPV is outlined in red. 

and 0.43 pitch. Absolute and relative measurements were performed with ion chamber and EDR2 film, 

respectively. 

6.3. Results 

 Figure 6.3 shows example images of axial slices from a patient's FDG, FLT, and Cu-ATSM 

PET/CT scans. For many tumors, FLT uptake patterns were similar to FDG uptake patterns.  

 Figure 6.4 illustrates how non-uniform boost prescription maps were distributed within the DPV, 

plotted as fractions of an arbitrary fixed Bmean (redistribution method) or Bmax (max-dose method),  

  
Figure 6.4. Population-averaged PDVHs representing how a boost dose would, on average, be prescribed in the DPV using FDG 

(black), FLT (green), and Cu-ATSM (blue) PET for dose painting. Results from the redistribution method (left) and max-dose 

method (right) are shown as fractions of arbitrary mean boosts (Bmean) and maximum voxel boost doses (Bmax), respectively.  

averaged across all patients. PDVHs for FDG and FLT were nearly identical across the population, 

whereas Cu-ATSM PDVHs had steeper falloffs (ie, greater dose uniformity in the DPV). Figure 6.5 
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shows probability maps of PDVHs for each PET tracer and prescription method, illustrating the 

variability in boost prescription maps among patients for both prescription methods. The color wash 

represents the probability of a patient's PDVH occurring at that location, normalized by the maximum 

probability. 

 For the redistribution method, we found that average Bmax values for FDG and FLT prescriptions 

were about 5.2 times greater than Bmean. Cu-ATSM boost prescription maps had lower Bmax values than 

FDG and FLT boosts: the average Bmax for Cu-ATSM plans was only 2.9 times greater than Bmean (see 

Table 6.1). As illustrated in Figure 6.4, only small fractions of tumor volumes were boosted to very high 

doses: for FDG and FLT prescriptions, 5% of the DPV was boosted above 3×Bmean, whereas in Cu-ATSM 

prescriptions, 5% of the DPV was boosted above only 1.8×Bmean. 

 Using the max-dose prescription method with an arbitrary Bmax, Cu-ATSM boosts had higher 

average Bmean than FDG and FLT boosts. Table 6.2 shows the population-averaged Bmean and the 

population-averaged median boost dose (Bmedian) as fractions of Bmax. The average Bmean was 21% of Bmax 

for FDG plans, 20% of Bmax for FLT plans, and 37% of Bmax for Cu-ATSM plans.  

Table 6.1. Population averages and standard deviations of maximum voxel boost doses, normalized by a fixed mean boost dose, 

calculated using the redistribution prescription method with three different ROI sizes. 

 Average Bmax/Bmean 

ROI FDG prescriptions FLT prescriptions Cu-ATSM 

prescriptions 

DPV 5.1 ± 1.4 5.3 ± 1.6 2.9 ± 0.7 

DPVplus 5.9 ± 1.5 6.1 ± 1.7 3.2 ± 0.8 

DPVminus 4.4 ± 1.2 4.6 ± 1.5 2.6 ± 0.7 

Bmean = mean boost dose to DPV; Bmax = maximum voxel boost dose; DPVplus = DPV expanded by 1 voxel layer; DPVminus = 

DPV contracted by 1 voxel layer 
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Table 6.2. Population averages and standard deviations of mean and median boost doses, given as fractions of a fixed maximum 

voxel boost dose, calculated using the max-dose prescription method with three different ROI sizes. 

ROI FDG prescriptions FLT prescriptions Cu-ATSM 

prescriptions 

DPV    

Bmean/Bmax 0.21 ± 0.05 0.20 ± 0.05 0.37 ± 0.08 

Bmedian/Bmax 0.13 ± 0.04 0.13 ± 0.04 0.33 ± 0.09 

DPVplus    

Bmean/Bmax 0.18 ± 0.04 0.17 ± 0.04 0.33 ± 0.08 

Bmedian/Bmax 0.11 ± 0.03 0.11 ± 0.02 0.30 ± 0.08 

DPVminus    

Bmean/Bmax 0.24 ± 0.06 0.24 ± 0.07 0.40 ± 0.09 

Bmedian/Bmax 0.17 ± 0.06 0.18 ± 0.06 0.37 ± 0.11 
Bmean = mean boost dose; Bmax = maximum voxel boost dose; Bmedian = median boost dose; DPVplus = DPV expanded by 1 

voxel layer; DPVminus = DPV contracted by 1 voxel layer 
 

 

 

 Figure 6.6 illustrates how dose painting prescriptions change when uncertainty is introduced in 

definition of the dose painting target volume. For the redistribution method, the Bmax values changed by 

approximately 15% for FDG and FLT prescriptions, and by approximately10% for Cu-ATSM 

prescriptions (see Table 6.1). For the max-dose method, Bmean and Bmedian changed by approximately 20% 

for FDG and FLT prescriptions, and by about 10% for Cu-ATSM prescriptions (see Table 6.2). 

 Figure 6.7 shows an example patient's SUV histograms, as well as the patient's PDVHs when 

clinically-relevant values of Dbase, Bmean, and Bmax were used. In this patient, FDG and FLT SUV 

histograms were similarly skewed to the right, whereas Cu-ATSM SUV histograms were less skewed. 

This was a general trend observed in the patient population (the average skewness coefficients for SUV 
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Figure 6.5. Probability maps representing how a boost dose would be distributed in the DPV using different tracers. The 

redistribution prescription method (top row) constrains the mean boost dose (Bmean). The max-dose method (bottom row) 

constrains the maximum voxel dose (Bmax). Probabilities were calculated by fitting a Weibull distribution to the 10 patients' 

PDVHs, and the color wash represents the probability of a patient's PDVH occurring at that location, normalized by the 

maximum probability. 

 

 
Figure 6.6. Population-averaged PDVHs of dose painting prescriptions for different contouring methods. Average PDVHs are 

shown for the original DPV (black), the DPV expanded by a single voxel layer (DPVplus, red), and the DPV contracted by a 

single voxel layer (DPVminus, purple).   
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histograms were 1.9 for FDG, 1.8 for FLT, and 1.0 for Cu-ATSM). The skewness in FDG and FLT SUV 

distributions resulted in higher Bmax (redistribution method) or lower Bmean (max-dose method) values. 

Population averages of maximum tumor doses (Dmax) are shown in Table 6.3 when different dose  

 
Figure 6.7. A) Histograms of voxel SUVs from an example patient's FDG, FLT, and Cu-ATSM PET images. B) PDVHs 

representing the patient's dose prescriptions using FDG (black), FLT (green), and Cu-ATSM (blue). For both prescription 

methods, the base dose to the tumor was constrained to be 72.5 Gy. For the redistribution method (left), the mean boost dose 

(Bmean) was constrained to be 8.4 Gy. For the max-dose method (right), the maximum boost to a tumor voxel (Bmax) was 

constrained to be 18.4 Gy. C) PDVHs when Bmean was increased to 16.8 Gy for the redistribution method (left), and when Bmax 

was increased to 36.8 Gy for the max-dose method (right). 

constraints are used for the redistribution prescription method, and population averages of mean tumor 

doses (Dmean) are shown in Table 6.4 when different dose constraints are used for the max-dose 

prescription method. 
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 For dosimetry analysis, images from resulting treatment plans and dosimetric analyses are shown 

for each of the 5 canine patients in Figure 6.8. Quantitative results are given in Table 6.5. Maximum 

voxel doses varied between patients, ranging from 6.9 Gy to 10.0 Gy per fraction, depending on Cu-

ATSM uptake patterns. Decent conformity was obtained between optimized plans and voxel 

prescriptions: on average 89% of voxels received ±10% of their prescribed dose. Most of the 

discrepancies between prescriptions and optimized plans occurred around the boundaries of the GTV, 

where high dose values sometimes fell off in a step-like manner to the baseline dose of 4.2 Gy. Absolute 

dose measurements were within 3% of dose plans for all patients, with an average difference of -1.4%. 

Film dosimetry showed tomotherapy was capable of delivering the highly modulated plans: Gamma 

analysis (3%/3mm) showed that plans on average had only 0.1% of gamma values greater than 1. 

Table 6.3. Population averages and standard deviations of maximum voxel doses when different clinically-relevant dose 

constraints are used for the redistribution prescription method. 

Dose constraints (Gy)  Average Dmax (Gy) 

Dbase  Bmean  FDG prescriptions FLT prescriptions Cu-ATSM prescriptions 

72.5 8.4  115 ± 12 117 ± 13 97 ± 6 

64.1 16.8  150 ± 24 153 ± 27 113 ± 12 

Dbase = base dose; Bmean = mean boost; Dmax = maximum voxel dose 
 

 

Table 6.4. Population averages and standard deviations of mean tumor doses when different clinically-relevant dose constraints 

are used for the max-dose prescription method. 

Dose constraints (Gy)  Average Dmean (Gy) 

Dbase  Bmax   FDG prescriptions FLT prescriptions Cu-ATSM prescriptions 

72.5 18.4  76 ± 1 76 ± 1 79 ± 1 

72.5 36.8  80 ± 2 80 ± 2 86 ± 3 

Dbase = base dose; Bmax = maximum voxel boost; Dmean = mean tumor dose 
 

 



80 

 

 

 

 

 

 

 
Figure 6.8. Five canine patients' Cu-ATSM dose painting plans were optimized in tomotherapy, and delivered to a phantom for 

dosimetric assessment.  

Table 6.5. Absolute dose measurements and gamma analysis results from canine Cu-ATSM dose painting plans. 

Cu-ATSM PET/CT Optimized dose plans Dosimetric assessment
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6.4. Discussion 

 Dose painting for HN tumors is a promising area of research that has produced several clinical 

trials (65, 73, 77, 97), with several more currently underway. Yet there are still many uncertainties 

regarding how to best implement dose painting, particularly in defining the target volume and prescribing 

dose to said volume. In this study, we investigated how the uptake distributions of three different PET 

radiotracers would influence dose prescriptions for HN dose painting. We were able to make a direct 

comparison of how the different tracer distributions and prescription methods influenced overall dose 

prescription maps, and characterized the dosimetric trade-off between low- and high-uptake subvolumes.  

 Using the redistribution prescription method, we found that Bmax could be very high for FDG and 

FLT plans, even for prescriptions with modest mean boosts. For every 1 Gy of Bmean added to a 

prescription, over 5 Gy would be added to the highest uptake voxels. We emphasize that the addition of 1 

Gy to Bmean for a prescription with a fixed total dose is only possible by a parallel decrease in Dbase by 1 

Gy (see Figure 6.1). Hence, for a prescription with a fixed total dose, lowering the Dbase by 1 Gy (ie, 

removing 1 Gy from the lowest-uptake subvolumes) would create a 1 Gy increase in Bmean, and therefore a 

5 Gy increase in Bmax. Consequently, only small sacrifices in dose need to be made to the low-uptake 

subvolumes to achieve large gains in dose for the highest uptake subvolumes. Cu-ATSM-based 

prescriptions had a lower degree of trade-off — a factor of 2.9 — due to the lower degree of skewness in 

Cu-ATSM SUV distributions.  

 Using the max-dose method, in which Bmax was constrained, we found that FDG- and FLT-based 

prescriptions had average Bmean of about 20% of Bmax. For Cu-ATSM plans, the Bmean was higher — about 

Patient Max voxel dose per fraction Dmeas vs Dcalc 
γ >1  

(3%/3mm) 

γ >1  

(2%/2mm) 

1 6.9 Gy -2.7% 0.2% 2.7% 

2 7.5 Gy -1.9% 0.01% 0.9% 

3 10.0 Gy -0.4% 0.1% 1.3% 

4 8.7 Gy -1.4% 0.05% 1.0% 

5 7.3 Gy -0.7% 0.1% 1.9% 
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37% of Bmax — which was again due to the lower degree of skewness in Cu-ATSM SUV histograms. 

Several dose painting trials have previously used the max-dose methods for prescribing non-uniform dose 

(65, 73). We have demonstrated a consequence of the max-dose method: when Bmax and Dbase are 

constrained, Bmean will necessarily vary according to the unique distribution of voxel values in each 

patient's PET image. Therefore, different patients will have different mean tumor doses. We also showed 

that using the max-dose method, Cu-ATSM prescriptions would have a higher Bmean than FDG and FLT 

prescriptions.   

 We found that non-uniform boosts based on FDG and FLT had remarkably similar dose-volume 

relationships for both prescription methods. We previously showed in this patient population that tumor 

uptake of FDG and FLT (average SUVmax ≈ 14) tended to be much higher than uptake of Cu-ATSM 

(average SUVmax ≈ 5); however, FDG SUVmax and FLT SUVmax were not correlated across patients (149). 

Within tumors, however, we previously found that spatial correlations between tracer uptake patterns 

were slightly higher for FDG:FLT comparisons (R=0.53–0.85) than for FDG:Cu-ATSM (R=0.51–0.79) 

or for FLT:Cu-ATSM (R=0.21–0.80) comparisons (149). In this study, we found that PDVHs were, on 

average, nearly identical for FDG and FLT dose painting. This was due to FDG and FLT images having 

similar shapes to their SUV histograms (ie, similar relative distributions of SUVi). The relative shape of a 

patient's SUV histogram ultimately determines the dose-volume relationships for their dose painting 

prescription for linear prescriptions functions, and both FDG and FLT SUV histograms were dominated 

by high frequencies of low SUVs (see Figure 6.7). Cu-ATSM SUV histograms, on the other hand, were 

less skewed, resulting in more homogeneous dose painting prescription maps. 

 For FDG- and FLT-based prescriptions, we observed that only very small volumes were 

prescribed very high boosts (see Figure 6.4). While high boosts to very small volumes might be more 

clinically preferable for certain tumor sites (eg, in avoiding large regions of necrosis), these prescriptions 

are also likely to be more challenging to plan and optimize. We also found that Bmax values were sensitive 

to how the DPV was contoured for the redistribution method, with larger contours resulting in 
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substantially larger Bmax values. This is due to larger contours incorporating a greater portion of low-

uptake voxels, resulting in more dose being transferred to high-uptake voxels. Given the complexity of 

FDG and FLT redistribution plans and their sensitivities to contouring, it appears likely that future dose 

painting trials using the redistribution method will need to constrain Bmean while also capping Bmax; this 

can be accomplished through iterative methods, as shown in Figure 6.2. As for Cu-ATSM dose painting, 

the feasibility of planning and delivering redistributed Cu-ATSM boosts has already been demonstrated 

(27).  

 There are a number of ways by which these results can be used to inform the design of 

prospective dose painting trials in HNSCC. First, this work describes some of the practical issues 

associated with choosing a particular dose prescription method. The redistribution method has a primary 

advantage over other methods: the mean tumor dose can be constrained to be the same for all patients. 

This allows for a trial design whereby a dose painting treatment arm can be directly compared with a 

uniform-dose treatment arm (ie, a control arm) (47). The results of this study can also aid in the selection 

of reasonable base (Dbase) and boost (Bmean) prescription doses for a prospective clinical trial, as various 

values of Bmean can be multiplied by the x-axes' values of Figure 6.4 and Figure 6.5 to provide an estimate 

of the expected dose painting prescriptions. We have also demonstrated some disadvantages to using the 

redistribution method: the physical complexity of the dose prescriptions and its sensitivity to contouring. 

The max-dose method has the advantage that all patients' prescriptions would have roughly similar 

degrees of complexity, in addition to the simplicity and adaptability of the method (51, 65). However, due 

to the variable SUV distributions among patient images, different patients' prescriptions would have 

different mean dose values, making it difficult to directly compare the efficacy of dose painting strategies 

against conventional plans. The results of this study provide an estimate of the expected mean and median 

dose boosts for any arbitrary Bmax when using the max-dose prescription method.  

 A primary limitation of this study was the limited sample size. Despite the low number of 

patients, PDVHs were fairly consistent across patients, as interpatient variability was surprisingly low 
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(see Figure 6.5). An additional limitation is that we only evaluated two dose prescription methods, both of 

which involved linear prescription functions. As there are numerous potential methods for relating 

imaging values to dose (75), we chose to investigate two of the most practical and often-used methods, 

simplified so that they can be extended to a number of scenarios. Other nonlinear methods of prescription 

would have different results than those presented here. Finally, all results in this study were based on 

theoretical prescriptions, not on optimized plans, and therefore the influence of treatment modality, 

machine constraints, or dose optimization on the overall plans was not evaluated. The feasibility of dose 

painting optimization and its sensitivities to various delivery parameters has been published elsewhere 

(27-28, 43, 75, 81). 

6.5. Conclusions 

 The goal of this work was to characterize how prescriptions maps are likely to be distributed for 

voxel-based dose painting in HN tumors, and to demonstrate the feasibility of accurately delivering 

voxel-based dose painting with tomotherapy. We showed that for dose painting prescriptions, especially 

those derived from FDG and FLT PET, a small reduction in dose to the low-uptake tumor subvolumes 

often results in large dosimetric gains to the highest-uptake subvolumes (for redistribution of a fixed 

mean tumor dose). This implies that if the high-uptake subvolumes are indeed the most radioresistant 

subvolumes, they can be targeted for very large dose boosts at the expense of relatively small dose 

reductions to the low-uptake subvolumes. This may prove to be a powerful method for controlling tumors 

that contain a small niche of highly resistant cells. Using canine data, we also demonstrated that Cu-

ATSM dose painting plans can be accurately created and delivered using tomotherapy.  
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7. Summary and future directions 

 The overall goal of this dissertation was to characterize the properties of several potential 

imaging-based dose painting targets and determine how well they correlate with resistance to radiation 

therapy. This overall objective was split into three specific aims: the evaluation of FDG, FLT, and Cu-

ATSM PET for their suitability as dose painting targets (Specific Aim 1), the assessment of quantitative 

imaging biomarkers as predictors of clinical outcome following radiation therapy (Specific Aim 2), and 

the demonstration of the feasibility of creating and delivering PET-based dose painting plans (Specific 

Aim 3). 

 This chapter summarizes the significant findings presented in this dissertation work, and 

discusses how they—in concert with other current dose painting research—impact the overall outlook for 

target definition in biologically-conformal radiation therapy. The limitations of this work are also 

examined.  Finally, the future of biologically-conformal radiation therapy is discussed, with speculation 

on the future clinical research necessary to establish dose painting as a viable clinical treatment option. 

7.1. Research summary 

 For Specific Aim 1, we aimed to characterize the properties of FDG, FLT, and Cu-ATSM PET 

that qualify them as good or poor candidates for targets in dose painting (Chapters 2-4). In Chapter 2 we 

evaluated the spatial stability of FLT and Cu-ATSM PET distributions during radiation therapy, and 

found that spatial distributions of FLT and Cu-ATSM uptake were surprisingly stable, especially for Cu-

ATSM PET, indicating robust spatial targets for dose escalation. This was the first published study to 

evaluate the spatio-temporal stability of either proliferation maps or hypoxia maps during fractionated 

radiation therapy. In Chapter 3, we demonstrated that FDG, FLT, and Cu-ATSM PET uptake 

distributions were colocalized in canine carcinoma tumors, but were disparate in sarcoma tumors. This 

implies that certain tumor types or histologies may be more robust to how dose painting targets are 

defined, especially when there is uncertainty about which phenotype to target. In Chapter 4 we attempted 
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to identify the best spatial markers of resistance by correlating PET uptake patterns to spatial patterns of 

tumor recurrence through the use of voxel regression methods. This included the development of new 

image analysis methods for relating voxel intensity values at different time points. We discovered large 

interpatient variability in how well PET distributions predicted recurrence location, as roughly half of the 

patients showed strong correlations between PET imaging patterns and location of  recurrence. All PET 

radiotracers performed about equally well (or equally poor, depending on the patient) in predicting 

location of recurrence. 

 Specific Aims 2 and 3 were addressed in Chapters 5 and 6, respectively. For Specific Aim 2, we 

evaluated numerous quantitative imaging biomarkers as predictors of resistance to radiation therapy in the 

CIRT trials. Using Cox PH regression, we found that neither FDG nor Cu-ATSM biomarkers were 

predictive of outcome, but rather FLT-based biomarkers were the most predictive of patient outcome, 

especially FLT biomarkers acquired during the course of radiation therapy. Finally, in Chapter 6, we 

characterized how non-uniform dose is likely to be distributed within human HN tumors. We found that 

for FDG and FLT redistributions-based dose painting, sacrificing 1 Gy to the lowest-uptake tumor 

subvolumes allows for approximately 5 Gy to be added to the highest-uptake subvolumes. We also 

demonstrated the accuracy with which Cu-ATSM-based dose painting plans can be delivered via 

tomotherapy.  

 This dissertation work makes a unique contribution to the field of dose painting by 

simultaneously evaluating the spatiotemporal properties of imaging surrogates for three potential dose 

painting targets: hypoxia (Cu-ATSM), glucose metabolism (FDG), and proliferation (FLT). Furthermore, 

we were able to evaluate how radiation-induced changes in Cu-ATSM and FLT uptake relate to treatment 

resistance. Due to the cost and logistics of acquiring multiple PET scans of cancer patients at multiple  



87 

 

 
Figure 7.1. The bones surrounding the nasal cavities enabled very accurate image registration in canine sinonasal tumors. 

time points, such exploratory studies are challenging and costly to perform in human patients, and are 

therefore uncommon (149, 170-171, 207). By utilizing canine tumors as models, we were able to benefit 

from several advantages of working with animal tumor models. The foremost advantage of using canine 

sinonasal tumors as research models was the precision with which we could acquire and cross-compare 

high quality PET images. In the CIRT trial, PET acquisitions were motionless due to anesthesia, patient 

positioning was precise and repeatable due to the bite block setup, and images were of high quality due to 

long PET acquisition times and high injected activities. Plus, the rigid bony nasal cavities surrounding the 

sinonasal tumors enabled extremely accurate image registration (see Figure 7.1), which is vital to 

performing accurate cross-comparisons of tracer spatial distributions (149). And while multi-tracer PET 

studies can and have been performed in murine models of cancer (169, 172, 175-176, 208), the 

spontaneous nature of canine tumors — often resulting from the same environmental carcinogens as 

human cancers — offers a more heterogeneous spectrum of biological resistances that are more 

representative of what would be observed in human tumors (152, 209). 

 In the following subsections, we describe what we have learned about target definition based on 

tumor hypoxia, glucose metabolism, and proliferation. These results are summarized in Table 7.1. We 

also discuss an important principle that was evident in the CIRT trial: that not all patients may be well-

suited for dose painting. The limitations of our methods and results are then discussed. 

register

CT1 CT2

dental mold
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7.1.1. Tumor hypoxia 

 When designing the CIRT trial, we originally hypothesized that Cu-ATSM PET would emerge as 

the best biomarker of radiation resistance, and therefore the best target for dose painting. Tumor hypoxia 

is the best established biomarker of radiation resistance in both humans and animals (5), and is therefore a 

logical candidate for a dose painting target (35). Furthermore, studies of Cu-ATSM PET in humans 

undergoing radiation therapy have been promising: the level of Cu-ATSM uptake has been found to be 

prognostic in tumors of the cervix (132-133), lung (134), rectum (135), and head-and-neck (130). We 

were also encouraged in the CIRT study by the observation that relative spatial distributions of Cu-ATSM 

were very stable after 3 fractions (12.6 or 15 Gy) of hypofractionated radiation therapy, suggesting that as 

a dose painting target, Cu-ATSM PET would be spatially robust (ie, it would not change locations over 

time). Also, we demonstrated the feasibility of accurately delivering Cu-ATSM-based dose painting plans 

with tomotherapy. However, according to our analysis of patient outcome in the CIRT trial, Cu-ATSM 

PET uptake patterns (both absolute uptake and relative changes in uptake during therapy) did not predict 

outcome following radiation therapy (see Chapter 5). Additionally, Cu-ATSM PET did not outperform 

FDG or FLT PET at predicting the location of tumor recurrence according to our voxel regression 

methods. In fact, in carcinoma tumors, Cu-ATSM uptake patterns were actually very similar to that of 

FDG and FLT uptake patterns. Therefore, based on the results presented in this dissertation work, Cu-

ATSM PET did not stand out as a promising candidate target for dose painting.  

 There are several possible explanations as to why Cu-ATSM uptake did not predict resistance to 

radiation therapy in the CIRT trial. A primary limitation may have been the sample size, considering the 

heterogeneity of canine breeds, tumor sizes, and even tumor histologic subtypes included in the CIRT 

study. Another problem may have been the limitations of our method of analysis—namely, the 

uncertainties of the voxel-based regression methods and outcome analysis (this is discussed in greater 

detail in section 7.1.5). There are also several biochemical uncertainties that may have obscured the 

relationship between Cu-ATSM uptake and hypoxia. While many studies have demonstrated that Cu-
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ATSM uptake is sensitive to induced hypoxia (127, 157, 210), several studies have found inconsistencies 

in the colocalization of Cu-ATSM uptake and tumor hypoxia in murine animals (158, 211-214). This lack 

of specificity for hypoxia appears to be more pronounced in certain histologic tumor types than others 

(158, 214). This may very well be the reason we saw different patterns of uptake in sarcoma tumors and 

in carcinoma tumors in the CIRT trial. An additional biochemical uncertainty is the stability of the Cu-

ATSM complex in vivo after 3 hours. Studies have found that Cu can dissociate from the ATSM complex 

in animal blood, resulting in unbound radioactive Cu circulating through the tumor (211). Furthermore, 

once Cu-ATSM is internalized by a cancer cell and the Cu dissociates from the ATSM, the free Cu in the 

cytoplasm can still be expelled back into the extracellular space via Cu exporter proteins (215). The free 

circulating radioactive Cu can then be taken up by tumor cells in a manner independent of hypoxia, as has 

been demonstrated with PET imaging of 
64

Cu salts (216-217). The relationship between Cu-ATSM and 

hypoxia may have been further obscured by the fact that serum albumin in canines has greater binding 

affinity for Cu-ATSM than in humans (155), and the fact that combination of anesthesia and 100% O2 

inhalation has been shown to influence Cu-ATSM uptake levels (154). 

It is important to note that Cu-ATSM may yet be a viable biomarker of resistance regardless of 

the uncertainties surrounding its uptake mechanism. A mechanistic understanding of the relationship 

between dose response and the imaging intensity values is not as important as the existence of an 

empirical relationship between the target expression and resistance to radiation therapy (47). However, 

given the decades of accumulated evidence linking tumor hypoxia to radiation resistance, future dose 

painting trials using PET hypoxia tracers with more consistent correlations to tumor hypoxia (such as 

FMISO or FAZA (218-219)) may find a stronger associations between PET uptake patterns and patterns 

of radioresistance. These alternative hypoxia tracers, however, have been shown to suffer from low levels 

of uptake in tumors relative to surrounding tissues (220). Low signal, when combined with the statistical 

noise and biological uncertainties inherent to PET imaging, can translate into large relative uncertainties 
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in dose painting target definition and prescriptions (144). On the other hand, FMISO PET imaging has 

been shown to be spatially robust in a test-retest study (145), despite its low imaging values. 

7.1.2. Tumor metabolism 

 Out of all the available imaging modalities, FDG PET has accumulated the most empirical 

evidence supporting its use as a dose painting target. This evidence comes from clinical trials 

demonstrating FDG PET uptake as a biomarker of resistance to radiation therapy (221-223), from studies 

in human tumors which correlated spatial patterns of tumor recurrence to FDG uptake patterns (9, 14, 

100, 109, 179-180), and even from preclinical studies that demonstrated a dose-response relationship 

between FDG uptake and radiation therapy (224). These studies, however, were limited in that they did 

not concurrently investigate other imaging modalities or PET radiotracers as a means of comparison. 

Nonetheless, FDG PET has been used as a dose painting target in previous clinical trials, with several 

more trials underway (see Table 1.1).  

 In the CIRT trial, we did not observe evidence suggesting FDG PET as the best imaging modality 

for target definition in dose painting. According to survival analysis of the canine patients, FDG PET 

biomarkers did not predict resistance to radiation therapy. On the other hand, in Chapter 4 we found that 

pre-treatment FDG uptake distributions did have the highest performance in predicting the locations of 

recurrent tumor, according to linear voxel-regressions (ie, pre-treatment FDG had the highest average R
2 

at predicting post-treatment FDG). The R
2
 values for FDG, however, were not significantly different than 

those for Cu-ATSM or FLT, and when using logistic regression (which removed possible autocorrelation 

between pre- and post-FDG), all of the tracers performed about equally. It was also demonstrated in 

Chapter 3 that FDG had similar uptake distributions as FLT and Cu-ATSM in canine carcinoma tumors, 

and in canine sarcoma tumors, FDG had stronger spatial correlations to FLT and to Cu-ATSM than the 

correlations between FLT and Cu-ATSM. This suggests FDG uptake may have been influenced by both 

proliferation and hypoxia. 
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7.1.3. Tumor proliferation 

 FLT PET has been considered a promising imaging biomarker of early response to radiation 

therapy due to a rapid reduction in its uptake after the onset of radiation therapy (26), although its 

prognostic value has yet to be validated. In the CIRT trial, FLT PET biomarkers acquired during 

treatment, and FLT response from pre- to mid-treatment, were the most predictive biomarkers of 

resistance to radiation therapy in canine tumors, which suggests at FLT's potential as a dose painting 

target. The caveat, however, is that tumors with pronounced decreases in FLT uptake actually fared worse 

than tumors with no FLT response, or with increases in FLT uptake. This is contrast to results published 

by Hoeben et al., who found large decreases in FLT uptake corresponded to better disease-free survival 

following chemoradiation for 33 HN cancer patients (120), although the addition of chemotherapy does 

not allow for a direct comparison to our study. Furthermore, in Chapter 4, we evaluated response maps of 

FLT PET (ratios of mid-treatment FLT images to pre-treatment FLT images) as predictors of recurrent 

tumor location, and found they were very poor predictors of recurrent tumor location (R
2
 ≈ 0.05). These 

spatial response maps, however, suffered from inflated ratios in regions of initially-low FLT uptake (ie, 

denominators were close to zero). We did include absolute changes in FLT uptake (ie, FLTmid-FLTpre) as 

part of the multivariate regression model in Chapter 4, but the R
2
 were still very poor for many patients. 

FLT PET, therefore, appears to have some relationship to resistance mechanisms of tumors, although it 

remains uncertain if and how it could serve as an appropriate dose painting target. This work, as well as 

other FLT studies, warrants further evaluation of the relationship between longitudinal FLT PET imaging 

and resistance for cancer patients undergoing radiation therapy. 
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Table 7.1. Evidence for and against the use of FDG, FLT, and Cu-ATSM PET as dose painting targets. 

Tracer 
Origins of 

evidence 

Empirical evidence supporting its use as 

a dose painting target 

Empirical evidence against its use 

as a dose painting target 

FDG Our work  Was a strong predictor of recurrent 

tumor location in some canine patients 

(Ch. 4) 

 According to linear voxel regressions, it 

had slightly higher correlations to post-

treatment FDG than FLT or Cu-ATSM 

(95)(Ch. 4) 

 Using redistribution prescription 

methods with FDG, large dosimetric 

gains (5 to 1) can be achieved in high-

uptake subvolumes by removing dose 

from low-uptake subvolumes (Ch. 6) 

 Was not predictive of outcome in 

the CIRT study (Ch. 5) 

 Was a poor predictor of recurrent 

tumor location in some canine 

patients (Ch. 4) 

 In literature  Baseline FDG PET is often a good 

predictor of location of recurrence in 

human tumors (14, 70, 100, 109, 179-

180, 185) 

 It is predictive of outcome following 

radiation therapy in certain human tumor 

types (222-223, 225-227) 

 FDG uptake is influenced by 

inflammation and perfusion (110)  

FLT Our work  Spatially-stable target early during 

radiation therapy (Ch. 2) 

 Mid-treatment FLT uptake and early 

FLT response were the best predictors of 

patient outcome in the CIRT study (Ch. 

5)  

 FLT response precedes anatomical 

response (26)(Ch. 2) 

 Using redistribution prescription 

methods with FLT, large dosimetric 

gains (5 to 1) can be achieved in high-

uptake subvolumes by removing dose 

from low-uptake subvolumes (Ch. 6) 

 Baseline and mid-treatment FLT were 

strong predictors of recurrent tumor 

location in some canine patients (Ch. 4) 

 Early FLT response has predicted 

both favorable (120) and 

unfavorable outcome (Ch. 5) 

 FLT response maps were very 

poor predictors of recurrent tumor 

location in canine patients (Ch. 4) 

 Baseline and mid-treatment FLT 

were poor predictors of recurrent 

tumor location in some canine 

patients (Ch. 4) 

 

 In literature  FLT uptake is relatively specific for most 

tumors (113) 

 Baseline proliferation rates do not 

predict response to radiation 

therapy (116) 

Cu-ATSM Our work  Spatially-stable target early during 

radiation therapy (Ch. 2) 

 Baseline and mid-treatment Cu-ATSM 

were poor predictors of recurrent tumor 

location in some canine patients (Ch. 4) 

 Was not predictive of outcome in 

the CIRT study (Ch. 5) 

 Baseline and mid-treatment Cu-

ATSM were poor predictors of 

recurrent tumor location in some 

canine patients (Ch. 4) 

 In literature  Predictive of outcome following 

radiation therapy in several tumor types 

(130-135) 

 

 Inconsistent correlation to 

hypoxia in different tumor types 

(158, 211, 214) 

 Uncertainties regarding in vivo 

molecular stability (211) 
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7.1.4. Candidate selection for dose painting 

 An important message has emerged from the results presented in this dissertation work that needs 

to be highlighted: a particular dose painting strategy is unlikely to be beneficial to all patients. In Chapter 

4 we saw large variability among patients in how well PET imaging was able to predict the location of 

tumor recurrence. In Chapter 3 we saw sarcoma tumors and carcinoma tumors had very distinct imaging 

patterns. In future dose painting clinical trials, once an imaging target is selected, it will likely be 

necessary to screen patients whose tumors do not express that target, or in whom the imaging target is not 

expressed in a manner consistent with resistant to radiation therapy.  For example, we have already 

discussed how Cu-ATSM may not correlate with hypoxia in certain tumor histologies (211). Matching 

patient-specific biology to the appropriate dose painting method will be necessary to improve clinical 

outcomes.  

7.1.5. Limitations  

 There were several aspects of the CIRT study and its subsequent analysis that limited our ability 

to relate imaging patterns to resistance to radiation therapy—factors that should be considered in future 

studies. Unfortunately, due to logistical constraints, we were not able to validate FDG, FLT, and Cu-

ATSM as reliable markers of glucose metabolism, proliferation, and hypoxia, respectively, in canine 

sinonasal tumors. PET radiotracers are imperfect surrogates of their respective biological targets, as tracer 

uptake can be influenced by perfusion, cellular density, and even target mutations. It is therefore desirable 

to evaluate the extent of their surrogacy, especially for an experimental tracer in an experimental host. For 

example, certain mutations in tumor cells can decouple thymidine influx from proliferative activity, thus 

confounding FLT uptake as a marker of proliferation (228). We have already discussed in the previous 

section the uncertainties surrounding Cu-ATSM's uptake mechanism. Furthermore, tracers can be 

metabolized by the host, making it difficult to decouple the PET signal originating from the tracer and the 

signal from the metabolites. We did perform metabolite analysis for FLT scans (we found canines do not 

metabolize FLT), but not for Cu-ATSM scans. Validating imaging methods as surrogates for biological 
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processes is not a simple process, and can involve the following: metabolite analysis of tracers in plasma, 

comparing tracer uptake patterns to perfusion patterns (eg, through perfusion imaging), comparing 

imaging patterns to an alternative imaging modality that measures the same function (if one exists), 

image-guided biopsies evaluated via histopathology staining, and correlating histopathology results 

against SUV and against parameters arising from kinetic analysis. Future studies should validate PET 

tracers in the host species, as understanding the biological mechanisms of the underlying imaging signal 

is vital to understanding the limitations, uncertainties, and robustness of the molecular imaging target 

(22).  

 A primary challenge in identifying imaging biomarkers of radiation resistance is the limited 

methods by which radioresistance can be measured in vivo. Traditionally, radioresistance is defined by the 

increased dose necessary to provide the same level of cell kill (for in vitro experiments) or tumor control 

(for in vivo experiments) as for control samples (5). However, spontaneous tumors demonstrate much 

greater biological complexity and inter-tumor variability than cell cultures or xenograft tumors, and 

resistance to radiation therapy can be influenced by a variety of additional biological properties, including 

immune response, perfusion, anatomical location, and so forth. Identifying consistent markers of 

radioresistance in a diverse population of tumors can be challenging, as evidenced by the relatively small 

number of molecular biomarkers that can consistently predict resistance to radiation (192). Typically, 

biomarkers of resistance are identified by outcome analysis of local control rates or overall survival in 

patients treated with radiation therapy. But this only identifies biological targets that are in some way 

related to or influence clinical outcome, which may not necessarily indicate the existence of a dose-

response relationship. For example, one may identify an imaging biomarker that predicts worse overall 

survival in patients undergoing radiation therapy, but that biomarker may actually be an indication of host 

immune response rather than inherent cellular radioresistance, and may not actually indicate whether or 

not that tumor would have responded better to a higher dose prescription. In the CIRT trial, we identified 

change in FLT uptake as a prognostic biomarkers of progression-free survival (Chapter 5), but we did not 
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observe FLT uptake patterns to be a consistent spatial predictor of recurrent tumor location (Chapter 4). 

Response maps of FLT were even worse predictors of recurrent tumor location. These are the limitations 

of outcome analysis, and highlight the importance of understanding the underlying mechanistic 

relationship between an imaging biomarker and its biological target.  

 An even greater challenge is acquiring spatially-resolved measurements of radiosensitivity in 

tumors. Prognostic biomarkers of overall resistance to radiation therapy—measured according to clinical 

outcome—may or may not be adequate biomarkers for measuring spatially-varying radioresistance 

(tumor volume would be an example biomarker that cannot be defined on the voxel level). It is unclear 

how to best evaluate spatially-varying radiosensitivity. The most commonly-used method is to compare 

the location of residual or recurrent tumor to baseline imaging patterns—such as we performed in Chapter 

4—either through overlap analysis or through voxel regressions/correlations (14, 70, 95). These methods 

work under the assumption that when the PET or CT signal in a tumor’s voxel disappears following 

treatment, that tumor subvolume has been controlled. It is unclear how frequently this assumption is 

valid. For example, it does not allow for cases in which viable tumor cells remain in a voxel location, but 

not enough to produce a detectible imaging signal. Nor does it allow for cases where a fraction of the 

tumor cells of multiple neighboring voxels are controlled, and the remaining tumor cells conjoin into a 

smaller number of voxels. While deformable registration methods can account for tumor morphological 

changes over time, these methods are ‘mass-preserving’, meaning they do not account for the fraction of 

the tumor that is killed and cleared away from the tumor. It is also uncertain how to best define residual or 

recurrent tumor location after therapy. Using CT imaging, necrotic tumor can be mistaken as viable 

tumor, and using FDG PET, inflammation or non-specific uptake can appear as recurrent tumor.  There 

are also statistical limitations when performing voxel-based statistical analysis. As various tumor 

properties (eg, tumor shape, variations in cell density, perfusions levels) can similarly influence all 

imaging methods, there is often high multicollinearity among voxel-based covariates, which can confound 

statistical analysis. Also, treating individual voxels as independent samples for hypothesis testing is 
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inaccurate and can lead to misleading results. Methods of accounting for autocorrelations among 

neighboring voxels are necessary, yet underdeveloped in image analysis for oncology.    

 We were limited in the number of imaging methods we could investigate in the CIRT trial. It is 

possible that other imaging methods could be better markers of radioresistance—and be more suitable as 

a dose painting target—than the imaging methods we investigated. Other candidates for  biological targets 

include apoptosis (229), epidermal growth factor receptor expression (230), hypoxia inducible factor 

expression (231), amino acid metabolism (47), cancer stem cell density (232), and alternative imaging 

surrogates of  hypoxia such as FMISO or FAZA PET (145, 218). A challenge to finding an imaging 

surrogate of resistance to radiation therapy, however, is that only a small niche of remaining tumor cells 

may be necessary to repopulate a treated tumor. If the resistant cells are small in number, no matter how 

they are targeted and labeled for imaging, the imaging signal may be too low for detection. This is a 

primary challenge in the development of tracers for radiation resistance. 

7.2. Dose painting clinical trial design 

 The future of dose painting research will primarily involve two objectives: validating existing 

dose painting imaging targets through randomized clinical trials, and discovering new imaging agents for 

target definition through preclinical research and exploratory clinical studies. In the end, dose painting 

can only be validated as an effective therapeutic option after extensive clinical trials randomizing patients 

between dose painting and standard of care IMRT. However, intelligently-designed exploratory trials can 

help guide the design of subsequent trials, increasing the probability of the development of a successful 

dose painting strategy. In this section, we recommend study components that should be considered or 

included in future dose painting clinical trials. 

7.2.1. Imaging target selection 

 As has already been discussed in this dissertation, there are many imaging modalities from which 

to select an imaging target for dose painting, none of which have been actually validated as suitable 
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targets. The selection of the imaging target will probably have the largest impact on whether or not the 

dose painting method will be successful. It is therefore necessary that before selecting an imaging 

modality for target definition, both preclinical experiments and exploratory trials should demonstrate a 

link between the imaging signal and resistance to radiation therapy. It is also important that different dose 

painting trials test a variety of promising imaging targets, so that different methods can be cross compared 

and the best method eventually identified.  It is also not unreasonable to use a combination of imaging 

methods to define a target. For example, combining the sensitivity of FDG PET imaging with the 

specificity of FLT PET imaging may allow for more accurate tumor delineation methods (233-235).  

 A further consideration should be the time point at which the imaging target is defined. Studies 

have demonstrated that target definition during therapy, or adapting target volumes during therapy, is 

feasible (57, 65). We found that mid-treatment FLT images were more predictive of resistance than 

baseline FLT images. The imaging time points will certainly depend on the imaging target that is used, 

but should not be restricted to being defined at baseline only.  

 Future dose painting studies may also want to consider the method of regional dose painting. In 

regional dose painting, the tumor volume is partitioned into regions or clusters based on biological 

similarities, and then each region receives a unique dose prescription depending on its expected state of 

resistance. This would represent a compromise between voxel-based dose painting and uniform boosting. 

Indirect evidence for this is illustrated in Figure 4.2, which shows during-treatment CT imaging of canine 

tumors treated with IMRT. Images revealed that certain tumor subregions experienced prompt anatomical 

response, whereas other subregions did not. The patterns of anatomical response were unique for each 

tumor, but response was typically on  a regional scale rather than on a voxel or whole-tumor level. While 

it is unclear how to best partition tumors into subregions with similar biological and resistance profiles, 

there is promise in combining molecular imaging with supervised or unsupervised classification 

algorithms (236). Methods for indentifying regional-based biological targets and performing regional 

dose painting have yet to be explored. 
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7.2.2. Patient selection  

 Choosing the patient populations most likely to benefit from dose painting is a challenging but 

necessary task. First, a tumor site needs to be selected. The top candidate sites for dose painting are in the 

HN, brain, and lung (41, 47, 237). Tumors of the HN and brain benefit from established immobilization 

techniques, which would reduce the imaging and treatment uncertainties associated with motion and setup 

error (238). A disadvantage for dose painting in HN tumors, however, is that current uniform dose 

prescriptions already perform very well for many patients and histologies, with local control rates above 

90% for early stage tumors (239). Dose painting in HN tumors, therefore, is unlikely to result in a 

substantial improvements over standard-of-care therapies, as has already been evidenced from recent dose 

painting trials (59, 67). Dose painting in the brain is mainly limited by the fact that some 

radiopharmaceuticals do not perform well in the brain, either due to the blood-brain barrier (240) or high 

background metabolic activity in healthy brain (241-242). Lung cancer, on the other hand, is the leading 

cause of cancer death among men and women (243), with current radiation therapy protocols resulting in 

poor local control rates (191). The primary obstacle in lung dose painting is motion-induced geometric 

uncertainties, which results in blurring of the image and dose distribution, although these can be 

somewhat mitigated using 4-dimensional imaging and motion management techniques (244). 

 Beyond tumor site, further patient selection requirements would include tumor stage, histologic 

tumor type, and tumor volume. We demonstrated in Chapter 3—as has been demonstrated by other 

studies (170-171)—that different tumor histologies can have dramatically different imaging patterns. 

Some histologies may be better suited than others for dose painting with a particular imaging target, and 

preliminary experiments are necessary to establish the imaging method as a marker of radiation resistance 

in the histology of interest. As for tumor stage/volume, small and large tumors should not necessarily be 

grouped together. Dose painting for small spherical lesions or nodules, in which biological heterogeneity 

in minimal (especially on the spatial scale of molecular imaging), is likely to have different outcome that 

dose painting for large advanced tumors, in which dose can be shaped to match the intratumor 
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heterogeneities. Inclusion criteria for clinical trials should either include a minimum tumor volume, or 

patients should be stratified according to tumor volume.  

7.2.3. Dose prescription method 

 The method of dose prescription has already been discussed in detail in Chapter 6. Currently, 

linear prescription functions seem to be the rational choice for experimental dose painting trials, at least 

until evidence emerges suggesting the superiority of non-linear prescription methods. The optimal 

prescription function is likely to be very complex, involving numerous biological and biochemical 

variables that often go unmeasured. For example, using electrochemical modeling, Bowen et al. estimated 

that the relationship between Cu-ATSM and hypoxia was very sensitive to the conditions of the 

microenvironment, particularly the acidity. For dose painting methods that use oxygen enhancement 

ratios, these biochemical uncertainties would then translate into relatively large dosimetric uncertainties 

(245). Therefore, first-order approximations of prescription functions (ie, linear) are a reasonable starting 

point.  

 Perhaps the more pertinent questions is: by how much should the dose be modulated inside the 

target volume? We showed in Chapter 6 that for FDG and FLT-based prescriptions in HN tumors, 

removing 1 Gy from the lowest-uptake tumor subvolumes allows for about 5 Gy to be added to the 

highest-uptake tumor subvolumes, while keeping the mean tumor dose fixed. At some point, however, 

lowering the dose to the low-uptake voxels will prove detrimental to the overall tumor control probability. 

This threshold of modulation will clearly depend on the sensitivity and specificity of imaging method, the 

tumor site, and even the patient biology. It is plausible that lung tumors (with their low local control rates) 

will require a greater degree of dose modulation than HN tumors. Based on measurements of oxygen 

enhancement ratios, hypoxic cells may require up to 3 times the dose for equivalent cell kill (5), 

suggesting that considerably large degrees of dose modulations may be required. An understanding of the 

relationship between the imaging agent and its biological target, and the relationship between the 

biological target and radioresistance will allow for modeling studies to approximate the optimal degree of 
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dose modulation. In the meantime, systematically increasing the degree of dose modulation across 

different studies may help identify a "peak" at which local control rates are maximized. 

7.2.4. Additional assays 

 An important component to future dose painting trials will be any additional imaging and 

biological information that can be acquired from tumors, so as to better guide future dose painting studies. 

In traditional radiation therapy, patients were categorized according to tumor type and stage, and given 

population-based dose prescriptions based on clinical experience. Dose painting aims to incorporate 

patient-specific biology in the form of the imaging target, but this need not be the only biological assay 

incorporated into treatment planning. For example, a particular tumor mutation may cause the expression 

of the imaging target to occur in a manner inconsistent with radioresistance, and that mutation could be 

used as a biomarker to screen or stratify patients in future trials. Examples of other variables with 

potential discriminatory value include degree of tumor inflammation, prevalence of hypoxia, human 

papillomavirus status, biochemical stability of the radiotracer in vivo,  location of the tumor relative to 

surrounding sensitive tissue, rapidity of anatomical response, and so forth.  

 Additional functional imaging of normal tissue might also prove useful in not only stratifying 

patients, but in guiding dose distributions in healthy tissue. For example, in lung cancer, it has been 

proposed that lung perfusion imaging may help identify non-functioning regions of lung that could 

receive a larger portion of the normal tissue dose than healthy functioning lung (246-247). Likewise, FDG 

PET in lung may identify regions of inflammation that are more susceptible to radiation damage — 

regions that could be conformally avoided (248). Overall, the addition of informative biological assays to 

dose painting trials can help guide future studies, and lead to more effective, personalized radiation 

therapy. 
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7.2.5. Endpoints and analysis 

 Biologically- and clinically- relevant primary and secondary endpoints in trials will allow for the 

proper evaluation of effectiveness of different dose painting methods. For randomized controlled trials, 

the gold standard for evaluation of treatment efficacy is the evidence of statistically significant 

improvement in overall survival (OS) and/or quality-of-life (249). However, using OS as a primary 

endpoint requires long follow-up times and a larger sample size, and therefore surrogate endpoints have 

found increasing use, such as progression-free survival (PFS) and disease-free survival, albeit 

controversially (249). For dose painting, in addition to OS and PFS, secondary endpoints of local control 

(or loco-regional control) and normal tissue toxicity rates will be particularly important to monitor. Dose 

painting has the potential to both reduce and increase normal tissue toxicities, depending on the location 

of the high-uptake tumor subvolumes relative to surrounding tissues. If, for example, a particular dose 

painting strategy reduces normal tissue toxicity, but not local control rates, it would follow that the 

integral dose for that dose painting strategy could be raised. Or, if dose painting dramatically improves 

local control but also worsens normal tissue toxicities, lower dose prescriptions might be needed. 

Informative secondary endpoints can help tailor future dose prescriptions to maximize the therapeutic 

ratio. 

 In addition to conventional clinical trial endpoints, imaging endpoints may prove particularly 

valuable in dose painting (250). Dose painting is a form of targeted therapy, as specific biological targets 

are identified and then therapeutically targeted. Evaluating the biological target expression, or other 

related biological targets, either during therapy or after therapy may help identify which patients are 

responding or will respond to the treatment. Furthermore, it can help elucidate how the therapy is altering 

the pathophysiology of the tumor, and how that alteration relates to clinical outcome. The challenge, 

however, will be matching the appropriate imaging biomarker to the dose painting method. Ultimately, 

identifying relevant imaging biomarkers of response to dose painting may eventually lead to identification 

of imaging-based surrogate endpoints.   
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7.3. Conclusion 

  This dissertation work represents an important step in the characterization of the spatio-temporal 

properties of several molecular imaging agents commonly considered as candidates for dose painting 

targets, and in the development of methods for estimating the efficacy of different imaging targets. 

Current methods of population-based uniform-dose prescriptions will only be necessary until functional 

imaging methods allow for accurate measurements of non-uniform patterns of radioresistance. Once 

adequate methods for imaging resistance are available, dose painting will undoubtedly become the 

preferred method of radiation therapy for select tumor sites. We are currently at the threshold of an era of 

personalized medicine in oncology, wherein treatments are tailored to match patient-specific biology for 

optimal patient outcome. Dose painting will become a valuable tool in the arsenal of personalized 

therapies available to physicians and patients.  
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