
TOWARDS A UNIFIED ANALYSIS FRAMEWORK FOR
ONLINE NETWORK DESIGN

By

Seeun William Umboh

A dissertation submitted in partial fulfillment of
the requirements for the degree of

Doctor of Philosophy

(Computer Sciences)

at the

UNIVERSITY OF WISCONSIN–MADISON

2015

Date of final oral examination: 05/13/2015

The dissertation is approved by the following members of the Final Oral Committee:
Shuchi Chawla (Advisor), Associate Professor, Computer Sciences
Eric Bach (Coadvisor), Professor, Computer Sciences
Dieter van Melkebeek, Professor, Computer Sciences
Alberto Del Pia, Assistant Professor, Industrial and Systems Engineering
Mohit Singh, Researcher, Microsoft Research

© Copyright by Seeun William Umboh 2015

All Rights Reserved

i

To my love, Ka Yi.

ii

Acknowledgments
My Ph.D. journey was full of challenges and I could not have made it without the

support and encouragement of many people.

First and foremost, I am indebted to my advisor, Shuchi Chawla, for her guidance

and insight. She also kindly took me along with her during her sabbatical at the

University of Washington and Microsoft Research, Redmond. It was during this

period that I developed the main ideas for this thesis and I am grateful that Shuchi

gave me the freedom to pursue my own ideas. Moreover, I was spared the brutal

polar vortex that blasted the midwest that winter! I also want to thank my coadvisor

Eric, and the members of my dissertation committee Dieter, Mohit, and Alberto

for their time and input. In particular, Mohit’s comments greatly improved the

exposition in my SODA paper and my thesis.

I am thankful to all my collaborators and coauthors: Shuchi Chawla, Siddharth

Barman, David Malec, Mohit Singh, Debmalya Panigrahi, Anupam Gupta, R. Ravi,

and David Williamson. It was a great pleasure working with you!

I am grateful to the UW theory students, current and past: Matt, Jeff, Siddharth,

David, Dalibor, Tyson, Balu, Heng, Ben, and many others. In particular, I want to

thank Siddharth. His excitement for network design heavily influenced my decision

to work in this area. I learnt a ton from our collaborations and had a lot of fun (and

coffee!) working together with him. The weekly theory lunches also provided a

welcome respite from work.

Many thanks to my friends and family. I have fond memories of climbing and

gorging on good food afterwards with Makrand during my one-year stay in Seattle.

I am very grateful to have known the “Italianos”: Alberto, Carla, Paola, Jeff, Lorenzo.

The last few months of graduate school were some of the most stressful, and our

iii

long weekly dinners and lively discussions about food and culture kept me sane

during this period.

Last but not least, I want to thank my fiancee for her unconditional love and

infinite patience during the past few years. I could not have made it without you!

iv

Contents

Contents iv

List of Figures vi

Abstract vii

1 Introduction 1

1.1 Previous Approaches 5

1.2 Our Contributions 9

1.3 Overview of Results 13

2 Background on HST Embeddings 17

2.1 HST Embeddings 17

3 Steiner Problems 20

3.1 Warmup: Steiner Tree 21

3.2 Steiner Forest 23

3.3 Steiner Network 26

3.4 Notes 30

4 Shared-vs-Individual Objectives 32

4.1 Single-Source Rent-or-Buy 37

4.2 Multiple-Source Rent-or-Buy 40

4.3 Connected Facility Location 44

4.4 Prize-Collecting Steiner Tree 50

4.5 Notes 54

v

5 Online Multicast Games 56

5.1 Introduction 56

5.2 Model 58

5.3 Upper Bound 59

5.4 Lower Bound 67

5.5 Notes 71

6 Random Permutation Model 72

6.1 Introduction 72

6.2 Upper Bound 74

6.3 Lower Bound 82

6.4 Notes 87

Bibliography 88

vi

List of Figures

2.1 The first figure is a line graph with unit-length edges. The second figure

is a HST embedding of the line metric, where the hollow tree vertices are

extra vertices that do not belong to the line graph. The third figure shows

the hierarchical decomposition corresponding to the HST embedding:

the outer, and inner, ellipses correspond to the partiton given by the HST

edges of length 2, and 1, respectively. The partition given by the edges of

length 1/2 are just the terminal singletons and are not shown. 18

4.1 Counterexample for purely greedy algorithm. 35

5.1 Example for n = 2. Auxiliary vertices are in red, end vertices are in blue.

Ovals represent clusters. Only inter-layer edges are shown. 69

6.1 Diamond graphs D0, D1, and D2. In the last diagram, the black vertices

representW0, green representW1, and blue representW2 83

6.2 Example for N = 3. The thick edges represent F1, F2, F3 and OPT, respec-

tively. The red vertices represent terminals. In the first two diagrams,

the red path represents P2 and P3, respectively. 84

vii

Abstract
We consider network design problems in the online setting: the algorithm is given

a graph with edge costs; requirements arrive over time, and the algorithm has

to satisfy them as they arrive. The main contribution of this thesis is an analysis

framework based on a novel application of tree embeddings that leads to a new

approach for online network design: we use greedy-like algorithms but analyze them

using tree embeddings. Using this approach, we improve upon previous work and

obtain deterministic algorithms for a wide variety of problems that achieve the best

possible competitive ratios, even when compared against randomized algorithms.

We also apply our framework to two other settings of online network design: online

multicast games where terminals represent selfish players, and to online network

design problems where the requests arrive in random order.

1

1 Introduction
Network design concerns the following fundamental combinatorial optimization

problem:

Problem 1.1. Given a graph G, a set of requirements and an objective function, find an

optimal network in G satisfying the requirements.

A basic network design problem is the Steiner tree problem: given a graph G with

edge costs and a distinguished subset of vertices called terminals, find a minimum-

cost tree connecting all terminals. Network design problems often model optimiza-

tion problems in real-life networks, such as telecommunication and transportation

networks, capturing the essential combinatorial features and computational difficul-

ties of their real-life counterparts. From a mathematical standpoint, the quest for

efficient algorithms for network design has led to many beautiful theorems about

the combinatorial structure of optimal solutions, such as the celebrated max-flow

min-cut theorem.

This thesis focuses on online algorithms for network design problems. Typically,

network design problems are studied in the offline setting in which all connectivity

requirements are given in advance to the algorithm. However, in many practical

situations, the requirements arrive over time and the network needs to grow to

satisfy them as they arrive. For instance, telecommunications networks grow over

time as new customers arrive, and the goal is to minimize the cost of adding new

customers to the network. This is called the online setting.

An online algorithm receives the requirements over time, and constructs the net-

work on-the-fly to satisfy the requirements (also called requests) as they arrive;

furthermore, at any time, previous decisions are irrevocable—it is not possible

2

to recoup previously-incurred costs. Competitive analysis [ST84] is a standard ap-

proach to measure the quality of an online algorithm. In competitive analysis, the

algorithm’s solution is compared against the “optimal-in-hindsight” solution—the

optimal solution found when all requirements are known in advance. An online

algorithm has competitive ratio α if its solution costs no more than α of the optimal-

in-hindsight solution. (For brevity, we will use the term “optimal solution” to refer

to the optimal-in-hindsight solution.) A problem is said to have a competitive ratio

of α if there exists an α-competitive online algorithm for it.

The most basic online network design problem is the online Steiner tree problem

introduced by Imase and Waxman [IW91], who initiated the study of online network

design. In this problem, the algorithm is given the underlying graph G and a

distinguished terminal (called the root) in advance, but the rest of the terminals are

revealed one-by-one. The algorithm maintains a subgraph H; when a terminal is

revealed (we say that the terminal arrives), the algorithm must choose edges to add

to H so that i is connected to the root in H. Furthermore, once the algorithm has

chosen an edge, it cannot undo its decision in the future. After all the terminals

have arrived, the algorithm’s solution is compared against the optimal Steiner tree

over those terminals.

In the online setting, the main challenge is having to commit to decisions without

having complete information about the input. There are two fundamental questions

in the study of any online problem.

Question 1. What is the best-possible competitive ratio?

It is natural to compare online algorithms against offline ones. Clearly, no online

algorithm can produce a better solution than the best offline algorithm, which is

given the entire input in advance. But can offline algorithms find the optimal solution

3

efficiently? It turns out that many interesting network design problems (including

the Steiner tree problem) are NP-hard so it is unlikely—unless P = NP—that they

admit efficient optimal algorithms. Thus, we compare online algorithms against

approximation algorithms. An approximation algorithm (for cost-minimization prob-

lems) is a polynomial-time offline algorithm whose solution is guaranteed to cost no

more than some factor of the optimal solution; this factor is called the approximation

ratio of the algorithm. For any given problem, its approximation ratio is no worse

than its competitive ratio since an online algorithm can be used as an approximation

algorithm. The gap between the competitive ratio and the approximation ratio

measures the handicap imposed by the online setting, and determining this gap is

an important goal in the study of online algorithms.

Question 2. What is the power of randomness?

Randomness is a powerful resource for online algorithms. For many online

problems, the best randomized algorithm has an expected competitive ratio that

is much better than the competitive ratio of the best deterministic algorithm.1 The

main reason is that in the online setting, deterministic algorithms can be easily

fooled into making decisions that look good at the time, but turns out to be highly

suboptimal in hindsight.2 On the other hand, truly random bits can be difficult to

obtain, so we prefer good deterministic algorithms. Understanding the gap between

deterministic and randomized online algorithms—the power of randomness—is

also central to the study of online algorithms.
1One such example is the paging problem [FKL+91, ST84]. See [BEY05] for other examples.
2Roughly speaking, the adversary sets up an instance so that for each request, the algorithm has

to choose from several options that appear equally good given previous decisions and requests; since
the algorithm is deterministic, the adversary can simulate it to figure out which option it will choose
and this allows the adversary to set up the remaining requests so that the algorithm’s choice is the
wrong one in hindsight. Randomized algorithms foil this adversarial strategy since the adversary
cannot predict the algorithm’s decisions.

4

Imase and Waxman [IW91] answered the above questions for the Steiner tree

problem: the gap between online and offline algorithms is Θ(log k), where k is the

number of terminals, and randomization does not help. In the offline setting, there

is a simple 2-approximation based on a reduction to the minimum spanning tree

problem (c.f. [Vaz01, Chapter 3]), and the current best is a 1.39-approximation by

Byrka et al. [BGRS13]. In the online setting, Imase and Waxman [IW91] showed that

the natural greedy algorithm—connect the current terminal to the nearest previous

terminal—isO(log k)-competitive. They also proved a matching lower bound: every

online algorithm, even randomized ones, has a competitive ratio ofΩ(log k).

Since the work of [IW91], other network design problems have been studied in the

online setting. This thesis focuses on problems that admit an approximation factor

preserving reduction to their metric versions. In the metric version of a problem, the

input graphG is a complete graph and the edge costs form a metric—i.e. they satisfy

the triangle inequality. These online problems include Steiner forest, prize-collecting

Steiner forest, Steiner network with edge duplication, rent-or-buy, connected facility

location. In each of these problems, each request is defined either over a terminal

or a terminal pair. Henceforth, we use X to denote the set of terminals and k = |X|,

while n = |V |, the total number of vertices.

These problems generalize the Steiner tree problem, so they do not admit algo-

rithms with competitive ratio asymptotically better than log k, even randomized

ones. Previous work gave deterministic O(log k)-competitive algorithms for Steiner

forest [BC97] and prize-collecting Steiner forest [QW11]. However, for Steiner net-

work with edge duplication, the current-best is a randomized O(logn)-competitive

algorithm is known (folklore); for rent-or-buy, the current-best is a randomized

O(log k)-competitive algorithm; and for connected facility, the current-best is a

randomized O(log2 k)-competitive algorithm.

5

Problem Previous Work This Thesis
Steiner network with edge duplication O(logn) rand. O(log k) det.

Rent-or-Buy O(log k) rand. [AAB04] O(log k) det.
Connected facility location O(log2 k) rand. [SFWL14a] O(log k) det.

Table 1.1: Our main results.

This thesis develops a new analysis framework for online network design prob-

lems. Using this framework, we improve upon previous work and devise deter-

ministicO(log k)-competitive algorithms for Steiner network with edge duplication,

rent-or-buy, and connected facility location problems. Thus, our algorithms achieve

the best possible competitive ratio, even when compared against randomized algo-

rithms. Our analysis framework also yields simpler analyses of the algorithms of

[BC97] and [QW11] for Steiner forest and prize-collecting Steiner forest, respectively.

Next, we discuss the dominant approaches in previous work to establish the

context for our work. In the following, since we are focusing on metric versions of

the above problems, we assume the input is a metric (V ,d) instead of a graph G

with edge costs.

1.1 Previous Approaches

The central task in designing approximation and online algorithms is to find an

approximate characterization of the combinatorial structure of optimal solutions,

and develop algorithmic techniques to exploit it. In particular, the goal is to identify

a lower bound on OPT, the cost of the optimal solution, and design an algorithm

whose solution costs at most some factor times the lower bound.

Over the past thirty years, researchers have developed a deep toolkit of approx-

imation techniques for network design: greedy algorithms; linear programming

6

(LP) relaxation methods such as primal-dual, rounding, and dual-fitting; and metric

embedding methods.3 We now discuss how previous work adapted the primal-dual

and metric embedding techniques to the online setting, and their strengths and

weaknesses.

1.1.1 Primal-dual

The primal-dual method was originally used to solve linear programs and combi-

natorial optimization problems that can be solved in polynomial time. We discuss

briefly how it works for minimization problems. The basic idea is to iteratively build

the primal and dual solutions in tandem. Initially, both primal and dual solutions

are empty. Each iteration of the primal-dual method reduces primal infeasibility

while maintaining dual feasibility. In particular while the primal solution is in-

feasible, the unsatisfied primal constraints guides which dual variables to grow,

and the dual constraints that become tight in turn suggests which primal variables

to increase to reduce primal infeasibility. The analysis proceeds by showing that

complementary slackness conditions hold and so the primal objective is equal to

the dual objective. Since the dual is feasible, weak LP duality now implies that

the primal solution is optimal. For approximation algorithms in network design,

the primal-dual method was first used implicitly in the Steiner forest algorithm

of Agrawal et al. [AKR95], and later formalized and generalized by Goemans and

Williamson [GW95] to constrained forest problems. At a high level, the basic method

outlined above is modified to show that approximate versions of the complementary

slackness conditions hold, which imply that the primal objective is at most some α

factor of the dual objective. (See [GW97] and [Wil02] for a fuller discussion of the

primal-dual method.)
3See the survey by Gupta and Könemann [GK11] for a discussion of these techniques and others.

7

The challenge in adapting this method to the online setting is that it is sensitive

to the order in which dual variables are grown. In particular, they need to be grown

in a synchronized manner. However, in the online setting, the requirements, which

define the primal constraints and dual variables, are not given in advance, but arrive

one by one over time. For the online Steiner forest problem, Berman and Coul-

ston [BC97] overcame this obstacle by simulating the offline primal-dual method

over a family ofO(log k) feasible dual solutions, resulting in a deterministicO(log k)-

competitive algorithm. This was later extended by Qian and Williamson [QW11] to

give deterministic O(log k)-competitive algorithms for the online constrained forest

and prize-collecting Steiner forest problems.

1.1.2 Tree embedding

Over the past two decades, the technique of metric embedding has emerged as a

powerful algorithmic tool. Metric embeddings allow us to approximate arbitrary

metrics with simpler metrics. For optimization problems on metrics, metric embed-

dings can be used to reduce to instances on simpler metrics, for which it is easier to

devise good approximation algorithms. Tree embeddings are particularly useful in

network design since network design on a tree is usually easy, even in the online

setting, essentially because there is only one way to connect any two vertices of a

tree. For instance, in the Steiner tree problem, if G is a tree then the optimal solution

is simply the subtree induced by the terminals.

We now sketch how previous work use tree embeddings to design algorithms.

First, we need some definitions. A tree metric (V , T) is a tree with vertices V and

equipped with lengths on edges; the distance T(u, v) between any two vertices

u, v ∈ V is given by the length of the unique (u, v)-path in the tree. A tree embedding

8

of a metric (V ,d) is a tree metric (VT , T) whose vertices VT ⊇ V , and distances

T(u, v) > d(u, v) for all u, v ∈ V (this property is called “expanding”). The distortion

of the embedding maxu,v∈V
T(u,v)
d(u,v) measures how well it approximates (V ,d). In the

following, we abuse notation T to refer to the metric as well as the tree.

Algorithms based on tree embeddings employ the following template. Given

a problem defined on (V ,d), compute a tree embedding (VT , T) of (V ,d), solve the

problem on (VT , T) and translate the solution back into (V ,d). The translation es-

sentially maps edges over VT to edges over V . If the distortion of the embedding is

α, then this is an α-approximation. The analysis consists of two parts. Let ALG(T)

be the cost of the algorithm. Since the distortion of the embeddings is α, we have

OPT(T) 6 αOPT, where OPT(T) is the cost of the optimal solution in (VT , T). Fur-

thermore, the expanding property of the embedding implies that the translation

can only decrease the cost of the solution, so we have

ALG(T) 6 OPT(T) 6 αOPT .

How well can tree metrics approximate arbitrary metrics? Building on the

work of Bartal [Bar96, Bar98], Fakcharoenphol et al. [FRT04] showed that any met-

ric (V ,d) admits a distribution of tree embeddings T with expected distortion

maxu,v∈V ET∈T

[
T(u,v)
d(u,v)

]
6 O(logn), and this is asymptotically tight. Using the

distribution of [FRT04] in the above template gives a randomized algorithm whose

cost is

ET∈T[ALG(T)] 6 ET∈T[OPT(T)] 6 O(logn)OPT .

Awerbuch and Azar [AA97] observed that the above approach can be easily

adapted to the online setting: first compute a tree embedding (VT , T) of the input

metric (V ,d) before the requests arrive, solve the online problem on (VT , T), and

9

translate the solution in an online fashion back to (V ,d). The translation can be online

since the mapping between edges in the embedding and edges in the input metric

can be computed at the beginning together with the embedding. This approach

gives randomized online algorithms for these problems with expected competitive

ratio O(logn).

1.1.3 Strengths and weaknesses

On the one hand, the embedding approach is highly versatile and can be easily

applied to a wide range of problems. In contrast, the primal-dual approach has to

be tailored closely to the specific LP relaxation used for each problem, and typically

involves an intricate accounting scheme. This makes it difficult to extend to problems

with complex connectivity requirements, as their duals are correspondingly more

complex.

On the other hand, the embedding approach gives randomized algorithms

whose competitive ratios scale with the size of the metric space, which can be much

larger than the number of requests. In contrast, the primal-dual approach gives

deterministic algorithms whose competitive ratios depend only on the number of

requests and do not need to preprocess the entire input metric. Furthermore, unlike

in the offline setting, online algorithms based on the embedding approach cannot

be derandomized without significantly degrading their performance guarantees.

1.2 Our Contributions

The main contribution of this thesis is an analysis framework that leads to a new

unified approach for online network design which addresses the drawbacks of the

previous two approaches. At the heart of the analysis framework is the insight that

10

embeddings into a special class of tree metrics called hierarchically separated trees

(HSTs) introduced by Bartal [Bar96, Bar98] give a useful approximate characteri-

zation of the combinatorial structure of optimal solutions and that we can devise

algorithms to exploit it without having to compute the embedding.

We now present a high-level overview of our analysis framework. Suppose we

are given an instance of an optimization problem with input metric (V ,d) and an

algorithm whose solution has cost ALG. For ease of exposition, we start with a

simpler version that gives a competitive ratio of O(logn) and show later how to

optimize it to get O(log k). The main goal in the analysis framework is to prove the

following lemma.

Lemma 1.2. ALG 6 O(1)OPT(T) for every HST embedding T of (V ,d).

Since every n-point metric can be embedded into a distribution of HSTs T with

distortion O(logn) [Bar96, Bar98, FRT04], Lemma 1.2 implies

ALG 6 O(1) ·min
T∈T

OPT(T) 6 O(1) · ET∈T[OPT(T)] 6 O(logn)OPT, (1.1)

as desired. We remark that no particular property of T is needed, it is only used

to show the existence of a HST embedding T with OPT(T) 6 O(logn)OPT. Fur-

thermore, depending on the instance, it is possible that the embedding T∗ which

minimizes OPT(T∗) is much smaller than O(logn)OPT.

To prove Lemma 1.2, we use a charging scheme that leverages a special property

of HST embeddings: a HST embedding T of (V ,d) corresponds to a decomposition

of (V ,d) into bounded-diameter subsets. In particular, an edge eT of T with length

` corresponds to a subset C ⊆ V of diameter diam(C) = maxu,v∈C d(u, v) < `—the

correspondence between the length of eT and the diameter of Cwill be crucial for

11

us. The subsets are called cuts and the collection of cuts C(T) is called a hierarchical

decomposition. Recall that we focus on problems where the objective is a linear

combination of edge lengths in the underlying metric. Thus, the correspondence

between edges and cuts allows us to express OPT(T) in terms of contributions from

the cuts of C(T):

OPT(T) =
∑

C∈C(T)

β(C)diam(C).

Since the optimal solution on trees is easy to characterize, given T , it is easy to

compute β(C) for each C ∈ C(T). Another way to view this is that a HST embedding

gives a hierarchical decomposition of the metric, which in turn gives a hierarchical

decomposition of the optimal solution.

At a high level, the proof of Lemma 1.2 boils down to a argument that locally, in

any small neighborhood, the cost incurred by the algorithm in serving the terminals

in the neighborhood is not too large. In particular, for each terminal v ∈ X, our

charging scheme charges the cost incurred in serving v to a cut of the hierarchical

decomposition that contains it. The choice of the cut is mostly generic and problem-

independent. For C ∈ C(T), let ALG(C) be the charge received by C. The crux of

the analysis lies in proving that ALG(C) 6 O(1)β(C)diam(C) for any cut C ∈ C(T).

This would imply that

ALG =
∑

C∈C(T)

ALG(C) 6 O(1) ·
∑

C∈C(T)

β(C)diam(C) = OPT(T),

which proves Lemma 1.2.

Next, we describe how to get a O(log k) bound instead of O(logn). (Recall that

X is the subset of terminals that arrived and k = |X|.) The key observation is that

the charging scheme only involves terminals, so the analysis outlined above only

12

requires a hierarchical decomposition of the submetric (X,d). Thus, our analysis

framework can be used to prove the following stronger lemma.

Lemma 1.3. ALG 6 O(1)OPT(T) for every HST embedding T of (X,d).

Since the metric (X,d) has k points, it can be embedded into a distribution of HST

metrics T with expected distortion O(log k). Plugging T into Equation 1.1 gives

ALG 6 O(log k)OPT.

Applying our framework to the online Steiner forest algorithm [BC97] and the

online prize-collecting Steiner forest algorithm of [QW11] yields simpler analyses of

their algorithms. The framework also leads to a new approach for online network

design. Roughly speaking, given a problem, we devise a greedy-like algorithm that

ensures that in any small neighborhood, the cost it incurs in serving terminals in the

neighborhood is not too large. Using this approach, we obtain improved algorithms

for rent-or-buy, connected facility location, and Steiner network. We emphasize that

the algorithms themselves do not compute any embedding; the embedding is only

used in the analysis.

Comparison with previous approaches. Our approach has several advantages

over the previous two. First, HST embeddings enable us to systematically generate

lower bounds for a wide variety of problems, providing a unified method to anal-

yse algorithms for these problems. Thus, in contrast to the primal-dual approach,

the analysis framework extends easily to problems with more general connectivity

requirements. Furthermore, the structural properties of the HST embedding allow

for a simpler analysis than using duals. In contrast to the embedding approach, our

algorithms are simple and deterministic. Moreover, because we use the embedding

only in the analysis and not in the algorithm itself, we are able to consider embed-

13

dings of just the terminals and prove a competitive ratio that scales with the number

of requests instead of the size of the entire metric space.

Our work also highlights an interesting connection between HST embeddings

and dual-fitting. We can interpret our charging scheme in terms of dual-fitting—

given any expanding HST embedding of the terminals, we build a dual solution

that is feasible for the HST and charge against it. These dual solutions can be highly

infeasible for the original metric, but averaging over the probabilistic embeddings

of [FRT04] gives a dual solution that is feasible after scaling by the embedding

distortion.4 However, our approach differs from dual-fitting in the usual sense—we

charge against multiple dual solutions simultaneously (one per possible embedding),

and the dual solutions are not built with respect to the original metric but with

respect to the HST embeddings of the terminals. In a sense, our work uses HST

embeddings as a black-box to generate good dual solutions.

Other applications. We also apply our framework to two other settings of online

network design: online network games where terminals represent selfish players,

and to online network design problems where the requests arrive in random order.

1.3 Overview of Results

Chapter 3: Steiner Problems. We demonstrate the basic techniques in this chapter.

We warm up with a simple application to the online Steiner tree problem. Then we

show how to apply it to the Berman-Coulston algorithm for online Steiner forest and

obtain a simpler analysis. Finally, we show how this essentially allows us to reduce

an online Steiner network instance to several online Steiner forest instances and
4This method of charging against randomized duals that are only feasible in expectation was

first used by [DJK13] to analyze a randomized algorithm.

14

obtain a deterministic O(log k)-competitive algorithm for online Steiner network

with edge duplication. Previously, the best algorithm for this problem uses the

standard reduction to tree instances via tree embeddings, and has a randomized

O(log k) expected competitive ratio.

This chapter is based on [Umb15].

Chapter 4: Shared-vs-Individual Objectives. Next, we consider problems that

have what we call a “shared-vs-individual” objective. These include the rent-or-buy,

connected facility location, and prize-collecting Steiner problems. In each of these

problems, part of the solution can be used to satisfy all requests—we call this the

“shared” portion—and part of the solution can only be used for a single request—we

call this the “individual” portion. In particular, the cost of the shared portion can

be shared among several requests but each request is responsible for the cost of its

own individual portion.

In this chapter, we use our analysis framework to obtain deterministic O(log k)-

competitive algorithms for these problems. For the rent-or-buy problem, Awerbuch

et al. [AAB04] gave a randomizedO(log k)-competitive algorithm as well as a deter-

ministic O(log2 k)-competitive algorithm and posed the existence of a deterministic

O(log k)-competitive algorithm as an open problem. Our result resolves this pos-

itively. The online connected facility location problem was recently proposed by

San Felice et al. [SFWL14a] and they gave a randomized O(log2 k)-competitive algo-

rithm. Our algorithm improves on both the competitive ratio as well as the use of

randomness. For the prize-collecting Steiner forest problem, we obtain the same

result as Qian and Williamson [QW11] with a simpler analysis.

This chapter is based on [Umb15].

15

Chapter 5: Network Design Games. Next, we apply our framework to analyze

the dynamics of selfish behavior in online network design. In an online multicast

game, the setup is identical to the online Steiner tree problem, except that each

arriving terminal is associated with a selfish player that desires a path to the root.

When a player arrives, it chooses a path that minimizes its cost share. The cost shares

are defined by dividing the cost of each edge evenly among the players that use it.

Note that the total cost share is the total cost of edges used by at least one player. We

consider a generalization in which players can depart as well—this means that it no

longer participates in the computation of cost shares. Observe that after an arrival

or departure, some previously-arrived player might prefer to switch to a different

path that reduces its cost share, i.e. make an improving move.

Our first result concerns a setting in which whenever the current players are not

in an equilibrium—some player has an improving move—then a central authority

can suggest a particular improving move to a particular player, and that players can

only arrive and depart when we are in an equilibrium. We show that in this setting,

after each arrival or departure, there exists a sequence of improving moves leading

to an equilibrium, such that the total cost shares of the final equilibrium after N

arrivals and departures is at most O(logN) of the minimum Steiner tree over the

vertices which was associated with at least one player. Our second result shows that

if players can arrive and depart at arbitrary times, even when the current players are

not in equilibrium, then there exists a sequence ofN arrivals and departures ending

in an equilibrium whose total cost share isΩ(N1/6) of the minimum Steiner tree.

This chapter is based on joint work with Shuchi Chawla, Debmalya Panigrahi,

and Mohit Singh.

16

Chapter 6: Random Arrivals In this chapter, we consider an input model called

the “random permutation model,” and study online network design in this model.

Here, the adversary decides on the set of requests, but the algorithm is presented

the requests in a (uniformly) random order σ. We consider a special case of the

online constrained forest problem that we call the online Steiner tree with group

arrivals problem. Under the random permutation model, an adversary decides

on a collection of g terminal sets X1, . . . ,Xg, that we call groups, with a common

vertex r ∈ X1 ∪ · · · ∪ Xg. The algorithm is then presented the groups in a uniformly

random order. First, we use a new type of embedding to show that there exists

a simple deterministic algorithm whose expected competitive ratio is O(log g),

where the expectation is over the random arrival order of the groups. Note that

when g is much smaller than k = |X1 ∪ · · · ∪ Xg|, this is much better than O(log k).

Second, we use the lower bound instance of Imase and Waxman [IW91] for the

online Steiner tree problem to show that if the arrival order is adversarial, then no

randomized algorithm can have expected competitive ratio asymptotically better

than Ω(min{log k,g}), which is significantly worse than our upper bound for the

random permutation model when g is much smaller than k.

This chapter is based on work by the author.

17

2 Background on HST Embeddings
In this chapter, we present the necessary metric embedding definitions and results.

2.1 HST Embeddings

Let (X,d) be a metric over a set X of k terminals. Without loss of generality, we focus

on metrics whose smallest distance minu,v∈X d(u, v) = 1. We are only interested in

expanding embeddings, i.e. embeddings that do not contract distances.

Definition 2.1 (Embeddings). A metric (X ′,d ′) with X ′ ⊇ X is an embedding of (X,d)

if for all u, v ∈ X, we have d(u, v) 6 d ′(u, v). The distortion of the embedding is α if

d ′(u, v) 6 αd(u, v) for all u, v ∈ X.

In this thesis, we will be concerned only with embeddings into hierarchically

separated trees [Bar96].

Definition 2.2 (Tree metrics). A metric (VT , T) is a tree metric if there exists a tree

G = (VT ,E) with vertices VT and edge lengths such that for every u, v ∈ VT , T(u, v) =

dG(u, v), where dG(u, v) is the total length of the unique path between u and v in G.

In the following, we abuse notation and use T to refer to the tree G as well.

Definition 2.3 (HST Embeddings). A tree metric (VT , T) is a hierarchically separated

tree (HST) embedding of (X,d) if T is a rooted tree with lengths on edges satisfying the

following properties.

1. Leaf edges have length 1, and edge lengths double as one moves along a leaf-to-root

path.

2. Every node is equidistant to each of its children.

18

1/2

1

2

Figure 2.1: The first figure is a line graph with unit-length edges. The second figure
is a HST embedding of the line metric, where the hollow tree vertices are extra
vertices that do not belong to the line graph. The third figure shows the hierarchical
decomposition corresponding to the HST embedding: the outer, and inner, ellipses
correspond to the partiton given by the HST edges of length 2, and 1, respectively.
The partition given by the edges of length 1/2 are just the terminal singletons and
are not shown.

3. The leaves of T are exactly the terminals X.

4. For an edge e in T , let Ce ⊆ X be the subset of terminals that are separated by e from

the root. If e has length 2j−1, then d(u, v) < 2j for any u, v ∈ Ce.

The last property will be crucial to our analyses. See Figure 2.1 for an example of a

HST embedding.

A HST embedding T of a metric space (X,d) defines a hierarchical decomposition

of (X,d) in the following way. Call an edge e of length 2j−1 a level-j edge of T andCe a

level-j cut. Denote by Ej(T) the set of level-j edges and define Cj(T) = {Ce : e ∈ Ej(T)}

19

to be the set of all level-j cuts. Now since the leaves of T are exactly X, the level-j

cuts Cj(T) partitions X into subsets of diameter less than 2j. The family of partitions

C(T) = {Cj(T)}j is called the hierarchical decomposition of (X,d) defined by T . Note

that there are blog(maxu,v∈X d(u, v))c levels and the level-0 cuts C0(T) are just the

terminal singletons.

In the following, we will use the notation δ(C) to denote the set of vertex pairs

with exactly one endpoint in C, i.e. δ(C) = {(u, v) : |{u, v} ∩ C| = 1}. Note that

(u, v) ∈ δ(Ce) if and only if e lies on the path between u and v in T .

We denote by T(u, v) the distance betweenu, v in T . Fakcharoenphol et al. [FRT04]

showed that any metric can be embedded into HSTs with logarithmic expected dis-

tortion.

Theorem 2.4 ([FRT04]). For any metric (X,d), there exists a distribution D over HST

embeddings T such that ET∼D[T(u, v)] 6 O(log k)d(u, v) for all u, v ∈ X.

The following corollary follows by standard arguments. We will apply it to the

Steiner network and rent-or-buy problems.

Corollary 2.5. For any network design instance with terminalsXwhose objective is a linear

combination of edge lengths d(u, v), there exists a distribution D over HST embeddings T

of (X,d) such that ET∼D[OPT(T)] 6 O(log k)OPT, where OPT (and OPT(T) resp.) is

the cost of the optimal solution on (X,d) (and T resp.).

Again, we emphasize that no particular property of the distribution D is re-

quired. We only need the existence of a HST embedding T∗ such that OPT(T∗) 6

O(log k)OPT.

20

3 Steiner Problems

In this chapter, we apply our analysis framework to the Steiner problems.

Our results. We start with formal definitions of these problems and a statement

of the main result of this chapter.

• In the online Steiner tree problem, the algorithm is given a root terminal r at the

beginning. Terminals i arrive online one-by-one and the algorithm maintains

a subgraph H connecting terminals to the root.

• In the online Steiner forest problem, terminal pairs (si, ti) arrive online one-by-

one and the algorithm maintains a subgraph H in which each terminal pair is

connected.

• In the online Steiner network problem with edge duplication, each (si, ti)pair comes

with a requirement Ri, and the algorithm maintains a multigraph H which

containsRi edge-disjoint (si, ti)-paths. Note that allowingH to be a multigraph

means that the algorithm is allowed to buy multiple copies of an edge. For

brevity, we will simply call this the online Steiner network problem.

The goal in these problems is to maintain a minimum-cost (multi)-graph H

satisfying the respective requirements, subject to the constraint that once an edge

is added to H, it cannot be removed later on. The main result of this chapter is the

following theorem.

Theorem 3.1. There is a deterministicO(log k)-competitive algorithm for the online Steiner

network problem.

21

For the online Steiner network problem, the previous-best algorithm (as far as

we know) is given by the usual tree embedding approach: begin by embedding

the input metric into a tree, solve the tree instance online and then translate the

solution back to the input metric. This yields a randomized algorithm withO(logn)

expected competitive ratio.

Chapter outline. In Section 3.1, we warm up with a simple application of the

analysis framework to the online Steiner tree problem. In particular, we use the

framework to obtain an alternative proof of Imase and Waxman’s result that the

greedy algorithm isO(log k)-competitive for the online Steiner tree problem [IW91].

In Section 3.2, we apply our framework to the Berman-Coulston algorithm for online

Steiner forest [BC97] and obtain a simpler analysis. In the final section, Section

3.3, we show how the analysis in Section 3.2 allows us to reduce any online Steiner

network instance to several online Steiner forest instances, and obtain a deterministic

O(log k)-competitive algorithm for the online Steiner network problem.

3.1 Warmup: Steiner Tree

The greedy algorithm for the online Steiner tree problem is very natural: when

terminal i arrives, connect it to the nearest previously-arrived terminal.

Analysis. Let X ⊆ V be the set of k terminals that arrived and (X,d) be the sub-

metric induced by X. The total cost of the greedy algorithm is
∑
i ai where ai is the

distance between terminal i and the nearest previously-arrived terminal. Our goal

is to show that we can charge the cost of the greedy algorithm against the cost of

the optimal solution on any HST embedding of the terminals.

22

We first define cost shares for each terminal such that the total cost share ac-

counts for the cost of the algorithm. We classify terminals according to ai — define

class(i) = j if ai ∈ [2j, 2j+1) and Zj ⊆ X to be the set of class-j terminals. We define

the cost share of each class-j terminal i ∈ Zj to be 2j+1, i.e. i’s cost share is ai

rounded up to the next power of 2. Thus, the total cost share is at least the cost of

the algorithm.

Lemma 3.2.
∑
i ai 6

∑
j 2j+1|Zj|.

Before we proceed, we show that class-j terminals are at least 2j-apart from each

other.

Lemma 3.3. For every i, i ′ ∈ Zj, we have that d(i, i ′) > 2j.

Proof. Suppose i arrived later than i ′. We have ai 6 d(i, i ′) since i could have

connected to i ′, and ai > 2j by definition of Zj. Thus, we get d(i, i ′) > 2j.

Next, we show that we can charge the cost shares against the cost of the optimal

solution on any HST embedding of the terminals.

Lemma 3.4.
∑
j 2j+1|Zj| 6 O(1)OPT(T) for any HST embedding T of (X,d).

Proof. Let T be a HST embedding of (X,d). We begin by expressing OPT(T) in terms

of cuts from the hierarchical decomposition C(T). Since the terminals are exactly the

leaves of T , the unique feasible solution on T is the entire tree. In particular, we have

OPT(T) =
∑
j

2j−1|Ej(T)| =
∑
j

2j−1|Cj(T)|.

For each terminal i ∈ Zj, charge i’s cost share to the level-j cut containing it. The

total charge received by a level-j cut C ∈ Cj(T) is 2j+1|Zj ∩ C| since C is charged 2j+1

23

for each class-j terminal in C. Thus we have

∑
j

2j+1|Zj| =
∑
j

2j+1
∑

C∈Cj(T)

|Zj ∩ C|.

Each level-j cutC ∈ Cj(T) has diameter less than 2j so Lemma 3.3 implies |Zj∩C| 6 1.

Therefore, we have
∑
j 2j+1|Zj| 6

∑
j 2j+1|Cj(T)| = 4 OPT(T).

We are now ready to bound the competitive ratio of the greedy algorithm. Lem-

mas 3.2 and 3.4 imply that the cost of the greedy algorithm is at most O(1)OPT(T)

for any HST embedding T of (X,d). Furthermore, Corollary 2.5 implies that there

exists a HST embedding T∗ such that OPT(T∗) 6 O(log k)OPT. Thus, the greedy

algorithm is O(log k)-competitive for the online Steiner tree problem.

3.2 Steiner Forest

Next, we apply our framework to the online Steiner forest problem and show that

for every instance, the Berman-Coulston algorithm (Algorithm 3.1) finds a solution

whose cost is at most a constant times the optimal solution on any HST embedding

of the terminals. We remark that this also gives a simpler analysis of the algorithm.

Algorithm. Algorithm 3.1 proceeds as follows. When a terminal pair (si, ti) ar-

rives, its endpoints si and ti are classified based on their distance: class(si) =

class(ti) = blog d(si, ti)c. The algorithm then proceeds in levels, starting from level

j = 0 up to blog d(si, ti)c. At level j, for every previously-arrived terminal v with

class(v) > j, it adds the edge (si, v) to its solution H if d(si, v) < 2j+1, and the edge

(ti, v) if d(ti, v) < 2j+1. We emphasize that the algorithm always considers distances

according to the original metric d, it does not contract edges in H.

24

Algorithm 3.1 Berman-Coulston Algorithm for Steiner Forest
1: H← ∅
2: while request (si, ti) arrives do
3: Assign class(si)← blog d(si, ti)c and class(ti)← blog d(si, ti)c
4: for level j = 0 to blog d(si, ti)c do
5: for each terminal v with class(v) > j, d(si, v) < 2j+1, and si and v not

already connected in H do
6: Add (si, v) to H
7: end for
8: for v such that class(v) > j, d(ti, v) < 2j+1, and ti and v not already con-

nected in H do
9: Add (ti, v) to H

10: end for
11: end for
12: end while

Analysis. Let X be the set of terminals that arrived and define Xj to be the set of

terminals t with class(t) > j. Let Aj be the set of edges added in level j of some

iteration. Note that (u, v) ∈ Aj implies that d(u, v) < 2j+1 and both u, v ∈ Xj.

We need the following lemma for our charging scheme.

Lemma 3.5. For each class j, let Sj be a collection of disjoint subsets of X such that

• Sj covers Xj and

• for each S ∈ Sj, we have d(u, v) < 2j for u, v ∈ S.

Then we have c(H) 6
∑
j 2j+1|Sj|.

Proof. We have that c(H) 6
∑
j 2j+1|Aj| and so it suffices to prove that |Aj| 6 |Sj| for

each j. Fix j and consider the following meta-graph: nodes correspond to Sj; for

each edge (u, v) ∈ Aj, there is a meta-edge between the nodes corresponding to

sets containing u and v. This is well-defined since u, v ∈ Xj and Sj covers Xj. The

meta-edges correspond to Aj and the number of nodes is |Sj|. We will show that the

meta-graph is acyclic and so |Aj| 6 |Sj|, as desired.

25

Suppose, towards a contradiction, that there is a cycle in the meta-graph. Thus,

there exists edges (u1, v1), . . . , (u`, v`) ∈ Aj and sets S1, . . . ,S` ∈ Sj such that vi,ui+1 ∈

Si+1 for each i < ` and v`,u1 ∈ S1. Suppose that (u`, v`) was the last among

(u1, v1), . . . , (u`, v`) that was added by the algorithm and consider the state of the

algorithm right before it added (u`, v`). The algorithm is currently in level j of some

iteration because (u`, v`) ∈ Aj. So, for each 1 6 m 6 `, the terminals Xj ∩ Sm that

have arrived by this iteration are already connected by now since diam(Sm) < 2j

and they have class at least j. Therefore u` and v` are actually already connected at

this time, contradicting the algorithm’s condition for adding the edge (u`, v`). Thus

the meta-graph is acyclic, as desired.

Lemma 3.6. Define the function f : 2X → {0, 1} as follows: f(S) = 1 if |S ∩ {si, ti}| = 1

for some i. For any HST embedding T of (X,d), we have c(H) 6 4
∑
j

∑
C∈Cj 2j−1f(C) =

4 OPT(T).

Proof. Let T be a HST embedding. Define Sj = {C ∈ Cj(T) : C ∩ Xj 6= ∅}, i.e. Sj is the

collection of level-j cuts that contain a terminal of class at least j. Since Sj satisfies

the conditions of Lemma 3.5, we have that

c(H) 6
∑
j

2j+1|Sj|.

Next, we lower bound OPT(T) in terms of its hierarchical decomposition C(T).

For any level-j cut Ce ∈ Cj(T), if (si, ti) ∈ δ(Ce) then e lies on the (si, ti) path in T

so the optimal solution on T contains e. Thus, we have that

OPT(T) =
∑
j

∑
C∈Cj(T)

2j−1f(C).

26

Since c(H) 6
∑
j 2j+1|Sj| and Cj(T) ⊇ Sj, it suffices to prove that f(C) = 1 for

C ∈ Sj. Fix a cut C ∈ Sj. By definition of Sj, there exists a terminal si ∈ C with

class(si) > j. Since class(si) > j, we have that d(si, ti) > 2j and so ti /∈ C as the

diameter of a level-j cut is less than 2j. Thus, C ∩ {si, ti} = {si} and so f(C) = 1, as

desired. Now we have
∑
C∈Cj(T) f(C) > |Sj| for each level j and this completes the

proof of the lemma.

Observe that this lemma together with Corollary 2.5 implies that Algorithm

3.1 is O(log k)-competitive for the online Steiner forest problem. Lemma 3.6 says

that the cost of Algorithm 3.1 is at most O(1)OPT(T) for any HST embedding T of

(X,d). Furthermore, Corollary 2.5 implies that there exists a HST embedding T∗

such that OPT(T∗) 6 O(log k)OPT. Thus, Algorithm 3.1 is O(log k)-competitive

for the online Steiner forest problem.

In the next section, we use Lemma 3.6 to analyze a greedy algorithm for the

online Steiner network problem.

3.3 Steiner Network

Recall that in the online Steiner network problem, a terminal pair (si, ti) with re-

quirement Ri arrives at each online step and the algorithm maintains a multigraph

Hwhich contains Ri edge-disjoint (si, ti)-paths for each arrived terminal pair. Let

Rmax = maxi Ri be the maximum requirement. Note that the Steiner forest problem

is a special case with Rmax = 1.

Intuition. Consider rooted Steiner network instances in which every terminal

pair contains a common root and the requirements are uniform. We call such an

instance a “scaled” Steiner tree instance. For such instances, the optimal solution

27

is simply R copies of the optimal Steiner tree over the terminals, where R is the

common requirement. Goemans and Bertsimas [GB93] used this observation to

obtain a O(log Rmax)-approximation algorithm for rooted Steiner network instances

with non-uniform requirements. At a high level, the algorithm decomposes the

Steiner network instance into O(logRmax) scaled Steiner tree subinstances, and then

applies a good Steiner tree approximation algorithm to each subinstance. More

formally, it rounds each requirement to the next higher power of 2, and then for

each power 0 6 ` 6 dlogRmaxe, it buys 2`+1 copies of an approximate Steiner tree

over the terminals with rounded requirement 2`. Later, Agrawal et al. [AKR95]

used this approach with their 2-approximation algorithm for Steiner forest obtain

a O(log Rmax)-approximation algorithm for general Steiner network instances. In

both cases, the resulting approximation loses a factor of O(log Rmax) over the ap-

proximation factor of the Steiner forest and Steiner tree problems, and there is a

matching Ω(log min{Rmax,k}) lower bound as well. Intuitively, the O(logRmax) loss

makes sense since each of the O(logRmax) subinstances are treated independently.

This approach can also be made to work for the online Steiner network problem

by running the Berman-Coulston online Steiner forest algorithm on the subinstances.

The above line of reasoning suggests that the competitive ratio should beΘ(logRmax ·

log k), since the Berman-Coulston algorithm is Θ(log k)-competitive. Surprisingly,

our framework shows that the competitive ratio is actually O(log k), losing only a

constant factor over the competitive ratio of the Berman-Coulston algorithm.

The analysis consists of two ingredients. The first is that for any online Steiner

forest instance, the cost of the Berman-Coulston algorithm is at most a constant times

the cost of the optimal solution on any HST embedding of the terminals (Lemma

3.6 in the previous section). The second is the following decomposition property of

Steiner network instances: for a Steiner network instance on a tree, the total cost of

28

the optimal solutions to the scaled Steiner forest subinstances is at most a constant

times the cost of the optimal solution to the original Steiner network instance1.

3.3.1 From Steiner Forest to Steiner Network

We now state our Steiner network algorithm formally and show that it is O(log k)-

competitive.

Algorithm. For ease of exposition, we first assume that we are given the maximum

requirement Rmax and remove this assumption later on. We run blogRmaxc instanti-

ations of Algorithm 3.1 (the Berman-Coulston Steiner forest algorithm); when we

receive a terminal pair with requirement Ri ∈ [2`, 2`+1), we pass the pair to the `-th

instantiation and buy 2`+1 copies of each edge bought by that instantiation. The

assumption that we are given Rmax can be removed by starting a new instantiation

of Algorithm 3.1 when we receive a terminal pair whose requirement is higher than

all previous requirements.

Analysis. We maintain a feasible solution so it remains to bound its cost. Let X be

the set of terminals that arrived andH` be the final subgraph of the `-th instantiation

of Algorithm 3.1. The cost of our solution is
∑
` 2`+1c(H`). We now show that this

is at most a constant times the cost of the optimal solution on any HST embedding

of the terminals.

Lemma 3.7.
∑
` 2`+1c(H`) 6 O(1)OPT(T) for any HST embedding T of (X,d).

Proof. Fix a HST embedding T of (X,d). Define the function f : 2X → N as follows:

for S ⊆ X, we have f(S) = maxi:(si,ti)∈δ(S) Ri. For any level-j cut Ce ∈ Cj(T), if
1In general graphs, we lose a factor of O(logRmax).

29

(si, ti) ∈ δ(Ce) then e lies on the (si, ti) path in T so the optimal solution on T buys

f(Ce) copies of e. Summing over all cuts of the hierarchical decomposition gives us

OPT(T) =
∑
j

∑
C∈Cj(T)

2j−1f(C).

For each 0 6 ` 6 blog Rmaxc, define the subset of terminal pairs D` = {(si, ti) :

Ri ∈ [2`, 2`+1)} and the function f` : 2X → {0, 1} as follows: f`(S) = 1 if S ⊆ X

separates a terminal pair of D`. Since H` is the output of Algorithm 3.1 when run

on the subsequence of terminal pairs D`, Lemma 3.6 implies that

∑
`

2`+1c(H`) 6 4
∑
`

2`+1

∑
j

∑
C∈Cj(T)

2j−1f`(C)


= 4

∑
j

∑
C∈Cj(T)

2j−1

(∑
`

2`+1f`(C)

)
.

Fix a cut C. Since each terminal pair (si, ti) ∈ D` has requirement Ri ∈ [2`, 2`+1)

and f`(C) = 1 if C separates a terminal pair of D`, we have

∑
`

2`+1f`(C) 6 4 max
i:(si,ti)∈δ(C)

Ri = 4f(C).

Thus,

4
∑
j

∑
C∈Cj(T)

2j−1

(∑
`

2`+1f`(C)

)
6 16

∑
j

∑
C∈Cj(T)

2j−1f(C) = 16 OPT(T).

By Corollary 2.5, there exists a HST embedding T∗with OPT(T∗) 6 O(log k)OPT.

So Lemma 3.7 implies that the cost of our algorithm is at most O(log k)OPT. Thus,

30

our algorithm is O(log k)-competitive for Steiner network and this proves Theorem

3.1.

Remarks. One can apply a dual-fitting analysis like that used by Berman and

Coulston [BC97] to this algorithm, but the upper bound it gives is proportional to

the number of relevant distance scales. This isO(log(kRmax)) for this problem which

can deteriorate to O(k) since Rmax can be as large as 2k.

3.4 Notes

The work in this chapter appeared as part of [Umb15].

Related work. There is a long line of work on these problems in the offline setting.

The current-best algorithm for the Steiner tree problem is a 1.39-approximation by

Byrka et al. [BGRS13]. Agrawal et al. [AKR95] gave a primal-dual 2-approximation

algorithm for the Steiner forest problem. This was later extended by Goemans and

Williamson [GW95] to give a 2-approximation for the more general constrained forest

problem. In a breakthrough result, Jain [Jai01] gave a 2-approximation algorithm

using iterative LP rounding for the Steiner network problem. We remark that Jain’s

result holds even when edge duplication is not allowed.

In the online setting, Imase and Waxman [IW91] showed that the greedy al-

gorithm is O(log k)-competitive for the online Steiner tree problem and gave a

matching lower bound. Awerbuch et al. [AAB04] showed that a greedy algorithm

is O(log2 k)-competitive for the online Steiner forest problem; later, Berman and

Coulston [BC97] gave a O(log k)-competitive algorithm. Disallowing edge duplica-

tion makes the problem significantly harder, and in particular, it cannot be reduced

to metric instances, so our techniques do not apply to this version of the problem.

31

Gupta et al. [GKR12] gave a randomized algorithm for it with expected competitive

ratio Õ(Rmax log3 n).

32

4 Shared-vs-Individual Objectives

In this chapter, we extend the analysis framework to problems with what we call

“shared-vs-individual” objectives: the rent-or-buy, connected facility location, and

prize-collecting Steiner problems. These problems are said to have “shared-vs-

individual” objectives because part of the solution can be used to satisfy all requests—

we call this the “shared” portion—and part of the solution can only be used for a

single request—we call this the “individual” portion. In particular, the cost of the

shared portion can be shared among several requests but each request is responsible

for the cost of its own individual portion.

Our results. First, we define the problems and describe our results.

• The rent-or-buy problem generalizes the Steiner forest problem. The algorithm

is allowed to either rent or buy edges in order to satisfy a request. Buying an

edge costsM times more than renting, but once an edge is bought, it can be

used for free in the future. On the other hand, a rented edge can only be used

once; future terminals have to either re-rent it or buy it in order to use it.

More formally, in the online rent-or-buy problem, the algorithm is also given a

parameter M > 0. The algorithm maintains a subgraph H of bought edges;

when a terminal pair (si, ti) arrives, the algorithm buys zero or more edges

and rents edges Qi such that H ∪ Qi connects si and ti. Both rent and buy

decisions are irrevocable — edges cannot be removed from H later on and Qi

is fixed after the i-th step. The total cost of the algorithm isMc(H)+
∑
i c(Qi).

In the online single-source rent-or-buy problem, the algorithm is also given a root

terminal r in advance; terminals i arrive online and i has to be connected to r

33

in the subgraph H ∪Qi.

For this problem, the subgraphH is the shared portion andQi is the individual

portion for the i-th request.

• In the online connected facility location problem, we call terminals clients. At

the beginning, the algorithm is given a parameter M > 0, a set of facilities

F ⊆ V and facility opening costs fx for each facility x ∈ F. There is also a

designated root facility r ∈ Fwith zero opening cost. The algorithm maintains

a set of open facilities F ′ ⊆ F and a Steiner tree H connecting F ′ and r. At

any online step, the algorithm knows the submetric over the arrived clients

and the facilities. When a client i arrives, the algorithm may open a new

facility, and then assigns i to some open facility σ(i) ∈ F ′. All decisions

are irrevocable — edges cannot be removed from H later on, clients cannot

be reassigned and opened facilities cannot be closed. The total cost of the

algorithm is
∑
z∈F ′ fz +Mc(H) +

∑
i d(i,σ(i)). WhenM = 0 (i.e. the facilities

can be connected for free), this is called the online facility location problem. For

these problems, we use k to denote the number of clients.

For this problem, the open facilities F ′ and the subgraph H connecting them

form the shared portion, and the connection cost d(i,σ(i)) is the individual

portion for request i.

• In the online prize-collecting Steiner forest problem, each terminal pair (si, ti)

arrives with a penalty πi and the algorithm either pays the penalty or connects

the pair. The total cost of the algorithm is c(H) +
∑
i∈P πi where H is the

subgraph maintained by the algorithm and i ∈ P if the algorithm paid the

penalty for (si, ti). Note that penalties are irrevocable: once the algorithm

34

decides to pay the penalty πi, the penalty does not get removed from the

algorithm’s cost even if later on H ends up connecting si and ti.

For this problem, the subgraph H is the shared portion and the penalty πi is

the individual portion for request (si, ti).

For the rent-or-buy problem, Awerbuch et al. [AAB04] were the first to consider

the rent-or-buy problem.1 They gave a randomized O(log k)-competitive algorithm

as well as a deterministic O(log2 k)-competitive algorithm and posed the existence

of a deterministic O(log k)-competitive algorithm as an open problem. We resolve

this positively.

Theorem 4.1. There is a deterministicO(log k)-competitive algorithm for the online rent-

or-buy problem.

The online connected facility location problem was recently proposed by San

Felice et al. [SFWL14a] and they gave a randomizedO(log2 k)-competitive algorithm.

Our next result improves on both the competitive ratio and the use of randomness.

Theorem 4.2. There is a deterministic O(log k)-competitive algorithm for the online con-

nected facility location problem.

For the prize-collecting Steiner forest problem, we obtain the same result as Qian

and Williamson [QW11] with a simpler analysis.

Theorem 4.3 ([QW11]). There is a deterministic O(log k)-competitive algorithm for the

online prize-collecting Steiner forest problem.

High-level approach. We now demonstrate the basic ideas using the single-source

rent-or-buy problem. Let us begin by considering instances of the following type,
1They use the name “network connectivity leasing problem” instead.

35

.....

1

!

r

S

c

Figure 4.1: Counterexample for purely greedy algorithm.

illustrated in Figure 4.1. The metric (V ,d) is given by a star graph with n+2 vertices.

The root r is attached to the center of the star c with an edge of length 1 and the

rest of the n vertices S are each connected to the center c with an edge of negligible

length ε� 1. Consider an online instance in which k vertices of S arrive one-by-one,

in some arbitrary order. The cost of the optimal solution is essentially min{k,M}: if

k 6M, the optimal solution rents the edges (r, c) and (c, i) for each terminal i; if

k > M, the optimal solution buys the edge (r, c) and rents the edge (c, i) for each

terminal i.

It is easy to see that a purely greedy algorithm which seeks to minimize the cost

incurred per request has a poor competitive ratio when k�M. The algorithm rents

the edges (r, c) and (c, i) for each terminal i, at a total cost of k(1 + ε)�M. Thus,

the algorithm fails because it is too myopic. Even though buying the edge (r, c) is

more expensive than renting, buying it might be a cheaper option overall because it

can be used towards all future requests. For this particular type of instances, a better

online algorithm is the following: for the first M terminals, rent the edge (r, c), and

then for the (M + 1)-th terminal, buy it. This algorithm is 2-competitive since it

rents (r, c) at most min{k,M} times, and only buys it when it has rented itM times

(i.e. when k > M).2

2Essentially, this type of instances captures the classic online ski rental problem [KMMO94], and
the algorithm we describe is the “break-even” algorithm for that problem.

36

Our algorithm for single-source rent-or-buy is a natural generalization of the

above. Every terminal is designated as either a buy terminal or a rent terminal, with

the root being a buy terminal, and at each point in time, the algorithm’s set of

bought edgesH is an online Steiner tree over the current set of buy terminals. When

terminal i arrives, the algorithm does the following. Suppose z is the previous buy

terminal that is nearest to i. If there are at leastM rent terminals i ′ with high enough

rent cost c(Qi) close to i, the algorithm buys the edge (z, i) and designates i as a

buy terminal, otherwise it rents (z, i) and designates it a rent terminal. Essentially,

this strategy allows us to charge the cost of every edge (z, i) we buy to the rent cost

of terminals near the corresponding buy terminal z, and to show that the rent cost

of terminals in any small neighborhood is not too large. The latter allows us to

argue that the total rent cost is at mostO(1)OPT(T) for any HST embedding T of the

terminals. (See Section 4.1 for a formal description and analysis of the algorithm.)

In general, our algorithms use the following greedy-like strategy: for each request,

if the individual cost of nearby requests are sufficiently high, then the algorithm

augments the shared portion in a greedy manner to satisfy the request; otherwise, it

augments the individual portion of the request. The analysis proceeds by charging

the shared cost to the individual cost, and then charging the individual cost to

OPT(T), for every HST embedding T .

Chapter outline. In Section 4.1, we formally describe and analyze our algorithm for

the single-source rent-or-buy problem. Then we extend these ideas to the multiple-

source setting in Section 4.2 using the Berman-Coulston online Steiner forest algo-

rithm discussed in Section 3.2, and the connected facility location problem in Section

4.3. The objective of the prize-collecting Steiner tree (forest) problem is intimately

related to the single-source (multiple-source) rent-or-buy problem, and a straight-

37

forward adaptation of the single-source (multiple-source) rent-or-buy algorithm

gives a prize-collecting Steiner tree (Steiner forest) algorithm. In Section 4.4, we

describe the prize-collecting Steiner tree algorithm. We omit a discussion of the

prize-collecting Steiner forest algorithm as it is obtained via an identical adaptation

of the multiple-source rent-or-buy algorithm.

4.1 Single-Source Rent-or-Buy

In this section, we elaborate on the description and analysis of the algorithm for the

single-source rent-or-buy problem given earlier and prove the following theorem.

Theorem 4.4. There exists a O(log k)-competitive algorithm for the online single-source

rent-or-buy problem.

Recall that the total cost of the algorithm isMc(H) +
∑
i c(Qi). We callMc(H)

the buy cost, and c(Qi) the rent cost of terminal i.

Algorithm. Our algorithm (Algorithm 4.1) designates each terminal as either a

buy terminal or a rent terminal, with the root r being a buy terminal, and maintainsH

to be an online Steiner tree connecting the buy terminals. When a terminal i arrives,

the algorithm does the following. Let Z denote the current set of buy terminals and

R the current set of rent terminals. Suppose z ∈ Z is the closest buy terminal to i.

Define ai = d(i, z) and class(i) = blog d(i, z)c. Suppose class(i) = j. Denote by Rj

the set of rent terminals v ∈ R with class(v) = j. The witness set of i is defined to be

W(i) = {v ∈ Rj : d(i, v) < 2j−1}. If |W(i)| > M, the algorithm buys the edge (i, z)

and designates i a buy terminal; otherwise, it rents (i, z) and designates i a rent

terminal.

38

Algorithm 4.1 Algorithm for Online Single-Source Rent-or-Buy
1: Z← {r};Rj ← ∅;H← ∅
2: while terminal i arrives do
3: Let z ∈ Z be closest buy terminal to i, and j = blog d(i, z)c
4: Assign class(i)← j

5: W(i)← {i ′ ∈ Rj : d(i, i ′) < 2j−1}

6: if |W(i)| >M then
7: Add i to Z and buy (i, z), i.e. add (i, z) to H
8: else
9: Add i to Rj and rent (i, z), i.e. assign Qi ← {(i, z)}

10: end if
11: end while

Analysis. Let X be the set of terminals that arrived. For each buy terminal z ∈ Z,

the algorithm incurs a buy cost ofMaz; for each rent terminal i ∈ R, the algorithm

incurs a rent cost of ai. Thus, the total cost of the algorithm is
∑
z∈ZMaz+

∑
i∈R ai.

Our goal in the analysis is to show that this is at most a constant times OPT(T) for

any HST embedding T of (X,d).

First, we define cost shares for each terminal. For each rent terminal i ∈ Rj, we

define i’s cost share to be 2j+1, i.e. ai rounded up to the next power of 2. The total

cost share is
∑
j 2j+1|Rj|. We now show that the cost of the algorithm is at most twice

the total cost share.

Lemma 4.5.
∑
z∈ZMaz +

∑
i∈R ai 6 2

∑
j 2j+1|Rj|.

Proof. Define Zj = {z ∈ Z : class(z) = j}, the set of buy terminals with class j. We

have
∑
i∈R ai 6

∑
j 2j+1|Rj| and

∑
z∈ZMaz 6

∑
jM2j+1|Zj|. We now show that

M|Zj| 6 |Rj| for each class j.

Fix a class j. The witness set W(z) of z ∈ Zj satisfies the following properties:

(1) |W(z)| >M; (2)W(z) ⊆ Rj; (3) d(i, z) < 2j−1 for i ∈W(z). The first implies that

M|Zj| 6
∑
z∈Zj |W(z)|. We claim that d(z, z ′) > 2j for z, z ′ ∈ Zj. This completes the

39

proof since together with the second and third properties, it implies that the witness

sets of Zj are disjoint subsets of Rj and so
∑
z∈Zj |W(z)| 6 |Rj|.

Now we prove the claim. Observe thatH is the subgraph produced by the greedy

online Steiner tree algorithm if it were run on the subsequence of buy terminals

Z and for each z ∈ Z, we have that az is exactly the distance from z to the nearest

previously-arrived buy terminal. Thus, we can apply Lemma 3.3 and get that

d(z, z ′) > 2j for any z, z ′ ∈ Zj, proving the claim. Putting all of the above together,

we get
∑
z∈ZMaz 6

∑
j 2j+1|Rj|. This finishes the proof of the lemma.

Next, we show that the total cost share is at most a constant times the cost of the

optimal solution on any HST embedding of the terminals.

Lemma 4.6.
∑
j 2j+1|Rj| 6 O(1)OPT(T) for any HST embedding T of (X,d).

Proof. Let T be a HST embedding of (X,d). We begin by lower bounding OPT(T)

in terms of T ’s cuts. Fix a level-j cut Ce ∈ Cj(T). If r /∈ Ce, then e lies on the path

between i and r for each terminal i ∈ Ce. Since e ∈ Ej(T) and has length 2j−1, the

optimal solution on T either rents e for each terminal in C at a cost of 2j−1|C| or buys

it at a cost of 2j−1M. Summing over all cuts of the hierarchical decomposition gives

us the following lower bound

OPT(T) >
∑
j

∑
C∈Cj(T):r/∈C

2j−1 min{M, |C|}.

For each rent terminal i ∈ Rj, charge 2j+1 to the unique level-(j−1) cut3 containing

i. The total charge received by each level-j cut C ∈ Cj(T) is 2j+2|Rj ∩ C| since C is
3We can extend T with an additional level of terminal singletons to accomodate charging against

level j = −1. This only increases OPT(T) by at most a constant.

40

charged 2j+2 for each class-(j+ 1) rent terminal in C. Thus we have

∑
j

2j+1|Rj| =
∑
j

∑
C∈Cj(T)

2j+2|Rj+1 ∩ C|.

It remains to prove the following claim: for each level-j cut C ∈ Cj(T), we have

|Rj+1 ∩ C| = 0 if r ∈ C and |Rj+1 ∩ C| 6 min{M, |C|} if r /∈ C. Suppose r ∈ C.

Since ai < d(i, r) < 2j for all i ∈ C, there cannot be any class-(j + 1) terminal

in C and so Rj+1 ∩ C = ∅. Now consider the case r /∈ C. Since |Rj+1 ∩ C| 6 |C|,

it suffices to prove that |Rj+1 ∩ C| 6 M. Suppose, towards a contradiction, that

|Rj+1 ∩ C| > M and let i be the last-arriving terminal of Rj+1 ∩ C. The terminals of

Rj+1 ∩ C \ {i} arrive before i, are each of distance less than 2j from i (diameter of

C is less than 2j) and of the same class as i, so they belong to i’s witness set W(i).

Since |Rj+1 ∩C| > M, we have that |W(i)| > |Rj+1 ∩C \ {i}| >M. Thus, iwould have

been a buy terminal but this contradicts the assumption that i ∈ Rj+1. Therefore,

we have |Rj+1 ∩ C| 6M as desired. This completes the proof of the claim and so we

get
∑
j 2j+1|Rj| 6 8 OPT(T).

Now we put all of the above together. Lemmas 4.5 and 4.6 imply that the cost

of Algorithm 4.1 is at most O(1)OPT(T) for any HST embedding T of (X,d). Fur-

thermore, by Corollary 2.5, there exists a HST embedding T∗ such that OPT(T∗) 6

O(log k)OPT. Thus the algorithm is O(log k)-competitive for single-source rent-or-

buy and this proves Theorem 4.4.

4.2 Multiple-Source Rent-or-Buy

We move on to the multiple-source setting. Recall that in this setting, terminal

pairs (si, ti) arrive one-by-one and algorithm has to update H (buy edges) and rent

41

edgesQi so that si and ti are connected in H∪Qi. The total cost of the algorithm is

Mc(H) +
∑
i c(Qi). As in the single-source setting in the previous section, we call

Mc(H) the buy cost, and c(Qi) the rent cost of terminal pair (si, ti).

Intuition. The high-level idea is similar to the single-source rent-or-buy algorithm

in Section 4.1. Our algorithm (Algorithm 4.2) designates each terminal pair to be

either a buy pair or a rent pair. It maintains H to be an online Steiner forest over

the buy pairs and rents the direct edge (si, ti) for each rent pair (si, ti). Essentially,

the algorithm designates terminal pair (si, ti) to be a buy pair if there are at least

M endpoints of rent pairs with sufficiently large rent costs near each of si and ti.

The algorithm uses the Berman-Coulston algorithm for online Steiner forest [BC97]

(described in Section 3.2) to determine H.

Algorithm. When a terminal pair (si, ti) arrives, the algorithm does the following.

Define ai = d(si, ti) and class(si) = class(ti) = blogaic. Suppose class(si) =

class(ti) = j. Denote by Rj the set of rent terminals v with class(v) = j. The witness

sets of si and ti are defined as follows: W(si) = {v ∈ Rj : d(si, v) < 2j−2} and

W(ti) = {v ∈ Rj : d(ti, v) < 2j−2}. If |W(si)| > M and |W(ti)| > M, then (si, ti)

is a buy pair and the algorithm augments H so that si and ti are connected in H;

otherwise, (si, ti) is a rent pair, and the algorithm rents the direct edge (si, ti) and

designates exactly one of si or ti to be a rent terminal. To determineH, the algorithm

runs Algorithm 3.1 on the subsequence of buy pairs and defines H to be the online

Steiner forest maintained by Algorithm 3.1.

Analysis. Let X be the set of terminals that arrived, R be the set of all rent terminals

and Z be the set of terminals that were passed to Algorithm 3.1 (i.e. Z is the set

of endpoints of buy pairs). We call Z the set of buy terminals. Note that R contains

42

Algorithm 4.2 Algorithm for Online Multiple-Source Rent-or-Buy
1: H← ∅;Rj ← ∅
2: while request (si, ti) arrives do
3: Let j = blog d(si, ti)c
4: Assign class(si)← j and class(ti)← j

5: W(si)← {v ∈ Rj : d(si, v) < 2j−2}

6: W(ti)← {v ∈ Rj : d(ti, v) < 2j−2}

7: if |W(si)| < M then
8: Rent (si, ti), i.e. Qi ← {(si, ti)}
9: Add si to Rj

10: else if |W(ti)| < M then
11: Rent (si, ti), i.e. Qi ← {(si, ti)}
12: Add ti to Rj
13: else
14: Pass (si, ti) to Algorithm 3.1
15: Update H to be the online Steiner forest maintained by Algorithm 3.1
16: end if
17: end while

exactly one endpoint of each rent pair; we rename the terminals so that if (si, ti)

is a rent pair, then ti ∈ R. The cost of the algorithm is Mc(H) +
∑
ti∈R d(si, ti).

The analysis proceeds by charging the cost of the algorithm against the cost of the

optimal solution on any HST embedding of the terminals.

We first define cost shares for each terminal. For each ti ∈ Rj, we define ti’s cost

share to be 2j+1. The total cost share is
∑
j 2j+1|Rj|. We now show that the cost of

the algorithm is at most twice the total cost share.

Lemma 4.7. Mc(H) +
∑
ti∈R d(si, ti) 6 2

∑
j 2j+1|Rj|.

Proof. Since ti’s cost share is at least d(si, ti), we have
∑
ti∈R d(si, ti) 6

∑
j 2j+1|Rj|.

Next, we bound Mc(H). Let Zj ⊆ Z be the set of buy terminals with class at least

j. Define Z ′j ⊆ Zj to be the maximal subset of Zj such that d(u, v) > 2j−1 for all

u, v ∈ Z ′j. We will show thatMc(H) 6
∑
j 2j+1|Rj| in two steps: first we prove that

Mc(H) 6
∑
j 2j+1M|Z ′j| and then prove thatM|Z ′j| 6 |Rj| for each j.

43

We partition Zj as follows: assign each v ∈ Zj to the closest terminal in Z ′j,

breaking ties arbitrarily, and define Su to be the set of terminals assigned to u.

Observe that the diameter of Su is less than 2j for all u ∈ Z ′j. Define Sj = {Su}u∈Z ′j .

Since Sj satisfies the conditions of Lemma 3.5, we get thatMc(H) 6
∑
j 2j+1M|Sj| =∑

j 2j+1M|Z ′j|.

Next we show that M|Z ′j| 6 2j+1|Rj| for each j. Fix j. The witness set W(z)

of z ∈ Z ′j satisfies the following properties: (1) |W(z)| > M; (2) W(z) ⊆ Rj; (3)

d(i, z) < 2j−2 for i ∈ W(z). The first implies that M|Zj| 6
∑
z∈Zj |W(z)|. We have

d(z, z ′) > 2j−1 for z, z ′ ∈ Z ′j by definition, so with the second and third properties,

we get that the witness sets ofZ ′j are disjoint subsets of Rj, and so
∑
z∈Z ′j

|W(z)| 6 |Rj|.

Putting all of the above together, we haveMc(H) 6
∑
j 2j+1|Rj|.

Next, we show that we can charge the cost shares against the optimal solution

on any HST embedding T .

Lemma 4.8.
∑
j 2j+1|Rj| 6 O(1)OPT(T) for all HST embeddings T of (X,d).

Proof. Let T be a HST embedding of (X,d). We begin by expressing OPT(T) in terms

of T ’s cuts. Define D(S) = {(si, ti) : (si, ti) ∈ δ(S)} for each vertex subset S ⊆ X.

Consider a level-j cut Ce ∈ Cj(T). By definition, e ∈ Ej(T) and has length 2j−1. If

(si, ti) ∈ δ(Ce), then e lies on the (si, ti) path in T . Thus, the optimal solution on T

either rents e for each terminal pair in D(Ce) at a cost of 2j−1|D(Ce)| or buys it at a

cost of 2j−1M and so

OPT(T) =
∑
j

∑
C∈Cj(T)

2j−1 ·min{M, |D(C)|}.

For each rent terminal ti ∈ Rj, charge its cost share 2j+1 to the level-(j − 2) cut

C ∈ Cj−2(T) containing i. Each level-j cutC ∈ Cj(T) receives a charge of 2j+3|Rj+2∩C|

44

and so ∑
j

2j+1|Rj| =
∑
j

2j+3
∑

C∈Cj(T)

|Rj+2 ∩ C|.

It remains to prove the following claim: for each level-j cut C ∈ Cj(T), we have

|Rj+2 ∩ C| 6 min{M, |D(C)|}. Since C has diameter less than 2j and d(si, ti) > 2j+2

for each ti ∈ Rj+2, we have |Rj+2∩C| 6 |D(C)|. So now we prove that |Rj+2∩C| 6M.

Suppose, towards a contradiction, that |Rj+2 ∩ C| > M and let ti be the last-arriving

terminal of Rj+2 ∩ C. The terminals of Rj+2 ∩ C \ {ti} arrive before ti, are each of

distance less than 2j from ti (diameter of C is less than 2j) and of the same class

as ti, so they are part of ti’s witness setW(ti). Since |Rj+2 ∩ C| > M, we have that

|W(ti)| > |Rj+2 ∩ C \ {ti}| > M. Thus, ti would have been a buy terminal but this

contradicts the assumption that ti ∈ Rj+2. Therefore, we have |Rj+2 ∩ C| 6 M as

desired. This completes the proof of the claim and so
∑
j 2j+1|Rj| 6 16 OPT(T).

Finally, Lemmas 4.7 and 4.8 imply that the cost of Algorithm 4.2 is at most

O(1)OPT(T) for any HST embedding T of (X,d). Furthermore, by Corollary 2.5,

there exists a HST embedding T∗ such that OPT(T∗) 6 O(log k)OPT. Thus the

algorithm isO(log k)-competitive for the online rent-or-buy problem and this proves

Theorem 4.1.

4.3 Connected Facility Location

In this section, we consider the connected facility location problem and prove

Theorem 4.2. Recall the problem statement. At the beginning, the algorithm is

given a parameter M > 0, a set of facilities F ⊆ V and facility opening costs fx

for each facility x ∈ F. There is a designated root facility r ∈ F with opening

cost fr = 0. The algorithm maintains a set of open facilities F ′ and a subgraph H

45

connecting F ′ and r. When a client i arrives, the algorithm may open a new facility,

and then assigns i to some open facility σ(i) ∈ F ′. The cost of the algorithm is∑
x∈F ′ fx +Mc(H) +

∑
i d(i,σ(i)). We callMc(H) the Steiner cost and d(i,σ(i)) the

assignment cost of client i. The special case whenM = 0 (i.e. open facilities can be

connected for free) is called the online facility location problem.

Intuition. The connected facility location problem shares a similar cost structure

with single-source rent-or-buy. Here, the “buy cost” consists of the facility opening

cost and the Steiner cost, the “rent cost” is the assignment cost. At a high-level,

we use a similar strategy: a facility is only opened if its opening cost and the ad-

ditional Steiner cost to connect it to the other open facilities can be paid for using

the assignment costs of clients near it. In order to do this, we use an online facility

location algorithm together with an adaptation of our single-source rent-or-buy

algorithm. The former indicates whether the opening cost can be paid for, and the

latter indicates whether the additional Steiner cost can be paid for.

In the analysis, we will not be able to show that the cost of the algorithm is

at most O(1)OPT(T) for any HST embedding T of the clients because there is a

lower bound of Ω(
logk

log logk) for the facility location problem even on HSTs [Fot08].

Essentially, routing is easy on trees but choosing a good set of facilities to open online

remains difficult. Instead, we will use the fact that the connected facility location

instance induces a rent-or-buy instance and a facility location instance on the same

metric, and that there is a O(log k)-competitive facility location algorithm [Fot07].

Our analysis charges part of the cost to the cost of the facility location algorithm

and the rest to the optimal rent-or-buy solution.

46

Algorithm. Since the root facility has zero opening cost, it can be assumed to

be open. Our algorithm (Algorithm 4.3) runs Fotakis’s O(log k)-competitive algo-

rithm [Fot07]—call it OFL-ALG—in parallel. Denote by F̂ its open facilities by F̂ and

by σ̂ its assignments, and call them virtual facilities and virtual assignments, respec-

tively. Our algorithm only opens a facility if it was already opened by OFL-ALG.

i.e. its open facilities F ′ is a subset of the virtual facilities F̂.

Our algorithm classifies clients into one of 3 types: virtual, buy, and rent. When

a client i arrives, our algorithm does the following. Let x ∈ F ′ be the nearest open

facility; define ai = d(i, x) and class(i) = blogaic. Suppose class(i) = j. The

client is first passed to OFL-ALG, which may open a new virtual facility and then it

assigns i to the nearest virtual facility σ̂(i). If x is not much further than σ̂(i)—in

particular, if d(i, x) 6 4d(i, σ̂(i))—then i is called a virtual client and is assigned to x.

Otherwise, our algorithm will consider opening σ̂(i) and assigning i to it. Denote

by Rj the set of rent clients i ′ with class(i ′) = j. The witness set of i is defined to

be W(i) = {v ∈ Rj : d(i, v) 6 2j−2}. If |W(i)| > M, then i is called a buy client, the

facility σ̂(i) is opened and i is assigned to it, and the edge (σ̂(i), x) is added to H

(i.e. σ̂(i) is connected to the other open facilities by the edge (σ̂(i), x)). Otherwise, i

is called a rent client and is assigned to x.

In the description of Algorithm 4.3 below, Qj and Rj are the sets of virtual and

buy clients i ′ with class(i ′) = j, respectively.

Analysis. Let X be the set of clients and the root, and k be the number of clients.

Consider a facility location instance over metric (V ,d) with the same facilities F and

clients X as well as a rent-or-buy instance over metric (V ,d) with terminals X and

root r. Let OPTFL and OPTROB be the cost of the respective optimal solutions. A

feasible solution to the connected facility location instance is feasible for both the

47

Algorithm 4.3 Algorithm for Online Connected Facility Location
1: Initialize F ′ ← {r};H← ∅;Qj ← ∅;Zj ← ∅;Rj ← ∅;
2: while client i arrives do
3: Pass i to OFL-ALG and update virtual solution F̂, σ̂
4: Let x ∈ F ′ be nearest open facility to i and j = blog d(i, x)c
5: Assign class(i)← j

6: W(i)← {i ′ ∈ Rj : d(i ′, i) < 2j−2}

7: if ai 6 4d(i, σ̂(i)) then
8: Assign i to x and add i to Qj
9: else if |W(i)| >M then

10: Open σ̂(i) and add σ̂(i) to F ′
11: Add edge (σ̂(i), x) to H
12: Assign i to σ̂(i) and add i to Zj
13: else
14: Assign i to x and add i to Rj
15: end if
16: end while

facility location and rent-or-buy instances so we have the following lemma.

Lemma 4.9. OPTFL 6 OPT and OPTROB 6 OPT.

Let Q,Z,R be the set of virtual, buy, and rent clients, respectively. Note that a

virtual or rent client i ∈ Q ∪ R has assignment cost d(i,σ(i)) = ai and a buy client

i ∈ Z has assignment cost d(i,σ(i)) = d(i, σ̂(i)). Thus the cost of the algorithm is

∑
x∈F ′

fx +Mc(H) +
∑
i∈Q∪R

ai +
∑
i∈Z

d(i, σ̂(i)).

We first charge the opening cost as well as the assignment cost of virtual and buy

clients to the cost of the virtual solution. Then we charge the Steiner cost and the

assignment cost of rent clients to OPTROB.

Lemma 4.10.
∑
x∈F ′ fx +

∑
i∈Q ai +

∑
i∈Z d(i, σ̂(i)) 6 O(log k)OPT.

Proof. Our algorithm only opens a facility if it was already opened by OFL-ALG

so
∑
x∈F ′ fx 6

∑
x∈F̂ fx. Furthermore, the assignment cost of a virtual client i ∈ Q

48

is ai 6 4d(i, σ̂(i)), and for each buy client i ∈ Z we have d(i,σ(i)) = d(i, σ̂(i)).

Therefore, we have

∑
x∈F ′

fx +
∑
i∈Q

ai +
∑
i∈Z

d(i, σ̂(i)) 6
∑
x∈F̂

fx + 4
∑
i

d(i, σ̂(i)).

Since OFL-ALG is a O(log k)-competitive algorithm for facility location, the cost

of its virtual solution is
∑
x∈F̂ fx +

∑
i d(i, σ̂(i)) 6 O(log k)OPTFL. The lemma now

follows from Lemma 4.9.

Next, we show that the Steiner cost and the assignment cost of rent clients

Mc(H) +
∑
i∈R ai is at most a constant times the cost of the optimal rent-or-buy

solution on any HST embedding of the terminals. This part of the analysis is

analogous to that in Section 4.1. For each rent client i ∈ Rj, we define i’s cost

share to be 2j+1. We now show that the Steiner cost and the assignment cost of rent

clients is at most thrice the total cost share
∑
j 2j+1|Rj|.

We will need the following lemma which says that class-j buy clients are at least

2j−1-apart from each other.

Lemma 4.11. d(z, z ′) > 2j−1 for z, z ′ ∈ Zj.

Proof. By triangle inequality, we have d(z, z ′) > d(z,σ(z ′)) − d(z ′,σ(z ′)). Suppose

z arrived after z ′. Since az is defined to be the distance from z to the nearest open

facility when z arrived and the facility σ(z ′) that z ′ was assigned to is open at this

time, we have d(z,σ(z ′)) > az. Moreover, z ′ is a buy client and so we assigned it to

a facility σ(z ′) such that d(z ′,σ(z ′)) < 1
4az ′ . We now have that d(z, z ′) > az − 1

4az ′ .

Since z, z ′ are of class j, we have az > 2j and az ′ < 2j+1. Thus, d(z, z ′) > 2j−1.

Lemma 4.12. Mc(H) +
∑
i∈R ai 6 3

∑
j 2j+1|Rj|.

49

Proof. Since the cost share of a rent terminal i ∈ R is at least ai, it suffices to show

thatMc(H) 6 2
∑
i∈R ai. We will prove this using the following two claims.

Claim 4.13. c(H) 6
∑
z∈Z 2az.

Proof. We proceed by charging the increase in c(H) due to an open facility to the buy

client that opened it. For each open facility y ∈ F ′, define z(y) ∈ Z to be the buy client

that opened it and x(y) ∈ F ′ to be the open facility that y was connected to when it

was opened. So c(H) =
∑
y∈F ′ d(y, x(y)). We now show that d(y, x(y)) 6 2az(y) for

each x ∈ F ′.

Fix an open facility y ∈ F ′. For brevity, we write z, and x, in place of z(y), and

x(y), respectively. By triangle inequality, d(y, x) 6 d(y, z) + d(z, x) so now we

bound the right-hand side in terms of az. By definition of the algorithm, at the time

when z just arrived, before it opened y, we have that x was the nearest open facility

and y was the nearest virtual facility. So az = d(z, x) and y = σ̂(z). Furthermore,

d(z, σ̂(z)) < 1
4az since z is not a virtual client. Thus, d(y, x) 6 d(y, z)+d(z, x) 6 2az,

as desired.

Each open facility was opened by a distinct buy client so c(H) =
∑
y∈F ′ d(y, x(y)) 6∑

z∈Z 2az.

Claim 4.14.
∑
z∈ZMaz 6

∑
j 2j+1|Rj|.

Proof. We have
∑
z∈ZMaz 6

∑
j 2j+1M|Zj|. We now prove that M|Zj| 6 |Rj| for

each class j. The witness set W(z) of z ∈ Zj satisfies the following properties: (1)

|W(z)| > M; (2) W(z) ⊆ Rj; (3) d(i, z) < 2j−2 for i ∈ W(z). The first implies that

M|Zj| 6
∑
z∈Zj |W(z)|. Lemma 4.11 together with the second and third properties

imply that the witness sets of Zj are disjoint subsets of Rj and so
∑
z∈Zj |W(z)| 6 |Rj|.

These two inequalities imply that
∑
z∈ZMaz 6

∑
j 2j+1|Rj|.

50

Combining these claims, we haveMc(H) 6
∑
z∈Z 2Maz 6 2

∑
j 2j+1|Rj|. There-

fore,Mc(H) +
∑
i∈R ai 6 3

∑
j 2j+1|Rj|.

Now we show that the total cost share is at most a constant times the cost of the

optimal rent-or-buy solution on any HST embedding of the terminals.

Lemma 4.15.
∑
j 2j+1|Rj| 6 O(1)OPTROB(T) for any HST embedding T of (X,d).

Proof. Let T be a HST embedding. We charge the cost share of class-j clients to the

level-(j− 2) cuts. So overall, we have

∑
j

2j+1|Rj| =
∑
j

∑
C∈Cj(T)

2j+3|Rj+2 ∩ C|.

The rest of the proof proceeds as in the proof of Lemma 4.6.

Now we have all the required ingredients to bound the competitive ratio of

Algorithm 4.3. By Corollary 2.5 and Lemma 4.9, there exists a HST embedding T∗

such that OPTROB(T
∗) 6 O(log k)OPTROB 6 O(log k)OPT. So Lemmas 4.12 and

4.15 imply that the Steiner cost and the assignment cost of rent clients isMc(H) +∑
i∈R ai 6 O(log k)OPT. Lemma 4.10 says that the remainder of the algorithm’s

cost is at most O(log k)OPT as well. Thus it is O(log k)-competitive for connected

facility location and this proves Theorem 4.2.

4.4 Prize-Collecting Steiner Tree

In this section, we give a simple algorithm and analysis for the prize-collecting

Steiner tree problem and prove the following theorem.

Theorem 4.16 ([QW11]). There is a deterministicO(log k)-competitive algorithm for the

online prize-collecting Steiner tree problem.

51

Recall the problem statement. The algorithm is given a root terminal r initially

and maintains a subgraph H online. At each online step, a terminal iwith penalty

πi arrive and the algorithm can either pay the penalty or augment H such that H

connects i to the root. We say that i is a penalty terminal if the algorithm chose to pay

i’s penalty, and a buy terminal otherwise. Denote by P the set of penalty terminals.

The total cost of the algorithm is c(H) +
∑
i∈P πi.

Algorithm. Our algorithm (Algorithm 4.4) associates to each terminal i a cost share

ρi. When a terminal iwith penalty πi arrives, our algorithm does the following. Let

z ∈ Z be the closest buy terminal; define ai = d(i, z) and define class(i) = blogaic.

Suppose class(i) = j. Denote by Xj the set of terminals i ′ with class(i ′) = j. The

witness set of i isW(i) = {i ′ ∈ Xj : d(i, i ′) 6 2j−1}. Our algorithm initializes i’s cost

share ρi to 0 and raises ρi until either ρi+
∑
i ′∈W(i) ρi ′ = 2j+1 or ρi = πi. In the first

case, the edge (i, z) is added to H; in the second case, the penalty is paid.

Algorithm 4.4 Algorithm for Online Prize-Collecting Steiner Tree
1: Z← {r};H← ∅; Xj ← ∅ for all j
2: while terminal iwith penalty πi arrives do
3: Let z be closest terminal in Z to i, set j = blog d(i, z)c and add i to Xj
4: W(i)← {i ′ ∈ Xj : d(i, i ′) < 2j−1}

5: Initialize ρi ← 0 and increase ρi until ρi +
∑
i ′∈W(i) ρi ′ > 2j+1 or ρi = πi

6: if
∑
i ′∈W(i) ρi ′ > 2j+1 then

7: Add i to Z and buy (i, z), i.e. H← H ∪ {(i, z)}
8: else
9: Pay penalty πi

10: end if
11: end while

Analysis. Let X be the set of terminals that arrived. For each buy terminal z ∈ Z,

the algorithm incurs a cost of az. Thus, the total cost of the algorithm is
∑
z∈Z az +

52

∑
i∈P πi. Our goal in the analysis is to show that this is at most OPT(T) for any HST

embedding of (X,d).

First, we show that the cost of the algorithm is at most twice the total cost share∑
i ρi.

Lemma 4.17. We have that
∑
z∈Z az +

∑
i∈P πi 6 2

∑
i ρi.

Proof. The algorithm pays the penalty πi for terminal i only if ρi = πi so
∑
i∈P πi 6∑

i ρi. Let Zj ⊆ Z be the set of class-j buy terminals. Since az ∈ [2j, 2j+1) for z ∈ Zj,

we have
∑
z∈Z az 6

∑
j 2j+1|Zj|. We now show that 2j+1|Zj| 6

∑
i∈Xj ρi for each

class j.

Fix a class j. The witness setW(z) of z ∈ Zj satisfies the following properties: (1)∑
i∈W(z) ρi > 2j+1; (2) W(z) ⊆ Xj; (3) d(i, z) < 2j−1 for i ∈ W(z). The first implies

that 2j+1|Zj| 6
∑
z∈Zj

∑
i∈W(z) ρi. We claim that d(z, z ′) > 2j for z, z ′ ∈ Zj. This

completes the proof since together with the second and third properties, we have that

the witness sets of Zj are disjoint subsets of Xj and so
∑
z∈Zj

∑
i∈W(z) ρi 6

∑
i∈Xj ρi.

Now we prove the claim. Observe thatH is the subgraph produced by the online

greedy Steiner tree algorithm if it were run on the subsequence of buy terminals

Z, and for each z ∈ Z we have that az is exactly the distance from z to the nearest

previously-arrived buy terminal. Thus, we can apply Lemma 3.3 and get that

d(z, z ′) > 2j for any z, z ′ ∈ Zj, proving the claim. Putting all of the above together,

we get
∑
z∈Z az 6

∑
j

∑
i∈Xj ρi =

∑
i ρi. This finishes the proof of the lemma.

Next, we show that the total cost share is at most a constant times the cost of the

optimal solution on any HST embedding.

Lemma 4.18.
∑
i ρi 6 8 OPT(T) for any HST embedding T of (X,d).

53

Proof. Let T be a HST embedding of (X,d). First, we lower bound OPT(T) in terms of

T ’s cuts. Define Rj ⊆ Xj to be the subset of class-j terminals i with ρi > 0. Consider

a level-j cut Ce ∈ Cj(T) and associate the terminals Rj+1 ∩ Ce to Ce. (Note that

a terminal can only be associated to one cut.) By definition, e ∈ Ej(T) and has

length 2j−1. If r /∈ Ce then e lies on the (i, r) path in T for each associated terminal

i ∈ Rj+1∩Ce so the optimal solution on T either pays the penalty for each associated

terminal at a cost of
∑
i∈Rj+1∩Ce πi or buys e at a cost of 2j−1. Since each terminal is

associated to a unique cut, we have

OPT(T) >
∑
j

∑
C∈Cj(T):r/∈C

min

 ∑
i∈Rj+1∩C

πi, 2j−1

 .

We have
∑
i ρi =

∑
j

∑
i∈Rj ρi. For each terminal i ∈ Rj, we charge ρi to the level-

(j− 1) cut C ∈ Cj−1 containing i. Each level-j cut C ∈ Cj(T) is charged
∑
i∈Rj+1∩C ρi.

Thus, we have ∑
i

ρi =
∑
j

∑
C∈Cj(T)

 ∑
i∈Rj+1∩C

ρi

 .

Since ρi 6 πi for each terminal i, it suffices to prove the following claim: for each

level-j cut C ∈ Cj(T), we have
∑
i∈Rj+1∩C ρi = 0 if r ∈ C, and

∑
i∈Rj+1∩C ρi 6 2j+2

if r /∈ C. Suppose r ∈ C. Since ai < d(i, r) < 2j for each i ∈ C, there cannot be

any class-(j + 1) terminal in C and so
∑
i∈Rj+1∩C ρi = 0. Now consider the case

r /∈ C. Suppose, towards a contradiction, that
∑
i∈Rj+1∩C ρi > 2j+2. Let i∗ be the

last-arriving terminal of Rj+1∩C, i.e. i∗ is the last-arriving class-(j+ 1) terminal of C

with ρi∗ > 0. Since the diameter of C is less than 2j, we haveW(i∗) ⊇ Rj+1 ∩ C. We

also have
∑
i∈Rj+1∩C\{i∗} ρi < 2j+2 because otherwise the algorithm would not have

increased ρi∗ . But the algorithm increased ρi∗ ensuring that
∑
i∈W(i∗) ρi 6 2j+1,

contradicting the assumption that
∑
i∈Rj+1∩C ρi > 2j+1. This completes the proof of

54

the claim and so we get
∑
i ρi 6 8 OPT(T).

Now, Lemmas 4.17 and 4.18 imply that the cost of Algorithm 4.4 is at most

O(1)OPT(T) for any HST embedding T of (X,d). Furthermore, by Theorem 2.4,

there exists a HST embedding T∗ such that OPT(T∗) 6 O(log k)OPT. Thus, the

algorithm is O(log k)-competitive for prize-collecting Steiner tree and this proves

Theorem 4.16.

4.5 Notes

The work in this chapter appeared as part of [Umb15].

Related work. In the offline setting, Swamy and Kumar [SK04] gave a primal-dual

4.55-approximation algorithm for the single-source rent-or-buy problem and a 8.55-

approximation algorithm for the connected facility location problem. Later, Gupta

et al. [GKPR07] developed an elegant randomized sample-and-augment framework

and improved the constants. Their approach was then refined by Eisenbrand et

al. [EGRS08] and Grandoni and Rothvoss [GR10].

In the online setting, Awerbuch et al. [AAB04] was the first to consider the rent-

or-buy problem (which they call the network connectivity leasing problem). They gave

a randomized O(log k)-competitive algorithm as well as a deterministic O(log2 k)-

competitive algorithm and posed the existence of a deterministicO(log k)-competitive

algorithm as an open problem. The online connected facility location problem was

recently proposed by San Felice et al. [SFWL14a] and they gave a randomized

O(log2 k)-competitive algorithm based on the offline connected facility location

algorithm of Eisenbrand et al. [EGRS08]. Subsequent to our work, the authors

of [SFWL14a] independently improved their results and obtained a randomized

55

O(log k)-competitive algorithm for the problem [SFWL14b]. For the special case of

the facility location problem (M = 0), Fotakis [Fot08] showed that, surprisingly, there

is a lower bound ofΩ(
logk

log logk) even when the underlying metric space is a HST. Qian

and Williamson [QW11] were the first to consider the online prize-collecting Steiner

forest problem, and they obtained a deterministic O(log k)-competitive algorithm.

56

5 Online Multicast Games

In previous chapters, we studied a model of online network design in which the

algorithm could dictate how each request is to be satisfied. For instance, in the online

Steiner tree problem, we could connect each arriving terminal to any previous

terminal. We now turn to a decentralized model in which each terminal is an

autonomous selfish player.

5.1 Introduction

In many practical scenarios, users in a communications network are free to make

routing decisions according to their own selfish interests. To study selfish behavior

in networks, Anshelevich et al. [ADK+08] introduced the following multicast game.

We are given a graph with a root and edge costs, and a set of terminals that want to

connect to the root. Each terminal is associated with a selfish player. A state of the

game consists of the paths taken by the players, and its cost is the cost of all edges

used. The cost of a state is distributed among the players by dividing the cost of

each edge evenly among the players using it. A player’s total payment for the edges

in its path is called its cost share. The concept of Nash equilibrium is often used to

predict the outcome of selfish behavior in games. A Nash equilibrium in the multicast

game is a stable state of the game in which no player can unilaterally switch to a

different path and lower its cost share, i.e. make an improving move.

For the study of equilibria to be useful, we need to define what kind of initial

states are allowed and how players can converge to an equilibrium. Chekuri et

al. [CCLE+07] introduced an online model in which the players join the game one

by one. We start in an empty state; at each time step, either a player not in the

57

game joins the game and chooses a path selfishly, or a player already in the game

performs an improving move. We are interested in equilibria that can be reached by

any sequence of arrivals and improving moves. So far, we only know of bounds in

certain special settings. For the setting in which players first arrive one by one, and

are allowed to make improving moves only after all players have joined the game,

Chekuri et al. [CCLE+07] proved an upper bound of O(
√
N log2N) on the ratio of

the worst equilibrium and the optimum (the minimum Steiner tree over the players)

and a lower bound ofΩ(logN/ log logN), whereN is the number of players. These

bounds were later refined by Charikar et al. [CKM+08] to O(log3N) andΩ(logN),

respectively.

In this chapter, we make progress on understanding equilibria in online multicast

games. We study online multicast games on complete graphs1, where players can

also depart from the game; when a player leaves, its cost share is redistributed among

players still in the game. We show that if arrivals and departures only happen at

equilibria, and players can take turns making improving moves in between, then

it is possible to reach an equilibrium, after all the arrivals and departures have

happened, whose cost is at most O(logN)OPT, the cost of the optimal Steiner tree

over the root and the set of vertices on which a player arrived at some point. This is

the best possible in light of the lower bound in [CKM+08]. On the other hand, if

arrivals and departures can happen anytime, then there exists a sequence of arrivals

and departures such that after the final arrival, the state is an equilibrium and costs

N1/6 ·OPT.
1This is not without loss of generality, unlike in previous chapters.

58

5.2 Model

We now formally define the model of online multicast games with departures. Since

the underlying graph is complete, we can assume without loss of generality that the

game is taking place over a metric (V ,d) instead. Players arrive and depart one at a

time. When a player a arrives at a vertex v, it becomes active and chooses a path Pa

from v to r that minimizes its cost share:

∑
e∈Pa

d(e)

x(e)

the player pays d(e)/xe, where xe is the number of active players using e (including a

itself); we say that Pa is a best-response path for a. When a player departs, it becomes

inactive and the cost of the state is redistributed among the remaining active players.

At any point in time, the state S of the game is defined to be the set of paths used

by currently-active players. Let xe(S) be the number of players using e in S. The

cost c(S) of state S is defined to be the cost of the edges used by active players. Our

benchmark OPT will be the cost of the minimum Steiner tree over X ∪ {r}, where X

is the set of vertices on which at least one player arrived. In the following, we will

use N to denote the number of players.

Our results are the following two theorems.

Theorem 5.1. If arrivals and departures can only happen at equilibrium, and active players

can take turns making improving moves ending in an equilibrium after each arrival and

departure, then after N arrivals and departures, it is possible to reach an equilibrium Sf

that costs c(Sf) 6 O(logN)OPT.

Theorem 5.2. If arrivals and departures can happen at any state, then there exists a se-

quence σ of N arrivals and departures such that after the final arrival, the state Sf is an

59

equilibrium and c(Sf) > Ω(N1/6)OPT(σ).

We prove Theorem 5.1 in the following section and Theorem 5.2 in Section 5.4.

5.3 Upper Bound

We assume, without loss of generality, that each player arrives at a distinct vertex. If

there is a player at vertex v, we will use “player v” to refer to the player, and say that

v is “active.”

We begin with some notation. Let S be a state. Define A(S) to be the set of active

players in S, E(S) to be the set of edges used by A(S), and V(S) to be the set of

vertices incident to E(S). In the following, we will restrict ourselves to states S such

that E(S) is acyclic. Since E(S) is acyclic, each vertex v ∈ V(S) has a unique path Sv

to the root in E(S); define ev(S) ∈ E(S) to be the first edge on Sv. If there is an active

player at vertex v, i.e. v ∈ A(S), then its path is Sv.

At a high level, after each arrival, we will perform sequences of improving moves,

called tree-follow sequences, until we reach an equilibrium. Our goal is to construct

tree-follow sequences such that when we reach an equilibrium S, such that any two

edges that are used by some players and are of roughly equal length are not too

close together. This then implies the desired bound on c(S). More precisely, we will

use a charging scheme that relies on a HST embedding T∗ of (V ,d) obtained from

the HST embedding result of Fakcharoenphol et al. [FRT04].

Lemma 5.3. There exists a HST embedding T∗ of (V ,d) with OPT(T∗) 6 O(logN)OPT,

where OPT(T∗) is the cost of the minimum Steiner tree over X ∪ {r} in T∗ and OPT is the

cost of the minimum Steiner tree over X ∪ {r} in (V ,d).

Note that since each player arrives at a distinct vertex, we have |X| = N.

60

Charging scheme. We now describe a charging scheme that charges the cost of a

state S to T∗. We begin by expressing OPT(T∗) in terms of cuts from the hierarchical

decomposition C(T∗):

OPT(T∗) =
∑
j

2j−1|Ej(T
∗)| =

∑
j

2j−1|Cj(T
∗)|.

Let Xj(S) = {v : d(ev) ∈ [2j, 2j+1), and note that c(S) 6
∑
j 2j+1|Xj(S)|. For each

player v ∈ Xj(S), we charge the cost of its first edge to the unique level-(j− 2) cut

containing it. For a cut C ∈ Cj−2, define Charge(S,C) = Xj(S)∩C, the set of vertices

whose first edges are charged to C. For states S such that E(S) is acyclic, we say

that S is good if |Charge(S,C)| = 1 for each cut C. Furthermore, S is almost-good if

|Charge(S,C ′)| = 2 for one cut C ′ and |Charge(S,C)| = 1 for every other cut C; we

call the two vertices Charge(S,C ′) = {u, v} the conflicting vertices of S. We also say

that u conflicts with v and vice versa, and that their first edges, eu(S) and ev(S), are

conflicting edges.

Proposition 5.4. If u and v are conflicting vertices of a state S, then their distance is

d(u, v) < min{d(eu(S)),d(ev(S))}/4.

Proof strategy. For a good state S, we have c(S) 6 O(1)OPT(T∗) 6 O(logN)OPT.

Since the initial empty state is (trivially) good, to prove Theorem 5.1, it suffices to

show that if the current state is good and is an equilibrium, then after the next arrival

or departure, there exists a sequence of improving moves that results in a state that

is good and an equilibrium. This ensures that our final state is good, as desired. The

proof consists of two parts. First, we show that arrivals affect the charging scheme

minimally: if a player arrives at vertex u in state S ′ and the resulting state (after

it chooses its best-response path) is S, then E(S) = E(S ′) ∪ {(u, v)} for some vertex

61

v ∈ V(S ′)—the best-response path connects directly to some vertex v via the edge

(u, v) and then follow v’s path Sv to the root (Lemma 5.5). Therefore, after an arrival,

we are in either a good state or an almost-good state. Observe that if the current

state is a good equilibrium, then if a player departs, the resulting state is still a good

state (but not necessarily an equilibrium).

Next, we use an algorithm Find-Equilibrium to construct a sequence of improv-

ing moves that ends in a good equilibrium. While the current state S is not an

equilibrium, it executes a sequence of improving moves called a tree-follow se-

quence, to be formally defined later; essentially, a tree-follow sequence swaps an

edge of E(S) with another edge not in E(S). The algorithm maintains the invariant

that the current state S is either good or almost-good. We will show that if S is good

but not an equilibrium, then there exists an improving tree-follow sequence; if S

is an almost-good state, then there exists an improving tree-follow sequence that

swaps out one of the conflicting edges. In either case, the resulting state is either

good or almost-good. Therefore, when the current state S is an equilibrium, and the

algorithm terminates, Smust be a good state.

Tree-follow moves. We now formally define follow and tree-follow moves. Fix a

state S. For vertices u, v ∈ V(S), we define Quv(S) to be the path consisting of the

edge (u, v) and the path Sv. If u is active, then we say that switching to Quv(S) is a

follow move for player u. Player u’s current cost share on Su is
∑
e∈Su

d(e)
xe(S)

; its cost

share if it switched to Quv(S) would be
∑
e∈Quv(S)∩Su

d(e)
xe(S)

+
∑
e∈Quv(S)\Su

d(e)
xe(S)+1 .

So, if u were to switch to Quv(S), its cost share would decrease by

∆uv(S) =
∑

e∈Su\Quv(S)

d(e)

xe(S)
−

∑
e∈Quv(S)\Su

d(e)

xe(S) + 1
.

62

Define∆∗u(S) = maxv∈V(S)∆uv(S), and letQ∗u(S) be the corresponding path, i.e. switch-

ing toQ∗u(S) is the best follow move for u. We will use the notation Follow∗(S,u) to

refer to the move itself as well as the state after executing the move.

Tree-follow moves generalize follow moves. Let A(S,u) be the set of active

players v whose paths Sv contain u and let Svu denote the segment of Sv from

v to u. The tree-follow move Tree-Follow∗(S,u) consists of each player v ∈ A(S,u)

switching, in arbitrary order, to the path that consists of Svu andQ∗u(S); in particular,

v’s new path follows its old path Sv up to u and then follows Q∗u(S). Observe that

the cost share of the first player in A(S,u) to switch decreases by ∆∗u(S), and for

every other player in v ∈ A(S,u), v’s cost share decreases by more than ∆∗u(S)

right after switching. Therefore, Tree-Follow∗(S,u) corresponds to a sequence of

improving moves if and only if ∆∗u(S) > 0. As before, we will use the notation

Tree-Follow∗(S,u) to refer to the move itself as well as the state after executing the

move. Note that the move Tree-Follow∗(S,u) swaps eu(S), the first edge of u, for

the first edge of Q∗u(S).

Algorithm 5.1 Find-Equilibrium
Input: State S = Arrival(S ′, v) or S = Depart(S ′, v)

1: if S = Arrival(S ′, v) then
2: v̂← u

3: end if
4: while S is not an equilibrium do
5: if S is good then
6: Find vertex u ∈ V(S) such that ∆∗u(S) > 0
7: S← Tree-Follow∗(S,u)
8: v̂← u

9: else if S is almost-good then
10: Let u ∈ V(S) be the vertex that v̂ that conflicts with
11: S← Tree-Follow∗(S,u)
12: v̂← u

13: end if
14: end while
15: return S

63

In the following, we will use the notation Arrival(S ′, v) (Depart(S ′, v)) to denote

the state after a player arrives at (departs from, resp.) v in state S ′. The algorithm

Find-Equilibrium is specified formally as Algorithm 5.1.

5.3.1 Analysis of Find-Equilibrium

First, we show that if S ′ is a good state and an equilibrium, then when a player

arrives at u, its best-response is a follow move.

Lemma 5.5. Let S ′ be a good state and an equilibrium. We have that Arrival(S ′,u) =

Follow∗(S ′,u).

Proof. Let P∗ = S ′u and (u, v) be the next first edge on P∗. Note that −∆uv(S) is

exactly the cost share of player v if P∗ = Quv(S). We can assume without loss of

generality that v ∈ V(S). It suffices to show that P∗ = Quv(S); in other words, P∗

consists of the edge (u, v) and the path Sv.

Suppose, towards a contradiction, that P∗ 6= Quv(S); in particular, suppose P∗

consists of the edge (u, v) and some other path R 6= Sv from v to the root. Player u’s

cost share on Quv(S) would have been d(u, v) +
∑
e∈Sv

d(e)
xe(S)+1 , while its cost share

on P∗ is d(u, v) +
∑
e∈R

d(e)
xe(S)+1 . Since P∗ is a best-response path for u, we have that

the former cost share is at least the latter. Subtracting the contributions to both from

(u, v) and Sv ∩ R, we have that

∑
e∈Sv\R

d(e)

xe(S) + 1
>

∑
e∈R\Sv

d(e)

xe(S) + 1
. (5.1)

On the other hand, state S is an equilibrium, and so no player u ′ ∈ A(S, v) can

improve its cost share by switching to a path P that follows Su ′ to v and then R. Since

64

Su ′ and P differs in Sv \ R and R \ Sv, we have

∑
e∈Sv\R

d(e)

xe(S)
6

∑
e∈R\Sv

d(e)

xe(S) + 1
,

and so
∑
e∈Sv\R

d(e)
xe(S)+1 <

∑
e∈R\Sv

d(e)
xe(S)+1 . However, this contradicts Equation (5.1)

and thus, P∗ = Quv(S), as desired.

Now we analyze Find-Equilibrium.

Lemma 5.6. Find-Equilibrium executes improving moves and returns a good equilibrium.

Proof. We begin by showing that if S good but not an equilibrium, then there exists

a vertex u ∈ V(S) such that Tree-Follow∗(S,u) is a sequence of improving moves.

Claim 5.7. If S is a good state but not an equilibrium, then there exists a vertexw ∈ V(S)

such that ∆∗w(S) > 0.

Proof. Since S is not an equilibrium, there exists a player with an improving alternate

path. Among the set of paths that is an improving path for some player, define P∗

to be one with the minimum number of new edges |P∗ \ E(S)|. Suppose P∗ is an

improving path for player u. Let (w, z) be the edge of P∗ \ E(S) closest to the root

along P∗, with w being the nearer vertex to u on P∗. Observe that the segment of P∗

from w to the root is just the path Qwz(S). To prove that ∆∗w(S) > 0, we will now

show that ∆wz(S) > 0.

Define pathP ′ as the path that followsP∗ fromu tow and then follows Sw, instead

of Qwz(S), from w to the root. Since Sw ⊆ E(S) and Qwz(S) \ E(S) = {(w, z)}, we

have |P ′ \E(S)| < |P∗ \E(S)|. By definition of P∗, we have that P ′ is not an improving

path for u. In particular, u’s cost share if it were to switch to P∗ is less than its cost

share if it were to switch to P ′. Since P∗ and P ′ differs in exactly Qwz(S) \ Sw and

65

Sw \Qwz(S), we get

∑
e∈(Qwz(S)\Sw)∩Su

d(e)

xe(S)
+

∑
e∈(Qwz(S)\Sw)\Su

d(e)

xe(S) + 1

<
∑

e∈(Sw\Qwz(S))∩Su

d(e)

xe(S)
+

∑
e∈(Sw\Qwz(S))\Su

d(e)

xe(S) + 1
.

The LHS is at least
∑
e∈Qwz(S)\Sw

d(e)
xe(S)+1 and the RHS is at most

∑
e∈Sw\Qwz(S)

d(e)
xe(S)

.

Therefore, we have ∆wz > 0, as desired.

Next, we show that if the current state S is almost-good, then there exists an

improving tree-follow sequence that swaps out a conflicting edge.

Claim 5.8. In any iteration of Find-Equilibrium, if the current state S is almost-good,

then ∆∗u(S) > 0, where u is the vertex that v̂ conflicts with. In particular, S cannot be an

equilibrium.

Proof. We have that S = Arrival(S ′, v̂) or S = Tree-Follow∗(S ′, v̂). We will show that

in both cases,∆uv̂(S ′) > 0. Consider the first case, when S = Tree-Follow∗(S ′, v̂). We

can assume without loss of generality that |A(S, v̂)| = 1. This is because as |A(S, v̂)|

increases, xe(S ′) increases for e ∈ S ′v̂ and xe(S ′) can only decrease for e /∈ S ′v̂, which

in turn increases ∆uv̂(S ′).

Let ev̂(S ′) = (v̂,w). SinceS ′ = Tree-Follow∗(S, v̂), we have that Tree-Follow∗(S ′, v̂)

is not an improving sequence and so ∆v̂u(S ′) 6 0. Furthermore, since |A(S, v̂)| = 1,

there is only one player using the edge (v̂,w) in S ′. Our goal is to show that

∆uv̂(S
′) > 0, i.e.

d(u, v̂) + d(v̂,w)
2

+
∑

e∈S ′w\S ′u

d(e)

xe(S ′) + 1
<

∑
e∈S ′u\S ′w

d(e)

xe(S ′)
. (5.2)

66

Since ∆v̂u(S ′) 6 0, we have

d(v̂,w) +
∑

e∈S ′w\S ′u

d(e)

xe(S ′)
6 d(u, v̂) +

∑
e∈S ′u\S ′w

d(e)

xe(S ′) + 1
. (5.3)

Furthermore, since u conflicts with v̂, by Proposition 5.4, d(u, v̂) < d(v̂,w)/4 and so

d(v̂,w) − d(u, v̂) < d(u, v̂) + d(v̂,w)
2 . Together with Equation (5.3), we get Equation

(5.2), and so ∆uv̂(S ′) > 0, as desired.

Finally, the same argument applies to the case when S = Arrival(S ′, v̂) since

S = Follow∗(S ′, v̂) by Lemma 5.5.

Finally, we need to show that the algorithm terminates eventually. The multicast

game is part of a wide class of games that admit a potential function [Ros73, MS96].

For the multicast game, the potential Φ(S) of a state S is

Φ(S) =
∑
e

d(e)

xe(S)∑
i=1

1
i

,

and it satisfies the following properties:

• For any state S, c(S) 6 Φ(S) 6 O(logN)c(S).

• If a player makes an improving move, then amount that the potential decreases

by is the same as the decrease in the player’s cost share.

The first property says that the potential of the initial state after an arrival or

departure is bounded. Since at least one player’s cost share improves in every

iteration, the second property implies that the algorithm must terminate eventually.

By Claim 5.8, the algorithm cannot terminate when the current state is almost-good.

Thus, when the algorithm terminates, it returns a good state. This completes the

proof of the lemma.

67

Lemmas 5.5 and 5.6 give us Theorem 5.1.

5.4 Lower Bound

We now turn to proving Theorem 5.2. In the previous section, it is convenient to

assume that players arrive at distinct vertices. For this section, it is convenient to

assume that multiple players can arrive at the same vertex.

We will construct a family of lower bound instances. We now describe the

m-th instance. The instance uses the metric induced by a graph G = (V ,E) with

edge lengths. The vertex set consists of the root r andm+ 1 layers V0, . . . ,Vm. For

0 < i 6 m, layer Vi consists of m clusters Ci1, . . . ,Cim; each cluster is a clique of m

vertices where each clique edge is of length 1/m. We use vij,k to denote the k-th

vertex ofCij. Layer V0 consists ofm2 vertices, which are also labeled v0
j,k for j,k ∈ [m].

The vertices of Vm are called end vertices, and those of V0 are called auxiliary vertices.

In addition to the clique edges, there are also the following inter-layer edges EL. Each

auxiliary vertex v0
j,k has edges (r, v0

j,k) and (v0
j,k, v1

j,k). For 0 < i < m, we have an

edge (vij,k, vi+1
k,j) for each j,k ∈ [m]. Each inter-layer edge has unit length. Note that

there are n = m2(m+ 1) + 1 vertices.

Observe that each end vertex vnj,k has a unique path Pj,k to the root that consists

of only inter-layer edges; furthermore, each inter-layer edge belongs to exactly one

such path. In other words, the set of inter-layer edges is a disjoint union of all the

paths Pj,k.

Final state. We will construct a sequence σ ofN = m6 arrivals and departures and

show that the cost of the final state Sf is c(Sf) = Ω(m)OPT. Each of the vertex will

have an arrival at some point in the sequence. First, we describe Sf and show that it

68

is an expensive equilibrium. The state Sf is as follows: at each end vertex vmj,k, there

arem players using the path Pmj,k.

Lemma 5.9. State Sf is an equilibrium and c(Sf) = Ω(m)OPT.

Proof. First, we prove that Sf is an equilibrium. Consider a player at end vertex

vmj,k with path Pmj,k and an alternative path P ′. For every clique edge e, we have

xe(S
f) = 0, and for every inter-layer edge e, we have xe(Sf) = m. So the player’s

current cost share is 1. The path P ′ contains at least one clique edge and at least

m inter-layer edges. Thus, the player’s cost share when it switches to P ′ is at least
1
m

+ m
m+1 > 1. Therefore, Sf is an equilibrium.

Next, we prove that c(Sf) = Ω(m)OPT. We have E(S) = EL and d(EL) =

m2(m − 1) = Ω(m3). Since every vertex has at least one arrival at some point in

the sequence, OPT is just the cost of the minimum spanning tree of G. Here is

one minimum spanning tree: connect the vertices in each cluster using the clique

edges, connect each cluster Cij to Ci+1
j via the inter-layer edge (vij,j, vi+1

j,j), and take

all edges incident to V0. There are a total of m2 clusters so the clique edges cost

m2((m− 1)/m), the inter-layer edges used costm(m+ 1), so the total cost is O(m2).

Thus, we have c(Sf) = Ω(m)OPT.

Sequence of arrivals and departures. We now describe the sequence σ. It is con-

structed inm phases, each phase consisting ofm2 rounds, one per end vertex vmj,k, and

indexed by (j,k). Let ≺ be an arbitrary total order on the pairs (j,k). The sequence

σ is constructed to maintain the following invariant: at the end of round (j,k) of

phase `, there will be ` players on vmj ′,k ′ for (j ′,k ′) ≺ (j,k), and `− 1 players on the

remaining end vertices. Furthermore, each player on vmj,k uses the path Pj,k.

69

r

V0 V1 V2

Figure 5.1: Example for n = 2. Auxiliary vertices are in red, end vertices are in blue.
Ovals represent clusters. Only inter-layer edges are shown.

We now specify the subsequence for each round. Consider round (j,k) of phase

`. For simplicity of notation, we use vi to denote the vertex of Vi on Pj,k. We also

use Pi to denote the segment of Pj,k starting at vi and ending at the root. The round

consists ofm+ 2 iterations. In iterations i = 0 up tom− 1,m2 players arrive at vi. In

iteration i = m, one player arrives at vm. Finally, the players on v0, . . . , vm−1 depart.

We now show that the sequence σmaintains the above invariant and thus leads

to the desired final state Sf.

Lemma 5.10. At the end of round (j,k) of phase `, there will be ` players on v1
j ′,k ′ for

(j ′,k ′) ≺ (j,k), and `− 1 players on the remaining end vertices. Furthermore, each player

on v1
j,k uses the path Pj,k.

Proof. We prove by induction that the invariant is maintained. It is easy to see that

the invariant holds at the end of round 1 of phase 1. Suppose we are currently at the

beginning of round (j,k) of phase `, and the invariant holds for the previous round.

Let S be the state at the start of the round. We have that xe(S) 6 ` for e /∈ Pj,k, and

xe(S) = `− 1 for e ∈ Pj,k.

We will prove the following claim.

70

Claim 5.11. For iterations 0 6 i 6 m, the unique best-response path for each player

arriving at vi is Pi.

Proof. Observe that if the unique best-response path of the first player of iteration i

arriving at vi is Pi, then Pi is the unique best-response path of every other player

arriving at vi. Consider the base case when i = 0. For the first player arriving

at v0, its cost share on P0 = (r, v0) is at most 1/`. Any other path Q contains the

edge (v0, v1) and at least one other edge, so the cost share on Q is more than 1/`.

Therefore, each player arriving at v0 will choose the path P0. This proves the base

case.

Suppose that the claim holds for all iterations up to i−1, where i > 1. Let ei ∈ Pi

be the first edge on the path Pi. Note that Pi consists of ei followed by Pi−1. Let Si

be the state at the start of iteration i. Consider the first player arriving at vi; call it

player a. We have

• xei(S
i) = `− 1,

• xe(S
i) > m2 for e ∈ Pi−1,

• xe(S
i) 6 ` for e /∈ Pi−1, and

• xe(S
i) = 0 for each clique edge e.

Therefore, player a’s cost share on Pi is at most 1/`+m/m2 = 1/`+ 1/m. Any other

pathQ for a contains at least two inter-layer edges that do not belong to Pi−1 and at

least one clique edge, so a’s cost share onQ is at least 2/(`+ 1) + 1/m > 1/`+ 1/m.

Thus, player a’s unique best-response path is Pi. A similar analysis shows that Pi is

also the unique best-response path for each of the other players arriving at vi

This completes the proof of the lemma.

71

Lemma 5.10 shows that the sequence σ of arrivals and departures end in the

final state Sf, which costs Ω(m)OPT by Lemma 5.9. This completes the proof of

Theorem 5.2.

5.5 Notes

This chapter is based on joint work with Shuchi Chawla, Debmalya Panigrahi, and

Mohit Singh.

72

6 Random Permutation Model
In the final chapter, we study online network design in a model where the input is

not adversarially chosen.

6.1 Introduction

In this chapter, we consider an input model called the “random permutation model,”

and study online network design in this model. Here, the adversary decides on

the set of requests I, but the algorithm is presented the requests in a (uniformly)

random order σ. For instance, in the online Steiner tree problem, this would mean

that the adversary decides on the set of terminals X but they appear in a random

order to the algorithm. The quality of the algorithm is measured by its expected

competitive ratio:

max
I

Eσ[ALG(I,σ)]
OPT(I)

,

where the maximum is taken over all sets of requests I, and ALG(I,σ) is the cost of

the algorithm when it is presented requests of I in the order given by σ.

When the terminals arrive in adversarial order, Imase and Waxman [IW91]

showed that no algorithm for online Steiner tree can have an asymptotically bet-

ter competitive ratio than O(log k), where k is the number of terminals. Garg et

al. [GGLS08] showed that even when the terminals arrive in a random order, there

is a lower bound ofΩ(log k) on the expected competitive ratio.

We consider a generalization of the online Steiner tree problem, called the online

constrained forest problem. As before, the algorithm is given a metric (V ,d) in

advance. Each request is a proper function h : 2V → {0, 1}; this means that h(S) =

h(V \ S), and h(S1 ∪ S2) 6 max{h(S1),h(S2)} for all disjoint sets S1 and S2. When

73

request h arrives, the algorithm has to update its subgraph F so that it satisfies h:

for every S ⊆ V , |F ∩ δ(S)| > h(S). The vertices v such that h({v}) = 1 are called the

terminals of h. The online constrained forest problem was first studied by Qian and

Williamson [QW11] and they gave a deterministic O(log k)-competitive algorithm1.

Our results. We study the special case when each proper function hi encodes

a Steiner tree instance over terminals Xi and that there exists a common vertex

r ∈
⋂
i Xi. We call this the online Steiner tree with group arrivals problem; each Xi is

called a group. The optimal solution is the minimum Steiner tree on
⋃
i Xi. We show

that if the arrival order is adversarial, then no deterministic algorithm can have a

competitive ratio asymptotically better than linear in the number of requests.

Theorem 6.1. In the adversarial model, there is a lower bound ofΩ(log k) on the expected

competitive ratio of any randomized algorithm for online Steiner tree with group arrivals.

Our lower bound result holds for the so-called oblivious adversary, which has

to construct the request sequence without knowing the random bits used by the

algorithm. (In contrast, for deterministic algorithms, the adversary is allowed to

construct the sequence adaptively, i.e. it can choose the next request in response

to the algorithm’s decisions on previous requests. See [BEY05] for a discussion of

adversary models.)

On the other hand, in the random permutation model, there exists a deterministic

algorithm that can perform much better, in terms of the number of requests.

Theorem 6.2. In the random permutation model, there is a deterministic algorithm for

online Steiner tree with group arrivals that achieves an expected competitive ratioO(log g),

where the expectation is over the random permutation.
1There is a 2-approximation for the offline constrained forest problem [GW95])

74

6.2 Upper Bound

We now turn to proving Theorem 6.2.

Algorithm. The algorithm is very simple and essentially runs Prim’s minimum

spanning tree algorithm over the new group. The algorithm maintains a subgraph

F and the set Q of terminals that is connected to the root in F. In each time step, it

receives a group Xi ⊆ V . Until Xi ⊆ Q, it adds the smallest edge between Q and an

unconnected terminal u ∈ Xi \Q. (See Algorithm 6.1).

Algorithm 6.1 Algorithm for Online Steiner Problem with Group Arrivals
1: F← ∅
2: Q← {r}

3: while group Xi arrives do
4: while Xi * Q do
5: Let (u, v) be the edge of smallest length such that u ∈ Xi \Q and v ∈ Q.
6: Add (u, v) to F and u to Q
7: end while
8: end while

It is clear that Algorithm 6.1 produces a feasible solution, so we proceed to the

cost analysis.

6.2.1 Analysis

Define X = X1∪· · ·∪Xg and X = {X1, . . . ,Xg}. Let Fσ denote the algorithm’s solution

on arrival order σ, i.e. the i-th request is Xσ(i). Our goal is to prove the following

bound on the expected competitive ratio.

Eσ[c(Fσ)] 6 O(log g)OPT .

First, we show that for any arrival order σ and any HST embedding T of (X,d) of

75

a particular type called a (X,σ)-embedding, we have c(Fσ) 6 O(1)OPT(T), where

OPT(T) is the cost of the optimal solution on T (Lemma 6.4). Second, we will show

that for each arrival order σ, there exists a distribution Dσ of (X,σ)-embeddings

such that Eσ,T∼Dσ
[OPT(T)] 6 O(log g)OPT (Lemma 6.5 in the next section). These

lemmas imply the desired bound on the expected competitive ratio since we have

Eσ[c(Fσ)] 6 Eσ[ET∼Dσ
[OPT]] 6 O(log g)OPT,

where the first inequality follows from Lemma 6.4 and the second from Lemma 6.5.

We begin by defining (X,σ)-embeddings. We use the notation i ≺σ i ′ to denote

that σ−1(i) < σ−1(i ′), i.e. i comes before i ′ in the arrival order σ.

Definition 6.3 ((X,σ)-Embeddings). A tree metric (X ′, T) is an (X,σ)-embedding

of (X,d) if T is a rooted tree and equipped with lengths on edges satisfying the following

properties.

1. Leaf edges have length 1, and edge lengths double as one moves along a leaf-to-root

path.

2. Every node is equidistant to each of its children.

3. The leaves of T are exactly the terminals X.

4. Each edge e in T is associated with a group Xf(e). If e has length T(e) = 2j−1, then

its leaves C satisfies the following.

a) We have C ∩ Xi = ∅ for any i such that i ≺σ f(e).

b) For any v ∈ C \ Xi, we have d(v,Xf(e)) < 2j−1.

c) For any u, v ∈ C, there exists a path between u and v whose vertices belong to

Xi, and whose edges are of length less than 2j each.

76

We remark that an (X,σ)-embedding T is not an embedding as defined in Chapter

2 since it is not expanding, i.e. there could be u, v ∈ X such that T(u, v) < d(u, v).

This is actually a feature that we need since there is a lower bound ofΩ(log k) on

the expected distortion of expanding embeddings into trees, and we want expected

distortion of O(log g), where g could be much smaller than k.

As before, we will use the fact that an (X,σ)-embedding T defines a decomposi-

tion of (X,d). Call an edge e of length 2j−1 a level-j edge and its leaves C a level-j cut.

Denote by Ej(T) the set of level-j edges and define Cj(T) to be the set of all level-j

cuts. We call the family of partitions Cj(T) across all levels j an (X,σ)-decomposition.

Let Tσ be the collection of (X,σ)-embeddings. We now show that Fσ can be

charged against any T ∈ Tσ.

Lemma 6.4. For all orderings σ and T ∈ Tσ, we have c(Fσ) 6 OPT(T).

Proof. Fix σ and T ∈ Tσ. We will show that ALG(σ) 6 4 OPT(T). For each terminal

v ∈ X, define its augmentation cost av to be the length of the edge used by the

algorithm to connect it to Q. Define class(v) = j if av ∈ [2j, 2j+1) and Zj ⊆ X to be

the set of class-j terminals. So we have c(Fσ) 6
∑
j 2j+1|Zj|.

First, we express OPT(T) in terms of its hierarchical decomposition. Since the

terminals are exactly the leaves of T , the unique feasible solution on T is the entire

tree. We have

OPT(T) >
∑
j

2j−1|{C ∈ Cj(T)|. (6.1)

We charge the augmentation cost of v to the unique level-j cut containing it. Fix

a level-j cut C ∈ Cj(T). It receives a charge of 2j+1|Zj ∩ C|. On the other hand, it

contributes 2j−1 to the RHS of Equation (6.1). So to prove that ALG(σ) 6 4 OPT(T),

it suffices to show that |Zj ∩ C| 6 1.

77

Suppose, towards a contradiction, that |Zj∩C| > 1. LetXi be the group associated

with C. Consider two distinct terminals u, v ∈ Zj ∩C. By property (4a) of Definition

6.3, there are two cases: either both u, v ∈ Xi or at least one of them belongs to Xi ′

for i ≺σ i ′. Consider the first case and suppose u was added to Q before v. By

property (4c), there exists a path P between u and v consisting of terminals of Xi

whose edges are of length less than 2j each. This implies that when the algorithm

connects v to the root, it does so via an edge of length less than 2j and so av < 2j.

But this contradicts the fact that class(v) = j, so this case cannot happen.

Now we turn to the second case, in which either u or v belongs to Xi ′ for i ≺σ i ′.

Suppose it is u. Right before u was added to Q, we have Xi ⊆ Q since Xi appeared

before Xi ′ in the ordering σ. So Xi ⊆ Q. Since u ∈ C, we have that d(u,Xi) < 2j by

property (4b) of Definition 6.3. Therefore, the algorithm could have connected u to

a vertex of Xi and so au < 2j. But this contradicts the fact that class(u) = j, so this

case cannot happen either. Since neither case can happen, we must have |Zj∩C| = 1,

as desired. This completes the proof of the lemma.

6.2.2 Existence of good embeddings

Next, we prove the existence of a good distribution Dσ of (X,σ)-embeddings for

each arrival order σ.

Lemma 6.5. For each σ, there exists a distribution Dσ such that for all u, v ∈ X, we have

Eσ[ET∼Dσ
[OPT(T)]] 6 O(log g)OPT .

We will use a randomized algorithm (Algorithm 6.2) that takes as input an

ordering σ and produces a random (X,σ)-embedding. Then we show that the

distribution Dσ produced by the algorithm satisfies the desired properties.

78

The high level idea is similar to that of finding low-distortion HST embeddings

in [Bar96, Bar98, FRT04]. A HST embedding of (X,d) is defined by its hierarchical

decomposition, so it suffices to define a hierarchical decomposition of (X,d). The

decomposition can be defined recursively as follows. The highest level partition of

the decomposition is just {X}. The level-j partition Cj is obtained from the level-(j+1)

partition Cj+1 in the following manner: start with Cj = ∅; for each cut C ∈ Cj+1, use

a cutting scheme to partition C into smaller cuts and add them to Cj. The cutting

scheme chooses a random radius rj ∈ [2j−1, 2j), goes through the terminals X and

iteratively cuts an r-radius ball around each terminal. We use a generalization of

this cutting scheme—instead of iterating over terminals, we iterate over groups and

(essentially) cut terminals that are within a random radius r of the group.

Our cutting scheme uses clusterings. Given a group Xi and a radius r, the

clustering Si(r) is a partitioning of Xi into clusters defined as follows. Let Hi be a

complete graph with vertex set Xi and edge lengths d(u, v) for u, v ∈ Xi, and Hi(r)

be a subgraph obtained by removing all edges of length at least 2r from Hi. The

clustering Si(r) is defined to be the set of connected components of Hi(r).

For a subset S ⊆ X and terminal v ∈ X, we define d(S, v) = minu∈S d(u, v).

Furthermore, for a non-negative real r, we define B(S, r) = {v ∈ X : d(S, v) < r}.

Lemma 6.6. The clustering Si(r) satisfies the following properties. For every u, v ∈ Xi,

1. if u and v belong to different clusters, then d(u, v) > 2r;

2. if u and v belong to the same cluster, then there exists a (u, v) path whose vertices

belong to Xi and every edge along the path has length at most 2r.

As a consequence of the first property, we have B(S, r) ∩ B(S ′, r) = ∅ for any two

distinct clusters S,S ′ ∈ Si(r).

79

We are now ready to define our cutting scheme formally. For level j, we choose a

random radius rj ∈ [2j−1, 2j); iterate over the groups according to the arrival order σ

and the clusters S ∈ Si(r) of each group, and cut terminals in B(S, r). Our procedure

for finding random (X,σ)-embeddings is formally defined in Algorithm 6.2.

Algorithm 6.2 Algorithm for Finding Random (X,σ)-Embeddings
Input: Arrival order σ

1: Cdlog∆e ← {X}

2: Create node of HST T corresponding to {X}

3: for j = dlog∆e− 1 down to 1 do
4: Choose rj ∈ [2j−1, 2j) uniformly at random
5: Cj ← ∅
6: for C ∈ Cj+1 do
7: U← C

8: for i = 1 to g do
9: for S ∈ S(Xσ(i), rj) do

10: Define the cut C ′ = B(S, rj) ∩U
11: if C ′ 6= ∅ then
12: Add C ′ to Cj and remove it from U

13: Add a node in T corresponding to C ′ and an edge e of length 2j
between this node and the node corresponding to C

14: Associate group Xσ(i) with e
15: end if
16: end for
17: end for
18: end for
19: end for

Let Dσ be the distribution of (X,σ)-embeddings produced by Algorithm 6.2.

We show that the expected distortion over uniformly random permutations σ and

embeddings T ∼ Dσ is at most O(log g).

Lemma 6.7. For all u, v ∈ X,

E[T(u, v)] 6 O(log g)d(u, v),

80

where the expectation is over uniformly random arrival orders σ and embeddings T ∼ Dσ.

Proof. Fix u, v ∈ X. We have

T(u, v) =
∑
j

2j−1 · |{C ∈ Cj : (u, v) ∈ δ(C)}| =
∑
j

2j · 1{∃C ∈ Cj : (u, v) ∈ δ(C)}.

The first equality is because the unique (u, v)-path P in T consists of every edge e in

T whose leaves C contain exactly one of u and v. The second equality is because T

is a HST and X are its leaves, so for every level j of the tree, either P contains two

edges of that level or none.

Let Yij be the event that u ∈ δ(B(S, rj)) but v /∈ δ(B(S, rj)) for some S ∈ Si(rj),

and Zij be the event that the first cut C ∈ Cj to contain u is associated with Xi. There

exists a level-j cut that separates u and v if and only if
∑
i 1{Yij ∧ Zij} = 1, thus we

have

T(u, v) 6
∑
j

2j
∑
i

1{Yij ∧ Zij}

and so

E[T(u, v)] 6
∑
j

2j
∑
i

Pr[Zij | Yij] · Pr[Yij].

For each group, define ti ∈ Xi to be the terminal in Xi closest to u. Reindex the

groups according to their distance from u, i.e. d(ti,u) 6 d(ti ′ ,u) for i < i ′. Because

B(S, rj) ∩ B(S ′, rj) = ∅ for distinct clusters S,S ′ ∈ Si(rj), event Yij happens only if

u ∈ δ(B(ti, rj)), and event Zij happens only if Xi was the first in the arrival order

σ among groups Xi ′ with u ∈ B(ti, rj). The event Yij implies that u ∈ B(ti ′ , rj) for

groups i ′ < i. Therefore, conditioned on Yij, the event Zij only happens if i ≺σ i ′

for all i ′ < i which happens with probability 1
i
. Thus Pr[Zij | Yij] = 1

i
for all i and j,

81

and so

E[T(u, v)] 6
∑
i

1
i

∑
j

2j Pr[Yij].

Event Yij happens if and only if d(ti,u) < rj 6 d(ti, v). Since rj is uniformly

distributed in the interval [2j−1, 2j), we have

∑
j

2j Pr[Yij] =
∑
j

2j |(d(ti,u),d(ti, v)] ∩ [2j−1, 2j)|
2j−1

= 2
∑
j

|[d(ti,u),d(ti, v)) ∩ [2j−1, 2j)|

= 2(d(ti, v) − d(ti,u)) 6 2d(u, v),

where the triangle inequality is used in the last step.

We conclude that

E[T(u, v)] 6
∑
i

1
i
· 2d(u, v) 6 O(log g)d(u, v),

as desired.

We are now ready to prove Lemma 6.5.

Proof of Lemma 6.5. Let F∗ be a minimum spanning tree of (X,d). This is a 2-

approximate minimum Steiner tree of X in (V ,d) (see, e.g. [Vaz01, Chapter 3]),

so c(F∗) 6 2 OPT. For an arrival order σ, and (X,σ)-embedding T , define the set of

paths P(T) = {Puv(T) : (u, v) ∈ F∗}, where Puv(T) is the (u, v)-path in T . Since F∗

spans X, which are the leaves of T , the paths P(T) covers all edges of T . Furthermore,

the length of a path Puv(T) is exactly T(u, v). So,

OPT(T) =
∑
j

2j−1|Ej(T)| 6
∑

(u,v)∈F∗
T(u, v).

82

In expectation over uniformly random arrival order σ and (X,σ)-embedding T ∼ Dσ,

we have

E[OPT(T)] 6
∑

(u,v)∈F∗
E[T(u, v)]

6 O(log g)
∑

(u,v)∈F∗
d(u, v)

= O(log g)c(F∗) 6 O(log g)OPT,

where the last inequality uses the fact that c(F∗) 6 2 OPT.

Putting all of this together, Lemmas 6.4 and 6.5 imply that Algorithm 6.1 has

an expected competitive ratio of O(log g) for the online Steiner tree with random

group arrivals problem. This completes the proof of Theorem 6.2.

6.3 Lower Bound

We now turn to proving the lower bound, Theorem 6.1. We begin by showing that

we only need to consider lazy algorithms. An algorithm ALG is lazy if for every step

of the online process, its subgraph F is a minimal Steiner tree for the terminals seen

so far i.e. no subgraph strictly contained in F is a Steiner tree for these terminals.

Lemma 6.8. For any randomized algorithm ALG, there exists a randomized lazy algorithm

LAZY whose expected competitive ratio is at most that of ALG’s.

Proof. Given an algorithm ALG, the desired lazy algorithm LAZY is one that sim-

ulates ALG and maintains a subgraph of ALG’s solution that spans the terminals

seen so far. Let Fi be the subgraph maintained by ALG after it is presented the first

83

D1 D2 D2D1D0

r

t

r

t

r

t

r

t

Figure 6.1: Diamond graphs D0, D1, and D2. In the last diagram, the black vertices
representW0, green representW1, and blue representW2

i groups. The algorithm LAZY maintains a subgraph F ′i that is a minimal subset of

Fi that spans X1 ∪ · · · ∪ Xi. Therefore, for any set of groups X and arrival order σ,

the cost of LAZY is at most that of ALG. This implies that the expected competitive

ratio of LAZY is at most that of ALG’s.

Next, we construct a lower bound instance against lazy algorithms. The underly-

ing graph of the instance is called a diamond graph. All edges are of unit length The

family of rooted diamond graphs DN = (VN,EN) are defined recursively. The base

case D0 is simply an edge (r, t). We say that r is a mate with t, and vice versa. To go

from Di−1 to Di, we copy the vertex set of Vi−1, and for each edge (u, v) ∈ Ei−1, in-

troduce two parallel (u, v)-paths consisting of two edges each. More specifically, we

introduce two new vertices x, x ′ and four new edges (u, x), (u, x ′), (v, x), (v, x ′); we

also define x and x ′ to be mates of each other. Every edge of Ei. LetWi = Vi \ Vi−1,

the new vertices introduced in going from Di−1 to Di. Note that each vertex v has a

unique mate, which we denote bym(v).

Let us first construct a lower bound instance against deterministic lazy algorithms.

We will then adapt it to prove a lower bound against randomized lazy algorithms.

Lemma 6.9. Every deterministic lazy algorithm has competitive ratioΩ(min{log k,g}).

84

r

t

r

t

r

t

r

t

OPTF1 F2 F3

Figure 6.2: Example for N = 3. The thick edges represent F1, F2, F3 and OPT,
respectively. The red vertices represent terminals. In the first two diagrams, the red
path represents P2 and P3, respectively.

Proof. We will show that for any lazy algorithm LAZY and any positive integer

g, there exists a sequence of g groups Xi on the g-th diamond graph Dg with

k = |X1 ∪ · · · ∪ Xg| = 2g + 1 terminals, such that the competitive ratio of LAZY is at

leastΩ(g). Note that g = O(log k).

Fix a lazy algorithm LAZY and a positive integer g. Recall that for deterministic

algorithms, the adversary can construct the request sequence adaptively and choose

the next request of the sequence based on the algorithm’s decisions so far. The

instance is constructed such that X = X1 ∪ · · · ∪ Xg lies along a (r, t)-path. The first

group is X1 = {r, t}. Let X<i = X1 ∪ · · · ∪ Xi−1, and Fi−1 is the minimal Steiner tree

of X<i bought by LAZY. Among the (r, t)-paths that contain X<i, we claim that

there exists a path P such that V(P) ∩Wi ∩ V(Fi−1) = ∅, where V(H) denotes the

set of vertices in subgraph H. In other words, there exists an (r, t)-path containing

X<i such that every vertex ofWi on the path is not in Fi−1. To see why this claim is

true, letQ be some (r, t)-path containing X<i; then for every vertex w ∈ V(Q) ∩Wi,

either w /∈ V(Fi−1) or its matem(w) /∈ V(Fi−1), since Fi−1 is a minimal Steiner tree

for X<i. The i-th group is Xi = (V(P) ∩Wi) ∪ {r}. This defines the g groups of the

request sequence. We now analyze the cost of LAZY.

85

Since V(P) ∩Wi ∩ V(Fi−1) = ∅, LAZY has to incur a cost of

|V(P) ∩Wi| · d(w,X<i) = 2i−1 · 2g−i = 2g−1

to connect group Xi. This is because there are 2i−1 vertices of Wi along any (r, t)-

path, and for any w ∈ Wi, we have d(w,X<i) > 2g−i. Therefore, the total cost of

LAZY over all g requests is g · 2g−2. On the other hand, the terminals X lie on a

(r, t)-path, which is of length 2g−1. Thus, the competitive ratio of LAZY isΩ(g), as

desired.

Finally, we prove a lower bound on the expected competitive ratio of randomized

lazy algorithms.

Lemma 6.10. The expected competitive ratio of any randomized lazy algorithm is at least

Ω(min{log k,g}).

Proof. Yao’s minimax principle [Yao77] states that the expected cost of any random-

ized algorithm on an input that is worst-case for that algorithm is at least, over

any distribution of the input, the expected cost of a deterministic algorithm that is

tailored for that distribution. In particular,

min
rand. alg. ALG

max
(I,σ)

E[ALG(I,σ)] > max
input dist.D

min
det. alg. ALG

E(I,σ)∼D[ALG(I,σ)].

Recall that an online instance consists of a request set I and an arrival order σ. Note

that the expectation on the LHS is over the random coin flips of the algorithm

while the expectation on the RHS is over the input distribution. Thus, we only

need to construct a distribution of online instances such that, in expectation, every

deterministic lazy algorithm has a competitive ratio at leastΩ(min{log k,g}).

86

Consider the following random input. The underlying graph is the g-th diamond

graph Dg. We will ensure that the groups lie along some (r, t)-path and that Xi

consists of the root and a subset ofWi. The first group is X1 = {r, t}. We construct the

i-th group Xi as follows. Write the vertices of Xi−1 as v1, . . . , v2i−1 where vj is the j-th

closest to r. Start with Xi = ∅. By the construction of the diamond graph, for each

1 6 j < 2i−1, there are exactly two vertices yij, zij ∈ Wi that lie on a (vj, vj+1)-path

and they are mates of each other; choose one of them at random to add to Xi. Finally

add r and t to Xi.

Fix a deterministic lazy algorithm LAZY. Let Fi−1 be its minimal Steiner tree

over X<i = X1 ∪ · · · ∪ Xi−1. The algorithm incurs a cost of

|V(P) ∩Wi \ Fi−1| · d(w,X<i) = |V(P) ∩Wi \ Fi−1| · 2g−2

to connect group Xi.

E

[
g∑
i=1

|V(P) ∩Wi \ Fi−1| · 2g−i
]

=

g∑
i=1

2g−i
∑

Y1,...,Yi−1⊆V

E

[
|V(P) ∩Wi \ Fi−1|

∣∣∣∣∣
i−1∧
j=1

Xi = Yi

]
· Pr

[
i−1∧
j=1

Xi = Yi

]

=

g∑
i=1

2g−i · |V(P) ∩Wi|

2

=

g∑
i=1

2g−i · 2i−2 = g · 2g−3,

where the second equality follows from the fact that Fi−1 is a minimal Steiner tree over

X<i, and yij, zij ∈Wi are mates so they cannot be both in Fi−1; thus, the probability

that, in the construction of Xi, we chose the one that is in Fi−1 is 1/2.

Since the terminals X lie on a (r, t)-path, which is of length 2g−1, the competitive

87

ratio of LAZY isΩ(g), as claimed.

Combining Lemmas 6.8 and 6.10 gives us Theorem 6.1.

6.4 Notes

This chapter is based on work by the author.

88

Bibliography

[AA97] Baruch Awerbuch and Yossi Azar. Buy-at-bulk network design. In Pro-
ceedings of the 38th Annual Symposium on Foundations of Computer Science,
pages 542–547, Oct 1997.

[AAB04] Baruch Awerbuch, Yossi Azar, and Yair Bartal. On-line generalized
Steiner problem. Theoretical Computer Science, 324(2-3), September 2004.

[ADK+08] Elliot Anshelevich, Anirban Dasgupta, Jon Kleinberg, Éva Tardos, Tom
Wexler, and Tim Roughgarden. The price of stability for network design
with fair cost allocation. SIAM Journal on Computing, 38(4):1602–1623,
2008.

[AKR95] Ajit Agrawal, Philip Klein, and R. Ravi. When trees collide: An ap-
proximation algorithm for the generalized steiner problem on networks.
SIAM J. Comput., 24(3):440–456, June 1995.

[Bar96] Yair Bartal. Probabilistic approximation of metric spaces and its al-
gorithmic applications. In Proceedings of the 37th Annual Symposium
on Foundations of Computer Science, pages 184–193. IEEE Comput. Soc.
Press, 1996.

[Bar98] Yair Bartal. On approximating arbitrary metrices by tree metrics. In
Proceedings of the 30th Annual ACM Symposium on Theory of Computing,
pages 161–168, New York, NY, USA, 1998. ACM.

[BC97] Piotr Berman and Chris Coulston. On-line algorithms for steiner tree
problems (extended abstract). In Proceedings of the 29th Annual ACM
Symposium on Theory of Computing, pages 344–353, New York, NY, USA,
1997. ACM.

[BEY05] A. Borodin and R. El-Yaniv. Online Computation and Competitive Analysis.
Cambridge University Press, 2005. Reissue edition (first published
1998).

[BGRS13] Jarosław Byrka, Fabrizio Grandoni, Thomas Rothvoss, and Laura Sanità.
Steiner tree approximation via iterative randomized rounding. J. ACM,
60(1):6:1–6:33, February 2013.

89

[CCLE+07] C. Chekuri, J. Chuzhoy, L. Lewin-Eytan, J. Naor, and A. Orda. Non-
cooperative multicast and facility location games. Selected Areas in
Communications, IEEE Journal on, 25(6):1193–1206, August 2007.

[CKM+08] Moses Charikar, Howard Karloff, Claire Mathieu, Joseph (Seffi) Naor,
and Michael Saks. Online multicast with egalitarian cost sharing. In
Proceedings of the 20th Annual Symposium on Parallelism in Algorithms and
Architectures, SPAA ’08, pages 70–76, New York, NY, USA, 2008. ACM.

[DJK13] Nikhil R Devanur, Kamal Jain, and Robert D Kleinberg. Randomized
primal-dual analysis of ranking for online bipartite matching. In Pro-
ceedings of the 24th Annual ACM-SIAM Symposium on Discrete Algorithms,
pages 101–107. SIAM, 2013.

[EGRS08] Friedrich Eisenbrand, Fabrizio Grandoni, Thomas Rothvoß, and Guido
Schäfer. Approximating connected facility location problems via ran-
dom facility sampling and core detouring. In Proceedings of the 19th
Annual ACM-SIAM Symposium on Discrete Algorithms, pages 1174–1183.
Society for Industrial and Applied Mathematics, 2008.

[FKL+91] Amos Fiat, Richard M Karp, Michael Luby, Lyle A McGeoch, Daniel D
Sleator, and Neal E Young. Competitive paging algorithms. Journal of
Algorithms, 12(4):685–699, 1991.

[Fot07] Dimitris Fotakis. A primal-dual algorithm for online non-uniform
facility location. Journal of Discrete Algorithms, 5(1):141–148, 2007.

[Fot08] Dimitris Fotakis. On the competitive ratio for online facility location.
Algorithmica, 50(1):1–57, 2008.

[Fot11] Dimitris Fotakis. Online and incremental algorithms for facility location.
SIGACT News, 42(1), March 2011.

[FRT04] Jittat Fakcharoenphol, Satish Rao, and Kunal Talwar. A tight bound
on approximating arbitrary metrics by tree metrics. Journal of Computer
and System Sciences, 69(3):485–497, November 2004.

[GB93] Michel X Goemans and Dimitris J Bertsimas. Survivable networks,
linear programming relaxations and the parsimonious property. Math-
ematical Programming, 60(1-3):145–166, 1993.

[GGLS08] Naveen Garg, Anupam Gupta, Stefano Leonardi, and Piotr Sankowski.
Stochastic analyses for online combinatorial optimization problems. In
Proceedings of the 19th Annual ACM-SIAM Symposium on Discrete Algo-
rithms, SODA ’08, pages 942–951, Philadelphia, PA, USA, 2008. Society
for Industrial and Applied Mathematics.

90

[GK11] Anupam Gupta and Jochen Könemann. Approximation algorithms for
network design: A survey. Surveys in Operations Research and Manage-
ment Science, 16(1):3 – 20, 2011.

[GKPR07] Anupam Gupta, Amit Kumar, Martin Pál, and Tim Roughgarden. Ap-
proximation via cost sharing: Simpler and better approximation algo-
rithms for network design. Journal of the ACM (JACM), 54(3):11, 2007.

[GKR12] Anupam Gupta, Ravishankar Krishnaswamy, and R. Ravi. Online
and stochastic survivable network design. SIAM Journal on Computing,
41(6):1649–1672, 2012.

[GR10] Fabrizio Grandoni and Thomas Rothvoß. Network design via core
detouring for problems without a core. In Automata, Languages and
Programming, pages 490–502. Springer, 2010.

[GW95] Michel X. Goemans and David P. Williamson. A general approximation
technique for constrained forest problems. SIAM Journal on Computing,
24(2):296–317, 1995.

[GW97] Michel X Goemans and David P Williamson. The primal-dual method
for approximation algorithms and its application to network design
problems. Approximation algorithms for NP-hard problems, pages 144–191,
1997.

[IW91] Makoto Imase and Bernard M. Waxman. Dynamic steiner tree problem.
SIAM Journal on Discrete Mathematics, 4(3):369–384, 1991.

[Jai01] Kamal Jain. A factor 2 approximation algorithm for the generalized
steiner network problem. Combinatorica, 21(1):39–60, 2001.

[KMMO94] Anna R Karlin, Mark S Manasse, Lyle A McGeoch, and Susan Ow-
icki. Competitive randomized algorithms for nonuniform problems.
Algorithmica, 11(6):542–571, 1994.

[Mey01] Adam Meyerson. Online facility location. In Proceedings of the 42nd
Annual IEEE Symposium on Foundations of Computer Science, pages 426–
431. IEEE Comput. Soc, 2001.

[MS96] Dov Monderer and Lloyd S. Shapley. Potential games. Games and
Economic Behavior, 14(1):124 – 143, 1996.

[QW11] Jiawei Qian and David P. Williamson. An O(logn)-competitive algo-
rithm for online constrained forest problems. In Luca Aceto, Monika
Henzinger, and Jiří Sgall, editors, Automata, Languages and Programming,
volume 6755 of Lecture Notes in Computer Science, pages 37–48. Springer
Berlin Heidelberg, 2011.

91

[Ros73] Robert W Rosenthal. A class of games possessing pure-strategy nash
equilibria. International Journal of Game Theory, 2(1):65–67, 1973.

[SFWL14a] Mário César San Felice, David P. Williamson, and Orlando Lee. The
online connected facility location problem. In Alberto Pardo and Al-
fredo Viola, editors, LATIN 2014: Theoretical Informatics, volume 8392
of Lecture Notes in Computer Science, pages 574–585. Springer Berlin Hei-
delberg, 2014.

[SFWL14b] Mário César San Felice, David P. Williamson, and Orlando Lee. A
randomized o(logn)-competitive algorithm for the online connected
facility location problem. In Submission, 2014.

[SK04] Chaitanya Swamy and Amit Kumar. Primal–Dual Algorithms for Con-
nected Facility Location Problems. Algorithmica, 40(4), September 2004.

[ST84] Daniel Dominic Sleator and Robert Endre Tarjan. Amortized efficiency
of list update rules. In Proceedings of the 16th Annual ACM Symposium
on Theory of Computing (STOC), pages 488–492. ACM, 1984.

[Umb15] Seeun Umboh. Online network design algorithms via hierarchical de-
compositions. In Proceedings of the 26th Annual ACM-SIAM Symposium
on Discrete Algorithms, pages 1373–1387. Society for Industrial and Ap-
plied Mathematics, 2015.

[Vaz01] Vijay V. Vazirani. Approximation algorithms. Springer-Verlag Berlin Hei-
delberg, 2001.

[Wil02] David P. Williamson. The primal-dual method for approximation algo-
rithms. Mathematical Programming, 91(3):447–478, 2002.

[Yao77] Andrew Chi-Chin Yao. Probabilistic computations: Toward a unified
measure of complexity. In Proceedings of the 18th Annual IEEE Sympo-
sium on Foundations of Computer Science, FOCS ’77, pages 222–227, Oct
1977.

	Contents
	List of Figures
	Abstract
	Introduction
	Previous Approaches
	Our Contributions
	Overview of Results

	Background on HST Embeddings
	HST Embeddings

	Steiner Problems
	Warmup: Steiner Tree
	Steiner Forest
	Steiner Network
	Notes

	Shared-vs-Individual Objectives
	Single-Source Rent-or-Buy
	Multiple-Source Rent-or-Buy
	Connected Facility Location
	Prize-Collecting Steiner Tree
	Notes

	Online Multicast Games
	Introduction
	Model
	Upper Bound
	Lower Bound
	Notes

	Random Permutation Model
	Introduction
	Upper Bound
	Lower Bound
	Notes

	Bibliography

