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ABSTRACT

Topological data analysis seeks to uncover and characterize different topo-
logical features including connected components, loops, voids, in data.
These topological features are characterized, in part, by how long they
persist across different scales, and these multiscale features are summa-
rized on a persistence diagram. One important problem is how features
of topological spaces from sampled data can be used to study the underly-
ing data-generating space. Unfortunately, perturbations due to irregular
sampling, noise, outliers, and domain-specific complexity can result in
many additional features that do not reflect true topological structures.
This dissertation presents methodological innovations designed to en-
hance the robustness of topological data analysis and enable improved
statistical inference on topological features. First, a new data embedding
method for constructing point cloud from irregularly-spaced time series
data is introduced and shown to preserve the original state space topology
in the presence of noise and varying levels of irregularity in the spacing of
the time series. Second, a robust statistical inference framework is devel-
oped to assess the statistical properties of topological features, specifically
the maximal persistence (longest-lived) features. This framework pro-
vides a precise quantification of statistically significant topological features
without systematically reducing the strength of topological signals, a short-

coming in many existing robust inference techniques. Next, the embedding
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method is applied to classify irregularly sampled radial velocity time series
for exoplanet detection, where stellar activity and noise complicate the
analysis. Reformulating the task as a classification problem, the embedded
representation achieves strong discriminative performance even under
high missingness and noise. This demonstrates the method’s effectiveness
in recovering dynamical information from incomplete observations, with
practical relevance to astronomy and other domains involving irregular
time series. Finally, we investigate the nanostructure variations in ionic
liquids from molecular dynamics simulations by coupling topological and
statistical techniques. Specifically, by treating a sequence of experimental
ionic liquid data spaces as time series, topological methods are employed
to extract interpretable nanoscale structural information and detect tran-
sition in ionic organizations. This demonstrates how robust and stable
topological methods can offer insights into complex real-world systems.
These methodological innovations demonstrate both substantial improve-
ment in robustness over existing methods when handling irregular data,
enhanced statistical inference for persistent features under perturbations,

and broad applicability across various scientific domains.



1 INTRODUCTION

1.1 Background

Topological data analysis (TDA) has emerged as a powerful framework
for extracting qualitative insights from complex datasets. Central to TDA
is persistent homology, a mathematical tool that identifies and tracks
topological features such as connected components, loops, voids, and their
higher-dimensional analogs across multiple scales (Edelsbrunner et al.,
2000; Edelsbrunner and Harer, 2022). By varying a scale parameter, such
as a distance threshold in a point cloud, persistent homology produces
a compact summary, often in the form of a persistence diagram, that
encodes the “shape” of the data. The power of persistent homology lies in
its ability to extract meaningful insights about the shape and structure of
data without imposing restrictive assumptions.

Broadly, TDA serves two complementary goals. One is to use topologi-
cal features to study the data generating space underlying sampled obser-
vations (Carlsson et al., 2008; Perea and Harer, 2015; Xu et al., 2019; Pike
etal., 2020). The other is to extract or provide representation of topological
features for use in downstream data analysis tasks (Turner et al., 2014;
Cang and Wei, 2017; Berry et al., 2020). This dissertation began as an effort
to explore a more robust representation for studying the data-generating
space of sampled observations, specifically, time series data. Time series

data is one of the most prevalent forms of structured data, and there is



considerable interest in analyzing its underlying geometric and topologi-
cal properties (Brown and Knudson, 2009; Emrani et al., 2014; Perea and
Harer, 2015; Tralie and Perea, 2018). A common approach in TDA is to
represent time series in a multi-dimensional space using time-delay em-
bedding, which reconstructs the data-generating space (state-space) of
the time series, facilitating topological characterization of the space (Tak-
ens, 2006; Perea and Harer, 2015). This multi-dimensional transformation
using time-delay embedding only works for time series observations that
are uniformly-spaced in time, limiting its applicability.

In Chapter 2, we propose a subsequence method for constructing this
multi-dimensional representation of irregularly-spaced time-series data
that preserves certain properties of the reconstructed state space. We show
that the proposed method preserves the topological features of the original
underlying state space of the time series while reducing spurious shape
features. Chapter 3 then develops a robust statistical inference method:
“Maximal TDA” (MaxTDA) for topological features. We demonstrate that
MaxTDA enhances the statistical significance of topological features by mit-
igating the reduction in persistence, an artifact of existing robust methods.
Chapter 4 presents an application of the proposed subsequence embed-
ding method to the classification of radial velocity time series for exoplanet
detection. This chapter demonstrates that subsequence embeddings pre-
serve essential dynamical structure and outperform imputation-based

approaches, even under substantial noise and missingness. Finally, Chap-



ter 5 demonstrates an application of the combination of topological and
statistical methods to ionic liquid data from molecular dynamics simu-
lations. In this application, topological features are extracted from the
coordinate representation of ionic liquids. These topological features are
used to construct statistical models to study the nanostructure variation
and detect transition in ionic organizations across experimental conditions.
Together, these contributions demonstrate substantial improvements in
robustness over existing methods for handling irregular data, more reli-
able statistical inference for persistent features under perturbations, and
broad applicability across diverse scientific domains.

The next section provides background on TDA, introduces one of its
most widely used tools, persistent homology, and reviews the foundational

concepts behind it.

1.2 Homology of Simplicial Complexes

Homology is an area of mathematics that looks for holes in a topological
space, and persistent homology looks for holes in data. These holes are for-
malized through concepts from algebraic topology and are represented by
homology groups of varying dimensions (Hatcher et al., 2002; Edelsbrun-
ner and Harer, 2022). Specifically, the zero-dimensional homology group
(Hp) contains connected components (clusters), the one-dimensional ho-

mology group (H;) contains loops, the two-dimensional homology group



(Hz) contains voids like the interior of a balloon, and more generally, the
k-dimensional homology group (Hy) represents k-dimensional holes. In
this work, we mainly represent topological spaces with simplicial com-
plexes. A k-simplex C = [vy, - - -, vi] is a k-dimensional polytope of k + 1
affinely independent points vy, - - - , vi.. A simplicial complex C is a finite
set of simplices such that for any simplices C!, C? € C, C! N C? is a face of
both simplices, or the empty set; and a face of any simplex C € C is also
a simplex in C. (A face of a simplex is the convex hull of any non-empty
subset of points that define the simplex.) The homology is computed from

these simplicial complexes built along a sequence of filtration values.

1.3 Persistent Homology on Point Clouds

The underlying topological space is often only indirectly observed through
noisy point cloud data sampled from it. A common approach to construct-
ing simplicial complexes in TDA for point clouds is the Vietoris-Rips (VR)
complex (Vietoris, 1927; Edelsbrunner and Harer, 2022). A VR complex is
constructed over a finite set of points S = {vy, vy, - - - , v} using a distance
parameter 6. For any subset of k points {v;,, - - -, vj, }, a (k—1)-dimensional
simplex is formed when the pairwise Euclidean distance between all points
is at most &. A collection of all such simplices forms the VR complex de-
noted as VR(S, §). The composition of the simplicial complex progresses

hierarchically with the distance parameter 5. This leads to the concept



of filtration, which defines an inclusion relation between the simplicial
complexes for a set of 5 values. More formally, for an ordered sequence of
dvalues: 0 < & < 8, < --- < 84 < 00, the VR complexes admit a nested

structure as

VR(S,0) C VR(S,8) C --- C VR(S,54) C VR(S,00).  (1.1)

The inclusion relation between the VR complexes induces a map between

the k-dimensional homology groups as

Hi (VR(S,0)) — Hi(VR(S, 81)) — - -+ — Hy(VR(S, 00)). (1.2)

The notion of persistent homology is developed through these homol-
ogy maps by tracking the changes in the features (i.e., homology group
generators) of these nested homology groups. The birth time and death
time of features along this sequence encodes topological changes in the
groups. For a homology group Hy, we denote the birth time and death
time of the j-th feature by b; and d;, respectively. The persistence of the
feature is given by d; — b;, and longer persistence often is considered to be
topological signal while shorter persistence often represents topological
noise (Fasy et al., 2014). If we let k; to be the homology group dimension

of the j-th feature, and ] the index set of the features of the homology
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Figure 1.1: VR filtration and persistence diagram. The zero-simplices
(black points, a-b) sampled randomly around a circle. Balls (cyan) of
diameter 6 = 0.8 and 6 = 1.5 are drawn around the points in (a) and
(b), respectively, resulting in one-simplices (black segments) and two-
simplices (orange triangles). The persistence diagram (c) has Hy (red
points) and H; (blue triangles) features.

groups, then the set

Dgm(S) = {(bj, dj, k;) : ¥j € JJU A, (1.3)

where A represent a set of points where the birth time is equal to the
death time, characterizes the persistence of the features, and is used to
construct a graphical summary referred to as a persistence diagram. Figure
1.1 illustrates the main concepts in this section, where black points (zero-
simplices) in Figure 1.1a and 1.1b denotes the data with cyan balls of
diameter 0.8 and 1.5, respectively. Figure 1.1c shows the corresponding
persistence diagram.

A set of persistence diagrams {Dgm(S)} can be endowed with a distance

measure, such as the bottleneck distance. The bottleneck distance gives



the minimal L., distance between bijections of any two diagrams. Let S,
and S, be two finite compact subsets of R4, with Dgm(S;) and Dgm(S;)
as their corresponding VR filtration persistence diagrams. The bottleneck

distance, dg, between the two persistence diagrams is defined as:

dp (Dgm(S;),Dgm(S;)) =inf sup [ln—v(1)lleo, (1.4)
Y ueDgm(s)

where the infimum is taken over all bijections vy : Dgm(S;) — Dgm(S,).
Let S; and S, be endowed with the Euclidean metric, then their Hausdorff

distance, dy, is given by

du(S1,S2) = max { sup ds,(v1), sup dsl(Vz)} , (1.5)
v1E€S] Vv2E€S,

where dg, (v,) = infy s, [[Vi — V2. A fundamental result on persistence
diagrams is that they are stable summaries in many settings (i.e., a small
change in a point cloud results in a small change in the corresponding
persistence diagram) (Chazal and Michel, 2021). This stability relation

can be stated as:
dp (Dgm(S1), Dgm(S;)) < 2du(S1, Sz). (1.6)

Similar results can be obtained for functions, which is discussed in the

next section.



1.4 Persistent Homology on Functions

Let ¢ be any real-valued function, where ¢ : X — R for any compact set
X. We define the lower-level sets of ¢ as {x : ¢(x) < A} and the upper-level
sets of ¢ as {x : ¢(x) > A}. In more specific settings, we let the function ¢
be defined on the metric space (X, dx ). Define the reach(A) as the largest
radius 1, such that each point in Uy B(x, T) has a unique projection unto
X, where B(x, r) is a ball with radius r centered on x. The reach is also
referred to as the “condition number,” and it quantifies the smoothness of
the underlying manifold (Federer, 1959; Niyogi et al., 2008). Denote by
K (X, k) the class of all manifolds such that for A € X(X, k), reach(A) > «,
where k is a fixed positive constant. Let the lower bound b(X (X, k)) and the
upper bound b(X (X, k)) be positive constants depending on the geometry

of the class X (X, k) but not on any specific manifold in (X, k).

Assumption 1.1. The following assumptions are made for the density function
f and the distribution P: (i) the support X of the distribution P is bounded,
and (ii) f is tame and satisfies the following: 0 < b(K(X, k)) < infyex f(x) <
sup, . f(x) < b(K(X, k)) < oo. The tameness of f implies it has a finite number

of critical values, ensuring the topological complexity of its level sets remains

systematically bounded (Edelsbrunner and Harer, 2022).

Functions defined on the vertices of the simplicial complex C provides
another means to characterize the topology of the underlying data gener-

ating space. Let ¢ : X — R, and assume ¢ is extended to the simplices of



C such that ¢(C) = maxo<i<k ¢(vi) for any simplex C = (v, -+ ,vy) € C.
The sequence of complexes Cs = {C € C : $(C) < 0} creates a nested
structure: Cs5, C Cs,, 81 < &y, and defines a lower-level set filtration on
¢. An upper-level set filtration can be defined analogously by considering
the case where ¢(C) > 6. We denote the resulting persistence diagram
by Dgm(¢), such that topological feature (b, d) € Dgm(¢) persists in the
space Hy (¢ (—o0,8)), for b < & < d. Similar to the VR filtration, we can
endow this space of persistence diagrams with the bottleneck distance
as defined in Equation (1.4), and these persistence diagrams can also be
shown to be stable summaries (i.e., small perturbations in the function
space results in small changes in the persistence diagrams) (Cohen-Steiner
et al., 2005; Chazal et al., 2016). This results in the following bound on the
bottleneck distance for two functions ¢ and 1 under the assumption of

tameness (Assumption 1.1):

dg (Dgm(¢), Dgm () < lld — bl (17)

where [|[¢ — [l = sup, . [P (x) — b (x)].

Two such functions ¢ that are relevant to this work are the kernel
density function f, and the DTM function dp,. The empirical kernel

density function . +(x) with bandwidth o is defined as:

;s

lZ (lIx — xill2), (1.8)



(a) Circle (b) DTM function (c) KDE function

Figure 1.2: Illustration of the DTM and KDE function. (a) a 1D curve,
(b) and (c) are the DTM function and the KDE function of this curve
respectively.

where Ky (||x]l2) = 0~ ¢K (||x|l,/0), and K is a d-dimensional kernel that is
non-negative and integrates to one. Figure 1.2c shows an example KDE
function on a 1D curve. While this kernel density function captures the
shape and distribution of mass in the space X, the DTM function provides
a robust means to characterize this shape by approximating its distance
function. The empirical DTM function a;m(x) is defined as (Chazal et al.,
2011):

G =2 S lxo—xlh, (19)

x0E€ N (x)
where 0 < m < 1 is the resolution, and N (x) is the set of k-nearest
neighbors (k-NNs) to x. The DTM filtration is a robust approximation of
the VR filtration. Figure 1.2b shows an example DTM function on a 1D
curve, and Figure 1.3 typical sublevel sets of the DTM function.
In practice, the estimation of filtration functions relies on the empirical

probability measure IP,,, which assigns a probability mass of 1/n to each
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O000

(a) 5 =0.23 (b) 5 =0.35 (c) =041 (d) 5 = 0.48

Figure 1.3: Sublevel set filtration of the DTM function in Figure 1.2b, shown
at four increasing thresholds.

data point x. As a result, the empirical function ¢, whether it represents
the empirical KDE or the empirical DTM function, exhibits sensitivity to
noise and sample density variations. This sensitivity directly affects the

persistence of the resulting features.
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2 A SUBSEQUENCE APPROACH TO TOPOLOGICAL DATA

ANALYSIS OF IRREGULARLY-SPACED TIME SERIES DATA

The content of this chapter is published in Dakurah and Cisewski-Kehe
(2024).

Abstract

A time-delay embedding (TDE), grounded in the framework of Takens'’s
Theorem, provides a mechanism to reconstruct and analyze the state-space
representation of time-series data. Recently, topological data analysis
(TDA) methods have been applied to study this time series representation
mainly through the lens of persistent homology. Current literature on
the fusion of TDE and TDA are adept at analyzing uniformly-spaced time
series observations. This work introduces a novel subsequence embedding
method for irreqularly-spaced time-series data. We show that this method
preserves the original state space topology while reducing spurious homo-
logical features. Theoretical stability results and convergence properties
of the proposed method in the presence of noise and varying levels of
irregularity in the spacing of the time series are established. Numerical
studies and an application to real data illustrates the performance of the

proposed method.
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2.1 Introduction

A time series measurement x(t) € R at time t can be considered as the
outcome of a data-generating space of some dynamical system (i.e., math-
ematical models that describes the evolution of variables over time) with
state vector s(t) € RN. Constructing a meaningful approximation of this
underlying data-generating space when only the scalar time series is ob-
served can uncover latent patterns and structures not readily apparent in
the raw time series. Time-delay embeddings (TDEs) are often employed
for this state space reconstruction. The TDE method transforms the time-
series data from the time-domain to an estimate of the state space, which
can reveal properties of the system such as periodicity and other struc-
tures not apparent in the time domain. The principle underlying TDEs is
Takens’s Theorem, which asserts that even if the actual dynamics (i.e., the
system’s behavior over time) are not known, a single time series can be
treated as a one-dimensional projection of the path traced by the system’s
state vector in a multi-dimensional space. An approximation to the actual
dynamics can be constructed from this projection (Takens, 2006). Takens
proved that assuming uniformly-spaced and noise-free measurements
of unlimited length, there exists a diffeomorphism (i.e., a smooth and
invertible function) between the true high-dimensional dynamical system
and its TDE-based reconstruction. This theorem forms the foundation for

much of the discussions on reconstructing the multi-dimensional state of
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a system from a single time series (Ali et al., 2007).

More recently, there is renewed interest in coupling the TDE method
with tools from topological data analysis (TDA) to study the dynamics
of time-series data using various geometric and topological features of
the TDE reconstruction of the underlying state space, such as clusters,
loops, voids, and their higher dimensional analogs (El-Yaagoubi et al.,
2023; Gholizadeh and Zadrozny, 2018; Seversky et al., 2016). TDA is
a computational method for studying the shape of data, which can be
applied to characterize the topological features of these reconstructed
state spaces. The characterization is often carried out using persistent
homology, a tool of TDA, which uses a multi-scale approach to quantify
certain topological features (Edelsbrunner et al., 2000; Edelsbrunner and
Harer, 2022). TDA and TDE have been successfully applied to quantify
periodicity in time-series data (Perea and Harer, 2015), analyze human
speech (Brown and Knudson, 2009), detect motion patterns in video
(Tralie and Perea, 2018), and in wheeze detection (Emrani et al., 2014).

In the applications noted above, the observed time series is uniformly-
spaced. However, time series is often not uniformly-spaced due to mea-
surement lapses (Stark et al., 1997), process errors (Casdaglietal., 1991), or
inherent features of the data generating process (Stark et al., 1997; Lekscha
and Donner, 2018), etc. The standard Takens’s theorem does not handle
irregularly-spaced time series, but several options exist in the literature

to address issues related to irregularly-spaced time series observations to
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make it amenable to TDE. Broadly, these can be classified into imputation
or exclusion methods. Imputation methods involve predicting the missing
observations, and then the analysis is carried out assuming a uniformly-
spaced time series has been observed (Harvey and Pierse, 1984; Casdagli
etal., 1991; Lekscha and Donner, 2018). Exclusion methods initially ignore
the presence of missing values and assume a uniformly-spaced set. The
TDE maps are then constructed and any embedding vector with a missing
value is excluded (Boker et al., 2018; Johnson and Munch, 2022). If the im-
putation model is misspecified, it can produce structures in the TDE that
do not reflect true properties of the data, and the exclusion method can
significantly alter the shape of the TDE space (Huke and Broomhead, 2007;
Boker et al., 2018). Since TDA can provide quantification of qualitative
properties of the reconstructed state space, the drawbacks of the imputa-
tion and exclusion methods may distort topological features constructed
from the TDE spaces.

In this chapter, we propose a subsequence method for constructing a
TDE of irregularly-spaced time-series data that preserves certain properties
of the reconstructed state space. The level of irregularity of the time-
series data is controlled by the regularity score (defined in Section 2.3).
We show that the proposed method preserves the topological features
of the original underlying state space of the time series while reducing
spurious shape features. Theoretically, we prove stability and convergence

results of the proposed subsequence method in the presence of noise and
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for varying levels of irregularity in the observed time series. Further, we
demonstrate the competitiveness of the proposed subsequence method

through simulation studies and an application to real data.

2.1.1 A Note on Terminology

For this work, the term uniformly-spaced time series is used to describe
time series that have equally-spaced time intervals between successive
observations, and is considered the “true” time series for purposes of
evaluating the proposed method. The term irreqularly-spaced time series
refers to observations with unequally-spaced time interval between suc-
cessive observations. To characterize how the two forms of time series are
related, it is assumed throughout this work that the irregularly-spaced
time series is a subset of the uniformly-spaced time series. More formally,
let x = [x(t1), -+ ,x(ty)]T bea uniformly spaced time series vector, such
that tiy» — ti;1 = ti11 — ti, Vi; an irregularly-spaced times is any subset of
x with observations at one or more time points randomly missing. Hence,
the irregularly-spaced time series always have fewer time measurements
than the corresponding uniformly-spaced time series.

The concept of a TDE is also referred to in the literature as a delayed-
coordinate embedding, a sliding-window embedding, or simply a Takens embed-
ding. For this work, only the term TDE is used. For any irregularly-spaced
time series, it is assumed there is a “true” underlying uniformly-spaced

time series. The use of “TDE” exclusively refers to an embedding con-
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structed from this true underlying uniformly-spaced time series. After
applying the proposed subsequence method, the resulting embedding is
referred as the subsequence embedding (SSE). In instances where an exposi-
tion applies to both the TDE and SSE, the term embedding map is used as a
collective reference to the two concepts.

For a given time interval, it is assumed that missing or unobserved
values occur with a given probability. That is, for a given time point in
a time interval, a measurement is not observed at that point with some
probability. Such probabilistic mechanism governing the observations
of time series values is not uncommon in the literature (e.g., Dunsmuir
and Robinson 1981). This probability can be fixed for all time points or
it can vary for each time point. This characterization is referred to as the

missingness structure of the time series in context.

2.2 Basics of Time-Delay Embeddings

For this work, the discussion on TDE:s is restricted to univariate time se-
ries. Assume this univariate time series is generated by a system with a
state vector s(t) on a manifold which is a subset of some N-dimensional
space RN. The state vector s(t) is not directly observable, however some
measurement of it, denoted x(t) = h(s(t)), is observed through the mea-
surement function h(-). The measurement function h(-) can be thought of

as rule that transforms the high-dimensional state vector into the observed
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univariate time series x(t). For instance, in astronomy, s(t) might include
variables such as positions, velocities, and brightnesses of various celestial
bodies, such as exoplanets, stars, or galaxies. However, the measurement
function is specifically designed to extract a single scalar value from this
vector. The specific form of h(-) is influenced by many considerations, for
example, the limitation of observational tools. For a star, the measure-
ment function could be designed to extract a key observable from the state
vector, such as its brightness. Thus the measurement h(s(t)) reflects the
observed brightness of the star at any given time t.

The scalar value x(t) is the observed time series measurement. Define

the function F: RN — RM*! as the embedding map with the form:

F(s(t)) = [x(t),x(t +T),- -, x(t + MT)]. (2.1)

We emphasize that F is a function on the state vector s(t) € RN and not the
scalar value h(s(t)). While some authors denote the embedding map as Fy
to highlight the measurement function h, we do not adopt this notation
for clarity. Figure 2.1 illustrates an example of how this function and
the resulting vector are constructed. If the measurement function h(-)
is noise-free, and the embedding dimension M + 1 is chosen to be more
than twice the dimension of the attractor (i.e., the N-dimensional region
toward which the system evolves) of the system’s state space, Takens’s

theorem guarantees that the embedding map F(s(t)) has a one-to-one
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Figure 2.1: [llustration of the construction of the sliding window vector
F(s(t)). Top row: An example time series with seven time points, using
embedding parameters M = 1,7 = 1, along with the corresponding
embedding window. The next three timelines demonstrate the sequential
sliding of the embedding window to construct the embedding vectors
F(s(t)). Collectively, these vectors form the reconstructed space.

correspondence between the original state space of the system (from
which the time series is derived) and the reconstructed state space formed
by F(s(t)) (Takens, 2006). This ensures that the dynamics of the system
can be studied in the reconstructed space as if it were being studied in
the original space. Figure 2.2 demonstrates this reconstruction process by

mapping the scalar time series to the TDE matrix F to reconstruct the state

space.
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Figure 2.2: Illustration of the embedding process. Top-left: the state space,
typically not observed. Middle-bottom: the time series obtained via the
measurement function h(-). Top-right: the reconstructed space from the
TDE matrix F, which preserves the topology of the original state space.

The choice of embedding dimension M + 1 and step size T is a subject
of considerable research in the literature (e.g., Cao 1997; Kim et al. 1999).
In this work, the embedding dimension is chosen manually. However, the
method of false nearest neighbors is one common method for determin-
ing this dimension, which identifies points in a low-dimensional space
that appear to be near each other but are not actually neighbors when
the data are viewed in a high-dimensional space. By systematically in-
creasing the embedding dimension, and evaluating the percentage of false
nearest neighbors, the dimension can be set where this percentage drops
significantly, indicating a suitable dimension. More details about this and
other procedures for determining M and T can be found in Cao (1997)
or Kim et al. (1999). A large value of M is often preferred as it enables

the embedding to capture more details inherent in the time series. If M is
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too large, there may be an insufficient number of points in the embedding
space. Furthermore, if M is too small due to a small 7, relatively fewer
points fall in each embedding window. This results in points repeatedly
appearing in windows, which can lead to redundant information. If Mt
is too large due to a large value of T, the reconstructed state space can
be distorted because relevant periodic behavior of the time series may
not be captured (Casdagli et al., 1991). Hence the choice of T and M is
such that Mt is not too large or too small, but is application-dependent
and requires empirical testing. For the purposes of this work, we assume
that an appropriate embedding window Mt can be determined through
a combination of the previously discussed parameter selection methods,

based on empirical testing for each specific application.

2.3 Subsequence Method

The TDE construction in the previous section assumes the observed time
series is uniformly-spaced, but a time series is often irregularly-spaced in
real data. We propose a method to extract uniformly-spaced subsequences
from the observed irregularly-spaced time series and prove its topology-

preserving properties, along with consistency and convergence results.
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2.3.1 Subsequence construction

Let x = (x(t) : t € T) be a time series of length n where T = {t;,--- ,t,} C
N. Further assume that this time series is not uniformly spaced, that is,
tip1—tiy # ti;o—tiyq, foratleastone t; € Tsuchthatt; < ti ;. Inthiswork,
a subsequence of the set x is defined as any subset that omits elements of x
without changing the order of the remaining elements. This definition does
not guarantee that ti ;1 —t; = ti;» — tiy1, Vti € T, which is a condition we
want to achieve with the proposed subsequence construction. Let x, » C x
be a subset of the original time series with time indexes 7, . C T with
the condition that t, ;11 —tp, i = 7, Vtp1 € Tpr. The set x,, . is the p-th
subsequence of regularity r, and it is a uniformly-spaced subsequence. For
any non-uniformly spaced time series, we can build a collection of such
subsequence for various values of r. The goal is to first obtain the longest
subsequence for a small r. As the subsequence length reduces for a given
1, the regularity value r can increase to obtain more uniformly-spaced
subsequences. An algorithm for computing this collection of subsequences
is displayed in Algorithm 1, which is adapted from an algorithm that finds
the longest arithmetic progression in a sequence developed in Erickson
(1999). In the statement of the algorithm, the following notation is used:
(i) the union symbol U denotes the addition of a set (element) to a set
(vector), (ii) the number of elements in a set or a vector A is denoted
by |A|, and (iii) the notation A\B represents subset of elements in set A

obtained by excluding all elements from set B. Algorithm 1 returns all
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Algorithm 1 Uniform subsequence construction

Require: Regularity score v, minimum sequence length m, time points
T = {t1,- -, tn} (exclude time points from subsequences generated
with different r).

Ensure: r< t,—t;, m<n

Initialize: T}, < {...}, temporary time index, Tre; < {}, uniformly-spaced
subsequences.

1: while number of elements in T is greater than m do

2 fori=1:(]71—1) do

3: Toub < Ti] > Initialize a subsequence.

4: forj=(i+1):|7 do

5: if T[j] — Tewlj — il = r then > Check the regularity
condition.

S

Tsub — Tsub U ‘I[)], if ‘Tsub’ > ’Tp’ then ‘Ip — (Isub
7: else break > Initialize with the next point in the sequence.
8: if |7, > m and T, is not identical to any other subsequence in T4
then
9: Treg < TregU T, T < T\T, > Remove the subset from the
sequence.
10: else break 1> No uniformly-spaced subsequence of the required
length exist.

11: return T > Set of all regularly spaced subsequences each of
regularity .

possible uniformly-spaced time points from the time index set 7 with
regularity score r. Note that for uniformly-spaced 7, it returns the full
sequence. The uniformly-spaced observations can now be obtained by
simply matching these observations to the time points in each subsequence.
Not all the subsequences returned by Algorithm 1 are required in the SSE
(see Remark 2.1). Each time point can be used at most once among all the

subsequences (see Algorithm 1, line 9). Moreover, there is no restriction
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preventing two subsequences from having the same length.

2.3.1.1 Subsequence embedding method

Takens’s theorem guiding the construction of the TDE in Section 2.2 in-
volves a single measurement function h(-), which generates each time
series measurement (Takens, 2006). A generalization considers each coor-
dinate in the embedding maps as a measurement function (see Remark 2.9
in Sauer et al. (1991) and Theorem 2 in Deyle and Sugihara (2011)). Such
generalizations allow for the extension of Takens’s theorem to multiple
measurement functions involving multiple time series. This motivates the
proposed SSE method where each subsequence is viewed as distinct time
series.

To construct the proposed SSE, a single distinct measurement function
is defined on each subsequence. Let h,(-) be the measurement function
associated with the p-th subsequence. Then the p-th embedding mapping

has the form:

Fp (S(tp,i)) = [Xp,r(tp,i)/ Xp,r (tp,i + Tp)/ e ;Xp,r(tp,i + MTp )] ’ (22)

where x, +(tp1) = hy(s(tp:1)). The delay step T, is fixed for each subse-
quence map. The map is also constructed under the assumption that the
length of each subsequence n, > max(M + 1, M * 1,,). This ensures that

there are sufficient observations within each subsequence to construct
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a point in the embedding space. The embedding matrix from the p-th

subsequence has the form:

T
F'P: F(s(tp,l))T F(s(tp,Z))T F(S(tp,np—M))T . (23)

Observe that each F,, is a matrix of dimension (n, — Mt,) x (M +1). The
row dimension of n,, — Mt, follows from the fact that, for a subsequence
of length n,,, the number of points in the embedding space of dimension
M + 11is n, — Mt, for step-size 1,,. The full embedding matrix for the

irregularly-spaced time series, denoted by F is then given by:

Fy
F=—|: . (2.4)

F
P Nx(M+1)

Here, P is the total number of uniformly-spaced subsequences, and since
each p-th subsequence embedding matrix F, has n, — Mt, points in
the (M + 1)-dimensional space, the row dimension of F is given by N =
Zgzl (n, — M7, ). Note that when the original time series is uniformly-
spaced, the SSE method is identical to the TDE method. To see this, observe
that the longest subsequence in the uniformly-spaced time series is the
original sequence.

To illustrate the SSE framework, Figure 2.3a shows measurements at

1000 uniformly-spaced time points (orange points and blue diamonds
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combined) of which about 20% are designated as missing values (blue di-
amonds), which creates an irregularly-spaced time series (orange points).
Both the uniformly-spaced and irregularly-space time series were embed-
ded into R* using the TDE and SSE methods, respectively. Figure 2.3b-top
gives the TDE of the uniformly-spaced 1000 measurements and contains
two identical elliptical shapes. Figure 2.3b-bottom shows the proposed
SSE of the irregularly-spaced time series and also contains two similar el-
liptical shapes, however, there is visible non-uniform spacing of the points
compared to the TDE space. This is primarily due to the SSE using a subset
of the original time series (i.e., it constructs a uniform subsample from the
irregularly-spaced time series based on Algorithm 1); the SSE space may
be considered as a sparse representation of the TDE space. The persistence
diagram for the TDE is shown in Figure 2.3c. Since Figure 2.3b-top has
two identical elliptical shapes, the H; features have overlapping birth and
death time, hence the appearance of a single blue triangle. Figure 2.3d
shows the persistence diagram for the SSE, and correctly identifies the
two loops but the birth and death time are non-overlapping due to the
non-identical spacing of the points in the two elliptical shapes. In general,
the SSE converges to the TDE in terms of the topological similarity of the
reconstructed spaces and in the closeness of the persistence diagrams as
the time sampling becomes more uniform. A more formal theoretical justi-
fication of this assertion, and other technical considerations are discussed

in the next section.
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Figure 2.3: SSE method illustration. (a) One thousand time series measure-
ments (blue and orange points). About 20% were designated as missing
(hollow blue diamonds) to obtain irregularly-spaced observations (or-
ange points). The TDE of the full time series ((b)-top) and the SSE of
the irregularly-spaced time series ((b)-bottom); both time series were
embedded in R* and their first three principal components are plotted.
The persistence diagram of the TDE (c) and SSE (d).

Remark 2.1. The choice of the number of subsequences P and the number of
subsequences of different regularity scores T depend on the context and goals of the
analysis. To reconstruct an (M + 1)-dimensional state space, subsequences must
satisfy n, > max(M+1, MxT,). A set of subsequences with the same regularity
score can lead to better reconstruction accuracy as it captures the dominant

patterns of the underlying data-generating space of the time series more coherently.



28

Combining subsequences with different regularity scores can improve topological
approximations as it captures a wider range of structures of the underlying data-
generating space, but it can introduce points in the embedding that may be
geometric outliers leading to less accurate reconstructions; kernel smoothing may
help to mitigate these issues. Thus, there is a trade-off between a better topology
approximation and improved reconstruction accuracy. If subsequences with the
same regularity score capture most of the time series, combining sequences with
different reqularity scores may offer limited benefits. While the simulations and
real data analysis in this work utilize subsequences with the same regularity score,
the methodology and theoretical results apply to subsequences with the same or

different reqularity scores.

2.4 Stability and Convergence Results

The reconstructed state space using the proposed SSE approximates the
state space based on a uniformly-sampled time series (i.e., the TDE space).
Persistence diagrams are used to quantify the stability of the estimate by
measuring its closeness to the TDE space. In what follows, these stability
results are established for the proposed SSE method and a denoising

procedure to reduce the noise present in the observed time series.
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2.4.1 Stability of Denoising Procedure

Time-series data are typically observed with noise. The level of noise in
the reconstructed space influences the presence and the persistence of
the topological features. A Fourier denoising procedure is proposed to
filter out noise in the observed time series. Furthermore, stability results
demonstrating how this denoising procedure preserves the underlying
topological features within the persistence homology framework are es-
tablished. The proposed denoising procedure, coupled with the stability
guarantee, is crucial to the proposed SSE pipeline as noisy data could make
it practically impossible to determine the optimal embedding window M.
Hence, a process for reducing this noise is essential, and it is important
to guarantee that the denoising procedure does not alter the topological
characteristics of the underlying manifold from which the time series were
observed.
-

Letx = |x(t1), x(t»), --- ,x(t,)| beanobserved time series vector.

The first step in the denoising procedure is to transform this observed

signal to the frequency domain. The discrete Fourier transform (DFT) of

x(ty), denoted as X(ty) is given by:

() =) x(t)e ™ =3 x(t,)dir, I<k<m, (2.5)
r=1 r=1
where j is the imaginary unit (j2 = —1), ¢y, = e 7™, 0 < w, < 1are

sample points, 0 < fi < n are frequencies, and %(ty) is the k-th sample of



30

the power spectrum at fy.

To filter out noise, the power spectral density %(ty ) is computed for each
tx. Then a threshold is chosen, and any X(ty) with power spectral density
less than the threshold is set to zero. In selecting the threshold, the goal is
to choose a value that does not smooth out the peaks in the true signal. The
derivation that follows assumes the selected threshold preserves the peaks
in the true signal. To simplify notations, the thresholded observations
are also denoted as %(ty). The thresholded %(ty) are transformed back to
the time domain to get the noise-reduced signal, which typically involves
multiplying X (i) by the inverse of a Fourier transform matrix.

Let X be the DFT of the time series vector with corresponding Fourier
basis ¢, such thatfork =1,...,n:

-

-
X = |:7~C(t1)/ X(t2), -+, g(tn)] ODES [(bklr b2, 0, Prn
(2.6)

The forward transform in Equation (2.5) can be vectorized: X = ®@x, where
o = [q) I T q)n} . The backward transform can then be deter-
mined by inverting the matrix @. However, due to the non-uniformity
in the spacing of the time series x, the columns of @ are not orthogonal,
and it is not directly invertible, so the pseudo-inverse is used instead. The
backward transform then has the form: x = 1(®"®)'®"'x, where A"
and AT denote the complex conjugate transpose and the Moore-Penrose

inverse of the matrix A, respectively. The matrix (®" ®)T®™ projects the
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frequency vector X onto the column space of @. Let ITe (x) denote this
projection operation. The modulus of off-diagonal elements of ®"' ® is
bounded as: |y} ; e/ vumve)f] < 3T @2 VTR = 1) where
the equality follows from the definition of the complex modulus |z| = Vzz,
with z as the conjugate of the complex value z. The matrix @ ®" has the

structure
mn
M, = Z eFVMlfL—f w5 (1, < 1), (2.7)
k=1

for indicator function 1(l; < 1,) , and ((I)d))'ql12 denotes the value in the
l;-th row and L,-th column of ®®'". Then ®®" is Toeplitz when the
frequency components are uniformly-spaced such that f, = k, and ®®"
is fully specified by its first row elements (HuoLiu and YuanTang, 1998).

Using these results, we establish a fixed sample size, non-asymptotic
bound in the following proposition, which asserts that the DFT preserves
topological features and is stable with respect to the bottleneck distance.
In particular, the bottleneck distance between the persistence diagrams
of the embeddings of the noise-free and smoothed (i.e., noise-reduced)
time series is bounded above by the embeddings of the observed noisy

and noise-free time series.

Proposition 2.1. Given x* € R™ as a possibly irregularly-spaced scalar time

series with additive noise of the form x* = x + ¢, where x is a noise-free scalar
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time series, and € is a zero-mean noise term, then let x' be the time series vector
after applying the proposed Fourier denoising to x*, and F, F*, and F' be the
embedding matrices associated with x, x*, and x, respectively. Also, let Dgm(F)
and Dgm(F') denote the persistence diagrams associated with the Vietoris-Rips
complex constructed from F and ¥', respectively. Then the bottleneck distance

between these two persistence diagrams is bounded as

dg(Dgm(F), Dgm(F')) < 2@ (S}lp IIF*(s(tp,i)) — F(s(tp,i))ll2 |,
ip
(2.8)

where0 <c <1, 1<i<n,—Mt,, 1<p<P

Proof. It suffices to bound the Hausdorff distance between F and F/, then
using the stability theory in persistence homology (see Equation (1.4)),
the bound on their persistence diagrams with respect to the Bottleneck
distance can be established. The proof proceeds as follows.

There exists a subset x; C x* that exactly equals F*(s(t,;)) (the i-th
row of the p-th subsequence of the embedding matrix F*). This fact stems
from the construction of F*, whose rows are uniformly-spaced samples of
x*. The same guarantee holds for the pairs (F, x), and (F,x’). The distance

between the projection I (x;) and F(s(tp 1)) is given by

M (x7) = Fs(tp,))ll2 = Mo (x5 —F(s(tp,)))]2, (29)
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where ||-||, denotes the 1>-norm. Equation (2.9) is under the assumption

that the choice of frequency threshold does not smooth out the peaks

in the true signal x. Observe that each F/(s(t,:)) is isometric to Mg (X7 ),

where x; is a subset of length M + 1 of the original noisy scalar time series.

Then the Gromov-Hausdorff distance between F’ and F can be expressed

as

dgp (F/,F) = dcu (ﬁm(X*),F> p

(2.10)

where ﬁq) (x*) denotes embedding of the vector TTg (x*). Using the same

isometric property, the Hausdorff distance between F’ and F can be ex-

pressed in terms of Equation (2.9). This follows from the fact that

Mo (i —F(s(tp,)))]l2 = (Mo (F*(s(tp,i))

< [[F(s(tp,i))

The matrix ®"® has the form:

Z“ e 12t (wa—wq)fx
k=1

ol =

Zn e )2t (wn—wi)fy
[ 2 k=1

Zn eI 2t (wa—wi)fi
k=1

Zn e J2m(wn—w2)fi
k=1

— F(s(tp,)))|2

— F(s(tp)) 2] (@™ @) D™,

(2.11)

Zn )2 (wn—wi)fi
k=1

Zn ejzn(wn*WZ)fk
k=1

(2.12)
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The modulus of off-diagonal elements of @' ® is bounded as

n

E el2m(wy —wy, )fi

k=1

n
<) |ePmtvumali = q, (2.13)

k=1

Observe that || (@™ @)t D" ||, < [|[(@"D)t||,||D"|,. Firstwebound ||®" ||,

by directly using the definition:

[D"]l2 = \/Amax (@ D), (2.14)

where Ay (@ D) is the maximum eigenvalue of Od". Since ®O"
is Toeplitz, a bound on the maximum eigenvalue can be established as
follows (Hertz, 1992). Let ¥ = [y, Uy, - - - ,1|)n]T be a vector such that
Py =1and

T
[n—=1)/(k—=1)] +2

1|)k=2>x<cos< >, k=2,--,mn (2.15)

Also, let ¢ = [|(@®");, (@ D)o, -, [(@D"), ,|] ', that is, the mod-
ulus of the terms in first row of ®®"'. Let A, be the k-th eigenvalue of

®®". Then it follows that (Hertz, 1992):

max (M) < . (2.16)

1<k<n

Further observe that max;<x<n (Px) = 2, hence, together with the bound
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on the values of ¢ from Equation (2.13) it follows that

Tp=n+) (@O < (n+nZZ> =on’—n. (2.17)
k=2

k=2

Hence the norm || ®"||; < 2n? — n. It now remains to bound the quantity
|(@" ®)"|,. By computing the singular value decomposition of ||(® " ®)]|,,

it follows directly that

(@M D)1, < (2.18)

(@)

where o2, (®) > 0 is the smallest non-zero singular value of ®. Using
the fact that
D (@M D) =Tr(@" D) =n?, (2.19)
k=1

where Tr(®" ®) is the matrix trace, it follows that the smallest non-zero

eigenvalue is bounded as 0 < Anin ( ®"®d) < nwhich implies that 02, (® o) <

min (

n. For any such that o2, (®" ®), we can always find a 0 < ¢ < 1 such that

02, (@"®) > cn. Hence the bound in Equation (2.18) can be extended

to

1 1
(@M D) ||, < 57— R (2.20)

min

Now using the bound in Equations (2.17) and (2.20), the bound in Equa-
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tion (2.11) has the form

2n—1

M (x{ — Fs(tp,i)))]]2 < :

IF*(s(tpi)) — Fs(tp))].  (2:21)

The bound on the Hausdorff distance between F’ and F is then expressed

as

dir(TTo (x"), F) < supl|Mo (x; —F(s(tp)))]2 (222)
ip
< 22 L S|P (s(ty, ) — Fls(tp )]
ip

where1 <i<n,—Mr,,1<p < P.From the equality in Equation (2.10),
it holds that

ds(Dgm(F), Dgm(F')) < 2dgx (F,F) = 2dgx <ﬁq)(x*),F> . (2.23)

The Gromov-Hausdorff distance is further bounded above by the Haus-
dorff distance. From Equations (2.22), the bound on the bottleneck dis-

tance between Dgm(F) and Dgm(F’) is established as

ds(Dgm(F), Dgm(F')) < <S}lp IF*(s(tp.0)) — F(s(tp.0))l |,
” (2.24)
wherel <1< n, —Mt,, 1<p <P. If the observed time series is
‘noise-free” such that x* = x, then sup [|[F(s(t,:)) — F*(s(tp,i))ll. =0, Vi, p,

i,p

and dg(Dgm(F), Dgm(F’)) = 0. ]
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Remark 2.2. When the samples are uniformly-spaced in both the time and fre-
quency domain, the matrix ® is Hermitian with orthogonal columns, hence the
factor (2n — 1) /c is not required for the bound to hold. The constant c depends on
the {-norm of O ®, and the factor (2n — 1) /c makes the bound conservative.
However, if the denoising is done well, the bottleneck distance stays significantly
below this bound. Numerical experiments in Section 2.5.1 suggest this is the case
for the settings considered.

A point to emphasize is that the dependence of the bound on sample size n arises
mainly from irregular spacing in the time series. When samples are not uniformly
spaced, complexities introduced by this irregularity lead to a bound that scales
with n. This proportionality is not indicative of a flaw in the denoising method
but rather a reflection of the additional challenges posed by irreqularly-spaced time
sampling. The uniform bound in Equation (2.8) is not an asymptotic bound, so
convergence with increasing sample is not expected in this context. Theorem 2.5

discusses some convergence results in the presence of irreqular sampling.

2.4.2 Stability of the Subsequence Embedding Method

The objective of this section is to show that the SSE method provides
a stable approximation, in the topological sense, to the TDE (based on
uniformly-spaced time series data). Recall that the SSE method is designed
for cases where data are irregularly spaced, but the SSE reduces to the
standard TDE for uniformly-spaced data. Hence, we present results in

this section that show that the SSE construction remains close to the TDE
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construction, and that small perturbation in the SSE space results in small
perturbations in its topology. To simplify the notation, the embedding
matrices are represented as sets where the elements of the set are the
row vectors of the corresponding TDE or SSE. Also, for an embedding
from a single uniformly-spaced time series, the step-size is assumed to
be T. When constructing from a set of P subsequences, a step-size of Ty, is
assumed for the p-th subsequence, where 1 < p < P.

Because the SSE can have fewer elements than the TDE, the following
lemma addresses how to expand the SSE without affecting its topology
by repeating already existing points in the SSE, so that distances can be

computed between the TDE and the expanded SSE.

Lemma 2.3 (Topology-preserving transform). Let F! be an embedding matrix

from a uniformly-spaced time sequence of length n with the form:

= {F'(s( (s(ta)), -+, FL(s(tn_m<)) } € RMFL, (2.25)

Also, let F? be an embedding matrix from a set of P subsequences with the form:

{F tl 1 F (S(tlfnlfMTl))l e /FZ(S(tP,nP*MTP))} - RM+1/
(2.26)
where Zg —Mrt,) < n— M. Consider the set extension F = {F2,F},

where F2 is a subset of k elements from ¥2. Then the persistence diagrams as-
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sociated with F* and F? are identical, that is, Dgm(F?) = ng(fz), and the
three embedded spaces are related through the bottleneck distance as follows:

dg(Dgm(F'), Dgm(F?)) = dB(ng(Fl),ng(fz)).

Proof. By construction, F* C F?, thus for any F?(s(t,1,)) € F?, Elfz(s(tp,iz)) €
F2 such that F(s(tp,)) = fz(s(tp,iz)). Further observe that [F?|,, = |F?|,,,
where |.|,, is a measure of the cardinality of unique observations. Hence
it follows that Dgm(F?) = ng(fZ), and the conclusion is a direct conse-

quence of this equivalence. O

Lemma 2.3 asserts that duplicating points from an embedding matrix
does not change the SSE’s persistence diagram. This is due to the fact
that the duplicated points do not introduce new data points locations
in the embedding. This is used to establish a bound on the SSE as an
approximation to the TDE in the following proposition. In Lemma 2.3,
when k = (n — MT) — Zgzl(np — Mt,), the row dimension of F2 is the
same as that of F!. In such instances, when the interest is in a row-wise
comparison of F2 and F' the subsequence indexing in the time variable

for any fz(s(tp,i)) cFis ignored for notational convenience, and a row is

simply written as fz(s(ti)), where1 <i<n— Mrt.

Proposition 2.2. Let x"' be a uniformly-spaced time series vector of length n with

TDE matrix F'. Let x*> C x! be a time series vector where some of the elements are
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missing or unobserved. Denote the SSE matrix constructed from x> as F*. Define
the extension F? = {F? F;}, where F} is a subset of k = (n—Mt)— ZE (-
Mrt,) elements from F2. Then the bottleneck distance between F' and F? is

bounded as: dg(Dgm(F'), Dgm(F?)) <2 sup ||[F(s(t:)) — P(s(t)) -

1<i<n—Mr

The choice of the k subsets of embedding vectors F; in Proposition
2.2 is arbitrary as any subset satisfies the bound. However, since they are
chosen to match the subset {F'(s,) : Z; My —M1,) +1<1l<n—Mt}
of F!, the bound can be improved. The minimum bound can be attained
by choosing a subset in F? that has the smallest Euclidean distance to the
subset {F'(s¢,) : Zg 1My —MT1,) +1 < 1 < n— Mt} This is summarized

as a corollary below.

Corollary 2.4. Let x!' be a uniformly spaced time series vector of length n. with
TDE matrix F'. Let x* C x! be a time series vector where some of the elements
are unobserved, with ¥ as its SSE matrix. Define the extension F> = {F2, F},

where F% is a random subset of k = (n — M1) — Zgzl(np — Mrt,) elements

from F?. For some F' € F', define the set F . as follows:
kmzn = {szn ||me F1||2 < ||F2 - FlHZIVFz € F2 s.t. anzn 7é Fz} .
(2.27)
That is, ¥ ., is a subset of k embedding vectors in ¥* with minimum distance to
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some points in F'. Let F2

2w = {F*, F% ..}, then it follows that

k,min

sup [[F(s(t:)) = Frun(s(t))ll2 < sup [[F'(s(t)) = P(s(t)]2,  (2.28)

1<ign 1<ign

where F1(s(t;)) € F', F2(s(ty)) € F2, and F2,,,(s(t:)) € F2,.

An immediate consequence of Proposition 2.2 and Corollary 2.4 is
that the SSE matrix approximates the TDE. In particular, for a time series
x=1{x(t):te T}, and T ={t3,--- , tn} C N, the sequence of embedding
matrices for each r where 1 < r < t,, — t; is finite. Hence for a fixed n, the
limiting persistence diagram as v — 1 is close to the TDE's persistence dia-
gram. If r = 1, the SSE is exactly the same as the TDE, and the persistence
diagrams would be identical. This reinforces the fact that the proposed
reconstruction preserves the topological structures more accurately as the
level of irregularity in the observed time series decreases. A more formal

treatment of these observations is presented next.

2.4.3 Topology Recovery and Convergence Results

This section presents results on the quality of the topological recovery
for varying proportions of missingness and sample sizes. We assume the
number of missing values increases at a slower rate than the sample size
of the time series; specifically, a rate of o(log m), for sample size m. This

assumption and others are formalized as follows.
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Let x1, Xy, - - - , be irregularly-spaced time series vectors where [x;| < |xj],
i < j. Denote by F,,, the SSE associated with x € {x;,x,,--- ,}, i.e,, Fp, =
{F(s(t1)),F(s(t2)),- -+ ,F(s(tm))}. Note the correspondence between the
subscript m and the number of points in F,,,. F,,, depends on which time
series is selected; however, indexing over this selection is not needed for
the following results. Recall that F,;, is a compact subset of (RM*1, ||-||2).
Let the space (RM*1, ||-||2) be endowed with the unknown probability
measure 9 such that the F(s(tx))’s are randomly sampled according to
V. Let ¥ be supported on the set Fy, which can be considered the true
underlying state space to be estimated, and let ¢ be the associated density

function. Consider the following set of assumptions.
A1l. The sample size increases such that x; C x; whenever i < j.

A2. Let ¢, (7) be a function of m and the regularity score r such that

em(l) = 0asm — oo.

A3. For any point Fy € Fy, }(B(Fp, §)) > min(x6™ "1, 1), where B(Fy, )

is a closed ball of radius & > 0 around Fy, with constant k > 0.

A4. It is possible to create joint distributions based on the marginals of

F,. that satisfy

sup |2 F6Mt)), - Fls(tn))) — ¢ (F(s(t1))) x - - x ¢ (F(s(tm)))
g @ (Fls(t1))) % x @ (Fls(tm))]
(2.29)
where 1, is such that } >, T iosmy < oo forany f > 1.

<My
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Assumption A4 is to address the possible lack of independence of the
vectors in F,,,. Under this assumption, the dependence can be controlled
and the vectors in F,,, are regarded as the so-called n,,-almost independent
samples, which allows for F,,, to converge in Hausdorff distance to Fy
(Aaron et al., 2017; Picado and Oliveira, 2020). This assumption, where
almost-independence can be achieved for a time series in its embedding
space, can be satisfied for a suitable embedding window (M + 1)t as
illustrated by the following empirical example. Consider the function
h(t) = 4cos(t)® x sin(t)3. We simulate a time series from this function
(see Figure 2.3a for an example of the simulated time series), construct
the embedding with M = 1 and T = 3 to obtain the point cloud F,,,. To
check Assumption A4, we approximate 1,,, denoted by n;},, for increasing
m by evaluating the left side of Equation (2.29) via the k-nearest neighbor
density estimates, where k = 10. For each point F(s(t;)), we generate
N = 1000 noise-perturbed replicates, were the noise are drawn from
a normal distribution with mean 0 and standard deviation 0.01. The

marginal density is estimated as:

k/(N x volp 1)
e [F(s(t) )M

¢ (F(s(ti))) = (2.30)

where voly 1 is the volume of a unit M-sphere, and 1 [F(s(t1))] is the

distance to the k-th nearest neighbor. Similarly, the joint density is also
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estimated as follows:

k/ (N X VOlm(M+1)>

ricl (Fls(t1)), -, Fls(tm)))] ™M
(2.31)

@ (F(s(t1)),-- -, F(s(tm))) =

Checking that 0}, /log(m) converges to zero for large m is sufficient to

validate Assumption A4. Figure 2.4 shows the embedded space and the
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L]
. 2.0 A
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0254 ©
° 05 -

-0.504 T - .I T T T T T
-0.50 -0.25 0.00 0.25 0.50 0 25 50 75 100

(a) A sample embedding (b) The convergence of 1}, / log(m)

Figure 2.4: Illustration of Assumption A4. (a) An example embedding
constructed from the time series h(t) = 4 cos(t)® x sin(t)® using 100 time
points; see Figure 2.3a. (b) The convergence results of 1}, /log(m) for
increasing m; see Equation (2.29), where 1}, denotes the lower bound of

Nm.

convergence curve. We observe that n}, /log(m) converges to zero with

m, which guarantees that ) > it 7 < o0

m=1 mPlog(m)

The SSE matrix F,,, can be regarded as an estimator of Fy and con-
vergence results can be established in the context of assumptions A1-A4.
These results are analogous to convergence results established on support
estimation of d-dimensional sets (Cuevas and Rodriguez-Casal, 2004), its

generalization to metric spaces, and on the space of persistence diagrams

(Mileyko et al., 2011; Chazal et al., 2014). The following result gives the
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rate of convergence of the SSE, F,,, in estimating F.

Theorem 2.5. Let x1, Xy, - - -, be a sequence of irregularly-spaced time series vec-
tors satisfying assumption A1, and F., = {F(s(t1)), F(s(t2)), -+, F(s(tm))} C
RM*1 be the SSE associated with some x € {x1,xa, - - - , }, satisfying assumption
A2. If the probability measure ¥ satisfies assumption A3 and A4, then with

probability one,

lim sup (e (1)) M7 diy (Fpn, Fo) <K, (232)

where K is a constant depending on « and the embedding dimension M + 1.

Proof. By construction of the subsequence and assumption A2, the Haus-

dorff distance between F,,, and Fy has the form
du(Fm, Fs) = sup mianF(s(ti)) — Fs |2 (2.33)
Let Fy C Fy be a set of ball centers such that

Fy ¢ | B(Fo,3), (2.34)

FoeFy

that is, the minimal covering of Fy consisting of balls of radius  around
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Fo € Fy. For any Fy € Fy and Fy € Fy, the following inequality holds:

min [[F(s(ti)) — Foll2 < [|[F(s(t;)) — Foll2

1<ig<m
= [[F(s(t;)) — Fo + Fo — Foll2
<|[F(s(t;) = Folla + [Fo—Foll, j=1,---,m.

(2.35)

Observe that ||Fy — Fy |2 is bounded by the radius 6, hence using Equation
(2.34), it follows that

121<nm||F(S(ti)) —Fyllp <8+ %ggglgiganF(S(tt)) —Foll2<e,  (2.36)

for some € > 0. Further, taking the supremum over all Fy, the relation still

holds:

i :)) — < i ) — < .
Fs;é%lglgnm\lF(S(tl)) Foll2 <8 +£?glg§1g}§nm|!F(S(t1)) Foll <, (2.37)
Then the probability that SUPE, cp, MiNi<i<m |F(s(ti)) — Fyl|2 exceeds ¢ is

bounded as

Pr (sup min ||F(s(ti)) — Foll2 > 8) < Pr (6 +max min ||F(s(ti)) —Foll2 > ¢

FocF, ISISM FoeF, 1<i<m

= Pr (max min [|F(s(ti)) —Foll2 >¢e—5

Fo€F, 1<i<m

(2.38)
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From Equation (2.33), SUPE, cF, min;<i<m||F(s(ti)) — Foll2 = du(Fm, Fs),
hence abound on the probability of di;(Fy,, Fy) exceeding e can be obtained

as

Pr (dy(Fn, Fy) > ¢) < Pr (max min [[F(s(ti)) — Foll2 > ¢ — 5) . (2.39)

Fo€Fy 1<i<m

Observe that Fy endowed with the Hausdorff metric is complete and
separable (Attouch et al., 1991). Then for ¢ small enough, the following
bound holds (Cuevas and Rodriguez-Casal, 2004):

: ) o o s yM+1\m
Pr (gggglg&anF(s(tl)) Foll2 > ¢ 6) <C(1—kw(e—3)M)™.
(2.40)

The constant C is the number of points in the covering of Fy, i.e., [Fo|, and

w is the Lebesgue measure of the unit ball in RM+1 Note that since 0 <

kw(e — )M+ < 1, it follows that (1 — kw(e — §)M+1)™ g emmrw(e—)M™

This allows for Equations (2.39) and (2.40) to be rewritten as
M+1

Pr (dyg(Fm, Fy) > ¢) < Pr <max min ||F(s(ti)) — Follo > ¢ — 6) < Ce mrw(e=8)
FoeFy 1<i<m
(2.41)

Choose some K > (L)’V‘#+1 and let e (1) = (r—2=t), where L is the

KW m

number of missing observations in the initial time series and m > 1, then



48

for m large enough, it follows that

—mkw|( (em(r)-2
Pr ((em (1)) dys(Fp, Fy) > K) < Ce (entn
(2.42)

1

The above bound can be obtained by simply substituting (28‘““) ) M for

KW

¢ in Equation (2.41). Now consider the sum

) 1 M+1
- (el )@MH—&)
Z e TTlKU.)< € T ) (2.43)
m

and observe that it is convergent if e, (1) > (%) MH This condition can
always be satisfied given the restriction K > (%) ™ and for an appro-
priate choice of k and . Then by the Borel-Cantelli lemma (Emile Borel,

1909; Cantelli, 1917; Chung and Erdos, 1952), since

Y Pr ((sm(r))*ﬁ dis(Fon, Fy) > K) < o0, (2.44)

it follows that
lim sup (e (1)) ™7 dyy(Fon, Fo) < K. (2.45)
O

From the stability relation in Equation (1.6), the Hausdorff metric can

be replaced with the Gromov-Hausdorff metric and the results still holds.
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This also gives a similar convergence results on the space of persistence

diagrams with respect to the bottleneck distance and is summarized as:

Corollary 2.6. Let x1,Xy, - - -, be a sequence of irreqularly-spaced time series vec-
tors satisfying assumption A1, and let F, = {F(s(t1)), F(s(t2)), -+, F(s(tm))} C
RM*1 be the SSE associated with some x € {x1,xa, - - - , }, satisfying assumption
A2. If the probability measure O satisfies assumption A3 and A4, then with
probability one,

lim sup (sm(r))f’v%“ dg(Dgm(F.,), Dgm(Fy)) <K, (2.46)

m—>00

where K is a constant depending on k and the embedding dimension M + 1.

2.5 Numerical Studies

This section presents numerical studies that evaluates the performance of

the proposed SSE method.

2.5.1 Evaluation of Denoising Procedure

To evaluate the performance of the denoising procedure presented in this
work, and Proposition 2.1, the time series in Figure 2.3a was replicated
at varying noise levels and sample sizes. The probability that any value

is unobserved at a given time point is fixed at 0.25. Four noise levels
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{0,0.25,0.5, 2} and five samples sizes {50,100, 500, 1000, 5000} were used
in the simulations. For each noise level and sample size combination,
the denoising method outlined in Section 2.4.1 was performed and the
bottleneck distance between the corresponding persistence diagrams and
the theoretical upper-bound are computed. The upper bound computed
does not include the multiplicative factor 2*=1. Figure 2.5 shows a noisy
time series and the outcome after denoising at various frequency thresh-

olds. For an appropriate choice of frequency threshold, which is generally
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Figure 2.5: Illustration of the denoising method of Section 2.4.1. The
time series was perturbed with noise drawn from a N(0,0.25), and the
probability of a missing observation is 0.25. (a) The original 500 time
series measurements. The orange points are observed values, while the
blue diamonds are the missing values displayed at the true signal value
without noise. The other sub-figures display the time series after denoising
with a frequency threshold of 5 (b), 15 (c), and 25 (d).
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application dependent, the true underlying signal can be satisfactorily
recovered.

For each combination of the noise-level and sample size, the process
is repeated 100 times and standard errors are obtained. The results are

presented in Figure 2.6. The bottleneck distance is bounded above by the

Samples 50 ---- 100 —=- 500 = — 1000 5000 e Bottleneck distance 4  Error bound

N
o
1

_‘
o
1
\
\
\
\
\
Y
\

_‘
o
1
\\
\
"W
\

Bottleneck distance or Error bound

5 ;;”/.;’
5”‘—
P
y ¥
.‘/' S : — 1 ‘ {
0 l.-:...-*--...—ﬁ:-..—;’_-@--..J..:.;..-..—.--..-...-.-...-...-.-n—..—_n-..r-..--.‘-u-..-u-t.'-..u-_r-..-u-._.--.(
T T T T T
0.0 0.5 1.0 1.5 2.0

Noise level

Figure 2.6: Stability results of the denoising procedure (see Proposi-
tion 2.1). The solid points represent the mean values from 100 repetitions,
the vertical lines on these points indicate the error bars (which are too
small to see in many cases), and the colors and line types indicate the
sample size. The vertical axis represents the bottleneck distance for the
circle points and the error bound (without the multiplicative factor 2*-1)
for the triangle points.

error bound for all noise levels and sample sizes as expected. At the same
noise level, smaller sample sizes tend to have larger bottleneck distances.
This can partly be explained by the fact that the SSE is more sparse (i.e.,

points in the space are more spread out since there are fewer points). The

Hy features are more likely to persist longer in such sparse settings. The
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reverse is true for the error bound in Proposition 2.1, which for the same
noise level, is higher for larger sample sizes. This follows from the fact
that larger sample sizes increases the chance of observing highly noisy
terms (and the upper bound is includes a supremum). These results
demonstrate the denoising procedure’s efficacy in controlling noise effects
on the SSE’s topological features.

Proposition 2.1 establishes a conservative bound on the bottleneck
distance between persistence diagrams of a noise-free and a denoised
time series using Fourier methods. The factor (2n — 1)/c reflects the poor-
conditioning of the Fourier matrix in non-uniform domains. Empirical
evidence suggests this bound could be improved in more restricted settings,

which is a topic for future research.

2.5.2 Reconstruction Accuracy

The empirical study in this section was designed to assess the SSE method’s
effectiveness in preserving the original state space geometry using the
Hénon map as an illustrative example (Hénon, 2004). The Hénon map
recursively maps a point (hy, g¢) € R? as follows: hy,1 = 1 — ah? + gy,
git1 = bhy, with a =1.4and b = 0.3 (i.e,, their classical values). The map
is initialized at (hy, go) = (0, 0), and simulated with 500 points with obser-
vations designated as missing with a given probability. Figure 2.7 shows
the 2D Hénon map and the corresponding time series for one dimensions.

The measurement function (see Section 2.2) extracts observations along
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the h-dimension, hence {h.} are used to reconstruct the space. Observa-

tions along the g-dimension could be used instead.
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(a) Hénon map

(b) The h dimension

Figure 2.7: The Hénon map used in assessing reconstruction accuracy.
(a) The Hénon map with 500 points (blue and orange) where the blue
diamonds are designated as missing. (b) The h-dimension of the Hénon
map; only 200 points are displayed for visual clarity.

The correlation dimension is used to assess how well the geometry of the
original state space is preserved in the reconstruction. Specifically, for a
given ¢ > 0, it measures the probability that two random points in a space
are within e-distance of each other. To compute the correlation dimension,

the correlation sum is computed using the following:

. 2 m m
Corr(e) = n}gloo m(m——l) ;j;l L ([|F(s(ty)) — F(S(tj))HZ <€),

(2.47)
for some embedding map F = {F(s(t1)), -, F(s(tm))}. Then the correla-
tion dimension is estimated as: lim.—log(Corr(¢))/log(e). If the recon-

structed space preserves relevant geometrical invariants, its correlation

dimension should match that of the TDE space. Other accuracy measures
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include the box-counting dimension, Hausdorff dimension, and informa-
tion dimension. However, the correlation dimension is more robust to
sample size, making it less noisy with fewer samples (Grassberger and
Procaccia, 1983b).

The SSE method is compared to common statistical interpolation meth-
ods used to impute missing data. A range of methods were considered!,
but only the best three methods are presented, which were implemented
using the R package, imputeTS (Moritz and Bartz-Beielstein, 2017):

(1) Kalman Smoothing (KS): This fits a structural time series model via
maximum likelihood, using the linear local trend as the structural class
(see referenced package for more details).

(2) Last Observation Carried Forward (LOCF): This methods replaces
each missing value with the most immediate prior observed value.

(3) Next Observation Carried Backward (NOCB): This is similar to the
LOCEF, but instead replaces each missing value with the most immediate
next observed value.

The results are presented in terms of the correlation dimension, with
standard errors generated by applying each method to 100 independently

generated instances of the Hénon map. A noise model (with no missing

!The comparison methods considered are available in the the R package, imputeTS
(Moritz and Bartz-Beielstein, 2017): linear, spline, and Stineman interpolation methods,
Kalman Smoothing with a structural model and autoregressive integrated moving average
model, a moving average method with exponential and linear weighting, seasonal decompo-
sition (imputation by interpolation is done on the deseasonalized component), seasonal
split (imputation by interpolation is done on each split), imputing with the previous
observation (LOCF) or next observation (NOCB), imputing with the mean, median, mode,
and by a random point in the dataset.



55

values) served as a baseline, with observations from a normal distribution
(mean zero) and standard deviation equal to the probability of observing
a missing value (for convenience).

Figure 2.8 shows example reconstructed spaces using the proposed
method and two imputation methods (the NOCB result is nearly identical
to the LOCF and is not shown) with 500 samples and a 0.25 missingness
probability. Note that for the comparison methods, after imputation the
TDE method is used to estimate the state space. Only the SSE method
preserves the original geometry, while the imputation methods introduce

extraneous features.

1.0 1.0 1.0
05 05 05
y 0.0 y 0.0 y 0.0
0.5 0.5 0.5
-1.0 -1.0 -1.0

1.0 -05 00 05 10 10 -05 00 05 1.0 10 -05 00 05 1.0

X X X
(a) SSE (b) KS imputation (c) LOCF imputation

Figure 2.8: Reconstructed state spaces of the Hénon map for: (a) proposed
SSE method, (b) KS imputation, and (c¢) LOCF imputation.

Figure 2.9 shows the correlation dimension versus missingness proba-
bility for the SSE method and the three imputation methods. The black
dashed lines indicate the established empirical estimate for the Hénon
map’s correlation dimension (1.22 £ 0.04) (Grassberger and Procaccia,
1983a; Sprott and Rowlands, 2001), so that a good performing method has

empricial correlation dimensions within these bounds. The SSE method
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Figure 2.9: Reconstruction accuracy results of the Hénon map based on
the correlation dimension. The points in different shapes are the mean
correlation dimension after 100 repetitions using the proposed SSE method
(solid pink points), the three imputation methods, and a baseline noise
model (blue dashed), and the vertical bars represent the corresponding
standard errors. The black dashed lines indicate the established empirical
bounds of the Hénon map.

performs well up to a missingness probability of 0.6, staying within or
close to the empirical bounds. Beyond 0.6, its comparable to the three
imputation methods. However, the SSE method is more variable due to
the fewer points used to compute the correlation dimension compared to

the other methods (which always have 500 points).
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2.5.3 Periodicity Quantification

The periodicity of a time series can be quantified based on the H; features
in the persistence diagram. This relies on the idea that periodic patterns
yields elliptic curves in the reconstructed state space, and Perea and Harer
(2015) use the roundness of the curves as an indicator of the periodicity
in the time series. The roundness of these ellipses can be quantified by
examining the maximum persistence of their associated H; features. For a
time series vector x with its embedding map F, its periodicity score ps(x)

can be defined as (Perea and Harer, 2015):

ps(x) = (b,dgrelggmm(d —b)/V3, (2.48)

where Dgm (F) is the persistence diagram, and maxu,q)epgm(r)(d — b) is
restricted to the H; features. For this calculation, the embedding map F is
pointwise-centered and scaled. The motivation for the periodicity score
is that during the VR filtration for a dataset with a large enough sample
size, a unit circle (H; feature) dies when an inscribed equilateral triangle
appears in the VR complex at filtration value V/3, hence the maximum
periodicity score of one is realized when either the TDE or SSE spaces has
a well-sampled circle; a ps(x) closer to one indicates a stronger periodic
signal in x.

To evaluate this framework, two different set of signals were generated

with sample sizes n € {50, 100,500, 1000} and missingness probabilities
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{0,0.1,0.2,0.3,0.4}. The first set follows f(t) = 50 x cos(7tt/4 — Am) X
sin(7tt/2) + 50 with A € (0,1) and t € [0, 127], having a longest period of 8.
The second set is a non-periodic signals drawn from a N(10, 2). Figure 2.10

shows samples of both signals. To construct the embedding from the time

1001
75 15 ‘ | ol ‘ |
127 bt dldo T 3 bttt 8 3 10+
501 TRl T 1T AN T e Lon 1 TR
9 “ q i ‘W“ "\ “‘ el ‘1“ I ,‘;‘ \‘NJ U 1)
b il 4 | s |68
25 ol [ ] b Yl I8
0 5 10 15 0 10 20 30
t t
(a) Periodic signal (b) Non-periodic signal

Figure 2.10: Sample periodic (a) and non-periodic (b) signals used in
the periodicity quantification simulation of Section 2.5.3. Each time series
include 500 time points.

series, the time points are rescaled to integers and the step-size is set to
T = 1. The periodicity score ps(x) is then compared to those obtained from
the Lomb-Scargle periodogram method for both uniformly-spaced and
irregularly-spaced observations (Lomb, 1976; Scargle, 1982; Ruf, 1999),
the sliding windows method (Perea and Harer, 2015), and the JTK_Cycle
algorithm for uniformly-spaced samples (Hughes et al., 2010).

The results are summarized in Table 2.1 (periodic signal) and in Table
2.2 (non-periodic signal). Table 2.1 shows that all the methods rate the
periodic signals as highly periodic with increasing sample size. The pro-

posed SSE method consistently identifies a distinct H; across all sample
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sizes and missing observations despite noisy features in the persistence
diagram. The JTK_Cycle and the Lomb-Scargle method requires speci-
tying a period search range. The proposed SSE method has the added
advantage that its periodicity score has a geometric interpretation (Perea

and Harer, 2015).

Table 2.1: Results for the periodic signal summarized as p-values for
JTK_Cycle and Lomb-Scargle with estimated period in parentheses, and
as periodicity scores for Sliding Windows (SW) and SSE methods.

n n_ M SW JTK_Cycle Lomb-Scargle SSE Method

000 2 074 0.00(7.69)  0.00 (8.02] 0.74

50 010 2 — — 0.00 (8.03) 0.74
020 2 — _ 0.00 (8.03) 0.70

030 2 — _ 0.00 (8.04) 0.67

040 2 — _ 0.00 (8.04) 0.44

000 6 053 0.00(8.00] 0.0 (8.02) 0.53

100 010 6 — _ 0.00 (8.02) 0.53
020 6 — _ 0.00 (8.02) 0.53

030 4 — _ 0.00 (8.20) 0.49

040 3 — _ 0.00 (8.02) 0.43

000 8 093 0.0 (2.64) 0.00 (8.02) 0.93

010 8 — _ 0.00 (8.02) 0.85

500 0920 6 — — 0.00 (8.02) 0.71
030 2 — _ 0.00 (8.02) 0.63

040 2 — _ 0.00 (8.02) 0.60

000 26 090 0.00(1.28)  0.00 (8.02) 0.90

010 15 — _ 0.00 (8.02) 0.74
1000 020 12— _ 0.00 (8.02) 0.69
030 6 — _ 0.00 (8.02) 0.44

040 4 — _ 0.00 (8.01) 0.43

For the non-periodic signal, all the methods performed reasonably
well across all samples and missingness mechanisms. The performance
of the SSE method in the non-periodic setting is not surprising. This is

because as more observations are missing, the sampled time points appear
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Table 2.2: Results for the non-periodic signal are given as p-values for
JTK_Cycle and Lomb-Scargle with estimated period in parentheses, and
as periodicity scores for Sliding Windows (SW) and SSE methods.

n n M SW JTK Cycle Lomb-Scargle SSE Method

0.00 3 0.30 1.00(13.29) 0.15 (2.05) 0.30

50 0.10 3 — — 0.16 (2.04) 0.32
020 3 — — 0.28 (2.04) 0.23

030 3 — — 0.17 (2.04) 0.25

040 3 — — 0.41 (32.87) 0.14

0.00 3 0.26 1.00(12.88) 0.10 (1.00) 0.26

100 010 3 — — 0.08 (1.00) 0.22
020 3 — — 0.27 (1.00) 0.25

030 3 — — 0.55 (16.39) 0.32

040 3 — — 0.33 (16.39) 0.29

0.00 11 0.14 0.28 (0.45) 0.11 (0.15) 0.14

010 9 — — 0.23 (0.80) 0.16

500 020 0 - — 0.13 (0.20) 0.10
030 7 — — 0.29 (0.79) 0.18

040 3 — — 0.19 (0.45) 0.28

0.00 3 0.13 1.00(1.28) 0.87 (0.25) 0.13

0.10 3 — — 0.50 (0.40) 0.14

1000 020 3 — - 0.55 (0.26) 0.15
030 3 — — 0.22 (0.26) 0.16

040 3 — — 0.66 (0.26) 0.20

random, and the resulting time series looks more like random noise than

signal.

2.5.4 Application to Real Data

Irregularly-spaced times series data are common in astronomy such as
those discussed in VanderPlas (2018) and in exoplanet detection methods
(Zhao et al., 2020, 2022). In this section, we examine an asteroid dataset
from the Lincoln Near-Earth Asteroid Research (LINEAR) survey, which

tracks near-Earth asteroids. The data include 280 magnitude measure-
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ments (brightness) of LINEAR object ID 11375941 over five and a half
years. Magnitude measurements are unitless, and lower values indicate
brighter objects. Further details on the data and preprocessing are in Sesar
et al. (2011), Palaversa et al. (2013), and VanderPlas (2018).

Figure 2.11a shows the observed magnitude over time, revealing no
obvious periodic pattern due to irregular sampling. The TDE method is
unsuitable for such data, but the proposed SSE method can construct a
geometric representation. Using M = 2, rescaling the time points to inte-
gers, and taking T = 1, the SSE in Figure 2.11b reveals a circular geometric
object, indicating high periodicity. The H; feature on the persistence di-

agram (Figure 2.11c) is at the point (b, d) = (0.31,1.74). The periodicity
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Figure 2.11: LINEAR object ID 11375941. (a) The time series of the mea-
sured magnitudes (orange circles) with error bars (vertical bars). (b) The
SSE of the time series. (c) The persistence diagram for the SSE with a
single highly persistent H; feature as expected.

score obtained using Equation (2.48) is 0.82, indicating high periodicity in
the observed magnitude of LINEAR object ID 11375941. Using the Lomb-

Scargle method, the optimal period was found to be 2.58 with a p-value
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of 0.00. These results confirm the SSE method’s periodicity findings and

highlight its utility in quantifying and visualizing periodicity.

2.6 Discussion and Concluding Remarks

The fusion of TDE with TDA holds significant promise for discerning
system dynamics and quantifying properties like periodicity in uniformly-
spaced time series. This work introduces a novel subsequence embedding
method for irregularly-spaced time-series data. Irregular spacing can
obscure patterns and introduce noise (e.g., Figure 2.11a). While data
imputation can create uniformly-spaced series, it often fails to accurately
represent the TDE space (e.g., Figure 2.8). The proposed SSE method
addresses these challenges, preserving the topology of the reconstructed
state space and mitigating spurious homological features introduced by
irregular spacing.

One may wonder if there are only a few missing values in a time se-
ries, can the missingness simply be ignored? With a investigation, we
find that ignoring even a small number of missing values can change the
topology of the embedding (as measured with persistence diagrams). The
following discusses the results of a brief empirical study on this topic;
further analysis is the topic of future investigation. The proposed SSE
method seems to be robust to missingness at critical points of the time

series, for example at the peaks, or at zero-crossings. To illustrate this, 100
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time series observations, as shown in Figure 2.12a were used, which are
subsets of the time series in Figure 2.3a. To induce and test the proposed
SSE sensitivity to missing values at the peak, five observations, indicated

as blue points in Figure 2.12a, were designated as missing values. We
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(a) The 100 time series observations (b) The SSE and TDE of the time series

Figure 2.12: The time series and its embedding. (a) The orange points are
irregularly-spaced with the blue points denoting missing values. The black
hollow circles are the shifted time series observations. (b) The squares
denote the TDE of the full time series with no missing values, the orange
points denote the SSE of the irregularly-spaced time series, while the blue
asterisks. denote the TDE of the shifted time series.

compare the accuracy of the reconstruction from the proposed SSE to an
approach that simply ignores the gap and shifts the time series to produce
a uniform sequence. The hollow circles in Figure 2.12a denotes this shifted
time series. We compare the persistence diagram of the TDE embedding
when there are no missing values, the TDE embedding of the shifted time
series, and the SSE of the irregularly-spaced time series. Figure 2.13 shows
these persistence diagrams, where the persistence diagram of the SSE
embedding (Figure 2.13a) is equivalent to the full uniform time series

TDE persistence diagram (Figure 2.13b). However, the TDE from the
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shifted time series persistence diagram (Figure 2.13¢c) differs significantly

from the full uniformly-spaced time TDE persistence diagram. Similar
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Figure 2.13: The persistence diagrams of the TDE of the full uniformly-
spaced data (a), the SSE of the irregularly-spaced data (b), and the TDE
of the shifted data (c). The “< 2” is used to indicate that there are two H;
features.

results were observed when valleys, zero-crossings, or any combination of
peaks, valleys, and zero crossings were omitted. These findings support
the robustness of the proposed SSE method when missing values are ob-
served at critical points of the time series. It also highlights the superior
performance of the SSE method compared to the TDE constructed under

the assumption that the missingness can be ignored.

Section 2.5.3 demonstrates how TDEs and SSEs can be used to quantify
periodicity of a time series. However, we note the need for statistical infer-
ence on periodicity scores to determine if the most persistent H; feature

is due to a real periodic signal or chance. Existing methods for signifi-
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cance testing of homology generators, such as those using kernel density
estimators, allow constructing confidence sets for homology generators
(Fasy et al., 2014; Xu et al., 2019). Extending this to homology generators
based on direct filtration on the point-cloud space requires bounding the
bottleneck-distance with the Hausdorff distance. Initial investigations
produced wide confidence sets, indicating the need for a more tailored
method. Finally, Algorithm 1 constructs subsequences with a fixed regu-
larity score r. Extending this to r + € for small e would increase the length
of each constructed subsequence, and the number of points in the recon-
structed space, while potentially introducing outliers or perturbations in
the data space. Chapter 3 introduces a robust statistical inference proce-
dure that allows for the construction of might tight confidence intervals

with improved significance detection.
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3 MAXTDA: ROBUST STATISTICAL INFERENCE FOR

MAXIMAL PERSISTENCE IN TOPOLOGICAL DATA ANALYSIS

The content of this chapter is published in Dakurah and Cisewski-Kehe
(2025).

Abstract

Persistent homology is an area within topological data analysis (TDA) that
can uncover different dimensional holes (connected components, loops,
voids, etc.) in data. The holes are characterized, in part, by how long they
persist across different scales. Noisy data can result in many additional
holes that are not true topological signal. Various robust TDA techniques
have been proposed to reduce the number of noisy holes, however, these
robust methods have a tendency to also reduce the topological signal. This
work introduces Maximal TDA (MaxTDA), a statistical framework ad-
dressing a limitation in TDA wherein robust inference techniques system-
atically underestimate the persistence of significant homological features.
MaxTDA combines kernel density estimation with level-set thresholding
via rejection sampling to generate consistent estimators for the maximal
persistence features that minimizes bias while maintaining robustness to
noise and outliers. We establish the consistency of the sampling procedure

and the stability of the maximal persistence estimator. The framework



67

also enables statistical inference on topological features through rejection
bands, constructed from quantiles that bound the estimator’s deviation
probability. MaxTDA is particularly valuable in applications where precise
quantification of statistically significant topological features is essential
for revealing underlying structural properties in complex datasets. Nu-
merical simulations across varied datasets, including an example from
exoplanet astronomy, highlight the effectiveness of MaxTDA in recovering

true topological signals.

3.1 Introduction

In Chapter 2, we introduced a topologically robust method for transform-
ing time series data into a multi-dimensional representation for topological
data analysis. We alluded to the fact that assessing the statistical signifi-
cance of persistence homology features requires bounding the bottleneck-
distance with the Hausdorff distance, where our investigations produced
wide confidence sets, indicating the need for a more tailored method.
Similarly, extending Algorithm 1 to r & € for small € has the potential to
introduce outliers or perturbations in the data space. In general, iden-
tifying statistically significant features, particularly, the most persistent,
or maximal persistent ones is challenging because persistence diagrams
lack a canonical vector space structure, meaning operations like addition,

averaging, and other conventional statistical techniques are not naturally
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defined. This difficulty is further compounded by noisy data. Methods
such as kernel smoothing, developed within robust topological analysis
(Fasy et al., 2018; Anai et al., 2020), are employed to mitigate noise but
also often reduce the lifetimes (i.e., persistences) of the maximal persis-
tent features. The systematic underestimation of the lifetimes of these
features is an artifact of the smoothing mechanisms typically employed
in these robust methods. To enable statistical inference for maximal per-
sistent features, it is helpful to address these limitations. This inference
challenge arises from the need to quantify uncertainty in the presence of
perturbations, such as noise, outliers, or density variation in a random
sample X,, = {x3,- -+ ,Xn} drawn from a probability distribution P with
compact support X in a space X C R%. Robust topological tools aim to
recover the topology of X by defining a smoothing function ¢ : X — R.
This function, commonly a kernel density estimate (KDE), kernel distance,
or distance-to-a-measure (DTM) function, is parameterized to suppress
noise or reweight outliers (Chazal et al., 2011; Fasy et al., 2014, 2018; Anai
et al., 2020). A preferred outcome would maintain high persistence for
true features while reducing noise features to negligible persistence levels.

The motivation for this work is to develop an inference method that
builds on these robust methods, while mitigating the reduction in the
persistence of the features, in order to enhance a feature’s statistical signif-
icance. The proposed framework, “Maximal TDA” (MaxTDA), mitigates

this reduction by first estimating a KDE over the sample as an intermediate
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representation of the data sampling distribution. Then an upper-level set
is defined for a carefully selected density threshold, and rejection sampling
is used to draw samples from the thresholded KDE for subsequent sta-
tistical inference on the maximal persistent features. This process retains
the robustness of the initial smoothing while producing a denser, more
consistent sampling surface. Subsequent inference then involves further
smoothing or directly computing a persistence diagram directly over this
dense sample. This methodology is motivated by two key observations.
First, the kernel smoothing enhances robustness against outliers and noise
(Bobrowski et al., 2017; Fasy et al., 2018; Anai et al., 2020). Second, the
thresholded KDE corrects for density variation in the sampling by provid-
ing for a denser and statistically consistent sampling surface (Tsybakov,
1997; Singh et al., 2009), a characteristic that is crucial for maintaining the
persistence of the features. This is illustrated in Figure 3.1, where the aim
is to recover and maintain the persistence of key features such as the two
loops (the red and blue circles) indicated by dense clusters.

The proposed MaxTDA approach presents a robust, consistent, and
less biased estimator of the most persistent features in certain homology
groups, which are groups that identify different dimensional holes in data.
While KDEs have been used for robust persistent homology, we show that
the resulting homology estimates do not preserve the strength of the true
features. In Theorem 3.2, we show that the proposed sampling technique

is consistent, and in Lemma 3.1, we prove the stability of the resulting
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Data Space —_ Robust Filter ————— Proposed Method

Figure 3.1: Illustration of the MaxTDA framework. For a data space (left),
robust TDA methods applies a robust filter(e.g., KDE) to the data (mid-
dle). MaxTDA extends this by sampling from a thresholded KDE (right),
enhancing robustness to noise and creating a denser sampling surface.

maximal persistence estimator. From a statistical perspective, we establish
that MaxTDA produces estimates with reduced bias and enhanced sta-
tistical significance. The remainder of this paper is structured as follows:
Section 3.2 discusses theoretical results including consistency and bias
analyses, and the statistical significance of the maximal persistence esti-
mator. Section 3.3 and 3.4 demonstrate the effectiveness of the MaxTDA
through numerical simulations, including one motivated by a statistical
challenge in exoplanet astronomy. Section 2.6 closes with implications and

potential extensions of our work.

3.2 Maximal TDA Method

This section present the MaxTDA method and corresponding theoretical

results. In particular, we show the construction of the smooth subsamples
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for inference on the maximal persistence features, prove its homology
preserving properties as well as some bias reduction and consistency

results.

3.2.1 Overview of methodology

Before presenting the technical details of our method, we first provide
an overview of our approach to estimating and performing statistical
inference on the maximal persistent features. The key challenge we ad-
dress is how to reliably estimate the most persistent features from noisy
point cloud data while minimizing the persistence reduction (see Sec-
tion 3.2.2). Traditional approaches often face a trade-off between noise
reduction and feature preservation. Our method seeks to resolve this
through the construction of “smooth subsamples” using a combination
of kernel density and level-set estimation via rejection sampling, where
we only accept proposed points where the estimated density exceeds a
threshold A. The details of this construction are discussed in Section 3.2.3,
and the validity of such a construction is established in Theorem 3.2. This
thresholding naturally filters out likely noise points while preserving the
strength of genuine features, as true features tend to manifest in regions
of high density.

The remainder of this section develops statistical inference methods
for working with features constructed from the smooth subsamples of

the thresholded KDE. We analyze the bias reduction properties of the
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maximal persistence estimator and develop methods for assessing its
statistical significance, providing both theoretical guarantees and practical
tools for identifying statistically significant features in noisy data with
varying density distributions. Extensions of these inference methods to

functions of the maximal persistence are also discussed.

3.2.2 Stability of Maximal Persistence

The support X is not directly observed but is studied through the point
cloud X,,. Let Dgm(X,, ) be the VR-based filtration persistence diagram on
Xy, and Dgm(X) the true underlying persistence diagram on the support
X. For ¢ defined on X, and its empirical estimate ¢, let Dgm (¢ (X)),
and Dgm (¢, (X)) denote their persistence diagrams from upper-level set
filtrations of ¢ and ¢, respectively. When an exposition applies to either
a VR filtration or the upper-level set filtration of the KDE or DTM, the
persistence diagram is generically denoted as Dgm(-) or simply Dgm.
Define the maximum persistence of the features on the persistence as
mp [Dgm(-)]. The following lemma presents the stability result for the

maximal persistence estimator.

Lemma 3.1 (Maximal Persistence Stability). Let A be the persistence diagram
with points only along the diagonal. Let ¢, be an empirical KDE or DTM

function defined on the sample X,,. Then the following results hold:
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(i) The maximum persistence can be expressed in terms of the bottleneck distance:
mp [Dgm(-)] = 2dy (Dgm(-), A) (3.1)

(ii) Let ¥V be defined as V = ‘mp [@] — mp[Dgml]|, then it holds that:

V < 2dp (ITg?q, ng) , (3.2)

where lig?n denotes the empirical persistence diagram estimate of Dgm.

Proof. The maximum persistence mp[Dgm(-)] is defined as: mp[Dgm(-)] =
maxp,d)epgm |d — bl. Similarly, the bottleneck distance dg(mp[Dgm(-)], A)

is defined as:

dg(mp[Dgm(-)],A) =inf sup [[(b,d) —v((b, d))llx, (3.3)

Y (b,d)eDgm

where vy : Dgm — A defines a bijection between Dgm and A. Note that
since A is the diagonal, the optimal bijection v is the orthogonal projection

of points in Dgm(-) to A, hence y((b,d)) = (254, 212). It then follows

2 7 2
that:
b+d b+d d—-b
dp(mpDgm(),A) =  sup H(b, a - (TT> _ =l
(b,d)eDgm(-) %)
(3.4)

where (b’, d’) are the birth-death pair with the maximal persistence. The
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bound for V can be derived based on the expression:

A~

¥V =2|dp(mp[Dgm], A) — ds(mp[Dgm], A)| < 2ds(mp[Dgm], mp[Dgm]),
(3.5)
where the last inequality follows from the reverse triangle inequality for

metrics. O

The main object of interest in this work is the maximal persistence
mp [Dgm(-)]. We now describe the framework to consistently estimate it
while reducing the associated bias inherent in estimating these maximal

values.

3.2.3 Smooth sampling surface

The methodology for constructing the smooth sampling surface that max-
imizes the persistence of features is described next. This approach can
be used to either maximize the persistence of a single feature or multi-
ple features, depending on the application. The goal here is to obtain
samples that better approximate the true underlying topology, and these
samples are subsequently used for inference on the maximal persistence
features. Our approach uses kernel density estimation to create a smooth
sampling surface, enabling the generation of samples that preserve the
underlying topological structure. Specifically, given the observed data X,

drawn according to the distribution P with density f, we approximate this
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density with the KDE estimate fo. This provides a smooth surface that
captures the structure of the manifold while reducing the noise. A dense
sample X7 is drawn from the smooth surface using rejection sampling (De-
vroye, 1986). The XZ serves to preserve the persistence of the homology
features relative to X,,. Rejection sampling requires a target distribution
and a proposal distribution, where samples are drawn from a proposal
distribution because of difficulties sampling from the target distribution.
For the purpose of this work, the proposal distribution Q is a function
of the volume enclosing the topological space X. The target distribution
is the KDE f,. The objective then is to draw samples x* according to Q
and accept them based on the target density fo. In particular, for some
I > sup,. .o fo(x*), the sample x* is accepted with probability fo (x*)/T.

Algorithm 2 outlines the sampling scheme described here. The resulting

Algorithm 2 Smooth Subsampling

Require: Observed data {x, - - - ,xn}, density threshold A, number of gen-
erated points B.
Step 1: Fit the KDE 1?6 to the data sample {xq, - - , xn}.
Step 2: For kin therange 1,--- , B, do Step 3 to Step 4.
Step 3: Compute x* as follows:
Repeat:
(i) Draw a sample x* from the proposal distribution Q.
(ii) Compute the density associated with the sample x*, i.e., eval-
uate ?G(x*).
(iii) Sample a point u ~ U(0,T').
Until: u < Fg(x*), and ?U(x*) > A
Step 4: Set x;; = x*.
Output: Return the samples X = {x],---, x5}
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sample is used to construct a distribution of maximal persistence values
by generating random persistence diagrams from the transformed data
space. A threshold A is then selected to maximize the persistence of the
targeted prominent features.

We now show that the samples X}, obtained via Algorithm 2 preserves
the homology of X. This largely follows from the theory of level-set esti-
mation, especially the work of Cuevas and Fraiman (1997). An interesting
observation made in Bobrowski et al. (2017) is that recovering the homol-
ogy of X does not rely on the consistency of the KDE fo. Also, to avoid
making assumptions on the shape of the space X, the Hausdorff metric is

used to measure the closeness of the approximation.

Theorem 3.2 (Convergence of Smooth Subsamples). Let P be compactly
supported on the set X, having bounded density f and f > A for some positive
constant A. Assume the kernel function K is a decreasing function of x such that
as ||x|| = oo, we have ||x||4 K4 (|[x|]) = 0. Further assume that K is a bounded

density such that for some 11,12,
Ko (lIxll) = ml(x € B(0O,12)). (3.6)

Let By be of order o(n/logn)¥ 4, then Bndy(X;, X) — 0 a.s., where B, o goes

to zero with n large.

In our analysis, we used a Gaussian kernel, which is not compactly

supported. Hence we make the additional assumption that the bandwidth
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o — 0 asn — oo in such a way that 4o — 0, then the proof follows
directly from Theorem 3 in Cuevas and Fraiman (1997). By constructing a
smooth subsample, we intrinsically reduce the magnitude of any topologi-
cal error in subsequent persistent homology computations on these smooth
subsamples. For example, in the initial sample X,,, the randomness in
the sample could introduce points that results in additional features. The
kernel smoothing initially reduces the presence of such outlying points,
and an appropriate choice of A (which depends on the specific applica-
tion) enhances the originally significant homological features. In summary,
unless the randomness introduces features that dominate the most persistent real
feature, MaxTDA guarantees a smooth recovery of this original dominant feature.
If randomness in the sample introduces more persistent features than
the most persistent real feature, it is not generally feasible to recover the
real feature (Fasy et al., 2014; Bobrowski et al., 2017). We demonstrate
this concept in our numerical studies in Section 3.3.1 and 3.3.2. The next
section discusses how to select the optimal smoothing bandwidth and the

level-set threshold parameters.

3.2.3.1 Parameter selection

The choice of KDE bandwidth o and the level-set threshold A are essential
to X, recovering the topology of X. These values are not known in practice,
hence we provide a data-dependent estimation process for selecting these

parameters. For a given homology dimension, let £; (A, o) be the lifetime
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(i.e., persistence) of the i-th feature on the persistence diagram ]ig?n asso-
ciated with X},. Consider the ordered lifetimes ¢, (A, o) > (A, 0) > --- >
{1 (A, o), where T is the number of features of interest. The cumulative
persistence of the top T features is given by: CPr(A, 0) = ZiT:1 (A, o).
The goal is to choose the parameter A and o that maximizes CPy(A, o).
The parameters (A*, 0*) are determined by solving the optimization prob-
lem: (A*,0*) = arg max, ;yco CP1(A, o), where Q denotes the feasible
parameter space for A and o. Note that this process can be augmented
to emphasize certain features by assigning weights {w1, - -, w} to the
lifetimes. The number of features T can be chosen based on the expected
topology of X, or by adaptively by analyzing the decay of the ordered
lifetimes £; (A, o). A sharp drop in {;(A, o) beyond a certain index indicates
a natural cutoff for T. For the bandwidth o, we found that the average
k-NN distance (for k between 1 and 5) between points in X,, provides a

good parameter search space.

3.2.4 Bias reduction

Existing methods for estimating a persistence diagram in the presence of
noise or sampling variability can identify the maximal persistent features.
This often involves smoothing out low persistence features, which conse-
quently reduces the lifetime of the most persistent H; features. This results
in a bias in estimating the lifetime of the maximal persistent features. In

this section, we discuss this phenomenon and provide results that shows
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the proposed MaxTDA method helps reduce this bias for an appropriate

choice of thresholding parameter A and for a range of bandwidths o.

3.2.4.1 Source of bias in maximal persistence

Robust persistent homology methods, such as smoothing, subsampling,
filtering, or thresholding, implicitly bias the persistence estimates by re-
ducing the lifetimes of the features. The following example illustrates this
bias. Let P be a class of probability distributions satisfying Assumption 1.1.
Further assume that there exists positive constants ¢ and ¢’ such that for

datax e Xand d’ < d:

2 d’'/2
volg (B(x, 1) NX) > ¢ (1 — 41‘_2> ¢ > 'r? (3.7)
K

where vol4(-) denotes the volume of a d-dimensional ball, and « is as
defined in Assumption 1.1. This is the usual regularity assumption that
removes certain pathological manifolds, such as those with sharp peaks
or cusps. In practical terms, for every point x € X, if you take a ball of
radius r around x, the portion of the ball lying in X has a volume that
scales with ¥, that is, X is “thick enough” in every small neighborhood
such that there are no parts that are infinitesimally thin or sharply peaked.
Let X, be drawn according to a distribution P € P which is supported on

X. Let D/gE1 and Dgm be the persistence diagrams associated with X,, and
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X, respectively. Then the following inequality holds:
mp[[Tgr\n] < dB(ITg?n, Dgm) + mp[Dgm], (3.8)

which follows from applying the triangle inequality to mp [[Tg?n] =ds (ITg?n, V).
This implies the bias: E(mp []ig?ﬂ) — mp[Dgm] is directly upper bounded
by the expected bottleneck distance between ]jg;l based on X, and Dgm
based on X. Therefore, a “good” representation of X can lead to a lower
bias in estimating mp [ﬁg?ﬂ. Next, we discuss how the proposed frame-

work provides a good representation of X with a thresholded KDE.

3.2.4.2 Role of sampling and thresholding

Consider the setup where two samples, X, ; and X, ,, are drawn using
Algorithm 2 with threshold values of 0 and A, respectively. The choice
of A and n influence the bias in estimating the maximal persistence. We
consider the case of the VR filtration, but the analysis also applies to
filtrations of ¢(-). From Equation (3.8), the maximal persistence associated

with X , is given as follows:

((n, A)mp[Dgm(x; )] = ds(Dgm(X;, ,), Dgm(X)) + mp[Dgm(X)],
(3.9)
where ((n,A) is an unspecified sequence depending on n and A, and

goes to 1 for n large. In the limit as A — 0, we have by construction
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that {(n,A) = ¢((n,0). Hence the bias of the smoothed and unsmoothed
estimators are the same asn — oo, and A — 0:
_Jim_E(ds(Dgm(x;,.), Dgm(x))) = lim E (ds(Dgm(¥;,q), Dgm(¥))
(3.10)
Under finite sampling, the benefits of the thresholding lie in the differ-
ence in the rates of convergence of both X7, , and X7, ; to X. For example,
consider 3,, — oo from Theorem 3.2, Cuevas and Fraiman (1997) show
any rate of order (n/logn)¥4 = O(f,,) cannot be achieved by X} o That
is, consider a convergent rate that is faster than 3., for X7, , to X, say
B > (n/logm)/4, then B7 cannot be achieved when estimating X with
X7, o (Cuevas and Fraiman, 1997). Hence, for an appropriate choice of A,

we conjecture that:
E (dy(Dgm(x;, ,), Dgm(X))) < E (dy(Dgm(x;,0), Dgm(x)) . (3.11)

While this inequality has been observed empirically (see Figure 3.4a), a
formal theoretical proof remains an open challenge. The primary difficulty
in establishing such a result lies in deriving an explicit form for ¢(n, A),
which would require strong assumptions on the geometric properties of

the support X to obtain a closed-form expression.
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3.2.5 Statistical significance of the maximal persistence

o~

The statistical significance of the maximal persistence estimator mp[Dgm]
is determined through a lower bound for mp [D/gr\n]. This is equivalent
to bounding the difference V = |mp [@1} — mp[Dgm]|. A method for
constructing confidence sets for persistence diagrams by bootstrapping the
bottleneck distance was proposed in Fasy et al. (2018). The construction
of the lower bound for V follows the same framework. We first state the
following consistency result for V based on the upper-level set filtration
of the density function, and similar consistency results holds for other

functions such as the DTM and other kernel distances.

Theorem 3.3 (Consistency). Let ¢ be a density function defined on X, and
let ¢, be its empirical estimate according to Equation (1.8) based on the sample
X¥ from Algorithm 2. Let {cq,--- ,cx} and {c}',-- -, cp} be the critical points
of ¢ and &, respectively. Assume that the critical points of & and ¢, are
close enough such that the maximal difference at these critical points is bounded
as: maxi [pn(cl) — d(ci)l < 3minig [dlci) — (e — llpn — dlleo, and
2/|bn — dlloe < %min#j [p(ci) — dlcy)l. Then mp[@(d)n)] is a consistent

estimator of mp [Dgm()]:
V = |mp[Dgm(dpn)] — mpDem(P)]| 20, asn — oo. (3.12)

Proof. The proof follows from the regular consistency results on kernel

density estimation and the critical distances lemma in Devroye and Lugosi
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(2001) and Fasy et al. (2018). By the bottleneck stability theory, we have
that dg(Dgm(d+ ), Dgm($)) < [|[dn — $ll. Note that for the upper-level
sets filtration of these functions, the homology only changes at the crit-
ical points. Assume that (¢p(ci), d(cj)) € Dgm(p) and (d(cl'), d(c]t)) €
Dgm(¢, ). Lety : Dgm(¢,) — Dgm(¢) be the optimal bottleneck match-
ing between the two diagrams. Under the assumption that max; |p, (cI') —
$(ci) < 3 ming; [d(ci)—d(c;)|—lldn—dlloo, which implies min; 4; [ (c)—
$(c5)l —maxi [pn(cf) — d(ei)l = maxi [pn(cl) — dlci)| + 2l dn — dllo, it
follows thaty(d(cl), $(ct)) = (d(ci), d(cj)). By Lemma 3.1, we have that
v < max; [P (c]') — d(ci)]. Define ¢, = 1?02, and let 1361 be the KDE on
Xpand Ly ={x: fgl(x) > A}. Observe that 1?02 = (fX; * KUZ) where (- * )
foy (X)L (xELA

)
i To vy The conclu

sion follows from the regular consistency assumption on the bandwidths

denotes the convolution operation, and fx: (x) o

01,02 — 0 and sample size n — oo of the KDE (Devroye and Lugosi,

2001). 0

Next, we describe the framework for assessing the statistical significance

of the maximal persistence features via a Monte-Carlo procedure.

3.2.6 Construction of confidence sets

It is common to consider homology features with longer persistence as
topological signal (Fasy et al., 2014). Thus Hy-( features with longer life

spans can be interpreted as being more statistically significant than those
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with shorter life spans. For example, in time series analysis, one method for
determining periodicity examines the persistence of loops in a TDE space.
A perfectly circular loop suggests an underlying periodic signal, and Perea
et al. (2015) proposes estimating its period using a function of mp[Dgm],
though a method for quantifying the statistical significance of this estimate
was not established. The proposed MaxTDA framework addresses this
gap by providing tools to determine the statistical significance of such a
periodicity measure.

Methods for estimating the statistical significance of the features through
confidence sets were discussed in Fasy et al. (2014). However, these meth-
ods bound the bottleneck distance with the Hausdorff distance or distances
of functions defined on the data space, which shifts the randomness in the
construction to the original data space. These bounds are not tight in many
cases (e.g., Fasy et al. 2018; Glenn et al. 2024). A method that restricts the
randomness to the persistence diagrams, by directly bootstrapping the
bottleneck distance was introduced in Fasy et al. (2018). We first describe
the process for constructing confidence sets for the features with maximal
persistence on the persistence diagram, which in our case amount to lower
bounds for the maximal persistence.

Given significance level a € (0,1), the goal is to find t, such that:
Pr(dB(ligr\n, Dgm) > ty) < axasn — oo. The confidence set on a persis-
tence diagram can be constructed by considering points in @1 whose

distance to the diagonal exceeds t, {(b, d) € @n :|ld —b| > ZtOL}. This
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construction extends to the maximal persistence estimator through the
relation:

Pr(V > 2t,) < Pr(ds(Dgm, Dgm) > t4) < a. (3.13)

There are two ways to visualize this confidence set on D/gr\n C R?. The first
is to draw dg-balls with side length of 2t centered on each point in [Tg?n
Then using the closeness to the diagonal, a point is considered to be be a
topological noise if its dg-ball intersects with the diagonal line. The second
and equivalent option is to add a diagonal band (rejection band) of width
V2t to @1, and points in @1 that falls within this band are elements
of {(b, d) [Tg?n (ld—Db] < Zta}, a rejection set, and are deemed to not
be statistically significant at the « significance level. Note that the rejection
band is constructed individually for each homology dimension. The t, can

be estimated via a Monte-Carlo procedure described in the next section.

3.2.7 Monte-Carlo estimation procedure

In this section, a Monte-Carlo procedure is proposed to estimate the t.
Draw the sample X5 using Algorithm 2 as follows: first, take a bootstrap
sample X from the original sample X,,. Using Algorithm 2, generate
i) with X as the underlying observed sample. Let $) be the func-
tion associated with the sample X}Z(b), and ¢, to be the function associated
with the quantity X7, obtained by applying Algorithm 2 to X,,. Compute

the empirical quantity t(*) = dB(lig?n(d)%b) ), ]ig?n(cbn)). This process is
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repeated b =1,---, N times. Let (:)n be the empirical distribution func-
tion of this set of observations: {t(*) : b = 1,..., N}. Let t, be the 1 — «
quantile of ©,. Also let ©, be the distribution function of the quantity
dg(@((bn), Dgm(¢)). Then the following result holds.

Lemma 3.4. The 1 — « quantile t, is a consistent estimator of tu, that is,

sup, [On (t) — O, (t)] & 0.

This result follows directly from Theorem 19 and Corollary 20 in Fasy et al.
(2018). This process is used to determine the statistical significance of the

maximally persistent Hy - features.

Remark 3.5. The inference procedure developed in this work can be extended
to additive or multiplicative transformations of V. For example, the statistical
significance of the normalized periodicity score mp[Dgm)//3 can be derived
through the distribution of ¥ /\/3, which amounts to estimating the empirical

quantile function \/3t . These results can also be adapted for minimal persistence.

3.3 Experimental Validations

This section presents numerical studies that demonstrate the performance
of MaxTDA. First we show the quality of the topological recovery achieved
by the proposed method in terms of the number of features recovered and

the persistence of these features.
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Figure 3.2: An illustration of the VR (b), DITM (c), and KDE (d) filtration
on the point cloud X,, (a) (the blue points are signal and the black points
are noise). All three methods identified one dominant H; feature in terms
of persistence.

3.3.1 Quality of topological recovery

The first numerical experiment aims to recover a densely sampled circle
while treating a sparse circle as noise. The data consist of 50 samples
around a unit circle, 500 samples around a radius-0.5 circle (both perturbed
by N(0, \/W) ), and 450 uniform samples in [—1, 1]*. These three samples
give X,, withn = 1000. The VR, DTM, and KDE persistence diagrams were
computed, with DTM parameter m = 0.9 chosen over a grid of points in the
interval (0,1), and the KDE bandwidth set at 0.1. A complete comparison
across various bandwidths is given in Section 3.3.1.1. The point cloud
X, and persistence diagrams are displayed in Figure 3.2. While the VR
diagram is noisy, the DTM and KDE diagrams suppress low-persistence
features, though at the cost of reduced persistence.

To demonstrate the topological recovery, X, was constructed using

Algorithm 2 with a threshold A selected from the range [0.1, 1] and a KDE
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Figure 3.3: An illustration of the VR (b), DITM (c), and KDE (d) filtration
on the point cloud X}, from Algorithm 2. All three methods identified one
dominant and enhanced H; feature.

bandwidth set to the average k-NN distance (k € [1,10]) of points in X,,.
These parameters were chosen using the procedure in Section 3.2.3.1 to
maximize the most persistent H; feature for each filtration scheme. Specif-
ically, the optimal (A, k) are (0.7,10), (0.4,2), and (0.6, 8) for VR, DTM, and
KDE filtration, respectively. The KDE sample space is shown in Figure 3.3a,
along with the VR (3.3b), DTM (3.3c), and KDE (3.3d) persistence dia-
grams computed for X;. All three methods revealed one dominant H,
feature. The diagrams from X7, contains fewer low-persistence H; features

than those from X,,.

3.3.1.1 Reducing persistence loss in prominent features

Next, we demonstrate that Algorithm 2 is robust to variations in the KDE
bandwidth (and in the DTM smoothing parameter), that is, once appropri-
ate parameters are selected for Algorithm 2, these choices remain effective

across different values of o or m. Let X, be the noisy sample in Figure 3.2a,
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and X7, , and X, ; be the thresholded and non-thresholded versions, re-
spectively. Let X be the noise-free data, depicted as the blue points in
Figure 3.2a. Figure 3.4a shows that for a single sample, it is possible to
appropriately choose the parameters of Algorithm 2 (in this case, A = 0.6
and the KDE bandwidth is the average 8-NN distance) such that the max-
imal persistence associated with X, , closely approximates the ground

truth (X) maximal persistence.
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Figure 3.4: MaxTDA estimation results. (a) For an appropriately chosen
threshold, the maximal persistence associated with the MaxTDA X, ; (red
circles) closely approximates the ground truth (X) maximal persistence
(orange triangles). (b) The distribution of the difference in maximal
persistence between the three data samples and the ground truth across
100 independent trials, demonstrating that X7, , (red) maximal persistence
is less biased.

The process is repeated 100 independent times to assess the variability
of the construction. The results are presented in Figure 3.4b as boxplots of

the differences between the true and estimated maximal persistence, which
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indicate that the distributions of the MaxTDA X7, , maximal persistence

values are closer to the true values than those from other data spaces.

3.3.2 Data with varying sampling distributions

This section demonstrates how MaxTDA applies to data from topological
spaces with similar geometries but different sampling distributions, a
scenario that arises, for example, in signal processing when signals at
different frequencies are embedded in the same space. Figure 3.5a shows
a 3D point cloud X,, with four ellipses of varying density; the goal is
to recover the denser ellipse as the ground truth by isolating a single
maximally persistent H; feature. Using the parameter selection procedure
in Section 3.2.3.1, a density threshold of A = 12.22 was obtained, and a KDE
bandwidth was determined as the average 1-NN distance of points in X,.
X5 a and X were constructed using Algorithm 2. Figure 3.5b shows that
for bandwidths up to 0.025, the maximal persistence of KDE(XJ, , ) exceeds
that of KDE(X, ;) and KDE(X,,). These bandwidths correspond to when
the dense ellipse’s persistence is at its maximum and increasing, whereas
for larger bandwidths the persistence decreases due to over-smoothing,
indicating undesirable bandwidths.

The optimal bandwidths that maximize the maximal persistence were
determined to be 0.02 for KDE(X, ;) (denoted hereafter as KDE(Xj )) and
0.015 for KDE(X,, ), and these values were used to construct the final per-

sistence diagrams, where the most persistent H; features in X, and X, had
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Figure 3.5: Performance of MaxTDA in estimating the maximal persistence
using the sample X7 , compared to the original data X,, and the non-
thresholded sample X, ;. (a) Data X, with n = 333; (b) the difference in
the maximal persistence from that of the dense ellipse by KDE bandwidth.

persistences of 1.45 and 3.18, respectively. To construct rejection bands, let
[Tg?n(KDE (X,,)) and [Tg?n(KDE (X3 )) denote the respective persistence di-
agrams of the upper-level KDE filtrations of X,, and X;,. We bootstrapped
X, 1000 times and, for each bootstrap sample Xﬁb), estimated a KDE with
o = 0.015 and computed the bottleneck distance ’Ac(().%i5 between the H;
features of [Tg-r\n(KDE(Xn)) and @(KDE(XS’) )). We also computed the
sample X} using Algorithm 2 at A = 12.22, with X as the underlying
input data, estimated a KDE with o = 0.02 for X;:®), and computed the
bottleneck distance fég; between the H; features of ]igr\n(KDE(X;)) and
ITgr\n(KDE(Xi}(b))). The 0.95 quantile of {JE(().%%} was 1.3115 for diagrams
from X\, and that of {‘E(%)z} was 1.4195 for diagrams from X;:®), which
were used to construct the rejection bands. Figure 3.6a shows the persis-
tence diagram and 95% rejection band for the ordinary KDE, where no H;

feature is statistically significant, while Figure 3.6b shows the persistence
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Figure 3.6: Illustration of the statistical significance of the H; features based

on 1000 bootstrap samples from X (a) and Xi*) (b). The displayed
bands (light pink) indicated the 95% rejection region for the H; features
(blue triangles). Note that the H, features have been omitted.

diagram and rejection band for the KDE of the smooth subsamples, in
which one statistically significant H; feature corresponding to the denser

elliptical sample is observed. This is partly due to its enhanced persistence,

further highlighting the performance of the proposed MaxTDA method.

3.4 Exoplanet Data Application

This section explores how MaxTDA enhances periodic time series analysis
by linking the persistence of H; features to signal periodicity. Enhancing
the lifetime of H; features can strengthen a periodicity analysis. We begin

by describing a method for constructing a time series representation.
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3.4.1 Time-delay embedding

Time-delay embeddings (TDEs) provide a framework for transforming
time series into a multi-dimensional representation (Takens, 2006). For
time series {x(t) : 0 < t < n}, an embedding matrix is constructed where
eachrow is givenby: v(t) = [x(t),x(t + 1),...,x(t + MT)], with time delay
Tand M +1 delayed coordinates. Takens’ Theorem guarantees that, under
suitable conditions, this embedding preserves the shape of the underlying
state space if the embedding dimension is sufficiently large (Takens, 2006).
One method for determining T is the average mutual information (AMI)
(Fraser and Swinney, 1986). The AMI is computed by partitioning the
range of the time series into bins: J(t) = Zi,j Pi;(T)log (p—;’%), where
P is the the probability the time series has a value in the i-th bin, and pj is
the probability that x(t + 1) is in bin j, and p;;(T) denotes the probability
that x(t) and x(t 4 7) are in the i-th and j-th bin, respectively. The smallest
value of T where J(7) reaches a local minimum is chosen as the optimal
time delay step. This corresponds to the lag at which the redundancy
of information between x(t) and x(t + ) is minimized, ensuring that
points in the reconstructed embedding space are sufficiently independent.
Once T is determined, the embedding dimension M + 1 is selected using
Cao’s method (Cao, 1997), which evaluates how the structure of the recon-
structed space changes as the embedding dimension increases. It identifies
the dimension at which the reconstructed space stabilizes. TDEs remain

valid under smooth linear transformations, such as principal component
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analysis (PCA), motivating our subsequent use of PCA for dimensionality

reduction (Sauer et al., 1991).

3.4.2 Exoplanet time series data

Exoplanets are planets that orbit stars other than our sun. One method for
detecting exoplanets is the radial velocity (RV) method, which measures
the forward and backward motion of a possible host star over time. This
method was used to discover the first exoplanet orbiting a sun-like star
(Mayor and Queloz, 1995). With this RV approach, a certain periodic
signature in a star’s RV over time suggests the presence of an orbiting
exoplanet. The red line in Figure 3.7 displays a simulated exoplanet RV
signal on a circular orbit. Detecting low-mass exoplanets, such as Earth-
like planets, remains challenging as their smaller signals can be obscured
by stellar activity like star spots (Huélamo et al., 2008; Dumusque, 2016;
Davis et al., 2017). The green line in Figure 3.7 shows how a simulated star
spot using the Spot Oscillation And Planet (SOAP) 2.0 code (Dumusque
et al.,, 2014) can induce a periodic RV signal that resembles an exoplanet.

While statistical techniques have been developed to detect exoplanets
in the presence of stellar variability (e.g., Rajpaul et al. 2015; Dumusque
2018; Holzer et al. 2021a,b; Jones et al. 2022), they do not fully mitigate the
challenges (Zhao et al., 2022). This study demonstrates how MaxTDA can
help identify and mitigate stellar variability in RV time series analysis; a

complete analysis using real exoplanet data is the topic of future research.
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Figure 3.7: Exoplanet time-series data. Simulated RV data of an exoplanet
(red circles), a 0.05% spot (green triangles), and the Planet+Spot com-
bined (blue squares).

Our focus is on enhancing feature persistence in combined signals (e.g.,
Planet+Spot) and assessing the statistical significance of periodic behavior.
Using simulated data (Figure 3.7), we analyze a planet, a star spot, and
their combined signal (P+S) RV time series. The spot-induced signal
matches the star’s 25.05-day rotation, while the planet orbits with a 4-day
period and 0.87 m/sec semi-amplitude. A 0.05% star spot at 30° latitude
induces a 0.58 m/sec apparent RV signal. N(0,1) noise was added to
ensure the most persistent H; feature in the combined RV signal is close
to the spot’s H; feature before MaxTDA is applied.

TDE matrices were constructed for each time series, with AMI and
Cao’s used to select (T = 4, M = 15) for the planet and (1t =12, M =7)

for the spot. Instead of estimating new parameters for the combined
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Figure 3.8: The embedded time series from Figure 3.7. The Planet and
P+S[Planet Parameters| used T = 4, M = 15, while the Spot and P+S[Spot
Parameters]| used T =12, M = 6.

signal, we applied the individual embeddings separately, allowing direct
comparison of structural and temporal properties. This approach helps
assess whether the time series geometry suggests a planet’s presence. Each
embedding matrix was centered, normalized, and reduced via PCA to two

components for analysis (Figure 3.8).

3.4.3 Quantifying periodicity

The periodicity of a time series can be assessed using the H; features of its
TDE, where periodic patterns form elliptical shapes in thstate space (Perea
et al., 2015). The roundness of these ellipses, quantified by the maximum

persistence of H; features, serves as a periodicity score: max 4 5gm, |
bl. For example, a time series that produces a well-sampled circular loop
in its TDE will have high persistence and, therefore, a high periodicity

score.

Algorithm 2 was applied to the P+S[Planet Parameters] and P+S[Spot
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Parameters | TDEs to reduce noise, with the optimal KDE bandwidth set as
the average 1-NN distance. To construct rejection bands, a DTM filtration
with m = 0.01 was used for the Planet, the P+S[Planet Parameters], the
P+S[Spot Parameters|, the Smooth P+S[Planet Parameters|, the Smooth
P+S[Spot Parameters | embeddings, and m = 0.05 for the Spot embedding,
which were selected to maximize the H; features. Figure 3.9 display the
persistence diagrams. The Planet signal has the highest periodicity score
(0.6647), followed by smoothed P+S[Planet Parameters| (0.4531), both
statistically significant at the 5% level. The lack of significance in other
embeddings is attributed to noise, data distribution variation, and the gap
in the Spot’s embedding. In summary, MaxTDA enhances the H; feature
persistence in the Planet+Spot embedding. This approach is particularly
useful for analyzing time series signals with missing observations (Daku-
rah and Cisewski-Kehe, 2024), embeddings with varying sampling density,
or noisy time series where distinguishing or removing noise is impractical

or undesirable in the time domain.

3.5 Discussion and Conclusion

This work introduces the MaxTDA methodology that combines kernel
smoothing and level-set estimation via rejection sampling to facilitate
robust statistical inference for the maximal persistence features in a topo-

logical space. Thresholding the KDEs at a suitable level creates a smooth
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Figure 3.9: Persistence diagrams (only H; features) for the Planet (a),
Spot (b), and the combined Planet+Spot embeddings and their smoothed
versions (c-f) with 95% rejection bands..

and dense sampling surface. Rejection sampling is then used to obtain sam-
ples that result in improved robustness of estimated homology features
with limited reduction in the lifetimes for the maximally persistent fea-
ture(s). The maximal persistence estimator is shown to be consistent, and
achieves a reduction in bias relative to existing robust TDA methods. The
statistical significance of the maximal persistence estimator was assessed
via the construction of confidence sets. Several numerical experiments

were conducted to illustrate the effectiveness of MaxTDA in uncovering,
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validating, and drawing meaningful statistical inference for the maximal
persistence features of datasets.

There are several important directions for future work and potential im-
provements. The proposed rejection sampling technique, while effective in
low-dimensional settings and geometries that are relatively well-behaved,
may face difficulties in ensuring that the sampled points adequately cover
the features of interest in complex and high-dimensional data spaces. Di-
mension reduction methods, such as PCA (e.g., Section 3.4.1) or manifold
learning techniques, could be applied as a preprocessing step to improve
the effectiveness of the sampling scheme. Alternatively, more adaptive
or data-driven sampling strategies could be explored, for example, using
importance sampling or Markov chain Monte Carlo approaches that target
the most relevant regions of the data space. These adjustments may lead
to improved coverage of salient features in higher dimensions, and better
stability and efficiency in empirical implementations.

In the exoplanet application in Section 3.4.2, a method is proposed to
study the contributions of the planetary signal to the combined signal that
includes stellar variability due to a spot. While this illustration highlights
the scientific challenge of detecting low-mass exoplanets in the presence
of stellar activity, real RV data can include multiple planets, multiple
time-evolving spots, highly irregular time sampling, instrumental effects,
and other complexities. The proposed approach should be considered a

preliminary proof of concept requiring further validation across diverse
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signal scenarios, and serves as an interesting area of future research on

topological signal decomposition.
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4 SUBSEQUENCE EMBEDDING FOR ROBUST
CLASSIFICATION OF RADIAL VELOCITY TIME SERIES WITH

MISSING DATA

Abstract

Radial velocity (RV) measurements are a foundational tool for detecting
exoplanets, which are planets that orbit stars other than our sun. The RV
method infers the presence of an exoplanet by measuring the periodic
forward and backward motion of a potential host star over time. However,
these measurements are typically perturbed by stellar activity, photon
noise, and structured missingness inherent in ground based observations,
making it difficult to distinguish planetary signals from stellar variability.
The conventional approach to handling missingness is to use imputation
techniques, which may distort the underlying dynamics, especially un-
der structured missingness or large temporal gaps. This work proposes
Subsequence Embedding (SSE) as an alternative and more robust method-
ology that maintains the geometric integrity of time series state space
without interpolation across observational gaps. We reformulate exo-
planet detection as a classification problem, employing SSE to construct
a multi-dimensional representation of the irregularly-sampled RV data,
from which feature vectors are extracted via a fast convolutional kernel

transform. Using SOAP 2.0 to generate RV datasets with varying levels
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of stellar activity, noise, and missingness, we demonstrate that SSE-based
classification outperforms imputation-based approaches. Our method
maintains high discriminative power (AUC > 0.79) even with 50% missing
data and high measurement noise, while imputation methods degrade to
near-random performance (AUC ~ 0.55) under similar conditions. This
performance advantage increases with data sparsity, highlighting SSE’s
ability to capture essential dynamical information from incomplete obser-
vations. Our approach offers a data-driven, model-agnostic framework for
analyzing irregular astronomical time series without introducing artifacts
from imputation procedures, with potential applications to other fields

dealing with non-uniform temporal data.

41 Introduction

The radial velocity (RV) method as briefly introduced in Section 3.4 of
Chapter 3, has been a cornerstone of exoplanet discovery for decades. By
measuring the Doppler shift of stellar spectral lines, astronomers infer the
tiny wobble induced in a star by an orbiting planet, and remains one of the
most direct ways to estimate exoplanet masses (Mayor and Queloz, 1995;
Hara and Ford, 2023). However, RV measurements are contaminated by
stellar variability: stars are not static, they exhibit oscillations, granulation,
and rotating surface features such as starspots and faculae. These stellar

activity signals can induce RV variations on the order of meters per second,
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comparable in amplitude and sometimes in periodicity to signals from low-
mass planets (Huélamo et al., 2008; Dumusque, 2016; Davis et al., 2017).
As a result, distinguishing a genuine planetary Doppler signal from spot-
induced RV noise is a major challenge. Compounding the difficulty, RV
observations are typically irregularly sampled. Ground-based telescopes
can only observe non-solar stars at night and are limited by weather,
scheduling, and seasonal visibility of targets. This leads to structured
missingness in the time series: large gaps (seasonal) and uneven spacing
between observations. (For examples, see the left column of Figure 3 of
Zhao et al. (2022), which displays RVs for four stars using the EXPRES
spectrograph; there are between 22 and 58 nights of observations across
over a year window in 2019 and 2020 for these stars.) Effective handling
of such data with noise is crucial to ensure accurate analysis of planetary
activities and detection of planetary signals.

The traditional statistical approach for handling missing data is impu-
tation (Vacek and Ashikaga, 1980; Harvey and Pierse, 1984). For example,
imputation techniques like Last Observation Carried Forward (LOCEF),
K-Nearest Neighbors (KNN), spline and linear interpolation remain pop-
ular. However, if the imputation model is misspecified, it can produce
structures that do not reflect true properties of the data. Moreover, many
imputation methods rely on inter-attribute correlations to estimate values
for the missing data, which are not present in univariate time series (Vacek

and Ashikaga, 1980; Harvey and Pierse, 1984; Casdagli et al., 1991; Lekscha
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and Donner, 2018). In astrostatistics, several new statistical methods have
been developed to address the challenge of detecting low-mass exoplanets
in the presence of stellar activity (e.g., Rajpaul et al. 2015; Dumusque 2018;
Holzer et al. 2021a,b; Jones et al. 2022), but none of these methods fully or
generally mitigate the issues (Zhao et al., 2022)".

In this work, we investigate a new approach to detecting the presence
of a planetary signal in noisy RV time series with missing data using Subse-
quence Embedding (SSE) (Dakurah and Cisewski-Kehe, 2024). Specifically,
the goal of this work is to answer the question: does an observed RV time
series contains evidence of a planetary signal or only stellar activity? We
approach this as a classification problem using simulated data for ground
truth. The key challenge is to engineer features from the irregular, noisy
time series that preserve the underlying dynamics of planet-induced dy-
namics, without being distorted by irregular sampling. To accomplish this,
we applied the SSE method, which transforms the univariate, noisy and
irregular time series data into a multi-dimensional representation. The SSE
is shown to be robust with respect to irregular sampling, thatis, it preserves
the dynamics of the underlying state space (Dakurah and Cisewski-Kehe,
2024). The constructed embedding is treated as a multi-dimensional time

series, and we apply a fast convolutional kernel transform for time-series,

!In astronomy, a common approach is to use a Lomb-Scargle periodogram (Lomb,
1976; Scargle, 1982) to detect significant periodic signals in irregularly sampled data,
followed by a model fitting analysis to refine orbital or other physical parameters. See
Section 5.2 of Dakurah and Cisewski-Kehe (2024) for an example of this approach in
asteroid data.
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to generate features (Dempster et al., 2020, 2021). A Random Forest is
trained to predict the presence (or absence) of a planetary signal. We
evaluate performance in terms of area under the ROC curve (AUC), com-
paring SSE-based versus imputation-based embeddings across multiple
missingness scenarios and noise levels. The SSE method is compared to
the conventional method of handling missing observations in the literature
via imputation. For the imputation, we used spline interpolation to fill-in
the missing values, and apply regular time-delay embedding to construct
the multi-dimensional representation of the series (Takens, 2006).

While many approaches to time series classification operate directly
on the raw observations or their periodograms, this work focuses on
embedding-based representations that aim to recover the underlying dy-
namical structure of the signal. Our emphasis on embedding methods is
motivated by the irregular nature of RV observations, where interpolation
or periodogram-based preprocessing may introduce artifacts or obscure
weak planetary signals. Although other non-embedding methods may
perform well under different scenarios, our results show that the embed-
ding space alone contains enough geometric information to discriminate
between stellar activity and planet-induced variability. This finding opens
the door to future extensions where the embedding can inform down-
stream tasks. In the broader context of RV analysis, the ability to detect
the presence of a planet from sparse and noisy data using only structural

properties of the time series is a valuable step toward more interpretable
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and robust detection pipelines.

Our contributions in this work are threefold. First, we formulate the ex-
oplanet detection problem in RV data as a classification task, and construct
synthetic dataset of stellar RV time series with and without planetary
signals in the presence of stellar activity and observational gaps. Second,
we introduce the subsequence embedding approach to this problem and
demonstrate its effectiveness in handling highly irregular data. We show
that SSE embeddings capture essential dynamics even with substantial
missingness and noise, whereas interpolation based embeddings perform
poorly. Third, we integrate SSE with a modern classification pipeline,
and provide a thorough comparison of classification performance under
varying levels of missing data. A methodological innovation worth noting
is how the SSE transforms the univariate irregular time series into a multi-
dimensional time series that can be treated as a multivariate time series.
Our results show that SSE-based classification maintains high AUC even
when about half of the data is missing, significantly outperforming the
imputation-based approach. The remainder of this paper is organized as
follows. Section 4.2 introduces the SSE transform tailored for classification
tasks. Section 4.3 describes the data generation, preprocessing, experimen-
tal setup, and results. Section 4.4 concludes with discussion and future

directions.
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4.2 Deterministic Transform of SSE

Let x = (x(t) : t € 7) denote a univariate time series of RV measurements
of length n, sampled at nonuniform time points. Thatis, T ={t;,--- , tn} C
Nsuch that ti,; —t; # ti;»—ti,1, foratleastonet; € Tand t; < ti 1. Our
objective is to construct a representation of x that can be used to detect the
presence or absence of a planetary signal in the time series. We consider the
subsequence embedding (SSE) method, which extends classical time-delay
embedding to irregularly-sampled series (Dakurah and Cisewski-Kehe,
2024). The core idea is to construct local embeddings only from observed
subsequences of x, without imputing values over large temporal gaps.
This allows the embedding to preserve the structure of the observed data
regardless of the sampling pattern.

Let F € RNX(M+1 be the SSE embedding matrix of x, where M + 1 is
the chosen embedding dimension and N is the number of embedding vec-
tors extracted from the data. We treat F as a multivariate time series with
M + 1 channels and variable length N. To transform F into a fixed-length
feature vector suitable for classification, we apply an almost deterministic
very fast multivariate transform for time series, as introduced in Dempster
et al. (2021). This transform automatically generates features from the
input time series for use in downstream tasks. We chose it for its compu-
tational efficiency, scalability to large collections of time series, and strong

empirical performance across a wide range of time series classification
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tasks (Dempster et al., 2020, 2021; Middlehurst et al., 2024).

The transform works by generating a large number of fixed, nearly
deterministic convolutional kernels and applying them to the embeddings.
Summary statistics of the resulting convolution outputs are then used as
features. Let {Q4, ..., 9Q; } denote a collection of L univariate convolutional
kernels. Each kernel Q, is applied independently to each of the M + 1
channels (columns) of F. A kernel Q, is defined by a fixed-length filter
of size 9 with weights w = {—1,2}, a dilation 1, € N, and a fixed bias
threshold determined by a chosen quantile of the convolutional output.
Thatis, for a given channel m € {1,..., M+1}, kernel Q, defines a univariate

convolution:
9

[F * Ql]m(t) = ZW(I) : Ft+i-nl,m/ (41)

i=1
whenever t + i -1y < N. The transform computes a summary statistic

from the convolutional output for each (1, m) pair, typically the proportion

of positive values:
1
oum(F) = - D> L([FxQlm(t) > qu), (4.2)
t

where q; is a quantile-based threshold and N, is the number of valid
convolution outputs for kernel Q; on channel m. The combination of these

statistics across all channels and kernels produce the final feature vector:

o(x) = (011(F),..., o, m41(F)) € REMHD, (4.3)
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Note that the kernel Q, is composed of the triplet {w, 1, qi}. The filter
weights w; are binary valued (—1 or 2), and many unique sign patterns,
dilations, and thresholds are enumerated to produce L distinct kernels. To
ensure a fixed-length feature vector of a given dimension, the kernels are
distributed across the M + 1 channels either evenly or proportionally. The
transformed features o(x) are used as input to a classifier. In this work, we
generate approximately 10, 000 features, hence we set L(M + 1) = 10000
and solve for the number of unique kernels L based on the embedding
dimension. Once M + 1 is chosen for the embedding, we enumerates L dis-
tinct definitions (w1, 11, q1), apply each to all M +1 channels, and combine
the resulting proportion-of-positives to form a unified 10000-dimensional
feature vector. We evaluate classification performance using only these
transformed features. As the choice of classifier does not significantly
affect our results, we use a Random Forest classifier for both the SSE and

imputation-based approaches.

4.3 Experiments and Results

This section presents details on the generation of the RV dataset, the setup

of the classification task, and a discussion of the corresponding results.
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4.3.1 Dataset and preprocessing

We generate a broad range of starspot-induced RV signals using the Spot
Oscillation And Planet (SOAP) 2.0 code (Dumusque et al., 2014). Various
key spot parameters are systematically varied to simulate different levels of
stellar activity. The spot-to-photosphere temperature contrast takes values
in {200, 300, 400, 500, 663} Kelvins, while spot sizes were selected in the
range [0.0025, 0.1] in fractional surface coverage, and the number of spots
spans 1 to 4. For each configuration, we specify stellar inputs including a
rotation period of 25.05 days and spot properties (longitude, latitude, size
scaling), which are automatically written into SOAP 2.0 configuration files.
SOAP 2.0 then simulates the effect of these active regions on the stellar
line profiles, outputting model cross-correlation functions (CCFs) that are
converted into RV values. The simulation produces a dense time series for
each spot configuration by sampling the full stellar rotation with a phase
step of 0.01. Each resulting RV profile is stored in a single column, yielding
multiple columns that differ in temperature contrast, spot size, and spot
count. We convert RV values from km/s to m/s and scale the model phase
to days by multiplying by 25.05 days. Figure 4.1 shows the spot-induced
RV time series for a single spot across various temperature differences and
spot sizes. When the spot is behind the star, the RV is zero, and when the
spot rotates in view, it produces a sinuosoid-like signal as indicated by the
peak and valley. A similar pattern is observed when two spots are present,

as shown in Figure 4.2, where two peaks and two valleys emerge. The
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Figure 4.1: Spot-induced RV time series across various temperature differ-
ences and spot sizes when the number of spots is one. Observe that the
larger the spot-size and temperature difference, the larger the RV signal.

relative size and shape of these features depend on the placement of the
spots. Similar effects are seen with three or four spots.

In addition to spot-only signals, we generate a purely planetary RV
time series with an orbital period 4 days and semi-amplitude 0.87 m/s.
This planetary RV signal is added to the spot-induced signal to create
Planet+Spot signals by superposition. Figure 4.3 shows an example of
such Planet+Spot signal across various temperature differences and spot
sizes when the number of spots is one. This procedure results in two main

classes of synthetic RV time series: spot-only (Class 0) and Planet+Spot
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Figure 4.2: Spot-induced RV time series across various temperature differ-
ences and spot sizes when the number of spots is two. Larger the spot-size
and temperature difference, the larger the RV signal.

(Class 1). Each series is labeled according to the presence or absence of the
planetary signal, enabling supervised classification. In the next section,

we introduce measurement noise and irregular sampling to replicate real-

world observing conditions.

4.3.2 Experimental setup

The combined Planet+Spot and Spot-only signals were each perturbed
with Gaussian noise, with standard deviation o € {0.5m/s,0.75m/s,1 m/s}

to mirror measurement uncertainty due to photon noise. The length of
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Figure 4.3: Combined Planet+Spot RV time series across various tempera-
ture differences and spot sizes when the number of spots is one.

each time series is fixed at 100. To emulate real-world observing schedules
or missed observations, we impose structured missingness by randomly
removing contiguous blocks of 10 time points. This process is repeated at
varying levels of missingness: 10%, 20%, 30%, 40%, and 50%, allowing us
to evaluate how classification performance degrades with increasing data
loss. Note that these missing blocks are distributed randomly along the
time series. Figure 4.4 shows an example combined Planet+Spot RV time
series with random missing blocks. Consequently, each synthetic time
series exhibits irregular spacing, i.e., clusters of points during observing

windows and intervals of no data. Given these noisy and irregular time
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Figure 4.4: Combined Planet+Spot RV time series with random missing
blocks at various proportion of missingness. The temperature differences
is 663 Kelvins and the number of spots is one. The distortion caused by
missing data highlights the challenge of separating planetary signals from
stellar activity.

series, we prepare it for embedding in two ways. First, Imputation-Based
uses spline interpolation to impute for the missing values and then applies
a standard time-delay embedding with dimension M = 3 and delay T = 1.
The interpolation does not recover new information but allows a uniform
embedding as a baseline representation. Second, SSE is also applied to con-
struct the embedding by first identifying observed subsequences within
the irregular time series, then applying a local time-delay embedding to

each subsequence, and the resulting embeddings are combined to pro-



115

duce the embedding matrix. The SSE matrix thus captures real dynamics
without imputing over unobserved gaps. Finally, each time series, with or
without a planetary signal, is represented by both an imputed embedding
or by the SSE embedding. The SSE often produces fewer total rows than
imputed embeddings, since it does not interpolate missing values.

The number of sample matrices is 400, with 200 in the Planet+Spot
class and 200 in the Spot-only class, ensuring a balanced dataset. To fit the
classifier, we divided the 400 samples into a training and testing set where
320 samples were designated as training set. The training set is then used to
select the optimal parameters for the Random Forest classifier. Specifically,
we search over the number of estimators {50,100, 200}, the maximum tree
depth {00, 10,20}, and the minimum number of samples required to split a
node {2, 5, 10}. For each level of missingness {10%, 20%, 30%, 40%, 50%},
we train and evaluate two models: (1) using the transformed samples
from the TDE embedding computed on the imputed (uniformly-spaced)
time series, (2) using the transformed samples from the SSE embedding
without imputation. For ease of reference, we refer to these two models
as the “Imputation model” and the “SSE model,” respectively. We report
the area under the curve (AUC) for the two models across the different

missingness levels.
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4.3.3 Experimental results

The experimental results, reported in terms of AUC across varying levels
of missingness and noise, are presented below. Figure 4.5 shows the ROC
curve and the corresponding AUC values when noise is low (o = 0.5).

Both pipelines perform well at low missingness. The AUC for the Imputa-
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Figure 4.5: The ROC curves with the AUC values when o = 0.5. For
missing proportions above 10%, the SSE model consistently outperforms
the Imputation model.

tion model decreases steadily from 1.0 at 0% to 0.73 at 50%. In contrast, the
SSE model preserves performance more effectively, declining only from
1.00 to 0.93 across the same range. The performance gap widens as miss-
ingness increases, highlighting the advantage of avoiding interpolation
when data gaps become more substantial.

Under moderate noise (0 = 0.75), performance degradation becomes
more pronounced, as shown in Figure 4.6. The Imputation model shows a

sharper decline, with AUC falling from 1.0 to 0.60, while the SSE model
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Figure 4.6: The ROC curves with the AUC values at o = 0.75. The SSE-
based method consistently outperforms the imputation-based method.

retains greater resilience, achieving an AUC of 0.87 even at 50% missing-
ness. The difference in performance is most noticeable in the intermediate
range of 30% to 50% missingness, where interpolation begins to distort
the underlying signal structure.

Results under high noise conditions (o = 1.0) are shown in Figure 4.7,
where classification becomes significantly more challenging. The Impu-
tation model fails to maintain discriminability, reaching an AUC of only
0.55 at 50% missingness, comparable to random guessing. The SSE-based
method continues to offer better robustness, with AUC values ranging
from 0.99 at 0% missingness to 0.79 at 50%. This demonstrates that SSE
preserves enough signal structure to enable reliable discrimination even
under severe sparsity and noise. Though both methods suffer from the
high noise, SSE consistently maintains higher discriminative performance.

A further sensitivity analysis was conducted by repeatedly splitting the
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Figure 4.7: The ROC curves with the AUC values at 0 = 1.0. The
imputation-based method performance degrades significantly, and at 50%
missingness, it is indistinguishable form random guessing, while the SSE-
based method is still significantly accurate.

dataset into training and test sets over 100 iterations, and then computing
the average AUC (and its standard deviation) for each combination of
missing proportion and noise level. The results, shown in Table4.1, con-
firm the same overall pattern: both SSE and the imputation-based method
achieve near-perfect classification for low noise (o = 0.5) and few missing
data (< 20%). However, as the missing proportion or noise level increases,
the SSE model maintains higher average AUC and lower variance than
the Imputation model. For instance, at o = 1.0 and 50% missingness, the
SSE model retains an average AUC of about 0.83 (std 0.05), whereas the
imputation-based model falls to roughly 0.66 (std 0.06). This difference
highlights SSE robustness in preserving essential signal structure, even
under substantial irregular sampling and noise. These repeated train-test

splits also indicate that the observed performance gap is not due to any
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Table 4.1: The average AUC with standard deviation in brackets, across 100
repeated train-test splits, comparing SSE model and Imputation model un-
der varying noise levels and missingness. SSE consistently achieves higher
AUC and lower variance. The gray colored rows indicates combinations

at which the SSE model outperforms the Imputation model.

Proportion Missing
o Model 0.00 0.10 0.20 0.30 0.40 0.50
1.00 1.00 1.00 0.99 0.98 0.95
SSE
0.50 (0.00) (0.00) (0.00) (0.01) (0.01) (0.02)
1.00 1.00 1.00 0.98 0.93 0.84
Imputation
(0.00) (0.00) (0.00) (0.01) (0.02) (0.05)
1.00 1.00 0.99 0.97 0.94 0.90
SSE
0.75 (0.00) (0.00) (0.01) (0.01) (0.02) (0.03)
| 100 100 098 094 08 073
Imputation
(0.00) (0.00) (0.01) (0.02) (0.04) (0.06)
SSE 1.00 0.99 0.97 0.93 0.89 0.83
100 (0.00) (0.01) (0.02) (0.02) (0.04) (0.05)
. 1.00 0.98 0.93 0.86 0.75 0.66
Imputation
(0.00) (0.01) (0.03) (0.04) (0.05) (0.06)

particular data partition. Even at high noise and high missingness, SSE
demonstrates relatively stable performance, as evidenced by its smaller
standard deviations across multiple runs. By contrast, the imputation-
based approach degrades more sharply, suggesting greater sensitivity to
artificially filled gaps and the resulting signal distortion. Overall, these

experimental results emphasize the robustness of SSE. Rather than smooth-
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ing over unobserved intervals, SSE operates directly on observed data,
capturing essential dynamics without introducing interpolation artifacts.
While imputation methods remains a viable option for moderate missing-
ness (e.g., at less than 10% missing values), they become unreliable when
the level of missing values increases. Overall, SSE maintains consistently
higher AUC across all noise and missingness levels, demonstrating its
effectiveness for detecting the presence or absence of planetary signals in

noisy and incomplete RV time series.

4.4 Discussion and Conclusion

The results show that subsequence embedding (SSE) improves the de-
tectability of exoplanet signals in irregular RV time series more effectively
than spline interpolation or other gap-filling strategies. By focusing only
on observed measurements rather than predicting values in unobserved
intervals, SSE preserves the geometry of the underlying dynamical sys-
tem. This property proves especially beneficial at higher levels of data
scarcity, where traditional interpolation may weaken or obscure periodic
signals that are crucial for planet detection. A central reason for SSE’s
effectiveness lies in how it constructs time-delay embeddings: each con-
tinuous set of observations is processed independently, so large gaps are
never connected. Missing portions of the time series are omitted, ensuring

that embedded states represent only what has genuinely been recorded.
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In contrast, interpolation-based embeddings blend observed data with
extrapolated segments, which can either dampen small but meaningful
oscillations or introduce new cycles that do not reflect any real feature.
As our results show, this leads to systematically lower AUC, especially
as data becomes sparse or noisy. By controlling how subsequences are
extracted, SSE faithfully tracks the temporal and state-space structure that
arises from spot-induced and planetary signals.

In astronomical contexts, this approach opens new opportunities for
analyzing time series that are inherently unevenly spaced, whether due
to telescope scheduling, weather, or seasonal visibility windows. The
SSE framework is relatively straightforward to implement, yet it captures
key properties of the original dynamical system without imposing strong
assumptions about behavior in gaps. This is advantageous when classi-
fying whether a given RV time series contains a planetary signal. Our
experiments confirm that, even under substantial missingness, SSE embed-
dings offer higher discriminatory power compared to interpolation-based
embeddings, meaning that a simple machine learning pipeline can more
accurately separate planet-containing signals from purely activity-driven
ones. We note that this approach is model-agnostic and relies purely on
data geometry and temporal structure, making it adaptable across a wide
range of time series classification tasks in other disciplines.

Our study focused on a single classification pipeline that paired SSE

with Convolutional kernel feature extraction. In principle, one could re-
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place this with alternative algorithms or incorporate additional feature
engineering, such as topological descriptors, to further enhance classifica-
tion. Further, our use of it in conjunction with a machine learning classifier
is somewhat novel; previous work focused on its topological faithfulness
(Perea and Harer, 2015; Dakurah and Cisewski-Kehe, 2024), but we have
shown that this faithfulness translates into better machine learning perfor-
mance too. In real data, spot evolution, flares, and other non-stationary
effects may require adaptive choices for the delay parameters. Despite
these extensions, SSE already shows notable promise, providing a robust
and data-driven foundation for learning from sparsely sampled observa-
tions.

Overall, SSE offers a practical way to handle large gaps or irregular
sampling in RV studies and potentially many other fields that rely on
non-uniform time series. By using only the observed samples, it avoids
the uncertainty of gap filling and more reliably recovers the geometric
signatures of periodic or quasi-periodic processes. This property, com-
bined with the flexibility of modern machine learning methods, can make

detection pipelines both more accurate and more robust.
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5  PERSISTENCE SIGNATURES IN MOLECULAR DYNAMICS

SIMULATIONS OF IONIC LIQUIDS

Abstract

Ionic liquids (ILs) are room-temperature salts that often exhibit hetero-
geneous nanoscale organization. Understanding this internal structure is
crucial because it underlies key properties such as ionic transport, viscosity,
and electrochemical performance. In this work, we introduce a unified
topological data analysis (TDA) framework to characterize IL nanostruc-
tures from molecular dynamics (MD) simulations. We leverage persistent
homology to capture multiscale topological features of the MD-generated
point clouds (ion positions), and integrate these descriptors with statisti-
cal methods. The proposed methodology encompasses persistence-based
summaries, change point detection of structural transitions, and spatial
point process modeling to quantify how topologically identified clusters or
loops are spatially arranged. Applied to IL simulation data, this pipeline
reveals interpretable descriptors of nanoscale morphology and detects
structural transitions that are interpretable and relatable to physical prop-
erties of ILs. The approach is validated on two representative case studies
(varying cation alkyl chain length and IL concentration), where it suc-
cessfully identifies regime shifts in nanostructure. This work is a result

of a collaboration with Lisa Je and Reid Van Lehn from the Department
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of Chemical and Biological Engineering at the University of Wisconsin-

Madison.

5.1 Introduction

In molecular systems, structure at the nanoscale refers to the non-random
organization of molecules into local patterns or domains on length scale of
a few nanometers. Such nanoscale structuring is physically meaningful be-
cause it arises from intermolecular forces and often governs bulk behavior.
Understanding how molecules arrange themselves at nanometer scales is
key to connecting microscopic interactions with macroscopic properties in
molecular simulations (Wang et al., 2020; Jiang et al., 2018; Walker et al.,
2018). Molecular dynamics (MD) simulations are a powerful tool for
probing and modeling these complex, evolving nanoscale structures. In
MD simulation, a large number of molecules are tracked in time, allowing
emergent structural patterns to develop naturally from fundamental in-
termolecular interactions. Because MD can isolate specific interactions or
molecular designs, it has been pivotal in explaining how subtle changes
in molecular structure, such as alkyl chain length or functional group
placement can influence the resulting nanostructure(Wang et al., 2020;
Hollingsworth and Dror, 2018; Jiang et al., 2018). The MD simulations
used in this work were provided by collaborators Lisa Je and Reid Van

Lehn from the Department of Chemical and Biological Engineering at the
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University of Wisconsin-Madison.

Extracting meaningful structural descriptors from MD data, however,
poses a significant challenge. A typical MD trajectory, which is a time-
ordered sequence of atomic positions generated by simulating the motion
of atoms and molecules, generates a vast amount of atomic coordinates,
from which one must extract meaningful patterns that reflect how the
system is organized at small scales. Traditional measures like radial distri-
bution functions and cluster analysis summarize structural features over
time, but they can miss or obscure unique or transient structures (Smith
etal., 2023; Je et al., 2022; Jiang et al., 2018). More specifically, MD analysis
strategies such as tracking a few predefined order parameters, performing
clustering in coordinate space, or applying linear dimensionality reduc-
tion often struggle to capture the full richness of the system’s behavior
as they focus on two-body correlations or require apriori definitions of
an order parameter. Important collective motions or structural changes
may be missed when using overly simplistic descriptors. The core method-
ological challenge is thus one of structure detection at the nanoscale, feature
extraction, and interpretability of the structure and transient features. Achiev-
ing this requires the development of new analysis pipelines that are both
quantitatively robust and physically interpretable.

In persistent homology, a single snapshot at fixed resolution is not
considered, rather a multi-scale family of complexes is built from the point

cloud which tracks the birth and death of the topological features as the
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observation scale varies. For instance, in MD simulations, the 3D Cartesian
coordinates of molecules form a point cloud that captures snapshots of
molecular structures. In this context, the point cloud is analyzed through a
VR filtration introduced in Section 1.3 of Chapter 1. Instead of focusing on
specific low-dimensional descriptors derived from domain knowledge that
capture essential aspects of a molecular system’s behavior, TDA examines
the overall shape and structure of the data by identifying patterns or
structures that are consistently present throughout the simulation. This
approach allows for the quantification of certain shape features in the
data that are useful for characterizing the molecular system’s physical
properties. TDA provides an alternative and complementary framework
to conventional analysis, one that is sensitive to global structural patterns
and intrinsic geometry rather than just local correlations.

In this work, we present a unified methodology that integrates persis-
tent homology with statistical techniques to characterize IL nanostructure
in MD simulations. The novelty of our approach lies in combining topo-
logical quantification provided by persistent homology with statistical
analyses that enhances robustness, stability and physical interpretability.
First, we perform persistent homology on MD-generated point clouds of
ions, obtaining persistence diagrams that serve as descriptors of structure.
Summary persistence statistics, such as the mean persistence, variance of
persistences, or maximum persistence, are then computed across different

point clouds from different simulation conditions. By treating these sum-
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mary measures over different frames as time series data (see Section 5.3.1
for details), we apply change point detection algorithms to identify sta-
tistically significant changes in the IL’s structural state over time. This
allows us to automatically detect the onset of a structural transition, for
example, when an initially homogeneous mixture begins to segregate. In
addition, we incorporate a spatial point process perspective to interpret
the geometry of the identified structures. Specifically, if persistent homol-
ogy indicates the presence of certain features, we model the location of
these features as points in space and analyze their spatial distribution.
Using tools from spatial statistics, we can determine whether the topology-
derived structures themselves are randomly distributed, form a regular
lattice, or exhibit higher-order clustering.

The proposed framework enables detection of nanostructural phase
transitions, identification of distinct regimes, and a nuanced interpretation
of local aggregation in IL systems. For example, as simulation conditions
evolve, our approach can pinpoint the moment an IL switches from one
nanostructural regime to another by detecting abrupt shifts in persistence
summaries. This capability is particularly valuable for ILs where transi-
tions may be gradual or not apparent in traditional methods like radial
distribution function. Furthermore, the integration of spatial point pro-
cess models provides interpretative context for the detected topological
structures. Rather than simply stating that a certain persistence summary

increases, we can interpret this as evidence that loop-like structures in the
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point cloud are arranged in a connected network, similar to pathways or
channels running through the system, or that charged particle groups are
unevenly distributed, which suggests the formation of larger and distinct
regions within the point cloud. Such insights bridge the gap between
abstract topological measures and the tangible structural concepts familiar
to domain experts. To demonstrate the utility of this framework, we apply
it to two illustrative case studies (detailed in Section 5.4.2 and 5.4.3). In the
first case study, we examine a family of ILs with varying alkyl chain length
on the cation. Our analysis captures how increasing the chain length grad-
ually intensifies nanosegregation and eventually triggers a transition to
a more percolated domain structure, all identified via changes in persistent
homology signatures. In the second case study, we investigate an IL system
at different concentrations, which allows us to probe how diluting the IL
affects its internal organization. The pipeline detects the emergence (and
dissipation) of ionic aggregates as the concentration changes, effectively
mapping out distinct structural regimes from isolated ion pairs in dilute
conditions to extensive ionic networks in more concentrated conditions.
Notably, these regime boundaries and structural insights arise naturally from our
unified analysis, without a priori assumptions.

This methodology highlight how a TDA-guided approach can uncover
clear, physically meaningful patterns in IL simulations. The rest of this
work is structured as follows: Section 5.2 provides a motivation example

as a preview to the methodology, Section 5.3 details the proposed analysis
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method while Section 5.4 demonstrates the pipeline with two case studies.
Finally, Section 5.5 concludes the work and discusses directions for future

research.

5.2 Motivating Example

First, we demonstrate how we can apply TDA to a simple, 2D toy dataset
that convey some properties of the more complex 3D simulations analyzed
in subsequent sections. A group of datasets with 500 points each were ran-
domly generated and shown in Figure 5.1. This group of data is composed
of four different point clouds numbered Groups 1 - 4. Group 1 consists of
uniform samples randomly drawn from the interval [—4, 4], while Groups
2 - 4 are generated from an asymmetric knot and perturbed with Gaussian
noise. The noise has a mean of 0 and decreasing standard deviations of 0.2,

0.1, and 0.025 for Groups 2, 3, and 4, respectively. The goal is to develop a

Group 3 Group 4
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Figure 5.1: Group 1 is randomly distributed with no apparent pattern.
Group 2 point appears to be clustering around the center. Group 3 and
Group 4 manifest four elliptical empty shells with Group 4 being more
prominent relative to Group 3.
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methodology for systematically quantifying the evolving structure, in this
example, the shape of the point cloud across Groups 14, capturing both
qualitative and quantitative properties. TDA tools, such as persistence
diagrams, allow for the quantification of differences between these four
point clouds by measuring the systematic aggregation of points, which
leads to the formation of loops.

A persistence diagram is generated from each point cloud dataset
to quantify the number of components and loops the data contain. For
the toy dataset displayed in Figure 5.1, the corresponding persistence

diagrams are displayed in Figure 5.1. By observing the birth and death of
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Figure 5.2: The persistence diagrams corresponding to the four groups of
point clouds in Figure 5.1. Observe the H; features across the four groups.
Groups 3 and 4 have four blue triangles that are distinctively above the
rest of the blue triangles, indicative of the four elliptical empty territories
in Group 3 and Group 4 of Figure 5.1.

topological features over a set of filtration values, we can observe robust
and stable topological features in the point cloud dataset. For example,
in the persistence diagrams for Group 3 and Group 4 in Figure 5.2, we

observe four dominant blue triangles, indicated by H;, which identifies
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(a) Boxplot of persistence values. (b) The pair correlation function.

Figure 5.3: (a) A boxplot (displayed without outliers) of the persistence of
the H; features. (b) The pair correlation function (with an inset for visual
clarity) used to measure the degree of aggregation of the sequence.

the four empty elliptical loops or circles shown in Figure 5.1 for Group 3
and Group 4.

Our second TDA graphical summary are side-by-side box plots that
display the distributions of the computed persistence of the point cloud
over a series (shown in Figure 5.3a). For this demonstration, we only
use the mean persistence, calculated for each point cloud. As the series
progresses, the summary persistence exhibits significant shifts that in-
dicate changes in the overall trend. For example, the mean persistence
decreases from Group 1 to Group 3 and then increases in Group 4. An
abrupt change (i.e, a shift in the trajectory of a persistence summary over
the group sequence) can be captured using change point analysis tools, as
discussed in Section 5.3.2, which provides a more nuanced perspective on

the data’s evolving structure. Group 3 is identified as a change-point in
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this sequence, and serve as an anchor point for further analysis of struc-
tural change. Other summary statistics on the persistence offer additional
insights into the number of connected components and holes present in
the dataset.

The last technique is the pair correlation function (PCF), which is not
a TDA method, but is produced from the point cloud data to measure the
level of aggregation or clustering at different scales or distances between
the points. Similar to the TDA summary statistics, we can qualitatively
observe any clustering of points through the peak intensity and peak loca-
tion of the pair correlation function. Figure 5.3b shows the pair correlation
function of the data sequence in Figure 5.1. A high-intensity peak means
there are a lot of nearby points whereas the location of the peak on the
x-axis indicates the distance scale a which the pair-wise interaction is

found.

5.3 Nanostructure in Persistence Summaries

In this section, we outline the post-processing tools and methods applied
to persistence summaries to study nanostructure variations in the time-
averaged trajectories of both dilute and pure IL, where pure IL refers to an
ionic liquid with no or minimal added solvent, and dilute IL refers to the
same ionic liquid mixed with a molecular solvent to reduce ion concentra-

tion.. The first objective is to identify inherent nanostructure variations
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using persistence summaries and then examine how these variations are
reflected in the original 3D point cloud in terms of the aggregation of the
ions by applying spatial point processes. Finally, we quantify the statistical

significance of these detected features through hypothesis testing.

5.3.1 Data representations for TDA

The dataset used in this work can be described as a collection of point
clouds in R®, indexed by two variables p and q. We define X;, 4 C R® to
represent the point cloud at the p-th instance of the g-th category. It is as-
sumed that each category contains n instances, and there are m categories
in total. Each point in a category q is organized by occurrence yielding
the sequence: Xj,q,Xp,q, -+ , Xy, q- For this work, different categories may
be distinguished by various features such as concentration or alkyl chain
length (as illustrated in Case Study I and II). A sequential arrangement of
the point clouds can therefore be constructed across categories, ordered by
the magnitude of these distinguishing features. This results in an overall
sequence: Xi1,X21,- -+, Xn1,X12, -+, Xn,m. This sequence can be viewed
as a pseudo-time series, where the transition from one instance to the next
represents both internal dynamics within each category and a progres-
sion from simpler to more complex configurations as governed by the
feature attribute (Paparoditis, 2018; Muggeo and Adelfio, 2011). In the
sections that follow, when discussing point clouds more generally, the

indices are omitted, and the point cloud is simply be denoted as X. Next,
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we describe the construction of topological features on these point cloud

representations.

5.3.2 Change point analysis

Change point analysis (CPA) techniques seek to identify significant shifts
or variations in the underlying structure of sequential data. In its basic
construction, an appropriate model is proposed to represent the evolution
of the sequence. The primary objective is to detect instances where a nu-
merical quantity measured from a model exhibits a statistically significant
change, where statistical significance is defined and quantified in Sec-
tion 5.3.2.2. We use one CPA technique, called cumulative sum (CUSUM)
of residuals applied to persistence summaries to study nanostructure

variations in MD simulation trajectories.

5.3.2.1 Model of persistence summaries

The sequence of persistence summaries y, 4 (see Section 5.3.1) can be
considered as a process. Assume this process is piecewise stationary,
meaning the process remains constant within distinct segments but can
change abruptly between segments. The goal then is to detect the indexes
where these changes occur. For the purpose of this work, and in subsequent
analysis, our focus is to identify the index with the most significant shift
in the sequence, that is, a single change-point location. This often involves

proposing a model for the process. Consider the following proposed
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model of the persistence summaries:

Yp,q = HMp,q T Ep,q- (5.1)

Here, u, 4 is a fixed term, and is the expected value associated with the
observation atindex (p, q), and the error term ¢,, ; has mean 0 and variance
0. Note that normality is not assumed for the error term ¢, 4. This model
is used to detect mean shifts in the MD simulation trajectory’s persistence
summary statistics. The process of detecting a change point reduces to
testing the following null hypothesis of “no structural change”: u, ¢ = u
for all indexes (p, q), implying the mean observation is constant across the
sequence. Under this null hypothesis, the ordinary least squares (OLS)

residuals and an estimate of its variance can be obtained, respectively, as:

. 1 . 1
€p,qg = Yp,q — nm Z Yp,qs 60 = m Z €%,q. (5.2)

1<p<n,I<g<m 1<p<n,I<g<m

Figure 5.4 provides a graphical illustration of the hypothesis described
in this section. A popular approach to testing this hypothesis involves
analyzing the cumulative sum of the residuals and rejecting the hypothesis
if the fluctuations are deemed excessive. This procedure is described in

the next section.
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Figure 5.4: A graphical illustration of the hypothesis to be tested for the
change-point analysis. The solid red points denotes persistence summaries,
and the dotted blue lines indicates their trajectories. (a) The null hypoth-
esis, indicating a persistence summary measure is the same across all
experimental conditions or categories for each frame. (b) The alternative
hypothesis indicating there is a difference in a persistence summary mea-
sure across the different experimental conditions or categories.

5.3.2.2 Fluctuations in residuals

Generalized fluctuation tests, a statistical framework for detecting struc-
tural changes in models, construct empirical processes that capture fluc-
tuations in residuals. The underlying premise is that any changes in the
signal (y) are reflected in these residuals. One such empirical process
proposed by Ploberger and Kramer (1992) is to compute the cumulative

sum of the residuals. The CUSUM process is defined as follows:

1
BrM(e)=——rx Y Epq 0<c<1, (5.3)
ovnm (p,q)eQ.

where Q. C {(p,q) : 1 < p <n,1 < q < m}contains not more than the

first ¢ proportions of the indexes. For example, suppose the set {p,q:1 <
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p < n,1 < g < m}contains a total of ten indexes, then Q(; will contain
the first pair of index values, )y, will contain the first two pair of index
values, and so on. The assumption of equal means in the sequence is
rejected if the maximum CUSUM process is sufficiently large. Therefore,

a suggested test statistic is given by Ploberger and Kramer (1992):

sup }B(“m)(c)‘ . (5.4)

0<c<l

To conduct the test with this statistic, it is necessary to derive its distribu-
tion. The finite sample null distribution of this test statistics is not known.
However, Sen (1982) showed that for infinitely large nm, the test statistic

wmm () converges in distribution to a standard Brownian bridge:
B (c) & B(c), B(c) =W(c)—cW(1). (5.5)

Here, W(c) is a real-valued continuous-time stochastic process, commonly
known as the Wiener process in the literature. For more details on its
characterization—such as its independent increments, which are normally
distributed with variance equal to the difference in the time indices—refer
to (Billingsley, 1968, p. 61-65). This limiting process (Equation (5.5)) is
circular, starting at 0 when ¢ = 0 and returning to 0 at c = 1. Consequently,
there exist a point vy where the maximum fluctuation in the residuals

occurs. The test statistic in Equation (5.4) has the following limiting
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cumulative distribution (Billingsley, 1968, p. 85, Eq. (11.39)):
Ox)=1+2) (1) exp(—2i*?). (5.6)
i=1

For a significance level «, for example say « = 5% (the level that we
use in subsequence analysis), the critical value © ! («) obtained is 1.36.
Values of Equation (5.4) exceeding this threshold indicate statistically
significant fluctuations. Although this critical value produces constant
linear boundaries, a more effective framework for detecting variations
adopted in this work, utilizes elliptical boundaries defined by: ©~1(1 —
«)y/c(1 — c). Equivalently, the statistical significance of the fluctuations
can be determined by computing a p-value. Due to the OLS formulation
and the CUSUM constructions, this change point testing procedure is
called the “'OLS-CUSUM test.” The computation of the empirical fluctuation
process and its boundaries as well as this hypothesis testing procedure are

implemented in the R software package strucchange (Zeileis et al., 2002).

5.3.3 Spatial point processes applied to TDA

representations

After detecting structural shifts in the point cloud sequence, we employ
spatial point process techniques to analyze the point cloud configurations
at the identified change boundaries, allowing us to characterize the local

structural changes driving these transitions. This is motivated by the fact
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that simplicial complexes are constructed by drawing spheres of a given
radius around the points in the space. While the distribution of these
points are reflected in the resulting persistence diagram and subsequent
persistence summaries, features of this distribution can also be captured
using tools from spatial point analysis, specifically, the pair correlation
function (PCF). The PCF is a statistical tool used to analyze the spatial dis-
tribution of points in a point cloud. Consider a point cloud X = {x3, - - - , x5}
observed within a region V C R*® with volume |V|. The intensity A of the
point process is defined as A = P/[V|, representing the average number of
points per unit volume. The PCF, denoted g(r), quantifies the likelihood
of finding a pair of points separated by a distance r relative to what would
be expected under complete spatial randomness (CSR). Under CSR, the
PCF is constant: g(r) =1 for all r. Deviations from this baseline indicate
clustering (g(r) > 1) or regularity (g(r) < 1) in the point distribution.
To estimate the PCF empirically, we consider the pairwise distances
between points in X. The empirical PCF g(r) is computed by smoothing
the observed pairwise distances using a kernel function. In this work, the
Epanechnikov kernel with a fixed bandwidth h = 0.26/A'/3 (a rule-of-
thumb bandwidth) is employed for smoothing. The Epanechnikov kernel

is defined as:

Kepa(h) = — (1 _ "—2) 1(x| < h), (5.7)
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where 1(-) is the indicator function. The empirical PCF is then given by:

61 = 12 ) ; Kepa (b — x5 —h) e(xi, 1), (58)
where e(x;, ) is an edge correction factor accounting for points near the
boundary of V. Specifically, e(x;, r) is defined as the inverse of the fraction
of the sphere centered at x; with radius r that lies within V (Baddeley
et al., 1993, 2015). This correction ensures that boundary effects do not
bias the estimation of the PCF. For interpretability, the PCF is often scaled
by subtracting 1, yielding a reference value of 0 under CSR. This scaled
version is adopted in this work, providing a clearer baseline for identi-
fying deviations from randomness in the spatial distribution of points.
Figure 5.12 illustrates example distribution of point clouds and their cor-
responding PCFs. The g(r) is centered at 0 by subtracting 1. The PCF of
the random point cloud (solid orange line) lies close to zero, reflecting
the randomness of the point distribution. For the clustered point cloud,
the PCF (dotted green line) is above zero at small distances, indicating
within-cluster proximity, with the location of the maximum suggesting
the most frequent short inter-point distance. Conversely, the PCF of the
regular point cloud (dashed blue line) initially decreases, indicating a

tendency for points to be farther apart than expected randomly.
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Figure 5.5: Example distributions of point clouds (1000 points each in R?)
and their corresponding pair correlation functions. Top-left: a randomly
generated point cloud following a homogeneous Poisson process, with
its pair correlation function (solid orange line) near zero, indicating ran-
domness. Middle-left: a clustered point cloud, where the pair correlation
function (dotted green line) is above zero for small distances, showing
within-cluster proximity. Bottom-left: points with near-uniform pairwise
distances exhibit repulsion, and the pair correlation function (blue dashed
line) is below zero for smaller scales.

5.4 Applications

This section demonstrates the application of the methods introduced in
Section 5.3 to all-atom MD simulations of ILs. ILs are room-temperature
salts with unique electrochemical properties, making them ideal candi-
dates for battery applications. In addition, ILs have interesting spatial
and structural patterns at the atomic level. We explore two case studies:

1) the effect of varying the alkyl chain length of the cation within an IL
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family, and 2) the impact of varying the concentration of a specific IL in an
acetonitrile solvent. For the first case study, eight distinct MD simulation
trajectories are generated, while the second case study involves 13 trajecto-
ries. Each trajectory is processed by averaging the Cartesian coordinates of
the IL over all time frames, providing a static representation of the system’s
spatial configuration for analysis. These case studies illustrate the utility
of the proposed methods in capturing and quantifying nanostructural

patterns in complex ionic systems.

5.4.1 Data normalization and robustness

The realizations of different ILs, observed as 3D point clouds, may differ
in the number of points in this 3D space, and by extension, their densities
might be different. To mitigate the impact of varying point cloud densities
on computed topological features, particularly for the H; features, we
employ a data normalization technique based on scaling the point cloud
by the average first nearest neighbor (1-NN) distance of each point cloud.
For a given point cloud X = {x;, - - - , X}, each data point’s coordinates are
scaled by dividing by the average 1-NN distance:

12

diny = — min ||x; — x; 5.9
’ 1-NN P - 1< isi ” i )”IR@/ ( )
1=

_ Xi

Xi = =
dinn

where || - [|s is the Euclidean distance between any two points in the space.

The scaled data that is used for all the analyses is denoted as: X =
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Figure 5.6: Distribution of the point cloud before and after scaling with
average 1-NN distance. Top-left: unscaled point cloud data for EMIM,;
top-middle: unscaled point cloud data for DDMIM; top-right: empiri-
cal cumulative distribution functions (ECDFs) of the unscaled datasets.
Bottom-left: scaled point cloud data for EMIM; bottom-middle: scaled
point cloud data for DDMIM; bottom-right: ECDFs of the scaled datasets.

{X1, -+ ,Xp}. To demonstrate the effectiveness of this normalization, con-
sider Figure 5.6 where the IL 1-ethyl-3 methylimidazolium (C;Mim) BF,
and 1-dodecyl-3 methylimidazolium (C;,Mim) BF,; are compared. The
point cloud 1-ethyl-3 methylimidazolium (C,Mim) BF; have 4008 points
while 1-dodecyl-3 methylimidazolium (C;,Mim) BF, have 1914 points.
From Figure 5.6-right top, the comparison of their empirical cumulative
distribution of the 1-NN distance is shown before the proposed scaling,
indicating some difference in their distribution. However, after scaling

by the proposed method the difference in their observed 1-NN distance
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Figure 5.7: The running average distance of the average and maximum
persistence summaries for three selected ILs. The n is the number of sam-
ples, where sample is defined as a frame or its point cloud representation.
The differences are less wiggly after 30 samples, and more stable results
can be obtained after 100 samples.

are very similar as shown in Figure 5.6-right bottom. In this particular
example, the magnitude of the difference might not appear pronounced,
but such disparities could significantly affect the persistence of the ho-
mology features when aggregated over a large set of observations. Since
the VR filtration is constructed by forming simplices based on proximity,
this normalization standardizes the scale of distances and ensures that the
topological features identified are intrinsic to the time-averaged trajectories
structure rather than artifacts of point density.

A final robustness check in our analysis pipeline involves determin-
ing the minimum number of samples (defined as frames or their point
cloud representations) required to obtain consistent results. This is par-

ticularly relevant for the CPA, where we construct sequences as defined
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in Section 5.3.1. Specifically, we aim to identify the minimum number of
samples needed to reliably detect the same change point. To assess this,
we computed the Running Average Distance (RAD) of the persistence

summaries. The RAD at index (p > 1, q) is defined as:

1 p—1 m n q-1
RAD, , = _ _ '
P p=1+(g—1)n (é ;(yprq e + 0D (pa — yia)

k=1 1=1

Figure 5.7 illustrates the RAD results for (C,Mim) BF,, (C¢Mim) BF,, and
(C12Mim) BF,. Our analysis shows that the successive average differences
stabilize after 30 samples, with more consistent results achieved beyond
100 samples. This stability suggests the analysis can be performed with

fewer frames, reducing computational costs while maintaining accuracy.

5.4.2 Case Study I: Varying Alkyl Chain Length

This case study focuses on a well-characterized class of ILs: imidazoliums.
These are defined by base cations consisting of a five-membered ring
containing two nitrogen atoms. Specifically, we consider imidazolium ILs
with varying alkyl chain lengths. Bulk molecular dynamics simulations
were conducted for each IL using an 8 x 8 x 8 nm® simulation box. The

following cation—anion pairs were used:
i) 1-ethyl-3-methylimidazolium (C,Mim)BF,; — EMIM(2)

ii) 1-propyl-3-methylimidazolium (C;Mim)BF, — PMIM(3)
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iii) 1-butyl-3-methylimidazolium (C4JMim)BF, — BMIM(4)
iv) 1-pentyl-3-methylimidazolium (CsMim)BF; — PTMIM(5)
v) 1-hexyl-3-methylimidazolium (CsMim)BF, — HMIM(6)
vi) 1-octyl-3-methylimidazolium (CsMim)BF, — OMIM(8)
vii) 1-decyl-3-methylimidazolium (C;)Mim)BF4; — DMIM(10)
viii) 1-dodecyl-3-methylimidazolium (C;,Mim)BF, — DDMIM (12)

These ILs were selected for this case study because it is well established in
the literature that as the alkyl chain length n in (C,,Mim)BEF, increases, the
bulk IL transitions from a homogeneous to a heterogeneous nanostructure,
typically around n =4 - 6 (Wei et al., 2021). This structural transition is
visually apparent in the MD simulations, as shown in Figure 5.8, where
longer alkyl chains lead to increased nanoscale segregation of the nonpolar
cation alkyl chains.

The data normalization described in Section 5.4.1 is then applied to
each IL simulation point cloud. The proposed analysis pipeline is then
applied to this normalized point cloud. First, the persistence diagrams are
constructed for each point cloud and from which several persistence sum-
mary statistics, including the minimum, quartiles (25th, 50th, and 75th
percentiles), average, maximum, and variance are computed. However,
only the average and maximum values were utilized in the subsequent

analysis. Specifically, we focus on the H; features, which correspond to
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Figure 5.8: Example MD simulation point cloud data where yellow indi-
cates cation and blue indicates anion for (a) EMIM(2) (b) PMIM(3) (c)
BMIM(4) (d) PTMIM(5) (e) HMIM(6) (f) OMIM(8) (g) DMIM(10) (h)
DDMIM (12).

loops formed by the arrangement of atoms in molecular dynamics IL sim-
ulations. These loops can provide insight into the structural organization
and clustering behavior of ions within the liquid. The average and max-
imum persistences are displayed as a scatterplot in Figure 5.9. It can be
seen that the average persistence is increasing with alkyl chain length
up to HMIM(6), and there is a dip in the average persistence. A similar
observation can also be made for the maximum persistence, with the only
difference being that there is a slight jump in the maximum persistence

after HMIM(6). These shifts are also apparent in the smoothed density

plots in Figure 5.10. As the alkyl chain length increases, the spread of
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Figure 5.9: Summary of the persistence of the H; features. Top: The
average persistence. Bottom: The maximum persistence.

the persistence summaries changes, visual difference can be observed in
the groups with alkyl chain length above six and groups with alkyl chain
length not exceeding six. The CPA is used to more rigorously study this
observed differences between these imidazolium groups and quantify
their statistical significance. The average and maximum empirical fluc-
tuation process defined in Equation (5.3) is shown in Figure 5.11. The
empirical fluctuation process (EFP) for both persistence summaries do
not fall within the elliptical boundary at all sequence points, indicating

statistically significant fluctuations. The point at which the two processes
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Figure 5.10: A density plot of the distribution of the average and maximum
persistence summaries.
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Figure 5.11: The empirical fluctuation process (EFP) identifying the loca-
tion of the change in mean for the average persistence EFP (dotted red
lines) and maximum persistence EFP (dasjed cyan lines). The solid black
lines are the EFP boundaries. The square red point indicate the location
(2179) of the change-point for the average persistence. The cyan circle
indicates the change-point location (5000) for the maximum persistence.

are at their minima as well as their significance are summarized in the
top-half of Table 5.1. Both change-point (CP) locations are statistically

significant.
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Statistic | CP Location | Test Statistic | CP Group

. Average 2179 33.39 BMIM (4)

CnMimBEs |y 1 imum 5000 39.91 HMIM(6)
. Average 9967 20.54 1.650M
CMim By | o imum 1964 25.90 0.125M

Table 5.1: The summary results of the CPA of the two data bases applied
to the average and maximum processes. Both change-point (CP) locations
are statistically significant for the pure IL and their CP locations are not at
the boundary or do not fall within a boundary group.

To relate the CPs detected to the local variations in the original point
cloud, we construct the PCFs of the various imidazolium groups. From
the CPA results, we expect groups with chain-length above six to differ
in local structural variations compared to those at or below chain length
of six. The PCF of each MD imidazolium simulation via the single-atom
representation is shown in Figure 5.12. This is similar to a traditional MD
radial distribution function that looks at molecules or atoms with respect to
their nearest neighbor to dictate the radius of the first solvation shell which
highlights the nanostructural organization of ILs. The imidazolium groups
with alkyl chain length not exceeding six exhibits different structural
organization and clustering behavior compared to the groups with chain
length exceeding six. In general the higher the chain length, the more
pronounced the clustering pattern, and the clustering pattern is observed
to be pronounced at scale between 0.05 and 0.075 for all groups. These
observations are consistent with the CPA results, in that for the CPA,

we observed that longer alkyl chain lengths are associated with broader
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Figure 5.12: The pair correlation function averaged over 1000 frames quan-
tifying the degree of clustering.

distribution of persistence, resulting in higher variance. This broader
distribution of persistence with higher variance is indicative of patterns
of aggregation. This provides a distinctive way to observe shifts in the

nanostructure variations in the experimental sequence.

5.4.3 Case Study II: Varying Molar Concentration

In contrast to the first case study, which explored a range of ILs, this
second case study focuses exclusively on a single compound: 1-ethyl-3-
methylimidazolium tetrafluoroborate, denoted as (C;Mim)BF, . This IL
has been widely studied in experimental literature due to its promising
properties in energy-related applications, particularly in batteries and
electrocatalysis(Liu et al., 2022). One prevailing hypothesis is that ionic

nanoclustering alters the Debye screening length, potentially influenc-
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ing charge transport properties (Gebbie et al., 2023). To investigate these
effects from a molecular perspective and identify nanoclustering, MD simu-
lations were carried out at thirteen different concentrations of (C,Mim )BF,
in acetonitrile solvent, ranging from highly dilute to pure IL conditions
(0.025M,0.125M,0.3M,04M,0.5M,0.7M,09M,0.997M, 1.0 M, 1.65 M,
3.28 M, 4.91 M, 6.5 M). The point clouds corresponding to these simula-
tions were normalized, and persistence diagrams computed for all thirteen
concentrations. Similar to Case Study II, persistence summary statistics
were computed and the average and maximum persistence are shown in
Figure 5.13. At low concentrations, considerable variation was observed
in both the average and maximum persistence values. This variability is
consistent with the sparsity of ions and the increased number of possible
spatial configurations in dilute regimes. As concentration increases, the
variance in persistence reduces, reflecting a more constrained ionic envi-
ronment. An interesting pattern to observe is that when controlling for the
variation in the persistence, the topology of the lower concentrations ap-
pears to be replicated by that of the higher concentrations, exhibiting some
form of cyclical pattern in the topology. This cyclic pattern is more clearly
seen in the smoothed density plots shown in Figure 5.14. This suggests
that it might be possible to recover the topology of the lower concentration
from that of the higher concentrations and vice versa. Further, this cyclic
pattern implies that locations of significant nanostructure variations are

likely to occur at the extreme groups or closer to the extreme.
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Figure 5.13: Summary of the H; features persistence for the C,Mim BF,
dataset. Top: The average persistence. Bottom: The maximum persistence.

To quantify the existence of any such locations with significant nanos-
tructure variation, we applied the CPA. The average and maximum em-
pirical fluctuation process is shown in Figure 5.15. The EFP for both
persistence summaries attained their peaks close to the boundary of either
direction. The point at which the two processes are at their peaks as well as
their significance are summarized in the bottom-half of Table 5.1. Both CP
locations are statistically significant for the dilute IL, but their CP locations
occur close to the least and highest concentration groups. The closeness

of these change-point locations to the boundaries indicates there is no
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Figure 5.14: A density plot of the distribution of the average and maxi-
mum persistence summaries computed from the persistence diagrams
constructed for the C,Mim BF, dataset.
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Figure 5.15: The empirical fluctuation process (EFP) identifying the loca-
tion of the change in mean. The solid black ellipse is the empirical bound.
The dotted red lines, and the dashed cyan lines indicates the EFP of the
average persistence and maximum persistence respectively. The square
red point indicate the location (9967) of the change-point for the average
persistence. The cyan circle indicates the change-point location (1964) for
the maximum persistence.

significant nanostructure variations that distinguishes the different con-

centrations. To confirm our observations, we look at the PCF computed for
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the thirteen concentrations, which is shown in Figure 5.16. In general, the
peaks of the PCF for all the thirteen concentrations are relatively similar,

with the only difference being the scale at which they occurred. Hence
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Figure 5.16: The pair correlation function averaged over 1000 frames quan-
tifying the degree of clustering for the C,Mim BF, dataset.

the proposed pipeline reveals similar nanostructure variations across the
different concentrations. Specifically, clusters tend to form holes rather
than fully agglomerated ion structures. The lifetimes of these holes are
comparable across all thirteen concentrations, making it challenging to
pinpoint a clear turning point in the non-monotonic trend for both the

average and maximum persistence.

5.5 Discussion and Conclusion

This work presents a topological framework for analyzing MD simulations

of ILs, with a focus on characterizing nanoscale structure and identifying
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nanostructural transitions. Building on the persistent homology formal-
ism within TDA, the proposed methodology leverages the geometric and
topological structure of MD-generated point clouds to extract physically
interpretable descriptors of ionic organization. Through the integration of
change point detection and spatial point process modeling, the framework
facilitates the detection of regime shifts and spatial aggregation patterns
without relying on predefined structural assumptions.

The two case studies demonstrate how variations in molecular architec-
ture (alkyl chain length) and composition (solute concentration) influence
the emergence of topological features such as clusters and loops. In the
first case, changes in persistent homology signatures revealed a grad-
ual transition to percolated domain structures, consistent with known
nanosegregation behavior (Wei et al., 2021). In the second case, the frame-
work captured the formation and dissolution of ionic aggregates as a
function of concentration, enabling the delineation of distinct structural
regimes. These findings underscore the potential of TDA to complement
traditional MD analysis tools by capturing global organizational patterns
that may not be apparent through conventional descriptors.

Overall, the results highlight the utility of TDA as a robust and flex-
ible framework for probing nanoscale structure in complex molecular
systems. By enabling quantitative and interpretable analysis of MD simu-
lations through a topological lens, this approach opens new avenues for

understanding structure—function relationships in ILs and related mate-
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rials. Future work may extend this methodology to include additional
molecular components, incorporate temporal dynamics more explicitly, or
explore alternative topological descriptors that capture other structural or

functional aspects of interest.
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6 CONCLUSION AND FUTURE DIRECTIONS

This dissertation develops robust statistical methods for persistent homol-
ogy that extend the applicability of topological data analysis to complex
and irregular data settings. The work contributes to three main areas:
methodology for irregularly sampled time series, statistical inference for
persistent features, and domain-specific application to molecular simu-
lation data. A novel subsequence-based delay embedding is proposed
for irregularly spaced time series, addressing the limitations of classical
embeddings that assume uniform sampling. The method is supported by
theoretical guarantees and numerical studies showing improved preser-
vation of topological structure in the presence of noise and irregularity.
To address the challenge of statistical inference on persistence features,
we also introduce MaxTDA, a framework for estimating and evaluating
the significance of the most persistent topological features. Standard ro-
bust approaches tend to shrink persistent features and obscure genuine
signal. MaxTDA combines thresholded kernel density estimation with
a sampling-based procedure to reduce bias in the presence of noise and
outliers. This enables more accurate inference on maximal persistence
features, allowing for improved feature extraction and hypothesis testing
in applied settings. Finally, persistent homology is used to characterize
nanoscale structure in ion distributions and to detect transitions between

structural regimes in molecular dynamics simulations.
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The methods developed in this work illustrate the importance of in-
tegrating statistical principles into the persistent homology pipeline. By
addressing irregular sampling, uncertainty, and interpretability, this dis-
sertation contributes to a more principled foundation for topological data
analysis. The conclusions in Chapter 2, 3 and 4 discusses various directions
for future research. These include extending the proposed embedding
method to multivariate and spatially indexed time series, developing for-
mal statistical guarantees for other persistence-based summaries, and
applying robust topological methods in experimental or observational
settings across scientific domains. Overall, this work highlights how ro-
bust statistical techniques can enhance the reliability and applicability of

topological methods in modern data analysis.
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