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abstract

Topological data analysis seeks to uncover and characterize different topo-

logical features including connected components, loops, voids, in data.

These topological features are characterized, in part, by how long they

persist across different scales, and these multiscale features are summa-

rized on a persistence diagram. One important problem is how features

of topological spaces from sampled data can be used to study the underly-

ing data-generating space. Unfortunately, perturbations due to irregular

sampling, noise, outliers, and domain-specific complexity can result in

many additional features that do not reflect true topological structures.

This dissertation presents methodological innovations designed to en-

hance the robustness of topological data analysis and enable improved

statistical inference on topological features. First, a new data embedding

method for constructing point cloud from irregularly-spaced time series

data is introduced and shown to preserve the original state space topology

in the presence of noise and varying levels of irregularity in the spacing of

the time series. Second, a robust statistical inference framework is devel-

oped to assess the statistical properties of topological features, specifically

the maximal persistence (longest-lived) features. This framework pro-

vides a precise quantification of statistically significant topological features

without systematically reducing the strength of topological signals, a short-

coming in many existing robust inference techniques. Next, the embedding



xxi

method is applied to classify irregularly sampled radial velocity time series

for exoplanet detection, where stellar activity and noise complicate the

analysis. Reformulating the task as a classification problem, the embedded

representation achieves strong discriminative performance even under

high missingness and noise. This demonstrates the method’s effectiveness

in recovering dynamical information from incomplete observations, with

practical relevance to astronomy and other domains involving irregular

time series. Finally, we investigate the nanostructure variations in ionic

liquids from molecular dynamics simulations by coupling topological and

statistical techniques. Specifically, by treating a sequence of experimental

ionic liquid data spaces as time series, topological methods are employed

to extract interpretable nanoscale structural information and detect tran-

sition in ionic organizations. This demonstrates how robust and stable

topological methods can offer insights into complex real-world systems.

These methodological innovations demonstrate both substantial improve-

ment in robustness over existing methods when handling irregular data,

enhanced statistical inference for persistent features under perturbations,

and broad applicability across various scientific domains.
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1 introduction

1.1 Background

Topological data analysis (TDA) has emerged as a powerful framework

for extracting qualitative insights from complex datasets. Central to TDA

is persistent homology, a mathematical tool that identifies and tracks

topological features such as connected components, loops, voids, and their

higher-dimensional analogs across multiple scales (Edelsbrunner et al.,

2000; Edelsbrunner and Harer, 2022). By varying a scale parameter, such

as a distance threshold in a point cloud, persistent homology produces

a compact summary, often in the form of a persistence diagram, that

encodes the “shape” of the data. The power of persistent homology lies in

its ability to extract meaningful insights about the shape and structure of

data without imposing restrictive assumptions.

Broadly, TDA serves two complementary goals. One is to use topologi-

cal features to study the data generating space underlying sampled obser-

vations (Carlsson et al., 2008; Perea and Harer, 2015; Xu et al., 2019; Pike

et al., 2020). The other is to extract or provide representation of topological

features for use in downstream data analysis tasks (Turner et al., 2014;

Cang and Wei, 2017; Berry et al., 2020). This dissertation began as an effort

to explore a more robust representation for studying the data-generating

space of sampled observations, specifically, time series data. Time series

data is one of the most prevalent forms of structured data, and there is



2

considerable interest in analyzing its underlying geometric and topologi-

cal properties (Brown and Knudson, 2009; Emrani et al., 2014; Perea and

Harer, 2015; Tralie and Perea, 2018). A common approach in TDA is to

represent time series in a multi-dimensional space using time-delay em-

bedding, which reconstructs the data-generating space (state-space) of

the time series, facilitating topological characterization of the space (Tak-

ens, 2006; Perea and Harer, 2015). This multi-dimensional transformation

using time-delay embedding only works for time series observations that

are uniformly-spaced in time, limiting its applicability.

In Chapter 2, we propose a subsequence method for constructing this

multi-dimensional representation of irregularly-spaced time-series data

that preserves certain properties of the reconstructed state space. We show

that the proposed method preserves the topological features of the original

underlying state space of the time series while reducing spurious shape

features. Chapter 3 then develops a robust statistical inference method:

“Maximal TDA” (MaxTDA) for topological features. We demonstrate that

MaxTDA enhances the statistical significance of topological features by mit-

igating the reduction in persistence, an artifact of existing robust methods.

Chapter 4 presents an application of the proposed subsequence embed-

ding method to the classification of radial velocity time series for exoplanet

detection. This chapter demonstrates that subsequence embeddings pre-

serve essential dynamical structure and outperform imputation-based

approaches, even under substantial noise and missingness. Finally, Chap-
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ter 5 demonstrates an application of the combination of topological and

statistical methods to ionic liquid data from molecular dynamics simu-

lations. In this application, topological features are extracted from the

coordinate representation of ionic liquids. These topological features are

used to construct statistical models to study the nanostructure variation

and detect transition in ionic organizations across experimental conditions.

Together, these contributions demonstrate substantial improvements in

robustness over existing methods for handling irregular data, more reli-

able statistical inference for persistent features under perturbations, and

broad applicability across diverse scientific domains.

The next section provides background on TDA, introduces one of its

most widely used tools, persistent homology, and reviews the foundational

concepts behind it.

1.2 Homology of Simplicial Complexes

Homology is an area of mathematics that looks for holes in a topological

space, and persistent homology looks for holes in data. These holes are for-

malized through concepts from algebraic topology and are represented by

homology groups of varying dimensions (Hatcher et al., 2002; Edelsbrun-

ner and Harer, 2022). Specifically, the zero-dimensional homology group

(H0) contains connected components (clusters), the one-dimensional ho-

mology group (H1) contains loops, the two-dimensional homology group
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(H2) contains voids like the interior of a balloon, and more generally, the

k-dimensional homology group (Hk) represents k-dimensional holes. In

this work, we mainly represent topological spaces with simplicial com-

plexes. A k-simplex C = [v0, · · · , vk] is a k-dimensional polytope of k+ 1

affinely independent points v0, · · · , vk. A simplicial complex C is a finite

set of simplices such that for any simplices C1,C2 ∈ C, C1 ∩ C2 is a face of

both simplices, or the empty set; and a face of any simplex C ∈ C is also

a simplex in C. (A face of a simplex is the convex hull of any non-empty

subset of points that define the simplex.) The homology is computed from

these simplicial complexes built along a sequence of filtration values.

1.3 Persistent Homology on Point Clouds

The underlying topological space is often only indirectly observed through

noisy point cloud data sampled from it. A common approach to construct-

ing simplicial complexes in TDA for point clouds is the Vietoris-Rips (VR)

complex (Vietoris, 1927; Edelsbrunner and Harer, 2022). A VR complex is

constructed over a finite set of points S = {v0, v1, · · · , vn} using a distance

parameter δ. For any subset of k points {vi1 , · · · , vik}, a (k−1)-dimensional

simplex is formed when the pairwise Euclidean distance between all points

is at most δ. A collection of all such simplices forms the VR complex de-

noted as VR(S, δ). The composition of the simplicial complex progresses

hierarchically with the distance parameter δ. This leads to the concept
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of filtration, which defines an inclusion relation between the simplicial

complexes for a set of δ values. More formally, for an ordered sequence of

δ values: 0 < δ1 < δ2 < · · · < δq <∞, the VR complexes admit a nested

structure as

VR(S, 0) ⊂ VR(S, δ1) ⊂ · · · ⊂ VR(S, δq) ⊂ VR(S,∞). (1.1)

The inclusion relation between the VR complexes induces a map between

the k-dimensional homology groups as

Hk(VR(S, 0)) −→ Hk(VR(S, δ1)) −→ · · · −→ Hk(VR(S,∞)). (1.2)

The notion of persistent homology is developed through these homol-

ogy maps by tracking the changes in the features (i.e., homology group

generators) of these nested homology groups. The birth time and death

time of features along this sequence encodes topological changes in the

groups. For a homology group Hk, we denote the birth time and death

time of the j-th feature by bj and dj, respectively. The persistence of the

feature is given by dj −bj, and longer persistence often is considered to be

topological signal while shorter persistence often represents topological

noise (Fasy et al., 2014). If we let kj to be the homology group dimension

of the j-th feature, and J the index set of the features of the homology
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Figure 1.1: VR filtration and persistence diagram. The zero-simplices
(black points, a-b) sampled randomly around a circle. Balls (cyan) of
diameter δ = 0.8 and δ = 1.5 are drawn around the points in (a) and
(b), respectively, resulting in one-simplices (black segments) and two-
simplices (orange triangles). The persistence diagram (c) has H0 (red
points) and H1 (blue triangles) features.

groups, then the set

Dgm(S) = {(bj,dj,kj) : ∀j ∈ J} ∪ ∆, (1.3)

where ∆ represent a set of points where the birth time is equal to the

death time, characterizes the persistence of the features, and is used to

construct a graphical summary referred to as a persistence diagram. Figure

1.1 illustrates the main concepts in this section, where black points (zero-

simplices) in Figure 1.1a and 1.1b denotes the data with cyan balls of

diameter 0.8 and 1.5, respectively. Figure 1.1c shows the corresponding

persistence diagram.

A set of persistence diagrams {Dgm(S)} can be endowed with a distance

measure, such as the bottleneck distance. The bottleneck distance gives
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the minimal L∞ distance between bijections of any two diagrams. Let S1

and S2 be two finite compact subsets of Rd, with Dgm(S1) and Dgm(S2)

as their corresponding VR filtration persistence diagrams. The bottleneck

distance, dB, between the two persistence diagrams is defined as:

dB (Dgm(S1), Dgm(S2)) = inf
γ

sup
µ∈Dgm(S1)

||µ− γ(µ)||∞, (1.4)

where the infimum is taken over all bijections γ : Dgm(S1) −→ Dgm(S2).

Let S1 and S2 be endowed with the Euclidean metric, then their Hausdorff

distance, dH, is given by

dH(S1, S2) = max
{

sup
v1∈S1

dS2(v1), sup
v2∈S2

dS1(v2)

}
, (1.5)

where dS1(v2) = infv1∈S1 ||v1 − v2||. A fundamental result on persistence

diagrams is that they are stable summaries in many settings (i.e., a small

change in a point cloud results in a small change in the corresponding

persistence diagram) (Chazal and Michel, 2021). This stability relation

can be stated as:

dB (Dgm(S1), Dgm(S2)) ⩽ 2dH(S1, S2). (1.6)

Similar results can be obtained for functions, which is discussed in the

next section.
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1.4 Persistent Homology on Functions

Let ϕ be any real-valued function, where ϕ : X −→ R for any compact set

X. We define the lower-level sets of ϕ as {x : ϕ(x) ⩽ λ} and the upper-level

sets of ϕ as {x : ϕ(x) ⩾ λ}. In more specific settings, we let the function ϕ

be defined on the metric space (X, dX). Define the reach(A) as the largest

radius r, such that each point in ∪x∈AB(x, r) has a unique projection unto

X, where B(x, r) is a ball with radius r centered on x. The reach is also

referred to as the “condition number,” and it quantifies the smoothness of

the underlying manifold (Federer, 1959; Niyogi et al., 2008). Denote by

K(X, κ) the class of all manifolds such that for A ∈ K(X, κ), reach(A) ⩾ κ,

where κ is a fixed positive constant. Let the lower boundb(K(X, κ)) and the

upper bound b(K(X, κ)) be positive constants depending on the geometry

of the class K(X, κ) but not on any specific manifold in K(X, κ).

Assumption 1.1. The following assumptions are made for the density function

f and the distribution P: (i) the support X of the distribution P is bounded,

and (ii) f is tame and satisfies the following: 0 < b(K(X, κ)) ⩽ infx∈X f(x) ⩽

supx∈X
f(x) ⩽ b(K(X, κ)) <∞. The tameness of f implies it has a finite number

of critical values, ensuring the topological complexity of its level sets remains

systematically bounded (Edelsbrunner and Harer, 2022).

Functions defined on the vertices of the simplicial complex C provides

another means to characterize the topology of the underlying data gener-

ating space. Let ϕ : X −→ R, and assume ϕ is extended to the simplices of
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C such that ϕ(C) = max0⩽i⩽kϕ(vi) for any simplex C = (v0, · · · , vk) ∈ C.

The sequence of complexes Cδ = {C ∈ C : ϕ(C) ⩽ δ} creates a nested

structure: Cδ1 ⊆ Cδ2 , δ1 < δ2, and defines a lower-level set filtration on

ϕ. An upper-level set filtration can be defined analogously by considering

the case where ϕ(C) ⩾ δ. We denote the resulting persistence diagram

by Dgm(ϕ), such that topological feature (b,d) ∈ Dgm(ϕ) persists in the

space Hk(ϕ
−1(−∞, δ)), for b ⩽ δ < d. Similar to the VR filtration, we can

endow this space of persistence diagrams with the bottleneck distance

as defined in Equation (1.4), and these persistence diagrams can also be

shown to be stable summaries (i.e., small perturbations in the function

space results in small changes in the persistence diagrams) (Cohen-Steiner

et al., 2005; Chazal et al., 2016). This results in the following bound on the

bottleneck distance for two functions ϕ and ψ under the assumption of

tameness (Assumption 1.1):

dB (Dgm(ϕ), Dgm(ψ)) ⩽ ||ϕ−ψ||∞, (1.7)

where ||ϕ−ψ||∞ = supx∈X
|ϕ(x) −ψ(x)|.

Two such functions ϕ that are relevant to this work are the kernel

density function fσ and the DTM function dP,m. The empirical kernel

density function f̂σ(x) with bandwidth σ is defined as:

f̂σ(x) =
1
n

n∑
i=1

Kσ(||x − xi||2), (1.8)
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(a) Circle (b) DTM function (c) KDE function

Figure 1.2: Illustration of the DTM and KDE function. (a) a 1D curve,
(b) and (c) are the DTM function and the KDE function of this curve
respectively.

where Kσ(||x||2) = σ−dK (||x||2/σ), and K is a d-dimensional kernel that is

non-negative and integrates to one. Figure 1.2c shows an example KDE

function on a 1D curve. While this kernel density function captures the

shape and distribution of mass in the space X, the DTM function provides

a robust means to characterize this shape by approximating its distance

function. The empirical DTM function d̂
2
P,m(x) is defined as (Chazal et al.,

2011):

d̂
2
P,m(x) = 1

k

∑
x0∈NK(x)

||x0 − x||2, (1.9)

where 0 < m < 1 is the resolution, and NK(x) is the set of k-nearest

neighbors (k-NNs) to x. The DTM filtration is a robust approximation of

the VR filtration. Figure 1.2b shows an example DTM function on a 1D

curve, and Figure 1.3 typical sublevel sets of the DTM function.

In practice, the estimation of filtration functions relies on the empirical

probability measure Pn, which assigns a probability mass of 1/n to each
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(a) δ = 0.23 (b) δ = 0.35 (c) δ = 0.41 (d) δ = 0.48

Figure 1.3: Sublevel set filtration of the DTM function in Figure 1.2b, shown
at four increasing thresholds.

data point x. As a result, the empirical function ϕn, whether it represents

the empirical KDE or the empirical DTM function, exhibits sensitivity to

noise and sample density variations. This sensitivity directly affects the

persistence of the resulting features.
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2 a subsequence approach to topological data

analysis of irregularly-spaced time series data

The content of this chapter is published in Dakurah and Cisewski-Kehe

(2024).

Abstract

A time-delay embedding (TDE), grounded in the framework of Takens’s

Theorem, provides a mechanism to reconstruct and analyze the state-space

representation of time-series data. Recently, topological data analysis

(TDA) methods have been applied to study this time series representation

mainly through the lens of persistent homology. Current literature on

the fusion of TDE and TDA are adept at analyzing uniformly-spaced time

series observations. This work introduces a novel subsequence embedding

method for irregularly-spaced time-series data. We show that this method

preserves the original state space topology while reducing spurious homo-

logical features. Theoretical stability results and convergence properties

of the proposed method in the presence of noise and varying levels of

irregularity in the spacing of the time series are established. Numerical

studies and an application to real data illustrates the performance of the

proposed method.
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2.1 Introduction

A time series measurement x(t) ∈ R at time t can be considered as the

outcome of a data-generating space of some dynamical system (i.e., math-

ematical models that describes the evolution of variables over time) with

state vector s(t) ∈ RN. Constructing a meaningful approximation of this

underlying data-generating space when only the scalar time series is ob-

served can uncover latent patterns and structures not readily apparent in

the raw time series. Time-delay embeddings (TDEs) are often employed

for this state space reconstruction. The TDE method transforms the time-

series data from the time-domain to an estimate of the state space, which

can reveal properties of the system such as periodicity and other struc-

tures not apparent in the time domain. The principle underlying TDEs is

Takens’s Theorem, which asserts that even if the actual dynamics (i.e., the

system’s behavior over time) are not known, a single time series can be

treated as a one-dimensional projection of the path traced by the system’s

state vector in a multi-dimensional space. An approximation to the actual

dynamics can be constructed from this projection (Takens, 2006). Takens

proved that assuming uniformly-spaced and noise-free measurements

of unlimited length, there exists a diffeomorphism (i.e., a smooth and

invertible function) between the true high-dimensional dynamical system

and its TDE-based reconstruction. This theorem forms the foundation for

much of the discussions on reconstructing the multi-dimensional state of
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a system from a single time series (Ali et al., 2007).

More recently, there is renewed interest in coupling the TDE method

with tools from topological data analysis (TDA) to study the dynamics

of time-series data using various geometric and topological features of

the TDE reconstruction of the underlying state space, such as clusters,

loops, voids, and their higher dimensional analogs (El-Yaagoubi et al.,

2023; Gholizadeh and Zadrozny, 2018; Seversky et al., 2016). TDA is

a computational method for studying the shape of data, which can be

applied to characterize the topological features of these reconstructed

state spaces. The characterization is often carried out using persistent

homology, a tool of TDA, which uses a multi-scale approach to quantify

certain topological features (Edelsbrunner et al., 2000; Edelsbrunner and

Harer, 2022). TDA and TDE have been successfully applied to quantify

periodicity in time-series data (Perea and Harer, 2015), analyze human

speech (Brown and Knudson, 2009), detect motion patterns in video

(Tralie and Perea, 2018), and in wheeze detection (Emrani et al., 2014).

In the applications noted above, the observed time series is uniformly-

spaced. However, time series is often not uniformly-spaced due to mea-

surement lapses (Stark et al., 1997), process errors (Casdagli et al., 1991), or

inherent features of the data generating process (Stark et al., 1997; Lekscha

and Donner, 2018), etc. The standard Takens’s theorem does not handle

irregularly-spaced time series, but several options exist in the literature

to address issues related to irregularly-spaced time series observations to
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make it amenable to TDE. Broadly, these can be classified into imputation

or exclusion methods. Imputation methods involve predicting the missing

observations, and then the analysis is carried out assuming a uniformly-

spaced time series has been observed (Harvey and Pierse, 1984; Casdagli

et al., 1991; Lekscha and Donner, 2018). Exclusion methods initially ignore

the presence of missing values and assume a uniformly-spaced set. The

TDE maps are then constructed and any embedding vector with a missing

value is excluded (Boker et al., 2018; Johnson and Munch, 2022). If the im-

putation model is misspecified, it can produce structures in the TDE that

do not reflect true properties of the data, and the exclusion method can

significantly alter the shape of the TDE space (Huke and Broomhead, 2007;

Boker et al., 2018). Since TDA can provide quantification of qualitative

properties of the reconstructed state space, the drawbacks of the imputa-

tion and exclusion methods may distort topological features constructed

from the TDE spaces.

In this chapter, we propose a subsequence method for constructing a

TDE of irregularly-spaced time-series data that preserves certain properties

of the reconstructed state space. The level of irregularity of the time-

series data is controlled by the regularity score (defined in Section 2.3).

We show that the proposed method preserves the topological features

of the original underlying state space of the time series while reducing

spurious shape features. Theoretically, we prove stability and convergence

results of the proposed subsequence method in the presence of noise and
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for varying levels of irregularity in the observed time series. Further, we

demonstrate the competitiveness of the proposed subsequence method

through simulation studies and an application to real data.

2.1.1 A Note on Terminology

For this work, the term uniformly-spaced time series is used to describe

time series that have equally-spaced time intervals between successive

observations, and is considered the “true” time series for purposes of

evaluating the proposed method. The term irregularly-spaced time series

refers to observations with unequally-spaced time interval between suc-

cessive observations. To characterize how the two forms of time series are

related, it is assumed throughout this work that the irregularly-spaced

time series is a subset of the uniformly-spaced time series. More formally,

let x = [x(t1), · · · , x(tn)]⊤ be a uniformly spaced time series vector, such

that ti+2 − ti+1 = ti+1 − ti, ∀i; an irregularly-spaced times is any subset of

x with observations at one or more time points randomly missing. Hence,

the irregularly-spaced time series always have fewer time measurements

than the corresponding uniformly-spaced time series.

The concept of a TDE is also referred to in the literature as a delayed-

coordinate embedding, a sliding-window embedding, or simply a Takens embed-

ding. For this work, only the term TDE is used. For any irregularly-spaced

time series, it is assumed there is a “true” underlying uniformly-spaced

time series. The use of “TDE” exclusively refers to an embedding con-
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structed from this true underlying uniformly-spaced time series. After

applying the proposed subsequence method, the resulting embedding is

referred as the subsequence embedding (SSE). In instances where an exposi-

tion applies to both the TDE and SSE, the term embedding map is used as a

collective reference to the two concepts.

For a given time interval, it is assumed that missing or unobserved

values occur with a given probability. That is, for a given time point in

a time interval, a measurement is not observed at that point with some

probability. Such probabilistic mechanism governing the observations

of time series values is not uncommon in the literature (e.g., Dunsmuir

and Robinson 1981). This probability can be fixed for all time points or

it can vary for each time point. This characterization is referred to as the

missingness structure of the time series in context.

2.2 Basics of Time-Delay Embeddings

For this work, the discussion on TDEs is restricted to univariate time se-

ries. Assume this univariate time series is generated by a system with a

state vector s(t) on a manifold which is a subset of some N-dimensional

space RN. The state vector s(t) is not directly observable, however some

measurement of it, denoted x(t) = h(s(t)), is observed through the mea-

surement function h(·). The measurement function h(·) can be thought of

as rule that transforms the high-dimensional state vector into the observed
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univariate time series x(t). For instance, in astronomy, s(t) might include

variables such as positions, velocities, and brightnesses of various celestial

bodies, such as exoplanets, stars, or galaxies. However, the measurement

function is specifically designed to extract a single scalar value from this

vector. The specific form of h(·) is influenced by many considerations, for

example, the limitation of observational tools. For a star, the measure-

ment function could be designed to extract a key observable from the state

vector, such as its brightness. Thus the measurement h(s(t)) reflects the

observed brightness of the star at any given time t.

The scalar value x(t) is the observed time series measurement. Define

the function F : RN −→ RM+1 as the embedding map with the form:

F(s(t)) = [x(t), x(t+ τ), · · · , x(t+Mτ)] . (2.1)

We emphasize that F is a function on the state vector s(t) ∈ RN and not the

scalar value h(s(t)). While some authors denote the embedding map as Fh

to highlight the measurement function h, we do not adopt this notation

for clarity. Figure 2.1 illustrates an example of how this function and

the resulting vector are constructed. If the measurement function h(·)

is noise-free, and the embedding dimensionM+ 1 is chosen to be more

than twice the dimension of the attractor (i.e., the N-dimensional region

toward which the system evolves) of the system’s state space, Takens’s

theorem guarantees that the embedding map F(s(t)) has a one-to-one
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Figure 2.1: Illustration of the construction of the sliding window vector
F(s(t)). Top row: An example time series with seven time points, using
embedding parameters M = 1, τ = 1, along with the corresponding
embedding window. The next three timelines demonstrate the sequential
sliding of the embedding window to construct the embedding vectors
F(s(t)). Collectively, these vectors form the reconstructed space.

correspondence between the original state space of the system (from

which the time series is derived) and the reconstructed state space formed

by F(s(t)) (Takens, 2006). This ensures that the dynamics of the system

can be studied in the reconstructed space as if it were being studied in

the original space. Figure 2.2 demonstrates this reconstruction process by

mapping the scalar time series to the TDE matrix F to reconstruct the state

space.
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Figure 2.2: Illustration of the embedding process. Top-left: the state space,
typically not observed. Middle-bottom: the time series obtained via the
measurement function h(·). Top-right: the reconstructed space from the
TDE matrix F, which preserves the topology of the original state space.

The choice of embedding dimension M+ 1 and step size τ is a subject

of considerable research in the literature (e.g., Cao 1997; Kim et al. 1999).

In this work, the embedding dimension is chosen manually. However, the

method of false nearest neighbors is one common method for determin-

ing this dimension, which identifies points in a low-dimensional space

that appear to be near each other but are not actually neighbors when

the data are viewed in a high-dimensional space. By systematically in-

creasing the embedding dimension, and evaluating the percentage of false

nearest neighbors, the dimension can be set where this percentage drops

significantly, indicating a suitable dimension. More details about this and

other procedures for determining M and τ can be found in Cao (1997)

or Kim et al. (1999). A large value of M is often preferred as it enables

the embedding to capture more details inherent in the time series. IfM is
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too large, there may be an insufficient number of points in the embedding

space. Furthermore, if Mτ is too small due to a small τ, relatively fewer

points fall in each embedding window. This results in points repeatedly

appearing in windows, which can lead to redundant information. IfMτ

is too large due to a large value of τ, the reconstructed state space can

be distorted because relevant periodic behavior of the time series may

not be captured (Casdagli et al., 1991). Hence the choice of τ and M is

such that Mτ is not too large or too small, but is application-dependent

and requires empirical testing. For the purposes of this work, we assume

that an appropriate embedding windowMτ can be determined through

a combination of the previously discussed parameter selection methods,

based on empirical testing for each specific application.

2.3 Subsequence Method

The TDE construction in the previous section assumes the observed time

series is uniformly-spaced, but a time series is often irregularly-spaced in

real data. We propose a method to extract uniformly-spaced subsequences

from the observed irregularly-spaced time series and prove its topology-

preserving properties, along with consistency and convergence results.
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2.3.1 Subsequence construction

Let x = (x(t) : t ∈ T) be a time series of length n where T = {t1, · · · , tn} ⊂

N. Further assume that this time series is not uniformly spaced, that is,

ti+1−ti ̸= ti+2−ti+1, for at least one ti ∈ T such that ti < ti+1. In this work,

a subsequence of the set x is defined as any subset that omits elements of x

without changing the order of the remaining elements. This definition does

not guarantee that ti+1 − ti = ti+2 − ti+1, ∀ti ∈ T, which is a condition we

want to achieve with the proposed subsequence construction. Let xp,r ⊆ x

be a subset of the original time series with time indexes Tp,r ⊆ T with

the condition that tp,i+1 − tp,i = r, ∀tp,i ∈ Tp,r. The set xp,r is the p-th

subsequence of regularity r, and it is a uniformly-spaced subsequence. For

any non-uniformly spaced time series, we can build a collection of such

subsequence for various values of r. The goal is to first obtain the longest

subsequence for a small r. As the subsequence length reduces for a given

r, the regularity value r can increase to obtain more uniformly-spaced

subsequences. An algorithm for computing this collection of subsequences

is displayed in Algorithm 1, which is adapted from an algorithm that finds

the longest arithmetic progression in a sequence developed in Erickson

(1999). In the statement of the algorithm, the following notation is used:

(i) the union symbol ∪ denotes the addition of a set (element) to a set

(vector), (ii) the number of elements in a set or a vector A is denoted

by |A|, and (iii) the notation A\B represents subset of elements in set A

obtained by excluding all elements from set B. Algorithm 1 returns all
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Algorithm 1 Uniform subsequence construction
Require: Regularity score r, minimum sequence length m, time points

T = {t1, · · · , tn} (exclude time points from subsequences generated
with different r).

Ensure: r ⩽ tn − t1, m ⩽ n.
Initialize: Tp ← {. . . }, temporary time index, Treg ← {}, uniformly-spaced

subsequences.
1: while number of elements in T is greater than m do
2: for i = 1 : (|T|− 1) do
3: Tsub ← T[i] ▷ Initialize a subsequence.
4: for j = (i+ 1) : |T| do
5: if T[j] − Tsub[j− i] = r then ▷ Check the regularity

condition.
6: Tsub ← Tsub ∪ T[j]; if |Tsub| > |Tp| then Tp ← Tsub
7: else break ▷ Initialize with the next point in the sequence.
8: if |Tp| ⩾ m and Tp is not identical to any other subsequence in Treg

then
9: Treg ← Treg ∪ Tp; T ← T\Tp ▷ Remove the subset from the

sequence.
10: else break ▷ No uniformly-spaced subsequence of the required

length exist.
11: return Treg ▷ Set of all regularly spaced subsequences each of

regularity r.

possible uniformly-spaced time points from the time index set T with

regularity score r. Note that for uniformly-spaced T, it returns the full

sequence. The uniformly-spaced observations can now be obtained by

simply matching these observations to the time points in each subsequence.

Not all the subsequences returned by Algorithm 1 are required in the SSE

(see Remark 2.1). Each time point can be used at most once among all the

subsequences (see Algorithm 1, line 9). Moreover, there is no restriction
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preventing two subsequences from having the same length.

2.3.1.1 Subsequence embedding method

Takens’s theorem guiding the construction of the TDE in Section 2.2 in-

volves a single measurement function h(·), which generates each time

series measurement (Takens, 2006). A generalization considers each coor-

dinate in the embedding maps as a measurement function (see Remark 2.9

in Sauer et al. (1991) and Theorem 2 in Deyle and Sugihara (2011)). Such

generalizations allow for the extension of Takens’s theorem to multiple

measurement functions involving multiple time series. This motivates the

proposed SSE method where each subsequence is viewed as distinct time

series.

To construct the proposed SSE, a single distinct measurement function

is defined on each subsequence. Let hp(·) be the measurement function

associated with the p-th subsequence. Then the p-th embedding mapping

has the form:

Fp(s(tp,i)) = [xp,r(tp,i), xp,r(tp,i + τp), · · · , xp,r(tp,i +Mτp)] , (2.2)

where xp,r(tp,i) = hp(s(tp,i)). The delay step τp is fixed for each subse-

quence map. The map is also constructed under the assumption that the

length of each subsequence np > max(M+ 1,M ∗ τp). This ensures that

there are sufficient observations within each subsequence to construct
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a point in the embedding space. The embedding matrix from the p-th

subsequence has the form:

Fp =

[
F(s(tp,1))

⊤ F(s(tp,2))
⊤ · · · F(s(tp,np−M))⊤

]⊤
. (2.3)

Observe that each Fp is a matrix of dimension (np −Mτp)× (M+ 1). The

row dimension of np −Mτp follows from the fact that, for a subsequence

of length np, the number of points in the embedding space of dimension

M + 1 is np −Mτp for step-size τp. The full embedding matrix for the

irregularly-spaced time series, denoted by F is then given by:

F =


F1

...

FP


N×(M+1)

. (2.4)

Here, P is the total number of uniformly-spaced subsequences, and since

each p-th subsequence embedding matrix Fp has np −Mτp points in

the (M+ 1)-dimensional space, the row dimension of F is given by N =∑P
p=1(np −Mτp). Note that when the original time series is uniformly-

spaced, the SSE method is identical to the TDE method. To see this, observe

that the longest subsequence in the uniformly-spaced time series is the

original sequence.

To illustrate the SSE framework, Figure 2.3a shows measurements at

1000 uniformly-spaced time points (orange points and blue diamonds
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combined) of which about 20% are designated as missing values (blue di-

amonds), which creates an irregularly-spaced time series (orange points).

Both the uniformly-spaced and irregularly-space time series were embed-

ded into R4 using the TDE and SSE methods, respectively. Figure 2.3b-top

gives the TDE of the uniformly-spaced 1000 measurements and contains

two identical elliptical shapes. Figure 2.3b-bottom shows the proposed

SSE of the irregularly-spaced time series and also contains two similar el-

liptical shapes, however, there is visible non-uniform spacing of the points

compared to the TDE space. This is primarily due to the SSE using a subset

of the original time series (i.e., it constructs a uniform subsample from the

irregularly-spaced time series based on Algorithm 1); the SSE space may

be considered as a sparse representation of the TDE space. The persistence

diagram for the TDE is shown in Figure 2.3c. Since Figure 2.3b-top has

two identical elliptical shapes, the H1 features have overlapping birth and

death time, hence the appearance of a single blue triangle. Figure 2.3d

shows the persistence diagram for the SSE, and correctly identifies the

two loops but the birth and death time are non-overlapping due to the

non-identical spacing of the points in the two elliptical shapes. In general,

the SSE converges to the TDE in terms of the topological similarity of the

reconstructed spaces and in the closeness of the persistence diagrams as

the time sampling becomes more uniform. A more formal theoretical justi-

fication of this assertion, and other technical considerations are discussed

in the next section.
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(a) Time series measurements at 1000 time points (b) Reconstructed spaces

(c) TDE persistence diagram (d) SSE persistence diagram

Figure 2.3: SSE method illustration. (a) One thousand time series measure-
ments (blue and orange points). About 20% were designated as missing
(hollow blue diamonds) to obtain irregularly-spaced observations (or-
ange points). The TDE of the full time series ((b)-top) and the SSE of
the irregularly-spaced time series ((b)-bottom); both time series were
embedded in R4 and their first three principal components are plotted.
The persistence diagram of the TDE (c) and SSE (d).

Remark 2.1. The choice of the number of subsequences P and the number of

subsequences of different regularity scores r depend on the context and goals of the

analysis. To reconstruct an (M+ 1)-dimensional state space, subsequences must

satisfynp > max(M+1,M∗τp). A set of subsequences with the same regularity

score can lead to better reconstruction accuracy as it captures the dominant

patterns of the underlying data-generating space of the time series more coherently.
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Combining subsequences with different regularity scores can improve topological

approximations as it captures a wider range of structures of the underlying data-

generating space, but it can introduce points in the embedding that may be

geometric outliers leading to less accurate reconstructions; kernel smoothing may

help to mitigate these issues. Thus, there is a trade-off between a better topology

approximation and improved reconstruction accuracy. If subsequences with the

same regularity score capture most of the time series, combining sequences with

different regularity scores may offer limited benefits. While the simulations and

real data analysis in this work utilize subsequences with the same regularity score,

the methodology and theoretical results apply to subsequences with the same or

different regularity scores.

2.4 Stability and Convergence Results

The reconstructed state space using the proposed SSE approximates the

state space based on a uniformly-sampled time series (i.e., the TDE space).

Persistence diagrams are used to quantify the stability of the estimate by

measuring its closeness to the TDE space. In what follows, these stability

results are established for the proposed SSE method and a denoising

procedure to reduce the noise present in the observed time series.
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2.4.1 Stability of Denoising Procedure

Time-series data are typically observed with noise. The level of noise in

the reconstructed space influences the presence and the persistence of

the topological features. A Fourier denoising procedure is proposed to

filter out noise in the observed time series. Furthermore, stability results

demonstrating how this denoising procedure preserves the underlying

topological features within the persistence homology framework are es-

tablished. The proposed denoising procedure, coupled with the stability

guarantee, is crucial to the proposed SSE pipeline as noisy data could make

it practically impossible to determine the optimal embedding windowMτ.

Hence, a process for reducing this noise is essential, and it is important

to guarantee that the denoising procedure does not alter the topological

characteristics of the underlying manifold from which the time series were

observed.

Let x =

[
x(t1), x(t2), · · · , x(tn)

]⊤
be an observed time series vector.

The first step in the denoising procedure is to transform this observed

signal to the frequency domain. The discrete Fourier transform (DFT) of

x(tk), denoted as x̃(tk) is given by:

x̃(tk) =

n∑
r=1

x(tr)e
−j2πwrfk =

n∑
r=1

x(tr)ϕkr, 1 ⩽ k ⩽ n, (2.5)

where j is the imaginary unit (j2 = −1), ϕkr = e
−j2πwrfk , 0 ⩽ wr ⩽ 1 are

sample points, 0 ⩽ fk ⩽ n are frequencies, and x̃(tk) is the k-th sample of
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the power spectrum at fk.

To filter out noise, the power spectral density x̃(tk) is computed for each

tk. Then a threshold is chosen, and any x̃(tk) with power spectral density

less than the threshold is set to zero. In selecting the threshold, the goal is

to choose a value that does not smooth out the peaks in the true signal. The

derivation that follows assumes the selected threshold preserves the peaks

in the true signal. To simplify notations, the thresholded observations

are also denoted as x̃(tk). The thresholded x̃(tk) are transformed back to

the time domain to get the noise-reduced signal, which typically involves

multiplying x̃(tk) by the inverse of a Fourier transform matrix.

Let x̃ be the DFT of the time series vector with corresponding Fourier

basisϕk, such that for k = 1, . . . ,n:

x̃ =

[
x̃(t1), x̃(t2), · · · , x̃(tn)

]⊤
,ϕk =

[
ϕk1, ϕk2, · · · , ϕkn

]⊤
.

(2.6)

The forward transform in Equation (2.5) can be vectorized: x̃ =Φx, where

Φ =

[
ϕ1 ϕ2 · · · ϕn

]⊤
. The backward transform can then be deter-

mined by inverting the matrix Φ. However, due to the non-uniformity

in the spacing of the time series x, the columns ofΦ are not orthogonal,

and it is not directly invertible, so the pseudo-inverse is used instead. The

backward transform then has the form: x = 1
n
(ΦHΦ)†ΦHx̃, where AH

and A† denote the complex conjugate transpose and the Moore-Penrose

inverse of the matrix A, respectively. The matrix (ΦHΦ)†ΦH projects the
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frequency vector x̃ onto the column space of Φ. Let ΠΦ(x) denote this

projection operation. The modulus of off-diagonal elements ofΦHΦ is

bounded as:
∣∣∑n

k=1 e
j2π(wl1−wl2)fk

∣∣ ⩽ ∑n
k=1

∣∣ej2π(wl1−wl2)fk
∣∣ = n, where

the equality follows from the definition of the complex modulus |z| =
√
zz̄,

with z̄ as the conjugate of the complex value z. The matrixΦΦH has the

structure

(ΦΦH)l1,l2 =

n∑
k=1

e(−1)δj2π(fl2−fl1)wk , δ = 1(l1 ⩽ l2), (2.7)

for indicator function 1(l1 ⩽ l2) , and (ΦΦ)Hl1,l2
denotes the value in the

l1-th row and l2-th column of ΦΦH. Then ΦΦH is Toeplitz when the

frequency components are uniformly-spaced such that fk = k, andΦΦH

is fully specified by its first row elements (HuoLiu and YuanTang, 1998).

Using these results, we establish a fixed sample size, non-asymptotic

bound in the following proposition, which asserts that the DFT preserves

topological features and is stable with respect to the bottleneck distance.

In particular, the bottleneck distance between the persistence diagrams

of the embeddings of the noise-free and smoothed (i.e., noise-reduced)

time series is bounded above by the embeddings of the observed noisy

and noise-free time series.

Proposition 2.1. Given x∗ ∈ Rn as a possibly irregularly-spaced scalar time

series with additive noise of the form x∗ = x + ε, where x is a noise-free scalar
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time series, and ε is a zero-mean noise term, then let x′ be the time series vector

after applying the proposed Fourier denoising to x∗, and F, F∗, and F′ be the

embedding matrices associated with x, x∗, and x′, respectively. Also, let Dgm(F)

and Dgm(F′) denote the persistence diagrams associated with the Vietoris-Rips

complex constructed from F and F′, respectively. Then the bottleneck distance

between these two persistence diagrams is bounded as

dB(Dgm(F), Dgm(F′)) ⩽ 2(2n− 1)
c

(
sup
i,p

||F∗(s(tp,i)) − F(s(tp,i))||2

)
,

(2.8)

where 0 < c ⩽ 1, 1 ⩽ i ⩽ np −Mτp, 1 ⩽ p ⩽ P.

Proof. It suffices to bound the Hausdorff distance between F and F′, then

using the stability theory in persistence homology (see Equation (1.4)),

the bound on their persistence diagrams with respect to the Bottleneck

distance can be established. The proof proceeds as follows.

There exists a subset x∗
i ⊂ x∗ that exactly equals F∗(s(tp,i)) (the i-th

row of the p-th subsequence of the embedding matrix F∗). This fact stems

from the construction of F∗, whose rows are uniformly-spaced samples of

x∗. The same guarantee holds for the pairs (F, x), and (F′, x′). The distance

between the projection ΠΦ(x∗
i ) and F(s(tp,i)) is given by

∥ΠΦ(x∗
i ) − F(s(tp,i))∥2 = ∥ΠΦ (x∗

i − F(s(tp,i)))∥2, (2.9)
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where ∥·∥2 denotes the l2-norm. Equation (2.9) is under the assumption

that the choice of frequency threshold does not smooth out the peaks

in the true signal x. Observe that each F′(s(tp,i)) is isometric to ΠΦ(x∗
i ),

where x∗
i is a subset of lengthM+ 1 of the original noisy scalar time series.

Then the Gromov-Hausdorff distance between F′ and F can be expressed

as

dGH (F′, F) = dGH

(
Π̂Φ(x∗), F

)
, (2.10)

where Π̂Φ(x∗) denotes embedding of the vector ΠΦ(x∗). Using the same

isometric property, the Hausdorff distance between F′ and F can be ex-

pressed in terms of Equation (2.9). This follows from the fact that

∥ΠΦ (x∗
i − F(s(tp,i)))∥2 = ∥ΠΦ (F∗(s(tp,i)) − F(s(tp,i)))∥2

⩽ ∥F∗(s(tp,i)) − F(s(tp,i))∥2∥(ΦHΦ)†ΦH∥2.

(2.11)

The matrixΦHΦ has the form:

ΦHΦ =



n
∑n

k=1 e
j2π(w2−w1)fk · · ·

∑n
k=1 e

j2π(wn−w1)fk

∑n
k=1 e

−j2π(w2−w1)fk n · · ·
∑n

k=1 e
j2π(wn−w2)fk

... ... · · · ...

∑n
k=1 e

−j2π(wn−w1)fk
∑n

k=1 e
−j2π(wn−w2)fk · · · n


.

(2.12)
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The modulus of off-diagonal elements ofΦHΦ is bounded as

∣∣∣∣∣
n∑

k=1

ej2π(wl1−wl2)fk

∣∣∣∣∣ ⩽
n∑

k=1

∣∣ej2π(wl1−wl2)fk
∣∣ = n. (2.13)

Observe that ∥(ΦHΦ)†ΦH∥2 ⩽ ∥(ΦHΦ)†∥2∥ΦH∥2. First we bound ∥ΦH∥2,

by directly using the definition:

∥ΦH∥2 =

√
λmax(ΦΦ

H), (2.14)

where λmax(ΦΦ
H) is the maximum eigenvalue of ΦΦH. Since ΦΦH

is Toeplitz, a bound on the maximum eigenvalue can be established as

follows (Hertz, 1992). Let ψ = [ψ1,ψ2, · · · ,ψn]
⊤ be a vector such that

ψ1 = 1 and

ψk = 2 ∗ cos
(

π

⌊(n− 1)/(k− 1)⌋+ 2

)
, k = 2, · · · ,n. (2.15)

Also, let ζ =
[
|(ΦΦH)1,1|, |(ΦΦH)1,2|, · · · , |(ΦΦH)1,n|

]⊤, that is, the mod-

ulus of the terms in first row of ΦΦH. Let λk be the k-th eigenvalue of

ΦΦH. Then it follows that (Hertz, 1992):

max
1⩽k⩽n

(λk) ⩽ ζ
Tψ. (2.16)

Further observe that max1⩽k⩽n(ψk) = 2, hence, together with the bound
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on the values of ζ from Equation (2.13) it follows that

ζTψ = n+

n∑
k=2

|(ΦΦH)1,k|ψk ⩽

(
n+ n

n∑
k=2

2
)

= 2n2 − n. (2.17)

Hence the norm ∥ΦH∥2 ⩽ 2n2 − n. It now remains to bound the quantity

∥(ΦHΦ)†∥2. By computing the singular value decomposition of ∥(ΦHΦ)†∥2,

it follows directly that

∥(ΦHΦ)†∥2 ⩽
1

σ2
min(Φ)

, (2.18)

where σ2
min(Φ) > 0 is the smallest non-zero singular value ofΦ. Using

the fact that
n∑

k=1

λk(Φ
HΦ) = Tr(ΦHΦ) = n2, (2.19)

where Tr(ΦHΦ) is the matrix trace, it follows that the smallest non-zero

eigenvalue is bounded as 0 < λmin(Φ
HΦ) ⩽ nwhich implies thatσ2

min(Φ
HΦ) ⩽

n. For any such that σ2
min(Φ

HΦ), we can always find a 0 < c ⩽ 1 such that

σ2
min(Φ

HΦ) > cn. Hence the bound in Equation (2.18) can be extended

to

∥(ΦHΦ)†∥2 ⩽
1

σ2
min(Φ)

⩽
1
cn

. (2.20)

Now using the bound in Equations (2.17) and (2.20), the bound in Equa-
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tion (2.11) has the form

∥ΠΦ (x∗
i − F(s(tp,i)))∥2 ⩽

2n− 1
c
∥F∗(s(tp,i)) − F(s(tp,i))∥2 (2.21)

The bound on the Hausdorff distance between F′ and F is then expressed

as

dH(Π̂Φ(x∗), F) ⩽ sup
i,p
∥ΠΦ (x∗

i − F(s(tp,i)))∥2

⩽
2n− 1
c

sup
i,p
∥F∗(s(tp,i)) − F(s(tp,i))∥2,

(2.22)

where 1 ⩽ i ⩽ np−Mτp, 1 ⩽ p ⩽ P. From the equality in Equation (2.10),

it holds that

dB(Dgm(F), Dgm(F′)) ⩽ 2dGH (F, F′) = 2dGH

(
Π̂Φ(x∗), F

)
. (2.23)

The Gromov-Hausdorff distance is further bounded above by the Haus-

dorff distance. From Equations (2.22), the bound on the bottleneck dis-

tance between Dgm(F) and Dgm(F′) is established as

dB(Dgm(F), Dgm(F′)) ⩽
4n− 2
c

(
sup
i,p

||F∗(s(tp,i)) − F(s(tp,i))||2

)
,

(2.24)

where 1 ⩽ i ⩽ np −Mτp, 1 ⩽ p ⩽ P. If the observed time series is

‘noise-free’ such that x∗ = x, then sup
i,p

||F(s(tp,i)) − F
∗(s(tp,i))||2 = 0,∀i,p,

and dB(Dgm(F), Dgm(F′)) = 0.
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Remark 2.2. When the samples are uniformly-spaced in both the time and fre-

quency domain, the matrixΦ is Hermitian with orthogonal columns, hence the

factor (2n− 1)/c is not required for the bound to hold. The constant c depends on

the ℓ2-norm ofΦHΦ, and the factor (2n− 1)/c makes the bound conservative.

However, if the denoising is done well, the bottleneck distance stays significantly

below this bound. Numerical experiments in Section 2.5.1 suggest this is the case

for the settings considered.

A point to emphasize is that the dependence of the bound on sample sizen arises

mainly from irregular spacing in the time series. When samples are not uniformly

spaced, complexities introduced by this irregularity lead to a bound that scales

with n. This proportionality is not indicative of a flaw in the denoising method

but rather a reflection of the additional challenges posed by irregularly-spaced time

sampling. The uniform bound in Equation (2.8) is not an asymptotic bound, so

convergence with increasing sample is not expected in this context. Theorem 2.5

discusses some convergence results in the presence of irregular sampling.

2.4.2 Stability of the Subsequence Embedding Method

The objective of this section is to show that the SSE method provides

a stable approximation, in the topological sense, to the TDE (based on

uniformly-spaced time series data). Recall that the SSE method is designed

for cases where data are irregularly spaced, but the SSE reduces to the

standard TDE for uniformly-spaced data. Hence, we present results in

this section that show that the SSE construction remains close to the TDE
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construction, and that small perturbation in the SSE space results in small

perturbations in its topology. To simplify the notation, the embedding

matrices are represented as sets where the elements of the set are the

row vectors of the corresponding TDE or SSE. Also, for an embedding

from a single uniformly-spaced time series, the step-size is assumed to

be τ. When constructing from a set of P subsequences, a step-size of τp is

assumed for the p-th subsequence, where 1 ⩽ p ⩽ P.

Because the SSE can have fewer elements than the TDE, the following

lemma addresses how to expand the SSE without affecting its topology

by repeating already existing points in the SSE, so that distances can be

computed between the TDE and the expanded SSE.

Lemma 2.3 (Topology-preserving transform). Let F1 be an embedding matrix

from a uniformly-spaced time sequence of length n with the form:

F1 =
{
F1(s(t1)), F1(s(t2)), · · · , F1(s(tn−Mτ))

}
⊂ RM+1. (2.25)

Also, let F2 be an embedding matrix from a set of P subsequences with the form:

F2 =
{
F2(s(t1,1)), · · · , F2(s(t1,n1−Mτ1)), · · · , F2(s(tP,nP−MτP

))
}
⊂ RM+1,

(2.26)

where
∑P

p=1(np −Mτp) ⩽ n−Mτ. Consider the set extension F̂2 =
{

F2, F2
k

}
,

where F2
k is a subset of k elements from F2. Then the persistence diagrams as-
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sociated with F2 and F̂2 are identical, that is, Dgm(F2) ≡ Dgm(F̂2), and the

three embedded spaces are related through the bottleneck distance as follows:

dB(Dgm(F1), Dgm(F2)) = dB(Dgm(F1), Dgm(F̂2)).

Proof. By construction, F2 ⊂ F̂2, thus for any F2(s(tp,i1)) ∈ F2, ∃F̂2(s(tp,i2)) ∈

F̂2 such that F2(s(tp,i1)) = F̂2(s(tp,i2)). Further observe that |F2|u = |F̂2|u,

where |.|u is a measure of the cardinality of unique observations. Hence

it follows that Dgm(F2) ≡ Dgm(F̂2), and the conclusion is a direct conse-

quence of this equivalence.

Lemma 2.3 asserts that duplicating points from an embedding matrix

does not change the SSE’s persistence diagram. This is due to the fact

that the duplicated points do not introduce new data points locations

in the embedding. This is used to establish a bound on the SSE as an

approximation to the TDE in the following proposition. In Lemma 2.3,

when k = (n −Mτ) −
∑P

p=1(np −Mτp), the row dimension of F̂2 is the

same as that of F1. In such instances, when the interest is in a row-wise

comparison of F̂2 and F1 the subsequence indexing in the time variable

for any F̂2(s(tp,i)) ∈ F̂2 is ignored for notational convenience, and a row is

simply written as F̂2(s(ti)), where 1 ⩽ i ⩽ n−Mτ.

Proposition 2.2. Let x1 be a uniformly-spaced time series vector of length n with

TDE matrix F1. Let x2 ⊂ x1 be a time series vector where some of the elements are
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missing or unobserved. Denote the SSE matrix constructed from x2 as F2. Define

the extension F̂2 =
{

F2, F2
k

}
, where F2

k is a subset of k = (n−Mτ)−
∑P

p=1(np−

Mτp) elements from F2. Then the bottleneck distance between F1 and F2 is

bounded as: dB(Dgm(F1), Dgm(F2)) ⩽ 2 sup
1⩽i⩽n−Mτ

∥F1(s(ti)) − F̂2(s(ti))∥2.

The choice of the k subsets of embedding vectors F2
k in Proposition

2.2 is arbitrary as any subset satisfies the bound. However, since they are

chosen to match the subset {F′(stl) :
∑P

p=1(np −Mτp) + 1 ⩽ l ⩽ n−Mτ}

of F1, the bound can be improved. The minimum bound can be attained

by choosing a subset in F2 that has the smallest Euclidean distance to the

subset {F′(stl) :
∑P

p=1(np −Mτp) + 1 ⩽ l ⩽ n−Mτ}. This is summarized

as a corollary below.

Corollary 2.4. Let x1 be a uniformly spaced time series vector of length n with

TDE matrix F1. Let x2 ⊂ x1 be a time series vector where some of the elements

are unobserved, with F2 as its SSE matrix. Define the extension F̂2 =
{

F2, F2
k

}
,

where F2
k is a random subset of k = (n −Mτ) −

∑P
p=1(np −Mτp) elements

from F2. For some F1 ∈ F1, define the set F2
k,min as follows:

F2
k,min =

{
F2

min ∈ F2 : ∥F2
min − F

1∥2 ⩽ ∥F2 − F1∥2,∀F2 ∈ F2, s.t. F2
min ̸= F2} .

(2.27)

That is, F2
k,min is a subset of k embedding vectors in F2 with minimum distance to
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some points in F1. Let F̂2
min =

{
F2, F2

k,min
}

, then it follows that

sup
1⩽i⩽n

∥F1(s(ti)) − F̂2
min(s(ti))∥2 ⩽ sup

1⩽i⩽n

∥F1(s(ti)) − F̂2(s(ti))∥2, (2.28)

where F1(s(ti)) ∈ F1, F̂2(s(ti)) ∈ F̂2, and F̂2
min(s(ti)) ∈ F̂2

min.

An immediate consequence of Proposition 2.2 and Corollary 2.4 is

that the SSE matrix approximates the TDE. In particular, for a time series

x = {x(t) : t ∈ T}, and T = {t1, · · · , tn} ⊂ N, the sequence of embedding

matrices for each rwhere 1 ⩽ r ⩽ tn − t1 is finite. Hence for a fixed n, the

limiting persistence diagram as r −→ 1 is close to the TDE’s persistence dia-

gram. If r = 1, the SSE is exactly the same as the TDE, and the persistence

diagrams would be identical. This reinforces the fact that the proposed

reconstruction preserves the topological structures more accurately as the

level of irregularity in the observed time series decreases. A more formal

treatment of these observations is presented next.

2.4.3 Topology Recovery and Convergence Results

This section presents results on the quality of the topological recovery

for varying proportions of missingness and sample sizes. We assume the

number of missing values increases at a slower rate than the sample size

of the time series; specifically, a rate of o(logm), for sample sizem. This

assumption and others are formalized as follows.
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Let x1, x2, · · · , be irregularly-spaced time series vectors where |xi| < |xj|,

i < j. Denote by Fm, the SSE associated with x ∈ {x1, x2, · · · , }, i.e., Fm =

{F(s(t1)), F(s(t2)), · · · , F(s(tm))}. Note the correspondence between the

subscriptm and the number of points in Fm. Fm depends on which time

series is selected; however, indexing over this selection is not needed for

the following results. Recall that Fm is a compact subset of (RM+1, ∥·∥2).

Let the space (RM+1, ∥·∥2) be endowed with the unknown probability

measure ϑ such that the F(s(tk))’s are randomly sampled according to

ϑ. Let ϑ be supported on the set Fϑ, which can be considered the true

underlying state space to be estimated, and let φ be the associated density

function. Consider the following set of assumptions.

A1. The sample size increases such that xi ⊂ xj whenever i < j.

A2. Let εm(r) be a function of m and the regularity score r such that

εm(1) −→ 0 asm −→∞.

A3. For any point Fϑ ∈ Fϑ, ϑ(B(Fϑ, δ)) ⩾ min(κδM+1, 1), where B(Fϑ, δ)

is a closed ball of radius δ > 0 around Fϑ, with constant κ > 0.

A4. It is possible to create joint distributions based on the marginals of

Fm that satisfy

sup
Fm

∣∣∣∣φ (F(s(t1)), · · · , F(s(tm))) −φ (F(s(t1)))× · · · ×φ (F(s(tm)))

φ (F(s(t1)))× · · · ×φ (F(s(tm)))

∣∣∣∣ ⩽ ηm,

(2.29)

where ηm is such that
∑∞

m=1
ηm

mβ log(m)
<∞ for any β > 1.
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Assumption A4 is to address the possible lack of independence of the

vectors in Fm. Under this assumption, the dependence can be controlled

and the vectors in Fm are regarded as the so-called ηm-almost independent

samples, which allows for Fm to converge in Hausdorff distance to Fϑ

(Aaron et al., 2017; Picado and Oliveira, 2020). This assumption, where

almost-independence can be achieved for a time series in its embedding

space, can be satisfied for a suitable embedding window (M + 1)τ as

illustrated by the following empirical example. Consider the function

h(t) = 4 cos(t)3 × sin(t)3. We simulate a time series from this function

(see Figure 2.3a for an example of the simulated time series), construct

the embedding with M = 1 and τ = 3 to obtain the point cloud Fm. To

check Assumption A4, we approximate ηm, denoted by η∗m, for increasing

m by evaluating the left side of Equation (2.29) via the k-nearest neighbor

density estimates, where k = 10. For each point F(s(ti)), we generate

N = 1000 noise-perturbed replicates, were the noise are drawn from

a normal distribution with mean 0 and standard deviation 0.01. The

marginal density is estimated as:

φ (F(s(ti))) =
k/(N × volM+1)

rk [F(s(ti))]M+1 , (2.30)

where volM+1 is the volume of a unit M-sphere, and rk [F(s(ti))] is the

distance to the k-th nearest neighbor. Similarly, the joint density is also
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estimated as follows:

φ (F(s(t1)), · · · , F(s(tm))) =
k/
(
N × volm(M+1)

)
rk [φ (F(s(t1)), · · · , F(s(tm)))]

m(M+1) .

(2.31)

Checking that η∗m/ log(m) converges to zero for large m is sufficient to

validate Assumption A4. Figure 2.4 shows the embedded space and the

(a) A sample embedding (b) The convergence of η∗m/ log(m)

Figure 2.4: Illustration of Assumption A4. (a) An example embedding
constructed from the time series h(t) = 4 cos(t)3 × sin(t)3 using 100 time
points; see Figure 2.3a. (b) The convergence results of η∗m/ log(m) for
increasingm; see Equation (2.29), where η∗m denotes the lower bound of
ηm.

convergence curve. We observe that η∗m/ log(m) converges to zero with

m, which guarantees that
∑∞

m=1
η∗
m

mβ log(m)
<∞.

The SSE matrix Fm can be regarded as an estimator of Fϑ and con-

vergence results can be established in the context of assumptions A1-A4.

These results are analogous to convergence results established on support

estimation of d-dimensional sets (Cuevas and Rodríguez-Casal, 2004), its

generalization to metric spaces, and on the space of persistence diagrams

(Mileyko et al., 2011; Chazal et al., 2014). The following result gives the
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rate of convergence of the SSE, Fm, in estimating Fϑ.

Theorem 2.5. Let x1, x2, · · · , be a sequence of irregularly-spaced time series vec-

tors satisfying assumption A1, and Fm = {F(s(t1)), F(s(t2)), · · · , F(s(tm))} ⊂

RM+1 be the SSE associated with some x ∈ {x1, x2, · · · , }, satisfying assumption

A2. If the probability measure ϑ satisfies assumption A3 and A4, then with

probability one,

lim
m−→∞ sup (εm(r))

− 1
M+1 dH(Fm, Fϑ) ⩽ K, (2.32)

where K is a constant depending on κ and the embedding dimensionM+ 1.

Proof. By construction of the subsequence and assumption A2, the Haus-

dorff distance between Fm and Fϑ has the form

dH(Fm, Fϑ) = sup
Fϑ∈Fϑ

min
1⩽i⩽m

∥F(s(ti)) − Fϑ∥2. (2.33)

Let F0 ⊂ Fϑ be a set of ball centers such that

Fϑ ⊂
⋃

F0∈F0

B(F0, δ), (2.34)

that is, the minimal covering of Fϑ consisting of balls of radius δ around
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F0 ∈ F0. For any Fϑ ∈ Fϑ and F0 ∈ F0, the following inequality holds:

min
1⩽i⩽m

∥F(s(ti)) − Fϑ∥2 ⩽ ∥F(s(tj)) − Fϑ∥2

= ∥F(s(tj)) − F0 + F0 − Fϑ∥2

⩽ ∥F(s(tj)) − F0∥2 + ∥F0 − Fϑ∥2, j = 1, · · · ,m.

(2.35)

Observe that ∥F0 − Fϑ∥2 is bounded by the radius δ, hence using Equation

(2.34), it follows that

min
1⩽i⩽m

∥F(s(ti)) − Fϑ∥2 ⩽ δ+ max
F0∈F0

min
1⩽i⩽m

∥F(s(ti)) − F0∥2 ⩽ ε, (2.36)

for some ϵ > 0. Further, taking the supremum over all Fϑ, the relation still

holds:

sup
Fϑ∈Fϑ

min
1⩽i⩽m

∥F(s(ti)) − Fϑ∥2 ⩽ δ+ max
F0∈F0

min
1⩽i⩽m

∥F(s(ti)) − F0∥2 ⩽ ε, (2.37)

Then the probability that supFϑ∈Fϑ
min1⩽i⩽m∥F(s(ti)) − Fϑ∥2 exceeds ε is

bounded as

Pr
(

sup
Fϑ∈Fϑ

min
1⩽i⩽m

∥F(s(ti)) − Fϑ∥2 > ε

)
⩽ Pr

(
δ+ max

F0∈F0
min

1⩽i⩽m
∥F(s(ti)) − F0∥2 > ε

)
= Pr

(
max
F0∈F0

min
1⩽i⩽m

∥F(s(ti)) − F0∥2 > ε− δ

)
.

(2.38)
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From Equation (2.33), supFϑ∈Fϑ
min1⩽i⩽m∥F(s(ti)) − Fϑ∥2 = dH(Fm, Fϑ),

hence a bound on the probability of dH(Fm, Fϑ) exceeding ε can be obtained

as

Pr (dH(Fm, Fϑ) > ε) ⩽ Pr
(

max
F0∈F0

min
1⩽i⩽m

∥F(s(ti)) − F0∥2 > ε− δ

)
. (2.39)

Observe that Fϑ endowed with the Hausdorff metric is complete and

separable (Attouch et al., 1991). Then for ε small enough, the following

bound holds (Cuevas and Rodríguez-Casal, 2004):

Pr
(

max
F0∈F0

min
1⩽i⩽m

∥F(s(ti)) − F0∥2 > ε− δ

)
⩽ C

(
1 − κω(ε− δ)M+1)m .

(2.40)

The constant C is the number of points in the covering of Fϑ, i.e., |F0|, and

ω is the Lebesgue measure of the unit ball in RM+1. Note that since 0 ⩽

κω(ε− δ)M+1 ⩽ 1, it follows that
(
1 − κω(ε− δ)M+1)m ⩽ e−mκω(ε−δ)M+1 .

This allows for Equations (2.39) and (2.40) to be rewritten as

Pr (dH(Fm, Fϑ) > ε) ⩽ Pr
(

max
F0∈F0

min
1⩽i⩽m

∥F(s(ti)) − F0∥2 > ε− δ

)
⩽ Ce−mκω(ε−δ)M+1 .

(2.41)

Choose some K >
( 2
κω

) 1
M+1 and let εm(r) =

(
r− m−l

m

)
, where l is the

number of missing observations in the initial time series andm≫ l, then
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form large enough, it follows that

Pr
(
(εm(r))

− 1
M+1 dH(Fm, Fϑ) > K

)
⩽ Ce

−mκω

(
(εm(r) 2

κω )
1

M+1 −δ

)M+1

.

(2.42)

The above bound can be obtained by simply substituting
(

2εm(r)
κω

) 1
M+1 for

ε in Equation (2.41). Now consider the sum

∑
m

e
−mκω

(
(εm(r) 2

κω )
1

M+1 −δ

)M+1

, (2.43)

and observe that it is convergent if εm(r) ⩾
(
δ
K

)M+1. This condition can

always be satisfied given the restriction K >
( 2
κω

) 1
M+1 and for an appro-

priate choice of κ and δ. Then by the Borel-Cantelli lemma (Émile Borel,

1909; Cantelli, 1917; Chung and Erdös, 1952), since

∑
m

Pr
(
(εm(r))

− 1
M+1 dH(Fm, Fϑ) > K

)
<∞, (2.44)

it follows that

lim
m−→∞ sup (εm(r))

− 1
M+1 dH(Fm, Fϑ) ⩽ K. (2.45)

From the stability relation in Equation (1.6), the Hausdorff metric can

be replaced with the Gromov-Hausdorff metric and the results still holds.
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This also gives a similar convergence results on the space of persistence

diagrams with respect to the bottleneck distance and is summarized as:

Corollary 2.6. Let x1, x2, · · · , be a sequence of irregularly-spaced time series vec-

tors satisfying assumptionA1, and let Fm = {F(s(t1)), F(s(t2)), · · · , F(s(tm))} ⊂

RM+1 be the SSE associated with some x ∈ {x1, x2, · · · , }, satisfying assumption

A2. If the probability measure ϑ satisfies assumption A3 and A4, then with

probability one,

lim
m−→∞ sup (εm(r))

− 1
M+1 dB(Dgm(Fm), Dgm(Fϑ)) ⩽ K, (2.46)

where K is a constant depending on κ and the embedding dimensionM+ 1.

2.5 Numerical Studies

This section presents numerical studies that evaluates the performance of

the proposed SSE method.

2.5.1 Evaluation of Denoising Procedure

To evaluate the performance of the denoising procedure presented in this

work, and Proposition 2.1, the time series in Figure 2.3a was replicated

at varying noise levels and sample sizes. The probability that any value

is unobserved at a given time point is fixed at 0.25. Four noise levels
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{0, 0.25, 0.5, 2} and five samples sizes {50, 100, 500, 1000, 5000} were used

in the simulations. For each noise level and sample size combination,

the denoising method outlined in Section 2.4.1 was performed and the

bottleneck distance between the corresponding persistence diagrams and

the theoretical upper-bound are computed. The upper bound computed

does not include the multiplicative factor 2n−1
c

. Figure 2.5 shows a noisy

time series and the outcome after denoising at various frequency thresh-

olds. For an appropriate choice of frequency threshold, which is generally

(a) Noisy original time series (b) Smoothed (threshold=5)

(c) Smoothed (threshold=15) (d) Smoothed (threshold=25)

Figure 2.5: Illustration of the denoising method of Section 2.4.1. The
time series was perturbed with noise drawn from a N(0, 0.25), and the
probability of a missing observation is 0.25. (a) The original 500 time
series measurements. The orange points are observed values, while the
blue diamonds are the missing values displayed at the true signal value
without noise. The other sub-figures display the time series after denoising
with a frequency threshold of 5 (b), 15 (c), and 25 (d).
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application dependent, the true underlying signal can be satisfactorily

recovered.

For each combination of the noise-level and sample size, the process

is repeated 100 times and standard errors are obtained. The results are

presented in Figure 2.6. The bottleneck distance is bounded above by the

Figure 2.6: Stability results of the denoising procedure (see Proposi-
tion 2.1). The solid points represent the mean values from 100 repetitions,
the vertical lines on these points indicate the error bars (which are too
small to see in many cases), and the colors and line types indicate the
sample size. The vertical axis represents the bottleneck distance for the
circle points and the error bound (without the multiplicative factor 2n−1

c
)

for the triangle points.

error bound for all noise levels and sample sizes as expected. At the same

noise level, smaller sample sizes tend to have larger bottleneck distances.

This can partly be explained by the fact that the SSE is more sparse (i.e.,

points in the space are more spread out since there are fewer points). The

H0 features are more likely to persist longer in such sparse settings. The
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reverse is true for the error bound in Proposition 2.1, which for the same

noise level, is higher for larger sample sizes. This follows from the fact

that larger sample sizes increases the chance of observing highly noisy

terms (and the upper bound is includes a supremum). These results

demonstrate the denoising procedure’s efficacy in controlling noise effects

on the SSE’s topological features.

Proposition 2.1 establishes a conservative bound on the bottleneck

distance between persistence diagrams of a noise-free and a denoised

time series using Fourier methods. The factor (2n− 1)/c reflects the poor-

conditioning of the Fourier matrix in non-uniform domains. Empirical

evidence suggests this bound could be improved in more restricted settings,

which is a topic for future research.

2.5.2 Reconstruction Accuracy

The empirical study in this section was designed to assess the SSE method’s

effectiveness in preserving the original state space geometry using the

Hénon map as an illustrative example (Hénon, 2004). The Hénon map

recursively maps a point (ht,gt) ∈ R2 as follows: ht+1 = 1 − ah2
t + gt,

gt+1 = bht, with a = 1.4 and b = 0.3 (i.e., their classical values). The map

is initialized at (h0,g0) = (0, 0), and simulated with 500 points with obser-

vations designated as missing with a given probability. Figure 2.7 shows

the 2D Hénon map and the corresponding time series for one dimensions.

The measurement function (see Section 2.2) extracts observations along
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the h-dimension, hence {ht} are used to reconstruct the space. Observa-

tions along the g-dimension could be used instead.

(a) Hénon map (b) The h dimension

Figure 2.7: The Hénon map used in assessing reconstruction accuracy.
(a) The Hénon map with 500 points (blue and orange) where the blue
diamonds are designated as missing. (b) The h-dimension of the Hénon
map; only 200 points are displayed for visual clarity.

The correlation dimension is used to assess how well the geometry of the

original state space is preserved in the reconstruction. Specifically, for a

given ε > 0, it measures the probability that two random points in a space

are within ε-distance of each other. To compute the correlation dimension,

the correlation sum is computed using the following:

Corr(ε) = lim
m−→∞

2
m(m− 1)

m∑
i=1

m∑
j=i+1

1 (∥F(s(ti)) − F(s(tj))∥2 ⩽ ε) ,

(2.47)

for some embedding map F = {F(s(t1)), · · · , F(s(tm))}. Then the correla-

tion dimension is estimated as: limε−→0 log(Corr(ε))/log(ε). If the recon-

structed space preserves relevant geometrical invariants, its correlation

dimension should match that of the TDE space. Other accuracy measures
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include the box-counting dimension, Hausdorff dimension, and informa-

tion dimension. However, the correlation dimension is more robust to

sample size, making it less noisy with fewer samples (Grassberger and

Procaccia, 1983b).

The SSE method is compared to common statistical interpolation meth-

ods used to impute missing data. A range of methods were considered1,

but only the best three methods are presented, which were implemented

using the R package, imputeTS (Moritz and Bartz-Beielstein, 2017):

(1) Kalman Smoothing (KS): This fits a structural time series model via

maximum likelihood, using the linear local trend as the structural class

(see referenced package for more details).

(2) Last Observation Carried Forward (LOCF): This methods replaces

each missing value with the most immediate prior observed value.

(3) Next Observation Carried Backward (NOCB): This is similar to the

LOCF, but instead replaces each missing value with the most immediate

next observed value.

The results are presented in terms of the correlation dimension, with

standard errors generated by applying each method to 100 independently

generated instances of the Hénon map. A noise model (with no missing
1The comparison methods considered are available in the the R package, imputeTS

(Moritz and Bartz-Beielstein, 2017): linear, spline, and Stineman interpolation methods,
Kalman Smoothing with a structural model and autoregressive integrated moving average
model, a moving average method with exponential and linear weighting, seasonal decompo-
sition (imputation by interpolation is done on the deseasonalized component), seasonal
split (imputation by interpolation is done on each split), imputing with the previous
observation (LOCF) or next observation (NOCB), imputing with the mean, median, mode,
and by a random point in the dataset.
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values) served as a baseline, with observations from a normal distribution

(mean zero) and standard deviation equal to the probability of observing

a missing value (for convenience).

Figure 2.8 shows example reconstructed spaces using the proposed

method and two imputation methods (the NOCB result is nearly identical

to the LOCF and is not shown) with 500 samples and a 0.25 missingness

probability. Note that for the comparison methods, after imputation the

TDE method is used to estimate the state space. Only the SSE method

preserves the original geometry, while the imputation methods introduce

extraneous features.

(a) SSE (b) KS imputation (c) LOCF imputation

Figure 2.8: Reconstructed state spaces of the Hénon map for: (a) proposed
SSE method, (b) KS imputation, and (c) LOCF imputation.

Figure 2.9 shows the correlation dimension versus missingness proba-

bility for the SSE method and the three imputation methods. The black

dashed lines indicate the established empirical estimate for the Hénon

map’s correlation dimension (1.22 ± 0.04) (Grassberger and Procaccia,

1983a; Sprott and Rowlands, 2001), so that a good performing method has

empricial correlation dimensions within these bounds. The SSE method
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Figure 2.9: Reconstruction accuracy results of the Hénon map based on
the correlation dimension. The points in different shapes are the mean
correlation dimension after 100 repetitions using the proposed SSE method
(solid pink points), the three imputation methods, and a baseline noise
model (blue dashed), and the vertical bars represent the corresponding
standard errors. The black dashed lines indicate the established empirical
bounds of the Hénon map.

performs well up to a missingness probability of 0.6, staying within or

close to the empirical bounds. Beyond 0.6, its comparable to the three

imputation methods. However, the SSE method is more variable due to

the fewer points used to compute the correlation dimension compared to

the other methods (which always have 500 points).
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2.5.3 Periodicity Quantification

The periodicity of a time series can be quantified based on the H1 features

in the persistence diagram. This relies on the idea that periodic patterns

yields elliptic curves in the reconstructed state space, and Perea and Harer

(2015) use the roundness of the curves as an indicator of the periodicity

in the time series. The roundness of these ellipses can be quantified by

examining the maximum persistence of their associated H1 features. For a

time series vector x with its embedding map F, its periodicity score ps(x)

can be defined as (Perea and Harer, 2015):

ps(x) = max
(b,d)∈Dgm(F)

(d− b)/
√

3, (2.48)

where Dgm(F) is the persistence diagram, and max(b,d)∈Dgm(F)(d− b) is

restricted to the H1 features. For this calculation, the embedding map F is

pointwise-centered and scaled. The motivation for the periodicity score

is that during the VR filtration for a dataset with a large enough sample

size, a unit circle (H1 feature) dies when an inscribed equilateral triangle

appears in the VR complex at filtration value
√

3, hence the maximum

periodicity score of one is realized when either the TDE or SSE spaces has

a well-sampled circle; a ps(x) closer to one indicates a stronger periodic

signal in x.

To evaluate this framework, two different set of signals were generated

with sample sizes n ∈ {50, 100, 500, 1000} and missingness probabilities
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{0, 0.1, 0.2, 0.3, 0.4}. The first set follows f(t) = 50 × cos(πt/4 − λπ) ×

sin(πt/2) + 50 with λ ∈ (0, 1) and t ∈ [0, 12π], having a longest period of 8.

The second set is a non-periodic signals drawn from aN(10, 2). Figure 2.10

shows samples of both signals. To construct the embedding from the time

(a) Periodic signal (b) Non-periodic signal

Figure 2.10: Sample periodic (a) and non-periodic (b) signals used in
the periodicity quantification simulation of Section 2.5.3. Each time series
include 500 time points.

series, the time points are rescaled to integers and the step-size is set to

τ = 1. The periodicity score ps(x) is then compared to those obtained from

the Lomb-Scargle periodogram method for both uniformly-spaced and

irregularly-spaced observations (Lomb, 1976; Scargle, 1982; Ruf, 1999),

the sliding windows method (Perea and Harer, 2015), and the JTK_Cycle

algorithm for uniformly-spaced samples (Hughes et al., 2010).

The results are summarized in Table 2.1 (periodic signal) and in Table

2.2 (non-periodic signal). Table 2.1 shows that all the methods rate the

periodic signals as highly periodic with increasing sample size. The pro-

posed SSE method consistently identifies a distinct H1 across all sample
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sizes and missing observations despite noisy features in the persistence

diagram. The JTK_Cycle and the Lomb-Scargle method requires speci-

fying a period search range. The proposed SSE method has the added

advantage that its periodicity score has a geometric interpretation (Perea

and Harer, 2015).

Table 2.1: Results for the periodic signal summarized as p-values for
JTK_Cycle and Lomb-Scargle with estimated period in parentheses, and
as periodicity scores for Sliding Windows (SW) and SSE methods.

n π M SW JTK_Cycle Lomb-Scargle SSE Method

50
0.00 2 0.74 0.00 (7.69) 0.00 (8.02) 0.74
0.10 2 − − 0.00 (8.03) 0.74
0.20 2 − − 0.00 (8.03) 0.70
0.30 2 − − 0.00 (8.04) 0.67
0.40 2 − − 0.00 (8.04) 0.44

100
0.00 6 0.53 0.00 (8.00) 0.00 (8.02) 0.53
0.10 6 − − 0.00 (8.02) 0.53
0.20 6 − − 0.00 (8.02) 0.53
0.30 4 − − 0.00 (8.20) 0.49
0.40 3 − − 0.00 (8.02) 0.43

500
0.00 8 0.93 0.00 (2.64) 0.00 (8.02) 0.93
0.10 8 − − 0.00 (8.02) 0.85
0.20 6 − − 0.00 (8.02) 0.71
0.30 2 − − 0.00 (8.02) 0.63
0.40 2 − − 0.00 (8.02) 0.60

1000

0.00 26 0.90 0.00 (1.28) 0.00 (8.02) 0.90
0.10 15 − − 0.00 (8.02) 0.74
0.20 12 − − 0.00 (8.02) 0.69
0.30 6 − − 0.00 (8.02) 0.44
0.40 4 − − 0.00 (8.01) 0.43

For the non-periodic signal, all the methods performed reasonably

well across all samples and missingness mechanisms. The performance

of the SSE method in the non-periodic setting is not surprising. This is

because as more observations are missing, the sampled time points appear
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Table 2.2: Results for the non-periodic signal are given as p-values for
JTK_Cycle and Lomb-Scargle with estimated period in parentheses, and
as periodicity scores for Sliding Windows (SW) and SSE methods.

n π M SW JTK_Cycle Lomb-Scargle SSE Method

50
0.00 3 0.30 1.00 (13.29) 0.15 (2.05) 0.30
0.10 3 − − 0.16 (2.04) 0.32
0.20 3 − − 0.28 (2.04) 0.23
0.30 3 − − 0.17 (2.04) 0.25
0.40 3 − − 0.41 (32.87) 0.14

100
0.00 3 0.26 1.00 (12.88) 0.10 (1.00) 0.26
0.10 3 − − 0.08 (1.00) 0.22
0.20 3 − − 0.27 (1.00) 0.25
0.30 3 − − 0.55 (16.39) 0.32
0.40 3 − − 0.33 (16.39) 0.29

500
0.00 11 0.14 0.28 (0.45) 0.11 (0.15) 0.14
0.10 9 − − 0.23 (0.80) 0.16
0.20 0 − − 0.13 (0.20) 0.10
0.30 7 − − 0.29 (0.79) 0.18
0.40 3 − − 0.19 (0.45) 0.28

1000

0.00 3 0.13 1.00 (1.28) 0.87 (0.25) 0.13
0.10 3 − − 0.50 (0.40) 0.14
0.20 3 − − 0.55 (0.26) 0.15
0.30 3 − − 0.22 (0.26) 0.16
0.40 3 − − 0.66 (0.26) 0.20

random, and the resulting time series looks more like random noise than

signal.

2.5.4 Application to Real Data

Irregularly-spaced times series data are common in astronomy such as

those discussed in VanderPlas (2018) and in exoplanet detection methods

(Zhao et al., 2020, 2022). In this section, we examine an asteroid dataset

from the Lincoln Near-Earth Asteroid Research (LINEAR) survey, which

tracks near-Earth asteroids. The data include 280 magnitude measure-
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ments (brightness) of LINEAR object ID 11375941 over five and a half

years. Magnitude measurements are unitless, and lower values indicate

brighter objects. Further details on the data and preprocessing are in Sesar

et al. (2011), Palaversa et al. (2013), and VanderPlas (2018).

Figure 2.11a shows the observed magnitude over time, revealing no

obvious periodic pattern due to irregular sampling. The TDE method is

unsuitable for such data, but the proposed SSE method can construct a

geometric representation. UsingM = 2, rescaling the time points to inte-

gers, and taking τ = 1, the SSE in Figure 2.11b reveals a circular geometric

object, indicating high periodicity. The H1 feature on the persistence di-

agram (Figure 2.11c) is at the point (b,d) = (0.31, 1.74). The periodicity

(a) Time series (b) SSE (c) Persistence diagram

Figure 2.11: LINEAR object ID 11375941. (a) The time series of the mea-
sured magnitudes (orange circles) with error bars (vertical bars). (b) The
SSE of the time series. (c) The persistence diagram for the SSE with a
single highly persistent H1 feature as expected.

score obtained using Equation (2.48) is 0.82, indicating high periodicity in

the observed magnitude of LINEAR object ID 11375941. Using the Lomb-

Scargle method, the optimal period was found to be 2.58 with a p-value
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of 0.00. These results confirm the SSE method’s periodicity findings and

highlight its utility in quantifying and visualizing periodicity.

2.6 Discussion and Concluding Remarks

The fusion of TDE with TDA holds significant promise for discerning

system dynamics and quantifying properties like periodicity in uniformly-

spaced time series. This work introduces a novel subsequence embedding

method for irregularly-spaced time-series data. Irregular spacing can

obscure patterns and introduce noise (e.g., Figure 2.11a). While data

imputation can create uniformly-spaced series, it often fails to accurately

represent the TDE space (e.g., Figure 2.8). The proposed SSE method

addresses these challenges, preserving the topology of the reconstructed

state space and mitigating spurious homological features introduced by

irregular spacing.

One may wonder if there are only a few missing values in a time se-

ries, can the missingness simply be ignored? With a investigation, we

find that ignoring even a small number of missing values can change the

topology of the embedding (as measured with persistence diagrams). The

following discusses the results of a brief empirical study on this topic;

further analysis is the topic of future investigation. The proposed SSE

method seems to be robust to missingness at critical points of the time

series, for example at the peaks, or at zero-crossings. To illustrate this, 100
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time series observations, as shown in Figure 2.12a were used, which are

subsets of the time series in Figure 2.3a. To induce and test the proposed

SSE sensitivity to missing values at the peak, five observations, indicated

as blue points in Figure 2.12a, were designated as missing values. We

(a) The 100 time series observations (b) The SSE and TDE of the time series

Figure 2.12: The time series and its embedding. (a) The orange points are
irregularly-spaced with the blue points denoting missing values. The black
hollow circles are the shifted time series observations. (b) The squares
denote the TDE of the full time series with no missing values, the orange
points denote the SSE of the irregularly-spaced time series, while the blue
asterisks. denote the TDE of the shifted time series.

compare the accuracy of the reconstruction from the proposed SSE to an

approach that simply ignores the gap and shifts the time series to produce

a uniform sequence. The hollow circles in Figure 2.12a denotes this shifted

time series. We compare the persistence diagram of the TDE embedding

when there are no missing values, the TDE embedding of the shifted time

series, and the SSE of the irregularly-spaced time series. Figure 2.13 shows

these persistence diagrams, where the persistence diagram of the SSE

embedding (Figure 2.13a) is equivalent to the full uniform time series

TDE persistence diagram (Figure 2.13b). However, the TDE from the
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shifted time series persistence diagram (Figure 2.13c) differs significantly

from the full uniformly-spaced time TDE persistence diagram. Similar

(a) Uniformly-spaced (b) Irregularly-spaced (c) Shifted data

Figure 2.13: The persistence diagrams of the TDE of the full uniformly-
spaced data (a), the SSE of the irregularly-spaced data (b), and the TDE
of the shifted data (c). The “←− 2” is used to indicate that there are two H1
features.

results were observed when valleys, zero-crossings, or any combination of

peaks, valleys, and zero crossings were omitted. These findings support

the robustness of the proposed SSE method when missing values are ob-

served at critical points of the time series. It also highlights the superior

performance of the SSE method compared to the TDE constructed under

the assumption that the missingness can be ignored.

Section 2.5.3 demonstrates how TDEs and SSEs can be used to quantify

periodicity of a time series. However, we note the need for statistical infer-

ence on periodicity scores to determine if the most persistent H1 feature

is due to a real periodic signal or chance. Existing methods for signifi-
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cance testing of homology generators, such as those using kernel density

estimators, allow constructing confidence sets for homology generators

(Fasy et al., 2014; Xu et al., 2019). Extending this to homology generators

based on direct filtration on the point-cloud space requires bounding the

bottleneck-distance with the Hausdorff distance. Initial investigations

produced wide confidence sets, indicating the need for a more tailored

method. Finally, Algorithm 1 constructs subsequences with a fixed regu-

larity score r. Extending this to r± ϵ for small ϵwould increase the length

of each constructed subsequence, and the number of points in the recon-

structed space, while potentially introducing outliers or perturbations in

the data space. Chapter 3 introduces a robust statistical inference proce-

dure that allows for the construction of might tight confidence intervals

with improved significance detection.
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3 maxtda: robust statistical inference for

maximal persistence in topological data analysis

The content of this chapter is published in Dakurah and Cisewski-Kehe

(2025).

Abstract

Persistent homology is an area within topological data analysis (TDA) that

can uncover different dimensional holes (connected components, loops,

voids, etc.) in data. The holes are characterized, in part, by how long they

persist across different scales. Noisy data can result in many additional

holes that are not true topological signal. Various robust TDA techniques

have been proposed to reduce the number of noisy holes, however, these

robust methods have a tendency to also reduce the topological signal. This

work introduces Maximal TDA (MaxTDA), a statistical framework ad-

dressing a limitation in TDA wherein robust inference techniques system-

atically underestimate the persistence of significant homological features.

MaxTDA combines kernel density estimation with level-set thresholding

via rejection sampling to generate consistent estimators for the maximal

persistence features that minimizes bias while maintaining robustness to

noise and outliers. We establish the consistency of the sampling procedure

and the stability of the maximal persistence estimator. The framework



67

also enables statistical inference on topological features through rejection

bands, constructed from quantiles that bound the estimator’s deviation

probability. MaxTDA is particularly valuable in applications where precise

quantification of statistically significant topological features is essential

for revealing underlying structural properties in complex datasets. Nu-

merical simulations across varied datasets, including an example from

exoplanet astronomy, highlight the effectiveness of MaxTDA in recovering

true topological signals.

3.1 Introduction

In Chapter 2, we introduced a topologically robust method for transform-

ing time series data into a multi-dimensional representation for topological

data analysis. We alluded to the fact that assessing the statistical signifi-

cance of persistence homology features requires bounding the bottleneck-

distance with the Hausdorff distance, where our investigations produced

wide confidence sets, indicating the need for a more tailored method.

Similarly, extending Algorithm 1 to r± ϵ for small ϵ has the potential to

introduce outliers or perturbations in the data space. In general, iden-

tifying statistically significant features, particularly, the most persistent,

or maximal persistent ones is challenging because persistence diagrams

lack a canonical vector space structure, meaning operations like addition,

averaging, and other conventional statistical techniques are not naturally
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defined. This difficulty is further compounded by noisy data. Methods

such as kernel smoothing, developed within robust topological analysis

(Fasy et al., 2018; Anai et al., 2020), are employed to mitigate noise but

also often reduce the lifetimes (i.e., persistences) of the maximal persis-

tent features. The systematic underestimation of the lifetimes of these

features is an artifact of the smoothing mechanisms typically employed

in these robust methods. To enable statistical inference for maximal per-

sistent features, it is helpful to address these limitations. This inference

challenge arises from the need to quantify uncertainty in the presence of

perturbations, such as noise, outliers, or density variation in a random

sample Xn = {x1, · · · , xn} drawn from a probability distribution P with

compact support X in a space X ⊂ Rd. Robust topological tools aim to

recover the topology of X by defining a smoothing function ϕ : X → R.

This function, commonly a kernel density estimate (KDE), kernel distance,

or distance-to-a-measure (DTM) function, is parameterized to suppress

noise or reweight outliers (Chazal et al., 2011; Fasy et al., 2014, 2018; Anai

et al., 2020). A preferred outcome would maintain high persistence for

true features while reducing noise features to negligible persistence levels.

The motivation for this work is to develop an inference method that

builds on these robust methods, while mitigating the reduction in the

persistence of the features, in order to enhance a feature’s statistical signif-

icance. The proposed framework, “Maximal TDA” (MaxTDA), mitigates

this reduction by first estimating a KDE over the sample as an intermediate
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representation of the data sampling distribution. Then an upper-level set

is defined for a carefully selected density threshold, and rejection sampling

is used to draw samples from the thresholded KDE for subsequent sta-

tistical inference on the maximal persistent features. This process retains

the robustness of the initial smoothing while producing a denser, more

consistent sampling surface. Subsequent inference then involves further

smoothing or directly computing a persistence diagram directly over this

dense sample. This methodology is motivated by two key observations.

First, the kernel smoothing enhances robustness against outliers and noise

(Bobrowski et al., 2017; Fasy et al., 2018; Anai et al., 2020). Second, the

thresholded KDE corrects for density variation in the sampling by provid-

ing for a denser and statistically consistent sampling surface (Tsybakov,

1997; Singh et al., 2009), a characteristic that is crucial for maintaining the

persistence of the features. This is illustrated in Figure 3.1, where the aim

is to recover and maintain the persistence of key features such as the two

loops (the red and blue circles) indicated by dense clusters.

The proposed MaxTDA approach presents a robust, consistent, and

less biased estimator of the most persistent features in certain homology

groups, which are groups that identify different dimensional holes in data.

While KDEs have been used for robust persistent homology, we show that

the resulting homology estimates do not preserve the strength of the true

features. In Theorem 3.2, we show that the proposed sampling technique

is consistent, and in Lemma 3.1, we prove the stability of the resulting
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Data Space Robust Filter Proposed Method

Figure 3.1: Illustration of the MaxTDA framework. For a data space (left),
robust TDA methods applies a robust filter(e.g., KDE) to the data (mid-
dle). MaxTDA extends this by sampling from a thresholded KDE (right),
enhancing robustness to noise and creating a denser sampling surface.

maximal persistence estimator. From a statistical perspective, we establish

that MaxTDA produces estimates with reduced bias and enhanced sta-

tistical significance. The remainder of this paper is structured as follows:

Section 3.2 discusses theoretical results including consistency and bias

analyses, and the statistical significance of the maximal persistence esti-

mator. Section 3.3 and 3.4 demonstrate the effectiveness of the MaxTDA

through numerical simulations, including one motivated by a statistical

challenge in exoplanet astronomy. Section 2.6 closes with implications and

potential extensions of our work.

3.2 Maximal TDA Method

This section present the MaxTDA method and corresponding theoretical

results. In particular, we show the construction of the smooth subsamples
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for inference on the maximal persistence features, prove its homology

preserving properties as well as some bias reduction and consistency

results.

3.2.1 Overview of methodology

Before presenting the technical details of our method, we first provide

an overview of our approach to estimating and performing statistical

inference on the maximal persistent features. The key challenge we ad-

dress is how to reliably estimate the most persistent features from noisy

point cloud data while minimizing the persistence reduction (see Sec-

tion 3.2.2). Traditional approaches often face a trade-off between noise

reduction and feature preservation. Our method seeks to resolve this

through the construction of “smooth subsamples” using a combination

of kernel density and level-set estimation via rejection sampling, where

we only accept proposed points where the estimated density exceeds a

threshold λ. The details of this construction are discussed in Section 3.2.3,

and the validity of such a construction is established in Theorem 3.2. This

thresholding naturally filters out likely noise points while preserving the

strength of genuine features, as true features tend to manifest in regions

of high density.

The remainder of this section develops statistical inference methods

for working with features constructed from the smooth subsamples of

the thresholded KDE. We analyze the bias reduction properties of the
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maximal persistence estimator and develop methods for assessing its

statistical significance, providing both theoretical guarantees and practical

tools for identifying statistically significant features in noisy data with

varying density distributions. Extensions of these inference methods to

functions of the maximal persistence are also discussed.

3.2.2 Stability of Maximal Persistence

The support X is not directly observed but is studied through the point

cloud Xn. Let Dgm(Xn) be the VR-based filtration persistence diagram on

Xn, and Dgm(X) the true underlying persistence diagram on the support

X. For ϕ defined on X, and its empirical estimate ϕn, let Dgm(ϕ(X)),

and Dgm(ϕn(X)) denote their persistence diagrams from upper-level set

filtrations of ϕ and ϕn, respectively. When an exposition applies to either

a VR filtration or the upper-level set filtration of the KDE or DTM, the

persistence diagram is generically denoted as Dgm(·) or simply Dgm.

Define the maximum persistence of the features on the persistence as

mp [Dgm(·)]. The following lemma presents the stability result for the

maximal persistence estimator.

Lemma 3.1 (Maximal Persistence Stability). Let ∆ be the persistence diagram

with points only along the diagonal. Let ϕn be an empirical KDE or DTM

function defined on the sample Xn. Then the following results hold:
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(i) The maximum persistence can be expressed in terms of the bottleneck distance:

mp [Dgm(·)] = 2dB (Dgm(·),∆) . (3.1)

(ii) Let ∇̂ be defined as ∇̂ =
∣∣∣mp[D̂gm] − mp[Dgm]

∣∣∣, then it holds that:

∇̂ ⩽ 2dB

(
D̂gm, Dgm

)
, (3.2)

where D̂gm denotes the empirical persistence diagram estimate of Dgm.

Proof. The maximum persistence mp[Dgm(·)] is defined as: mp[Dgm(·)] =

max(b,d)∈Dgm |d− b|. Similarly, the bottleneck distance dB(mp[Dgm(·)],∆)

is defined as:

dB(mp[Dgm(·)],∆) = inf
γ

sup
(b,d)∈Dgm

||(b,d) − γ((b,d))||∞, (3.3)

where γ : Dgm −→ ∆ defines a bijection between Dgm and ∆. Note that

since ∆ is the diagonal, the optimal bijection γ is the orthogonal projection

of points in Dgm(·) to ∆, hence γ((b,d)) =
(
b+d

2 , b+2
2

)
. It then follows

that:

dB(mp[Dgm(·)],∆) = sup
(b,d)∈Dgm(·)

∥∥∥∥(b,d) −
(
b+ d

2 , b+ d2

)∥∥∥∥∞ =
|d′ − b′|

2 ,

(3.4)

where (b′,d′) are the birth-death pair with the maximal persistence. The
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bound for ∇̂ can be derived based on the expression:

∇̂ = 2
∣∣∣dB(mp[D̂gm],∆) − dB(mp[Dgm],∆)

∣∣∣ ⩽ 2dB(mp[D̂gm], mp[Dgm]),

(3.5)

where the last inequality follows from the reverse triangle inequality for

metrics.

The main object of interest in this work is the maximal persistence

mp [Dgm(·)]. We now describe the framework to consistently estimate it

while reducing the associated bias inherent in estimating these maximal

values.

3.2.3 Smooth sampling surface

The methodology for constructing the smooth sampling surface that max-

imizes the persistence of features is described next. This approach can

be used to either maximize the persistence of a single feature or multi-

ple features, depending on the application. The goal here is to obtain

samples that better approximate the true underlying topology, and these

samples are subsequently used for inference on the maximal persistence

features. Our approach uses kernel density estimation to create a smooth

sampling surface, enabling the generation of samples that preserve the

underlying topological structure. Specifically, given the observed data Xn

drawn according to the distribution P with density f, we approximate this
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density with the KDE estimate f̂σ. This provides a smooth surface that

captures the structure of the manifold while reducing the noise. A dense

sample X∗
n is drawn from the smooth surface using rejection sampling (De-

vroye, 1986). The X∗
n serves to preserve the persistence of the homology

features relative to Xn. Rejection sampling requires a target distribution

and a proposal distribution, where samples are drawn from a proposal

distribution because of difficulties sampling from the target distribution.

For the purpose of this work, the proposal distribution Q is a function

of the volume enclosing the topological space X. The target distribution

is the KDE f̂σ. The objective then is to draw samples x∗ according to Q

and accept them based on the target density f̂σ. In particular, for some

Γ ⩾ supx∗∈X
f̂σ(x∗), the sample x∗ is accepted with probability f̂σ(x∗)/Γ .

Algorithm 2 outlines the sampling scheme described here. The resulting

Algorithm 2 Smooth Subsampling
Require: Observed data {x1, · · · , xn}, density threshold λ, number of gen-

erated points B.
Step 1: Fit the KDE f̂σ to the data sample {x1, · · · , xn}.
Step 2: For k in the range 1, · · · ,B, do Step 3 to Step 4.
Step 3: Compute x∗ as follows:

Repeat:
(i) Draw a sample x∗ from the proposal distribution Q.
(ii) Compute the density associated with the sample x∗, i.e., eval-

uate f̂σ(x∗).
(iii) Sample a point u ∼ U(0, Γ).

Until: u ⩽ f̂σ(x∗), and f̂σ(x∗) ⩾ λ.
Step 4: Set x∗

k = x∗.
Output: Return the samples X∗

B = {x∗
1 , · · · , x∗

B}.
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sample is used to construct a distribution of maximal persistence values

by generating random persistence diagrams from the transformed data

space. A threshold λ is then selected to maximize the persistence of the

targeted prominent features.

We now show that the samples X∗
n obtained via Algorithm 2 preserves

the homology of X. This largely follows from the theory of level-set esti-

mation, especially the work of Cuevas and Fraiman (1997). An interesting

observation made in Bobrowski et al. (2017) is that recovering the homol-

ogy of X does not rely on the consistency of the KDE f̂σ. Also, to avoid

making assumptions on the shape of the space X, the Hausdorff metric is

used to measure the closeness of the approximation.

Theorem 3.2 (Convergence of Smooth Subsamples). Let P be compactly

supported on the set X, having bounded density f and f > λ for some positive

constant λ. Assume the kernel function Kσ is a decreasing function of x such that

as ||x|| −→∞, we have ||x||d+1Kσ(||x||) −→ 0. Further assume that Kσ is a bounded

density such that for some r1, r2,

Kσ(||x||) ⩾ r11(x ∈ B(0, r2)). (3.6)

Let βn be of order o(n/ logn)1/d, then βndH(X∗
n,X) −→ 0 a.s., where βnσ goes

to zero with n large.

In our analysis, we used a Gaussian kernel, which is not compactly

supported. Hence we make the additional assumption that the bandwidth
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σ −→ 0 as n −→ ∞ in such a way that βd+1
n σ −→ 0, then the proof follows

directly from Theorem 3 in Cuevas and Fraiman (1997). By constructing a

smooth subsample, we intrinsically reduce the magnitude of any topologi-

cal error in subsequent persistent homology computations on these smooth

subsamples. For example, in the initial sample Xn, the randomness in

the sample could introduce points that results in additional features. The

kernel smoothing initially reduces the presence of such outlying points,

and an appropriate choice of λ (which depends on the specific applica-

tion) enhances the originally significant homological features. In summary,

unless the randomness introduces features that dominate the most persistent real

feature, MaxTDA guarantees a smooth recovery of this original dominant feature.

If randomness in the sample introduces more persistent features than

the most persistent real feature, it is not generally feasible to recover the

real feature (Fasy et al., 2014; Bobrowski et al., 2017). We demonstrate

this concept in our numerical studies in Section 3.3.1 and 3.3.2. The next

section discusses how to select the optimal smoothing bandwidth and the

level-set threshold parameters.

3.2.3.1 Parameter selection

The choice of KDE bandwidth σ and the level-set threshold λ are essential

to X∗
n recovering the topology of X. These values are not known in practice,

hence we provide a data-dependent estimation process for selecting these

parameters. For a given homology dimension, let ℓi(λ,σ) be the lifetime
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(i.e., persistence) of the i-th feature on the persistence diagram D̂gm asso-

ciated with X∗
n. Consider the ordered lifetimes ℓ1(λ,σ) ⩾ ℓ2(λ,σ) ⩾ · · · ⩾

ℓT (λ,σ), where T is the number of features of interest. The cumulative

persistence of the top T features is given by: CPT (λ,σ) =
∑T

i=1 ℓi(λ,σ).

The goal is to choose the parameter λ and σ that maximizes CPT (λ,σ).

The parameters (λ∗,σ∗) are determined by solving the optimization prob-

lem: (λ∗,σ∗) = arg max(λ,σ)∈ΩCPT (λ,σ), where Ω denotes the feasible

parameter space for λ and σ. Note that this process can be augmented

to emphasize certain features by assigning weights {ω1, · · · ,ωT } to the

lifetimes. The number of features T can be chosen based on the expected

topology of X, or by adaptively by analyzing the decay of the ordered

lifetimes ℓi(λ,σ). A sharp drop in ℓi(λ,σ) beyond a certain index indicates

a natural cutoff for T . For the bandwidth σ, we found that the average

k-NN distance (for k between 1 and 5) between points in Xn provides a

good parameter search space.

3.2.4 Bias reduction

Existing methods for estimating a persistence diagram in the presence of

noise or sampling variability can identify the maximal persistent features.

This often involves smoothing out low persistence features, which conse-

quently reduces the lifetime of the most persistentH1 features. This results

in a bias in estimating the lifetime of the maximal persistent features. In

this section, we discuss this phenomenon and provide results that shows
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the proposed MaxTDA method helps reduce this bias for an appropriate

choice of thresholding parameter λ and for a range of bandwidths σ.

3.2.4.1 Source of bias in maximal persistence

Robust persistent homology methods, such as smoothing, subsampling,

filtering, or thresholding, implicitly bias the persistence estimates by re-

ducing the lifetimes of the features. The following example illustrates this

bias. Let P be a class of probability distributions satisfying Assumption 1.1.

Further assume that there exists positive constants c and c′ such that for

data x ∈ X and d′ < d:

vold (B(x, r) ∩ X) ⩾ c
(

1 −
r2

4κ2

)d′/2

rd
′
⩾ c′rd

′ , (3.7)

where vold(·) denotes the volume of a d-dimensional ball, and κ is as

defined in Assumption 1.1. This is the usual regularity assumption that

removes certain pathological manifolds, such as those with sharp peaks

or cusps. In practical terms, for every point x ∈ X, if you take a ball of

radius r around x, the portion of the ball lying in X has a volume that

scales with rd′ , that is, X is “thick enough” in every small neighborhood

such that there are no parts that are infinitesimally thin or sharply peaked.

Let Xn be drawn according to a distribution P ∈ P which is supported on

X. Let D̂gm and Dgm be the persistence diagrams associated with Xn and
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X, respectively. Then the following inequality holds:

mp[D̂gm] ⩽ dB(D̂gm, Dgm) + mp[Dgm], (3.8)

which follows from applying the triangle inequality to mp[D̂gm] = dB(D̂gm,∇).

This implies the bias: E(mp[D̂gm]) − mp[Dgm] is directly upper bounded

by the expected bottleneck distance between D̂gm based on Xn and Dgm

based on X. Therefore, a “good” representation of X can lead to a lower

bias in estimating mp[D̂gm]. Next, we discuss how the proposed frame-

work provides a good representation of X with a thresholded KDE.

3.2.4.2 Role of sampling and thresholding

Consider the setup where two samples, X∗
n,0 and X∗

n,λ, are drawn using

Algorithm 2 with threshold values of 0 and λ, respectively. The choice

of λ and n influence the bias in estimating the maximal persistence. We

consider the case of the VR filtration, but the analysis also applies to

filtrations ofϕ(·). From Equation (3.8), the maximal persistence associated

with X∗
n,λ is given as follows:

ζ(n, λ)mp[D̂gm(X∗
n,λ)] = dB(D̂gm(X∗

n,λ), Dgm(X)) + mp[Dgm(X)],

(3.9)

where ζ(n, λ) is an unspecified sequence depending on n and λ, and

goes to 1 for n large. In the limit as λ −→ 0, we have by construction
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that ζ(n, λ) = ζ(n, 0). Hence the bias of the smoothed and unsmoothed

estimators are the same as n −→∞, and λ −→ 0:

lim
n−→∞,λ−→0

E
(

dB(D̂gm(X∗
n,λ), Dgm(X))

)
= lim

n−→∞E
(

dB(D̂gm(X∗
n,0), Dgm(X)

)
.

(3.10)

Under finite sampling, the benefits of the thresholding lie in the differ-

ence in the rates of convergence of both X∗
n,λ and X∗

n,0 to X. For example,

consider βn −→∞ from Theorem 3.2, Cuevas and Fraiman (1997) show

any rate of order (n/ logn)1/d = O(βn) cannot be achieved by X∗
n,0 That

is, consider a convergent rate that is faster than βn for X∗
n,λ to X, say

β∗
n ⩾ (n/ logn)1/d, then β∗

n cannot be achieved when estimating X with

X∗
n,0 (Cuevas and Fraiman, 1997). Hence, for an appropriate choice of λ,

we conjecture that:

E
(

dB(D̂gm(X∗
n,λ), Dgm(X))

)
⩽ E

(
dB(D̂gm(X∗

n,0), Dgm(X))
)

. (3.11)

While this inequality has been observed empirically (see Figure 3.4a), a

formal theoretical proof remains an open challenge. The primary difficulty

in establishing such a result lies in deriving an explicit form for ζ(n, λ),

which would require strong assumptions on the geometric properties of

the support X to obtain a closed-form expression.
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3.2.5 Statistical significance of the maximal persistence

The statistical significance of the maximal persistence estimator mp[D̂gm]

is determined through a lower bound for mp[D̂gm]. This is equivalent

to bounding the difference ∇̂ =
∣∣∣mp[D̂gm] − mp[Dgm]

∣∣∣. A method for

constructing confidence sets for persistence diagrams by bootstrapping the

bottleneck distance was proposed in Fasy et al. (2018). The construction

of the lower bound for ∇̂ follows the same framework. We first state the

following consistency result for ∇̂ based on the upper-level set filtration

of the density function, and similar consistency results holds for other

functions such as the DTM and other kernel distances.

Theorem 3.3 (Consistency). Let ϕ be a density function defined on X, and

let ϕn be its empirical estimate according to Equation (1.8) based on the sample

X∗
n from Algorithm 2. Let {c1, · · · , ck} and {cn1 , · · · , cnk } be the critical points

of ϕ and ϕn, respectively. Assume that the critical points of ϕ and ϕn are

close enough such that the maximal difference at these critical points is bounded

as: maxi |ϕn(c
n
i ) − ϕ(ci)| ⩽

1
2 mini ̸=j |ϕ(ci) − ϕ(cj)| − ||ϕn − ϕ||∞, and

2||ϕn − ϕ||∞ ⩽ 1
2 mini ̸=j |ϕ(ci) − ϕ(cj)|. Then mp[D̂gm(ϕn)] is a consistent

estimator of mp [Dgm(ϕ)]:

∇̂ =
∣∣∣mp[D̂gm(ϕn)] − mp[Dgm(ϕ)]

∣∣∣ P−→ 0, as n −→∞. (3.12)

Proof. The proof follows from the regular consistency results on kernel

density estimation and the critical distances lemma in Devroye and Lugosi
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(2001) and Fasy et al. (2018). By the bottleneck stability theory, we have

that dB(Dgm(ϕn), Dgm(ϕ)) ⩽ ||ϕn − ϕ||∞. Note that for the upper-level

sets filtration of these functions, the homology only changes at the crit-

ical points. Assume that (ϕ(ci),ϕ(cj)) ∈ Dgm(ϕ) and (ϕ(cni ),ϕ(cnj )) ∈

Dgm(ϕn). Let γ : Dgm(ϕn) −→ Dgm(ϕ) be the optimal bottleneck match-

ing between the two diagrams. Under the assumption that maxi |ϕn(c
n
i )−

ϕ(ci)| ⩽ 1
2 mini ̸=j |ϕ(ci)−ϕ(cj)|−||ϕn−ϕ||∞, which implies mini ̸=j |ϕ(ci)−

ϕ(cj)| − maxi |ϕn(c
n
i ) − ϕ(ci)| ⩾ maxi |ϕn(c

n
i ) − ϕ(ci)| + 2||ϕn − ϕ||∞, it

follows that γ(ϕ(cni ),ϕ(cnj )) = (ϕ(ci),ϕ(cj)). By Lemma 3.1, we have that

∇̂ ⩽ maxi |ϕn(c
n
i ) − ϕ(ci)|. Define ϕn = f̂σ2 , and let f̃σ1 be the KDE on

Xn and Lλ = {x : f̃σ1(x) > λ}. Observe that f̂σ2 =
(
fX∗

n
∗ Kσ2

)
where (· ∗ ·)

denotes the convolution operation, and fX∗
n
(x) ∝ f̃σ1(x)1(x∈Lλ)∫

Lλ
f̃σ1(y)dy . The conclu-

sion follows from the regular consistency assumption on the bandwidths

σ1,σ2 −→ 0 and sample size n −→ ∞ of the KDE (Devroye and Lugosi,

2001).

Next, we describe the framework for assessing the statistical significance

of the maximal persistence features via a Monte-Carlo procedure.

3.2.6 Construction of confidence sets

It is common to consider homology features with longer persistence as

topological signal (Fasy et al., 2014). Thus Hk>0 features with longer life

spans can be interpreted as being more statistically significant than those
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with shorter life spans. For example, in time series analysis, one method for

determining periodicity examines the persistence of loops in a TDE space.

A perfectly circular loop suggests an underlying periodic signal, and Perea

et al. (2015) proposes estimating its period using a function of mp[Dgm],

though a method for quantifying the statistical significance of this estimate

was not established. The proposed MaxTDA framework addresses this

gap by providing tools to determine the statistical significance of such a

periodicity measure.

Methods for estimating the statistical significance of the features through

confidence sets were discussed in Fasy et al. (2014). However, these meth-

ods bound the bottleneck distance with the Hausdorff distance or distances

of functions defined on the data space, which shifts the randomness in the

construction to the original data space. These bounds are not tight in many

cases (e.g., Fasy et al. 2018; Glenn et al. 2024). A method that restricts the

randomness to the persistence diagrams, by directly bootstrapping the

bottleneck distance was introduced in Fasy et al. (2018). We first describe

the process for constructing confidence sets for the features with maximal

persistence on the persistence diagram, which in our case amount to lower

bounds for the maximal persistence.

Given significance level α ∈ (0, 1), the goal is to find tα such that:

Pr(dB(D̂gm, Dgm) > tα) ⩽ α as n −→ ∞. The confidence set on a persis-

tence diagram can be constructed by considering points in D̂gm whose

distance to the diagonal exceeds tα,
{
(b,d) ∈ D̂gm : |d− b| > 2tα

}
. This
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construction extends to the maximal persistence estimator through the

relation:

Pr(∇̂ > 2tα) ⩽ Pr(dB(D̂gm, Dgm) > tα) ⩽ α. (3.13)

There are two ways to visualize this confidence set on D̂gm ⊂ R2. The first

is to draw dB-balls with side length of 2tα centered on each point in D̂gm.

Then using the closeness to the diagonal, a point is considered to be be a

topological noise if its dB-ball intersects with the diagonal line. The second

and equivalent option is to add a diagonal band (rejection band) of width
√

2tα to D̂gm, and points in D̂gm that falls within this band are elements

of
{
(b,d) ∈ D̂gm : |d− b| ⩽ 2tα

}
, a rejection set, and are deemed to not

be statistically significant at the α significance level. Note that the rejection

band is constructed individually for each homology dimension. The tα can

be estimated via a Monte-Carlo procedure described in the next section.

3.2.7 Monte-Carlo estimation procedure

In this section, a Monte-Carlo procedure is proposed to estimate the tα.

Draw the sample X∗(b)
n using Algorithm 2 as follows: first, take a bootstrap

sample X(b)
n from the original sample Xn. Using Algorithm 2, generate

X∗(b)
n with X(b)

n as the underlying observed sample. Let ϕ(b)
n be the func-

tion associated with the sample X∗(b)
n , andϕn to be the function associated

with the quantity X∗
n, obtained by applying Algorithm 2 to Xn. Compute

the empirical quantity t̂(b) = dB(D̂gm(ϕ
(b)
n ), D̂gm(ϕn)). This process is
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repeated b = 1, · · · ,N times. Let Θ̂n be the empirical distribution func-

tion of this set of observations: {t̂(b) : b = 1, ...,N}. Let t̂α be the 1 − α

quantile of Θ̂n. Also let Θn be the distribution function of the quantity

dB(D̂gm(ϕn), Dgm(ϕ)). Then the following result holds.

Lemma 3.4. The 1 − α quantile t̂α is a consistent estimator of tα, that is,

supt |Θ̂n(t) −Θn(t)|
p−→ 0.

This result follows directly from Theorem 19 and Corollary 20 in Fasy et al.

(2018). This process is used to determine the statistical significance of the

maximally persistent Hk>0 features.

Remark 3.5. The inference procedure developed in this work can be extended

to additive or multiplicative transformations of ∇̂. For example, the statistical

significance of the normalized periodicity score mp[Dgm]/
√

3 can be derived

through the distribution of ∇̂/
√

3, which amounts to estimating the empirical

quantile function
√

3t̂α. These results can also be adapted for minimal persistence.

3.3 Experimental Validations

This section presents numerical studies that demonstrate the performance

of MaxTDA. First we show the quality of the topological recovery achieved

by the proposed method in terms of the number of features recovered and

the persistence of these features.
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Figure 3.2: An illustration of the VR (b), DTM (c), and KDE (d) filtration
on the point cloud Xn (a) (the blue points are signal and the black points
are noise). All three methods identified one dominant H1 feature in terms
of persistence.

3.3.1 Quality of topological recovery

The first numerical experiment aims to recover a densely sampled circle

while treating a sparse circle as noise. The data consist of 50 samples

around a unit circle, 500 samples around a radius-0.5 circle (both perturbed

by N(0,
√

0.05)), and 450 uniform samples in [−1, 1]2. These three samples

giveXn withn = 1000. The VR, DTM, and KDE persistence diagrams were

computed, with DTM parameterm = 0.9 chosen over a grid of points in the

interval (0, 1), and the KDE bandwidth set at 0.1. A complete comparison

across various bandwidths is given in Section 3.3.1.1. The point cloud

Xn and persistence diagrams are displayed in Figure 3.2. While the VR

diagram is noisy, the DTM and KDE diagrams suppress low-persistence

features, though at the cost of reduced persistence.

To demonstrate the topological recovery, X∗
n was constructed using

Algorithm 2 with a threshold λ selected from the range [0.1, 1] and a KDE
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Figure 3.3: An illustration of the VR (b), DTM (c), and KDE (d) filtration
on the point cloud X∗

n from Algorithm 2. All three methods identified one
dominant and enhanced H1 feature.

bandwidth set to the average k-NN distance (k ∈ [1, 10]) of points in Xn.

These parameters were chosen using the procedure in Section 3.2.3.1 to

maximize the most persistent H1 feature for each filtration scheme. Specif-

ically, the optimal (λ,k) are (0.7, 10), (0.4, 2), and (0.6, 8) for VR, DTM, and

KDE filtration, respectively. The KDE sample space is shown in Figure 3.3a,

along with the VR (3.3b), DTM (3.3c), and KDE (3.3d) persistence dia-

grams computed for X∗
n. All three methods revealed one dominant H1

feature. The diagrams from X∗
n contains fewer low-persistenceH1 features

than those from Xn.

3.3.1.1 Reducing persistence loss in prominent features

Next, we demonstrate that Algorithm 2 is robust to variations in the KDE

bandwidth (and in the DTM smoothing parameter), that is, once appropri-

ate parameters are selected for Algorithm 2, these choices remain effective

across different values of σ orm. Let Xn be the noisy sample in Figure 3.2a,
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and X∗
n,λ and X∗

n,0 be the thresholded and non-thresholded versions, re-

spectively. Let X be the noise-free data, depicted as the blue points in

Figure 3.2a. Figure 3.4a shows that for a single sample, it is possible to

appropriately choose the parameters of Algorithm 2 (in this case, λ = 0.6

and the KDE bandwidth is the average 8-NN distance) such that the max-

imal persistence associated with X∗
n,λ closely approximates the ground

truth (X) maximal persistence.
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Figure 3.4: MaxTDA estimation results. (a) For an appropriately chosen
threshold, the maximal persistence associated with the MaxTDA X∗

n,λ (red
circles) closely approximates the ground truth (X) maximal persistence
(orange triangles). (b) The distribution of the difference in maximal
persistence between the three data samples and the ground truth across
100 independent trials, demonstrating that X∗

n,λ (red) maximal persistence
is less biased.

The process is repeated 100 independent times to assess the variability

of the construction. The results are presented in Figure 3.4b as boxplots of

the differences between the true and estimated maximal persistence, which
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indicate that the distributions of the MaxTDA X∗
n,λ maximal persistence

values are closer to the true values than those from other data spaces.

3.3.2 Data with varying sampling distributions

This section demonstrates how MaxTDA applies to data from topological

spaces with similar geometries but different sampling distributions, a

scenario that arises, for example, in signal processing when signals at

different frequencies are embedded in the same space. Figure 3.5a shows

a 3D point cloud Xn with four ellipses of varying density; the goal is

to recover the denser ellipse as the ground truth by isolating a single

maximally persistent H1 feature. Using the parameter selection procedure

in Section 3.2.3.1, a density threshold of λ = 12.22 was obtained, and a KDE

bandwidth was determined as the average 1-NN distance of points in Xn.

X∗
n,λ and X∗

n,0 were constructed using Algorithm 2. Figure 3.5b shows that

for bandwidths up to 0.025, the maximal persistence of KDE(X∗
n,λ) exceeds

that of KDE(X∗
n,0) and KDE(Xn). These bandwidths correspond to when

the dense ellipse’s persistence is at its maximum and increasing, whereas

for larger bandwidths the persistence decreases due to over-smoothing,

indicating undesirable bandwidths.

The optimal bandwidths that maximize the maximal persistence were

determined to be 0.02 for KDE(X∗
n,λ) (denoted hereafter as KDE(X∗

n)) and

0.015 for KDE(Xn), and these values were used to construct the final per-

sistence diagrams, where the most persistentH1 features in Xn and X∗
n had



91

−0.8−0.6−0.4−0.2 0.0 0.2 0.4 0.6 0.8−
1e

+
14

−
5e

+
13

 0
e+

00
 5

e+
13

 1
e+

14

−3 −2 −1  0  1  2  3

y

z

x

(a) Data Xn

−6

−4

−2

0

0.
00

50
0.

01
00

0.
01

50
0.

02
00

0.
02

50
0.

03
00

0.
03

50
0.

04
00

0.
04

50
0.

05
00

0.
05

50
0.

06
00

0.
06

50
0.

07
00

0.
07

50
0.

08
00

0.
08

50
0.

09
00

0.
09

50
0.

10
00

0.
10

50
0.

11
00

0.
11

50
0.

12
00

0.
12

50
0.

13
00

0.
13

50
0.

14
00

0.
14

50
0.

15
00

Bandwidth

M
ax

im
um

 P
er

si
st

en
ce

 D
iff

er
en

ce

KDE(Xn)
KDE(X*

n,0)
KDE(X*

n,λ)

(b) Differences in maximal persistence

Figure 3.5: Performance of MaxTDA in estimating the maximal persistence
using the sample X∗

n,λ compared to the original data Xn and the non-
thresholded sample X∗

n,0. (a) Data Xn with n = 333; (b) the difference in
the maximal persistence from that of the dense ellipse by KDE bandwidth.

persistences of 1.45 and 3.18, respectively. To construct rejection bands, let

D̂gm(KDE(Xn)) and D̂gm(KDE(X∗
n)) denote the respective persistence di-

agrams of the upper-level KDE filtrations of Xn and X∗
n. We bootstrapped

Xn 1000 times and, for each bootstrap sample X(b)
n , estimated a KDE with

σ = 0.015 and computed the bottleneck distance t̂(b)0.015 between the H1

features of D̂gm(KDE(Xn)) and D̂gm(KDE(X(b)
n )). We also computed the

sample X∗(b)
n using Algorithm 2 at λ = 12.22, with X(b)

n as the underlying

input data, estimated a KDE with σ = 0.02 for X∗(b)
n , and computed the

bottleneck distance t̂(b)0.02 between the H1 features of D̂gm(KDE(X∗
n)) and

D̂gm(KDE(X∗(b)
n )). The 0.95 quantile of {t̂(b)0.015} was 1.3115 for diagrams

from X(b)
n , and that of {t̂(b)0.02} was 1.4195 for diagrams from X∗(b)

n , which

were used to construct the rejection bands. Figure 3.6a shows the persis-

tence diagram and 95% rejection band for the ordinary KDE, where no H1

feature is statistically significant, while Figure 3.6b shows the persistence
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Figure 3.6: Illustration of the statistical significance of theH1 features based
on 1000 bootstrap samples from X(b)

n (a) and X∗(b)
n (b). The displayed

bands (light pink) indicated the 95% rejection region for the H1 features
(blue triangles). Note that the H0 features have been omitted.

diagram and rejection band for the KDE of the smooth subsamples, in

which one statistically significant H1 feature corresponding to the denser

elliptical sample is observed. This is partly due to its enhanced persistence,

further highlighting the performance of the proposed MaxTDA method.

3.4 Exoplanet Data Application

This section explores how MaxTDA enhances periodic time series analysis

by linking the persistence of H1 features to signal periodicity. Enhancing

the lifetime of H1 features can strengthen a periodicity analysis. We begin

by describing a method for constructing a time series representation.
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3.4.1 Time-delay embedding

Time-delay embeddings (TDEs) provide a framework for transforming

time series into a multi-dimensional representation (Takens, 2006). For

time series {x(t) : 0 ⩽ t ⩽ n}, an embedding matrix is constructed where

each row is given by: v(t) = [x(t), x(t+ τ), . . . , x(t+Mτ)], with time delay

τ andM+1 delayed coordinates. Takens’ Theorem guarantees that, under

suitable conditions, this embedding preserves the shape of the underlying

state space if the embedding dimension is sufficiently large (Takens, 2006).

One method for determining τ is the average mutual information (AMI)

(Fraser and Swinney, 1986). The AMI is computed by partitioning the

range of the time series into bins: I(τ) =
∑

i,j pi,j(τ) log
(

pi,j(τ)

pipj

)
, where

pi is the the probability the time series has a value in the i-th bin, and pj is

the probability that x(t+ τ) is in bin j, and pi,j(τ) denotes the probability

that x(t) and x(t+τ) are in the i-th and j-th bin, respectively. The smallest

value of τ where I(τ) reaches a local minimum is chosen as the optimal

time delay step. This corresponds to the lag at which the redundancy

of information between x(t) and x(t + τ) is minimized, ensuring that

points in the reconstructed embedding space are sufficiently independent.

Once τ is determined, the embedding dimensionM+ 1 is selected using

Cao’s method (Cao, 1997), which evaluates how the structure of the recon-

structed space changes as the embedding dimension increases. It identifies

the dimension at which the reconstructed space stabilizes. TDEs remain

valid under smooth linear transformations, such as principal component
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analysis (PCA), motivating our subsequent use of PCA for dimensionality

reduction (Sauer et al., 1991).

3.4.2 Exoplanet time series data

Exoplanets are planets that orbit stars other than our sun. One method for

detecting exoplanets is the radial velocity (RV) method, which measures

the forward and backward motion of a possible host star over time. This

method was used to discover the first exoplanet orbiting a sun-like star

(Mayor and Queloz, 1995). With this RV approach, a certain periodic

signature in a star’s RV over time suggests the presence of an orbiting

exoplanet. The red line in Figure 3.7 displays a simulated exoplanet RV

signal on a circular orbit. Detecting low-mass exoplanets, such as Earth-

like planets, remains challenging as their smaller signals can be obscured

by stellar activity like star spots (Huélamo et al., 2008; Dumusque, 2016;

Davis et al., 2017). The green line in Figure 3.7 shows how a simulated star

spot using the Spot Oscillation And Planet (SOAP) 2.0 code (Dumusque

et al., 2014) can induce a periodic RV signal that resembles an exoplanet.

While statistical techniques have been developed to detect exoplanets

in the presence of stellar variability (e.g., Rajpaul et al. 2015; Dumusque

2018; Holzer et al. 2021a,b; Jones et al. 2022), they do not fully mitigate the

challenges (Zhao et al., 2022). This study demonstrates how MaxTDA can

help identify and mitigate stellar variability in RV time series analysis; a

complete analysis using real exoplanet data is the topic of future research.
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Figure 3.7: Exoplanet time-series data. Simulated RV data of an exoplanet
(red circles), a 0.05% spot (green triangles), and the Planet+Spot com-
bined (blue squares).

Our focus is on enhancing feature persistence in combined signals (e.g.,

Planet+Spot) and assessing the statistical significance of periodic behavior.

Using simulated data (Figure 3.7), we analyze a planet, a star spot, and

their combined signal (P+S) RV time series. The spot-induced signal

matches the star’s 25.05-day rotation, while the planet orbits with a 4-day

period and 0.87 m/sec semi-amplitude. A 0.05% star spot at 30◦ latitude

induces a 0.58 m/sec apparent RV signal. N(0, 1) noise was added to

ensure the most persistent H1 feature in the combined RV signal is close

to the spot’s H1 feature before MaxTDA is applied.

TDE matrices were constructed for each time series, with AMI and

Cao’s used to select (τ = 4,M = 15) for the planet and (τ = 12,M = 7)

for the spot. Instead of estimating new parameters for the combined
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Figure 3.8: The embedded time series from Figure 3.7. The Planet and
P+S[Planet Parameters] used τ = 4,M = 15, while the Spot and P+S[Spot
Parameters] used τ = 12,M = 6.

signal, we applied the individual embeddings separately, allowing direct

comparison of structural and temporal properties. This approach helps

assess whether the time series geometry suggests a planet’s presence. Each

embedding matrix was centered, normalized, and reduced via PCA to two

components for analysis (Figure 3.8).

3.4.3 Quantifying periodicity

The periodicity of a time series can be assessed using the H1 features of its

TDE, where periodic patterns form elliptical shapes in thstate space (Perea

et al., 2015). The roundness of these ellipses, quantified by the maximum

persistence ofH1 features, serves as a periodicity score: max
(b,d)∈D̂gm1

|d−

b|. For example, a time series that produces a well-sampled circular loop

in its TDE will have high persistence and, therefore, a high periodicity

score.

Algorithm 2 was applied to the P+S[Planet Parameters] and P+S[Spot
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Parameters] TDEs to reduce noise, with the optimal KDE bandwidth set as

the average 1-NN distance. To construct rejection bands, a DTM filtration

withm = 0.01 was used for the Planet, the P+S[Planet Parameters], the

P+S[Spot Parameters], the Smooth P+S[Planet Parameters], the Smooth

P+S[Spot Parameters] embeddings, andm = 0.05 for the Spot embedding,

which were selected to maximize the H1 features. Figure 3.9 display the

persistence diagrams. The Planet signal has the highest periodicity score

(0.6647), followed by smoothed P+S[Planet Parameters] (0.4531), both

statistically significant at the 5% level. The lack of significance in other

embeddings is attributed to noise, data distribution variation, and the gap

in the Spot’s embedding. In summary, MaxTDA enhances the H1 feature

persistence in the Planet+Spot embedding. This approach is particularly

useful for analyzing time series signals with missing observations (Daku-

rah and Cisewski-Kehe, 2024), embeddings with varying sampling density,

or noisy time series where distinguishing or removing noise is impractical

or undesirable in the time domain.

3.5 Discussion and Conclusion

This work introduces the MaxTDA methodology that combines kernel

smoothing and level-set estimation via rejection sampling to facilitate

robust statistical inference for the maximal persistence features in a topo-

logical space. Thresholding the KDEs at a suitable level creates a smooth
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Figure 3.9: Persistence diagrams (only H1 features) for the Planet (a),
Spot (b), and the combined Planet+Spot embeddings and their smoothed
versions (c-f) with 95% rejection bands..

and dense sampling surface. Rejection sampling is then used to obtain sam-

ples that result in improved robustness of estimated homology features

with limited reduction in the lifetimes for the maximally persistent fea-

ture(s). The maximal persistence estimator is shown to be consistent, and

achieves a reduction in bias relative to existing robust TDA methods. The

statistical significance of the maximal persistence estimator was assessed

via the construction of confidence sets. Several numerical experiments

were conducted to illustrate the effectiveness of MaxTDA in uncovering,
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validating, and drawing meaningful statistical inference for the maximal

persistence features of datasets.

There are several important directions for future work and potential im-

provements. The proposed rejection sampling technique, while effective in

low-dimensional settings and geometries that are relatively well-behaved,

may face difficulties in ensuring that the sampled points adequately cover

the features of interest in complex and high-dimensional data spaces. Di-

mension reduction methods, such as PCA (e.g., Section 3.4.1) or manifold

learning techniques, could be applied as a preprocessing step to improve

the effectiveness of the sampling scheme. Alternatively, more adaptive

or data-driven sampling strategies could be explored, for example, using

importance sampling or Markov chain Monte Carlo approaches that target

the most relevant regions of the data space. These adjustments may lead

to improved coverage of salient features in higher dimensions, and better

stability and efficiency in empirical implementations.

In the exoplanet application in Section 3.4.2, a method is proposed to

study the contributions of the planetary signal to the combined signal that

includes stellar variability due to a spot. While this illustration highlights

the scientific challenge of detecting low-mass exoplanets in the presence

of stellar activity, real RV data can include multiple planets, multiple

time-evolving spots, highly irregular time sampling, instrumental effects,

and other complexities. The proposed approach should be considered a

preliminary proof of concept requiring further validation across diverse
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signal scenarios, and serves as an interesting area of future research on

topological signal decomposition.



101

4 subsequence embedding for robust

classification of radial velocity time series with

missing data

Abstract

Radial velocity (RV) measurements are a foundational tool for detecting

exoplanets, which are planets that orbit stars other than our sun. The RV

method infers the presence of an exoplanet by measuring the periodic

forward and backward motion of a potential host star over time. However,

these measurements are typically perturbed by stellar activity, photon

noise, and structured missingness inherent in ground based observations,

making it difficult to distinguish planetary signals from stellar variability.

The conventional approach to handling missingness is to use imputation

techniques, which may distort the underlying dynamics, especially un-

der structured missingness or large temporal gaps. This work proposes

Subsequence Embedding (SSE) as an alternative and more robust method-

ology that maintains the geometric integrity of time series state space

without interpolation across observational gaps. We reformulate exo-

planet detection as a classification problem, employing SSE to construct

a multi-dimensional representation of the irregularly-sampled RV data,

from which feature vectors are extracted via a fast convolutional kernel

transform. Using SOAP 2.0 to generate RV datasets with varying levels
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of stellar activity, noise, and missingness, we demonstrate that SSE-based

classification outperforms imputation-based approaches. Our method

maintains high discriminative power (AUC> 0.79) even with 50% missing

data and high measurement noise, while imputation methods degrade to

near-random performance (AUC ≈ 0.55) under similar conditions. This

performance advantage increases with data sparsity, highlighting SSE’s

ability to capture essential dynamical information from incomplete obser-

vations. Our approach offers a data-driven, model-agnostic framework for

analyzing irregular astronomical time series without introducing artifacts

from imputation procedures, with potential applications to other fields

dealing with non-uniform temporal data.

4.1 Introduction

The radial velocity (RV) method as briefly introduced in Section 3.4 of

Chapter 3, has been a cornerstone of exoplanet discovery for decades. By

measuring the Doppler shift of stellar spectral lines, astronomers infer the

tiny wobble induced in a star by an orbiting planet, and remains one of the

most direct ways to estimate exoplanet masses (Mayor and Queloz, 1995;

Hara and Ford, 2023). However, RV measurements are contaminated by

stellar variability: stars are not static, they exhibit oscillations, granulation,

and rotating surface features such as starspots and faculae. These stellar

activity signals can induce RV variations on the order of meters per second,
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comparable in amplitude and sometimes in periodicity to signals from low-

mass planets (Huélamo et al., 2008; Dumusque, 2016; Davis et al., 2017).

As a result, distinguishing a genuine planetary Doppler signal from spot-

induced RV noise is a major challenge. Compounding the difficulty, RV

observations are typically irregularly sampled. Ground-based telescopes

can only observe non-solar stars at night and are limited by weather,

scheduling, and seasonal visibility of targets. This leads to structured

missingness in the time series: large gaps (seasonal) and uneven spacing

between observations. (For examples, see the left column of Figure 3 of

Zhao et al. (2022), which displays RVs for four stars using the EXPRES

spectrograph; there are between 22 and 58 nights of observations across

over a year window in 2019 and 2020 for these stars.) Effective handling

of such data with noise is crucial to ensure accurate analysis of planetary

activities and detection of planetary signals.

The traditional statistical approach for handling missing data is impu-

tation (Vacek and Ashikaga, 1980; Harvey and Pierse, 1984). For example,

imputation techniques like Last Observation Carried Forward (LOCF),

K-Nearest Neighbors (KNN), spline and linear interpolation remain pop-

ular. However, if the imputation model is misspecified, it can produce

structures that do not reflect true properties of the data. Moreover, many

imputation methods rely on inter-attribute correlations to estimate values

for the missing data, which are not present in univariate time series (Vacek

and Ashikaga, 1980; Harvey and Pierse, 1984; Casdagli et al., 1991; Lekscha
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and Donner, 2018). In astrostatistics, several new statistical methods have

been developed to address the challenge of detecting low-mass exoplanets

in the presence of stellar activity (e.g., Rajpaul et al. 2015; Dumusque 2018;

Holzer et al. 2021a,b; Jones et al. 2022), but none of these methods fully or

generally mitigate the issues (Zhao et al., 2022)1.

In this work, we investigate a new approach to detecting the presence

of a planetary signal in noisy RV time series with missing data using Subse-

quence Embedding (SSE) (Dakurah and Cisewski-Kehe, 2024). Specifically,

the goal of this work is to answer the question: does an observed RV time

series contains evidence of a planetary signal or only stellar activity? We

approach this as a classification problem using simulated data for ground

truth. The key challenge is to engineer features from the irregular, noisy

time series that preserve the underlying dynamics of planet-induced dy-

namics, without being distorted by irregular sampling. To accomplish this,

we applied the SSE method, which transforms the univariate, noisy and

irregular time series data into a multi-dimensional representation. The SSE

is shown to be robust with respect to irregular sampling, that is, it preserves

the dynamics of the underlying state space (Dakurah and Cisewski-Kehe,

2024). The constructed embedding is treated as a multi-dimensional time

series, and we apply a fast convolutional kernel transform for time-series,
1In astronomy, a common approach is to use a Lomb-Scargle periodogram (Lomb,

1976; Scargle, 1982) to detect significant periodic signals in irregularly sampled data,
followed by a model fitting analysis to refine orbital or other physical parameters. See
Section 5.2 of Dakurah and Cisewski-Kehe (2024) for an example of this approach in
asteroid data.
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to generate features (Dempster et al., 2020, 2021). A Random Forest is

trained to predict the presence (or absence) of a planetary signal. We

evaluate performance in terms of area under the ROC curve (AUC), com-

paring SSE-based versus imputation-based embeddings across multiple

missingness scenarios and noise levels. The SSE method is compared to

the conventional method of handling missing observations in the literature

via imputation. For the imputation, we used spline interpolation to fill-in

the missing values, and apply regular time-delay embedding to construct

the multi-dimensional representation of the series (Takens, 2006).

While many approaches to time series classification operate directly

on the raw observations or their periodograms, this work focuses on

embedding-based representations that aim to recover the underlying dy-

namical structure of the signal. Our emphasis on embedding methods is

motivated by the irregular nature of RV observations, where interpolation

or periodogram-based preprocessing may introduce artifacts or obscure

weak planetary signals. Although other non-embedding methods may

perform well under different scenarios, our results show that the embed-

ding space alone contains enough geometric information to discriminate

between stellar activity and planet-induced variability. This finding opens

the door to future extensions where the embedding can inform down-

stream tasks. In the broader context of RV analysis, the ability to detect

the presence of a planet from sparse and noisy data using only structural

properties of the time series is a valuable step toward more interpretable
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and robust detection pipelines.

Our contributions in this work are threefold. First, we formulate the ex-

oplanet detection problem in RV data as a classification task, and construct

synthetic dataset of stellar RV time series with and without planetary

signals in the presence of stellar activity and observational gaps. Second,

we introduce the subsequence embedding approach to this problem and

demonstrate its effectiveness in handling highly irregular data. We show

that SSE embeddings capture essential dynamics even with substantial

missingness and noise, whereas interpolation based embeddings perform

poorly. Third, we integrate SSE with a modern classification pipeline,

and provide a thorough comparison of classification performance under

varying levels of missing data. A methodological innovation worth noting

is how the SSE transforms the univariate irregular time series into a multi-

dimensional time series that can be treated as a multivariate time series.

Our results show that SSE-based classification maintains high AUC even

when about half of the data is missing, significantly outperforming the

imputation-based approach. The remainder of this paper is organized as

follows. Section 4.2 introduces the SSE transform tailored for classification

tasks. Section 4.3 describes the data generation, preprocessing, experimen-

tal setup, and results. Section 4.4 concludes with discussion and future

directions.
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4.2 Deterministic Transform of SSE

Let x = (x(t) : t ∈ T) denote a univariate time series of RV measurements

of lengthn, sampled at nonuniform time points. That is, T = {t1, · · · , tn} ⊂

N such that ti+1−ti ̸= ti+2−ti+1, for at least one ti ∈ T and ti < ti+1. Our

objective is to construct a representation of x that can be used to detect the

presence or absence of a planetary signal in the time series. We consider the

subsequence embedding (SSE) method, which extends classical time-delay

embedding to irregularly-sampled series (Dakurah and Cisewski-Kehe,

2024). The core idea is to construct local embeddings only from observed

subsequences of x, without imputing values over large temporal gaps.

This allows the embedding to preserve the structure of the observed data

regardless of the sampling pattern.

Let F ∈ RN×(M+1) be the SSE embedding matrix of x, whereM+ 1 is

the chosen embedding dimension andN is the number of embedding vec-

tors extracted from the data. We treat F as a multivariate time series with

M+ 1 channels and variable length N. To transform F into a fixed-length

feature vector suitable for classification, we apply an almost deterministic

very fast multivariate transform for time series, as introduced in Dempster

et al. (2021). This transform automatically generates features from the

input time series for use in downstream tasks. We chose it for its compu-

tational efficiency, scalability to large collections of time series, and strong

empirical performance across a wide range of time series classification
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tasks (Dempster et al., 2020, 2021; Middlehurst et al., 2024).

The transform works by generating a large number of fixed, nearly

deterministic convolutional kernels and applying them to the embeddings.

Summary statistics of the resulting convolution outputs are then used as

features. Let {Q1, . . . ,QL} denote a collection of L univariate convolutional

kernels. Each kernel Ql is applied independently to each of the M + 1

channels (columns) of F. A kernel Ql is defined by a fixed-length filter

of size 9 with weights w = {−1, 2}, a dilation ηl ∈ N, and a fixed bias

threshold determined by a chosen quantile of the convolutional output.

That is, for a given channelm ∈ {1, . . . ,M+1}, kernelQl defines a univariate

convolution:

[F ∗ Ql]m(t) =

9∑
i=1

w(i) · Ft+i·ηl,m, (4.1)

whenever t + i · ηl ⩽ N. The transform computes a summary statistic

from the convolutional output for each (l,m) pair, typically the proportion

of positive values:

σl,m(F) = 1
Nl

∑
t

1 ([F ∗ Ql]m(t) > ql) , (4.2)

where ql is a quantile-based threshold and Nl is the number of valid

convolution outputs for kernel Ql on channelm. The combination of these

statistics across all channels and kernels produce the final feature vector:

σ(x) = (σ1,1(F), . . . ,σL,M+1(F)) ∈ RL·(M+1). (4.3)
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Note that the kernel Ql is composed of the triplet {wl,ηl,ql}. The filter

weights wl are binary valued (−1 or 2), and many unique sign patterns,

dilations, and thresholds are enumerated to produce L distinct kernels. To

ensure a fixed-length feature vector of a given dimension, the kernels are

distributed across theM+ 1 channels either evenly or proportionally. The

transformed features σ(x) are used as input to a classifier. In this work, we

generate approximately 10, 000 features, hence we set L(M+ 1) = 10000

and solve for the number of unique kernels L based on the embedding

dimension. OnceM+1 is chosen for the embedding, we enumerates L dis-

tinct definitions (wl,ηl,ql), apply each to allM+1 channels, and combine

the resulting proportion-of-positives to form a unified 10000-dimensional

feature vector. We evaluate classification performance using only these

transformed features. As the choice of classifier does not significantly

affect our results, we use a Random Forest classifier for both the SSE and

imputation-based approaches.

4.3 Experiments and Results

This section presents details on the generation of the RV dataset, the setup

of the classification task, and a discussion of the corresponding results.
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4.3.1 Dataset and preprocessing

We generate a broad range of starspot-induced RV signals using the Spot

Oscillation And Planet (SOAP) 2.0 code (Dumusque et al., 2014). Various

key spot parameters are systematically varied to simulate different levels of

stellar activity. The spot-to-photosphere temperature contrast takes values

in {200, 300, 400, 500, 663} Kelvins, while spot sizes were selected in the

range [0.0025, 0.1] in fractional surface coverage, and the number of spots

spans 1 to 4. For each configuration, we specify stellar inputs including a

rotation period of 25.05 days and spot properties (longitude, latitude, size

scaling), which are automatically written into SOAP 2.0 configuration files.

SOAP 2.0 then simulates the effect of these active regions on the stellar

line profiles, outputting model cross-correlation functions (CCFs) that are

converted into RV values. The simulation produces a dense time series for

each spot configuration by sampling the full stellar rotation with a phase

step of 0.01. Each resulting RV profile is stored in a single column, yielding

multiple columns that differ in temperature contrast, spot size, and spot

count. We convert RV values from km/s to m/s and scale the model phase

to days by multiplying by 25.05 days. Figure 4.1 shows the spot-induced

RV time series for a single spot across various temperature differences and

spot sizes. When the spot is behind the star, the RV is zero, and when the

spot rotates in view, it produces a sinuosoid-like signal as indicated by the

peak and valley. A similar pattern is observed when two spots are present,

as shown in Figure 4.2, where two peaks and two valleys emerge. The
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Figure 4.1: Spot-induced RV time series across various temperature differ-
ences and spot sizes when the number of spots is one. Observe that the
larger the spot-size and temperature difference, the larger the RV signal.

relative size and shape of these features depend on the placement of the

spots. Similar effects are seen with three or four spots.

In addition to spot-only signals, we generate a purely planetary RV

time series with an orbital period 4 days and semi-amplitude 0.87 m/s.

This planetary RV signal is added to the spot-induced signal to create

Planet+Spot signals by superposition. Figure 4.3 shows an example of

such Planet+Spot signal across various temperature differences and spot

sizes when the number of spots is one. This procedure results in two main

classes of synthetic RV time series: spot-only (Class 0) and Planet+Spot
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Figure 4.2: Spot-induced RV time series across various temperature differ-
ences and spot sizes when the number of spots is two. Larger the spot-size
and temperature difference, the larger the RV signal.

(Class 1). Each series is labeled according to the presence or absence of the

planetary signal, enabling supervised classification. In the next section,

we introduce measurement noise and irregular sampling to replicate real-

world observing conditions.

4.3.2 Experimental setup

The combined Planet+Spot and Spot-only signals were each perturbed

with Gaussian noise, with standard deviationσ ∈ {0.5m/s, 0.75m/s, 1m/s}

to mirror measurement uncertainty due to photon noise. The length of
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Figure 4.3: Combined Planet+Spot RV time series across various tempera-
ture differences and spot sizes when the number of spots is one.

each time series is fixed at 100. To emulate real-world observing schedules

or missed observations, we impose structured missingness by randomly

removing contiguous blocks of 10 time points. This process is repeated at

varying levels of missingness: 10%, 20%, 30%, 40%, and 50%, allowing us

to evaluate how classification performance degrades with increasing data

loss. Note that these missing blocks are distributed randomly along the

time series. Figure 4.4 shows an example combined Planet+Spot RV time

series with random missing blocks. Consequently, each synthetic time

series exhibits irregular spacing, i.e., clusters of points during observing

windows and intervals of no data. Given these noisy and irregular time
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Figure 4.4: Combined Planet+Spot RV time series with random missing
blocks at various proportion of missingness. The temperature differences
is 663 Kelvins and the number of spots is one. The distortion caused by
missing data highlights the challenge of separating planetary signals from
stellar activity.

series, we prepare it for embedding in two ways. First, Imputation-Based

uses spline interpolation to impute for the missing values and then applies

a standard time-delay embedding with dimensionM = 3 and delay τ = 1.

The interpolation does not recover new information but allows a uniform

embedding as a baseline representation. Second, SSE is also applied to con-

struct the embedding by first identifying observed subsequences within

the irregular time series, then applying a local time-delay embedding to

each subsequence, and the resulting embeddings are combined to pro-
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duce the embedding matrix. The SSE matrix thus captures real dynamics

without imputing over unobserved gaps. Finally, each time series, with or

without a planetary signal, is represented by both an imputed embedding

or by the SSE embedding. The SSE often produces fewer total rows than

imputed embeddings, since it does not interpolate missing values.

The number of sample matrices is 400, with 200 in the Planet+Spot

class and 200 in the Spot-only class, ensuring a balanced dataset. To fit the

classifier, we divided the 400 samples into a training and testing set where

320 samples were designated as training set. The training set is then used to

select the optimal parameters for the Random Forest classifier. Specifically,

we search over the number of estimators {50, 100, 200}, the maximum tree

depth {∞, 10, 20}, and the minimum number of samples required to split a

node {2, 5, 10}. For each level of missingness {10%, 20%, 30%, 40%, 50%},

we train and evaluate two models: (1) using the transformed samples

from the TDE embedding computed on the imputed (uniformly-spaced)

time series, (2) using the transformed samples from the SSE embedding

without imputation. For ease of reference, we refer to these two models

as the “Imputation model” and the “SSE model,” respectively. We report

the area under the curve (AUC) for the two models across the different

missingness levels.
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4.3.3 Experimental results

The experimental results, reported in terms of AUC across varying levels

of missingness and noise, are presented below. Figure 4.5 shows the ROC

curve and the corresponding AUC values when noise is low (σ = 0.5).

Both pipelines perform well at low missingness. The AUC for the Imputa-
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(a) Imputation model (σ = 0.5)
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Figure 4.5: The ROC curves with the AUC values when σ = 0.5. For
missing proportions above 10%, the SSE model consistently outperforms
the Imputation model.

tion model decreases steadily from 1.0 at 0% to 0.73 at 50%. In contrast, the

SSE model preserves performance more effectively, declining only from

1.00 to 0.93 across the same range. The performance gap widens as miss-

ingness increases, highlighting the advantage of avoiding interpolation

when data gaps become more substantial.

Under moderate noise (σ = 0.75), performance degradation becomes

more pronounced, as shown in Figure 4.6. The Imputation model shows a

sharper decline, with AUC falling from 1.0 to 0.60, while the SSE model



117

0.0 0.2 0.4 0.6 0.8 1.0
False Positive Rate

0.0

0.2

0.4

0.6

0.8

1.0

Tr
ue

 P
os

iti
ve

 R
at

e

Missing 0%, AUC = 1.00
Missing 10%, AUC = 0.99
Missing 20%, AUC = 0.96
Missing 30%, AUC = 0.87
Missing 40%, AUC = 0.85
Missing 50%, AUC = 0.60

(a) Imputation model (σ = 0.75)

0.0 0.2 0.4 0.6 0.8 1.0
False Positive Rate

0.0

0.2

0.4

0.6

0.8

1.0

Tr
ue

 P
os

iti
ve

 R
at

e

Missing 0%, AUC = 1.00
Missing 10%, AUC = 1.00
Missing 20%, AUC = 0.97
Missing 30%, AUC = 0.94
Missing 40%, AUC = 0.95
Missing 50%, AUC = 0.87

(b) SSE model (σ = 0.75)

Figure 4.6: The ROC curves with the AUC values at σ = 0.75. The SSE-
based method consistently outperforms the imputation-based method.

retains greater resilience, achieving an AUC of 0.87 even at 50% missing-

ness. The difference in performance is most noticeable in the intermediate

range of 30% to 50% missingness, where interpolation begins to distort

the underlying signal structure.

Results under high noise conditions (σ = 1.0) are shown in Figure 4.7,

where classification becomes significantly more challenging. The Impu-

tation model fails to maintain discriminability, reaching an AUC of only

0.55 at 50% missingness, comparable to random guessing. The SSE-based

method continues to offer better robustness, with AUC values ranging

from 0.99 at 0% missingness to 0.79 at 50%. This demonstrates that SSE

preserves enough signal structure to enable reliable discrimination even

under severe sparsity and noise. Though both methods suffer from the

high noise, SSE consistently maintains higher discriminative performance.

A further sensitivity analysis was conducted by repeatedly splitting the
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Figure 4.7: The ROC curves with the AUC values at σ = 1.0. The
imputation-based method performance degrades significantly, and at 50%
missingness, it is indistinguishable form random guessing, while the SSE-
based method is still significantly accurate.

dataset into training and test sets over 100 iterations, and then computing

the average AUC (and its standard deviation) for each combination of

missing proportion and noise level. The results, shown in Table4.1, con-

firm the same overall pattern: both SSE and the imputation-based method

achieve near-perfect classification for low noise (σ = 0.5) and few missing

data (< 20%). However, as the missing proportion or noise level increases,

the SSE model maintains higher average AUC and lower variance than

the Imputation model. For instance, at σ = 1.0 and 50% missingness, the

SSE model retains an average AUC of about 0.83 (std 0.05), whereas the

imputation-based model falls to roughly 0.66 (std 0.06). This difference

highlights SSE robustness in preserving essential signal structure, even

under substantial irregular sampling and noise. These repeated train-test

splits also indicate that the observed performance gap is not due to any
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Table 4.1: The average AUC with standard deviation in brackets, across 100
repeated train-test splits, comparing SSE model and Imputation model un-
der varying noise levels and missingness. SSE consistently achieves higher
AUC and lower variance. The gray colored rows indicates combinations
at which the SSE model outperforms the Imputation model.

Proportion Missing

σ Model 0.00 0.10 0.20 0.30 0.40 0.50

0.50

SSE
1.00 1.00 1.00 0.99 0.98 0.95

(0.00) (0.00) (0.00) (0.01) (0.01) (0.02)

Imputation
1.00 1.00 1.00 0.98 0.93 0.84

(0.00) (0.00) (0.00) (0.01) (0.02) (0.05)

0.75

SSE
1.00 1.00 0.99 0.97 0.94 0.90

(0.00) (0.00) (0.01) (0.01) (0.02) (0.03)

Imputation
1.00 1.00 0.98 0.94 0.85 0.73

(0.00) (0.00) (0.01) (0.02) (0.04) (0.06)

1.00

SSE
1.00 0.99 0.97 0.93 0.89 0.83

(0.00) (0.01) (0.02) (0.02) (0.04) (0.05)

Imputation
1.00 0.98 0.93 0.86 0.75 0.66

(0.00) (0.01) (0.03) (0.04) (0.05) (0.06)

particular data partition. Even at high noise and high missingness, SSE

demonstrates relatively stable performance, as evidenced by its smaller

standard deviations across multiple runs. By contrast, the imputation-

based approach degrades more sharply, suggesting greater sensitivity to

artificially filled gaps and the resulting signal distortion. Overall, these

experimental results emphasize the robustness of SSE. Rather than smooth-
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ing over unobserved intervals, SSE operates directly on observed data,

capturing essential dynamics without introducing interpolation artifacts.

While imputation methods remains a viable option for moderate missing-

ness (e.g., at less than 10% missing values), they become unreliable when

the level of missing values increases. Overall, SSE maintains consistently

higher AUC across all noise and missingness levels, demonstrating its

effectiveness for detecting the presence or absence of planetary signals in

noisy and incomplete RV time series.

4.4 Discussion and Conclusion

The results show that subsequence embedding (SSE) improves the de-

tectability of exoplanet signals in irregular RV time series more effectively

than spline interpolation or other gap-filling strategies. By focusing only

on observed measurements rather than predicting values in unobserved

intervals, SSE preserves the geometry of the underlying dynamical sys-

tem. This property proves especially beneficial at higher levels of data

scarcity, where traditional interpolation may weaken or obscure periodic

signals that are crucial for planet detection. A central reason for SSE’s

effectiveness lies in how it constructs time-delay embeddings: each con-

tinuous set of observations is processed independently, so large gaps are

never connected. Missing portions of the time series are omitted, ensuring

that embedded states represent only what has genuinely been recorded.
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In contrast, interpolation-based embeddings blend observed data with

extrapolated segments, which can either dampen small but meaningful

oscillations or introduce new cycles that do not reflect any real feature.

As our results show, this leads to systematically lower AUC, especially

as data becomes sparse or noisy. By controlling how subsequences are

extracted, SSE faithfully tracks the temporal and state-space structure that

arises from spot-induced and planetary signals.

In astronomical contexts, this approach opens new opportunities for

analyzing time series that are inherently unevenly spaced, whether due

to telescope scheduling, weather, or seasonal visibility windows. The

SSE framework is relatively straightforward to implement, yet it captures

key properties of the original dynamical system without imposing strong

assumptions about behavior in gaps. This is advantageous when classi-

fying whether a given RV time series contains a planetary signal. Our

experiments confirm that, even under substantial missingness, SSE embed-

dings offer higher discriminatory power compared to interpolation-based

embeddings, meaning that a simple machine learning pipeline can more

accurately separate planet-containing signals from purely activity-driven

ones. We note that this approach is model-agnostic and relies purely on

data geometry and temporal structure, making it adaptable across a wide

range of time series classification tasks in other disciplines.

Our study focused on a single classification pipeline that paired SSE

with Convolutional kernel feature extraction. In principle, one could re-
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place this with alternative algorithms or incorporate additional feature

engineering, such as topological descriptors, to further enhance classifica-

tion. Further, our use of it in conjunction with a machine learning classifier

is somewhat novel; previous work focused on its topological faithfulness

(Perea and Harer, 2015; Dakurah and Cisewski-Kehe, 2024), but we have

shown that this faithfulness translates into better machine learning perfor-

mance too. In real data, spot evolution, flares, and other non-stationary

effects may require adaptive choices for the delay parameters. Despite

these extensions, SSE already shows notable promise, providing a robust

and data-driven foundation for learning from sparsely sampled observa-

tions.

Overall, SSE offers a practical way to handle large gaps or irregular

sampling in RV studies and potentially many other fields that rely on

non-uniform time series. By using only the observed samples, it avoids

the uncertainty of gap filling and more reliably recovers the geometric

signatures of periodic or quasi-periodic processes. This property, com-

bined with the flexibility of modern machine learning methods, can make

detection pipelines both more accurate and more robust.
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5 persistence signatures in molecular dynamics

simulations of ionic liquids

Abstract

Ionic liquids (ILs) are room-temperature salts that often exhibit hetero-

geneous nanoscale organization. Understanding this internal structure is

crucial because it underlies key properties such as ionic transport, viscosity,

and electrochemical performance. In this work, we introduce a unified

topological data analysis (TDA) framework to characterize IL nanostruc-

tures from molecular dynamics (MD) simulations. We leverage persistent

homology to capture multiscale topological features of the MD-generated

point clouds (ion positions), and integrate these descriptors with statisti-

cal methods. The proposed methodology encompasses persistence-based

summaries, change point detection of structural transitions, and spatial

point process modeling to quantify how topologically identified clusters or

loops are spatially arranged. Applied to IL simulation data, this pipeline

reveals interpretable descriptors of nanoscale morphology and detects

structural transitions that are interpretable and relatable to physical prop-

erties of ILs. The approach is validated on two representative case studies

(varying cation alkyl chain length and IL concentration), where it suc-

cessfully identifies regime shifts in nanostructure. This work is a result

of a collaboration with Lisa Je and Reid Van Lehn from the Department



124

of Chemical and Biological Engineering at the University of Wisconsin-

Madison.

5.1 Introduction

In molecular systems, structure at the nanoscale refers to the non-random

organization of molecules into local patterns or domains on length scale of

a few nanometers. Such nanoscale structuring is physically meaningful be-

cause it arises from intermolecular forces and often governs bulk behavior.

Understanding how molecules arrange themselves at nanometer scales is

key to connecting microscopic interactions with macroscopic properties in

molecular simulations (Wang et al., 2020; Jiang et al., 2018; Walker et al.,

2018). Molecular dynamics (MD) simulations are a powerful tool for

probing and modeling these complex, evolving nanoscale structures. In

MD simulation, a large number of molecules are tracked in time, allowing

emergent structural patterns to develop naturally from fundamental in-

termolecular interactions. Because MD can isolate specific interactions or

molecular designs, it has been pivotal in explaining how subtle changes

in molecular structure, such as alkyl chain length or functional group

placement can influence the resulting nanostructure(Wang et al., 2020;

Hollingsworth and Dror, 2018; Jiang et al., 2018). The MD simulations

used in this work were provided by collaborators Lisa Je and Reid Van

Lehn from the Department of Chemical and Biological Engineering at the
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University of Wisconsin-Madison.

Extracting meaningful structural descriptors from MD data, however,

poses a significant challenge. A typical MD trajectory, which is a time-

ordered sequence of atomic positions generated by simulating the motion

of atoms and molecules, generates a vast amount of atomic coordinates,

from which one must extract meaningful patterns that reflect how the

system is organized at small scales. Traditional measures like radial distri-

bution functions and cluster analysis summarize structural features over

time, but they can miss or obscure unique or transient structures (Smith

et al., 2023; Je et al., 2022; Jiang et al., 2018). More specifically, MD analysis

strategies such as tracking a few predefined order parameters, performing

clustering in coordinate space, or applying linear dimensionality reduc-

tion often struggle to capture the full richness of the system’s behavior

as they focus on two-body correlations or require apriori definitions of

an order parameter. Important collective motions or structural changes

may be missed when using overly simplistic descriptors. The core method-

ological challenge is thus one of structure detection at the nanoscale, feature

extraction, and interpretability of the structure and transient features. Achiev-

ing this requires the development of new analysis pipelines that are both

quantitatively robust and physically interpretable.

In persistent homology, a single snapshot at fixed resolution is not

considered, rather a multi-scale family of complexes is built from the point

cloud which tracks the birth and death of the topological features as the
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observation scale varies. For instance, in MD simulations, the 3D Cartesian

coordinates of molecules form a point cloud that captures snapshots of

molecular structures. In this context, the point cloud is analyzed through a

VR filtration introduced in Section 1.3 of Chapter 1. Instead of focusing on

specific low-dimensional descriptors derived from domain knowledge that

capture essential aspects of a molecular system’s behavior, TDA examines

the overall shape and structure of the data by identifying patterns or

structures that are consistently present throughout the simulation. This

approach allows for the quantification of certain shape features in the

data that are useful for characterizing the molecular system’s physical

properties. TDA provides an alternative and complementary framework

to conventional analysis, one that is sensitive to global structural patterns

and intrinsic geometry rather than just local correlations.

In this work, we present a unified methodology that integrates persis-

tent homology with statistical techniques to characterize IL nanostructure

in MD simulations. The novelty of our approach lies in combining topo-

logical quantification provided by persistent homology with statistical

analyses that enhances robustness, stability and physical interpretability.

First, we perform persistent homology on MD-generated point clouds of

ions, obtaining persistence diagrams that serve as descriptors of structure.

Summary persistence statistics, such as the mean persistence, variance of

persistences, or maximum persistence, are then computed across different

point clouds from different simulation conditions. By treating these sum-
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mary measures over different frames as time series data (see Section 5.3.1

for details), we apply change point detection algorithms to identify sta-

tistically significant changes in the IL’s structural state over time. This

allows us to automatically detect the onset of a structural transition, for

example, when an initially homogeneous mixture begins to segregate. In

addition, we incorporate a spatial point process perspective to interpret

the geometry of the identified structures. Specifically, if persistent homol-

ogy indicates the presence of certain features, we model the location of

these features as points in space and analyze their spatial distribution.

Using tools from spatial statistics, we can determine whether the topology-

derived structures themselves are randomly distributed, form a regular

lattice, or exhibit higher-order clustering.

The proposed framework enables detection of nanostructural phase

transitions, identification of distinct regimes, and a nuanced interpretation

of local aggregation in IL systems. For example, as simulation conditions

evolve, our approach can pinpoint the moment an IL switches from one

nanostructural regime to another by detecting abrupt shifts in persistence

summaries. This capability is particularly valuable for ILs where transi-

tions may be gradual or not apparent in traditional methods like radial

distribution function. Furthermore, the integration of spatial point pro-

cess models provides interpretative context for the detected topological

structures. Rather than simply stating that a certain persistence summary

increases, we can interpret this as evidence that loop-like structures in the



128

point cloud are arranged in a connected network, similar to pathways or

channels running through the system, or that charged particle groups are

unevenly distributed, which suggests the formation of larger and distinct

regions within the point cloud. Such insights bridge the gap between

abstract topological measures and the tangible structural concepts familiar

to domain experts. To demonstrate the utility of this framework, we apply

it to two illustrative case studies (detailed in Section 5.4.2 and 5.4.3). In the

first case study, we examine a family of ILs with varying alkyl chain length

on the cation. Our analysis captures how increasing the chain length grad-

ually intensifies nanosegregation and eventually triggers a transition to

a more percolated domain structure, all identified via changes in persistent

homology signatures. In the second case study, we investigate an IL system

at different concentrations, which allows us to probe how diluting the IL

affects its internal organization. The pipeline detects the emergence (and

dissipation) of ionic aggregates as the concentration changes, effectively

mapping out distinct structural regimes from isolated ion pairs in dilute

conditions to extensive ionic networks in more concentrated conditions.

Notably, these regime boundaries and structural insights arise naturally from our

unified analysis, without a priori assumptions.

This methodology highlight how a TDA-guided approach can uncover

clear, physically meaningful patterns in IL simulations. The rest of this

work is structured as follows: Section 5.2 provides a motivation example

as a preview to the methodology, Section 5.3 details the proposed analysis
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method while Section 5.4 demonstrates the pipeline with two case studies.

Finally, Section 5.5 concludes the work and discusses directions for future

research.

5.2 Motivating Example

First, we demonstrate how we can apply TDA to a simple, 2D toy dataset

that convey some properties of the more complex 3D simulations analyzed

in subsequent sections. A group of datasets with 500 points each were ran-

domly generated and shown in Figure 5.1. This group of data is composed

of four different point clouds numbered Groups 1 - 4. Group 1 consists of

uniform samples randomly drawn from the interval [−4, 4], while Groups

2 - 4 are generated from an asymmetric knot and perturbed with Gaussian

noise. The noise has a mean of 0 and decreasing standard deviations of 0.2,

0.1, and 0.025 for Groups 2, 3, and 4, respectively. The goal is to develop a

Group 1 Group 2 Group 3 Group 4

−2.5 0.0 2.5 −2.5 0.0 2.5 −2.5 0.0 2.5 −2.5 0.0 2.5

−2.5

0.0

2.5

x

y

Figure 5.1: Group 1 is randomly distributed with no apparent pattern.
Group 2 point appears to be clustering around the center. Group 3 and
Group 4 manifest four elliptical empty shells with Group 4 being more
prominent relative to Group 3.
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methodology for systematically quantifying the evolving structure, in this

example, the shape of the point cloud across Groups 1–4, capturing both

qualitative and quantitative properties. TDA tools, such as persistence

diagrams, allow for the quantification of differences between these four

point clouds by measuring the systematic aggregation of points, which

leads to the formation of loops.

A persistence diagram is generated from each point cloud dataset

to quantify the number of components and loops the data contain. For

the toy dataset displayed in Figure 5.1, the corresponding persistence

diagrams are displayed in Figure 5.1. By observing the birth and death of

Group 1 Group 2 Group 3 Group 4

0.0 0.5 1.0 1.5 2.0 2.5 0.0 0.5 1.0 1.5 2.0 2.5 0.0 0.5 1.0 1.5 2.0 2.5 0.0 0.5 1.0 1.5 2.0 2.5
0

0.5

1

1.5

2

∞

Birth

D
ea

th

H0

H1

Figure 5.2: The persistence diagrams corresponding to the four groups of
point clouds in Figure 5.1. Observe the H1 features across the four groups.
Groups 3 and 4 have four blue triangles that are distinctively above the
rest of the blue triangles, indicative of the four elliptical empty territories
in Group 3 and Group 4 of Figure 5.1.

topological features over a set of filtration values, we can observe robust

and stable topological features in the point cloud dataset. For example,

in the persistence diagrams for Group 3 and Group 4 in Figure 5.2, we

observe four dominant blue triangles, indicated by H1, which identifies
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(a) Boxplot of persistence values.
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(b) The pair correlation function.

Figure 5.3: (a) A boxplot (displayed without outliers) of the persistence of
the H1 features. (b) The pair correlation function (with an inset for visual
clarity) used to measure the degree of aggregation of the sequence.

the four empty elliptical loops or circles shown in Figure 5.1 for Group 3

and Group 4.

Our second TDA graphical summary are side-by-side box plots that

display the distributions of the computed persistence of the point cloud

over a series (shown in Figure 5.3a). For this demonstration, we only

use the mean persistence, calculated for each point cloud. As the series

progresses, the summary persistence exhibits significant shifts that in-

dicate changes in the overall trend. For example, the mean persistence

decreases from Group 1 to Group 3 and then increases in Group 4. An

abrupt change (i.e, a shift in the trajectory of a persistence summary over

the group sequence) can be captured using change point analysis tools, as

discussed in Section 5.3.2, which provides a more nuanced perspective on

the data’s evolving structure. Group 3 is identified as a change-point in
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this sequence, and serve as an anchor point for further analysis of struc-

tural change. Other summary statistics on the persistence offer additional

insights into the number of connected components and holes present in

the dataset.

The last technique is the pair correlation function (PCF), which is not

a TDA method, but is produced from the point cloud data to measure the

level of aggregation or clustering at different scales or distances between

the points. Similar to the TDA summary statistics, we can qualitatively

observe any clustering of points through the peak intensity and peak loca-

tion of the pair correlation function. Figure 5.3b shows the pair correlation

function of the data sequence in Figure 5.1. A high-intensity peak means

there are a lot of nearby points whereas the location of the peak on the

x-axis indicates the distance scale a which the pair-wise interaction is

found.

5.3 Nanostructure in Persistence Summaries

In this section, we outline the post-processing tools and methods applied

to persistence summaries to study nanostructure variations in the time-

averaged trajectories of both dilute and pure IL, where pure IL refers to an

ionic liquid with no or minimal added solvent, and dilute IL refers to the

same ionic liquid mixed with a molecular solvent to reduce ion concentra-

tion.. The first objective is to identify inherent nanostructure variations
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using persistence summaries and then examine how these variations are

reflected in the original 3D point cloud in terms of the aggregation of the

ions by applying spatial point processes. Finally, we quantify the statistical

significance of these detected features through hypothesis testing.

5.3.1 Data representations for TDA

The dataset used in this work can be described as a collection of point

clouds in R3, indexed by two variables p and q. We define Xp,q ⊂ R3 to

represent the point cloud at the p-th instance of the q-th category. It is as-

sumed that each category contains n instances, and there arem categories

in total. Each point in a category q is organized by occurrence yielding

the sequence: X1,q, X2,q, · · · , Xn,q. For this work, different categories may

be distinguished by various features such as concentration or alkyl chain

length (as illustrated in Case Study I and II). A sequential arrangement of

the point clouds can therefore be constructed across categories, ordered by

the magnitude of these distinguishing features. This results in an overall

sequence: X1,1, X2,1, · · · , Xn,1, X1,2, · · · , Xn,m. This sequence can be viewed

as a pseudo-time series, where the transition from one instance to the next

represents both internal dynamics within each category and a progres-

sion from simpler to more complex configurations as governed by the

feature attribute (Paparoditis, 2018; Muggeo and Adelfio, 2011). In the

sections that follow, when discussing point clouds more generally, the

indices are omitted, and the point cloud is simply be denoted as X. Next,
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we describe the construction of topological features on these point cloud

representations.

5.3.2 Change point analysis

Change point analysis (CPA) techniques seek to identify significant shifts

or variations in the underlying structure of sequential data. In its basic

construction, an appropriate model is proposed to represent the evolution

of the sequence. The primary objective is to detect instances where a nu-

merical quantity measured from a model exhibits a statistically significant

change, where statistical significance is defined and quantified in Sec-

tion 5.3.2.2. We use one CPA technique, called cumulative sum (CUSUM)

of residuals applied to persistence summaries to study nanostructure

variations in MD simulation trajectories.

5.3.2.1 Model of persistence summaries

The sequence of persistence summaries yp,q (see Section 5.3.1) can be

considered as a process. Assume this process is piecewise stationary,

meaning the process remains constant within distinct segments but can

change abruptly between segments. The goal then is to detect the indexes

where these changes occur. For the purpose of this work, and in subsequent

analysis, our focus is to identify the index with the most significant shift

in the sequence, that is, a single change-point location. This often involves

proposing a model for the process. Consider the following proposed
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model of the persistence summaries:

yp,q = µp,q + εp,q. (5.1)

Here, µp,q is a fixed term, and is the expected value associated with the

observation at index (p,q), and the error term εp,q has mean 0 and variance

σ2. Note that normality is not assumed for the error term εp,q. This model

is used to detect mean shifts in the MD simulation trajectory’s persistence

summary statistics. The process of detecting a change point reduces to

testing the following null hypothesis of “no structural change”: µp,q = µ

for all indexes (p,q), implying the mean observation is constant across the

sequence. Under this null hypothesis, the ordinary least squares (OLS)

residuals and an estimate of its variance can be obtained, respectively, as:

ε̂p,q = yp,q −
1
nm

∑
1⩽p⩽n,1⩽q⩽m

yp,q, σ̂2 =
1
nm

∑
1⩽p⩽n,1⩽q⩽m

ε2
p,q. (5.2)

Figure 5.4 provides a graphical illustration of the hypothesis described

in this section. A popular approach to testing this hypothesis involves

analyzing the cumulative sum of the residuals and rejecting the hypothesis

if the fluctuations are deemed excessive. This procedure is described in

the next section.
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(a) Null Hypothesis: There is no experimental condition effect (b) Alternative Hypothesis: There is experimental condition effect

Frame 1

Frame 2

Frame 3

Frame n

Frame 1

Frame 2

Frame 3

Frame n

Figure 5.4: A graphical illustration of the hypothesis to be tested for the
change-point analysis. The solid red points denotes persistence summaries,
and the dotted blue lines indicates their trajectories. (a) The null hypoth-
esis, indicating a persistence summary measure is the same across all
experimental conditions or categories for each frame. (b) The alternative
hypothesis indicating there is a difference in a persistence summary mea-
sure across the different experimental conditions or categories.

5.3.2.2 Fluctuations in residuals

Generalized fluctuation tests, a statistical framework for detecting struc-

tural changes in models, construct empirical processes that capture fluc-

tuations in residuals. The underlying premise is that any changes in the

signal (y) are reflected in these residuals. One such empirical process

proposed by Ploberger and Krämer (1992) is to compute the cumulative

sum of the residuals. The CUSUM process is defined as follows:

B(nm)(c) =
1

σ̂
√
nm

∑
(p,q)∈Ωc

ε̂p,q, 0 ⩽ c ⩽ 1, (5.3)

where Ωc ⊂ {(p,q) : 1 ⩽ p ⩽ n, 1 ⩽ q ⩽ m} contains not more than the

first c proportions of the indexes. For example, suppose the set {p,q : 1 ⩽
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p ⩽ n, 1 ⩽ q ⩽ m} contains a total of ten indexes, then Ω0.1 will contain

the first pair of index values,Ω0.2 will contain the first two pair of index

values, and so on. The assumption of equal means in the sequence is

rejected if the maximum CUSUM process is sufficiently large. Therefore,

a suggested test statistic is given by Ploberger and Krämer (1992):

sup
0⩽c⩽1

∣∣B(nm)(c)
∣∣ . (5.4)

To conduct the test with this statistic, it is necessary to derive its distribu-

tion. The finite sample null distribution of this test statistics is not known.

However, Sen (1982) showed that for infinitely large nm, the test statistic

W(nm)(c) converges in distribution to a standard Brownian bridge:

B(nm)(c)
d−→ B(c), B(c) =W(c) − cW(1). (5.5)

Here,W(c) is a real-valued continuous-time stochastic process, commonly

known as the Wiener process in the literature. For more details on its

characterization—such as its independent increments, which are normally

distributed with variance equal to the difference in the time indices—refer

to (Billingsley, 1968, p. 61-65). This limiting process (Equation (5.5)) is

circular, starting at 0 when c = 0 and returning to 0 at c = 1. Consequently,

there exist a point γ0 where the maximum fluctuation in the residuals

occurs. The test statistic in Equation (5.4) has the following limiting
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cumulative distribution (Billingsley, 1968, p. 85, Eq. (11.39)):

Θ(x) = 1 + 2
∞∑
i=1

(−1)i exp(−2i2x2). (5.6)

For a significance level α, for example say α = 5% (the level that we

use in subsequence analysis), the critical value Θ−1(α) obtained is 1.36.

Values of Equation (5.4) exceeding this threshold indicate statistically

significant fluctuations. Although this critical value produces constant

linear boundaries, a more effective framework for detecting variations

adopted in this work, utilizes elliptical boundaries defined by: Θ−1(1 −

α)
√
c(1 − c). Equivalently, the statistical significance of the fluctuations

can be determined by computing a p-value. Due to the OLS formulation

and the CUSUM constructions, this change point testing procedure is

called the ‘OLS-CUSUM test.’ The computation of the empirical fluctuation

process and its boundaries as well as this hypothesis testing procedure are

implemented in the R software package strucchange (Zeileis et al., 2002).

5.3.3 Spatial point processes applied to TDA

representations

After detecting structural shifts in the point cloud sequence, we employ

spatial point process techniques to analyze the point cloud configurations

at the identified change boundaries, allowing us to characterize the local

structural changes driving these transitions. This is motivated by the fact
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that simplicial complexes are constructed by drawing spheres of a given

radius around the points in the space. While the distribution of these

points are reflected in the resulting persistence diagram and subsequent

persistence summaries, features of this distribution can also be captured

using tools from spatial point analysis, specifically, the pair correlation

function (PCF). The PCF is a statistical tool used to analyze the spatial dis-

tribution of points in a point cloud. Consider a point cloud X = {x1, · · · , xP}

observed within a region V ⊂ R3 with volume |V|. The intensity λ of the

point process is defined as λ = P/|V|, representing the average number of

points per unit volume. The PCF, denoted g(r), quantifies the likelihood

of finding a pair of points separated by a distance r relative to what would

be expected under complete spatial randomness (CSR). Under CSR, the

PCF is constant: g(r) = 1 for all r. Deviations from this baseline indicate

clustering (g(r) > 1) or regularity (g(r) < 1) in the point distribution.

To estimate the PCF empirically, we consider the pairwise distances

between points in X. The empirical PCF ĝ(r) is computed by smoothing

the observed pairwise distances using a kernel function. In this work, the

Epanechnikov kernel with a fixed bandwidth h = 0.26/λ1/3 (a rule-of-

thumb bandwidth) is employed for smoothing. The Epanechnikov kernel

is defined as:

KEpa(x;h) = 3
4h

(
1 −

x2

h2

)
1(|x| ⩽ h), (5.7)
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where 1(·) is the indicator function. The empirical PCF is then given by:

ĝ(r) =
1

4πr2λP

∑
i

∑
j̸=i

KEpa (||xi − xj||− r;h) e(xi, r), (5.8)

where e(xi, r) is an edge correction factor accounting for points near the

boundary of V. Specifically, e(xi, r) is defined as the inverse of the fraction

of the sphere centered at xi with radius r that lies within V (Baddeley

et al., 1993, 2015). This correction ensures that boundary effects do not

bias the estimation of the PCF. For interpretability, the PCF is often scaled

by subtracting 1, yielding a reference value of 0 under CSR. This scaled

version is adopted in this work, providing a clearer baseline for identi-

fying deviations from randomness in the spatial distribution of points.

Figure 5.12 illustrates example distribution of point clouds and their cor-

responding PCFs. The g(r) is centered at 0 by subtracting 1. The PCF of

the random point cloud (solid orange line) lies close to zero, reflecting

the randomness of the point distribution. For the clustered point cloud,

the PCF (dotted green line) is above zero at small distances, indicating

within-cluster proximity, with the location of the maximum suggesting

the most frequent short inter-point distance. Conversely, the PCF of the

regular point cloud (dashed blue line) initially decreases, indicating a

tendency for points to be farther apart than expected randomly.
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Figure 5.5: Example distributions of point clouds (1000 points each in R3)
and their corresponding pair correlation functions. Top-left: a randomly
generated point cloud following a homogeneous Poisson process, with
its pair correlation function (solid orange line) near zero, indicating ran-
domness. Middle-left: a clustered point cloud, where the pair correlation
function (dotted green line) is above zero for small distances, showing
within-cluster proximity. Bottom-left: points with near-uniform pairwise
distances exhibit repulsion, and the pair correlation function (blue dashed
line) is below zero for smaller scales.

5.4 Applications

This section demonstrates the application of the methods introduced in

Section 5.3 to all-atom MD simulations of ILs. ILs are room-temperature

salts with unique electrochemical properties, making them ideal candi-

dates for battery applications. In addition, ILs have interesting spatial

and structural patterns at the atomic level. We explore two case studies:

1) the effect of varying the alkyl chain length of the cation within an IL
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family, and 2) the impact of varying the concentration of a specific IL in an

acetonitrile solvent. For the first case study, eight distinct MD simulation

trajectories are generated, while the second case study involves 13 trajecto-

ries. Each trajectory is processed by averaging the Cartesian coordinates of

the IL over all time frames, providing a static representation of the system’s

spatial configuration for analysis. These case studies illustrate the utility

of the proposed methods in capturing and quantifying nanostructural

patterns in complex ionic systems.

5.4.1 Data normalization and robustness

The realizations of different ILs, observed as 3D point clouds, may differ

in the number of points in this 3D space, and by extension, their densities

might be different. To mitigate the impact of varying point cloud densities

on computed topological features, particularly for the H1 features, we

employ a data normalization technique based on scaling the point cloud

by the average first nearest neighbor (1-NN) distance of each point cloud.

For a given point cloud X = {x1, · · · , xP}, each data point’s coordinates are

scaled by dividing by the average 1-NN distance:

x̄i =
xi

d̄1-NN
, d̄1-NN =

1
P

P∑
i=1

min
1⩽j⩽n,i ̸=j

||xi − xj||R3 , (5.9)

where || · ||R3 is the Euclidean distance between any two points in the space.

The scaled data that is used for all the analyses is denoted as: X̄ =
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Figure 5.6: Distribution of the point cloud before and after scaling with
average 1-NN distance. Top-left: unscaled point cloud data for EMIM;
top-middle: unscaled point cloud data for DDMIM; top-right: empiri-
cal cumulative distribution functions (ECDFs) of the unscaled datasets.
Bottom-left: scaled point cloud data for EMIM; bottom-middle: scaled
point cloud data for DDMIM; bottom-right: ECDFs of the scaled datasets.

{x̄1, · · · , x̄P}. To demonstrate the effectiveness of this normalization, con-

sider Figure 5.6 where the IL 1-ethyl-3 methylimidazolium (C2Mim) BF4

and 1-dodecyl-3 methylimidazolium (C12Mim) BF4 are compared. The

point cloud 1-ethyl-3 methylimidazolium (C2Mim) BF4 have 4008 points

while 1-dodecyl-3 methylimidazolium (C12Mim) BF4 have 1914 points.

From Figure 5.6-right top, the comparison of their empirical cumulative

distribution of the 1-NN distance is shown before the proposed scaling,

indicating some difference in their distribution. However, after scaling

by the proposed method the difference in their observed 1-NN distance
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Figure 5.7: The running average distance of the average and maximum
persistence summaries for three selected ILs. The n is the number of sam-
ples, where sample is defined as a frame or its point cloud representation.
The differences are less wiggly after 30 samples, and more stable results
can be obtained after 100 samples.

are very similar as shown in Figure 5.6-right bottom. In this particular

example, the magnitude of the difference might not appear pronounced,

but such disparities could significantly affect the persistence of the ho-

mology features when aggregated over a large set of observations. Since

the VR filtration is constructed by forming simplices based on proximity,

this normalization standardizes the scale of distances and ensures that the

topological features identified are intrinsic to the time-averaged trajectories

structure rather than artifacts of point density.

A final robustness check in our analysis pipeline involves determin-

ing the minimum number of samples (defined as frames or their point

cloud representations) required to obtain consistent results. This is par-

ticularly relevant for the CPA, where we construct sequences as defined
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in Section 5.3.1. Specifically, we aim to identify the minimum number of

samples needed to reliably detect the same change point. To assess this,

we computed the Running Average Distance (RAD) of the persistence

summaries. The RAD at index (p > 1,q) is defined as:

RADp,q =
1

(p− 1) + (q− 1) · n

(
p−1∑
k=1

m∑
l=1

(yp,q − yk,l) +

n∑
k=1

q−1∑
l=1

(yp,q − yk,l)

)
.

Figure 5.7 illustrates the RAD results for (C2Mim) BF4, (C6Mim) BF4, and

(C12Mim) BF4. Our analysis shows that the successive average differences

stabilize after 30 samples, with more consistent results achieved beyond

100 samples. This stability suggests the analysis can be performed with

fewer frames, reducing computational costs while maintaining accuracy.

5.4.2 Case Study I: Varying Alkyl Chain Length

This case study focuses on a well-characterized class of ILs: imidazoliums.

These are defined by base cations consisting of a five-membered ring

containing two nitrogen atoms. Specifically, we consider imidazolium ILs

with varying alkyl chain lengths. Bulk molecular dynamics simulations

were conducted for each IL using an 8× 8× 8 nm3 simulation box. The

following cation–anion pairs were used:

i) 1-ethyl-3-methylimidazolium (C2Mim)BF4 − EMIM(2)

ii) 1-propyl-3-methylimidazolium (C3Mim)BF4 − PMIM(3)
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iii) 1-butyl-3-methylimidazolium (C4Mim)BF4 − BMIM(4)

iv) 1-pentyl-3-methylimidazolium (C5Mim)BF4 − PTMIM(5)

v) 1-hexyl-3-methylimidazolium (C6Mim)BF4 − HMIM(6)

vi) 1-octyl-3-methylimidazolium (C8Mim)BF4 − OMIM(8)

vii) 1-decyl-3-methylimidazolium (C10Mim)BF4 − DMIM(10)

viii) 1-dodecyl-3-methylimidazolium (C12Mim)BF4 − DDMIM(12)

These ILs were selected for this case study because it is well established in

the literature that as the alkyl chain length n in (CnMim)BF4 increases, the

bulk IL transitions from a homogeneous to a heterogeneous nanostructure,

typically around n = 4 - 6 (Wei et al., 2021). This structural transition is

visually apparent in the MD simulations, as shown in Figure 5.8, where

longer alkyl chains lead to increased nanoscale segregation of the nonpolar

cation alkyl chains.

The data normalization described in Section 5.4.1 is then applied to

each IL simulation point cloud. The proposed analysis pipeline is then

applied to this normalized point cloud. First, the persistence diagrams are

constructed for each point cloud and from which several persistence sum-

mary statistics, including the minimum, quartiles (25th, 50th, and 75th

percentiles), average, maximum, and variance are computed. However,

only the average and maximum values were utilized in the subsequent

analysis. Specifically, we focus on the H1 features, which correspond to
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(e) (f) (g) (h)

Figure 5.8: Example MD simulation point cloud data where yellow indi-
cates cation and blue indicates anion for (a) EMIM(2) (b) PMIM(3) (c)
BMIM(4) (d) PTMIM(5) (e) HMIM(6) (f) OMIM(8) (g) DMIM(10) (h)
DDMIM(12).

loops formed by the arrangement of atoms in molecular dynamics IL sim-

ulations. These loops can provide insight into the structural organization

and clustering behavior of ions within the liquid. The average and max-

imum persistences are displayed as a scatterplot in Figure 5.9. It can be

seen that the average persistence is increasing with alkyl chain length

up to HMIM(6), and there is a dip in the average persistence. A similar

observation can also be made for the maximum persistence, with the only

difference being that there is a slight jump in the maximum persistence

after HMIM(6). These shifts are also apparent in the smoothed density

plots in Figure 5.10. As the alkyl chain length increases, the spread of
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Figure 5.9: Summary of the persistence of the H1 features. Top: The
average persistence. Bottom: The maximum persistence.

the persistence summaries changes, visual difference can be observed in

the groups with alkyl chain length above six and groups with alkyl chain

length not exceeding six. The CPA is used to more rigorously study this

observed differences between these imidazolium groups and quantify

their statistical significance. The average and maximum empirical fluc-

tuation process defined in Equation (5.3) is shown in Figure 5.11. The

empirical fluctuation process (EFP) for both persistence summaries do

not fall within the elliptical boundary at all sequence points, indicating

statistically significant fluctuations. The point at which the two processes
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Figure 5.10: A density plot of the distribution of the average and maximum
persistence summaries.
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Figure 5.11: The empirical fluctuation process (EFP) identifying the loca-
tion of the change in mean for the average persistence EFP (dotted red
lines) and maximum persistence EFP (dasjed cyan lines). The solid black
lines are the EFP boundaries. The square red point indicate the location
(2179) of the change-point for the average persistence. The cyan circle
indicates the change-point location (5000) for the maximum persistence.

are at their minima as well as their significance are summarized in the

top-half of Table 5.1. Both change-point (CP) locations are statistically

significant.
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Statistic CP Location Test Statistic CP Group

CnMim BF4
Average 2179 33.39 BMIM(4)

Maximum 5000 39.91 HMIM(6)

C2Mim BF4
Average 9967 20.54 1.650M

Maximum 1964 25.90 0.125M

Table 5.1: The summary results of the CPA of the two data bases applied
to the average and maximum processes. Both change-point (CP) locations
are statistically significant for the pure IL and their CP locations are not at
the boundary or do not fall within a boundary group.

To relate the CPs detected to the local variations in the original point

cloud, we construct the PCFs of the various imidazolium groups. From

the CPA results, we expect groups with chain-length above six to differ

in local structural variations compared to those at or below chain length

of six. The PCF of each MD imidazolium simulation via the single-atom

representation is shown in Figure 5.12. This is similar to a traditional MD

radial distribution function that looks at molecules or atoms with respect to

their nearest neighbor to dictate the radius of the first solvation shell which

highlights the nanostructural organization of ILs. The imidazolium groups

with alkyl chain length not exceeding six exhibits different structural

organization and clustering behavior compared to the groups with chain

length exceeding six. In general the higher the chain length, the more

pronounced the clustering pattern, and the clustering pattern is observed

to be pronounced at scale between 0.05 and 0.075 for all groups. These

observations are consistent with the CPA results, in that for the CPA,

we observed that longer alkyl chain lengths are associated with broader
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Figure 5.12: The pair correlation function averaged over 1000 frames quan-
tifying the degree of clustering.

distribution of persistence, resulting in higher variance. This broader

distribution of persistence with higher variance is indicative of patterns

of aggregation. This provides a distinctive way to observe shifts in the

nanostructure variations in the experimental sequence.

5.4.3 Case Study II: Varying Molar Concentration

In contrast to the first case study, which explored a range of ILs, this

second case study focuses exclusively on a single compound: 1-ethyl-3-

methylimidazolium tetrafluoroborate, denoted as (C2Mim)BF4 . This IL

has been widely studied in experimental literature due to its promising

properties in energy-related applications, particularly in batteries and

electrocatalysis(Liu et al., 2022). One prevailing hypothesis is that ionic

nanoclustering alters the Debye screening length, potentially influenc-
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ing charge transport properties (Gebbie et al., 2023). To investigate these

effects from a molecular perspective and identify nanoclustering, MD simu-

lations were carried out at thirteen different concentrations of (C2Mim)BF4

in acetonitrile solvent, ranging from highly dilute to pure IL conditions

(0.025 M, 0.125 M, 0.3 M, 0.4 M, 0.5 M, 0.7 M, 0.9 M, 0.997 M, 1.0 M, 1.65 M,

3.28 M, 4.91 M, 6.5 M). The point clouds corresponding to these simula-

tions were normalized, and persistence diagrams computed for all thirteen

concentrations. Similar to Case Study II, persistence summary statistics

were computed and the average and maximum persistence are shown in

Figure 5.13. At low concentrations, considerable variation was observed

in both the average and maximum persistence values. This variability is

consistent with the sparsity of ions and the increased number of possible

spatial configurations in dilute regimes. As concentration increases, the

variance in persistence reduces, reflecting a more constrained ionic envi-

ronment. An interesting pattern to observe is that when controlling for the

variation in the persistence, the topology of the lower concentrations ap-

pears to be replicated by that of the higher concentrations, exhibiting some

form of cyclical pattern in the topology. This cyclic pattern is more clearly

seen in the smoothed density plots shown in Figure 5.14. This suggests

that it might be possible to recover the topology of the lower concentration

from that of the higher concentrations and vice versa. Further, this cyclic

pattern implies that locations of significant nanostructure variations are

likely to occur at the extreme groups or closer to the extreme.
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Figure 5.13: Summary of the H1 features persistence for the C2Mim BF4
dataset. Top: The average persistence. Bottom: The maximum persistence.

To quantify the existence of any such locations with significant nanos-

tructure variation, we applied the CPA. The average and maximum em-

pirical fluctuation process is shown in Figure 5.15. The EFP for both

persistence summaries attained their peaks close to the boundary of either

direction. The point at which the two processes are at their peaks as well as

their significance are summarized in the bottom-half of Table 5.1. Both CP

locations are statistically significant for the dilute IL, but their CP locations

occur close to the least and highest concentration groups. The closeness

of these change-point locations to the boundaries indicates there is no
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Figure 5.14: A density plot of the distribution of the average and maxi-
mum persistence summaries computed from the persistence diagrams
constructed for the C2Mim BF4 dataset.
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Figure 5.15: The empirical fluctuation process (EFP) identifying the loca-
tion of the change in mean. The solid black ellipse is the empirical bound.
The dotted red lines, and the dashed cyan lines indicates the EFP of the
average persistence and maximum persistence respectively. The square
red point indicate the location (9967) of the change-point for the average
persistence. The cyan circle indicates the change-point location (1964) for
the maximum persistence.

significant nanostructure variations that distinguishes the different con-

centrations. To confirm our observations, we look at the PCF computed for
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the thirteen concentrations, which is shown in Figure 5.16. In general, the

peaks of the PCF for all the thirteen concentrations are relatively similar,

with the only difference being the scale at which they occurred. Hence
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Figure 5.16: The pair correlation function averaged over 1000 frames quan-
tifying the degree of clustering for the C2Mim BF4 dataset.

the proposed pipeline reveals similar nanostructure variations across the

different concentrations. Specifically, clusters tend to form holes rather

than fully agglomerated ion structures. The lifetimes of these holes are

comparable across all thirteen concentrations, making it challenging to

pinpoint a clear turning point in the non-monotonic trend for both the

average and maximum persistence.

5.5 Discussion and Conclusion

This work presents a topological framework for analyzing MD simulations

of ILs, with a focus on characterizing nanoscale structure and identifying
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nanostructural transitions. Building on the persistent homology formal-

ism within TDA, the proposed methodology leverages the geometric and

topological structure of MD-generated point clouds to extract physically

interpretable descriptors of ionic organization. Through the integration of

change point detection and spatial point process modeling, the framework

facilitates the detection of regime shifts and spatial aggregation patterns

without relying on predefined structural assumptions.

The two case studies demonstrate how variations in molecular architec-

ture (alkyl chain length) and composition (solute concentration) influence

the emergence of topological features such as clusters and loops. In the

first case, changes in persistent homology signatures revealed a grad-

ual transition to percolated domain structures, consistent with known

nanosegregation behavior (Wei et al., 2021). In the second case, the frame-

work captured the formation and dissolution of ionic aggregates as a

function of concentration, enabling the delineation of distinct structural

regimes. These findings underscore the potential of TDA to complement

traditional MD analysis tools by capturing global organizational patterns

that may not be apparent through conventional descriptors.

Overall, the results highlight the utility of TDA as a robust and flex-

ible framework for probing nanoscale structure in complex molecular

systems. By enabling quantitative and interpretable analysis of MD simu-

lations through a topological lens, this approach opens new avenues for

understanding structure–function relationships in ILs and related mate-
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rials. Future work may extend this methodology to include additional

molecular components, incorporate temporal dynamics more explicitly, or

explore alternative topological descriptors that capture other structural or

functional aspects of interest.
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6 conclusion and future directions

This dissertation develops robust statistical methods for persistent homol-

ogy that extend the applicability of topological data analysis to complex

and irregular data settings. The work contributes to three main areas:

methodology for irregularly sampled time series, statistical inference for

persistent features, and domain-specific application to molecular simu-

lation data. A novel subsequence-based delay embedding is proposed

for irregularly spaced time series, addressing the limitations of classical

embeddings that assume uniform sampling. The method is supported by

theoretical guarantees and numerical studies showing improved preser-

vation of topological structure in the presence of noise and irregularity.

To address the challenge of statistical inference on persistence features,

we also introduce MaxTDA, a framework for estimating and evaluating

the significance of the most persistent topological features. Standard ro-

bust approaches tend to shrink persistent features and obscure genuine

signal. MaxTDA combines thresholded kernel density estimation with

a sampling-based procedure to reduce bias in the presence of noise and

outliers. This enables more accurate inference on maximal persistence

features, allowing for improved feature extraction and hypothesis testing

in applied settings. Finally, persistent homology is used to characterize

nanoscale structure in ion distributions and to detect transitions between

structural regimes in molecular dynamics simulations.
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The methods developed in this work illustrate the importance of in-

tegrating statistical principles into the persistent homology pipeline. By

addressing irregular sampling, uncertainty, and interpretability, this dis-

sertation contributes to a more principled foundation for topological data

analysis. The conclusions in Chapter 2, 3 and 4 discusses various directions

for future research. These include extending the proposed embedding

method to multivariate and spatially indexed time series, developing for-

mal statistical guarantees for other persistence-based summaries, and

applying robust topological methods in experimental or observational

settings across scientific domains. Overall, this work highlights how ro-

bust statistical techniques can enhance the reliability and applicability of

topological methods in modern data analysis.
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