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abstract

Emerging storage-class memory (SCM) devices, such as phase-change memory and memris-

tors, provide the interface of memory but the persistence of disks. SCM promises low-latency

storage, which can benefit modern applications ranging from desktop applications that

frequently flush data to stable storage, to large-scale web applications that perform lots of

dependent lookups such as social-network graphs. Existing operating-system interfaces,

however, fail to expose the full capabilities of SCM. Under the current storage model, the OS

mediates every access to storage for protection and to abstract details of the specific storage

device through a driver. This causes unneeded complexity and lower performance for SCM,

which can be accessed directly through the memory interface rather than peripherally via

I/O requests.

This dissertation revisits the system interface to storage in light of SCM. The central

hypothesis is that direct access to SCM from user mode can form the basis for a flexible

high-performance storage architecture. Direct access promises much higher performance

by avoiding the cost of entering the kernel and removing layers of code. Direct access also

enables flexibility by letting applications customize the storage system to their needs so as to

avoid paying generic overheads and therefore further improve performance.

The dissertation presents the design, implementation, and evaluation of an operating-

system storage architecture based on direct access to SCM. The architecture comprises two

parts. The first part, Mnemosyne, exposes persistent memory to user-mode programs. Persistent

memory enables programs directly store and access common in-memory data structures,

such as trees, logs, and hash tables, in regions of SCM (private to each program). While

persistent memory enables low-latency flexible storage, it sacrifices the common file-system

interface that enables application interoperability by organizing data under a global logical

namespace for easy access and protecting data for secure sharing. The second part, Aerie,

fills this gap. Aerie exposes a flexible file-system interface to SCM using user-mode libraries

that access file data directly through memory. Aerie retains both the benefits of direct access

and the sharing and protection features of file systems.
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1 introduction

Emerging device technologies, such as phase-change memory and memristors, promise high-

speed and affordable persistent storage. These devices collectively are termed storage-class

memory (SCM) as they provide the interface of memory but the persistence of disks [65]. That

is, SCM enables low-latency persistent storage than can be accessed directly through the

memory interface using ordinary load and store instructions.

Modern applications can greatly benefit from such low-latency storage. In the desktop and

smartphone domain, applications that perform frequent flushes to slow storage devices may

cause sluggish performance that results in poor user experience [44, 101]. In the data center,

web applications, such as search, social networks, and electronic commerce, make complex

unpredictable explorations of data over large datasets in response to multiple different-user

queries. User queries must be served in real time so these applications often resort to keeping

a large fraction of their data in memory for low-latency access. For example, Facebook keeps

approximately 75% of its total data size in memory [141] and Bing allocates much of its index

in memory [108].

Unfortunately, existing operating systems’ storage architecture and interfaces fail to expose

the full potential of these device technologies to programmers and applications. Existing

operating systems are designed for a strict bifurcation of devices into memory, volatile, fast,

byte-addressable devices, and storage, persistent, slow, block-based devices. Under this

storage model, the OS mediates every access to storage for protection and to abstract details

of the specific storage device through a driver. This causes unneeded complexity and lower

performance for SCM, which can be accessed through the standard memory interface rather

than I/O requests.

This dissertation investigates rewriting the storage stack to account for SCM. The central

hypothesis is that direct access to SCM from user mode can form the basis for a flexible

high-performance storage architecture. Direct access promises much higher performance

by avoiding the cost of entering the kernel and removing layers of code. Direct access also

enables flexibility by letting applications customize the storage system to their needs without
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extending the kernel. Previous work has shown that matching application needs to storage-

system design can deliver major performance improvements. For example, Google’s GFS

optimizes for web data [69], Facebook’s Haystack optimizes for images [19], and the Vertica

column-oriented store optimizes for data analytics [109, 176]. These systems provide better

performance by specializing for a narrow range of application workloads (e.g., whole file

access).

The dissertation presents the design, implementation, and evaluation of an operating-

system storage architecture based on direct access to SCM. The architecture comprises two

parts. The first, Mnemosyne [188], is a lightweight system for exposing persistent memory

to user-mode programs. Persistent memory enables programs directly store and access

common in-memory data structures, such as trees, logs, and hash tables, in regions of SCM

(private to each program). While persistent memory enables low-latency flexible storage, it

sacrifices many of the features that make file systems useful such as organizing data under

a global logical namespace for easy access, and protecting data for secure sharing between

applications. The second part, Aerie, is a flexible file-system architecture that fills this gap.

Aerie exposes a file-system interface to SCM using user-mode libraries that access file-system

data directly through memory. Aerie retains both the benefits of direct access and the sharing

and protection features of file systems.

1.1 Motivation

Emerging device technologies enable low-latency storage, which can greatly benefit modern

applications. However, existing operating systems do not expose the full potential of these

technologies to applications, thus calling for rethinking the design of operating-system storage

architecture and interfaces to exploit new storage technologies.

1.1.1 Technology Trends

Storage-class memory (SCM) [65] technologies promise to change many assumptions about

storage. They have the persistence of storage, but the interface of memory, that is they can
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be attached to the memory bus and accessed through load and store instructions. Recent

technologies that provide SCM capabilities include: phase-change memory (PCM) [115], spin-

transfer-torque magneto-resistive RAM (STT-MRAM) [93], and memristors [177]. Although

the performance and reliability details differ, they all provide byte-granularity access near

the speed of DRAM and the ability to store data persistently across reboots without battery

backing. Compared to flash technology, SCM is between two to three orders of magnitude

faster and enables finer-grain access for flexible data structures. While SCMs are currently

only available in small sizes and scaling projections have flattened in recent years, recent

work indicates that even current SCM devices offer great potential for improved storage

performance [9].

1.1.2 Application Trends

We see an increasing body of evidence that modern applications could benefit from low-

latency storage. These range from desktop and smartphone applications to large-scale web

applications.

Modern desktop and smartphone applications have become less comfortable with simply

writing data and hoping data is eventually flushed to stable storage. Instead they often

explicitly force writes to stable storage to ensure durability [86, 101]. However, frequent flushes

to slow stable storage may cause sluggish performance that results in poor user experience. For

example, Firefox 3 had a problem with calling fsync too frequently [44], bringing the system to

a crawl by frequent flushes to disk. Firefox developers found themselves in the uncomfortable

position of trading data integrity for better performance by reducing the frequency of syncs.

Similarly, a recent study found that the performance of smartphone applications that perform

frequent syncs is quite sensitive to storage latency [101]. As a result programmers often devote

a good portion of their time to managing and optimizing I/O performance through complex

techniques such as batching I/O requests and performing asynchronous I/O to overlap long

storage latency with computation [86]. Since such techniques put a huge burden on the

programmer, previous work has explored techniques that hide synchronous I/O latency



4

without modifying the application, such as prefetching [147, 79] and speculation [138, 139].

Web applications, such as search, social networks, and electronic commerce, also require

low-latency access to storage. Such applications have limited locality as they make complex

unpredictable explorations of data over large datasets in response to multiple different-user

queries. Each individual query may comprise multiple dependent lookups that are processed

sequentially and therefore contribute to the total query latency. Since user queries must be

served in real time, these applications often resort to keeping a large fraction of their data in

memory for low-latency access. For example, Facebook keeps approximately 75% of its total

data size in memory [141] and Bing allocates much of its index in memory [108].

Finally, other applications include distributed agreement protocols such as Paxos that

needs to synchronously write to a persistent log [31], and high-frequency trading that requires

fast processing of financial data to perform real-time decisions [166].

1.1.3 Problem

Despite rapid advancements in storage technology, the fundamental architecture of storage

in operating systems has remained stable: applications invoke the kernel to store and retrieve

data, which invokes a file system and then a block driver. Microkernels and user-mode file

systems move the file-system logic to user mode, but leave the remaining layers intact [124,

175]. Databases may bypass the file system, but still call through the kernel and block driver.

Four features of past storage technologies require this layered design in the kernel:

1. Protection: Disks and other block storage devices do not implement a protection mecha-

nism to limit access by a user or process. In addition, they use DMA to read/write data,

which does not respect memory protection. Thus, the OS relies on the file system to

decide which processes have access to which blocks on disk.

2. Scheduling: Disks have variable latency from seek and rotational delays and benefit

significantly from scheduling to reorder requests.
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3. Caching: Slow disks benefit from shared caches that allow processes to re-use data

fetched by another process.

4. Drivers: Disks implement a variety of interfaces and therefore require a driver to present

a standard block interface.

Due to the slow speed of disks and the high benefits of scheduling and caching, a kernel

implementation of file systems provides many performance benefits at little additional cost.

SCM has none of the features that require the operating system to abstract and mediate

access to storage through a kernel-mode file system and a block-oriented interface. As memory,

it can be protected by existing memory-translation hardware. Furthermore, it has much less

need for scheduling to optimize latency, as there are no long seek or rotation delays. Because

SCM provide speeds near DRAM, caching data may be unnecessary. Finally, SCM does not

require a driver for data access as it can implement a standard load/store or protected DMA

interface [30].

Moreover, the existing operating-system storage architecture limits flexibility by imposing

a specific persistence model and handicaps performance of SCM by introducing unnecessary

overhead costs.

Flexibility. Major performance improvements can come from matching application needs to

storage-system design. However, implementing application-specific persistence today entails

three unattractive choices. A first choice is to implement a custom kernel-mode file system,

which is difficult and requires long-term maintenance as the kernel evolves. User-mode

frameworks such as FUSE [175] simplify file system development but decrease performance

through extra context switches to a file-system process. Moreover, although both kernel-mode

and user-mode implementations allow flexibility in layout, they restrict access through a

standard file system interface. A second choice is to layer persistence above an existing file

system or database. For example, Microsoft Office file-formats implement a file system within

a file [86]. However, such an approach requires extra code to format and access data, which

adds additional latency to file access. A third choice is to completely bypass the file system
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and perform direct I/O to the block device similarly to modern databases. While this choice

works well when a single application accesses the device, it complicates shared access by

multiple applications that do not trust each other because: (i) access control is enforced at the

granularity of the device, thus making it hard to selectively share individual blocks, and (ii)

the device implements no concurrency control so applications cannot coordinate concurrent

access to individual blocks in a safe manner. So to support shared access, applications typically

perform their I/O requests via a server process with a proprietary interface.

Performance. The existing storage architecture handicaps performance of SCM. For example,

while PCM read latencies can be as low as 70 nanoseconds, the time for a read system

call in Linux on a modern processor is approximately 1200 nanoseconds. There are two

major performance impediments with the existing architecture: (i) the architecture requires

entering the kernel, which introduces a cost for changing privilege mode and causes cache

pollution [42, 173]; and (ii) it introduces unnecessary layers of code that cannot be completely

bypassed.

1.2 Thesis and Contributions

Our thesis is that user-mode code should have direct access to storage-class memory. This

can provide two benefits: flexibility and performance. First, direct access enables flexibility

by letting an application implement persistence customized to its needs without modifying

the kernel and without any performance penalty from executing outside the kernel. Second,

direct access promises much higher performance by avoiding the cost of entering the kernel

and by removing layers of code.

To this end, we built a new operating-system storage architecture based on the idea of

direct access. The architecture comprises two main parts, Mnemosyne and Aerie, both which

we describe next.
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1.2.1 Mnemosyne: Lightweight persistent memory

Our first proposal is that operating systems should expose SCM as a persistent memory

abstraction to provide direct access to the durability of SCM technologies. This abstraction

enables programmers to make in-memory data structures persistent without first converting

them to a serialized format. Thus, trees, lists, and hashes can survive program and system

failures. Furthermore, direct access reduces latency to storage because it bypasses many

software layers, including system calls, file systems, and device drivers.

We built Mnemosyne1, a lightweight system for exposing persistent memory to user-mode

programs. We designed Mnemosyne to run on conventional processors, requiring no special

support beyond the necessary memory controller for SCM. A design compatible with existing

commodity processors enables the adoption of SCM without the processor support required

by other proposals [42, 41], and avoids the chicken-and-egg problem of which comes first,

SCM or processor support.

Mnemosyne provides a low-level programming interface, similar to C, for accessing per-

sistent memory. Specifically, it provides three key services that simplify programmer use of

persistence. First, Mnemosyne provides persistent memory regions, which are segments of vir-

tual memory stored in SCM rather than volatile memory. Regions can be created automatically

to hold variables labeled with the keyword pstatic or allocated dynamically. Mnemosyne

virtualizes persistent regions by swapping SCM pages to a backing file. Second, Mnemosyne

provides persistence primitives, which are low-level operations that support consistent updates

to data in SCM. These primitives enable programmers move data structures between con-

sistent states, automatically recovering to such a state after a failure. Third, Mnemosyne

provides a durable memory transaction mechanism that enables consistent in-place updates of

arbitrary data structures.

We implement Mnemosyne as (i) a pair of libraries that implement persistent regions,

persistence primitives and the transaction runtime system, (ii) a compiler that supports

persistent variables and transactions, and (iii) a small set of modifications to the Linux kernel

1Mnemosyne is the personification of memory in Greek mythology, and is pronounced nee–moss–see–nee.
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for allocating and virtualizing SCM pages. We implement the persistence primitives using

regular x86 instructions with a performance emulator for SCM accesses.

In the evaluation, we show that Mnemosyne provides a simple abstraction for program-

mers to make data structures persistent. We compare Mnemosyne performance against

Berkeley DB running on a RAM disk with the performance of phase-change memory. For

small data sizes, Mnemosyne transactions perform 6–14 times better than Berkeley DB. We

also convert three applications, OpenLDAP, Tokyo Cabinet and Memcached, to use persistent

memory and find the performance of moving existing in-memory data structures to persistent

memory is 35–1400 percent faster than Berkeley DB’s optimized storage or flushing the whole

structure to a file. These results demonstrate that low-latency storage can help improve

single-machine application performance for write-intensive workloads, which in turn can

benefit large-scale applications based on these services.

1.2.2 Aerie: Application-specific file systems

Although persistent memory enables low-latency flexible storage, it sacrifices many of the

features that make file systems useful such as organizing data under a global logical namespace

for easy access, and protecting data for secure sharing between applications. We would like

to support these features but also retain the flexibility and performance benefits of direct

access.

Our second proposal is to distribute file-system functionality for direct and protected

access to SCM. Direct access provides two key benefits: (i) low-latency access to data by

removing layers of code, and (ii) flexibility by enabling an application to implement a file

system customized to its needs without extending the kernel. With direct access, a program

reading a file can locate the file contents and read the data directly, without calling the kernel.

The file system can also be customized and optimized along several dimensions. The interface

of a file system can be optimized based on the application needs, such as get/put for a mail

message store rather than open/read/write/close. The interface can also provide concurrency

semantics that better target an application’s concurrency model, such as byte-range locking
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to enable concurrent access to the same file. Moreover, an application can choose a layout

suited to its workload, such as contiguous allocation for fixed-size files.

Based on this idea, we designed the Aerie architecture to expose file-system data stored in

SCM directly to user-mode programs. Applications link to a file-system library that provides

local access to data and communicates with a service for coordination. The OS kernel provides

only coarse-grained allocation and protection, and most functionality is distributed to client

programs. For read-only workloads, applications can access data and metadata through

memory with calls to the file-system service only for coarse-grained synchronization. When

writing data, applications can modify data directly but must contact the file-system service to

update metadata.

We implement two file-system interfaces on the same layout with Aerie: a POSIX-style

system and one optimized for small-file access through a put/get interface. Through experi-

ments, we show that the POSIX-style system performs much better than existing user-mode

file systems and between only 15% slower than a kernel file system without consistency guar-

antees and 35% faster on average than ext3. The specialized key-value file-system interface

performs up to 86% faster than the fast kernel file system. Thus, distributing file system

functionality to client processes allows flexible implementations that dramatically improve

performance.

1.3 Dissertation Organization

Chapter 2 provides background on various aspects integral to this dissertation. It presents a

primer on storage-class memory (SCM) and discusses previous approaches exploiting SCM

in system design. It then reviews material on transactions and persistence techniques, and

finishes with an overview of file system architectures.

Chapter 3 presents the design, implementation, and evaluation of Mnemosyne. Mnemosyne

provides programmers with direct access to the durability of SCM through the persistent

memory abstraction. With persistent memory, programmers can make common in-memory

data structures, such as lists and trees, persistent without having to convert them to a serial-



10

ized format. Data structures can be made persistent at the speed of the device rather than the

speed of the operating system.

Chapter 4 presents the design, implementation, and evaluation of Aerie. Aerie is a flexible

file-system architecture that exposes SCM to user-mode programs so they can read and write

data without kernel interaction but maintain the naming, sharing, and protection features of

file systems.

Finally, Chapter 5 summarizes and offers conclusions.
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2 background and related work

In this chapter, we provide background on various aspects integral to this dissertation. First,

we present a primer on storage-class memory (SCM) and discuss previous approaches ex-

ploiting SCM in system design. We then review material on transactions and persistence

techniques, and finish with an overview of file system architectures.

2.1 Storage-Class Memory

We use the term storage-class memory to refer to technologies that allow persistent storage to be

attached to the memory bus and accessed through processor load and store instructions [65,

27]. We do not consider flash as storage-class memory because it is only accessible as a block

device through a driver.

2.1.1 Technology

Four emerging technologies are promising implementations of SCM: phase-change mem-

ory (PCM) [115], spin-transfer-torque magneto-resistive RAM (STT-MRAM) [145], memris-

tors [177], and battery-free flash-backed DRAM [8, 180]. While the performance, density, and

reliability details differ, they all provide byte-granularity access and the ability to store data

persistently across reboots without battery backing.

Table 2.1 shows the performance, density, and reliability properties of several SCM tech-

nologies together with those of DRAM and flash for comparison. Performance-wise, PCM and

memristor are expected to be as fast as DRAM and between two to three orders of magnitude

faster than flash, while STT-MRAM is projected to be even faster than DRAM. Reliability also

varies between device technologies: PCM and memristor can endure three to five orders of

magnitude more writes than flash, while STT-MRAM has endurance similar to that of DRAM.

Finally, while SCM is currently only available in small sizes, prototype implementations

and scaling projections indicate that within a few years larger sizes (e.g., 1 GB) will become
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Technology Read Write Density Endurance
(ns) (ns) (µm2/bit) (writes/bit)

P
re

se
n

t DRAM 60 60 0.00380 > 1016

NAND Flash 25,000 200,000–500,000 0.00210 104 - 105

PCM [127] 115 120,000 0.173 106

F
u

tu
re PCM [20, 186, 38] 50 – 85 150 – 1,000 0.00250 108–1012

STT-MRAM [145, 91, 183] 2 – 20 2 – 20 0.0102 1015

Memristor [158, 133] 100 100 0.00320 1010

Table 2.1: Access latency, density, and endurance for various solid-state storage technologies.
Prospective characteristics are based on demonstrated prototypes, and scaling projections for
the year 2015 [6, 158]. DRAM and flash are provided for baseline comparison.

available. Eventually, it may be economically feasible, and perhaps cheaper, to outfit a system

completely with SCM and no DRAM [115, 151, 199].

Phase-Change Memory (PCM)

Phase-change memory (PCM) stores data by relying on the resistivity difference of the crys-

talline and the amorphous states of chalgogenide alloy. The material can be switched between

the two states by first heating it to a high temperature (over 600◦C), and then cooling it either

slowly into low-resistance crystalline state or rapidly into high-resistance amorphous solid.

The crystalline state can be used to store logic ONE while the amorphous state can be used to

store logic ZERO.

Micron has announced volume production of 1 GBit PCM chips [128] making PCM the

first commercially available SCM technology. Compared to DRAM, currently available PCM is

approximately two times slower for read accesses and 2000 times slower for write accesses [127,

128]. However, access latencies for PCM, as demonstrated by research prototypes [20, 186, 38],

are expected to match those of DRAM for reads and be 2-17 times slower for writes.

Moreover, it is predicted that PCM may achieve higher storage density than that of

DRAM and flash. Samsung has recently demonstrated an 8 GBit prototype at 20 nm process

technology [38], while PCM is expected to scale down to 8 nm process technology [6]. In

contrast, scaling projections suggest that flash and DRAM will have difficulties scaling beyond

20 nm [6].
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Spin-Transfer Torque Magneto-resistive RAM (STT-MRAM)

Magneto-resistive RAM (MRAM) stores data by relying on the resistivity from magnetization

of a magnetic tunnel junction (MTJ), which is a component consisting of two ferromagnets

separated by a thin insulator. If the magnetizations of the two layers are in parallel orientation

the MTJ has lower resistance than if the magnetizations are in anti-parallel orientation. The

difference in resistance can be used to store data, using low resistance to store logic ONE and

high resistance to store logic ZERO.

Spin-torque transfer MRAM (STT-MRAM) represents a recent, promising advancement

in the MRAM device family [64]. STT-MRAM relies on the spin-transfer-torque effect, where

a spin-polarized current transfers its angular momentum to a magnetic layer to switch the

magnetic orientation of one of the two layers and therefore effectively change the resistance

of the MTJ. Access latencies for STT-MRAM, as demonstrated by research prototypes [145, 91,

183] are expected to beat those of DRAM by 3-30 times, with read speeds as fast as SRAM [81].

Everspin has recently announced commercial availability of 64MBit STT-MRAM chips [60].

Memristors

Memristor stores data by relying on the memristance property, which was theoretically

formulated by Chua in 1971 [40] but only recently demonstrated by Strukov et al. on nanonscale

thin film devices [177]. When current flows in one direction through the device, the resistance

increases, and when the current flows in the opposite direction, the resistance decreases.

When the current is stopped, the device retains the last resistance it had, and when the current

starts again, the resistance of the device will be what it was when it was last active. Low and

high resistance levels can be used to store logic ONE and ZERO respectively. Memristors

offer access latency comparable to DRAM. HP is planning to release memristor devices by

2014 [122].
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Usage Approach

Main memory [115, 151, 199, 96, 150, 170]

Fault tolerance [54, 163, 136, 43, 16]

File system Aerie, [90, 58, 130, 189, 42, 98, 195, 30]

Persistent heap Mnemosyne, [120, 41, 133]

Persistent data structures [185, 35, 67]

Table 2.2: Approaches to using SCM in system design. Bolded approaches are presented in
this thesis.

Battery-free Flash-backed DRAM.

Flash-backed DRAM stores data by leveraging the speed and endurance of DRAM with

the non-volatile storage retention of flash. It achieves this by seamlessly integrating three

commodity components, DRAM, super-capacitor, and NAND flash into a single module. At

normal operation, the storage module is visible to the host environment and functions as

a standard DRAM module. When power failure happens, the super-capacitor has enough

energy so that the module can save data stored in the DRAM to the NAND flash. When

power is restored, the module writes data from the flash back to the DRAM.

AgigaTech and Viking technology announced plans to offer memory modules as large

as 8GB [8, 180]. Since this type of SCM is built using ordinary DRAM and flash, its storage

density is essentially limited by the least dense technology of the two (DRAM). Thus, its

storage scalability is not expected to match that of other types of SCM. So flash-backed DRAM

can be seen as an interim SCM solution until the aforementioned technologies mature.

2.1.2 System Design

Table 2.2 lists previous approaches to using storage-class memory (initially cast as non-

volatile RAM) in system design together with the techniques presented in this thesis. We

next elaborate on these approaches and how they relate to this thesis.
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Main-memory Systems

PCM’s higher scalability over DRAM has motivated computer architects to study PCM as a

DRAM replacement in general-purpose main-memory systems [115, 151, 199], addressing

issues related to PCM’s longer access latencies, higher dynamic power, and limited endurance

compared to DRAM.

Follow up work in the area explored solutions to further address PCM’s limited en-

durance [96, 150, 170]. These solutions change the mapping of physical address to locations in

PCM to level writes across more locations, and they could be potentially extended to address

similar issues that arise when using PCM for storage.

Fault-tolerant Systems

Previous work has explored using storage-class memory to tolerate and recover from failures,

including checkpointing techniques transparent to the programmer but also programmer-

driven recovery approaches.

Checkpoint-restart is a well-known technique for tolerating failures due to transient errors:

when a failure happens, the system seamlessly recovers and continues operation from a

previously taken checkpoint of system state. However, as hardware-failure rates increase

due to technology scaling [25], frequent checkpointing is necessary for the technique to be

effective. Previous work has explored using SCM to reduce checkpointing overheads and

enable frequent checkpointing in massively parallel processing systems [54] and shared-

memory multi-core systems [163].

Whole-system persistence (WSP) [136] proposes checkpointing system state on a power

failure. When failure happens, WSP relies on a small residual energy window provided by

the system power supply to flush any volatile state kept in the processor cache and buffers

out to SCM. Upon recovery, all state, both OS and application state, is restored transparently

from SCM. WSP, however, cannot tolerate hardware or other catastrophic failures that prevent

taking post-failure actions.

The recovery box [16], Safe RAM [43], and the Rio file cache [34] looked at providing a
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region of non-volatile memory that survives failures and can facilitate recovery. These projects

differ on the intended use of the non-volatile memory region and the interface provided to the

programmer. With the recovery box, programmers can store operating system or application

state that they can later use to speed up recovery. With Safe RAM, programmers can designate

memory pages that contain reliable updates such as data or log pages in a database system.

This enables programmers to update such pages without having to force updates to disk

for durability, which can improve performance. Finally, the Rio file cache [34] keeps the

file-system page cache in non-volatile memory so that file data can survive a power loss

without having to force them to disk for durability. Rio also uses hardware virtual memory

protection to protect the cache against operating system errors, such as wild stores, that may

corrupt the cache during a system crash.

File Systems

There have been several prior projects investigating the integration of storage-class memory

into file systems. Initially cast as non-volatile RAM (NVRAM), these memories can be used

as persistent write buffers to reduce the latency of writing data [90], store just file system

metadata [58], or hold frequently changing metadata and small files [130, 189].

More recently, the BPFS file system leverages SCM’s byte addressability to reduce the

amount of metadata written during an update and relies on special processor support for

ordering to achieve consistency efficiently through shadow updates [42]. FRASH keeps page

metadata in SCM to improve performance [98], and SCMFS utilizes the existing memory

management module in the operating system to remove block management from the file

system [195].

Those approaches all improve performance for file access but the fundamental file system

and storage architecture are left unchanged. They provide no flexibility in file system interface

and organization. So applications cannot customize and optimize the file system to their

workload, which can be beneficial to applications as we demonstrate with Aerie (Chapter 4).

Moreover, the file system code runs in kernel mode, which introduces a cost of changing
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modes and cache pollution from entering the kernel [42, 173]. A user-mode file system can

avoid these performance costs and achieve lower latency and higher bandwidth than going

through the kernel. The Moneta-D system makes a first step towards user-mode access

by bypassing the kernel for data access [30], but metadata operations critical to small-file

performance, such as for IMAP servers that use many small files [55], still call into the kernel.

Aerie can access file-system metadata from user mode, which can benefit workloads that

operate on many small files.

Persistent Heaps

Close to our work on Mnemosyne (Chapter 3) is past and recent work on persistent heaps [120,

41, 133].

Rio Vista [120] is a lightweight, user-mode, recoverable-memory library that runs on top

of the Rio file cache. Similarly to Mnemosyne, the Vista recoverable memory provides atomic

updates and persistence for a region of virtual memory. Vista also provides a persistent heap

that helps programmers manage memory within a persistent region of virtual memory. Vista

relies on the Rio file cache to automatically persist a virtual memory region on a system crash

or power failure, which simplifies Vista’s crash-consistency code. In contrast, Mnemosyne

takes no post-failure actions. Instead, to ensure that any hardware volatile state, such as state

kept in the processor cache, is not lost on failure, it properly flushes updates to SCM in a

crash-consistent order.

NV-heaps [41] is a concurrently developed project that similarly to Mnemosyne exposes

SCM to programmers through a persistent heap and provides transaction updates to data.

However, the focus of the two projects is different: NV-heaps focus on persisting user-defined

objects, so they support transactions via an object-based transactional memory system. In

contrast, Mnemosyne supports transactions via a word-based transactional memory system,

which can be used to transactionally update any data kept in persistent memory. NV-heaps

provide some features not currently found in Mnemosyne, such as type-safe pointers and

garbage collection of persistent objects via reference counting. However, since NV-heaps is
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designed for an unmanaged language such as C++, it is not totally safe as it still suffers from

accidental errors that corrupt memory, such as wild stores. Finally, while Mnemosyne can be

used with existing commodity processors, NV-heaps require special processor support for

ordering.

Moraru et al. [133] focus instead on reliability techniques for SCM-based persistent heaps,

making their work orthogonal to our work. They built a heap that uses checksums to detect

and recover from metadata corruption, which they complement with a mechanism based on

virtual-memory protection for containing erroneous writes.

Persistent Data Structures

Several research studies have examined the redesign of data stores and data structures in

light of SCM. Venkataraman et al. [185] proposed a methodology for building consistent and

durable data structures for SCM, which they followed to build a SCM-based B-tree for use as

a key-value store. Chen et al. [35] looked at designing efficient database algorithms such as

B+-trees and hash-joins that reduce execution time and energy when running on PCM while

increasing write endurance. Finally, Gao et al. [67] proposed a design of a logging scheme

that exploits PCM for transaction logging in disk-based database systems.

2.2 Transactions

Mnemosyne (Chapter 3) provides programmers with durable memory transactions to consis-

tently update data structures in the presence of failures. We next review background material

and related work on transaction processing and memory transactions.

2.2.1 Transaction Processing

The use of transactions for grouping a set of operations into a single unit of work that appears

to execute indivisibly and instantaneously has been the focus of the database and systems

research community for almost three decades [75, 76, 131]. Transactions have been appealing

primarily because they free the application or system programmer from dealing with two
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complex issues: (1) concurrency, that is all the effects arising from concurrent execution, and

(2) failures, that is all the effects caused by unexpected interruptions of program execution

due to software or hardware failures.

A transaction-processing system should guarantee four properties when executing trans-

actions, abbreviated by the acronym ACID [77]:

1. Atomicity. All operations of the transaction complete successfully or none of these oper-

ations appears to execute. A transaction that completes successfully commits, otherwise

it aborts.

2. Consistency. A transaction transforms data from one state that is consistent according

to some application defined integrity rules to another state consistent to those rules.

For example, in a course reservation system a rule might require that a student cannot

register for a course if the current number of registered students equals the maximum

allowed.

3. Isolation. This property dictates the behavior of concurrent transactions that act on the

same data. The most strict behavior is serializability, which dictates that transactions

appear to execute sequentially. In such a case, intermediate states of data are not visible

to other transactions.

4. Durability. Once a transaction commits, all its effects must be preserved, even if there is

a failure.

A transaction system relies on two main components to support transactions: (1) con-

currency control, which guarantees isolation, and (2) recovery, which guarantees atomicity

and durability. A classic approach to implementing transactions uses locks for concurrency

control [12], and write-ahead logging (WAL) for recovery [119, 74].

WAL writes all modifications to a stable log before these are applied to the stable image to

allow completing the execution of any transaction interrupted by a failure. However, buffer

management employed by disk-based database systems to improve performance complicates
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WAL. WAL protocols may not flush data updates to the disk on each transaction commit,

but delay flushing until the buffer manager replaces the corresponding data page [131]. This

optimization enables flexibility in the replacement policy of the buffer manager and removes

random I/O due to data flushes from the commit path. In contrast to disk-based databases,

main-memory databases [68, 51] store all data in memory rather than caching disk-data, but

they still rely on a disk for persistently storing a log of committed updates. Finally, WAL

relies on the ability to write entries to the log atomically. However, in practice a write to a

disk page is not atomic so transaction systems must deal with partial writes, which they often

solve with checksums [129].

Recent work by Prabhakaran et al. [149] and Ouyang et al. [144] has investigated supporting

the atomicity and durability properties of transactions directly in flash-based storage devices.

The idea is to export a atomic-write transactional interface to higher-level software that allows

an application to group multiple writes to flash as a single transaction. Ouyang et al. [144] use

a single-bit-per-block tracking technique similar to our torn-bit log (Section 3.2.4) to identify

contiguous flash blocks that are part of the same transaction. In contrast to our torn-bit log,

their technique does not have to deal with torn writes that happen when later writes complete

before earlier ones do.

2.2.2 Memory Transactions

Transactional memory (TM) [87, 84] focuses on the concurrency of transactions rather than

on durability with the aim of providing a simple mechanism for synchronizing concurrent

reads and writes of shared data in a concurrent program. Specifically, transactional memory

lets a programmer to declare a block of code as an atomic region with the atomic keyword.

This simple yet expressive high-level language construct allows the programmer to express

mutual exclusion without having to resort to other low-level and error-prone synchronization

mechanisms such as mutex locks.

The TM system executes atomic regions using memory transactions that guarantee atomic-

ity (i.e., all or nothing) and isolation (i.e, no access to uncommitted data). It provides atomicity
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by either logging old values in an undo log or buffering new values in a redo log to allow

the transaction to abort. It enforces isolation by detecting when two transactions conflict,

which happens when two concurrent transactions access the same memory locations and

one transaction performs a write. Memory locations are memory words in a word-based TM

system and objects in object-based TM systems. When a conflict occurs, a resolution policy

may stall or abort one of the transactions to clear up the conflict. Transactions can execute

concurrently if they do not conflict. Thus, they can improve performance if critical sections

rarely conflict.

Both software and hardware implementations have been proposed. Software TM imple-

mentations instrument code to record the locations read and written and detect conflicts either

at commit or while the transaction executes [85, 52, 161, 62, 56, 48, 84]. As a result, software

TM implementations may slow down critical sections by 3-5x [48]. Proposed hardware TM

implementations, in contrast, perform these operations in hardware with less slowdown to

critical-section code [82, 152, 132]. However, feasible hardware TM implementations often

bound the number of distinct memory locations that can be accessed within a transaction.

Thus, they are best paired with a software TM for fallback when transactions exceed hardware

limits [49, 47].

Transactional memory is reaching a maturity level where it can be used in deployed

applications. On the software side, Intel and GCC compilers provide extensions for using

transactional memory [4, 88]. On the hardware side, Intel announced support for TM in their

upcoming Haswell micro-architecture [94], IBM has integrated TM into their Blue Gene/Q

supercomputer processor [83], and AMD has indicated it may implement limited TM systems

in hardware [11].

2.2.3 Durable memory transactions

Previous work on durable memory transactions focuses on the atomicity and durability

properties of transactions. Transactions are used to atomically update persistent data kept in

recoverable memory, which is a region of memory that survives crashes.
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Lightweight recoverable virtual memory (RVM) [164] supports durable memory trans-

actions by committing data at page granularity, which may require up to three copies: (1)

when updating a memory location, it copies the before-image to an in-memory undo log to

support user-initiated aborts, (2) when the transaction commits, it writes the updated data to

an on-disk redo log to support atomicity and durability, and (3) when the on-disk redo log

fills up, it truncates the log by propagating updates to the on-disk database. Rio Vista [120]

improves the performance of this design by relying on the Rio file cache to avoid synchronous

writes to the disk.

Several other projects have also supported page-wise consistency mechanisms for atomicity.

Several IBM systems have provided transactions in memory by marking pages accessed by a

transaction in a TLB-like structure [32, 174]. Similar to RVM, this approach provides coarse-

grained transactions at the page granularity, and relies on disk for durability. QuickStore [191]

also implements memory transactions at the page granularity, and Texas [172] provides a

page-wise checkpointing mechanism for consistency. We elaborate on Quickstore and Texas

in Section 2.3.

Mnemosyne, our proposal, is similar to RVM and Rio Vista. Mnemosyne borrows the

notion of persistent regions from RVM, but commits data at word granularity rather than at

page granularity. Unlike Rio Vista, Mnemosyne transactions operate completely at user level

and do not require a battery back-up system. Mnemosyne also relies on software transactional

memory techniques to automatically annotate program code in a compiler, and to implement

efficient commit processing. As a result, our system benefits from recent research in the

area [194].

Finally, compared to database systems and persistent stores (Section 2.3), Mnemosyne fo-

cuses on latency of individual memory transactions rather than transaction throughput. Thus,

Mnemosyne leverages the low-latency of SCM to avoid incorporating techniques that improve

throughput at the expense of latency such as group commit where multiple transactions with

commit records on the same log page are committed as a group [51].
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2.3 Persistence Techniques

Mnemosyne (Chapter 3) abstracts storage as persistent memory; programmers can create a

single data structure, optimized for memory, rather than designating separate in-memory

and update-optimized persistent structures. Persistent memory provides a flexible interface

to storage, thus enabling seamless integration of persistence into the application. We next

discuss previous work on interfaces and abstractions for persistence, which we present in

increasing level of flexibility.

Data-storage Libraries

Data-storage libraries represent a popular persistence solution among developers with many

available frameworks. Such frameworks range from rigid embedded databases, which provide

a database interface to storage, to extensible storage frameworks, which enable application-

specific storage.

An embedded database refers to a database that does not run in a separate process but

instead is available as a library that is directly linked into the application that requires access

to the stored data. The database though is not integrated into the language so the program-

mer has to transform the application data represented in the language’s data model (e.g.,

objects) into data represented in the database’s data model (e.g., relational or key-value tables).

This is contrast to Mnemosyne, where there is a single representation of the data and the

programmer is not burdened with maintaining code to transform data between multiple data

representations. Popular embedded databases include SQLite [3] and BerkeleyDB [140, 46].

SQLite provides a transactional SQL database engine. BerkeleyDB provides a transactional

key-value store offering hash and B+tree access methods.

Anvil [123] is a modular and extensible toolkit for building database backends. The basic

Anvil abstraction is an abstract key-value store. Anvil provides several concrete key-value store

implementations, each optimized for different access pattern. Programmers have flexibility

to combine them in multiple ways to build a key-value store that matches an application

workload. Since storage is always accessed through a key-value interface, programmers
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still have to write code that transforms an application’s in-memory data structures into the

key-value data model.

Stasis [168] is an extensible storage framework that generalizes write-ahead logging algo-

rithms to provide applications with flexible transactional storage. In contrast to databases,

Stasis does not restrict the data model and access methods but instead provides programmers

with primitives for constructing highly concurrent application-specific data structures. Unlike

Mnemosyne, Stasis does not provide a compiler for automatically constructing transactions

to consistently update a persistent data structure.

Serialization Frameworks

Serialization frameworks provide a mechanism for serializing and deserializing objects, and

can be used to persist objects. Similarly to Mnemosyne, programmers maintain a single

in-memory version of an object (or data structure). With serialization, they can automatically

convert the in-memory structure into a sequence of bytes, which they can then store in a

storage medium. Then, with deserialization they can automatically reconstruct an object out

of its byte sequence and load it into memory. Serialization frameworks can either be loosely

integrated into the language through syntactic sugar such as the Serializable attribute in

C# or come in a library form such as the C++ Boost Serialization and the Java Serialization

API.

Serialization may perform pointer unswizzling [134] to convert a memory-pointer into a

position-independent reference such as referencing an object using its unique object identifier

(OID). This decouples an object from its memory location and allows reloading the object

into a different memory address upon deserialization. Deserialization then performs pointer

swizzling, which replaces position-independent inter-object references with the main-memory

address of the referenced object so as to speed up access along such references. Mnemosyne

persists data directly so it avoids the cost of pointer swizzling and unswizzling.
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Language integrated persistent stores

Previous research on persistent object systems attempted to provide language level persistence

through the integration of database systems and programming languages so as to relief the

programmer from managing persistence. Such language frameworks could be layered on top

of Mnemosyne, to provide higher-level services such as garbage collection and safe references

to ensure that persistent data does not point to volatile data.

Atkinson et al. [14] introduced the seminal PS-Algol persistent language, which extended

Algol with functions to store objects in a database system. PS-Algol introduced the concept of

orthogonal persistence, that is persistence for all data irrespective of their type, and transitive

persistence, that is persistence for all data reachable from a root. Mnemosyne persists data

directly so it similarly provides persistence for all data irrespective of their type. Also, since

Mnemosyne persists data directly for lower latency, it exposes to the programmer a strict

separation of persistent and volatile memory where persistent memory may reach to volatile

without making it persistent, and vice versa. Thus, in constrast to PS-Algol, Mnemosyne does

not provide transitive persistence and leaves the programmer responsible to avoid pitfalls such

as persistent memory leaks. Finally, PS-Algol did not provide any mechanism for consistency.

Other important projects that followed up include Alltalk [156] based on Smalltalk, the

E language [155] that integrated persistence into C++ and brought other features beyond

persistence such as iterators for structuring database queries, SHORE [29] that provided

a persistent object store accessible via C++ bindings, and PJava [15] and PJama [13] based

on Java. SHORE addressed some of the weaknesses of the E language and its underlying

object store. It supports typed persistent objects by storing type information along with

each object and describing types in a language-neutral notation. It also provides a rich

naming environment by making the object namespace available through the UNIX file system

namespace, a feature that facilitated locating persistent objects outside the application. PJava

and PJama incorporated the concepts of orthogonal and transitive persistence into the Java

language. However, to achieve this, they required extending the Java virtual machine (JVM),

a property that prevented their adoption into a mainstream JVM.
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Virtual memory-based persistent object systems, such as ObjectStore [110], Texas [172]

and QuickStore [191] rely on pointer-swizzling at page-fault time and virtual memory map-

ping techniques to trigger the transfer of persistent objects from the persistent store to main

memory. This allows them to handle large datasets without having to load the whole per-

sistent store into memory at once. While these systems offer persistence transparent to the

programmer, they still rely on a C++ object-oriented programming model, which limits the

applicability of the system to only OO programs. Mnemosyne provides greater flexibility by

not requiring C++ objects. Moreover, these systems operate on virtual memory pages, which

makes the system heavier weight, as they must read or write more data at a time and rely on

optimizations such as page-diffing to reduce the amount of data written. Mnemosyne instead

persists data directly at the granularity of a single update rather than a whole page, which

enables providing lower latency. Finally, both systems implement page-wise consistency

mechanisms for atomicity, which unnecessary read and write more data than was requested

by the application. Objectstore implements transactions using the write-ahead log protocol:

updated pages are written to the log and only propagated to the database when the trans-

action commits. Texas provides a page-wise checkpoint mechanism for consistency where

every page modified after a checkpoint is written out to a log as part of the next checkpoint.

This checkpointing mechanism, however, is insufficient in the presence of multiple threads as

it requires quiescing threads before taking the checkpoint.

The higher-level interface to these systems and others, such as Thor [118], allows them

to provide safety properties, such as only allowing pointers in persistent data structures to

reference other persistent data (or, in the case of Thor, to make persistent any volatile structures

referenced). Their knowledge of all pointers in a data structure also enables garbage collection

to prevent memory leaks.

Persistent Memory

Persistent memory is an old idea whose time has come. An early implementation of persistent

memory in the form of recoverable virtual memory, that is regions of virtual address space
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that survive a restart, was demonstrated by Thatte [181]. Thatte implemented RVM through

a checkpointing scheme that incrementally captured the entire state of the machine. Light-

weight recoverable virtual memory [164] provides regions of virtual address space on which

transactional guarantees are offered through durable memory transactions (Section 2.2.3).

Compared to ordinary memory-mapped files, recoverable virtual memory provides stronger

consistency guarantees. Most recently, Guerra et al. proposed software persistent memory

(SoftPM) [80], where programmers define persistent roots, and SoftPM atomically persists

all data reachable from a root when the programmer requests a persistent point. Overall, in

contrast to Mnemosyne that persists data at word granularity for lower latency, these systems

persist data at page granularity, thus requiring a complete page write for updates that are

finer grain than a page.

Several other projects have investigated the use of a large battery-backed memory for

persistent storage [26, 43, 59]. However, the memory in these systems is accessible only

through a driver to prevent corruption, and hence only available through a database or

file system. The eNVy system [193] focuses on the architecture of attaching flash to the

memory bus as persistent memory, and uses a battery-backed SRAM buffer to hide the

block-addressable nature of flash.

Global Persistence

Global persistence is the embodiment of persistence in its purest form. In contrast to Mnemosyne

and other persistence techniques where the programmer designates what is persistent, global

persistence is transparent to the programmer: applications use only in-memory objects that

survive restarts, and do not distinguish between persistent and volatile objects. This helps pro-

grammers avoid pitfalls arising from mixing persistent and volatile objects such as dangling

persistent pointers to volatile objects.

Atlas pioneered the concept of single-level store [100] where the application does not

distinguish between main-memory and disk storage but instead has a single memory view

of the entire storage. Two capability-based operating systems, KeyKOS [113] and Grasshop-
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per [159], implemented system-wide orthogonal persistence through periodic checkpointing

to disk. To the KeyKOS and Grasshoppers applications, similarly to the single-level store

concept, all data lives in a single data-abstraction type called domain in KeyKOS and container

in Grasshopper. In addition, KeyKOS and Grasshopper define a programming model for

long-running processes.

Whole-system persistence (WSP) [136], which we discussed earlier in Section 2.1.2, also

provides global persistence. Compared to KeyKOS and Grasshopper, WSP requires less or no

OS support and targets systems based on SCM. WSP though does not provide a programming

model for long-running processes that KeyKOS and Grasshopper provide. Compared to

Mnemosyne, WSP lets applications benefit from SCM’s persistence without having to be

modified to store objects in a persistent heap. Similarly to Mnemosyne, WSP still relies on

files for exporting and storing data in an external format.

2.4 File System Architecture

We begin with an overview of the file system’s role in abstracting storage devices and enabling

protected access to shared data, which is a key motivating factor behind Aerie (Chapter 4).

We then discuss architecture features of local and distributed file systems from which Aerie

borrows design elements.

2.4.1 Overview

A file system is a software layer that abstracts persistent storage into named collections of

bytes called files. Traditionally, file systems have been built on top of block-level storage,

which is either provided physically by a single storage device (e.g. hard disk) or virtually by

an intermediate hardware or software layer that abstracts a pool of physical storage devices

(e.g. RAID [146], Petal [116]). Several other projects have explored building file systems on

primitives higher than the block abstraction. ZFS [23], object-based storage devices (OSD) [70]

and the logical disk [50] all expose groups of blocks and atomic operations. While ZFS collects

block storage under a transactional object store, OSDs push the object functionality into the
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storage device itself instead. Boxwood [121] explored fault-tolerant data structures such as

fault-tolerant B-tree as the fundamental storage infrastructure for building distributed file or

other storage systems. Similarly to these projects, Aerie exposes primitive structures through

an intermediate storage-abstraction layer to facilitate the construction of file systems.

Files enable users and applications to conveniently and permanently store data for future

retrieval and securely share data with other users and applications. In contrast to other

methods for sharing data, such as a database, the file abstraction has fewer semantics. For

sharing, the file system is concerned with providing a shared namespace, protection, and

consistency semantics.

Shared namespace. A file system organizes files into a shared namespace to facilitate lo-

cating and sharing files. A common organization found in most file systems is that of a

hierarchical namespace. Under this organization, files are grouped into directories, and direc-

tories may be placed into other directories to form a tree (or hierarchy) of directories. A file

may be placed in multiple directories, in which case the overall namespace structure becomes

an acyclic graph. Other namespace organizations are also possible such as a flat namespace

where all files are grouped into a single directory or a tagged, search-based namespace where

files are tagged with several attributes or keywords and located through search queries on

those tags [169]. Aerie is not restricted to a specific namespace organization but leaves this to

the file system.

Protection. Protection controls access to files by limiting the type of file access that can

be made by each user or process. A common approach to protection is the use of per file

permissions in the form of access control lists (ACL), which state the file system operations

allowed by each user. The extent the namespace is involved in protecting access to a file varies

between systems. For example, POSIX assigns an ACL per file name and enforces namespace

permissions along the path to a file, that is it checks the permission of each directory name

found in the path. Thus, a file with multiple path names may have different access permissions.

Windows similarly assigns an ACL per file name but by default it enforces file permissions
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Figure 2.1: Local file-system architectures. The crosscutting red-colored solid line separates
mode of operation between user mode (above the line) and kernel mode (below the line).

only and does not enforce namespace permissions. In Aerie, the unit of protection is finer

grain than the file, which gives flexibility to the file system in constructing its ACLs and

protection control.

Consistency semantics. Consistency semantics deal with the views of shared files, that

is when and how modifications by one user (or process) are observed by other users (or

processes). POSIX observes sequential semantics, that is any file read operation returns the

result of the most recent write operation. Although POSIX semantics are easy to support

efficiently in a centralized system such as local file system, they put great strain in a distributed

setting. As we discuss later (Section 2.4.3) many distributed file systems relax consistency

semantics for improved performance. Similarly, Aerie file systems may relax consistency

semantics to improve performance.

2.4.2 Local file systems

Aerie delivers a new architecture for local (single-machine) user-mode file systems. Here we

review the major architectural features of current local file systems splitting the presentation

between kernel-mode and user-mode file systems, and also discuss how Aerie relates to these.
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Kernel mode

Figure 2.1a presents the storage stack of modern UNIX-style operating systems including

Linux and Solaris. This structure has remained nearly stable over the last four decades

resembling that of early UNIX systems [157, 117]. It is designed around the assumptions

of past storage technologies such as slow block-based disks despite rapid advancements in

storage technology such as solid-state storage. Windows has similar organization.

At the bottom of the storage stack is the disk and other block storage devices. Such storage

devices do not implement any protection mechanism to limit access by a user or process.

In addition, they use DMA to read/write data, which does not respect memory protection.

Thus, the operating system takes sole control of the devices to provide protection. Through

the kernel-mode file system, the operating system enforces permission on access to decide

which processes have access to which blocks on disk.

Above the storage devices lies the generic block I/O layer. This layer presents a generic

block device abstraction to the layers above and implements various optimizations such as

scheduling. Since storage devices implement a variety of interfaces, the block layer includes

drivers that hide the device intricacies to present a standard block interface. This layer also

includes a scheduler, which reorders block requests to minimize total service latency. For

example, disks have variable latency from seek and rotational delays and benefit significantly

from scheduling that reorders requests in order of physical proximity.

At the top of the storage stack sit the virtual file system (VFS) layer [104] and various

file system implementations. VFS provides a common standard interface (e.g. POSIX API)

between applications and the underlying file systems. Applications invoke VFS through

system calls. VFS also serves as a common framework for implementing file systems in the

kernel by providing generic implementations of standard services including a common file

system namespace, and in-memory caches for frequently accessed file-system data and objects

such as directory entries and file inodes (metadata). Caching helps improve performance

as subsequent requests can be serviced quickly from memory rather than going to the slow

disk. Moreover, shared caching as provided in the kernel allows processes re-use objects
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and data fetched by another process. The VFS layer enables file system extensibility and

implementation flexibility but restricts access to file systems only through the fixed interface

defined by POSIX. Thus, in contrast to Aerie, it does not enable file-system interface flexibility.

Some modern file systems further split the implementation into two layers: (1) an upper

layer that interfaces to VFS and implements the file system semantics, and (2) a lower layer

that implements the on-disk structures and exposes storage to the upper layer in a form

higher than the block abstraction. This division of work enables code reuse and independent

evolution of the two layers. For these reasons, Aerie follows a similar layer structure. Examples

of modern file systems include ZFS [23], Btrfs [142] and ReFS [45]. A common denominator of

these systems is the data integrity features they provide at the lower layer. They all expose a

transactional object store implemented using shadow paging to reliably update structures on

disk. They also rely on techniques like checksumming and replication of on-disk structures

to detect and correct many forms of disk corruption, including lost and misdirected writes,

and bit-rot (gradual degradation of data on the media).

Although a kernel-mode file system offers several performance benefits through shared

caching and scheduling, its implementation is a long, expensive, and arduous task. This

difficulty is both due to the inherent complexity of file systems and the challenging nature of

kernel-mode development, which further exacerbates that complexity. As a result, most efforts

focus on delivering robust implementations of a few generic file systems that live behind a

standard interface such as POSIX. For example, the ext filesystem, Linux’s major file system,

has had only two major revisions (ext3, ext4) since its introduction about two decades ago.

In the same vain, NTFS, Microsoft’s main file system for Windows, has had only one major

revision in its nearly twenty-year history. ReFS, which is the next generation of NTFS, reuses

the upper layer of NTFS. Developers may often use such generic file systems as the foundation

for other storage systems implemented in user mode. For example, Facebook’s Haystack is an

object store optimized for images, which uses a generic UNIX-like file system [19].
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User mode

Microkernels push common kernel functionality, including file-system functionality, outside

the kernel into user-mode server processes for less complexity and better reliability [197] (see

Figure 2.1b). Developing a file system in user mode can be less complex than in kernel mode,

resulting in a more robust and reliable implementation. Developers do not have to understand

internal kernel APIs and complex locking disciplines. In addition, development in user mode

can have a shorter cycle: bugs do not trigger a lengthy crash and reboot cycle, user-mode

debugging facilities are generally more powerful than kernel ones, and programmers may

use better and safer languages than C. System reliability may also increase because a fault is

contained within a process and does not crash the whole system. Clients however may still

lose data if the file system does not properly recover. Overall, while a microkernel moves

file-system functionality to user-mode, it retains the model of a shared file system that accesses

storage through a shared device.

The idea of user-mode file systems has found fertile ground even in monolithic kernel

systems. In this context, file-system logic is moved to user-mode, but the remaining layers,

such as caching and generic block I/O, remain intact. Moving the logic to user mode intro-

duces extra crossings of the user-kernel boundary, which causes user-mode file systems to

perform lower than their kernel-mode counterparts. For this reason, user-mode file systems

are mainly used to provide useful features on top of other kernel-mode file systems, such as

encryption and versioning, or to expose a file-system interface to non file-system resources

such as the Web or a database. Two popular examples of user-mode file-system frameworks

are SFS [124] and FUSE [175]. The SFS toolkit facilitates the construction of a user-mode file

system as a NFS loopback server. FUSE facilitates the construction of a user-mode file system

as a module running in its own user-mode process that responds to callbacks from the VFS

layer. Since FUSE is tightly integrated with VFS, it provides no interface flexibility.

Finally, Exokernel [99] and Nemesis [17] have explored exposing storage to user-mode

for application performance and flexibility (see Figure 2.1c). However, they still maintained

protection of the block device within the kernel, so disk access still required invoking a kernel-
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mode device driver. In Exokernel, the kernel exposes physical-storage blocks to clients. When

a client creates a new file system, it provides the kernel with functions that the kernel can use

to interpret file system metadata. The kernel uses these functions to determine whether a

client has access to a block. In Nemesis, the kernel allows user-mode clients setup a secure

channel to the storage device, which they use to access the device. The channel ensures

a client does not perform I/O to addresses it does not have access permission. Aerie and

Moneta-D (discussed earlier in Section 2.1.2) bypass the kernel and access storage directly by

relying on virtual memory protection and special hardware, respectively, to enforce file-system

permissions.

2.4.3 Distributed file systems

Aerie has been influenced by distributed file-system designs and naturally bears many similar-

ities to them. Features of distributed file systems that are most closely related are consistency

semantics and metadata management.

Consistency semantics

Distributed file systems must maintain consistency across multiple replicas of the same file

that may arise either due to caching for performance or replication for fault-tolerance. In Aerie,

multiple replicas may arise when a client process has local outstanding modifications to a file

that has not made visible. Below, we review the consistency semantics of major distributed

file systems, and how some of these systems relax semantics for improved performance. Aerie

file systems could similarly relax semantics to improve performance.

Several distributed file systems observe sequential semantics at the expense though of

performance and implementation complexity. Sprite [143] disables caching when there are

conflicting concurrent accesses to a file by multiple clients to simplify cache consistency at the

expense of performance. Frangipani [182] and Farsite [7] instead rely on complex distributed

lock protocols to maintain consistency in the presence of conflicting accesses. Frangipani

acquires per file read or read/write locks to cache and read or write files respectively. Farsite
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relies on four different classes of locks (file content locks, namespace locks, shared access

locks, and deletion locks) to provide consistency semantics equivalent to those observed on a

single local Windows machine.

In contrast, some distributed file systems relax file-system consistency semantics for

improved performance. NFS clients cache data blocks for 30 seconds before writing it back to

the server [162]. NFS file semantics do not prevent client-cached files from becoming stale as

clients can use cached data blocks for 30 seconds without checking with the server. A write

to the server may also span multiple requests and hence it may be intermixed with writes

from other clients. AFS [92] provides close-to-open semantics: writes are pushed to the server

once the file is closed, and become visible to any clients that open the file after the close.

GFS [69] relaxes semantics for shared atomic appends: appends are guaranteed to happen

atomically at least once in the presence of concurrent mutations, thus putting the burden

on applications to detect append duplications. Finally, other systems avoid the consistency

problem all together by making shared files immutable [178, 171].

Metadata management

Aerie enables file systems with direct access to storage. This design approach is similar in

concept to network block stores, such as Frangipani and Petal [116, 182]. These systems

abstract a pool of storage devices as a block store on top of which they layer a distributed file

system running in a cluster of machines that have direct access to the block store. Machines

trust one another so direct access is practical in providing good scalability and performance.

Aerie, in contrast, assumes that processes running the library file system do not trust one

another. Managing file-system metadata becomes challenging as Aerie strives to provide

the performance benefits of direct access while ensuring untrusted processes do not corrupt

metadata. In this respect, Aerie is closer to distributed file systems like Coda [103], Farsite [7]

and Ivy [135], which distribute file system functionality to untrusted clients. Similarly to

these systems, to ensure untrusted clients do not corrupt metadata, Aerie reintegrates clients’

changes to the file system by verifying and replaying operations previously written to a log.
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3 mnemosyne: lightweight persistent memory

This chapter proposes that operating systems should expose SCM as a persistent memory

abstraction to provide direct access to the durability of SCM technologies. This abstraction

enables programmers to make in-memory data structures persistent without first converting

them to a serialized format. Thus, trees, lists, and hashes can survive program and system

failures. Furthermore, direct access reduces latency to storage because it bypasses many

software layers, including system calls, file systems, and device drivers.

We next present the design, implementation, and evaluation of Mnemosyne, which is a

lightweight system for exposing persistent memory to user-mode programs. Mnemosyne

provides three key services that simplify programmer use of persistence. First, Mnemosyne

provides persistent memory regions, segments of virtual memory stored in SCM rather than

volatile memory. Regions can be created automatically to hold variables labeled with the

keyword pstatic or allocated dynamically. Mnemosyne virtualizes persistent regions by

swapping SCM pages to a backing file. Second, Mnemosyne provides persistence primitives,

low-level operations that support consistently updating data. Finally, Mnemosyne provides a

durable memory transaction mechanism that enables consistent in-place updates of arbitrary

data structures.

3.1 Design

The purpose of Mnemosyne is to reduce the cost of making data persistent. Current programs

devote large bodies of code to formatting data for persistence either in a file system or database,

which manage consistency of persistent data. They also carefully decide when to make data

persistent, as writing data out to disk frequently leads to poor performance. In contrast, with

Mnemosyne, a program should be able to make any data persistent, at any time, with little

extra effort.

Mnemosyne presents an abstraction of persistent memory to programmers. We have three

goals for the system:
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1. User-mode access to persistence avoids the latency of entering the kernel and provides

flexibility in how persistence is achieved.

2. Consistent updates modify persistent data without jeopardizing correctness in the pres-

ence of failures.

3. Conventional hardware lowers the barrier to adoption by allowing existing processors to

work with new memory technologies.

Mnemosyne is designed as a low-level interface to persistent memory, providing necessary

methods for consistency. It leaves the separation of volatile and persistent data and prevention

of memory leaks to higher levels of software. It also leaves the implementation of reliability

mechanisms to address wear out to lower-level software or hardware layers [150].

Mnemosyne achieves the first goal with persistent regions, which are segments of memory

that are created and virtualized by the kernel and may be accessed directly from user mode.

Mnemosyne provides a three-layer solution to the second goal of consistent updates. The

upper and middle layers of Mnemosyne provide persistence primitives, which are support

routines for programming with persistent memory. The lower layer provides hardware

primitives for writing data persistently and ordering writes, which is useful for single variable

updates. The middle layer provides a persistent heap for allocating small blocks of memory

and a log facility to support appends-only updates. The upper layer provides durable memory

transactions supported by a compiler to enable general-purpose code to create and modify

persistent data structures. To satisfy the third goal, our consistent update mechanism relies

on hardware primitives available in existing processor architectures. Figure 3.1 shows how

the components are divided between user and kernel modes. While we designed Mnemosyne

for a system with both DRAM and SCM, it applies equally well to a system that uses SCM for

volatile storage as well.
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3.1.1 Assumptions

We designed Mnemosyne based on assumptions about the features of SCM hardware and

failure models.

Hardware First, we assume like others [42], that SCM is placed directly on the memory bus

side-by-side with DRAM, allowing access through normal load/store instructions protected

by virtual memory hardware. We believe this is a reasonable and plausible design choice

given that computer architects have already studied phase-change memory, a form of SCM,

as a DRAM replacement in general-purpose systems [115, 151, 199]. Second, while memory

systems for SCM are not yet available, we make several assumptions about the features they

provide: (1) we assume they can support an atomic write of at least 64 bits [42, 144], (2) we

assume that it is possible to stall execution until a write has made it all the way to SCM, similar

to the fsync call for file systems, and (3) we assume they implement necessary reliability

mechanisms to address wear out. Such reliability mechanisms could be based on previous

hardware-based proposals that remap physical addresses to locations in SCM to address wear

out when SCM is used as a DRAM replacement [150, 170]. These solutions have low overhead

as they rely on a randomized function rather than an indirection table for remapping physical

addresses. However, they would have to be extended for persistence so that any state used

for remapping survives power loss. Otherwise, wear out could be addressed in software but

at the expense of higher performance overhead [133].

Failure Models. While data stored in SCM is persistent, data stored in a processor cache is

not. Thus, after a failure, only data actually resident in SCM survives. A system using SCM

could reduce this restriction with low-level software that flushes data from the processor cache

on application or OS failure, or sudden loss of power [136]. While recent work has shown that

battery backing is not necessary to tolerate power loss as flush can be completed successfully

using a small residual energy window provided by the system power supply [136], acting on

failure is still susceptible to data loss caused by either hardware faults or catastrophic failures

that prohibit the system from taking post-failure actions. Therefore, unless otherwise stated,
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we assume that on a system failure, in-flight memory operations may fail, and that atomic

updates either complete or do not modify memory.

3.1.2 Persistent Regions

Mnemosyne exposes storage-class memory directly to application programmers through the

persistent region abstraction: a segment of data that user-mode code can read or write, and

that survives application or system crashes. Persistent regions are mapped at constant virtual

addresses to support pointer-based data structures. This abstraction makes persistence

explicit: only a portion of a process address space persists across restarts. In addition,

programs must take explicit steps to guarantee persistence, such as writing data with special

instructions or within a transaction to ensure data makes it all the way to SCM. However,

data in a persistent region can be read and cached with regular instructions.

Mnemosyne supports both static and dynamic creation of persistent regions. A program-

mer can declare a C/C++ variable pstatic, which tells the linker to place it in a persistent

region. Similar to static variables, persistent static variables are initialized once when the

program first runs, and then retain their value across invocations. Static persistent variables

are useful as their name makes them identifiable in a program at compile time, and they can
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serve as named pointers into dynamically allocated persistent regions. A programmer can

explicitly create a dynamic persistent region with the pmap function, which provides function-

ality similar to mmap. Dynamic persistent regions offer programmers a generic way to store

data of any size and structure. Mnemosyne also provides a persistent heap (Section 3.1.3),

which enables dynamically allocated persistent variables.

Mnemosyne virtualizes regions by (i) recording the virtual–physical mapping of persistent

regions in SCM, and (ii) swapping SCM pages to backing files that it allocates when creating

a region. Thus, multiple applications can time-share or space-share access to SCM. As

we discuss in Section 3.1.5, virtualization prevents a memory leak in one program from

monopolizing a finite amount of SCM.

Static persistent regions are most appropriate for programs that allow only a single instance

of the program to run per user, such as most office productivity applications and some web

browsers. For programs that allow multiple simultaneous instances, Mnemosyne provides

an environment variable to indicate which backing file contains the data for this instance.

Mnemosyne lets programmers annotate the target of a pointer type as persistent with

the persistent keyword, which functions similar to the const keyword. The annotation has a

shallow effect on the target: annotating a target as persistent does not indicate its members as

persistent. The annotation also has no control over whether the data is allocated in volatile

or persistent memory. It only serves as an indication to the compiler of the persistence type

of the target, which can be used to identify potentially dangerous assignments of volatile

address to a persistent pointer, and vice versa. This ensures that persistent data, which

survives restarts, does not refer to volatile data that is lost. However, this cannot detect when

the only pointer to persistent data is stored in volatile memory; in this case, the persistent data

could be leaked if the program crashes.

3.1.3 Consistent Updates

Persistence requires a mechanism for application programmers to update persistent data

without risking corruption after a failure. File systems use a variety of techniques to en-
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Method Ordering constraints within update Data structures
Count Description

Single variable update 0 None flag, pointer
Append update 0 None log, extent
Shadow update 1 Store modifying reference ordered after

stores writing data
tree, bitmap

In-place update N-1 Stores modifying original data ordered af-
ter stores making copy

any

Table 3.1: Methods for consistently updating persistent memory and the number of ordering
requirements within an update.

sure consistency, such as shadow updates [23, 160, 42], journaling [184], soft updates [125],

restartable updates via backpointers [36], and post-reboot checking [126]. We seek to give

programmers similar flexibility in implementing consistency.

A consistent update is a transformation that takes data from one state that is consistent

according to some program defined integrity rules to another state consistent to those rules;

an update may contain any number of store and load instructions. For example, in a hash

table, a consistent update may be the addition of a new value.

Ensuring consistency

The primary mechanism for ensuring consistency is ordering writes, for example to ensure that

new data becomes durable before changing a pointer to reference the new data. Ordering

writes ensures that writes complete, that is they reach SCM, in the order they appear in the

program. Ordering writes does not prevent issuing a write before the previous ones complete

but also does not guarantee that writes will ever complete. This guarantee is provided by

completion, which ensures writes eventually complete and become durable. Consistent updates

that order writes without completion can achieve high throughput as they do not have to wait

for writes to reach SCM. However, such updates require special processor support that lets

programs express ordering constraints [42]. They also complicate the programming model as

they do not guarantee durability. For example, making application-internal state externally

visible before an update becomes durable may complicate recovery if the application requires a
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permanent record of such an action. We therefore opted for consistent updates that guarantee

completion. Such updates leverage the low-latency of SCM to simplify the programming

model without significantly hurting performance. If completion latency is a concern, then

previously proposed mechanisms that remove completion from the critical path, such as

split-phase commit [165] and bounded persistence [164], could be employed.

We identify four common mechanisms for consistently updating data in Table 3.1 in

increasing order of flexibility. The more specific mechanisms can provide higher performance

for certain data structures, while the more general mechanisms support a wider range of

usage patterns. Mnemosyne supports all four methods.

Single variable update. The simplest update is atomically writing to a single variable. This

is useful for recording when a program has been initialized or for storing statistics such as

counters. These updates are totally ordered with respect to each other.

Append updates. An append update is used by logs and writes new data to empty space after

the previous update, thus never modifying existing data. The individual stores comprising an

append update are unordered, but separate appends must complete in order. After a failure,

an incomplete append (there can be only one) is discarded.

Shadow updates. Similar to append updates, a shadow update writes all data to a new

location. Once new data is persistent, the program atomically modifies the reference to the

old data to refer to the new data. While there are no ordering constraints between the stores

writing the new data, the reference can only be modified after the new data has completed

writing. Shadow updates work best for tree-like structures where data is reachable through a

single pointer, and must allocate new memory for every update. After a failure, a program

must find and release unreferenced new data.

In-place updates. An in-place update can modify any data structure, such as a doubly linked

list or a B-tree. It ensures consistency with transactions that undo or complete changes after

a failure. As a result, the program must make a copy of either the old data for rolling back,

or the new data for rolling forward. Stores updating a data structure must be ordered after

stores that create the copy. An alternative to transactions would be to build redundancy in
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the data structure in the form of backpointers [36] for detecting partial updates after a crash.

Unlike the preceding consistency mechanisms, in-place updates can be used to modify any

data structure and therefore enable existing volatile structures to be persistent. However, they

perform worse than other consistency methods because they copy data for recovery.

Persistence Primitives

Mnemosyne provides a set of persistence primitives, which are low-level operations that enable

programmers to implement these consistency mechanisms. At the lowest level, Mnemosyne

provides hardware primitives for writing data persistently and ordering writes (described

next), which is useful for single variable updates. The system also provides a persistent heap

for allocating small blocks of memory. Allocated memory and the size of allocations persist

across program invocations, so memory can be allocated during one invocation and freed

during the next. The persistent heap supports shadow updates by providing space for new

data. Mnemosyne also provides a log facility to support append-only updates. The log

provides a simple double-ended buffer, allowing consistent appends to the tail of the log and

truncation at the head of the log.

Mapping consistency onto hardware

A key challenge in implementing consistent updates is ensuring that data reaches SCM in the

right order. Unlike disks, which are only accessed through software, SCM is attached to the

memory bus and is subject to caching by the processor. While the cache can greatly improve

read and write performance, it can also reorder updates to SCM: the cache may evict cached

data at any time and in any order. Thus, if a program accesses SCM like normal memory,

updates may not be consistent. Prior work on SCM addresses this problem with hardware

support for programs to express ordering constraints [42]. However, the proposed hardware

requires extensive modifications to processor caches, including an additional epoch tag per

cache line and the ability to globally flush all caches lines in an epoch.

Mnemosyne’s consistent updates mechanism exposes explicit commands to write data
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persistently and consistently. It relies on three hardware primitives found in most proces-

sors [95]: (i) write-through stores, which write data directly to memory rather than to the cache,

(ii) fences, which prevent subsequent writes from completing before preceding writes, and

(iii) flushes, which writes a cache line out to memory. Durable updates to persistent memory

are implemented as write-through stores, ensuring that they will not be delayed by caching.

If a program wishes to separate durability from writing data, so it may re-read data before

it becomes durable, it can use a regular store and then flush the data later. Mnemosyne

guarantees ordering constraints and completion by issuing a fence between ordered updates.

A fence stall-waits for previous updates to complete so it ensures that a later update will not

become persistent before an earlier update.

If the application can tolerate data loss caused by hardware faults or catastrophic failures,

then Mnemosyne can instead rely on low-level software that flushes volatile state held in

the processor cache and buffers to SCM on a failure (Section 3.1.1). Under this approach,

Mnemosyne’s consistent update primitives degenerate into regular stores. This helps reducing

the latency to persist data by removing from the critical path the latency cost associated with

ordering and flushing updates to SCM.

3.1.4 Durable Memory Transactions

Mnemosyne provides durable memory transactions to support in-place updates. Leveraging

recent advances in transactional memory, Mnemosyne provides a compiler to convert regular

C/C++ code into transactions. A programmer places the patomic keyword before a block of

code that updates a persistent data structure, and the compiler produces code that passes all

memory references to a transaction system.

The transaction system ensures that all modifications are atomic and durable, so updates

from committed transactions will survive restarts and uncommitted transactions roll back,

and isolated, so no transaction can see intermediate states of other transactions. Unlike

the checkpoint mechanism used by some previous persistent memory systems [42, 172],

transactions thus allow multiple threads to concurrently update different data structures.
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We initially considered a design where transactions provided only atomicity and durability,

leaving the programmer responsible to provide isolation through their own synchronization

mechanism such as locks in case needed. However, we eventually abandoned that design as

it complicated recovery by requiring the programmer write code to properly synchronize

accesses to storage when recovering. We were not entirely convinced that the increased

complexity in the programming model was justified by any potential gain in performance.

Section 5.2 gives more insight into the problem we faced.

3.1.5 Persistent Memory Leaks

Memory leaks of volatile data may cause a program to crash, but can often be repaired by

restarting the program. In contrast, leaks of persistent memory may use all the SCM in a

system and be fatal to a program. Mnemosyne provides two mechanisms to help prevent

leaks in dynamic persistent regions. First, Mnemosyne requires that programs provide a

persistent pointer during allocation to receive the memory. This ensures that when a crash

happens right after an allocation completes, memory is not lost as a program can follow

the persistent pointer upon a restart to locate the allocated memory. Second, Mnemosyne

virtualizes persistent memory by swapping it to files. This ensures that a leak in one program

only affects that program and does not reduce the availability of persistent memory to other

programs. When leaks do occur, a program can recover by allocating a new persistent region

and then copying live data from the existing regions into the new region. Static regions cannot

have leaks because the amount of memory is fixed at compile time.

In addition, there are a variety of language-level techniques for preventing leaks, including

conservative garbage collection [22], and smart pointers that perform reference counting as

demonstrated by other persistent stores [118, 172, 191, 41].

3.2 Implementation

This section describes the implementation of Mnemosyne for Linux. The system consists

of (i) kernel modifications to expose and virtualize storage-class memory, (ii) libraries to
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Class API Description

H/W primitives flush(addr) Writes back the cache line that contains
the linear address addr.

store(addr, val) Writes value val.
wtstore(addr, val) Writes value val to SCM.
fence() Prevents subsequent writes from complet-

ing before preceding writes.
Persistent regions pstatic var Allocates the variable var in the static re-

gion.
pmap(addr, len, prot, flags) Creates a dynamic region.
punmap(addr, len) Deletes part or all of a dynamic region.
type persistent * ptr Declares the target of the pointer ptr as

persistent.
Persistent heap pmalloc(sz, ptr) Sets ptr to point to a newly allocated per-

sistent memory chunk of size sz.
pmalloc_set(sz, ptr, val) Sets ptr to point to a newly allocated per-

sistent memory chunk of size sz, and ini-
tializes all the bytes of the chunk to the
specified value val.

pfree(ptr) Deallocates the persistent memory chunk
pointed by ptr and then nullifies ptr.

Log log_create(flags, cbf) Creates a log.
log_append(rec) Writes record rec by appending it at the

end of the log.
log_flush() Blocks until all prior writes to the log

reach SCM.
log_truncate() Drops any records written to the log.

Durable transactions patomic {. . .} Atomically updates persistent state.

Table 3.2: Summary of Mnemosyne’s programming interface, including low-level operations
implemented with processor instructions and high-level APIs for managing persistent regions.

implement persistent regions, persistence primitives and the transaction system, and (iii)

a compiler/linker that supports persistent variables and transactions. We implement our

system for x86-64 Linux version 2.6.33.

The total implementation is comprised of about 450 new lines of kernel code and 10,050

lines of user-mode library code, not including comments. The user-mode code is further

broken down into 3,500 lines for implementing persistent regions and persistence primi-

tives, 3,100 lines for implementing the persistent heap, and 3,450 lines for implementing the

transaction system.
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3.2.1 Hardware Platform

Mnemosyne provides four memory primitives for consistently updating persistent data. As

described in Section 3.1.3, we rely on two fundamental operations, write through and fence, to

order updates and to guarantee that updates have reached memory. In addition, Mnemosyne

provides a store operation, to update persistent memory in the cache, and flush to force cached

data out to SCM. These allow data written to the cache immediately so it can be returned by

later loads, and asynchronously flushed to SCM.

Given the long latency of PCM operations, a goal for the primitives is high throughput by

batching multiple operations. We rely on the x86 write-combining buffers, which are provided

for high-speed data streaming [10]. Write combining allows data to be stored temporarily in

a hardware buffer and merged with other data writes to the same block before the processor

writes them to memory. The block size is usually that of the cache line, and is 64 bytes on our

platform. When the processor eventually writes the complete block to memory, it performs a

single burst-transfer bus transaction, which utilizes the full memory bandwidth. Without

write combining buffers, writes to the same cache line would require separate partial-transfer

bus transactions that do not fully utilize bandwidth and sacrifice performance.

The write-through operation issues streaming writes to the write-combining buffers

with the movntq instruction. Fences use the mfence instruction, which delays execution until

write-combining (WC) buffers have been flushed. Thus, any memory access after the fence

waits until the data has been written stably to SCM. Since streaming writes on x86-64 use a

weakly ordered memory consistency model, the programmer has to be careful to use memory

fences before reading data written by write-through operations. For regular writes, store()

just invokes mov, and flush() issues a clflush (flush cache line). These operations are all

implemented as macros for performance.

Finally, while existing x86 hardware primitives provide the necessary functionality to

push updates out of the processor, the current prototype implementation is still susceptible

to a small failure window. Specifically, current hardware primitives guarantee that a data

update reaches the memory controller but do not necessarily guarantee that data hits the
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SCM cell. Therefore, a failure that happens after the completion of a hardware primitive but

before the memory controller performs the update to SCM causes the update to be lost. One

approach to addressing this problem without resorting to processor-side changes would be

to extend the memory controller to acknowledge the completion of a data update only after

the data hits the SCM cell.

3.2.2 Persistent Regions

The Mnemosyne persistent region abstraction is provided by a combination of kernel support,

library support, and compiler support for declaring persistent variables. As shown in Table 3.2,

Mnemosyne provides both static and dynamic persistent regions. Static regions contain

persistent global variables that are declared and initialized by a programmer at compilation

time. A programmer declares a global variable as persistent by annotating it using the

pstatic keyword. This keyword inserts a compile-time annotation with the __attribute__

((section("persistent"))). The static linker coalesces all persistent variables into a single

.persistent ELF section in the executable.

Programmers create dynamic persistent regions at runtime by calling the pmap function,

similar to memory mapping files with mmap. Mnemosyne automatically maps dynamic

regions created by the program on previous invocations into the address space when it

initializes. To prevent newly created sections from being lost if the application crashes, the

pmap function takes as an in/out parameter a persistent variable to receive the region’s address.

A programmer deletes a persistent region by calling the punmap function, which takes the

starting address and the length of the region.

Mnemosyne lets programmers annotate pointer targets with the persistent keyword.

This keyword inserts a compile-time annotation with the __attribute__ ((address_space

(1))). This annotation is interpreted by the Sparse semantic parser [2], which designates such

annotated pointer targets in address space 1 and all other pointer targets in address space 0.

Sparse essentially treats pointers with identical target types but different address spaces as

distinct types, and warns about code that mixes pointers to different address spaces. This
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allows Mnemosyne to identify code that accidentally assigns a pointer to persistent data to

volatile data instead (and vice versa).

Persistent regions present two challenges: how to ensure that mappings are persistent, and

how to virtualize a finite amount of SCM to support use by many applications. For regular

volatile memory, pages are swapped to a shared page file or swap partition and mappings are

deleted when a program terminates. However, for persistent regions the mappings of virtual

addresses to physical SCM pages must survive system restarts. In addition, data swapped

out of SCM must also survive system restarts.

Our implementation follows a layered approach. A kernel-mode layer, the region manager,

exposes SCM to user-mode code as a memory-mapped file. A user-mode layer, libmnemosyne,

associates each persistent region with a specific file and records the address of each region.

Region manager. The region manager is an extension of the existing Linux virtual memory

system. The region manager creates a new zone of memory for SCM, and all allocations for

persistent regions come from this zone using the existing Linux page allocator. We add a

new flag, MAP_PERSIST, to the mmap system call implementation to indicate that a file should

be mapped to SCM and not DRAM. The region manager records the list of virtual pages

currently stored in SCM in the persistent mapping table. This table, stored at the base of physical

SCM, stores triples of the form 〈scmfn, i,poff〉, which associate an SCM frame’s number

scmfn with a page offset poff in the file identified by inode i1.

The region manager reconstructs persistent regions when the OS boots. It scans the

persistent mapping table and (i) updates the Linux page descriptor for each mapped SCM

page, and (ii) creates a VFS inode for the backing file of every mapping. The manager places

SCM frames not in the table on a free list. After boot, the page descriptors and inodes enable

the kernel to evict SCM pages to their proper files. When starting a process with persistent

regions, all accesses to SCM pages already in memory are treated as soft page faults that

update the page table without copying data from the backing file. During process execution,

1Uniquely identifying a file requires two extra pieces of information: device and inode generation numbers,
which we omit for clarity of discussion.
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the region manager may swap persistent memory pages back to the file system if there is

memory pressure.

libmnemosyne. The libmnemosyne library creates and records the persistent regions for a

process. Mnemosyne allocates all regions in a one terabyte reserved range of virtual address

space (easily changed to any power-of-two sized region). This allows a quick determination of

whether an address refers to persistent data and prevents persistent regions from conflicting

with dynamically allocated address space. The library reserves 16KB in the static persistent

region to store a region table containing the process’s persistent regions. If the region table

exceeds 16KB, it can overflow to a dynamically allocated page.

To create a dynamic region, the pmap function in libmnemosyne creates an empty backing

file and invokes mmap to map the file into SCM. In the region table, libmnemosyne records the

tuple 〈raddr,len,b,m〉 that associates the region’s starting address addr and length len, with

the backing file b, and metadata m, which includes protection flags. The region table also

serves as an intention log: libmnemosyne writes a flag indicating the successful completion

of a pmap operation. When an application starts, libmnemosyne recreates previously allocated

persistent regions and destroys partially created ones.

For the static regions containing variables labeled pstatic, libmnemosyne creates a new

backing file the first time the program executes. It populates the new region with the initial

values found in the executable. If a program wishes to discard existing contents of a static

persistent region and revert to the data in the executable, a program can delete the backing

file and restart.

All the region backing files, including the region table’s file, are stored by default in the

program’s current working directory. This location can be changed via the environment

configuration variable MNEMOSYNE_REGION_PATH, thus allowing multiple concurrent instances

of the same program to use separate backing files.
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3.2.3 Memory allocation

Mnemosyne provides a persistent heap [14] in libmnemosyne. Table 3.2 lists the programming

interface to this heap. Similar to pmap, the pmalloc call takes a persistent pointer as an argument

to ensure that memory is not leaked if the system fails just after an allocation. The pfree call

takes a pointer to a persistent pointer as an argument to ensure that the persistent pointer

does not continue to point to the deallocated chunk of memory if the system fails just after a

deallocation.

We base our implementation on two popular volatile memory allocators, Hoard [21]

and dlmalloc [114], which we modify to allocate from a persistent region. While Hoard

was originally designed for use in multiprocessor environments, we leverage its superblock-

based structure to minimize the persistent state required to track allocations. Hoard splits

the heap into superblocks, which are fixed-size regions containing an array of fixed-size

blocks (different superblocks may have different block sizes). We modify Hoard to store a

persistent bitmap vector per superblock to track allocated blocks; allocating memory requires

only one write to SCM to set a bit in the superblock’s vector. We separate bitmap vectors

from allocated data to reduce the risk of corruption [120]. Hoard’s indexes, which speed

allocation, are in volatile memory and must be regenerated when a program starts. The

allocator guarantees atomicity of its operations by logging the write to the bitmap vector and

the destination/source pointer.

Mnemosyne uses the modified Hoard allocator for requests smaller than a superblock (8

KB). If the requested block is larger, Mnemosyne falls back to dlmalloc, which we chose for

its scalability to large block sizes. Since we expect dlmalloc to be infrequently used, we have

not modified it except to add logging to ensure allocations are atomic.

3.2.4 Logging

Mnemosyne relies on a log to make memory allocations and transactions atomic. This log is

exposed to programmers by libmnemosyne for implementing append-only data structures.

Table 3.2 lists the log programming interface. A program writes to the log with log_append,
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Figure 3.2: Example of missing write detection in the RAWL. Entries written on the current
pass through the log have a torn bit of ‘1’, while entries written the previous pass have a ’0’.
A missing write is detected by an incorrect torn bit.

which writes data but does not guarantee persistence. The log_flush call ensures all prior

log writes are persistent. Finally, logs are truncated with log_truncate. A program can

synchronously truncate the log by interspersing truncates with appends in a single thread.

Alternatively, the application can asynchronously truncate the log from another thread, which

moves the latency of truncating off the critical path. In addition, a program may truncate logs

at startup. Mnemosyne’s durable transaction mechanism supports all three uses through a

runtime flag.

We implemented a high-performance raw word log (RAWL) and associated manager

that logs uninterpreted word-size values. Such a semantic-free log can be the basis for

other semantic-rich logs, such as journals. The log is implemented as a fixed size single-

consumer/single-producer Lamport circular buffer, which allows simultaneous appends and

truncations without locking [111]. The log manager implements functions to access the log

and recover log contents after a failure.

The main challenge in implementing a log is maximizing performance while ensuring

that appends are atomic. As logs are always written sequentially, Mnemosyne uses the x86

streaming write instruction movntq to write log data. To achieve high performance, these

instructions do not guarantee that writes are executed in program order. If the system crashes,

later writes may have completed while earlier ones did not. When restarting, the log manager

must identify whether all the writes that comprise an append operation completed. This

problem is similar to the torn-write problem in databases and file systems, where only part
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Algorithm 3.1 Bit manipulation routines for tornbit log

procedure encode(log, val)
tornmask← 1≪ 63
encoded← ∼tornmask & (log.remainder | (val≪ log.remainder_nbits))
encoded← encoded | log.tornbit
log.remainder_nbits← (log.remainder_nbits+ 1) & (64 − 1)
log.remainder← val≫ (64 − log.remainder_nbits1) & (64 − 1)
return encoded

end procedure

procedure decode(log)
tornmask← 1≪ 63
decoded← (∼tornmask & log.data[index])≫ log.remainder_nbits
encoded_next← (∼tornmask & log.data[index+1])≪ (63−log.remainder_nbits)
log.remainder_nbits← (log.remainder_nbits+ 1) & (64 − 1)
index← index+ 1
return decoded_next | decoded

end procedure

of a multi-sector write completes. The common solution in file systems is to use two fences:

write the data, wait for the data writes to complete with a fence, then write a commit record,

and wait for the commit record to complete with a fence. A second option is to append a

checksum of the data [148]. However, both these techniques have high overhead. Commit

records require two long-latency fences, and checksumming adds substantial overhead to

every write.

Mnemosyne instead implements a novel tornbit RAWL that requires only one fence. The

tornbit RAWL reserves a single torn bit in every 64-bit word. This bit has the same value

for all writes in one pass over the log buffer, and reverses sense when the log is overwritten.

Thus, completely written log entries will have the same torn bit, while incomplete entries will

mix values. Figure 3.2 demonstrates the use of torn bits. When Mnemosyne creates a log,

it initializes the memory to zeroes. The log manager treats the incoming 64-bit words to be

written to the log as a stream of bits. It forms and writes out to the log 64-bit words that are

composed of 63 bits taken from the head of the stream and the proper torn bit.

Algorithm 3.1 and shows the bit manipulation routines: encode transforms a 64-bit word

into a 63-bit word plus a tornbit, and decode forms a 64-bit word out of the log contents. On a
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log_flush the log manager writes out to the log any bits left in the stream. Upon recovery,

Mnemosyne locates the head of the log and scans forward until it reaches the end of the

log, where the torn bit reverses, or until it finds a log word with an out-of-sequence torn-bit,

indicating a partial write.

3.2.5 Limitations

Shared Memory. The recovery mechanisms used for logging and memory allocation execute

when a process starts. Furthermore, the allocator caches index information in volatile memory

for performance. Therefore, these mechanisms may be unsafe if a persistent region is shared

between processes. However, sharing is safe if the processes cooperate to ensure that (i) within

each region, only one process writes to a log or allocates from a heap, and (ii) both processes

have started and completed recovery before accessing shared data. Thus, producer-consumer

style communication, where a single process is responsible for creating and later deleting

work items, can be implemented safely.

Wearout. Our prototype implementation does not address wearout of storage-class memory.

However, virtualization enables remapping heavily used virtual pages to spread writes to

different physical PCM frames. Additionally, our system’s structures, such as mapping tables

and RAWL, may be relocated to spread writes around. For example, RAWL’s tornbits may

periodically be shifted to avoid writing 0’s and 1’s continuously to the same bits. Finally, our

system could benefit from work on wear-leveling mechanisms that reduce wearout of PCM

when that technology is used as DRAM replacement in main-memory systems [96, 150].

3.3 Durable Memory Transactions

Mnemosyne supports in-place updates with durable memory transactions. Updates within a

transaction execute to completion, at which point the changes persist across failures, or the

changes are rolled back upon restart.
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Memory transactions are implemented by three components: a compiler to create transac-

tions from ordinary C or C++ code, a transaction system to store data necessary for recovery,

and a transaction log. The libmtm library provides the transaction system on top of the

persistence primitives in libmnemosyne.

Compiler. We use Intel’s STM Compiler [137] to automatically generate object code with calls

into a transaction system. The compiler emits compiled code that invokes the transaction

system when a transaction begins, commits, and on every memory reference within the

transaction.

Transaction system. Mnemosyne transactions are based on Tiny-STM [62] a lightweight

software transactional memory (STM) implementation. The Mnemosyne transaction system

implements atomicity and durability with write-ahead redo logging, and isolation with

encounter-time locking.

With write-ahead redo logging, new values written during the transaction and their

addresses are added to a log and also buffered in volatile memory. The transaction system

performs a quick range check against the reserved persistent address range and logs only

writes to persistent memory. At commit, the log is flushed to SCM, and the new values can

optionally be written back. During a transaction, memory at a variable’s address still contains

unmodified values. When called to read data, the transaction system checks whether the

data was modified. If so, it bypasses the new data from the buffer and if not returns the value

from memory.

We implement write-ahead redo logging because it reduces the ordering constraints on

writes to SCM: the only requirement is that the log is written completely before any data

values are updated. In contrast, undo logging, where old values are written to a log and

new values are written to memory, would require ordering a log write before every memory

update. Ordering is necessary because recovery after a crash must be able to restore old

values of all memory locations written by an uncommitted transaction. However, buffering

writes through redo-logging has a performance cost: transaction commits are slower because

the new values have to be written out to memory, and reads within transactions have to check
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if new values exist.

For encounter-time locking, we use a global array of volatile locks, with each lock covering

a portion of the address space. A hash function maps addresses to locks in the array. When

accessing a memory location, the transaction first identifies the lock that covers the memory

address, and if it does not own the lock it tries to acquire it. If successful, the transaction

brings the lock in its lock-set and continues with the access. Otherwise, the transaction aborts

by releasing all locks acquired, discarding any buffered updates, and writing to the log a

mark to indicate the transaction as aborted. When a program starts, Mnemosyne replays

all completed transactions by writing the data at the logged address. Locks do not need to

persist or be reacquired upon restart as completed transactions are written to the log with

locks held and therefore they are properly ordered.

Transaction log. We implement the redo log in persistent memory using a RAWL. The

transaction log can be truncated after data values are forced to SCM. We implement both

synchronous and asynchronous truncation. Synchronous truncation forces new values to

memory during transaction commit. After flushing the log, the transaction system walks

the buffer of modified data and calls flush on every address written. It then truncates

the entire log. Under heavy load, this prevents the transaction log from growing too large.

Asynchronous truncation retains the log after transaction commit, so the latency of committing

is shorter. A separate log manager thread consumes the log and forces values out to memory

before truncating the log. However, if the log manager thread is unable to execute, program

threads may stall until there is free log space.

For better multiprocessor scalability, Mnemosyne keeps a per-thread log. This slightly

complicates recovery as Mnemosyne must ensure that transactions are redone in the order

executed by the program. Mnemosyne relies on TinySTM’s existing global timestamp counter,

which is incremented at every transaction completion. Mnemosyne captures a total order

over transactions by storing this global counter along with each transaction in the log. During

recovery, transactions from different threads are replayed in counter order.

Discussion. The cost of durable transactions is two writes to SCM for every update: once
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p s t a t i c htRoot = NULL;

main ( )
{

i f ( ! htRoot )
pmalloc_set (N∗ s i z e o f ( bucket ) , &htRoot , 0 ) ;

}

hash_update ( key , value )
{

patomic {
pmalloc(&bucket , s i z e o f (∗ bucket ) ) ;
bucket−>key = key ;
bucket−>value = value ;
i n s e r t ( bucket ) ;

}
}

Figure 3.3: Example use of a durable memory transaction.

to store recovery information in the log, and once to write the data itself. Other consistent-

update mechanisms may perform better. But, they come at the cost of increased complexity,

such as recovery code to replay logs for append-only updates, garbage collection for memory

lost during shadow updates, and explicit fences to order updates. For example, to atomically

modify the payload value stored in a tree node, a programmer may use a shadow update

that swaps the old node with a new node that contains the new value and points to the same

subtree as the old node. Using a shadow update saves the extra log writes that would be

otherwise needed by a durable transaction to log the old value.

3.4 Programming Examples

In this section we present several code examples that exemplify Mnemosyne’s programming

interface (Table 3.2). The examples work at different levels of the interface: ranging from high-

level transactional updates (Figure 3.3) down to low-level persistence primitives (Figure 3.4)

We defer discussion of how we used Mnemosyne to persist data in real-world applications to

Section 3.5.

Figure 3.3 demonstrates how to construct a persistent hash table and use the patomic block

language construct to form a transaction that updates the table. To construct the table, we

first declare the root of the hash table as persistent through the pstatic keyword to provide

a persistent name that locates the hash table upon a restart. When the program starts for
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paxos_logprop ( prop , value )
{

log_append (PROPOSAL ) ;
log_append ( prop ) ;
log_append ( value ) ;
log_flush ( ) ;

}

(a) Log update

b s t _ i n s e r t _ r i g h t ( parentnode , key , value )
{

pmalloc(&parentnode . r ight ,
s i z e o f ( parentnode . r i g h t ) ) ;

wtstore (&parentnode . r i g h t . key , key ) ;
wtstore (&parentnode . r i g h t . value , value ) ;
wtstore (&parentnode . r i g h t . l e f t _ v a l i d , 0 ) ;
wtstore (&parentnode . r i g h t . l e f t , NULL) ;
wtstore (&parentnode . r i g h t . r igh t_va l id , 0 ) ;
wtstore (&parentnode . r i g h t . r ight , NULL) ;
fence ( ) ;
wtstore (&parentnode . r igh t_va l id , 1 ) ;

}

bs t_recover ( bs t )
{

foreach node in bs t
{

i f ( node . r i g h t && ! node . r i g h t _ v a l i d )
pfree (&node . r i g h t )

}
i f ( node . l e f t && ! node . l e f t _ v a l i d )

pfree (&node . l e f t )
}

}
}

(b) Shadow update

Figure 3.4: Example use of low-level persistence primitives.

the first time, we atomically allocate space for the hash table, initialize to zero, and assign

it to the persistent root through the pmalloc_set function. Recall that pmalloc_set takes a

persistent pointer as an argument to ensure that the allocated memory is accessible even if

the system fails just after allocation. To update the hash table, we use a memory transaction

that atomically allocates space for the new bucket, sets the key-value pair of the bucket and

inserts the bucket into the hash table. The transaction guarantees atomicity so that a failure

mid-flight the transaction does not leave the hash table in an inconsistent state like missing a

bucket. In summary, upon a restart, the hash table is accessible via the persistent named root,

and contains all key-value pairs successfully written to it.

Figure 3.4a shows an example use of the persistent log primitives to log a proposal during

the accept request phase of the Paxos protocol [112]. We first append to the log a header that

identifies the type of the append sequence, then append the values forming the sequence,

and finally issue a flush to ensure all prior log writes are persistent. Upon recovery the log

returns only appends that were completed successfully, and we rely on the headers to identify

the boundaries of each sequence.



59

Figure 3.4b shows an example use of hardware primitives to insert a new child node

into a binary tree using a shadow update. We first atomically allocate space for the new

node and attach it to the parent. Then we update the key and value of the node using write-

through stores, initialize the rest of the node’s fields, issue a fence to ensure that the writes

are performed to SCM, and finally update the right_valid flag of the parent node to indicate

the right child node contains a consistent key-value pair. To prevent space leakage, upon

recovery bst_recover traverses the tree and frees any node that is linked to a tree node but

does not represent a valid node (i.e., the node’s corresponding valid flag stored in its parent

node is false).

3.5 Evaluation

The goal of Mnemosyne is to abstract storage-class memory at low latency for program use.

We evaluate three questions about the system:

1. Does it work? Can existing programs benefit from persistent memory, and does Mnemosyne

provide persistence across crashes?

2. How fast is it? How does Mnemosyne perform, both in latency and throughput, across

a range of workloads, and how beneficial are Mnemosyne’s mechanisms?

3. With which technologies can it work? How does Mnemosyne’s performance depend on

the latency of the underlying SCM technology?

While programmers may program directly with persistence primitives, these primitives

require a sophisticated understanding of recovery protocols similar to databases or file sys-

tems [23, 131]. Durable transactions provide a much simpler interface to persistent memory

and require few application changes, so we concentrate our evaluation on transaction perfor-

mance.
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3.5.1 Methodology

As we do not have access to a form of storage class memory that can be plugged into a

commodity system and access from user mode, we emulate SCM using DRAM by adding

delays to model SCM’s performance. We base our model on the performance characteristics

of phase-change memory (PCM) , which is the nearest to commercial availability. Because

there is a wide variety of projections for PCM’s performance, and the specific design of the

memory system can have a great impact on performance [115], we limit our model to the

most important aspect of performance: slow writes.

To account for PCM’s slower writes relative to DRAM, we introduce a delay after each

write into the hardware access macros. The emulator adds delays on operations that already

go to DRAM (not the cache), so the delay is only for the additional latency of PCM. For cacheable

writes (store operations) we insert the delay on the subsequent flush, while for non-cacheable

ones we insert the delay in-place. We also insert the delay after each memory fence to account

waiting for outstanding writes to PCM. For sequential write-through (wtstore) we model

write bandwidth by inserting a proper delay after the write sequence completes to limit the

effective bandwidth.

In all cases we implement the delay with a loop that reads the processor’s timestamp

counter (TSC) in each iteration. The loop continues until the requested delay has elapsed. In

calibration tests, we found that inserted delays are at least equal to the target delay, and that

our bandwidth model is accurate to within 4%.

Our emulator does not account for additional latency on loads. However, the primary

benefit of SCM is fast, durable updates, and our workloads focus on write rather than read

performance. Furthermore, many loads will hit the cache, so only misses will incur a penalty

from PCM. Also, our model does not account for the effect of cache evictions or read-after-

write bank conflicts, where reads may be queued behind long writes to the same bank, thus

increasing read latency.

To compare Mnemosyne against other uses of PCM, we constructed an emulator, PCM-

disk, for a PCM-based block device. Base on Linux’s RAM disk (brd device driver), PCM
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disk introduces delays when writing a block. We model block writes using sequential write-

through operations as described above, and mount an ext2 file system.

We performed our experiments on an Intel Core 2 quad-core based machine equipped

with 4GB of physical DRAM (accessible via the DDR2-800 interface) running our modified

x86-64 Linux version 2.6.33 kernel at 2.5GHz. All tests add 150 ns of extra latency and are

limited to 4GB/s of write bandwidth unless otherwise noted. We estimated write bandwidth

based on projections provided by Numonyx [53]. For all our experiments we report averages

of at least five runs.

3.5.2 Applications use of Persistent Memory

Applications that can immediately benefit from persistent memory are difficult to find: the

long latency of writing to disk has taught programmers to avoid frequently committing

data. We expect that a common use will be for applications to create a useful in-memory

data structure, such as a tree or hash table, and then make it persistent by allocating it

from a persistent heap and wrapping updates in transactions. For reliability and to support

conversion between program versions, the program should periodically export serialized

version of the structure.

We model this use of persistent memory by adapting programs that already maintain a fast

in-memory data structure for frequent access and a separate version for consistent, durable

updates. We converted two programs that take different approaches to persistence for use

with Mnemosyne: OpenLDAP and Tokyo Cabinet. One program frequently commits data to

disk using a storage manager, and the other periodically snapshots a whole data structure to

disk.

OpenLDAP. OpenLDAP is an implementation of the Lightweight Directory Access Protocol

(LDAP). OpenLDAP supports a number of storage backends; the default is back-bdb, which

provides transactional storage using Berkeley DB. An alternative, back-ldbm, also uses Berkeley

DB but without transactions; instead, it periodically asks Berkeley DB to flush dirty data to

disk to minimize the window of vulnerability. To improve query performance, each backend
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maintains its own cache of data outside Berkeley DB [37]. We believe that such read-mostly

caches can benefit from lightweight persistent memory: the backing store can be removed,

leaving only a persistent cache.

To test this hypothesis, we modified the back-ldbm backend to remove Berkeley DB and

to make the cache persistent with durable transactions. The cache is organized using an AVL

tree, which we make persistent by allocating nodes with pmalloc and placing atomic blocks

around updates in four places.

While we do not generally encourage keeping pointers to volatile memory in a persistent

region, we found this useful in OpenLDAP. The cache entries of the original back-ldbm and

our back-mnemosyne store pointers to a description of each attribute, which is kept by the

front end in volatile memory. Instead of modifying the frontend to keep those descriptions in

persistent memory, we found it more convenient to keep the descriptions in volatile memory

and have the persistent cache entry keep pointers to those volatile descriptions. Because

the volatile descriptions become stale after a restart, we augmented each cache entry with a

version number that is used to determine whether the persistent pointer is up-to-date.

TokyoCabinet. Tokyo Cabinet is a high-performance key-value store [89]. It stores data in

a B+ tree and periodically calls msync on a memory-mapped file to flush modified pages to

disk. These syncs can reduce performance by 96 percent [196], so they are rarely invoked. As

a result, the application loses unsaved data after a crash.

We modified Tokyo Cabinet to allocate its B+ tree in a persistent region and perform

updates in durable transactions. While we re-used the existing update code, in several cases

we had to duplicate functions to create separate persistent and volatile versions with different

allocators. We completely removed the persistence code that calls msync. We also removed

the locks used for synchronizing concurrent accesses to the tree and relied on transactions for

concurrency control.

Memcached. Memcached is a distributed in-memory key-value store. It is mostly used

by dynamic web applications as an in-memory object cache between the application and

the database backends. As a cache, it helps improve application performance by speeding
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Application Backend Workload Updates/s

OpenLDAP
back-bdb on PCM-disk

SLAMD
5428

back-ldbm on PCM-disk 6024
back-mnemosyne 7350

Tokyo Cabinet
msync on PCM-disk

64B 19,382
1024B 2,044

mnemosyne
64B 42,057
1024B 30,361

Memcached

memcached
64B 86,900
1024B 81,370

memcachedb on PCM-disk
64B 21,760
1024B 11,340

memcached-mnemosyne
64B 35,260
1024B 30,320

Table 3.3: Update throughput for OpenLDAP, Tokyo Cabinet, and Memcached. Key size for
Tokyo Cabinet and Memcached is 16B.

up access to frequently used objects and alleviating the load on the database backends [1].

However, as a volatile cache, it has to be refilled and warmed up after a restart. For large-scale

applications that depend heavily on caching, cache warmup may take hours, which can have

a negative impact on the availability of the application [61].

We therefore modified Memcached to make it persistent. Memcached stores data in a hash

table. When the table becomes full, subsequent inserts evict existing objects in a least-recently

used (LRU) order. Our modifications were quite straightforward: we modified Memcached to

allocate the hash table in persistent memory through pmalloc, wrapped all seventeen places

accessing the table within durable memory transactions, and replaced all locks used for

synchronizing concurrent access to the table with transactions.

We compare our modified persistent Memcached against the original Memcached but

also against MemcacheDB, which is a distributed key-value storage system that is compatible

with the memcached protocol. MemcacheDB uses Berkeley DB as a storing backend.

Performance. Table 3.3 lists throughput of the OpenLDAP server for a workload that adds

new records. We used the SLAMD distributed load generation engine to exercise three

versions of the server: (1) back-bdb, the default unmodified transactional backend with the

cache and Berkeley DB, (2) back-ldbm, the unmodified back-ldbm backend with the cache and
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Berkeley DB, and (3) back-mnemosyne, our modified backend based on back-ldbm. We set

the cache sizes large enough to avoid evictions due to capacity. We used a LDIF template to

generate a workload of 100,000 directory entries. OpenLDAP is configured to run with 16

threads (4 threads per core) as advised by its tuning manual.

While the three backends perform similarly, back-ldbm offers a lower level of reliability

than the other two backends. This close performance arises because PCM is fast enough that

the time to write updates is a small fraction of the total time to service a request. These results

demonstrate that with Mnemosyne it may not be necessary to create specialized structures

optimized for persistence, such as Berkeley DB’s tables. Instead, standard in-memory data

structures (in this case an AVL tree) provide simpler programming, in addition to durability

and consistency, all with similar or better performance than a highly tuned storage engine.

Table 3.3 also shows the throughput of 64-byte and 1024-byte insert/delete queries with

Tokyo Cabinet for single-thread configurations. As a comparison, we ran the standard imple-

mentation of Tokyo Cabinet on our PCM-disk emulator and configured it to save data with

msync after every update. Mnemosyne was about 2 – 15 times faster in these tests, while at the

same time providing stronger consistency guarantees than the msync version, which can suffer

from torn writes if the system fails while flushing pages. For four-thread runs, we found

that the throughput of Tokyo Cabinet Mnemosyne degrades by 9% because of increased

contention on the tree, causing transactions to abort. The throughput of Tokyo Cabinet on

PCM-disk increases by 10%, but is still far below Mnemosyne.

Finally, Table 3.3 also shows the throughput of 64-byte and 1024-byte insert/delete queries.

We used the memslap load generation engine to exercise three versions of Memcached: (1)

memcached, the unmodified volatile Memcached, (2) memcachedb, a persistent distributed key-

value store that is compatible with the memcached protocol, and (3) memcached-mnemosyne,

our modified persistent Memcached. To saturate Memcached, we ran both memslap and

Memcached on the same machine and configured memslap to run with four threads with

each thread making 128 connections.

Mnemosyne was about 2.5 – 2.7 times slower than the volatile Memcached, while mem-
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cachedb was about 4 – 7 times slower. For all three versions, throughput decreases as the object

size increases. This is due to larger transmission packets for larger objects, which results in

larger memory copies from the kernel into memcached’s hash-table buckets.

The two persistent versions also pay a persistence cost that is proportional to object size.

In the case of Mnemosyne, the time spent in the transactional runtime increases from 69% for

64-byte objects to 77% for 1024-byte objects. This is due to the higher number of calls into the

runtime to instrument updates and the longer time to commit larger objects. In the case of

memcachedb, the drop in performance is primarily due to increase in the time spent in Berkeley

DB and the file system, which increases from 66% for 64-byte objects to 78% for 1024-byte

objects. Overall, Mnemosyne can help bridge the performance gap between a persistent and

a volatile version of Memcached. Still though, the performance hit of persistence may be

prohibitive for a production deployment of a persistent Memcached. However, it should

be noted that this is performance slowdown for a write-intensive workload (100% writes).

Evaluating Memcached on a more representative read-mostly workload (90% reads), we

found that Mnemosyne is about 1.3 times slower than the volatile Memcached.

Reliability. We validate that Mnemosyne works correctly by injecting synthetic failures. We

intentionally crashed OpenLDAP in the middle of a transaction, and verified that after every

restart, the data affected by the transaction were still available. In addition, we wrote a crash

stress program, which uses transactions to perform random updates to memory using a

known seed. We verified that after a crash, memory contains the correct random values.

Finally, we tested the torn-bit feature of the RAWL by injecting bit flips into the log before a

crash. In all cases, Mnemosyne correctly recovered after the crash.

3.5.3 Microbenchmark Performance

Hardware Primitives

Figure 3.5 shows the latency and throughput to write and flush a cache line for different

number of threads and record sizes using either regular writes or streaming writes. We report

latency and throughput for the native system without adding any extra latency to emulate
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(d) Streaming-write throughput

Figure 3.5: Latency and throughput to flush a cache line.

writes to PCM. We took the measurements using a microbenchmark that allocates 64 MB of

memory for each thread and subdivides it into equally sized cache-aligned records. Record

sizes ranged from 64 bytes to 64 MB. For regular writes, each thread writes to every cache line

in a record using x86 regular stores (movq), issues a memory fence (mfence) to order subsequent

flushes after the stores, flushes the entire record by performing a clflush on each cache line

of the record followed by a memory fence (mfence) that waits for the flushes to complete, and

then repeats the process with the next record. For streaming writes, each thread writes to

every cache line in a record using x86 non-temporal stores (movntq) followed by a memory

fence (mfence) that waits for the stores to complete, and then repeats the process with the next
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record.

As we see, the latency for flushing both regular and streaming writes increases with

the number of threads due to contention on the memory bus. Similar behavior is seen in

throughput, which scales sublinearly with the number of threads, eventually reaching a

plateau due to saturation of the memory bus. Then, looking at how latency and throughput

scale with record size, we observe that latency per cache line flush decreases as the record size

increases and flattens out after record sizes of 512 bytes. This suggests that flushing writes

above 512 bytes can be more efficient. Throughput follows a similar trend. Finally, latency

and throughput for flushing streaming writes is between 47 - 57% lower than latency for

regular writes. This difference reflects a trade-off between performance and programmability

as streaming writes use a weakly ordered memory consistency model, which requires extra

effort from the programmer to properly order reads (Section 3.2.1).

Persistence Primitives

Programmers wishing to persist in-memory data structures today have a wide variety of

choices. We evaluate two common approaches: (i) use a storage manager for data storage and

caching, and (ii) serialize the data structure to a file. With a storage manager such as Berkeley

DB [46], a program can commit small changes to a data structure, such as adding a record

to a hash table. We compare the performance of a simple hash table [39] using Mnemosyne

transactions for persistence against using Berkeley DB’s hash table. We store the database

files on our PCM-disk emulator. In both cases, data is committed to storage on every update.

Figures 3.6 and 3.7 compare write latency and update throughput of Mnemosyne to

Berkeley DB for different number of threads and record sizes. Deletes are introduced at the

same rate as writes to ensure steady progress. Update throughput is aggregate throughput

of writes and deletes. For single threaded runs and transactions that update records smaller

than 2048B, Mnemosyne’s direct access of memory achieves a write latency that is almost six

times better than Berkeley DB. Mnemosyne’s performance for small transactions is limited by

the cost of (i) transaction instrumentation in the code, which adds a function call to every load
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and store, (ii) fences to force the log to memory and (iii) flushes to force data to memory. With

a microbenchmark, we measured the cost of instrumenting and logging each word written as

190 ns when the transaction’s write set size is smaller than 128 cache lines. For larger write

sets, this cost increases linearly with the number of distinct cache lines written. The cost of

committing a transaction, which consists of a fence and flushing data out to SCM, adds up

to 250 ns per distinct cache line flushed. These costs represent the overhead of supporting

in-place updates. A hash table insert of 64 bytes requires on average 15 updates to 5 distinct

cache lines, for a total cost of 4.3 µs. With larger data sizes, Berkeley DB’s optimizations for

disk-like performance, such as large sequential writes and infrequent fences (once per block

in PCM-disk), give it better write latency.

With multiple threads, Mnemosyne achieves 10-14x improvement in update throughput

compared to Berkeley DB. Mnemosyne improves throughput almost linearly with the number

of threads, without hurting write latency. The slight increase in write latency is due to

contention on the global timestamp counter in the transaction system, which is relatively

more expensive for short transactions. In contrast, Berkeley DB does not scale beyond 2

threads. We found this is due to contention on the centralized log buffer, which becomes

the serialization bottleneck as I/O latency becomes shorter. Also, Berkeley DB’s throughput

improvement with 2 threads comes at the cost of increasing write latency, possibly due to

group commit, which is not necessary with Mnemosyne’s fine-grain memory transactions.

Finally, while Berkeley DB’s write latency is lower than Mnemosyne’s for values larger than

2048 bytes, the Mnemosyne’s throughput is higher because it is the aggregate of writes and

deletes, and delete latency remains almost constant for Mnemosyne as value size increases.

An alternative approach, often used for less structured data, is to serialize the data into a

buffer and write it to a file. For example, productivity applications including word processors

use this approach for periodic fast saves. We compare the cost of maintaining a red-black

tree with 128 byte nodes in persistent memory against the cost of keeping it in DRAM and

periodically serializing it and storing it in a file. Using small data sizes maximizes the overhead

of transactions, because there is not much data to write out between fences.
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Figure 3.6: Write latency for a hashtable with durable transactions compared to Berkeley DB.
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Figure 3.7: Update throughput for a hashtable with durable transactions compared to Berkeley
DB. Numbers above the bars are the absolute updates per second for the Berkeley DB single-
threaded version.
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Tree Insert Serialize Inserts per
Size Latency Latency Serialization

1 K 4.7 µs 517 µs 189
8 K 5.1 µs 3,413 µs 1,345
64 K 5.5 µs 33,859 µs 9,202
256 K 5.8 µs 143,776 µs 24,788

Table 3.4: Performance of Mnemosyne updates and Boost serialization of red-black trees. The
right-most column shows the number of Mnemosyne updates that can be performed in the
time for a single Boost serialization of the tree.

Record Size (B) 8 64 256 1024 2048 4096

Base (MB/s) 17 128 416 881 1088 1244
Tornbit (MB/s) 34 227 591 929 1045 1093

Table 3.5: Throughput of base and tornbit RAWLs.

Table 3.4 compares the cost of updating the tree with Mnemosyne transactions against the

cost of periodically serializing it using Boost [24] and storing it on PCM-disk. Tree updates

cost 5-6 µs with Mnemosyne, and on average 10 percent of the tree can be updated for the

cost of serializing and storing the tree just once. Thus, even data structures with high rates

of change can more efficiently be made persistent with transactions than by serializing and

storing.

Optimizations

Mnemosyne implements two optimizations to reduce the cost of transactions: the torn bit

in the RAWL, and asynchronous log truncation. Table 3.5 compares performance of torn

bit against an implementation of the RAWL that writes a commit record, with a separate

fence. For log records smaller than 2048 bytes, the torn-bit log performs up to 100 percent

better. Above 2048 bytes, the torn bit log performs worse than a separate commit record. The

cost of the fence is fixed, while the cost of bit manipulation to implement torn bits scales

with the amount of data. Thus, for large records, the cost of manipulating bits to make

space for the torn bit is larger than the cost of a single extra fence. As Mnemosyne targets

smaller transactions, the torn bit log is a valuable optimization but should be omitted if large

transactions are expected.
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Figure 3.8: Decrease in write latency of hashtable with asynchronous over synchronous
truncation.

Asynchronous log truncation may reduce latency and improve performance under low

load because it moves flushing modified data off the critical path. Instead, a separate thread

processes the log to flush all modified data to PCM, after which it truncates the log. Figure 3.8

compares performance when the hash table thread is idle 90, 50, and 10 percent of the time.

We find that for 50 and 90 percent idle time, the truncation thread can keep up with the active

thread and achieves a reduction of 7-31% in write latency. However, with only 10 percent

idle time, the active thread stalls for extended periods while the truncation thread flushes

data, which can increase latency by up to 42% for 4KB writes. Thus, this optimization is most

helpful for transactions with a moderate duty cycle.

Reincarnation Cost

There are two reincarnation costs associated with Mnemosyne: (i) the cost to reconstruct

persistent regions when the OS boots, and (ii) the cost to remap persistent regions to a

process’ address space, scavenge the persistent heap, and replay all completed but not flushed

transactions when a program starts. For (i), we measured the worst case scenario cost, which

is to reconstruct a persistent region for each SCM frame. This takes approximately 734 ms for

1GB of SCM, indicating that reincarnation contributes less than 1s overhead to the OS boot

process. For (ii), we found the overall cost in our workloads to be less than 100 ms. Specifically,
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Figure 3.9: Mnemosyne’s performance relative to Berkeley DB for different memory access
latencies.

we measured the cost to remap the persistent regions to be about 1.1 ms, while the cost to

scavenge the persistent heap region and reconstruct the heap’s volatile indexes was about

89 ms. This high cost is due to the incremental allocation of memory needed by the volatile

indexes, which results to a large number of brk system calls. We believe this cost could be

reduced via bulk allocation or lazy construction of the indexes but have not implemented

any of these optimizations. Finally, we found the cost to replay a completed but not flushed

transaction ranges between 3 to 76 µs. In the case of synchronous truncation, the number of

completed but not flushed transactions is bounded by the number of threads, which for 4

threads results in a worst case cost of about 300 µs.

3.5.4 Sensitivity to Memory Performance

Mnemosyne exposes persistent memory directly to programs as memory. If SCM latencies

are long, then applications may perform better treating SCM like disk, with associated opti-

mizations to overlap I/O and computation and to optimize for sequential access. We evaluate

the impact of different memory latencies by comparing the performance of Mnemosyne
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transactions on a hash table to Berkeley DB, which optimizes for disk-like performance.

Figure 3.9 shows the relative performance of Mnemosyne over Berkeley DB as a function

of data element size for three different latencies: 150 ns, 1000 ns, and 2000 ns. For small

data sizes, Mnemosyne is always faster because it needs to write much less data. However,

for longer latencies the benefit is much lower: 200 percent better performance for 1000 ns

latencies and 100 percent for 2000 ns latencies. Furthermore, the benefit drops off faster with

larger data sizes: at 2000 ns, Berkeley DB and Mnemosyne perform the same for 1024 byte

inserts.

Thus, Mnemosyne is most useful when SCM latencies are close to those of DRAM, because

the benefit of modifying small amounts of data outweighs the latency of access. For larger

latencies, SCM may best be treated as a disk and accessed through the file system. Should

someone prefer using Mnemosyne though, then our optimizations that remove latency off

the critical path become even more evident. For example, under low load (10 percent idle)

and 2000 ns latency to SCM, asynchronous truncation would be able to reduce write latency

for 1024 and 2048 bytes by 70% and 60% respectively, enabling Mnemosyne to still perform

better than the disk-based interface.

3.6 Summary

Programmers trained in the era of disks have learned that frequently updating persistent

state should either be avoided or be handled by a database engine. Storage class memory

presents new opportunities for fast data persistence that obsolete these rules. Mnemosyne

provides lightweight persistent memory, and common in-memory data structures can be

made persistent using durable transactions. Thus, programmers can create a single data

structure optimized for memory, rather than designing separate in-memory and update-

optimized persistent representations. Compared to past work on persistent object systems,

Mnemosyne provides greater flexibility by not requiring C++ objects, and lower latency by

persisting data directly to memory at the granularity of a a single update rather than a whole

page.
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4 aerie: application-specific file systems

We propose distributing the storage stack to create a flexible, high-performance storage

architecture by mapping SCM into client processes. This provides two key benefits: (i) low-

latency access to data by removing layers of code, and (ii) flexibility by enabling applications

to define their own file-system interface and implementation without extending the kernel.

With direct access, a program reading a file can locate the file contents and read the data

directly, without calling the kernel. In addition, an application with fixed-size files can pre-

allocate storage in contiguous extents to lower the cost of locating file contents. Prior efforts

at user-mode file systems, such as FUSE [175], provide flexibility at a heavy performance cost

from context switching and copying data.

Based on this idea, we designed the Aerie architecture to expose file-system data stored in

SCM directly to user-mode programs. Applications link to a file-system library that provides

local access to data and communicates with a service for coordination. The OS kernel provides

only coarse-grained allocation and protection, and most functionality is distributed to client

programs. For read-only workloads, applications can access data and metadata through

memory with calls to the file-system service only for coarse-grained synchronization. When

writing data, applications can modify data directly but must contact the file-system service to

update metadata.

We implement two file-system interfaces on the same layout with Aerie: a POSIX-style

system and one optimized for small-file access through a put/get interface. Through experi-

ments, we show that the POSIX-style system performs much better than existing user-mode

file systems and between only 15% slower than a kernel file system without consistency guar-

antees and 35% faster on average than ext3. The specialized key-value file-system interface

performs up to 86% faster than the fast kernel file system. Thus, distributing file system

functionality to client processes allows flexible implementations that dramatically improve

performance.
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Figure 4.1: Aerie architecture. Functionality is distributed between application processes, a
trusted service, and the kernel.

4.1 Design

Aerie is a local storage service that enables programs to store and share data through a

user-mode file system. Our goals for Aerie are:

1. Flexibility for applications to customize the file system interface, policies, and layout.

2. High performance to reap the benefits of low-latency storage memory.

3. Protected sharing between processes to enable flexible application structuring and com-

position.

The main enabling mechanism for our goals is direct access through memory to file-system

data and metadata from user mode. Although direct access enables our first two goals, it is at

odds with our third goal of protected sharing and raises several other challenges. Protected

sharing requires mediating each file system access to enforce file system permissions. For

performance, we use hardware memory protection when possible, which poses the challenge

of translating file system permissions to memory protection.

Designing a file system for flexibility and direct access raises many challenges, of which

we focus on four. First, how should file systems be structured to provide maximum flexibility

to applications while still providing access to shared data? Existing file systems have a
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single implementation per system, but direct access enables each program to have a different

implementation. Second, if clients have direct access to data, how can we ensure a malicious

or buggy application does not corrupt file system structures? Third, how do we provide

concurrency control between applications efficiently? Kernel file systems use locks in shared

memory and provide only limited locking capabilities to user-mode code. Finally, how can

we minimize communication for coordination between clients to keep performance high?

4.1.1 Assumptions

We designed Aerie based on assumptions about the features of future SCM products and

application behavior. First, we assume that hardware provides user-mode code with low-

latency, protected access to SCM. This can be achieved by placing SCM directly on the memory

bus, which allows access through normal load/store instructions protected by virtual memory

hardware [42, 41, 136]. Alternatively, protected user-mode DMA that restricts the set of

memory and SCM addresses can also be used [30].

Second, our failure model assumes that any state stored in volatile memory such as

the hardware cache or main memory may be lost but any state written to SCM persists.

We therefore depend on hardware to provide an atomic update of at least 64 bits [42, 144].

Similar to past systems [41, 188], we also rely on the device to implement necessary reliability

mechanisms to address wear and that such mechanisms are robust to malicious attacks that

aim to overwhelm the anti-wearout mechanism [150]. Without such hardware support, the

system must be limited to clients that are trusted not to inflict excessive wear.

Third, we assume that most sharing is sequential rather than concurrent. Programs with

concurrent access may be better served by a centralized file system. When concurrent sharing

occurs, Aerie provides correct behavior but with reduced performance.

Finally, we assume programs may exhibit malicious or buggy behavior such as stray writes.

We therefore do not trust the client library to correctly modify file-system metadata. However,

we assume that trusted code in the kernel or service is as reliable as existing file system code

(which can also corrupt data in memory [198]).
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4.1.2 Architecture

Aerie distributes file system functionality for direct and protected access to storage memory.

Figure 4.1 shows the Aerie organization. The SCM manager in the kernel allocates SCM

to file systems and constructs page tables that map SCM into processes with the necessary

protection. Programs link to the libFS library that provides the file system API. The trusted

file system (TFS) service provides integrity for metadata updates and concurrency control

between processes.

Aerie relies on hardware protection to enforce access control over file system data. This

allows the client library to service most file-system operations directly from SCM without

contacting the service or the kernel. For example, when an application opens a file, the library

accesses directory contents in SCM to locate the file and can then read file data directly from

SCM as well.

Thus, Aerie provides two paths to storage: (1) a fast, untrusted code path, and (2) a slow,

trusted code path. The untrusted code path executes within any user process and relies

on virtual memory hardware to limit access to data. Thus, reading files can be provided

completely by the code in libFS. The trusted code path invokes TFS to support any operation

on file-system state that cannot be enforced in hardware. For example, enforcing integrity

constraints, such as reference counts, cannot be left to clients.

In order to support multiple file systems, a system may have multiple implementations

of the library and the service, one for each file system implementation. The kernel code,

though, is common to all file systems. In addition, a single file system may have multiple

libFS implementations optimized for different workloads.

Abstractions and Interfaces

To encourage flexibility, we architect Aerie in three layers, each providing a specific service.

Like ZFS layers (ZPL, DMU, and SPA) [23], these layers allow lower-level services to be reused

by multiple higher-level file systems or file-system interfaces. Table 4.1 lists the layers of Aerie

and the main operations of the layer.
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Abstraction Function Operations

SCM Allocation

Partitions Contiguous memory that can be
mapped to virtual address space

allocate, free, mount

Extent Contiguous memory with same access
rights

create, delete, mprotect

Storage Abstraction

mFiles Mapping of offsets to memory loca-
tions

create, delete, addExtent,

removeExtent, protect

Collections Grouping of storage objects create, delete, add, remove,

protect

Locks Concurrency control request, release, revoke

File System

Files, Directories Standard POSIX file systems create, unlink, read, write,

...

Table 4.1: Aerie layers and their supported abstractions and operations.

Storage-class-memory allocation layer. At the bottom level, the SCM allocation layer does

the minimum work required for protection: it records and enforces resource usage. To achieve

this, it exposes storage in the form of memory partitions and memory extents, which are close to

hardware and provide primitive operations upon which higher-level interfaces are built.

A memory partition is a contiguous region of virtual addresses mapped to SCM, and

is used for coarse-grain allocation of physical SCM to a file system volume. Partitions are

named by their starting address, and the allocation layer exposes a list of partitions and their

owners similar to a mount table.

A memory extent is a range of memory within a partition associated with protection

rights and higher-level software assigns their location and size. Memory extents are similar

to standard file-system extents with the addition of protection and are used by higher layers

to store data within an object, such as file contents. While each extent is contiguous virtually,

higher-level objects constructed out of extents, such as files, may not be as they can combine

non-adjacent extents through an indirection structure. Extents are named by a descriptor

that encodes their partition and offset within the partition. In addition to methods to create

and delete extents and partitions, the SCM allocation layer provides a method to change the

protection of an extent with the mprotect operation.

The SCM allocation layer provides a simple ACL representation for higher levels to specify
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permission on file-system data. These ACLs are stored for each extent.

Storage abstraction layer. This layer adds structure and synchronization to the raw memory

exposed by the allocation layer. It provides low-level methods that can be used to implement

functionality commonly found in file systems, thus allowing higher-level flexibility.

The storage abstraction layer implements two basic abstractions of memory: the memory

file (mFile), which maps offsets to extents, and the collection, which groups objects (mFiles

or other collections). Both mFiles and collections provide the same access to all members

(extents for mFiles and elements for a collection). These abstractions are the building blocks

for files, directories, and other file-system metadata structures.

The storage abstraction layer also provides distributed concurrency control through a hierar-

chical lock service to synchronize access to shared data across processes. The lock service lets

clients request a lock for shared or exclusive access to an object. It also offers hierarchical intent

locks [78, 192], which can make locking more efficient when resources can be organized in a

hierarchy such as a directory of files. We describe this more in later sections.

File-system interface layer. The top layer implements a file system API. Similar to Pilot [154],

this level provides a name space above lower-level collections and mFiles and can expose

familiar interfaces to create, delete, or rename files. While the lower level provides the

mechanisms for storing, retrieving, and protecting data, the interface layer provides the

policies of how and when to access data. The FS interface layer assigns protection both to

storage objects that clients can read directly and to metadata limited to the TFS. The interface

can either be a standard POSIX interface or tailored to application needs, such as a tag-based

lookup mechanism [169].

Components

While Aerie seeks to provide as much functionality within a client process as possible, some

file-system features require a third party. Cooperation between mutually distrustful programs
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Figure 4.2: Aerie design components (solid colored). Arrows show communication between
components.

requires a trusted entity to enforce synchronization and integrity [167]. Thus, Aerie distributes

the file system among three components.

libFS Client Library. Applications link against a libFS library for each file-system interface

they use. The library provides functionality from both the FS interface and storage-abstraction

layers needed to find and access data: lookup to map file names to file metadata, and indexing

to translate a file offset into a byte in memory. It also implements logic to invoke a trusted

service.

Trusted File System (TFS) Service. Functionality that requires a trusted third party (i.e.,

integrity and concurrency control) but not privileged hardware access execute in the TFS

service, which includes code both from the storage abstraction and FS interface layers. The

service also provides complete file system functionality on data for which memory protection

is too coarse. The service executes as a user-mode process accessed via RPCs.

SCM Manager. Operations requiring hardware privileges, such as modifying memory

permissions or virtual address mappings, must execute in the kernel. The SCM manager
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provides the storage allocation layer, which contains only low-level mechanisms that are

independent of high-level file system organization.

4.1.3 File System Design

In previous sections we described the layered architecture and basic components of Aerie.

Here, we discuss how to build a complete file system with this architecture.

Naming. Aerie implements a namespace by mapping each directory to a collection. The

collection maps a name to the identifier of an mFile (for a file) or a collection (for a subdirectory).

While namespace operations are metadata heavy, operations that read metadata can be

serviced directly and safely by the library to avoid communication with the TFS service on

every file access. Thus, directory operations such as traverse, read, and open are handled by

locating collections in memory and reading them directly.

Protection. We use hardware page-level protection to implement file-system permissions.

We precompute the permissions for each piece of file data and then construct a page table

for a process based on the permissions it receives. In contrast, a normal file system checks

an ACL on every open, whereas we compute the effective ACL for the user and put those

permissions in the page table.

Although hardware-enforced protection enables us to efficiently enforce permissions, it

may be too rigid to directly represent the whole spectrum of file-system permissions. For

example, while read permission on a file is equivalent to read permission on a page containing

the file data, this does not hold true for directory contents: list and traverse both require reading

the directory contents, but only list lets the client see all the names. Thus, clients with traverse

only should not be able to access the page containing directory contents.

A file-system implementation can therefore choose which memory to protect with hard-

ware and which to protect in software. Data with simple read/write permissions correspond-

ing to memory protection can be made available to libFS through memory. If not, then libFS

must call into the TFS service to access the object.
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Integrity. In order to prevent corruptions by untrusted code, only the TFS service applies

modifications to file system objects. Clients are only trusted to modify file contents but not file

system objects, such as mFiles and collections. Instead, they create a log of their operations,

similar to a file system journal, and ship the journal to the TFS. The TFS then validates the

entries in the journal are legal, protected by locks, and preserve invariants, such as link counts

and free/allocated status. Finally, the TFS applies them as a transaction by forcing the log to

SCM and then updating data structures.

Similarly to a kernel-mode file system though, the service is vulnerable to corrupting

itself. The file system and storage abstractions can use existing techniques such as checksums,

replication, sealing pages through memory protection, or periodic checks of metadata.

Concurrency. Aerie performs concurrency control over storage objects using the distributed

hierarchical lock service. File systems use hierarchical locks to grant a client access to a subtree

of the name space. A client can read all the files within a subtree without communicating

with the server, which improves performance. A client requests a lock that covers an object,

and can use that until it is done or the lock is revoked. The TFS requires that clients hold

a lock covering an object when sending a metadata update to the TFS. Clients, though, can

treat locks as advisory, because the data is already available through memory. In addition, a

client may change the granularity of locks internally, such as by assigning byte-range locks to

different threads while the process holds a lock on the entire file.

The file system library is free to provide applications any degree of consistency and

concurrency semantics. For example, Windows file systems provide mandatory locking,

while POSIX file systems do not, and GFS provides atomic append operations [69]. A client

library can choose when to acquire locks and how long to hold them to implement different

consistency levels [78].

Clients can batch updates together while holding a lock. This amortizes the cost of

communicating with the server. Internally, a client should structure operations as short-lived

because a lock may be revoked on short notice. When a lock is revoked, the client must ship

to the service any buffered metadata updates covered by the lock before releasing the lock.
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This is required because TFS does not accept metadata updates that are not covered by a lock

in order to preserve invariants during concurrent updates. If a client does not revoke the

lock when requested, TFS forcefully releases the lock, which clients treat similarly to media

removal.

Durability. The TFS guarantees atomicity and durability of metadata operations, but the

libFS clients must ensure durability of file data by forcing it out to SCM. To provide atomicity

when an operation modifies multiple metadata objects, the TFS provides atomicity using

write-ahead redo logging. For example, writing new data to a file may require the file system

to allocate and insert multiple extents into the file’s storage object, all of which go to a persistent

journal first.

Failures. Aerie must handle four types of failure. First, media failure may happen when SCM

hardware is physically damaged. Such failures can be addressed using existing techniques

such as checksums and replication. Second, client failures may happen when a client crashes

due to a software error. Aerie addresses client failures by revoking locks held by the client

and discarding any outstanding metadata updates a failed client has not yet shipped to the

service. This guarantees metadata invariants but allows client data to be lost. Third, the

whole system may fail due to a software or hardware error, or power failure. Upon system

restart, the service restarts and can perform recovery from the log. Third, the service may fail.

We treat this similar to a system failure, and require that the TFS and all clients restart.

4.1.4 Summary

Aerie provides flexibility through simple abstractions that support a variety of file system

interfaces. It is structured in three layers, which are distributed through the kernel, client

libraries, and a trusted file-system service. It prevents a faulty client from corrupting data by

centralizing metadata updates at the TFS, which ensures clients can only corrupt file contents

(similar to current systems). Aerie uses a distributed hierarchical lock service to synchronize
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Subsystem # Lines Subsystem # Lines

Infrastructure services 3800 Storage objects 10220
SCM manager 650 PXFS 2660
Distributed Lock Service 2910 KVFS 340
Total 20580

Table 4.2: Aerie implementation size.

access to files, which allows many operations to be performed without communication and

many updates to be batched together.

An alternative design to direct access to SCM is to cache an entire file system in DRAM

and use SCM only to log updates. We see two challenges to this approach: (1) recovery may

be slow, as it requires rereading data from another medium (flash or disk) and re-applying

a long log, and (2) SCM device scalability may be better than DRAM and lower power so it

may not be economically justified to keep the whole file system in DRAM [115].

The Aerie design shares strong similarities with many distributed file systems that allow

clients to access a storage service directly. However, it relies on hardware for access, which

only provides read and write operation, rather than software, which can provide a much

richer interface [135, 71]. The trust model also differs from past systems relying on a shared

block device, because clients cannot be trusted to make correct changes to metadata [182].

4.2 Implementation

We implemented an Aerie prototype on Linux 3.2.2 for x86-64 processors. In this section

we present the implementation of the two lower-level layers of Aerie, the SCM allocation

layer and storage abstraction layer. We defer the discussion of two file system interfaces to

Section 4.3. Table 4.2 summarizes the amount of code comprising Aerie’s major components.

Kernel-mode code is written in C, while user-mode code is written in C++.
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4.2.1 Infrastructure Services

Aerie relies on low-level mechanisms for inter-process communication and for consistently

updating data in SCM.

Interprocess Communication. We use remote-procedure call (RPC) implemented using

sockets on loopback interface for communication between clients and the server . The server

is multithreaded and can handle multiple RPC requests concurrently. Batching of metadata

operations at a client (Section 4.2.4) helps take RPC off the critical path for most operations.

A lightweight RPC implementation that leverages shared memory and hardware synchro-

nization could further help reduce the cost of communication [18].

Persistence Primitives. We borrow the persistence primitives from Mnemosyne [188] to

support consistently updating file system structures in SCM in the presence of failures. We

use regular x86 instructions and provide three basic operations: (1) wlflush uses x86 clflush

to write and flush a cache line out of the processor cache into SCM for persistence, (2) bflush

uses x86 mfence to flush the processor write-combining (WC) buffers into SCM for persistence,

and (3) fence uses x86 mfence to order writes to SCM.

We use these primitives to implement our higher-level consistency mechanisms and a

persistent log for redo logging. Writes to the log are done using x86 streaming instructions

(which buffer writes in WC buffers and enable high bandwidth for sequential writes). Flush

of the log writes to SCM is done through bflush.

4.2.2 SCM Manager

The SCM manager is a kernel component that provides the storage-class memory allocation

layer. Its responsibility is allocation, mapping, and protection of SCM.

Allocation. The SCM manager is designed for allocating a small number of large static

memory partitions. It allocates contiguous regions of physical memory using first-fit. The

SCM manager stores a table listing each partition and an access control list indicating who can
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modify or access the partition, typically the TFS. As with all data structures in Aerie, the SCM

manager stores the partition table in SCM and uses persistence primitives to assure consistent

updates. The SCM manager delegates extent allocation to user mode so that user-mode file

systems can implement the allocation policy they prefer. User-mode code allocates an extent

by choosing a location within a partition and then calling the SCM manager to record the

location and protection information of the newly allocated extent.

Mapping. Once allocated, a partition can be mapped into any process with the scm_mount_-

partition API. In order to reduce the overhead of page tables, the SCM manager uses a linear

mapping of physical addresses that can be computed from a single virtual base address, and

maps SCM at the same virtual address in all processes. Thus, mounting a partition does not

actually map it into an address space but instead ensures that ensuing page faults will lazily

create the page table. This effectively treats the page table as a giant software TLB, similar to

Mach’s pmap structure [153]. As a result, page tables are dynamic structures that need not be

stored in SCM.

The SCM manager further reduces the space overhead of the page table by aggressively

sharing page tables between processes. All processes with the same access to files—those

with the same user and group IDs—share the entire page table.

Protection. The unit of protection in Aerie is the extent. We store extents in a radix tree

corresponding to the page-table layout. Each extent consists of a starting address, length, and

a 32-bit ACL identifier. The 30 higher bits represent a group identifier (GID) and the lowest 2

bits represent the memory protection rights (read, write). The scm_create_extent API takes a

starting address and length in pages and creates an extent structure. The scm_mprotect_extent

changes the protection on an extent. Only processes with write access to a partition can manip-

ulate extents. At run time each process inherits and maintains the user’s group memberships

in a hash table. On a page fault, the manager uses the GID of the extent as a key in the hash

table to quickly decide if the process has access to the extent.

Changing permissions on an extent is more expensive than changing permission on a file
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because permissions must be changed for all clients of the file system. To avoid synchronously

modifying many page tables, the SCM manager instead invalidates portions of the page table

mapping the affected extents (if they were valid), and allows them to be faulted back in later.

Thus, clients implicitly communicate with the kernel to reload mappings when protection

changes.

We borrow a technique from single address space operating systems to handle page

faults [33]. When a page fault occurs, the SCM manager computes a new page table entry

from the linear mapping and the permissions stored in the extent tree. On a processor

architecture with support for separating protection from addressing [107], only a single page

table would be needed.

4.2.3 Distributed Lock Service

The storage abstraction layer contains two services: distributed concurrency control and

storage objects. We discuss concurrency first and storage objects in the next section.

We implement distributed concurrency control with a centralized lock service executing in

the TFS service. The lock service provides multiple-reader, single-writer locks identified by a

64-bit identifier. Our implementation derives from prior lock services for storage systems [182,

97, 192, 73, 78, 121]. However, because our lock service is intended for a single machine, we

do not replicate the service for fault tolerance. Aerie does not use Linux’s futexes [57] because

it must be able to revoke locks.

Clients access the lock service via a local clerk. When a client thread requests a lock,

the clerk invokes the lock service to acquire a global lock that synchronizes the client with

other processes. The clerk then issues a local lightweight mutex that client threads use to

synchronize within the process. When another process requests conflicting access to the lock,

the service calls the clerk back to revoke the lock.

The clerk may hold the lock after a thread releases the local mutex. It releases the global

lock when it has not been used recently or when the lock service calls back to revoke the

lock. If the lock is in use when a callback arrives, the clerk prevents additional threads from
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acquiring the local mutex and releases the global lock when the local mutex is released.

Clients of the lock service are responsible for preventing deadlocks by ordering or preempting

locks.

Hierarchical locking. Aerie assigns a unique global lock to every object, such as a collection

or mFile. Like a futex, the ID of an object can be used as the name of a lock [57]. The lock

manager provides three modes for each lock: explicit, meaning the lock covers only a single

object; hierarchical, meaning it covers the object and its descendants, and intent, meaning that

the object is not locked, but a descendant may be. When acquiring a hierarchical lock clients

can access members of a collection without additional locks.

The clerk in libFS implements the hierarchical locking logic. If it holds a hierarchical lock,

the clerk answers requests for locks on descendant objects locally and issues local mutexes.

For example, a client can lock a directory of files using a global lock and then acquire local

mutexes on individual files. The clerk de-escalates in response to revocations [97]. When

another thread requests conflicting access to a resource protected by a hierarchical lock, the

clerk will request locks lower in the hierarchy and release the high-level lock.

Protection. An unresponsive client can deny service to the file system due to bugs or ma-

licious behavior. This occurs in any system with mandatory file locks, such as Windows.

Aerie addresses denial-of-service by attaching a lease to each lock that must be renewed

by the clerk [73]. Leases bound the time processes wait behind a lock for an unresponsive

client that does not renew its lease implicitly releases the lock and allows other processes

to proceed. Furthermore, Aerie can limit the number of locks a process may hold to reduce

contention [28].

4.2.4 Storage Objects

The storage abstraction layer provides objects upon which file systems can build. The imple-

mentation is shared between the TFS server, which is responsible for writing to objects, and

libFS, which provides read access to objects and write access to object contents.
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Data Structures

We provide simple implementations of mFile and collections that are sufficient to show the

use of the abstractions. We use C++ template polymorphism to decouple the implementation

of the interface from the implementation of layout and consistent updates. Thus, other

implementations are possible with the same interface and could provide better performance

or less space overhead.

Each storage object is identified by a 64-bit integer (a storage object ID). The six least-

significant bits encode the type of the object and the remaining 58 bits encode the virtual

memory address where the object is stored. This encoding enforces a minimum object size of

64-bytes and provides 64 different types. As a result, accessing an object requires no lookup

of its address, but it cannot be relocated in memory. We did not find the lack of relocation to

be an issue in the file systems we implemented. Objects can grow arbitrarily large without

having to be relocated because they are not linear regions of virtual memory but a structure

composed of multiple extents. Storage objects expose a buffer to store metadata from the file

system interface layer. They are allocated from extents with other objects sharing the same

protection.

Collections. The collection object provides an associative interface for storing key-value

pairs. We implement collections as a linear hash table that is packed into extents. The hash

table stores key-value pairs in which a key is an array of bytes of arbitrary length and the value

field stores a 64-bit storage object ID. When the hash table fills, we attach additional extents

and rehash some existing elements into the new extents. We perform consistent updates

using shadow updates, so new extents are allocated and populated and then linked into the

hash table with a single 64-bit atomic write to a pointer. We delete items by marking them

using a tombstone key. When the number of tombstones rise above a configurable threshold,

we rehash the live key-value pairs into a new table and then update the collection’s header to

point to the new table with a single 64-bit atomic write.
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mFile. The mFile object provides access to a range of bytes starting at a specified offset. We

implement the mFiles as radix tree of indirect blocks that point to fixed-size extents. Larger

extents are broken into pieces when added to the tree.

Protection

The file-system layer assigns protection to a storage object and the storage layer must propagate

that protection to the memory containing the file objects using the scm_mprotect_extent API.

However, memory and file systems do not have perfectly compatible protection models:

memory typically grants read or read/write access, while files may have write-only access.

In addition, metadata may have semantically richer permissions, such as directory list and

search. The file system interface maps each granted permission to the protection it enables

and each denied permission to the protection it disables. The granted permissions remaining

after removing denied permissions are then mapped to memory. This process ensures that

permissions requiring conflicting protection are properly enforced. For example, granting

write-only access to a file allows the write permission, which is enabled by read/write

protection, but disallows the read permission, which prevents read-only and read/write

protection. Thus, the file data would be set to no-access protection.

The untrusted library can directly access any storage memory allowed by protection. Since

protection is stricter than permissions, the library calls into the TFS service for any operations

allowed by file system level permissions but prevented by memory protection, as in the case

of write-only files.

Concurrency

The storage layer associates each storage object with a global lock. Clients acquire the lock

in read mode when they read objects directly, and in write mode for metadata updates

performed by the TFS. The storage service checks with the lock service to verify that clients

hold the appropriate lock on the object before it performs any updates.
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Hierarchical locking overview. Aerie file systems may use hierarchical locks by organizing

storage objects in a tree hierarchy through collections. When a client acquires an hierarchi-

cal lock on a collection, it implicitly locks any other storage object accessible through the

collection.

When a storage object is member of multiple collections, such as a file hard linked to

multiple directories, standard hierarchical locking no longer works. This happens because

there are multiple paths leading to the object, but an hierarchical lock locks a single path. The

classic solution would be to lock each collection from which the file is accessible [78]. However,

this approach requires finding those collections, which introduces complex bookkeeping.

Instead, we follow a novel locking protocol where clients do not need to lock each collection

but instead explicitly lock just the object. We next discuss our hierarchical-locking protocol in

more detail and explain how it locks objects that may belong to multiple collections.

Protocol details. Each object keeps a membership count that states what type of lock should

be used to lock the object: if the membership count equals one then an implicit hierarchical

lock may be used, otherwise an explicit lock must be used. For the membership count we

maintain the following invariant:

Invariant 4.1. An object’s membership count never underestimates the number of collections the

object is member of.

Thus, an object’s count may overestimate the actual number of collections. This is safe

because in such a case a client will conservatively deduce that it must acquire an explicit lock

on the object. The service updates the membership count when it adds or removes an object

from a collection. To maintain the above invariant, the membership count is increased before

adding an object into a collection, and it is decreased as the last step when removing an object

from a collection.

When a client wants to lock an object, it first obtains intent locks on all the ancestor objects

of the object to enable conflict detection with future hierarchical locks by other clients. Then

the client uses the object’s membership count to deduce the type of lock to acquire. If the
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object’s membership count equals one then it tries to acquire an implicit hierarchical lock

on the object, otherwise it tries to acquire an explicit lock. Recall from Section 4.2.3 that

an hierarchical lock may be acquired implicitly if the client already holds a globally visible

hierarchical lock on an ancestor of the object.

When TFS updates an object per client’s request, it first verifies that the client holds the

right lock on the object. If the object’s membership count equals one then TFS accepts both

implicit locking through an hierarchical lock and explicit locking. When using an implicit

lock to perform an update, TFS requires the client prove that it has an hierarchical lock that

covers the object by providing the list of collections between the locked and mutated object.

If the object’s membership count is greater than one then TFS accepts only explicit locking.

Proof sketch: We informally show the correctness of our locking protocol by considering

the two possible race conditions:

1. Insertion race: A client inserts an object into a collection, and MembershipCount = 1

transitions to MembershipCount > 1. The client either holds an (implicit) hierarchical

lock or an explict lock on the object. A client that concurrently accesses the object may

see MembershipCount = 1 and try to acquire an hierarchical lock. The client serializes

because the object is still only accessible through a single collection, which is already

locked by the client inserting the object into the new collection. If the client reaches

the object through another collection then by our membership invariant we know that

MembershipCount > 1 so the client will try to acquire an explicit lock.

2. Removal race: A client removes an object from a collection, and MembershipCount > 1

transitions to MembershipCount = 1. The client holds an explicit lock on the ob-

ject because MembershipCount > 1. A client that concurrently accesses the object

may see MembershipCount > 1 and try to acquire an explicit lock. The client se-

rializes because the client removing the object already holds the explicit lock. The

client holding the explicit lock releases the lock only after it removes the object and sets

MembershipCount = 1. When a concurrent client sees MembershipCount = 1, the
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Abstraction Operation Log-record fields Invariants

Extent
createExtent fsid, eid, slot 4.3
deleteExtent fsid, eid, slot 4.3

mFile

createMFile fsid, mfid, slot 4.4
deleteMFile fsid, mfid, slot 4.4
addExtent mfid, boff, eid 4.2, 4.3
removeExtent mfid, boff, eid 4.2, 4.3, 4.5

Collection

createCollection fsid, cid, slot 4.4
deleteCollection fsid, cid, slot 4.4
addObject cid, key, oid 4.2, 4.4, 4.6, 4.7
removeObject cid, key, oid 4.2, 4.4, 4.5

Table 4.3: Log records of storage-object operations and their type-specific fields. Refer to
Table 4.4 for invariants.

type opcode

Type independent Type specific

S addExtent mFile id (mfid) block offset (boff) extent id (eid)

F mkfile parent collection id (pcid) name mFile id (mfid)

…

Figure 4.3: Log record format.

S createMFile
0x0BAE…0A 
(freeset id)

0x0AFA…08
(mFile id)

413
(slot hint)

F mkfile 0x0AAA…06 (parent id)

S addObject
0x0AAA…06
(collection id)

"foo"
(key)

0x0AFA…08
(mFile id)

...

...

0x0AFA…08 (mfile id)
"foo" 

(name)

Figure 4.4: Log fragment corresponding to a file create for foo.

client can safely deduce that there is a single collection leading to the object and can

therefore try to acquire the hierarchical lock. �
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Invariant 4.2. Any object modified is covered by a lock:

modifyObject(obj)⇒ hasLock(obj)

Invariant 4.3. An mFile object maps only allocated extents:

createExtent(_, eid, _)⇔ addExtent(_, _, eid)
deleteExtent(_, eid, _)⇔ removeExtent(_, _, eid)

Invariant 4.4. A collection object maps only allocated mfile or collection objects:

createMFile(_,mfid, _)⇒ addObject(_, _,mfid)

createCollection(_, cid, _)⇒ addObject(_, _, cid)
addObject(_, _,mfid) ∧ type(mfid) = mFile ⇒ createMFile(_,mfid, _) ∨

exists(mfid)

addObject(_, _, cid)∧ type(cid) = Collection⇒ createCollection(_, cid, _)∨
exists(cid)

deleteMFile(_,mfid, _)⇒ removeObject(_, _,mfid)

deleteCollection(_, cid, _)⇒ removeObject(_, _, cid)

Invariant 4.5. No orphan extents or objects left behind:

removeObject(_, _,mfid)∧ linkCount(mfid) = 1 ∧ type(mfid) = mFile⇒
deleteMFile(mfid)

removeObject(_, _, cid) ∧ linkCount(cid) = 1 ∧ type(cid) = Collection ⇒
deleteCollection(cid)

deleteMFile(_,mfid, _)⇒ ¬∃eid : eid ∈ extentSet(mfid)

deleteCollection(_, cid, _)⇒ ¬∃oid : oid ∈ objectSet(oid)

Invariant 4.6. No duplicated keys exist in a collection:

addObject(cid, key, _)⇒ key /∈ keySet(cid)

Invariant 4.7. Collections do not form cycles:

addObject(pcid, key, cid)∧ type(cid) = Collection⇒ noCycle(pcid, cid)

Table 4.4: Storage-object invariants. Symbol _ matches any value. Predicate noCycle is
defined by the file system using the storage objects.
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S createExtent
0x0AAE…0A 
(freeset id)

0x0AFD...00
(extent id)

634
(slot hint)

F write 0x0AFA…08 (mFile id)

S addExtent
0x0AFA…08

(mFile id)
526

(block offset)
0x0AFD...00
(extent id)

S createExtent 0x0AAE…0A 0x0AFE...00 739

S addExtent 0x1FAA…08 527 0x0AFE...00

...

...

526 (block offset) 8192 (nbytes)

Figure 4.5: Log fragment corresponding to a file write of size 8192 bytes at block offset 526.
Each extent has size 4KB.

Integrity

File-system interfaces and the storage layer cooperate to guarantee the integrity of meta-

data. The file-system interface enforces high-level invariants, such as ensuring that rename

operations do not cause cycles in the namespace. The storage layer enforces storage-object

invariants, such as ensuring that mFiles map only allocated extents.

The TFS server performs all modifications to file system objects in order to prevent clients

from violating these invariants. To avoid frequent synchronous calls to the service for every

metadata update, clients buffer their updates locally in a log that they send to a server

periodically (similar to delayed writes) or when they must release a global lock.

The log is implemented by the storage abstraction layer. It contains file-system interface

operations similarly to Coda [102]. A file-system operation is an atomic transformation of file-

system objects that maintains file-system invariants. A file-system operation may comprise

multiple storage-object operations, which as a whole must maintain storage-object invariants.

That is, a log record for a file-system operation may nest multiple log entries of storage-object

operations. Figure 4.3 shows the format of a log record. Each record has a type-independent

header identifying the operation and a sequence of type-specific fields. The same figure

also shows two example log entries: (i) a file-system log record mkfile that creates a file

mfid named name in directory pcid, and (ii) a storage-object log record addExtent that maps

an extend eid at offset boff of mfile mfid. Figure 4.4 shows an example log fragment where
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multiple storage-object log entries are nested within a file-system log record for creating a file.

The ability to log operations from both storage objects and the file system enables the

TFS server to benefit from work done at the client. Instead of having the server perform all

the work needed for a file-system operation, the client may decompose the operation into

individual storage-object operations that the server validates and performs. The client may

guide the server by providing hints, which the server can use to skip work that otherwise it

would have to do. For example, Figure 4.5 shows the log fragment of a file write that requires

allocating new storage. The client logs the file-system operation, and then logs each individual

storage extent it pre-allocates (createExtent) and wishes to attach to the file (addExtent). This

allows the client to write the data to the extents without involving the server. When the client

finally ships the log to the server to apply the changes, the server only has to validate each

allocation and attach each extent to the file rather than having to allocate storage, write the

data, and then attach the extents to the file. Operation createExtent also includes a hint to

the free-set slot containing the extent, which the server can use to quickly validate that the

file write uses a free extent.

The server validates a client’s updates before applying them to ensure they maintain

invariants. When a logged file-system operation comprises multiple storage-object operations,

the server verifies that these operations as a whole maintain the storage-object invariants listed

in Tables 4.3 and 4.4. For any operation that modifies an object, the server also verifies that the

client holds necessary locks and permissions. Recent work has shown that such file-system

integrity constraints can be specified as inference rules and enforced online using fast local

checks on the data being modified [66]; we take a less automated approach but future work

could consider incorporating their inference rule engine into our system. We implement

our invariant checkers as state machines. For each storage-object operation, we provide a

checker that parses a log record, validates that the record has a valid structure, corresponds

to a known operation, and that the operation maintains invariants. The invariant check is

implemented using pre- and post-condition checks that are derived from the invariant. File

systems construct a checker for each file-system operation by connecting together individual
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storage-object checkers into a state machine that validates a sequence of operations. Each

machine state represents outstanding conditions that must be satisfied so as to accept the

modifications as valid. Checkers transition the machine between states when an outstanding

condition is satisfied or a new condition is introduced.

Putting it all together, reconsider the example in Figure 4.5. A checker for file write vali-

dates that each pair of createExtent and addExtent maintains invariants 4.2 and 4.3. Invariant

4.3 is validated by checking that createExtent properly allocates the free extent needed by

addExtent, and vice versa.

Crash Recovery

The TFS server uses write-ahead logging implemented using a redo log to atomically perform

multiple metadata updates. The server first logs each metadata update, flushes the log, and

issues a fence to ensure following writes are ordered after the log writes. It then writes and

flushes metadata using wlflush. In case of a crash, the TFS server can recover by replaying

the log of metadata updates. The server does not need to reacquire locks as updates were

written and ordered in the log with locks held.

Free Space Management

The TFS service implements a buddy storage allocator [105, 106] to create extents out of a

partition. Clients do not allocate storage directly through the buddy allocator. Instead, libFS

pre-allocates a pool of 1000 collections, 1000 mFiles, and 1000 extents to avoid contacting the

service for create or append operations. The service maintains a collection that tracks the

pre-allocated objects owned by each client to prevent memory leaks.

4.3 File Systems Interfaces on Aerie

A major goal of Aerie is to provide a substrate for flexible file-system design. To demonstrate

this capability, we implemented two file system interfaces. The first, PXFS, shows how to use

the storage abstractions to implement a POSIX-style file system interface for compatibility
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with existing code. The second one, KVFS, shows how to optimize the interface for a specific

workload.

4.3.1 PXFS: POSIX-style File System

PXFS provides most POSIX semantics for files and directories, including moving files across

directories, retaining access to open files after its permissions change or it is unlinked, and

permission checks on the entire path to a file. It does not provide asynchronous update of

timestamps or predictable file-descriptor numbers.

Storage Objects. We implement POSIX storage objects directly with mFiles and collections.

Files are mFiles with page-size extents and directories are a collection mapping file names

to the object IDs of files and directories. A root collection holds the root directory. Because

the storage layer provides most of the mechanisms to access file data, the file and directory

implementation is small. Since clients cannot directly modify storage objects, PXFS creates a

temporary shadow object in the client when modifying metadata of an object. The shadow

reflects the changes done locally by the client. It enables the client view an object image that is

consistent with the operations the client has performed before sending the metadata updates

to the TFS server. For example, when writing to a file, the client creates a shadow file object

where the client buffers its metadata updates. The client bypasses file reads through the

shadow so that it accesses writes it has performed.

Integrity. We construct integrity checks for file-system operations as described in Sec-

tion 4.2.4. For invariant 4.7 we define noCycle to check that the directory collection added is

not already included in another directory collection. This is a conservative check that similarly

to POSIX ensures there are no cycles by preventing hard links to directories.

Naming. We implement a hierarchical namespace by organizing the directory collections

into a tree. To create a file within a directory, a client creates an mFile, acquires a read/write

lock on the directory’s collection, and then inserts the name and mFile’s object ID. To atomically
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rename a file between directories, PXFS acquires read/write locks on old and new directory

collections, inserts a name/file ID pair in the new destination and removes the name/file ID

from the old collection. Since acquiring multiple locks, may lead to deadlock, we acquire

all the locks in advance and release all locks if the TFS revokes a lock. Since acquiring

read/write locks on collections forces other clients that hold locks on the collection to send

their modifications to the service, directory updates that happen near the root directory may

be slow.

PXFS supports both absolute and relative path resolution. Absolute paths are resolved

starting at the root by recursively acquiring a read-only lock on each directory collection

until the name is resolved. Relative paths are resolved starting at the working directory by

recursively acquiring locks up or down the directory hierarchy to prevent concurrent renames

of directories higher up the tree.

File sharing. PXFS supports concurrent file access. When a client opens a file, it acquires

a lock on the file’s mFile, which it holds until it closes the file. To allow files to be unlinked

while open, the PXFS TFS service maintains a table of open files that are not locked. When

another client requests the lock on an open file, clients with the file open notify the service

that the file is open when releasing the lock. The service then adds the file into a collection of

currently open files. The client can still obtain explicit locks on the mFile to read or write data,

and when the client terminates or notifies the service that it has closed the file, the service

reclaims the file’s memory. This design guarantees the client can directly access the file even

if other clients unlink or rename it.

Permission changes are handled similarly: memory protection is updated synchronously

when the permissions change, but processes with the file open notify the service. They can

then access the file through the service over RPC. This approach to sharing is similar to

Sprite’s support for consistent read/write sharing [143], which reverts to sending requests

to the server when there are conflicting concurrent accesses to a file. As POSIX specifies

that permissions are enforced along the path to a file (Windows by default does not), PXFS

updates the protection on all objects underneath a directory when its permissions change.
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Discussion. With this design, read-only access to files only communicates with the TFS

service to acquire locks, and if there are no conflicting accesses, a coarse grained lock high in

the file system tree suffices. The client can write to file data locally, including writing new

data to files, but must communicate with the service for metadata changes such as creating

or appending to a file.

We found that supporting POSIX semantics increases the complexity of the implementa-

tion. For example, to retain open files that have been unlinked, clients must communicate

with the server to indicate when files are opened or closed. While we chose to provide this

feature to support applications that depend on it, the performance cost when files do not

need to be cached may be excessive.

4.3.2 KVFS: Key-Value File System

In order to demonstrate how an application can use Aerie’s facilities to improve performance,

we designed KVFS to provide a (i) simple storage model and (ii) a key-value store interface

targeting applications that store and share many small files in a single directory, such as

a web-proxy cache, an email client or wiki software. For example, a web-proxy cache that

keeps a file per cached item can use KVFS to efficiently store and access cached items. At the

same time an administrator can continue accessing the cache through PXFS, which provides

backwards compatibility to her standard auditing scripts and utilities.

With KVFS, clients have a shared consistent view to files through a flat key-based names-

pace and access files through a simple put/get/erase interface. In addition, all files have the

same permissions. In contrast to PXFS, KVFS does not support POSIX semantics, such as

hierarchical namespace, unlinking or renaming open files, and multiple names for a file.

KVFS files are implemented with mFiles containing a single extent holding the entire file

contents. The mFiles store no other metadata, such as permissions or access time. The file

system does not have a hierarchical namespace, so all files are stored in a single collection

that maps file names to mFiles. Thus, KVFS and PXFS use the same memory layout and differ

in the policies the interface layer uses to allocate and synchronize data.
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We enable scalable concurrent access to the flat key-based namespace through hierarchical

locks. A single lock covers the whole collection and multiple locks under the single lock cover

the extents that comprise the hash table of the collection. Each extent’s lock also covers the files

linked from the key-value pairs stored in the extent. Operations acquire the single collection

lock in intent mode, and then acquire the lock covering the extent where the key-value pair is

stored. Insert and delete operations acquire a read/write lock while lookups acquire a read

lock. When insert or delete cause a rehash of the table, the rehash operation acquires the

single lock covering the whole collection in read/write mode.

With this design, a client can operate almost entirely without communication. It can batch

requests to pre-create file objects and allocate extents, and then commit groups of files at once.

Furthermore, the get/put interface opens a file and returns its data in a single operation,

which removes the need to maintain state about open files in memory. An alternative model

to KVFS would be to implement a key-value store as a single large file, KVFS, in contrast,

enables mutually distrustful programs to concurrently access and update files, such as for

indexing or backup/restore.

4.4 Evaluation

The goal of Aerie is flexibility and performance. We evaluate performance with a mix of

micro- and macrobenchmarks and compare against traditional and user-mode file systems.

In addition, we evaluate the benefits of specializing file system design to a workload.

While we have limited experience building file systems for Aerie, the PXFS and KVFS

file systems demonstrate the value of its layered architecture. Table 4.2 gives the size of each

file system. For comparison, the ext3 file system in the Linux kernel is 11,663 lines, and the

user-mode implementation for Fuse is 18,916 lines. KVFS, with reduced functionality, is only

340 additional lines of code yet provides synchronized access to files. While neither KVFS nor

PXFS are as full-featured as ext3, their small size demonstrates the benefit of Aerie’s storage

abstractions to flexible file-system design.
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4.4.1 Methodology

We performed our experiments on a at 2.4GHz Intel Xeon E5645 six-core (twelve thread)

machine equipped with 48GB of DRAM running x86-64 Linux 3.2.2 kernel. For all our

experiments we report averages of at least five runs.

Storage-class Memory. We follow the methodology described in Section 3.5.1 to emulate

SCM using DRAM by adding delays to model SCM’s performance. All tests add 150ns of

extra latency.

Workloads. We compare Aerie against three Linux file systems: RamFS, ext3 and ext3 with

FUSE. RamFS uses the VFS page cache and dentry cache as an in-memory file system. We

modified RamFS to introduce delays when writing data and metadata in the caches to account

for the extra delay of PCM. RamFS does not provide any consistency guarantees against

crashes; thus it serves as a best-performing kernel-mode file system. To compare against file

systems that provide crash consistency, we constructed an emulator, SCM-disk, for a PCM-

based block device. Based on Linux’s RAM disk (brd device driver), SCM-disk introduces

delays when writing a block to limit the effective bandwidth. We mount an ext3 file system

on SCM-disk. In addition, we also configured a user-mode version of ext3 using FUSE [175]

that writes data to SCM-disk. We use 16GB memory partition for all four configurations.

We wrote our own microbenchmarks that stress specific file operations. For application-

level workloads, we use a modified version of FileBench [5] that calls through libFS rather

than system calls. Unless otherwise specified, workloads are single threaded.

4.4.2 Microbenchmark Performance

Individual operations. A prime motivation for Aerie is that direct access to storage can make

user-mode file systems as fast as ones in the kernel. We evaluate the latency of common file-

system operations. The sequential tests operate on a 1GB file in 4KB blocks, and the random

workloads randomly access 100MB out of a 1GB file in 4KB blocks. Open/create/delete are
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Benchmark Latency (µs)
RamFS ext3 ext3-FUSE PXFS

Sequential read 0.77 0.83 3.5 0.7
Sequential write 2.1 1.9 18.4 1.5
Random read 1.2 4.5 25.5 1.2
Random write 1.4 3.8 20.8 1.6
Open 2.0 4.7 127.0 3.7
Create 9.2 113.4 2044.5 13.4
Delete 3.1 11.6 227 2.7
Append 5.4 7.5 25.3 4.0

Table 4.5: Latency of common file system operations. All read/write operations use a 4096-
byte buffer.

measured by opening/creating/removing 1024 4KB files. Because Aerie batches updates, we

report average latency.

Table 4.5 shows the latency of common file system operations on PXFS, RamFS, and both

ext3 versions. As expected RamFS performs consistently better than ext3 except for sequential

write. Writes in RamFS are performed directly to SCM whereas in ext3 they are staged in

RAM. PXFS performs close to RamFS for all operations but create and open, where PXFS

latency is 45% and 85% higher respectively. Opening a file takes longer for PXFS because

pathname resolution walks the persistent directory structure for each path component, and

creates a shadow object to buffer metadata updates. Of the 3.7µs to complete an open call,

0.85µs is spent in lookup and 1.5µs in creating a shadow. In contrast, RamFS already has

the objects in memory so it only pays the overhead of looking up directory entries in the

dentry cache, which is highly optimized for lookups. Adding a path-name cache to PXFS or

deferring shadow object creation until the first write can reclaim much of the performance

difference.

Compared with ext3 in the kernel, PXFS is between 15% to 90% faster (average 35%) for

all operations. Open is faster for PXFS because ext3 has to bring the file into the inode cache.

PXFS benefits by not calling into the kernel, which helps all writes and random reads, and by

batching metadata updates for create, delete and append.

In comparison to Aerie’s performance, user-mode performance with FUSE was between 5

to 21 times slower for read/write operations and between 10 to 150 times slower for metadata
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Figure 4.6: Performance of concurrent clients reading or writing a 4KB page of the same file.
1W - one writer, MW - multiple writers, and MR - multiple readers.

operations, largely due to the extra context switches and data copies necessary to invoke the

file-system service. Aerie provides a flexible means of implementing file systems with high

performance.

We separately measure the cost of changing file permissions. The TFS server asks the SCM

manager to change memory protection on pages storing the file with the scm_mprotect_extent.

If a page has been referenced and is in a page table, the SCM manager shoots down the page

from the TLB and invalidates its page table entries. Changing protection takes 3.3µs per page

that has been referenced, most of which is TLB shootdowns time. For large files, it may be
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Benchmark Latency (µs)
RamFS ext3 ext3-FUSE PXFS

Fileserver 198 (218) 424 (764) 5324 270 (292)
Webserver 143 (132) 158 (148) 2728 189 (195)
Webproxy 90 (66) 140 (130) 234 86 (64)

Table 4.6: Average latency and 95-percentile latency (in parentheses) to complete one workload
iteration.

faster to flush the entire TLB.

Sharing. Due to the lack of workloads that exhibit sharing between applications, we measure

instead the impact of sharing on our system through a stress microbenchmark. Figure 4.6

shows the latency of reading or writing a 4KB page of the same file shared between multiple

concurrent clients in PXFS. As expected, multiple writers exhibit poor performance due to

heavy lock contention, but a single writer with multiple readers degrades read and write

performance only slightly. Running the same microbenchmark on ext3 shows similar behavior

but with better absolute performance than PXFS due to in-kernel shared memory locking

rather than distributed locking.

4.4.3 Application Workload Performance

We evaluate application-level performance with three FileBench profiles (Fileserver, Webserver,

and Webproxy) to exercise different aspects of the file system. The Fileserver workload emulates

file-server activity and performs sequences of creates, deletes, appends, reads, and writes. The

Webserver workload performs sequences of open/read/close on multiple files and appends to

a log file. Webproxy performs sequences of create/write/close, open/read/close, and delete

operations on multiple files in a single directory plus appends to a log file. Each workload is

broken up into individual iterations, and we report the latency of an iteration. The Fileserver

and Webserver benchmark use 10,000 files, mean directory width of 20, and a 1MB I/O size.

The mean file size was 128KB for the Fileserver and 16KB for the Webserver. The Webproxy

benchmark was run with 1000 files, mean directory width of 1500, mean file size of 16KB,

and 1MB I/O size.
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Table 4.6 shows the average latency to complete one workload iteration. Compared to

RamFS, PXFS is 35% slower for Fileserver and Webserver, but matches the performance of

Webproxy. The microbenchmark results in Table 4.5 explains much of these results. Addi-

tionally, the Fileserver workload uses larger writes (128KB) than the microbenchmarks (4KB),

which amortize the cost of entering the kernel and lead to 25% better performance than PXFS.

Webserver is a read-mostly workload (opens/read/close) to small files. RamFS performs

better because of the lower latency to open a file (60% lower) due to in-memory caching of

directory entries. In contrast, PXFS has no caching and must re-walk persistent structures on

every access. PXFS matches the performance of RamFS on Webproxy because there is only a

single directory lookup.

Compared to ext3, which in contrast to RamFS provides crash consistency, PXFS achieves

36% and 39% lower latency for the Fileserver and Webproxy workloads. Both workloads

have a large fraction of file creates and deletes, writes, and random access, for which PXFS

is substantially faster than ext3. For Fileserver, the large performance improvement comes

from PXFS’s better write performance for writes (103µs vs. 220µs) and 70% faster deletes

(19µs vs. 62µs). The Webserver workload, though, is almost entirely sequential data reads

and performs worse on PXFS for the same reasons that PXFS performs worse than RamFS.

A large benefit for PXFS comes from batching, which is not possible in ext3 because the

kernel releases locks before returning to user mode. We found the average optimum batch

size for our workloads to be 8MB. As shown in Table 4.6, batching for PXFS affects latency

variance only slightly, with 95-percentile latency only slightly higher than average latency.

The exception is Webproxy where the 95-percentile is lower due to a single outlier pulling

the average up. Note that the other file systems show similar outlier effects, even without

batching.

4.4.4 Client and Server Scalability

The preceding results evaluated single-threaded performance. First we evaluate the effect of

having multiple threads in the client. Figure 4.7 shows throughput (workload iterations per
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Benchmark Throughput (workload iterations/s)
1 2 4 6

Fileserver 3974 8532 12131 18190
Fileserver+Webproxy N/A 6217 11784 16200

Table 4.7: Throughput performance of a multiprogrammed workload with increasing client
processes.

second) for our three workloads as we vary the number of threads in a single client process.

For Fileserver, PXFS achieves better scalability than ext3 and doubles throughput when going

from 1 to 6 threads. For the other two workloads, Webserver and Webproxy, PXFS throughput

does not increase because of single-lock bottlenecks. (1) For Webserver, we see increased

contention (20% of total runtime) for an internal lock in the storage object implementation.

(2) For Webproxy, we see contention (22% of total runtime) for the lock covering the single

directory. With extra effort, both locks can be split into multiple fine-grained locks to remove

this contention.

RamFS presents near-linear scalability for all three workloads primarily because it does

not have to write to a journal, which becomes a scalability bottleneck for ext3 (5% for 1 thread

vs. 30% for 4 threads of total run time is spent in journaling). RamFS also benefits from

scalable RCU synchronization for directory lookups.

We evaluate the scalability of the TFS server by running two multiprogrammed workloads:

(1) multiple single-threaded Fileserver instances, and (2) Fileserver+Webproxy, which runs

an equal number of Fileserver and Webproxy instances. We do not consider Webserver; as a

read-mostly workload it does not put much pressure on the server. We configured each client

to operate in a different directory to avoid contention between clients due to locking.

Table 4.7 shows the aggregate throughput of both tests and suggests that both workloads

can scale well ( 3x speedup for 4 clients). This is because multiple threads in the TFS server

can perform metadata updates concurrently under different parts of the namespace due to

hierarchical locks. The server CPU utilization increases from 24% for 1 client to 72% for 4

clients.
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4.4.5 Workload-Specific Performance

A key motivator for Aerie is the ability to create workload-specific file system interfaces. We

compare the performance of KVFS with a get/put interface in a single directory against

PXFS for the Webproxy workload, whose usage fits the KVFS interface. We modified the

Webproxy workload by converting the create-write-close file sequence to a put operation,

open-read-close file to a get operation and delete to an erase operation. We convert the append

to a get/modify/put sequence.

Figure 4.7 shows the performance of KVFS for the Webproxy workload. For a single

thread, KVFS is 86% faster than RamFS and 79% faster than PXFS. With six threads, it is 30%

faster than RamFS and 415% faster than PXFS. With a single thread, the biggest benefit comes

from using a get/put interface instead of open/read/write/close. With the standard interface,

PXFS must create a temporary in-memory object representing an open file and record the file

offset on every read. With get/put, KVFS can locate the file in memory and copy it directly

to an application buffer. With multiple threads, the performance benefit comes from using

multiple locks within a single directory, which alleviates the scalability limitations of PXFS.

In addition, data access is faster with KVFS because it stores files in a single extent rather

than using a radix tree of multiple extents. Thus, getting or putting data is a single memcpy

operation.

4.5 Summary

New storage technologies promise high-speed access to storage directly from user mode. The

existing file-system architecture, where a shared kernel component mediates all access to

data, unnecessarily limits performance both by interposing on requests and complicating file

system implementation. The Aerie architecture represents a new design targeting storage-

class memory, and reduces the kernel role to just multiplexing physical memory. As a

result, applications can achieve high performance by optimizing the file-system interface for

application needs without changes to complex kernel code.
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5 conclusions

Emerging storage-class memory (SCM) devices provide the interface of memory but the

persistence of disks. SCM promises low-latency storage, which can benefit modern applica-

tions, ranging from smartphone applications [101] to large-scale web applications such as

social-network graphs [141]. However, existing operating-system interfaces fail to expose the

full capabilities of SCM as they are designed for a strict bifurcation of devices into volatile

memory and persistent storage. This thesis has made a first step towards revisiting the system

interface to storage in light of SCM. Below we summarize the contributions of this thesis,

share some lessons learned while working on this dissertation, and discuss future directions

that could be further investigated.

5.1 Summary

We presented two proposals that provide user-mode programs direct access to the low-latency

durability of SCM. Direct access bypasses system software layers, thus enabling persistence

at the speed of SCM rather than the speed of OS.

Our first proposal, Mnemosyne, provides a simple interface for programming with persis-

tent memory. In Mnemosyne, programmers declare global persistent data with the pstatic key-

word or allocate it dynamically. Mnemosyne also provides primitives for directly modifying

persistent variables and supports crash-consistent updates through a lightweight transaction

mechanism. With persistent memory, programmers can make common in-memory data struc-

tures, such as trees, lists, and hashes, persistent without first converting them to a serialized

format. In tests emulating the performance characteristics of forthcoming SCMs, we showed

that Mnemosyne can persist data as fast as 3 microseconds. Furthermore, after converting

three applications, OpenLDAP, Tokyo Cabinet, and Memcached, to use persistent memory, we

found that the performance of moving existing in-memory structures to persistent memory is

35-1400% faster than Berkeley DB’s block-optimized storage or flushing the whole structure to

a file. Overall, these results demonstrate that programmers can create a single data structure,
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optimized for memory, rather than designing separate in-memory and update-optimized

persistent representations.

Our second proposal, Aerie, exposes a file-system interface to SCM using user-mode

libraries that access file-system data directly through memory. While a file system does

not provide the fine-grain persistence of persistent memory, it does enable interoperability

between applications through a common interface to storage. At the same time, implementing

the file system as a user-mode library enables applications to optimize the file system to their

specific needs; an application may access storage through an interface or data layout suited

to its workload. We showed that Aerie is generic enough to build a POSIX-style file system

that offers applications backward compatibility and achieves performance similar to or better

than a kernel implementation. We found that a POSIX-style file system on Aerie performs

35% better than ext3 over SCM and only 15% worse than a kernel file system without crash

consistency. We also demonstrated the value of application-specific file systems through a

specialized file system that reduces a hierarchical file system abstraction to a key/value store

with fewer consistency guarantees but lower latency. The specialized design enabled by Aerie

improves performance by 30-86% over a kernel file system for its workload. Overall, these

results demonstrate that with Aerie applications can improve file-system performance by

customizing storage layouts and interfaces.

5.2 Lessons Learned

In this section, we present a list of general lessons we learned while working on this disserta-

tion.

Software plays a new role in storage. Our experience building software abstractions and

interfaces to storage-class memory can be distilled in the following lessons:

• In traditional block-based storage devices, such as disks, the dominant cost was the

latency getting data off the device so software overhead was not a major a concern. In

fact, software has played a positive role in abstracting device complexity and making
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the system faster through techniques such as buffering data in DRAM and intelligent

prefetching. In contrast, with fast SCM, software can be a major contributor of overhead

to access latency.

• Direct access to SCM can eliminate software overheads, but direct access alone is not

sufficient as it lacks common features we expect from storage, such as naming, crash

consistency, and sharing semantics. Thus, software will continue playing a role in

providing these features, but it has to transform from thick, generic storage stacks to

lightweight, flexible, and composable mechanisms so that applications can compose

the storage semantics they need and minimize the performance cost they pay.

• While implementing storage-related mechanisms in user mode avoids the overhead

calling into the kernel, the real performance benefit comes from giving applications the

flexibility to customize storage to their needs. For example, we found that implementing

POSIX in user mode did not give huge performance benefits over its kernel-mode

counterpart. This is because we ended up implementing similar functionality to support

POSIX semantics, such as in-memory inodes to keep track of open files. However, a

specialized file system that provided a key-value interface on the same layout of the

POSIX file system gave significant performance improvement.

Current hardware lacks functionality. We identify necessary functionality and several

useful features that current commodity hardware is missing:

• Current processor primitives do not guarantee completion. Current memory systems

acknowledge the completion of a data write as soon as the memory controller buffers

it, that is, before the write actually hits the SCM cell and becomes durable. Therefore,

a failure that happens after the acknowledgement but before the memory controller

performs the updates to SCM causes the update to be lost. One approach to addressing

this problem would be to extent the memory controller to acknowledge the completion

of a write only after the write hits the SCM cell. However, this approach could have

a negative impact on performance when used with slow SCM as it would increase
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completion time. Another approach would be to make the buffer persistent by using

either a supercap that provides enough energy to complete buffered writes, or STT-

MRAM that makes the buffer persistent and allows the controller to complete buffered

writes upon restart.

• While current processor hardware primitives provide the necessary functionality for

flushing data out to memory, they may negatively impact performance. For example,

the x86 clflush instruction writes a cache line back to memory and then invalidates it.

Invalidation is unnecessary and may affect performance negatively if data is accessed

after it is flushed to memory. Processor hardware could be extended to provide an

instruction that performs only the write back.

• While the protection mechanism provided by current virtual memory hardware is

sufficient for correctly enforcing file system permissions, it not as flexible and effiecient

as we would like it to be. For example, x86 provides only three protection rights: no

access, read-only access, and read-write access. This limits the permission rights that

can be efficiently enforced directly by hardware. For example, x86 does not provide

write-only protection so we revert to software to enforce write-only access to files. As

another example, changing the permission rights of a file is not currently efficient as

x86 requires separately changing the protection rights of each page that comprises the

file. Other protection mechanisms that associate a set of pages with the same protection

right, such as Itanium’s protection keys [72], could be more efficient.

Caching may still be relevant but in a different form. The low-latency access of SCM

encouraged us to not incorporate caching in our designs. In retrospect, caching may still be

useful in improving access latency but not in its traditional form. Since SCM’s access latency

is higher than DRAM, regular caching of SCM pages in DRAM may be beneficial. However,

we see a bigger benefit by caching in DRAM efficient data structures that are derived from

their persistent counterparts. Such volatile structures can provide an efficient access path

to persistent state and data. For example, Mnemosyne’s persistent-heap allocator maintains
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a simple persistent bitmap for tracking allocated and freed memory. In addition, it keeps

volatile linked lists of free memory blocks in DRAM, which it derives from the persistent

bitmaps, in order to speed up allocation. Aerie file systems could benefit from a similar form

of caching. For example, namespace lookups in PXFS could benefit from a volatile index

structure that is derived from the persistent directories.

Fast-storage shifts bottlenecks. As storage becomes faster, the performance gap between

storage and other system components, such as CPU, memory, network and storage, is reduced.

Thus, storage will become less of a bottleneck, and the bottleneck may shift to other less

efficient parts of the application. For example, in the OpenLDAP directory service we found

that for a write-intensive workload fast storage moved the bottleneck from the storage back

end to the request-processing front end.

Locality still matters. In contrast to disks where geometry affects access latency due to

seek and rotational delays, access latency in SCM does not depend on geometry. One would

think then that with SCM random access will have constant latency and locality will be less

relevant. We expect that random access will still have some variations because of architectural

factors. For example, architecting SCM in multiple banks [115] increases throughput, which

can benefit sequential accesses; a feature we exploit in our log design. Other architectural

factors that affect access latency include caches and TLBs. Thus, we expect that locality will

continue playing a role in the design of storage systems for SCM.

Hand-coded locking complicates recovery. In an early design of the transaction runtime

system of Mnemosyne we considered memory transactions that provided only atomicity

and durability (AD), and left isolation to the programmer similarly to other systems such as

LRVM [115] and Rio Vista [120]. Our experience using AD memory transactions, where we

hand-coded isolation using mutex locks, showed that this approach was quite error prone

and complicated recovery. In contrast to LRVM and Rio Vista, which use a single shared

log, Mnemosyne uses multiple per-thread logs for better scalability. Per-thread logging
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complicates recovery because there is no longer a single ordering point that orders transactions

like a single shared log. Therefore, we need a mechanism that upon recovery reconstructs

the order transactions executed. Mnemosyne deals with this problem by logging the commit

token number of each transaction after making the transaction durable so that it can replay

transactions in commit order upon recovery. Decoupling atomicity and isolation requires

programmers maintain the invariant that isolation is released only after logging the commit

token, otherwise the order transactions executed and made durable may not correspond to

the commit order. We initially hit this pitfall, and our hand-coded isolation acquired and

released locks before transaction commit. Recovery could no longer rely on the commit

order to properly replay per-thread redo logs. To properly recover, we had to expose to

the programmer the internals of the transaction runtime system, which however would

prevent independent evolution of the transaction system from application code. A solution

we considered was to rely on transaction-safe locks [187], which delay releasing locks after

the transaction commits. However, relying on a specific synchronization mechanism did

not adequately delivered our goal of decoupling atomicity and isolation. We eventually

abandoned AD transactions in favor of full-fledged ACID memory transactions, which are

more programmer friendly.

References from persistent to volatile memory, while dangerous, can also be useful. While

we do not generally encourage keeping pointers to volatile memory in a persistent region,

we found this practice can be useful when a persistent data structure needs to include state

that is logically volatile (i.e., state that does not outlive the application). Such volatile state

can be temporary such as statistics counters or state that is recreated by the application as

in the case of OpenLDAP (Section 3.5.2). Because volatile state becomes stale after a restart,

the programmer has to write recovery code that properly reinitializes persistent pointers to

volatile state.
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5.3 Future Work

We outline future directions in the context of this dissertation that could be further investi-

gated.

Performance. In general, we see two interesting directions for improving performance. First,

some SCM technologies have asymmetric performance. For example, PCM’s read latency

is faster than its write latency by at least an order of magnitude. An interesting direction

then would be to explore data structures that perform some extra fast reads to save some

slow writes. Second, since SCM’s access latency is higher than DRAM, caching SCM pages

in DRAM or creating a faster secondary access path in DRAM to data stored in SCM may

be beneficial. More specifically, in the context of Aerie, we see another three interesting

directions. First, an Aerie file system may map terabytes of data into a process. Current

page tables for mapping this data can be large, which introduces large space overheads and

also puts huge pressure on the TLBs. One approach in dealing with this problem would

be to decouple mapping from protection. Since Aerie partitions are mapped to physically

contiguous memory, mapping mechanisms other than page tables could be used, such as

segmentation hardware, to reduce the amount of mapping information stored and accessed.

Separating mapping from protection also enables exploring other perhaps more efficient

protection mechanisms such as Itanium’s protection keys [72]. Second, currently the smaller

unit of protection is the page, which causes internal fragmentation for file-system objects

smaller than a page. One approach to reducing fragmentation would be to group objects that

have the same protection together in the same page. Third, through KVFS we demonstrated

that matching the file system to the application can significantly improve performance. One

interesting question is how much of the performance benefit could be achieved by having

a get/put interface on top of the kernel file-system interface. Moreover, it would also be

interesting to study and develop specialized file systems for other applications, such as a mail

server or a web server.
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Reliability. While direct access to SCM enables tremendous opportunities for low-latency

flexible storage, it also poses important system reliability challenges. First, the wide memory

interface to SCM makes stored data susceptible to accidental corruption such as wild writes.

We see three potential solutions to this problem. A first solution would be to use page-level

protection to enable write access to pages only when they are actively used. However, this

approach would suffer from the high cost of changing protection, thus opening up the question

of how to efficiently protect pages. A second solution would be the use of data structures

resilient to faults [179, 63] and techniques for repairing corrupted data structures [190]. Finally,

a third solution would be to hide SCM in the address space and provide access only through

a managed language such as Java. This approach, however, raises several issues, such as how

the garbage collector would have to interact and manage persistent metadata.

A second reliability challenge arises from attaching SCM to the memory bus. While this

approach enables direct access, it also ties SCM to a single system, thus making data stored in

SCM inaccessible in case of system failure. One approach to addressing this issue would be

to replicate data to either a locally attached storage array or a remote node over the network

(similarly to RAMCloud [141]).

Security. Direct access may leak stored data if the OS does not properly recycle pages

between users (or processes). In contrast to the current system interface that mediates access

to each SCM-page and therefore controls what content is visible, the techniques presented in

this dissertation enable direct access to the contents of an SCM-page by memory mapping

the page into a process. If the OS does not properly erase (i.e., zero) the old contents of a

page before reallocating and memory mapping a page, then the new process can see any data

previously stored in the page by another user (or process). While erasing the old contents

of the page solves the problem, it increases wear out of the page and also the time to free or

allocate a page. Thus, other more efficient techniques may need to be devised.

Consistency. With current processors, performing crash-consistent updates requires flush-

ing and ordering updates to SCM. Our tornbit log design showed that simple versioning
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schemes can reduce the number of ordering constraints and therefore the number of de-

pendent flushes that need to be done sequentially. One could perhaps envision taking this

idea further, and explore other simple versioning schemes that at once reduce the number of

ordering constraints and allow more generic updates than log appends.

5.4 Closing words

Upcoming storage-class memory technologies promise an exciting new way for applications

to store persistent data at near-DRAM speeds. Within the framework of this thesis we have

only taken the first steps in designing a storage architecture and system interface that unleash

the full power of SCM to the application programmer. Future directions outlined above pave

the way for further work in designing storage systems for storage-class memory.
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