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STATISTICAL METHODS FOR IMPROVING DATA QUALITY IN MODERN
RNA SEQUENCING EXPERIMENTS

Zijian Ni

Under the supervision of Professor Christina Kendziorski
At the University of Wisconsin-Madison

Abstract
RNA sequencing (RNA-seq) has revolutionized the possibility of measuring

transcriptome-wide gene expression in the last two decades. Modern RNA se-
quencing techniques such as single-cell RNA sequencing (scRNA-seq) and spatial
transcriptomics (ST) have been developed in recent years, allowing researchers
to quantify gene expression in single-cell resolution or to profile gene activity pat-
terns in 2-dimensional space across tissue. While useful, data collected from these
techniques always come with noise, and appropriate filtering and cleaning are re-
quired for reliable downstream analyses. In this dissertation, I investigate multiple
quality-related issues in scRNA-seq and ST experiments, and I develop, implement,
evaluate and apply statistical methods to adjust for them. A unifying theme of this
work is that all these methods aim at improving data quality and allowing for better
power and precision in downstream analyses.

For scRNA-seq data, the quality issue we discuss in this dissertation is distin-
guishing barcodes associated with real cells from those binding background noise.
In droplet-based scRNA-seq experiments, raw data contains both cell barcodes that
should be retained for downstream analysis as well as background barcodes that are
uninformative and should be filtered out. Due to ambient RNAs presenting in all
the barcodes, cell barcodes are not easily distinghished from background barcodes.
Both misclassified background barcodes and cell barcodes induce misleading re-
sults in downstream analyses. Existing filtering methods test barcodes individually
and consequently do not leverage the strong cell-to-cell correlation present in most
datasets. To improve cell detection, we introduce CB2, a cluster-based approach for
distinguishing real cells from background barcodes. As demonstrated in simulated
and case study datasets, CB2 has increased power for identifying real cells which
allows for the identification of novel subpopulations and improves downstream
differential expression analyses.
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We then present a benchmark study to evaluate the performance of cell detec-
tion methods, including CB2, on public scRNA-seq datasets covering a variety of
experiment protocols. In recent years, variants of scRNA-seq techniques have been
developed for specialized biological tasks. While the data structures remain the
same as the standard scRNA-seq experiment, the underlying data properties can
alter a lot. Here, we propose the first benchmark study to provide a thorough
comparison across existing cell detection methods in scRNA-seq data, and to guide
users to choose the appropriate methods for their experiments. Evaluation metrics
include power, precision, computational efficiency, robustness, and accessibility. In
addition, we provide investigation and guidance on appropriately choosing filtering
parameters in order to improve data quality.

For ST data, we uncover, for the first time, a novel quality issue that genes
expressed at one tissue region bleed out and contaminate nearby tissue regions.
ST is a powerful and widely-used approach for profiling transcriptome-wide gene
expression across a tissue with emerging applications in molecular medicine and
tumor diagnostics. Recent ST experiments utilize slides containing thousands
of spots with spot-specific barcodes that bind RNAs. Ideally, unique molecular
identifiers at a spot measure spot-specific expression, but this is often not the case
owing to bleed from nearby spots, an artifact we refer to as spot swapping. We
design a creative human-mouse chimeric ST experiment to validate the existence of
spot swapping. Spot swapping hinders inferences of region-specific gene activities
and tissue annotations. In order to decontaminate ST data, we propose SpotClean,
a probabilistic model that measures the spot swapping effect and estimates gene
expression using EM algorithm. SpotClean is shown to provide a more accurate
estimation of the underlying gene expression, increase the specificity of marker
gene signals, and, more importantly, allow for improved tumor diagnostics.
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1 introduction

Determining the ways in which gene expression affects downstream phenotypes is
a central question in a number of biological fields, and technologies for measuring
gene expression continue to be rapidly developed. The massively parallel sequenc-
ing technology known as next-generation sequencing (NGS) has revolutionized
the biological sciences. With its ultra-high throughput, scalability, and speed, NGS
enables researchers to perform a wide variety of applications and study biological
systems at a level never before possible. RNA sequencing (RNA-seq), one of the
NGS protocols aimed at whole-transcriptome profiling to derive transcriptome-wide
mRNA expression data from a population of cells, has proven useful in thousands of
studies over the past two decades (Wang et al., 2009; Bacher and Kendziorski, 2016).
Meanwhile, a lot of sophisticated computational methods for processing RNA-seq
data have been developed to solve problems such as normalization (Anders and
Huber, 2010), which corrects for non-biological artifacts during library preparation
and sequencing; differential expression (DE) analysis (Love et al., 2014; Leng et al.,
2013), which identifies genes that show marginal shifts in expression under different
experimental conditions; and gene set enrichment analysis (Subramanian et al.,
2005), which focuses on groups of genes that share common biological functions.
Auer and Doerge (2010), Kukurba and Montgomery (2015), and Conesa et al. (2016)
are great review papers about the design and computational analyses of RNA-seq
experiments.

For practical reasons, the traditional RNA-seq experiment is usually conducted
on samples comprising thousands to millions of cells (so-called bulk RNA-seq).
However, this has hindered direct assessment of the fundamental unit of biolo-
gy—the cell. To uncover cell-to-cell heterogeneity, single-cell RNA sequencing
(scRNA-seq) has emerged as a novel technique to measure mRNA abundance in
a single cell, with the scale from tens to thousands of cells in a single experiment
done within a week (Tang et al., 2009; Islam et al., 2011; Macosko et al., 2015; Zheng
et al., 2017). scRNA-seq allows researchers to directly investigate the activities of
individual cells, study transcriptomic profiles of specific cell types, and discover
unidentified cell types that were hidden in bulk RNA-seq due to pooling cells.
The scRNA-seq technology has already enabled critical insights into novel sub-
populations (Jaitin et al., 2014; Buettner et al., 2015), differentiation progression
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(Treutlein et al., 2014; Trapnell et al., 2014), embryonic development (Xue et al.,
2013; Deng et al., 2014), cancer (Patel et al., 2014; Chung et al., 2017), and neural
diversity (Darmanis et al., 2015; Mathys et al., 2019). During the ongoing COVID-19
pandemic, scRNA-seq has also become a powerful tool to investigate the immune
response of COVID-19 patients, accelerating the discovery and development of
better diagnoses and treatments (Lee et al., 2020; Zhang et al., 2020; Stephenson
et al., 2021).

Due to the novel cellular-level insights provided by scRNA-seq technologies,
as well as the special data properties such as high dimensionality and sparsity,
new computational methods have been developed, such as in normalization (Lun
et al., 2016; Bacher et al., 2017; Brown et al., 2021), clustering (Satija et al., 2015;
Kiselev et al., 2017), DE (Finak et al., 2015; Korthauer et al., 2016), and trajectory
analyses (Trapnell et al., 2014; Street et al., 2018). A typical computational pipeline
of scRNA-seq data starts from the raw gene-by-cell expression matrix, where rows
are genes, columns are cells, and the matrix entries are the gene expression levels.
Similar to bulk RNA-seq data, the expression matrix in scRNA-seq data is filtered
to remove lowly expressed genes and poor-quality cells, and then normalized to
remove sequencing artifacts. Following normalization, dimension reduction is
performed usually by principal component analysis (PCA) using highly variable
genes. The top PCs are used for clustering cells into groups with similar expression
profiles. DE genes are identified for each cluster, which will then contribute to cell
type annotation, gene set enrichment analysis, and regulatory network construction.
The top PCs can also be used in trajectory analysis by estimating a pseudotime for
each cell in order to investigate cell development and lineage hierarchies.

The increased throughput of sequencing has also fostered new experimental
techniques in recent years that can directly assay the spatial context of variations in
gene expression, the so-called spatial transcriptomics (ST) (Ståhl et al., 2016; Ro-
driques et al., 2019). Spatial resolution of gene expression is crucial for determining
the functions and phenotypes of cells in multicellular organisms. Spatial expression
variation can reflect communication between adjacent cells, position-specific states,
or cells that migrate to specific tissue locations to perform their functions (Svens-
son et al., 2018). ST has been proven useful in various fields such as embryonic
development (van den Brink et al., 2020; Asp et al., 2019), nephrology (Stewart and
Clatworthy, 2020), neuroscience (Maynard et al., 2021), and cancer (He et al., 2020;
Berglund et al., 2018; Thrane et al., 2018).
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The basic computational pipeline for ST data is similar to scRNA-seq data, al-
though novel methods have been developed using the additional spatial information.
For instance, spatial variability analysis allows identifying genes with spatially vary-
ing expression across the tissue section (Svensson et al., 2018; Sun et al., 2020);
spatial correlation analysis detects group of genes with spatially varying correlation
(Bernstein et al., 2022); and spatial clustering incorporates spatial dependency of
adjacent tissues for a clean and smooth 2-dimensional clustering result (Zhao et al.,
2021). The data structure of ST data is similar to scRNA-seq data, that is, a raw
gene-by-location expression matrix. In addition, the 2-dimensional coordinates of
the locations are known and can be used to account for the spatial dependency of
adjacent tissues. A histological image of the tissue is also often available to help
with visual annotation of tissue types at different locations.

Nowadays, hundreds of computational methods have been developed to analyze
scRNA-seq and ST data. However, less attention has been paid to the upstream
quality control. Quality-related challenges in scRNA-seq and ST technologies must
be correctly addressed to ensure powerful, efficient, and accurate downstream anal-
yses. Towards this end, my PhD research focused on the development, validation,
implementation, and application of statistical methods and software to improve the
data quality in scRNA-seq and ST experiments.

Droplet-based scRNA-seq (Macosko et al., 2015; Klein et al., 2015; Zheng et al.,
2017) is the state-of-the-art protocol of scRNA-seq experiments as it allows thou-
sands of individual cells to be profiled simultaneously and efficiently. While useful,
its raw gene-by-cell expression matrix is not straightforward to define, since cells
are not clearly separated from background noise. As detailed in chapter 2, droplet-
based scRNA-seq uses strings of nucleotides (referred to as barcodes) to estimate the
abundances of genome-wide mRNA expression in individual cells. Unfortunately,
the barcodes often bind to non-cellular mRNA and, consequently, an important
problem in data pre-processing is distinguishing between barcodes binding mRNA
from real cells versus those binding mRNA from background noise. As shown in
chapter 2 and chapter 3, we developed CB2, a statistical method for accurate and
powerful cell identification in droplet-based scRNA-seq data (Ni et al., 2020). The
idea behind CB2 is to test groups of barcodes against the distribution of background
noise using Monte-Carlo p-values. CB2 has been validated in both simulation and
real data analyses, and benchmarked against other similar methods. Results sug-
gested that CB2 achieves great power of identifying real cells while controlling false
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positives. CB2 was implemented as an R package and is now publicly available.
In addition to CB2, as part of my thesis, we also identified and addressed a novel

quality-related issue in recent ST technologies. As detailed in chapter 4, recent ST
experiments utilize slides containing thousands of spots with spot-specific barcodes
that bind mRNA. We discovered for the first time that in a typical ST experiment,
mRNA at a given spot often bleeds to nearby spots, an artifact we refer to as spot
swapping. Due to spot swapping, the raw gene-by-location expression matrix does
not accurately measure the gene expression level at a given location. Instead, the
observed expression at a given location contains a mixture of expressions from
nearby locations. To address this, we developed SpotClean, a statistical method
to adjust for spot swapping and recover the underlying true gene expression in
ST data (Ni et al., 2021). The idea behind SpotClean is to model spot swapping
using a kernel method and estimate the underlying expression by maximizing data
likelihood. Simulation and real data analyses suggested that SpotClean accounts
for the spot swapping effect and improves the power and precision of downstream
analyses with the corrected gene expression. SpotClean was implemented as an R
package and is now publicly available.

Besides these major projects, my work also involves multiple interdisciplinary col-
laborations in a variety of biological fields, such as method development for scRNA-
seq data normalization (Brown et al., 2021), online scRNA-seq cancer database
(Bernstein et al., 2021), spatially varying correlation in ST data (Bernstein et al.,
2022), segmented regression of RNA-seq time course data (Bacher et al., 2018),
text mining for drug discovery (Raja et al., 2020), variants-disease associations in
whole-exome sequencing data (manuscript in review), as well as statistical analysis
in the genomic and transcriptomic-level studies of embryonic development (Chu
et al., 2019), diabetes (Nimkulrat et al., 2021), immune response (manuscript in
progress), colorectal cancer (manuscript in progress), and COVID-19 (work in
progress).
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2 cb2 improves power of cell detection in droplet-based
single-cell rna sequencing data

Chapter Summary

An important challenge in pre-processing data from droplet-based single-cell RNA
sequencing protocols is distinguishing barcodes associated with real cells from
those binding background noise. Existing methods test barcodes individually and
consequently do not leverage the strong cell-to-cell correlation present in most
datasets. To improve cell detection, we introduce CB2, a cluster-based approach for
distinguishing real cells from background barcodes. As demonstrated in simulated
and case study datasets, CB2 has increased power for identifying real cells which
allows for the identification of novel subpopulations and improves the precision of
downstream analyses.

2.1 Background
Droplet-based single-cell RNA-seq (Macosko et al., 2015; Klein et al., 2015; Zheng
et al., 2017) is currently the dominant single-cell RNA sequencing protocol as it
is able to measure the transcriptomic profiles of thousands of cells at the same
time with relatively high speed and low cost (Figure 2.1). Current commercial
droplet-based technologies utilize gel beads, each containing oligonucleotide in-
dexes made up of bead-specific barcodes combined with unique molecular identi-
fiers (UMIs)(Islam et al., 2014) and oligo-dT tags to prime polyadenylated RNAs.
Single cells of interest are combined with reagents in one channel of a microfluidic
chip, and gel beads in another, to form gel-beads in emulsion, or GEMs (Figure 2.1b).
Oligonucleotide indexes bind polyadenylated RNA within each GEM reaction vesi-
cle before gel beads are dissolved releasing the bound oligos into solution for reverse
transcription. By design, each resulting cDNA molecule contains a UMI and a GEM-
specific barcode. Indexed cDNA is pooled for PCR amplification and sequencing
resulting in a data matrix of UMI counts for each barcode (Figure 2.1c).

Ideally, each barcode will tag mRNA from an individual cell, but this is often not
the case in practice. In most datasets, more than 90% of GEMs do not contain viable
cells, but rather contain ambient RNA excreted by cells in solution or as a product
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of cell lysis. As a result, an important challenge in pre-processing droplet-based
scRNA-seq data is distinguishing those barcodes corresponding to real cells from
those binding ambient, or background, RNA.

In a mathematical point of view, the raw data of such droplet-based scRNA-
seq experiments is a gene-by-barcode matrix, where rows are genes, columns are
barcodes, and the matrix entries are the gene expression levels measured by UMI
counts. Note that this gene-by-barcode matrix is different from a gene-by-cell matrix,
since there are both cell barcodes and background barcodes in the gene-by-barcode
matrix. A computational method is required to filter out background barcodes in
order to get the raw gene-by-cell matrix for downstream analysis.

Early methods to address this challenge defined real cells as those barcodes
with total read counts exceeding some threshold (Macosko et al., 2015; Zheng et al.,
2017). Such methods are suboptimal as they discard small cells as well as those
expressing relatively few genes, and misclassify large background barcodes as
cells. A more sophisticated method, EmptyDrops (ED) (Lun et al., 2019), identifies
individual barcodes with distributions varying from a background distribution.
Similar to previous approaches, ED identifies an upper threshold and defines real
cells as those barcodes with counts above the threshold. As a second step, ED
uses all barcodes with counts below a lower threshold to estimate a background
distribution of ambient RNA against which remaining barcodes are tested. Those
having expression profiles significantly different from the background distribution
are deemed real cells. The ED approach is currently the most widely used in the
field. However, given that ED performs tests for each barcode individually, it
does not leverage the strong correlation observed between cells and, consequently,
compromises power for identifying cells in many datasets.

To increase the power for identifying real cells, we developed CB2, a cluster-based
approach for distinguishing real cells from background barcodes in droplet-based
scRNA-seq experiments. CB2 extends the ED framework by introducing a clustering
step that groups similar barcodes, then conducts a statistical test to identify groups
with expression distributions that vary from the background. CB2 is implemented
in the R package scCB2 and is available at Bioconductor. section 2.2 gives details
about the model. In section 2.3, simulation and real world evaluations demonstrate
CB2’s increased power for identifying real cells which allows for the identification
of novel subpopulations and improves the precision of downstream analyses.
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Figure 2.1: A typical droplet-based single-cell RNA-seq protocol. (a) Projection of a
hypothetical cell population containing three subpopulations (red, green and blue
where intensity corresponds to read depth). (b) In the 10x Chromium protocol
(one of the most widely-used commercial single-cell RNA-seq protocols), gel beads
containing oligonucleotide indexes made up of bead-specific barcodes combined
with UMIs and oligo-dT tags to prime polyadenylated RNA are combined with
single cells in one channel of a microfluidic chip and oil in another to form gel-beads
in emulsion, or GEMs. (c) GEMs that capture individual cells are referred to as
functional GEMs; those that fail to capture cells are empty droplets. Gel beads
dissolve and release their oligos for reverse transcription of polyadenylated RNAs.
Indexed cDNA is pooled for PCR amplification and sequencing to give a data matrix
of UMI counts for each barcode.
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2.2 Methods
In this section, we provide a detailed description of the CB2 model. Figure 2.2 shows
an overview of the CB2 framework. CB2 expects as input a G× B gene-by-barcode
matrix with G genes and B barcodes (Figure 2.2a). Barcodes having zero counts for
all genes are filtered out, and the remaining barcodes are divided into three groups
based on the sum of gene expression (UMI) counts within a barcode (Figure A.1).
The background group, B0, contains all barcodes with counts less than or equal to a
pre-defined lower threshold (defaults to 100); the high-count barcodes, B2, contain
barcodes with counts exceeding an upper threshold (defaults to knee point); the
remaining barcodes, B1, are to be tested. Each barcode is assumed to independently
follow a Multinomial distribution with parameters (N,p) where N denotes the total
UMI counts of the barcode, and p is the probability vector with length G.

We assume that counts from a background barcode are distributed with probabil-
ity vector pB0 estimated by averaging the counts in B0 and applying the Good-Turing
algorithm (Gale and Sampson, 1995) to ensure that all probabilities are non-zero,
denoted as p̂B0 . For a barcode b ∈ B1 with probability vector pb, our task is to test if
it is a background barcode or cell barcode, that is, if pb = pB0 or not. This setting
is similar to ED. However, ED tests all barcodes from B1 individually, while CB2
first clusters barcodes and then tests tight clusters to identify those that differ from
the background (Figure 2.2b). As in methods for genome-wide association studies
(Mieth et al., 2016), gene co-expression network analysis (Botía et al., 2017), and de
novo transcriptome analysis (Malik et al., 2018), clustering prior to testing increases
power by reducing the total number of tests and increasing the signal to noise ratio.
CB2 proceeds as follows:

1. Barcodes grouped by size: CB2 orders barcodes in B1 by total counts

B1 = {b1, . . . ,bB1} s.t. |Xbi
| ⩽ |Xbi+1 |

where Xb denotes the count vector of barcode b, |Xb| denotes the total UMI
counts of barcode b, and |B1| denotes the number of barcodes in B1. Groups
of size S (defaults to 1000) are constructed consisting of barcodes ranging in
size from smallest to largest:

B11 = {b1, . . . ,bS} ,B12 = {bS+1, . . . ,b2S} , · · · ,B1K =
{
b(K−1)S+1, . . . ,b|B1|

}
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where K = |B1|
S

is rounded up if not an integer. If |B1K| <
S
2 , barcodes in B1K

are merged with those in B1(K−1). Sorting barcodes by size reduces bias in the
clustering and testing steps that follow.

2. Barcodes clustered within group: Barcodes within each groupB1j are clustered
using hierarchical clustering with pairwise Pearson correlation as the similarity
metric. A cluster is considered tight if the average within-cluster pairwise
Pearson correlation exceeds a data-driven threshold. Tight clusters are retained
for further analysis as described in step 3, below. To determine thresholds, ten
tight clusters of varying size are simulated by generating 100 samples from a
Multinomial distribution with parameters (N,p) where N ranges from 100 to
1000 in increments of size 100. This range is chosen as we found little variation
in thresholds for barcode sizes exceeding 1000; p is set to either pB0 or pB2 ,
whichever has larger Shannon entropy (Shannon, 1948) as the distribution
with larger entropy is less affected by outlier genes. For each simulated cluster
C, the threshold κC is defined by its average pairwise Pearson correlation.
A cluster is considered tight if the average within-cluster pairwise Pearson
correlation exceeds κC for the simulated cluster of closest size.

3. Tight clusters tested: For each tight cluster C, we conduct a Monte-Carlo test
to assess dissimilarity from the background. Pairwise Pearson correlations are
calculated between every barcode in C and p̂B0 ; the test statistic for cluster C,
TC, is defined to be the median of these correlations. Similar to ED, to simulate
background barcodes, we sample barcodes X∗

1 , . . . ,X∗
M from a Multinomial

(N, p̂B0) where N is the size of the barcode giving TC. The Monte-Carlo p-value
is:

pC =

∑M
i=1

{
corX∗

i ,0 ⩽ TC
}
+ 1

M+ 1
where corX∗

i ,0 is the Pearson correlation between X∗
i and p̂B0 (M defaults

to 1000). Monte-Carlo p-values are calculated for each cluster followed by
Benjamini-Hochberg (Benjamini and Hochberg, 1995) to control the FDR. All
barcodes within a significant cluster are identified as real cells.

4. Individual barcodes tested: Barcodes that were not included in a tight cluster
in Step 2 as well as those in a tight cluster that were not found to be significant
in Step 3 are tested individually using ED. It is important to note that some of
the barcodes identified in this step do not overlap with identifications made
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when ED is applied to the full set of barcodes given differences in the rates of
real cells to background barcodes and differences in error rate control.

Figure 2.2: Overview of CB2. (a) Projection of a hypothetical cell population
containing three subpopulations (red, green, and blue where intensity corresponds
to read depth). CB2 takes as input a gene-by-barcode matrix of UMI counts and
returns a gene by cell matrix. (b) High-count barcodes with counts above a pre-
specified upper threshold are considered real cells; barcodes with counts below a
lower threshold are used to estimate a background distribution (Figure A.1). The
remaining barcodes are clustered, and tight clusters are tested as a group against
the estimated background distribution; barcodes not in tight clusters are tested
individually (not shown). High-count barcodes and those identified by CB2 are
retained for downstream analysis.
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2.3 Results
CB2 was evaluated and compared with ED on simulated and case study data.

Simulation set-up

We followed the same simulation framework as in Lun et al. (2019). Specifically,
each simulated gene-by-barcode matrix is based on an input real world dataset.
We constructed simulations from 10 datasets: Alzheimer (Mathys et al., 2019),
PBMC8K, PBMC33K, mbrain1K, mbrain9K, PanT4K, MALT, PBMC4K, jurkat, and
T293 (access to these datasets are available at Table A.1). For each input dataset, the
inflection point of the barcode rank plot (plotting the total UMI counts against its
rank for every barcode) is used to divide lower count from higher count barcodes.
Lower count barcodes are pooled to calculate a background probability vector,
where the vector length equals the number of genes. Background barcodes are
simulated from Multinomial distributions with varying total counts and the same
background probability vector. For each lower count barcode in the input dataset, a
matched background barcode will be simulated with the same total UMI counts. As
a result, the number and the UMI counts distribution of the simulated background
barcodes match those of the low count barcodes in the input dataset.

Next, we have two simulations frameworks for generating real cells. In SIM IA,
2000 large cell barcodes (G1), 2000 medium cell barcodes (G2), and 2000 small cell
barcodes (G3) are simulated. G1 cells were randomly drawn with replacement
from the higher count barcodes of the input dataset. G2 and G3 cells are simulated
similarly, but their UMI counts are further downsampled by 50% and 90% to give
medium and small cells. The process for simulating data in SIM IB is identical
to SIM IA except that in SIM IB, 10% of the genes in each simulated real cell are
shuffled making the real cells more different from the background barcodes and,
consequently, making real cells easier to identify. SIM IA is a more realistic sim-
ulation since the similarity between background barcodes and real cells closely
resembles that in real world data (Figure 2.3). SIM IB is evaluated since it’s the
simulation setting in ED.
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Figure 2.3: To measure the similarity between each simulated dataset and the case
study data from which it is derived, for each dataset we evaluate the extent to which
the distribution of real cells differs from the background distribution. Specifically,
for each case study dataset, we calculate the Kullback-Leibler (KL) divergence
to measure the difference between the expression distribution of the high-count
barcodes and the background distribution. For the simulated data, we calculate the
KL divergence between the G1 simulated cells and the background distribution.
This is repeated to get a KL divergence for G2 simulated cells vs. background and
G3 simulated cells vs. background. The average KL divergence (averaged over
the three groups) for each simulation (SIM IA, SIM IB) is plotted against the KL
divergence for each case study. The KL divergence in the SIM IA data is more similar
to the case study data for each dataset considered. The increased KL divergence
observed in the SIM IB data indicates that the SIM IB simulated barcodes differ
from the background more than observed in the case study or SIM IA data, which
makes differences easier to identify when applying CB2 or ED.
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Simulation results

CB2 and ED were applied to the simulated data to calculate the power (number
of simulated real cells that are successfully detected as real cells over number of
simulated real cells) and FDR (number of simulated background barcodes that are
falsely detected as real cells over number of detected real cells). Each simulation is
repeated 5 times and the average performance is reported.

In SIM IA, Figure 2.4 shows increased power of CB2 with well controlled FDR
for the 6 datasets considered in Lun et al. (2019) as well as 4 additional datasets.
Specifically, CB2 shows leading power in all the three cell groups among all the ten
datasets, especially in G1 and G2 groups. For both methods, the power decreases
with cell size, since cell size (total UMI counts) is the sample size of both testing
methods. CB2 also shows comparable FDR as ED, and even lower in a few datasets.
The observed FDR is below the target FDR threshold (1%) in nine out of ten datasets.
SIM IB is similar to SIM IA, but in SIM IB 10% of the genes in the real cells are
shuffled making the real cells more different from the background and therefore
easier to identify (Figure 2.3). Figure A.2 shows the increased power of CB2 is
maintained. These results suggest that CB2 has an universally better performance
than ED.

Additional simulations were conducted to evaluate the robustness of CB2 and
ED under different lower thresholds. Recall that both CB2 and ED rely on a lower
threshold to define the background group B0 and estimate background distribution
p̂B0 . Instead of using the default threshold 100, SIM IA was repeated with thresholds
equal to 50 and 150. Figure A.3 and Figure A.4 show similar results as using the
default threshold, indicating that both CB2 and ED are robust to different choices of
lower threshold under the simulation setting. Note that in real world data, the lower
threshold needs to be carefully chosen for an unbiased estimation of the background
distribution. This will be further discussed in chapter 3.
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Figure 2.4: The average power and average false discovery rate (FDR) of CB2 and
ED for SIM IA data (average taken over 5 simulated datasets). Since both CB2 and
ED automatically identify high count barcodes as real cells (they are not subject to
statistical test; Figure A.1), we report results for all barcodes as well as those tested
by CB2 and ED. The top panel shows the average power for tested barcodes; the
middle panel for tested as well as high count barcodes. The bottom panel shows the
average FDR. For the PanT4K dataset, all G1 cells are above the upper threshold and
so no barcodes were tested (as a result, power for tested barcodes is not defined).

Case study

To further evaluate CB2, we applied CB2 and ED to the ten case study datasets
used to generate the simulated data as well as one additional dataset considered
in the ED case study and compared the number of cells identified in common
as well as those uniquely identified by each approach. Both CB2 and ED were
applied to each dataset using their default settings to get the gene-by-cell matrices.
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Normalization was then performed using scran (Lun et al., 2016) to adjust for
sequencing depth. The Seurat (Satija et al., 2015) pipeline was used to cluster cells
and generate t-SNE plots from the top 4000 most highly variable genes and top
50 principal components. Mitochondrial and ribosomal genes were removed for
better visualization, since a few of them usually have much higher expression levels,
making it harder to investigate other genes. We define subpopulations as the clusters
from the Seurat pipeline. For each subpopulation, we calculated the percentage of
cells commonly identified by both CB2 and ED as well as those identified uniquely
by CB2. Subpopulations for which over 80% of the cells are uniquely identified by
CB2 are referred to as novel subpopulations.

Table 2.1 shows that CB2 finds 24% more cells on average (range 4%-81%). Of the
extra cells identified, 88% on average (range 44%-100%) add to existing subpopula-
tions. The remaining 12% (range 0%-56%) make up novel subpopulations. Table A.2
shows additional results using different thresholds for defining subpopulation.

As an example, Figure 2.5 and Figure A.5 show results from the Alzheimer
data (Mathys et al., 2019) where CB2 identifies 18% more cells. A detailed look
at the unique CB2 identifications suggests that the extra cells identified are not
false positives, but rather they add to existing excitatory neuron and inhibitory neu-
ron sub-populations, and also reveal a novel subpopulation consisting of 209 cells.
Specifically, Figure 2.5b and Figure 2.5c show distribution plots and an expression
heatmap of the 100 genes having the highest average expression in Subpop1 (the
largest subpopulation) for cells identified by both CB2 and ED as well as those
identified uniquely by CB2. As shown, cells uniquely identified by CB2 have a distri-
bution similar to other cells, and they differ from the background. Using the marker
genes from Mathys et al. (2019), Figure 2.5d and Figure A.5b suggest that cells
identified uniquely by CB2 in Subpops 1-4 are neurons, as they show relatively high
expression of neuron marker genes SYT1, SNAP25, and GRIN1. More specifically,
the CB2 cells in Subpops 1-2 exhibit high expression of excitatory neuronal markers
whereas the cells in Subpops 3-4 appear to be inhibitory neurons (Figure A.5c-d).
The novel subpopulation (Subpop5) uniquely shows high expression of both oligo-
dendrocyte and astrocyte marker genes, suggesting that this group may be mixed
phenotype glial cells (Dyer et al., 2000) (Figure A.5e-f).

In the t-SNE plot (Figure 2.5a), cells uniquely identified by CB2 are grouped
with common cells belonging to the same subpopulations, but are not well mixed
with them. The reason is that t-SNE plots are sensitive to total counts (Townes
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et al., 2019). By testing on clusters of barcodes, CB2 improves the power to identify
cells having relatively low UMI counts and as a result many of the cells identified
uniquely by CB2 have lower counts than those identified in common by both CB2
and ED. Figure 2.6a shows the total UMI counts distribution of cells identified by
CB2 and ED. Most CB2 unique cells have counts between 200 and 2000, lower than
most of the common cells identified by both CB2 and ED. Figure 2.6b shows a
comparison between the t-SNE plot generated using the raw data of Subpop1 and
the t-SNE plot where barcodes are downsampled so that all identifications have
the same total UMI counts. After removing the effect of total counts, CB2 unique
cells are well-mixed with the cells identified in common by both CB2 and ED. These
results indicate that the non-mixture is due to different total counts.

By increasing the number of real cells identified, CB2 also improves the power
to differentiate Alzheimer’s patients from controls. Specifically, Mathys et al. (2019)
profiled expression from the prefrontal cortex of 24 AD-pathology patients as well
as 24 age-matched controls, and they validated differentially expressed (DE) genes
in different cell types, including 9 genes in excitatory neurons and 9 in inhibitory
neurons. In our analysis, we followed the procedure as in Mathys et al. (2019)
(Wilcoxon rank-sum tests between cells from Alzheimer’s cases and controls), and
compared the DE results between DE cells and CB2 cells. Figure 2.7 shows that
by identifying additional cells, CB2 improves downstream differential expression
analysis by resulting in more significant p-values and stronger fold changes.

In a second case study (PBMC8K), CB2 increases the number of cells identified
across six subpopulations by over 80% (Table 2.1). Results are shown in Figure 2.8
and Figure A.6. Similar to the Alzheimer’s data analysis, Figure A.6b and Figure A.6c
show that cells identified uniquely by CB2 in Subpop1 have an expression profile
that is similar to other cells, and differs from the background. Figure 2.8 provides
a detailed look at marker gene expression for the well characterized PBMC8K
cells using markers considered in Zheng et al. (2017). As shown in Figure 2.8b,
CB2 identifies additional CD14+ Monocytes, T-cells, B-cells, and megakaryocytes.
Results from two additional datasets are shown in Figure A.7 and Figure A.8.
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Dataset High-count
cells

(untested)

Tested cells
identified
by both
CB2 and

ED

Cells
uniquely
identified

by CB2

Cells
uniquely
identified

by ED

CB2 unique
cells in
existing

subpopula-
tion

CB2 unique
cells in

novel sub-
population

Alzheimer 12143 57278 10689 /
57278

(18.66%)

50 / 57278
(0.09%)

6819 /
10689

(63.79%)

3870 /
10689

(36.21%)

PBMC8K 6708 1445 1165 / 1445
(80.62%)

2 / 1445
(0.14%)

1165 / 1165
(100%)

0 / 1165
(0%)

PBMC33K 23491 11762 424 / 11762
(3.60%)

0 / 11762
(0%)

424 / 424
(100%)

0 / 424
(0%)

mbrain1K 581 1469 221 / 1469
(15.04%)

16 / 1469
(1.09%)

166 / 221
(75.11%)

55 / 221
(24.89%)

mbrain9K 6048 5685 1265 / 5685
(22.25%)

98 / 5685
(1.72%)

1057 / 1265
(83.56%)

208 / 1265
(16.44%)

PanT4K 3398 1700 261 / 1700
(15.35%)

0 / 1700
(0%)

261/ 261
(100%)

0 / 261
(0%)

MALT 3378 981 494 / 981
(50.36%)

2 / 981
(0.20%)

216 / 494
(43.72%)

278 / 494
(56.28%)

PBMC4K 2145 6516 1003 / 6516
(15.39%)

0 / 6516
(0%)

1003 / 1003
(100%)

0 / 1003
(0%)

jurkat 2565 953 175 / 953
(18.36%)

0 / 953
(0%)

175 / 175
(100%)

0 / 175
(0%)

T293 2299 797 48 / 797
(6.02%)

2 / 797
(0.25%)

48 / 48
(100%)

0 / 48 (0%)

placenta 4349 2947 637 / 2947
(21.62%)

1 / 2947
(0.03%)

637 / 637
(100%)

0 / 637
(0%)

Table 2.1: The number of cells identified by CB2, ED, or both in case study datasets.
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Figure 2.5: Results from the Alzheimer dataset. (a) t-SNE plot of cells identified
by CB2 and EmptyDrops. High-count barcodes exceeding an upper threshold
are identified as real cells by both methods without a statistical test (dark pink);
barcodes identified as cells by both methods following statistical test are shown in
pink. Cells identified uniquely by CB2 (yellow) and ED (black) are also shown.
CB2 identifies an increased number of cells in existing sub-populations (Subpop1 –
Subpop4) and also identifies a novel subpopulation (Subpop5). (b) Distribution
plots of the 100 genes having highest average expression in Subpop1 are shown
for cells identified by both CB2 and ED (upper) and identified uniquely by CB2
(middle). The estimated background distribution is also shown (lower). Cells
uniquely identified by CB2 in Subpop1 have a distribution similar to other Subpop1
cells and differ from the background. (c) Heatmap of log transformed raw UMI
counts for the same 100 genes for barcodes identified by CB2 and ED (left) and
barcodes uniquely identified by CB2 (right). (d) t-SNE plots of cells colored by
neuron marker genes SYT1, SNAP25, and GRIN1 in all cells (upper) and those
identified uniquely by CB2 (lower).
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Figure 2.6: (a) Distribution of the number of cells and background barcodes identi-
fied uniquely by CB2 (left), identified in total by CB2 (middle), and identified by
ED (right). The x-axis is log10 scaled ranging from lower threshold (100) to upper
threshold (for the Alzheimer dataset, the upper threshold is 8136) since barcodes
outside this range are not tested by either CB2 or ED. (b) t-SNE plot for Subpop1
before (left) and after (right) down-sampling. After down-sampling, the effect of
total counts is removed, and CB2 cells are well-mixed with common cells.
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Figure 2.7: Differential Expression analysis between Alzheimer’s disease (AD)
cases and controls was conducted using cells identified by CB2 (salmon) and
ED (turquoise). Shown in the upper panels are the -log10 p-values for 9 genes
known to be differentially expressed between AD-pathology and control cells in
excitatory neurons (left: GOLT1B, ATF6B, DDRGK1, TUBB2A, BEX2, ATPIF1, RAS-
GEF1B, NGFRAP1, LINGO1) and 9 genes known to be differentially expressed
in inhibitory neurons (right: TCEAL4, SPCS1, FBXO2, COX4I1, ATPIF1, SOD1,
NGFRAP1, TMSB4X, NDUFA4). Log2 fold changes of the mean expression in
AD-pathology vs. control cells are also shown (lower panels) for each gene in each
cell type. Given that some of the unique CB2 identifications are expressing stronger
cell-type-specific marker genes (Figure A.5b-e), fold changes in the CB2 identified
cells are more extreme. CB2 improves downstream DE analysis by showing more
significant p-values and stronger fold changes.
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Figure 2.8: Results from the PBMC8K dataset. (a) t-SNE plot of cells identified by
CB2 and ED. High-count barcodes exceeding an upper threshold are identified as
real cells by both methods without a statistical test (dark pink); barcodes identified
as cells by both methods following statistical test are shown in pink. Cells identified
uniquely by CB2 (yellow) and ED (black) are also shown. CB2 increases the
number of cells identified across the six subpopulations by over 80% Table 2.1. (b)
Subpopulations 1-5 ordered by median normalized UMI count along with marker
gene expression for each subpopulation. Marker gene expression in cells uniquely
identified by CB2 is similar to that in other groups, and differs from the background.
Subpopulation 5 contained no high count common cells; subpopulation 6 contained
no unique CB2 identifications and is therefore not shown in panel (b).
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2.4 Implementation
CB2 is implemented as an R package scCB2, which is publicly available at Biocon-
ductor. The source code and vignette can be found at http://www.bioconductor.
org/packages/release/bioc/html/scCB2.html.

The input data of scCB2 is a gene-by-barcode matrix. Given that most droplet-
based scRNA-seq experiments are conducted using the 10x Chromium platform
(https://www.10xgenomics.com/products/single-cell-gene-expression), scCB2
provides functions to directly read the raw files from 10x Chromium’s computa-
tional pipeline and get the gene-by-barcode count matrix in R. For other platforms,
users need to manually create the gene-by-barcode matrix.

The major step of scCB2 is to filter out background barcodes and retain real cells.
Besides the raw gene-by-barcode matrix, scCB2 requires input of target FDR thresh-
old, lower threshold, and upper threshold. The target FDR threshold controls how
conservative the cell calling is. A lower FDR threshold produces fewer misclassified
background barcodes, but also compromises power. The lower threshold divides
the smallest barcodes into background to estimate the background distribution,
and the upper threshold divides the largest barcodes to be known real cells. The
default lower threshold is 100, based on empirical observation (Lun et al., 2019).
The default upper threshold is estimated from the data (Figure A.1). The output
contains both the filtered gene-by-cell matrix as well as summary statistics through
the algorithm. Summary statistics contain (1) testing statistics (Pearson correla-
tion to the background), p-values, and adjusted p-values for all candidate barcode
clusters, (2) barcode IDs for all candidate barcode clusters, with the cluster name
being its median barcode size, (3) test statistics (log likelihood under background
distribution), p-values, and adjusted p-values for the remaining single barcodes
not clustered, (4) the estimated background distribution as a numeric vector.

After the major cell calling step, scCB2 provides functions to easily extract the
gene-by-cell matrix from the output and perform additional filtering to remove
low quality cells. The quality of a given cell is measured by the proportion of UMI
counts from mitochondrial genes. Low quality cells (usually broken or dying cells)
tend to have a higher mitochondrial concentration. The default filtering cutoff is
0.25, meaning a cell will be filtered out if its proportion of mitochondrial UMI counts
exceeds 25%. scCB2 also provides a wrapper function to connect the output with
popular downstream computational pipelines (Satija et al., 2015).

http://www.bioconductor.org/packages/release/bioc/html/scCB2.html
http://www.bioconductor.org/packages/release/bioc/html/scCB2.html
https://www.10xgenomics.com/products/single-cell-gene-expression
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scCB2 is implemented efficiently and runs in parallel mode. The computation
time is usually less than 10 minutes for a typical dataset. We also provide an
all-in-one function to run CB2 under default settings to skip most of the coding
part.

2.5 Discussion and future work
The results presented in this chapter demonstrate that CB2 provides a powerful
approach for distinguishing real cells from background barcodes which will increase
the number of cells identified in existing cell subpopulations in most datasets and
may facilitate the identification of novel subpopulations. While advantages are
expected in many settings, users will benefit from the following considerations.
CB2 does not test for doublets or multiplets and, consequently, some of the high
count identifications may consist of two or more cells. Methods for identifying
multiplets such as Scrublet (Wolock et al., 2019) or DoubletFinder (McGinnis et al.,
2019) may prove useful after applying CB2. A second important post-processing
step is filtering based on mitochondrial expression. As noted in Lun et al. (2019),
any method for distinguishing cells from background barcodes is technically correct
in identifying low-quality cells given that damaged cells exhibit expression profiles
that differ from the background. Specifically, mitochondrial gene expression is often
high in damaged cells; an example is shown in Subpopulation 5 of the PBMC8K
data (Figure 2.8b). Such cells are typically not of interest in downstream analysis
and should therefore be removed. The GetCellMat() function in scCB2 may be used
toward this end. In addition, the ambient RNAs do not only exist in background
barcodes, but also in cell barcodes. Computational methods such as SoupX (Young
and Behjati, 2020) and DecontX (Yang et al., 2020) are designed to remove ambient
RNA contamination in cell barcodes. They may also prove useful alongside CB2;
and they are further discussed in chapter 4.

Droplet-based scRNA-seq technologies provide unprecedented opportunity to
address biological questions, but efficient pre-processing is required to maximize
the information obtained in an experiment. CB2 allows investigators to maximize
the number of cells retained, and consequently to increase the power and precision
of downstream analysis.
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3 benchmarking cell detection algorithms for
droplet-based single-cell rna sequencing data

Chapter Summary

Droplet-based single-cell RNA-seq technology allows researchers to investigate
transcriptome-wide gene expression at single-cell resolution across thousands of
cells simultaneously. An important challenge in pre-processing data from droplet-
based single-cell RNA-seq protocols is distinguishing barcodes associated with
real cells from those binding ambient RNAs. In this study, we benchmarked four
state-of-the-art computational methods for detecting cell barcodes: EmptyDrops,
CB2, DIEM, and dropkick. Their performances were evaluated in both simulation
and real world studies covering a variety of droplet-based single-cell RNA-seq
experiments. In addition, we provide investigation and guidance on appropriately
choosing filtering parameters in order to improve data quality.

3.1 Background
Droplet-based single-cell RNA-seq (Macosko et al., 2015; Klein et al., 2015; Zheng
et al., 2017) is currently the most widely used single-cell RNA sequencing protocol as
it allows researchers to quantify transcriptome-wide gene expression in thousands
of cells at single-cell resolution. In chapter 2, we provided a detailed description of
the experiment and a typical challenge that cell barcodes (barcodes representing
cell droplets) and background barcodes (barcodes representing empty droplets)
are not easily distinguishable due to the presence of ambient RNAs in the raw
data (section 2.1). We developed a statistical method, CB2 (Ni et al., 2020), that
identifies cell barcodes from background barcodes (section 2.2), and we showed
that CB2 outperforms existing methods, namely EmptyDrops (Lun et al., 2019),
and improves downstream computational analyses (section 2.3).

During the time CB2 came out, other computational methods for real cell de-
tection were also under development. Debris Identification using Expectation
Maximization (DIEM) is a computational method to quantify contamination and
filter droplets in scRNA-seq and single-nucleus RNA-seq (snRNA-seq) experiments
(Alvarez et al., 2020); snRNA-seq and scRNA-seq are very similar except that snRNA-
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seq only quantifies RNAs within the nucleus instead of all RNAs in the whole cell.
Droplet-based snRNA-seq have the same data structure as droplet-based scRNA-
seq, and the snRNA-seq experiments also contain background barcodes that need
to be removed from real nuclei barcodes. As a result, most computational methods,
including CB2, can be applied to both scRNA-seq and snRNA-seq data.

DIEM first clusters barcodes using a multinomial mixture model. To estimate
the parameters of the mixture model, DIEM performs semi-supervised expectation
maximization by fixing barcodes that fall below a threshold of 100 counts as debris.
The majority of these barcodes are assumed to contain ambient RNA. After fitting
the model, DIEM assigns barcodes to clusters based on their posterior probability.
For scRNA-seq data, barcodes in the debris clusters are considered as background
and are removed. When applied to snRNA-seq data, barcodes are further scored
based on their expression of genes enriched in the debris set, and are filtered
based on their individual scores to remove background barcodes. DIEM is a semi-
supervised clustering approach as it relies on a background threshold to get a
predefined set of background barcodes and guide the debris annotation. This is
similar to EmptyDrops and CB2, and will be discussed in section 3.4. DIEM has
been compared with EmptyDrops in Alvarez et al. (2020), but there is no existing
evaluation between DIEM and CB2.

dropkick (Heiser et al., 2021) is another computational method for real cell
identification in scRNA-seq data. dropkick uses weakly supervised machine learn-
ing to build a model of single-cell gene expression in order to score and classify
barcodes as real cells or background noise. dropkick first thresholds barcodes into
three groups based on the number of expressed genes: a lower level containing
uninformative barcodes (which are thrown away), an upper level containing bar-
codes with very high cell probability, and an intermediate level that consists of both
background barcodes with high UMI counts and small real cells with relatively
low UMI counts. The upper and intermediate barcode populations are labeled as
real cells and putative empty droplets, respectively, and are used as the training
set. dropkick then fits a logistic regression model with elastic net regularization
using the gene expression matrix and barcode labels of the training set. Barcodes
in the training set are re-labeled as real cells or empty droplets by thresholding
on the fitted probabilities of being real cells. dropkick has been compared with
EmptyDrops in Heiser et al. (2021), but there is no existing evaluation between
dropkick and CB2.
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In recent years, variants of droplet-based scRNA-seq techniques have been devel-
oped for specialized biological tasks. For example, single-cell targeted gene expres-
sion (https://www.10xgenomics.com/products/targeted-gene-expression) se-
quences a predefined subset of genes, such as cancer-related or immune-related
genes, instead of the whole transcriptome, reducing sequencing costs by as much
as 90%, or scaling up to a 10-fold increase in sample throughput. Low throughput se-
quencing (https://support.10xgenomics.com/single-cell-gene-expression/software/
pipelines/latest/what-is-LT) is another cost-effective solution for smaller-scale
and pilot studies for profiling whole transcriptomes at the single cell level for 100 -
1,000 cells per sample. While the data structures remain the same as the standard
scRNA-seq experiment, the underlying data properties can change substantially.
Given that existing cell detection methods were evaluated mainly using the standard
scRNA-seq data, it is unclear whether they are robust under these new techniques.

We here present a benchmark study of cell detection methods in droplet-based
scRNA-seq data. Specifically, we benchmarked EmptyDrops, CB2, DIEM, and
dropkick (Table 3.1), the four state-of-the-art methods, on 17 public datasets cover-
ing a variety of droplet-based scRNA-seq techniques. Evaluation metrics include
power, precision, computational efficiency, robustness, and accessibility. section 3.2
demonstrates the evaluation metrics. section 3.3 shows the performance of the four
methods. section 3.4 summarizes the performance and makes user recommenda-
tions. Overall, we find that CB2 and DIEM outperform EmptyDrops and dropkick.
This is the first benchmark study to provide a thorough comparison across exist-
ing cell detection methods in droplet-based scRNA-seq data, and to guide users
to choose the appropriate methods for their experiments. In addition, we report
the effect of over- or under-estimating the background threshold in EmptyDrops,
CB2, and DIEM in section 3.3, and provide guidance on optimizing the choice of
background threshold in section 3.4.

https://www.10xgenomics.com/products/targeted-gene-expression
https://support.10xgenomics.com/single-cell-gene-expression/software/pipelines/latest/what-is-LT
https://support.10xgenomics.com/single-cell-gene-expression/software/pipelines/latest/what-is-LT
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Method Description Built in Reference

EmptyDrops Estimate a background distribution using
small barcodes, then test the remaining

barcodes individually against the
background distribution using a Monte-Carlo

approach.

R Lun et al.
(2019)

CB2 Estimate a background distribution using
small barcodes, then cluster the remaining
barcodes and test the clusters against the

background distribution using a Monte-Carlo
approach.

R Ni et al.
(2020)

DIEM Cluster barcodes into “debris” and different
cell types using a multinomial mixture model
estimated via the EM algorithm, then keep
non-debris barcodes as cells. Designed for

single-nucleus RNA-seq data, but also works
for single-cell RNA-seq data.

R Alvarez et al.
(2020)

dropkick Pre-label barcodes as putative empty droplets
or cells based on barcode quality, then fit a

logistic regression between gene expressions
and barcode labels, and classify cell barcodes

by thresholding the fitted probability.

Python Heiser et al.
(2021)

Table 3.1: A brief summary of the four cell detection methods compared in our
study.

3.2 Benchmark metrics
Power and precision are two direct metrics to evaluate cell detection accuracy. In
the simulation studies, power is the number of simulated real cells that are correctly
detected as real cells over the number of simulated real cells, and precision is the
number of simulated real cells that are correctly detected as real cells over the
number of detected real cells. In real world data, unknown ground truth makes
it harder to evaluate power and precision, and we instead compare the number
of detected cells and their overlap across methods as an approximation. We also
validate barcode identities by comparing the gene expression distribution with
known background or cell barcodes as another way of approximation.
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A good method needs to be computationally efficient to be useful in practice.
Computational efficiency is here quantified by the running time of producing the
final cell/background labels given the raw barcode matrix. In addition to com-
putational efficiency, robustness is also critical for a method to be generalized to
variants of scRNA-seq experiments, where data carry similar structures but dif-
ferent distributions. Our benchmark is conducted using datasets from different
experimental protocols to test if a method works consistently well under different
data distributions. Finally, we also briefly discuss the accessibility of each method
in terms of whether the method implementation is publicly available and easy
to install, whether there are tutorials with runnable examples, and whether the
overall implementation is accessible to researchers with limited computational
backgrounds.

3.3 Results
In this section, we will show benchmark results of the four methods in simulation
and case studies. We will also investigate the effect of over- or under-estimating
the background threshold (the key parameter in EmptyDrops, CB2, and DIEM) on
general cell detection performance.

Simulation set-up

We first compare the performance of EmptyDrops, CB2, DIEM and dropkick in
simulated datasets. The simulation setting is the same as SIM IA described in
section 2.3. Briefly, given an input dataset, an inflection point dividing low from
high count barcodes is determined. Low count barcodes are pooled to estimate the
background distribution. Three groups of cell barcodes, G1, G2, G3, are sampled
from the high count barcodes. The UMI counts in the G2 and G3 groups are
downsampled by 50% and 90% to simulate cells with different sizes. We applied the
simulation framework on 12 publicly available single-cell RNA-seq datasets from 10x
Genomics, covering a wide range of datatypes including the standard Chromium
data, targeted gene expression data where only a defined set of transcripts are
profiled, and low throughput data targeting fewer cells and sequences. EmptyDrops,
CB2, DIEM, dropkick were applied to the simulated data under their default settings
to calculate the power (the proportion of cells that are successfully detected among
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the simulated cells) and FDR (the proportion of background barcodes among the
barcodes detected as cells, which is 1 minus precision). Each simulation is repeated
5 times and the average performance is reported.

Simulation results

Figure 3.1 shows the power and FDR for each of the four methods. In general, the
power decreases when the cell sizes become smaller due to the reduced number of
UMI counts and increased sparsity. The four methods have comparable power on
the standard Chromium datasets; CB2 is more robust when generalizing to targeted
gene expression data and low throughput data, showing increased power compared
with the other three methods. EmptyDrops, CB2 and DIEM control FDR in general,
while dropkick misclassifies many background barcodes into cell barcodes in two
Chromium datasets (PanT4K and PBMC4K).

Figure 3.1: Performance of the four methods in the simulated datasets. The targeted
gene expression datasets have the suffix “_tg”. The low throughput datasets have
the suffix “_LT”. (a)-(c) The power of the four methods across different simulated
datasets for large cells (G1 cell group), medium cells (G2 cell group), and small cells
(G3 cell group). (d) The false discovery rate of the four methods across different
simulated datasets.
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Case study

The general cell detection performance of the four methods was also evaluated in
real datasets. Specifically, for each of the 12 datasets, the four methods were applied
on the raw count matrix under their default settings. Each method provided a set
of cell barcodes, which were then used as inputs for the UpSet plot to evaluate
the overlap among these barcodes. For CB2, DIEM and EmptyDrops, the choices
of background thresholds were optimized as discussed later in this section. Cells
with high mitochondrial gene expression are likely of low quality and were filtered
out. Specifically, a cell barcode was excluded if the proportion of UMI counts from
mitochondrial genes (gene names starting with “MT-” for human and “mt-” for
mouse) exceeded 25%.

Figure B.1 and Figure B.2 show the UpSet plots of cells detected by each method
when applied to the 12 real datasets used previously in the simulation study. Similar
to the simulation results, the four methods showed comparable performance on most
standard Chromium datasets. dropkick is not robust as the number of cells detected
by dropkick disagrees the most with other methods, and dropkick is underpowered
on the targeted gene expression datasets and low throughput datasets. The default
DIEM pipeline failed at the PCA step when applied to the targeted gene expression
datasets and another standard scRNA-seq data (PanT4K).

For a detailed evaluation of real world performance, we applied EmptyDrops,
CB2, DIEM, and dropkick on a large single-cell RNA-seq dataset from an Alzheimer
disease study (Mathys et al., 2019). Specifically, the four methods were applied on
the raw count matrix under their default settings. The filtered count matrix contain-
ing the union of these four cell barcode sets was processed for downstream analyses.
We applied scran (Lun et al., 2016) for data normalization. The normalized matrix
then went through the Seurat pipeline (Satija et al., 2015) including variable feature
selection, scaling, dimension reduction and clustering. Clusters were further anno-
tated into excitatory neurons (ExN), inhibitory neurons (InN),oligodendrocytes
(Olig), astrocytes (Ast), microglias (Mic), endothelial cells (End), and oligodendro-
cyte progenitor cells (OPCs) using marker genes reported in Mathys et al. (2019).

Figure 3.2a shows the UMAP plot of the union of cell barcodes from the four
methods colored by annotated cell types, and Figure B.3 highlights the cell barcodes
detected by each method. The UpSet plot in Figure 3.2b shows the overlap of the
four cell barcode sets. dropkick detected less than 40,000 cells, which is much lower
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than the other three methods, and is much lower than the number of cells (75,060)
reported in the original study. Cells detected by EmptyDrops are mostly a subset of
the cells detected by CB2. Given that the comparison between EmptyDrops and
CB2 has been conducted in Ni et al. (2020) and dropkick is clearly underpowered,
we focus on the distinction between CB2 cells and DIEM cells. There are 5095 cells
detected in CB2 but not in DIEM, 1537 cells detected in DIEM but not in CB2, and
69034 cells detected in both methods. Figure 3.2c shows that both CB2 extra cells
and DIEM extra cells spread across different cell types and do not form isolated
clusters. A detailed investigation suggests that both CB2 extra cells and DIEM extra
cells are real cells that add to existing cell types in the common cells. Specifically,
Figure 3.2b and Figure 3.2c show distribution plots and an expression heatmap of
the 50 genes having the highest average expression in oligodendrocytes for CB2
extra cells, DIEM extra cells, as well as common cells identified by both CB2 and
DIEM. As shown, both CB2 extra cells and DIEM extra cells have distributions
similar to the common cells representing the majority of oligodendrocytes, and
they differ from the background. Although the extra cells in one method are likely
false negatives for the other method, CB2 shows better power than DIEM since
CB2 identifies more real cells (745 extra cells) than DIEM (183 extra cells). Similar
results are shown in Figure B.4 for microglia and excitatory neurons.
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Figure 3.2: Performance of the four methods in the Alzheimer data. (a) UMAP plot
of the union of the four cell barcode sets from the four methods colored by cell type
annotations. Ast: Astrocytes. End: Endothelial cells. ExN: Excitatory neurons. InN:
Inhibitory neurons. Mic: Microglia. Olig: Oligodendrocytes. OPCs: Oligodendro-
cyte progenitor cells. (b) UpSet plot showing the number of common and distinct
barcodes of the four cell barcode sets as well as the size of the sets. (c) The same
UMAP plot as in (a) but colored by common (common cell barcodes in CB2 and
DIEM), CB2 extra (barcodes identified as cells in CB2 but not in DIEM), DIEM extra
(barcodes identified as cells in DIEM but not in CB2), others (barcodes identified
as cells in EmptyDrops or dropkick but not in CB2 or DIEM). (d) Distribution plots
of the 50 genes having highest average expression in the common cells are shown
for background barcodes, CB2 extra cells, DIEM extra cells, and common cells in
Oligodendrocytes. (e) Heatmap of log transformed raw UMI counts for the same 50
genes for CB2 extra cells, DIEM extra cells, and common cells in Oligodendrocytes.
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Computational efficiency

We further evaluated the computational efficiency of the four methods when applied
to small and large scRNA-seq datasets. The computational efficiency is defined as
the time a method takes processing a dataset from the raw barcode matrix to the
final cell matrix. Two small datasets (mheart1K, PBMC1K) and two large datasets
(mheart10K, PBMC10K) generated from 10x Chromium were selected to evaluate
the computational efficiency of the four methods. The small and large datasets
have the same number (6,794,880) of raw barcodes and similar number (∼30,000)
of genes, but the expected number of cells in the small datasets is 1,000, while the
expected number of cells in the large datasets is 10,000. The four methods were
applied under their default settings, and repeated 5 times in each dataset. The
average time over the 10 runs (5 replicates in the 2 small datasets) were reported as
the computational efficiency in small datasets. This is similarly defined for large
datasets.

Table 3.2 shows that all four methods finish running on small size datasets in less
than 2 minutes. DIEM is the most efficient method that takes less than half a minute.
CB2 is the slowest method that takes about 2 minutes. For large size datasets ,
EmptyDrops is the most efficient method that finishes in 2 minutes. dropkick is the
slowest method with more than 8 minutes running time. We also stress the fact that
the computational efficiency of DIEM and dropkick seems to be linearly associated
with the number of cells, while CB2 and EmptyDrops are more efficient than linear.
This indicates that CB2 and EmptyDrops are more suitable for datasets with larger
sizes.



34

Method Small dataset (∼1k cells,
∼7m barcodes, ∼30k genes)

Large dataset (∼10k cells,
∼7m barcodes, ∼30k genes)

EmptyDrops 1.12 1.93

CB2 1.89 7.61

DIEM 0.48 4.95

dropkick 0.73 8.15

Table 3.2: Average running time of the four methods in small and large datasets.
Unit: minutes.

Accessibility

A user-friendly implementation is essential for a method to be widely adopted.
Here we briefly evaluate the accessibility of the four methods. CB2 is implemented
in an R package scCB2 and is publicly available at Bioconductor (Gentleman et al.,
2004). The installation of scCB2 is straightforward using Bioconductor’s package
management functions. The package contains a well-written tutorial with built-in
toy example datasets, and an all-in-one function for non-computational users to skip
most coding challenges. EmptyDrops is implemented in an R package DropletUtils
and is also publicly available at Bioconductor. DropletUtils also has tutorials and
example datasets. However, this package is a quality control toolkit and is not
designed solely for cell calling. As a result, it does not illustrate the usage of cell
calling in a detailed way. DIEM is implemented in an R package diem and is available
at GitHub. diem contains a step-by-step tutorial with built-in datasets; diem also has
a multi-stage processing pipeline, which can be challenging for non-computational
users. dropkick is implemented in a Python package dropkick and is available at
GitHub. dropkick also contains detailed tutorials and example datasets, and an
integrated function to reduce the amount of coding.

Choice of background threshold

The background threshold is the key parameter required for defining the back-
ground distribution in EmptyDrops, CB2, and DIEM. Barcodes with total UMI
counts less than the background threshold are considered known background bar-
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codes, since they are assumed to be too small to be real cells. The default background
threshold is set to be 100 in the three methods, which has empirically worked reason-
ably well in most standard high-quality scRNA-seq datasets. However, following the
default setting does not always guarantee an accurate estimation of the background
distribution, especially for datasets with special properties. A larger-than-optimal
threshold treats small cells as background, resulting in biased background esti-
mation and loss of small cells. A smaller-than-optimal threshold retains fewer
background barcodes, increasing the variability of background estimation.

Table 3.3 provides an example of a smaller-than-optimal threshold. Specifically,
Table 3.3 shows the proportion of barcodes and the proportion of total UMIs defined
as background under background threshold=100 across 12 public datasets. All
datasets except BreastCancer750_LT have close to or more than 90% barcodes and
1% UMIs within background, while BreastCancer750_LT only has 24.5% barcodes
and 0.6% UMIs within background. A detailed investigation indicates that the
default threshold fails to provide a reliable estimation of the background distri-
bution in BreastCancer750_LT. First, the proportions of barcodes and UMIs in the
background in BreastCancer750_LT are significantly lower than the other datasets.
Increasing the background threshold to 300 yields 90.8% barcodes and 7.7% UMIs
in the background. Next, we consider barcodes identified as cells with UMI counts
between 101 and 300 by EmptyDrops (446 barcodes), CB2 (1906 barcodes), and
DIEM (81 barcodes) under background threshold=100. Figure B.5 shows that these
barcodes have similar overall distributions across methods, and they are similar to
the barcodes with UMI counts below 100. A few mitochondrial genes are enriched
in barcodes with UMI counts below 100 compared with barcodes with UMI counts
between 101 and 300. This indicates the default threshold is too low to accurately
capture background properties, especially overestimating the expression levels of
mitochondrial genes,resulting in false positives during cell detection. Finally, the
number of cells detected using threshold=300 are closer to the expected number of
cells (750) in this dataset. Specifically, 722, 794, and 686 barcodes are detected as
cells by EmptyDrops, CB2, and DIEM using threshold=300.

The default threshold can also be larger-than-optimal, especially when only
a subset of the mRNAs within cells are measured. This is the case for the tar-
geted expression data, which only captures a subset of genes instead of the whole
transcriptome. For a given dataset, the amount of mRNAs measured can be approx-
imated by the average number of reads per cell. In standard and low throughput
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datasets, the average number of reads per cell ranges between 32,721 and 93,552.
However, PBMC10K_tg and Lymphoma3K_tg only have 13,211 and 10,149 reads
per cell (Table 3.3). Since the number of reads is positively correlated with the
number of UMI counts for a given cell, the default threshold becomes too high in
the targeted gene expression data. By lowering down the threshold to 10 instead
of 100, EmptyDrops and CB2 detected 9755 and 10256 cells instead of 9623 and
10035 cells in PBMC10K_tg, and detected 2954 and 2967 cells instead of 2775 and
2792 cells in Lymphoma3K_tg. DIEM results are not shown since the default DIEM
pipeline failed in the targeted expression data. Figure B.6 shows cells with UMI
counts between 11 and 100 have different distributions from the background and are
likely real cells. These small cells will be incorrectly filtered out under the default
threshold.
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dataset #barcodes #UMIs %barcodes %UMIs #reads per
cell

PBMC8K 409508 45009903 96.5815 11.1309 93,552

mbrain1K 231912 13829862 98.4675 10.2765 56,718

mbrain9K 562550 81890428 89.4852 4.8677 41,998

PanT4K 366341 21676973 98.4684 16.4551 73,864

MALT 937146 99500932 91.6421 1.3864 32,721

PBMC4K 272442 22034737 98.0587 12.2969 87,433

jurkat 296060 54260620 98.4993 5.9341 33,851

T293 290463 49089174 97.8858 8.5477 33,405

PBMC10K_tg 226588 11383824 95.5068 5.4203 13,211

Lymphoma3K_tg 108705 2663899 97.3718 9.2122 10,149

BrainTumor200_LT 9540 2622757 95.283 10.4816 54,761

BreastCancer750_LT 10612 16748716 24.4817 0.6192 62,379

Table 3.3: Number (#) and proportion (%) of barcodes below the background
threshold=100, number and proportion of UMI counts within these barcodes under
background threshold=100, and number of reads per cell for different real datasets.

3.4 Discussion and future work
A first step for preprocessing droplet-based single-cell RNA-seq data is to iden-
tify droplets containing cells from empty droplets. Here we benchmarked four
state-of-the-art computational methods - EmptyDrops, CB2, DIEM, and dropkick
- for the task of cell identification. Their performances were summarized in Ta-
ble 3.4. Specifically, CB2 and DIEM achieved the strongest power in evaluations of
simulations and real data. EmptyDrops and CB2 produced lower false positives,
since both methods were built based on statistical testing where the FDR can be
easily controlled. DIEM and dropkick had the best computational efficiency in
small datasets, and EmptyDrops was faster in large datasets. All four methods are
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efficient enough to control the computation time within 10 minutes in a typical
scRNA-seq dataset. EmptyDrops and CB2 achieved robust performance when gen-
eralizing to variants of scRNA-seq experiments, such as targeted gene expression
data and low throughput data. In contrast, the default DIEM pipeline failed in some
datasets which required manual parameter adjustment, and dropkick was unstably
underpowered, resulting in much fewer identified cells compared with the other
three methods. CB2 and dropkick are the most user-friendly methods with simple
installation and running commands as well as detailed step-by-step tutorials.

Additional filtering and cleaning is required to achieve better data quality. After
identifying real cells from empty droplets, it is recommended to further filter the
cell matrix to remove low quality cells (e.g. broken or dying cells) or cell doublets
(droplets containing more than one cell). High proportion of mitochondrial gene
expression is usually an indication of low quality, and filtering based on mitochon-
drial proportion cutoff is now widely used. A practical cutoff is 25%, meaning cells
with more than 25% UMI counts coming from mitochondrial genes can be filtered
out as low quality cells. However, this cutoff should be manually investigated for
datasets with special properties, such as cells with high mitochondria activities
or single-nucleus RNA-seq data. Cell doublets may also be present following cell
isolation if more than one cell is captured into one droplet; multiple computational
methods have been developed to identify and remove these doublets (McGinnis
et al., 2019; Wolock et al., 2019).

Selecting an appropriate background threshold is crucial for EmptyDrops, CB2,
and DIEM to accurately estimate the background distribution. There is no simple
rule to find the optimal threshold, and in most cases researchers use 100 by default
based on empirical performance. However, the optimal threshold is always data-
driven, and sanity checks are required before simply following the default settings.
As discussed in section 3.3, the proportion of barcodes and UMIs below the threshold
can be used to assess whether the threshold is under-estimated; the number of reads
per cell is also useful when assessing whether the threshold should be scaled. These
criteria are easy to investigate, and we recommend always checking them in order
to determine if the default background threshold should be changed.
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Method Power FDR con-
trol

Speed
(small
dataset)

Speed
(large
dataset)

Robustness Accessibility

EmptyDrops 2 1 2 1 1 2

CB2 1 1 3 3 1 1

DIEM 1 2 1 2 2 2

dropkick 2 3 1 3 3 1

Table 3.4: Summary of the performances of EmptyDrops, CB2, DIEM, and dropkick.
They are ranked (1 is the best) in different categories for users to choose based on
their own needs.
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4 spotclean adjusts for spot swapping in spatial
transcriptomics data

Chapter Summary

Spatial transcriptomics is a groundbreaking and widely-used approach for profiling
transcriptome-wide gene expression across a tissue with emerging applications in
molecular medicine and tumor diagnostics. Recent spatial transcriptomics experi-
ments utilize slides containing thousands of spots with spot-specific barcodes that
bind mRNA. Ideally, unique molecular identifiers at a spot measure spot-specific
expression, but this is often not the case in practice owing to bleed from nearby
spots, an artifact we refer to as spot swapping. We propose SpotClean to adjust for
spot swapping and, in doing so, to increase the power and precision with which
downstream analyses are conducted.

4.1 Background
Spatial transcriptomics (ST) is a groundbreaking and widely-used approach for
profiling transcriptome-wide gene expression across a tissue (Ståhl et al., 2016;
Stickels et al., 2021). In a typical ST experiment, fresh-frozen (or FFPE) tissue
is sectioned and placed onto a slide containing spots, with each spot containing
millions of capture oligonucleotides with spatial barcodes unique to that spot. The
tissue is imaged, typically via Hematoxylin and Eosin (H&E) staining. Following
imaging, the tissue is permeabilized to release mRNA which then binds to the
capture oligonucleotides, generating a cDNA library consisting of transcripts bound
by barcodes that preserve spatial information. Data from an ST experiment consists
of the tissue image coupled with RNA sequencing data collected from each spot. A
first step in processing ST data is tissue detection, where spots on the slide containing
tissue are distinguished from background spots without tissue. Unique molecular
identifier (UMI) counts at each spot containing tissue are then used in downstream
analyses (Figure C.1).

Ideally, a gene-specific UMI at a given spot would represent expression of that
gene at that spot. This is not the case in practice. As we demonstrate here, messenger
RNAs bleed between and among nearby spots causing substantial contamination of
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UMI counts, an artifact we refer to as spot swapping.
Spot swapping is related to, but distinct from, previously defined sources of

contamination which have been widely recognized over the past decade in next-
generation sequencing studies (Kircher et al., 2012). Specifically, improvements
in sequencing technologies have greatly increased the speed and scale at which
data can be obtained, but the advantages rely on multiplexing where indexes (or
barcodes) are attached to each mRNA (or DNA) fragment in a sample prior to
pooling so that sample-specific transcripts can be identified in the sequenced pool.
In spite of the major advantages in reduced cost and increased efficiency, a disad-
vantage is that indexes from one sample may attach to transcripts from another
at random, an error referred to as index hopping or barcode swapping. While
present in most datasets, good statistical methods are in place to adjust for this
type of contamination (Kircher et al., 2012; Griffiths et al., 2018; Larsson et al., 2018;
Costello et al., 2018). Barcode swapping is distinct from the spot swapping artifact
detailed here since spot swapping is not at random. Rather, with spot swapping,
the probability of a spot-specific barcode binding reads from another spot increases
as the distance between spots decreases. As the statistical methods developed to
adjust for barcode swapping do not accommodate the spatial dependence inherent
in spot swapping, they are not sufficient in this setting.

A second type of contamination is specific to single-cell RNA sequencing (scRNA-
seq) experiments. In droplet based scRNA-seq, for example, each droplet ideally
contains one cell, and barcodes specific to that droplet bind mRNA from the cell. In
practice, however, ambient (cell free) RNA may also bind barcodes from a droplet.
As with index hopping, robust statistical methods are in place to adjust for ambient
RNA contamination in droplet based scRNA-seq experiments, but they are not
appropriate for spatial data as they do not accommodate the spatial dependence.
For example, SoupX (Young and Behjati, 2020) and DecontX (Yang et al., 2020)
are currently the state-of-the-art methods for decontaminating ambient RNA in
scRNA-seq data. Each of these methods begins by clustering single-cell data, or
taking as input clustering information; decontamination is then performed within
cluster. As will be shown in section 4.4, both methods result in poor estimates of
expression and increased false discoveries in downstream analyses when applied
to ST data. These results should not be taken as evidence that SoupX and DecontX
perform poorly in general. Rather, it should be stressed that neither method was
designed for spatial data and, consequently, it should not be surprising that they
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are not sufficient in this setting.
In section 4.2, we demonstrate the effect of spot swapping in multiple ST exper-

iments. While it is straightforward to quantify the extent of spot swapping from
tissue spots to background spots, assessing the extent of spot swapping within
tissue is challenging in most settings without prior information. Toward this end,
we consider marker genes where expression is known to be high in particular tissue
regions, and low in others. We also conduct a human-mouse chimeric experiment to
evaluate the extent of human-specific transcripts in mouse regions, and vice versa.

To adjust for spot swapping in ST experiments, we propose a statistical approach
called SpotClean, implemented in the R package R/SpotClean. section 4.3 gives de-
tails about the model. In section 4.4, simulations and case study analyses show that
SpotClean increases the specificity of marker gene expression, increases the power
for identifying differentially expressed genes, improves the specificity of clusters,
and increases the accuracy of spot annotations. The impact of these improvements
in studies of breast, pancreatic, and colorectal cancer is also demonstrated.

4.2 Experiments

Spot swapping in public datasets

We start by analyzing publicly available datasets of ST experiments to show evidence
of spot swapping. Multiple ST platforms are considered, including 10x Visium
(Ståhl et al., 2016), SpatialTranscriptomics (Ståhl et al., 2016), and Slide-seqV2
(Stickels et al., 2021). Links to these data are provided in Table C.5. For each Visium
and SpatialTranscriptomics dataset considered, the count matrix was normalized
via scran (Lun et al., 2016), following the Seurat (Satija et al., 2015) pipeline for
dimension reduction, clustering, and visualization. For each Slide-seqV2 dataset,
we inspected total UMI counts of all spatial barcodes in the raw count matrix.

Figure 4.1 shows spot swapping from tissue to background in a ST study of
human brain from Maynard et al. (2021). Specifically, Figure 4.1b shows that
UMI counts at background spots (which are zero in the absence of contamination)
are far from zero, with the counts decreasing with increasing distance from the
tissue. The distributions of total UMI counts in tissue and background spots show
considerable overlap (Figure 4.1c); and the expression patterns at tissue spots and
nearby background spots are similar, but distinct from distant background spots, as
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shown for 50 genes in Figure 4.1d. As a result of expression similarity between the
tissue and nearby background, tissue and background spots often cluster together.
This is emphasized in Figure 1f, where spots on the slide are colored by membership
in the graph-based clusters shown in Figure 4.1e. As shown, many of the clusters
contain spots from the tissue and nearby background. Figure C.2, Figure C.3,
Figure C.4, and Figure C.5 show similar results from 16 additional datasets; and
Table C.1 shows that the proportion of UMI counts in background spots ranges
from 5% to 20% in most datasets.

The results above demonstrate that spot swapping occurs from tissue to back-
ground. While this reduces expression levels at tissue spots, thereby reducing the
power of the experiment, a bigger concern is spot swapping from one tissue spot
to another, as this confounds downstream analyses. Evaluating the extent of spot
swapping from tissue spot to tissue spot is challenging as it requires information
about expected expression of specific genes at specific tissue locations. Toward this
end, we first consider tissue-specific marker genes that identify distinct tissue layers
in brain (Maynard et al., 2021). In the absence of spot swapping, expression for
a layer-specific marker should be high within that layer, and low (or off) in other
layers. When spot swapping occurs, marker expression is relatively high in adjacent
layers and decreases with increasing distance from the layer. This is evident with
GFAP, for example, a marker known to be up-regulated in white matter (WM) and
in the first annotated layer of the dorsolateral prefrontal cortex (Layer1) (Maynard
et al., 2021). Figure C.6 shows high expression of GFAP in WM and Layer1 spots,
as expected, but also relatively high expression in tissue spots adjacent to WM
and Layer1, with GFAP expression decreasing as distance from WM (or Layer1)
increases. While it is possible that some increase in marker expression in adjacent
tissue spots may be due to the presence of WM (or Layer1) cells at those spots, we
note that the rate of expression decay into the background spots (where no cells are
present) is similar to the rate of decay into adjacent tissue regions. Consequently, the
possible presence of WM (or Layer1) cells in adjacent tissue spots is not sufficient
to fully explain the observed expression pattern. Similar results are shown for a
WM marker, MOBP (Figure C.6), as well as additional markers in multiple datasets
(Figure C.7).

A study of human breast cancer provides another example. Figure C.8 shows
expression for a highly specific breast cancer marker, ERBB2 (also called HER2).
Because of its high specificity (it is typically expressed at a low level in normal
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breast tissue, but highly expressed in many breast tumors (Browne et al., 2009)),
ERBB2 is used in clinical practice as a target of a number of therapies (Oh and Bang,
2020). Figure C.8 shows high expression of ERBB2 in the tumor tissue, but also
high expression in nearby normal tissue that decreases with increasing distance
from the tumor. As mentioned above, the increased expression in adjacent normal
tissue may be due to the presence of both tumor and normal cells in those spots.
However, this is not sufficient to fully explain the effect as the rate of decay from
tumor tissue to adjacent normal tissue is similar to the rate of decay from tumor
into the background, where no cells are present.
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Figure 4.1: Human brain sample LIBD_151507. (a) H&E stained image. (b) UMI
total counts in the background decrease with increasing distance from the tissue.
Tissue and background spot annotations are taken from Maynard et al. (2021). The
perimeter delineating tissue and background is shown in white.(c) UMI count densi-
ties for tissue and background spots show relatively high counts in the background.
(d) Counts of the top 50 genes from a select tissue region (upper), from a nearby
background region (middle), and from a distant background region (bottom) show
the similarity between expression in tissue spots and nearby background spots due
to spot swapping from tissue to background, an effect that decreases as distance
from the tissue increases. The positions of the three regions are shown in Figure C.2.
(e) Graph-based clustering of all spots identifies 9 clusters. (f) Spots on the slide
are colored by their cluster membership shown in (e). Black arrows highlight areas
of spot swapping of signal from tissue to background.
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Experimental validation of spot swapping using chimeric samples

To more directly quantify the extent of spot swapping, we designed novel chimeric
experiments where human and mouse tissues were placed contiguously during
sample preparation. The experiments were carried out by Drs. Aman Prassad and
Rich Halberg. The intuition behind the chimeric experiment is that spot swapping
from tissue to tissue spots can be partially measured by mouse RNAs detected in
human spots and human RNAs detected in mouse spots.

Tissue and cDNA library preparation

Fresh sections of normal human skin tissue were obtained with consent during
routine dermatologic surgery under University of Wisconsin School of Medicine
and Public Health Institutional Review Board (Approval #2010-0367). On the same
day, fresh mouse tissue was harvested. All mouse husbandry and experimental
procedures were performed in accordance and compliance with policies approved by
the University of Wisconsin Research Animals Research and Compliance committee
(Protocol #M5131). Three mixed species tissue blocks were then prepared under
cold conditions as follows and frozen over a bed of dry ice and stored at -80°C in
optimal tissue cutting (OCT) medium until they were ready to use:

HM-1: Duodenum from a 10-week-old C57BL/6J mouse as casing to a 4 mm
punch section “cylinder” of human skin

HM-2: Colon from a 10-week-old C57BL/6J mouse as casing to a 4 mm punch
section “cylinder” of human skin

HM-3: Heart from a 10-week-old C57BL/6J mouse encasing a 4 mm punch
section “cylinder” of human skin

The Visium Spatial Tissue Optimization Slide & Reagent kit (10x Genomics) was
used to optimize permeabilization conditions for the chimeric tissue according to
manufacturer’s protocol and yielded an optimal tissue permeabilization time of 12
minutes. The Visium Spatial Gene Expression Slide & Reagent kit (10x Genomics)
was used to generate sequencing libraries. Sections were cut at 10 µm thickness and
mounted onto Visium slide capture areas, stained with H&E, digitally imaged, and
then permeabilized for library preparation. Sequencing libraries were prepared
following the manufacturer’s protocol. Initial quality control of the libraries was by
analysis of 2x150 MiSeq data for each sample. The libraries were then sequenced
on a NovaSeq 6000 (Illumina), with 29 bases from read 1 and 101 from read 2, at a
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depth of 500k-600k reads per spot. The actual depth was 455652, 440024, 538709
reads per spot for sample HM-1, HM-2, HM-3, respectively.

Alignment and pre-processing in the chimeric experiment

The sequencing quality of each sample was evaluated using FastQC (Andrews
et al., 2010) and MultiQC (Ewels et al., 2016). All FastQ files passed quality control.
Tissues were manually aligned using the Loupe Browser. Reads were aligned to
the GRCh38+mm10 reference genome (refdata-gex-GRCh38-and-mm10-2020-A at
https://support.10xgenomics.com/single-cell-gene-expression/software/downloads/
latest) and gene expression was quantified using Space Ranger under default pa-
rameters. Following alignment, we considered only those reads labeled confidently
mapped by Space Ranger; confidently mapped reads are reads that map uniquely
to a gene. We refer to a gene as a human gene if it has prefix GRCh38; a mouse gene
has prefix mm10. UMI counts were normalized for differences in total counts across
species by scaling total UMI counts in mouse to match total UMI counts in human.
Genes having average expression <0.01 were removed.

Human and mouse tissue spot annotation in the chimeric experiment

For each experiment, we annotated the H&E images to identify species-specific
regions. Tissue spots were labelled as human, mouse, or histopathological mixture
based on visual inspection of the H&E images. A histopathological mixture spot
is one with tissue contributions from both species that can be visually verified in
the H&E stained image. A pure human or pure mouse spot was relabeled as a
computational mixture spot if the spot label differed from the majority of UMIs.
Specifically, a human (or mouse) spot was labelled as a computational mixture
if the total UMI counts from mouse (human) exceeded the median of total UMI
counts across all mouse spots (human spots). Background spots are defined as
those spots on the slide outside the tissue region (not annotated as human, mouse,
or mixture). Both histopathological or computational mixture spots were removed
prior to analyses in an effort to ensure that the effects shown are not due to spots
containing a mixture of the two species. Figure 4.2a shows the species annotation
of sample HM-1.

https://support.10xgenomics.com/single-cell-gene-expression/software/downloads/latest
https://support.10xgenomics.com/single-cell-gene-expression/software/downloads/latest
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Measurements of spot swapping in the chimeric experiment

Spot swapped reads include reads from one tissue spot binding background probes
(tissue-to-background) as well as reads at one tissue spot binding probes at another
tissue spot (tissue-to-tissue). It is not possible to directly measure tissue-to-tissue
swapping in most cases. However, our chimeric experiment provides some insight
into the extent of spot swapping tissue-to-tissue. Here we calculated the proportion
of mouse-specific reads in human spots and human-specific reads in mouse spots
(Figure 4.2, Figure C.9). This is a lower bound on the proportion of spot-swapped
reads (LPSS) as it does not account for spot swapping within species (e.g. reads from
human spot t bound by probes at human spot t’), or for reads in the background.
LPSS ranges between 10-15% in these experiments (Table C.1).

Taken together, results from a comparison of tissue and background expression
(Figure 4.1, Figure C.2, Figure C.3, Figure C.4, Figure C.5), analysis of marker
genes in brain and breast cancer tissue (Figure C.6, Figure C.7, Figure C.8,), and
the chimeric experiment (Figure 4.2, Figure C.9, Table C.1) demonstrate that spot
swapping affects UMI counts in ST experiments. As we show in section 4.4, this
nuisance variability decreases the power and precision of downstream analyses.
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Figure 4.2: (a) Species annotation of sample HM-1, a chimeric tissue of human
skin and mouse duodenum. Spots annotated as mixtures were removed prior to
calculating the summaries in panels (b)-(d) in an effort to ensure that the effects
shown are not due to spots containing a mixture of the two species. Panel (b) shows
the spot-specific proportions of spot-swapped UMI counts (human-specific UMIs
in background or mouse spots; mouse-specific UMIs in background or human
spots). Also shown are the proportion of human-specific UMIs in human spots and
mouse-specific UMIs in mouse spots. Note that there may be spot swapped reads in
these latter proportions (e.g. reads from human spot t bound by probes at human
spot t’), but they cannot be identified in this experiment. The total UMI counts in
human-specific genes (panel (c)) and mouse-specific genes (panel(d)) for HM-1
are also shown. Similar plots for HM-2 and HM-3 are shown in Supplementary
Figure 9. Tissue spots on the perimeter as well as spots annotated as mixtures were
removed prior to calculating the proportions in panel (b) in an effort to ensure that
the effects shown are not due to spots on the tissue-background boundary.

4.3 Methods
To adjust for the effects of spot swapping in ST experiments, we developed SpotClean.
SpotClean is based on a probabilistic framework that accommodates spot-swapped
reads to provide improved estimates of UMI counts for every gene at each spot.
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Specifically, SpotClean models gene-specific expression at a given spot as a function
of reads present in tissue at that spot, reads that bleed out into other spots, and reads
that bleed in from other spots. Bleeding rates and the size of the neighborhood
affected are estimated via gradient descent; latent expression levels are estimated
using an EM algorithm.

The SpotClean model

Let K be the total number of spots, G be the set of genes, It be the set of tissue spots
with cardinality |It| = Kt, and Ib be the set of background spots with cardinality
|Ib| = Kb where Kt+Kb = K. The true (i.e., uncontaminated) UMI counts are given
by {Yg,t}g∈G,t∈It and observed counts by D = {Xg,j}g∈G,j∈It

⋃
Ib . As our interest here

is to characterize the extent of spot swapping, we introduce the missing variable
Bg,t,j to be the UMI count for gene g leaving tissue spot t and binding to tissue
(or background) spot j. Likewise we define Sg,t to be the UMI count arising from
gene g in tissue spot t that remain at that spot and thus are not subject to bleeding.
We decompose Yg,t into a sum: Yg,t = Sg,t + Bg,t, where Bg,t =

∑
k∈It

⋃
Ib
Bg,t,k

counts all bleed-outs from spot t to other spots k ̸= t. Extending notation, we set
Yg,b = Sg,b = Bg,b = 0 for background spots b ∈ Ib since background spots do not
express mRNA. With these missing variables defined, we note that the measured
count Xg,j = Sg,j +Rg,j where Rg,j =

∑
k∈It

Bg,k,j represents UMI counts received at
spot j due to spot swapping. We leverage this missing-data formulation by flexibly
modeling the component counts with independent Poisson distributions, which are
known to be effective for UMI counts (Kim et al., 2020).

For a collection of spot and gene-specific parameters, as well as global pa-
rameters controlling the swapping rates, we parameterize the distributions as:
Sg,t ∼ Poisson(µg,t(1 − rβ)) and Bg,t,j ∼ Poisson(µg,trβ[(1 − rγ)wt,j + rγ

1
K
]) where

rβ is the bleeding rate; rγ is a distal and 1 − rγ is a proximal contamination rate. By
taking the global bleeding rate rβ ∈ [0, 1], it follows that the uncontaminated counts
follow: Yg,t ∼ Poisson(µg,t) for target parameters µg,t whose estimates constitute
statistical estimates of the uncontaminated counts. Likewise for measured counts,
Xg,j ∼ Poisson(ηg,j), for induced gene and spot parameters. We define wt,j by a
weighted Gaussian kernel: wt,j = K(dt,j,σ)/

∑
j ′ K(dt,j ′ ,σ) where dt,j is the physical

Euclidean distance between spots t and j measured in pixels in the slide image, σ is
the kernel bandwidth, and K(d,σ) = e(−d2/2σ2) is a Gaussian kernel (Chung, 2020).
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Parameter estimation

Plug-in estimates obtained by minimizing the residual sum of squares (RSS) be-
tween observed total counts and their expected values are used to estimate rβ,rγ,and
σ. Specifically,

(r̂β, r̂γ, σ̂, {µ̂·t}t∈It) = argmin
rβ,rγ,σ,{µ·t}t∈It

∑
j∈It∪Ib

(X·j − η·j)
2

where X·j, η·j, µ·j are the summations of Xg,j, ηg,j, µg,j among all genes, respectively,
and

η·j = E (X·j) =


∑

t∈It
µ·trβ

[
rγ

1
K
+ (1 − rγ)wt,j

]
, if j ∈ Ib

µ·j (1 − rβ) +
∑

t∈It
µ·trβ

[
rγ

1
K
+ (1 − rγ)wt,j

]
, if j ∈ It

To reduce computational complexity, σ̂ is taken as the minimum RSS calcu-
lated over a grid of candidate values. Explicit gradients are calculated for rβ

and rγ and estimates are obtained by L-BFGS-B gradient descent (Byrd et al.,
1995). Rewriting the problem in matrix representation, let µ = (µ·1, . . . ,µ·Kt

)T

and X = ({X·j}j∈Ib , {X·j}j∈It)
T . Denote the proximal contamination weight matrix

W =

W1

W2

, where W1 is a Kb×Kt matrix containing the Gaussian weights between

background and tissue spots, and W2 is a Kt × Kt matrix containing the Gaussian
weights between pairs of tissue spots. The column sums of W are equal to 1 based
on its definition. Let IKt

be the identity matrix with dimension Kt. Let J1 and J2 be
Kb ×Kt and Kt ×Kt matrices of ones representing the distal contamination weights.
The residual sum of squares (RSS) becomes

RSS =

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣X−

(1 − rβ)

 0

IKt

+ rβ (1 − rγ)

 W1

W2

+
rβrγ

K

 J1

J2


µ

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣
2

L2
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The gradients of unknown parameters are then calculated as

∂RSS

∂µ
= 2

[
(1 − rβ)

2
IKt

+ rβ
2 (1 − rγ)

2
WTW

+rβ (1 − rβ) (1 − rγ)
(
WT

2 +W2
)
+

rβrγ (2 − rβrγ)

K
J2

]
µ

− 2

(1 − rβ)

(
0 IKt

)
X+ rβ (1 − rγ)W

TX+
rβrγ

K

 J1

J2


T

X


∂RSS

∂rβ
= µT

[
2 (rβ − 1) IKt

+ 2rβ (1 − rγ)
2
WTW

+(1 − 2rβ) (1 − rγ)
(
WT

2 +W2
)
+

2rγ − 2rβrγ2

K
J2

]
µ

− 2XT

(1 − rγ)W +
rγ

K

 J1

J2

−

 0

IKt


µ

∂RSS

∂rγ
= µT

[
2rβ2 (rγ − 1)WTW + rβ (rβ − 1)

(
WT

2 +W2
)
+

2rβ − 2rβ2rγ

K
J2

]
µ

− 2XT

rβ

K

 J1

J2

− rβW

µ

Since this optimization problem is not necessarily convex, it is important to
choose appropriate initial values. For the initial values {µ(0)

·t }t∈It of {µ·t}t∈It , we use
the observed total UMI counts {X·t}t∈It in tissue spots and scale them up so that
they sum to the total UMIs in the data. The initial bleeding rate, r(0)

β , is the average
expression in background spots divided by the average expression in all spots; and
the initial distal contamination rate, r(0)

γ , is defined by average expression in the
25th-50th percentile of all background spots divided by average expression in all
background spots. With estimates r̂β, r̂γ, σ̂ of the global parameters, true expression
levels {µg,t}g∈G,t∈It are readily estimated using an expectation-maximization (EM)
algorithm (Dempster et al., 1977). Recall that the observed dataD = {Xg,j}g∈G,j∈It∪Ib

has log-likelihood
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lD =
∑
g∈G

∑
j∈It∪Ib

lXg,j =
∑
g∈G

∑
j∈It∪Ib

{Xg,j log ηg,j − ηg,j}+ constant

and the complete data are C = {Sg,t,Bg,t,j}g∈G,t∈It,j∈It∪Ib with log-likelihood

lC =
∑
g∈G

∑
t∈It

lSg,t +
∑
g∈G

∑
t∈It

∑
j∈It∪Ib

lBg,t,j

=
∑
g∈G

∑
t∈It

[Sg,t log (µg,t (1 − rβ)) − µg,t (1 − rβ)]

+
∑
g∈G

∑
t∈It

∑
j∈It∪Ib

[
Bg,t,j log

(
µg,trβ

[
(1 − rγ)wt,j + rγ

1
K

])
− µg,trβ

[
(1 − rγ)wt,j + rγ

1
K

]]
+ constant

=
∑
g∈G

∑
t∈It

(
Sg,t log (µg,t (1 − rβ))

+
∑

j∈It∪Ib

[
Bg,t,j log

(
µg,trβ

[
(1 − rγ)wt,j + rγ

1
K

])]
− µg,t

)
+ constant

Let {µ
(n)
g,t }g∈G,t∈It be the parameter values at the n-th iteration. The E-step

involves computation of the expectation of latent variables conditioning on ob-
served data and parameter values at the current iteration. Given the fact that if
U ∼ Poisson (a), V ∼ Poisson (b), and U and V are independent, then U|(U+ V) ∼

Binomial(U+ V , a
a+b

), and we have

S
(n)
g,t := E [Sg,t|D] = E [Sg,t|Xg,t] = Xg,t

µ
(n)
g,t (1 − rβ)

η
(n)
g,t

B
(n)
g,t,j := E [Bg,t,j|D] = E [Bg,t,j|Xg,j] = Xg,j

µ
(n)
g,t rβ

[
(1 − rγ)wt,j + rγ

1
K

]
η
(n)
g,j

The M-step involves maximizing the complete log-likelihood after plugging in
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the conditional expectations in the E-step:

l
(n)
C =

∑
g∈G

∑
t∈It

(
S
(n)
g,t log (µg,t (1 − rβ))

+
∑

j∈It∪Ib

B
(n)
g,t,j log

(
µg,trβ

[
(1 − rγ)wt,j + rγ

1
K

])
− µg,t

)
∂l

(n)
C

∂µg,t
=

S
(n)
g,t +

∑
j∈It∪Ib

B
(n)
g,t,j

µg,t
− 1

The M-step becomes

µ
(n+1)
g,t = S

(n)
g,t +

∑
j∈It∪Ib

B
(n)
g,t,j

For the initial values of true expressions {µ(0)
g,t}g∈G,t∈It , we use the observed UMI

counts {Xg,t}g∈G,t∈It and scale up each gene so that their summations are equal to
the gene summations in all spots.

Estimation of spot-level contamination in observed data

For tissue spot t, let ct be the proportion of contaminated UMIs from total observed
UMIs. We estimate ct using the estimated contamination received in t over its
estimated contaminated total counts from model fitting:

ĉt =
Ê
(∑

t′∈It−{t}

∑
g Bg,t′,t

)
Ê (X·t)

where Ê(·) is the plug-in estimation of the expectation of the random variables in
the SpotClean model.

Minimum number of background spots required for parameter
estimation

Given that the observed data is a single matrix with a fixed number of columns
(spots), the number of unknown parameters is proportional to the number of tissue
spots. In the extreme case where all spots are covered by tissue, we have more
unknown parameters than observed data values. In this case the contaminated



55

expressions are confounded with true expressions, and SpotClean estimation be-
comes unreliable. We recommend that the input data have at least 25% of spots not
occupied by tissue, so that SpotClean has enough information from background
spots to reliably estimate contamination.

4.4 Results
In this section, we will show that SpotClean is able to recover true gene expression,
provide more precise estimates of marker gene expression, and improve downstream
analyses.

We start by evaluating the performance of SpotClean on adjusting for the spot
swapping contamination and recovering true gene expression in simulated data.
Results are compared with SoupX (Young and Behjati, 2020) and DecontX (Yang
et al., 2020), the two existing decontamination methods for single-cell RNA-seq
data. Next, we illustrate the benefits of SpotClean on marker gene estimation and on
downstream DE and clustering analyses using real world data. More importantly,
we show that SpotClean helps delineate tumor from normal tissue and reduce the
risk of overestimating malignancy in cancer studies. In the end, we show some
computational explorations of potential factors affecting the extent of spot swapping.

Simulation set-up

SimI simulates the spot swapping effect to get contaminated UMI counts given an
input dataset. Specifically, starting from an input UMI count matrix of real data,
3000 genes with highest total UMI counts were selected. Expression for these genes
was scaled to target the same average UMI total counts (average taken over spots)
across input datasets. Denote the resulting matrix by {µg,t}t∈It . The bleeding rate rβ

and distal contamination rate rγ were estimated from the input data, using the same
approach as described for obtaining initial values in SpotClean. The spot distances
{dt,j}t∈It, j∈It∪Ib

were calculated based on the spot coordinates in the H&E image
of the input dataset; the contamination radius, σ, was set to 10; and the weights
which describe the proportion of UMIs swapping locally from tissue spot t to any
spot j, wt,j, is given by a Gaussian kernel. The expected contamination of gene g

from tissue spot t to spot j is then given by µg,trβ
[
(1 − rγ)wt,j + rγ

1
K

]
. Summing

contamination from all tissue spots to spot j and adding the UMIs that stay at j,
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µg,j(1− rβ), gives the expected observed expression ηg,j. Simulated counts for gene
g in spot j are sampled from Poisson (ηg,j).

Additional simulations are similar, but proximal contamination weights are
not given by a Gaussian kernel. Rather, SimII, SimIII, and SimIV assume prox-
imal contamination weights are given by a Linear, Laplace, and Cauchy kernel,
respectively.

SimV is designed to evaluate the effect of decontamination on discovering spa-
tially variable (SV) genes. Starting from a UMI count matrix of real data, we select
the top 5000 most highly expressed genes; any gene having average expression less
than 0.1 is removed. Next, we define true SV genes using SpatialDE (Svensson et al.,
2018), which is a computational method to test for SV patterns of gene expression.
SpatialDE is applied using default settings; the top 500 highest expressed genes
with q-value <=0.01 are identified as true SV genes. For each SV gene, we simulate
a matched non-SV gene by sampling independent Poisson counts parameterized by
the average expression of the SV gene. As a result, we have 500 SV genes and 500
non-SV genes.

For each simulated data in each simulation setting, SpotClean, SoupX and De-
contX were applied to get the decontaminated gene expression. Default parameters
were used for SpotClean and DecontX. Since SoupX requires manual input of clus-
ters, we first applied the state-of-the-art Seurat pipeline (Satija et al., 2015) on the
raw tissue UMI count matrix to get cluster labels, with functions NormalizeData(),
FindVariableFeatures(), ScaleData(), RunPCA(), FindNeighbors(), FindClusters()
applied under default settings. Parameters for SoupX (soupRange in estimate-
Soup(), tfidfMin and soupQuantile in autoEstCont()) were manually tuned when
the default settings failed. Some datasets did not run even after parameter tuning;
results from these datasets are marked as NA.

Simulation results

Table 4.1 shows the mean squared error (MSE) between true and decontaminated
gene expression in SimI simulated datasets; SpotClean provides better estimates
of expression, reducing the MSE by over 20% in most simulations. SoupX and
DecontX increase the MSE as they are not designed for ST data, and perform poorly
on decontaminating spot swapping. Table C.2, Table C.3, and Table C.4 show similar
results. In terms of downstream analysis of identifying SV genes, SpotClean reduces
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Dataset No decontami-
nation

SpotClean SoupX DecontX

LIBD_151507 31.334 15.041 NA 83.016

LIBD_151508 26.477 12.987 NA 53.596

LIBD_151669 21.931 11.745 NA 267.124

LIBD_151670 17.903 10.304 NA 70.851

LIBD_151673 22.121 11.682 NA 56.747

LIBD_151674 25.861 13.361 108.916 57.304

mouse_brain 24.979 9.896 779.811 278.374

mouse_kidney 12.114 7.810 291.890 119.825

human_breast 14.278 9.605 139.924 72.129

human_lymphnode 113.216 30.261 486.128 189.395

human_spinalcord 126.197 13.191 163.898 187.928

Table 4.1: Average mean squared error (MSE) between true and decontaminated
gene expression (average taken over 3000 genes) in 11 SimI datasets simulated using
input from the dataset indicated. NA denotes datasets for which the corresponding
method failed to run. The lowest MSE for each dataset is bolded.

false discovery rate (FDR), while SoupX and DecontX have increased FDR for
many datasets as they impose variability on non-SV genes during decontamination
(Figure 4.3).
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Figure 4.3: SimV simulated data containing spatially varying (SV) genes was sim-
ulated for 11 datasets using input from the publicly available dataset indicated.
SpatialDE was applied to the simulated data following decontamination by Spot-
Clean, SoupX, and DecontX. Shown is the observed false discovery rate (FDR)
for the raw data and each dataset following decontamination for three target FDR
cut-offs. SoupX failed to run on the human_lymphnode data (NA shown as trian-
gles). SoupX and DecontX have increased FDR for many datasets as they impose
variability on non-SV genes during decontamination.

Case study

SpotClean recovers true gene expression, provides more precise estimates of
marker gene expression, and improves downstream analyses

We first show that SpotClean is able to provide more precise estimates of marker
gene expression and improve downstream differential expression (DE) analysis
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in the human brain data. Specifically, Figure 4.4a shows that SpotClean improves
the specificity of GFAP by maintaining expression levels in WM and Layer1 and
reducing spurious expression in the other layers. Figure C.7 shows similar results
for four additional markers. In contrast, SoupX and DecontX perform poorly in
the spatial setting. Figure C.10a-b shows results from SoupX and DecontX on the
brain data, where the marker genes either show no change of expression or are
reduced substantially. In addition, since both methods decontaminate all genes
within a cluster simultaneously, artificial patterns are imposed upon genes showing
no spatial changes (Figure C.10c).

We also identified DE genes between WM and Layer6 using raw and SpotClean
decontaminated data. Specifically, we filtered the list of known DE genes from
Maynard et al. (2021) and considered those genes having FDR<=10−4. From those,
we chose the top 100 highest expressors in the raw data, sorted by fold change, and
selected the top 10 for each dataset. For the DE analysis, raw and decontaminated
tissue matrices were normalized using scran (Lun et al., 2016); for each gene, p-
values were obtained from a two-sample two-sided t-test between the 354 spots in
WM and the 486 spots in Layer6. Summary statistics for the tests in Figure 4.2b are
reported in Table C.6 and Table C.7. Figure 4.4b and Figure C.11 show results for
these gold-standard DE genes. In most cases, data processed via SpotClean results
in increased fold-changes and smaller p-values, further suggesting that SpotClean
results in more accurate expression estimates.

Additional results are demonstrated in a study of breast cancer. Figure 4.5 shows
expression for ERBB2 and MUC1, another breast cancer marker, before and after
SpotClean. SpotClean increases specificity of these markers by maintaining expres-
sion in the tumor regions and reducing expression in the non-tumor regions. It also
leads to improved separation of the tumor and non-tumor regions. Specifically, the
Seurat pipeline was applied under default settings to the raw and decontaminated
data to produce UMAP plots in Figure 4.5d. Tumor spots were clustered using
k-means clustering (k=2) of the top 50 PCs calculated in the Seurat pipeline. In the
H&E image, tissue spots were labelled as tumor and non-tumor based on visual
inspection. The adjusted rand indexes (ARI) were calculated between cluster labels
and tumor/non-tumor labels. SpotClean shows improved clustering of tumor and
non-tumor spots both visually and quantitatively in ARI scores. Similar results are
shown in Figure 4.6 in a study of pancreatic cancer (Moncada et al., 2020).
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Figure 4.4: (a) Known annotation of different layers of the human brain sample
LIBD_151507 (left); layer-specific marker gene expression in the raw (middle) and
SpotClean decontaminated (right) data show that SpotClean provides improved
specificity of marker gene expression for GFAP, a marker for WM and Layer1, and
for SNAP25, a neuronal marker up-regulated in Layer2-Layer6. (b) An analysis
of genes known to be differentially expressed (DE) between WM and Layer6 in
raw and SpotClean decontaminated data shows that SpotClean results in increased
fold-changes and smaller p-values for the majority of known DE genes.
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Figure 4.5: Data from a study of human breast cancer, sample human_breast_2.
Panel (a) shows the H&E image (left) and spots annotated as tumor vs. non-tumor
via a pathologist’s visual inspection (right). Panel (b) shows expression of two
tumor-specific markers in the raw (left) and SpotClean decontaminated (right) data.
SpotClean increases specificity of these markers by maintaining expression in the
tumor regions, and reducing expression in the non-tumor regions. Boxplots of the
expression shown in panel (b) are shown in panel (c) and compared with expression
in a breast cancer single-cell RNA-seq reference dataset (Chung et al., 2017). Panel
(d) shows UMAP plots generated from raw and SpotClean decontaminated data
colored by spot annotations. SpotClean decontaminated data leads to improved
separation of the groups, as shown visually, and quantified by the ARI scores which
show a 13% improvement in the SpotClean decontaminated data.
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Figure 4.6: Data from a study of human pancreatic cancer (Moncada et al., 2020),
sample PDAC-A. Panel (a) shows the H&E image (left) and spots annotated as
tumor, duct epithelia, pancreatic tissue, and stroma from the original study (right).
The upper panel (b) shows expression of the tumor-specific marker TMSF1 in
the raw (left) and SpotClean decontaminated (right) data. SpotClean increases
specificity of this marker by maintaining expression in the tumor region, and reduc-
ing expression in the non-tumor regions. A pancreatic-specific marker, PRSS1, is
shown in the lower panel (b); as in the upper panel, the specificity of this marker
is increased via SpotClean. Panel (c) shows UMAP plots generated from raw and
SpotClean decontaminated data colored by spot annotations (tumor vs. non-tumor).
The groups are well separated even in the raw data, but SpotClean decontaminated
data leads to slightly improved separation of the groups.
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SpotClean reduces the risk of overestimating malignancy and improves
identification of tumor subtypes in cancer studies

As the diagnosis and extent and invasiveness of a tumor is typically estimated
through evaluation of an H&E image by a pathologist, there is now considerable
interest in using ST experiments, which couple the H&E image with molecular
profiling data, to improve diagnosis and precision therapy. ST can provide additional
information by identifying subtle collections of malignant cells, but accurate spot
annotation is required for this information to be useful in clinical practice, and
especially so as not to overcall tumor burden. SpotClean demonstrates advantage
toward this end.

Since tumor cell populations are heterogeneous, and spots contain multiple cells,
most spots containing malignant cells will also contain non-malignant cells. To
estimate the cell type composition and score the malignancy level of each spot, we
applied SPOTlight (Elosua-Bayes et al., 2021) to the Visium human breast cancer
data and the Visium human colorectal cancer data. SPOTlight requires single-cell
RNA-seq data to use as a reference; for this, we used the human breast cancer
single-cell RNA-seq data from Chung et al. (2017) and the human colorectal cancer
single-cell RNA-seq data from Li et al. (2017) to decompose the breast cancer and
colorectal cancer ST data in this section. SPOTlight was applied to the raw data
under default settings to estimate the cell type composition of every spot; SPOTlight
was also applied to the SpotClean decontaminated data under default settings. As
mentioned earlier, each spot contains a mixture of malignant and non-malignant
cells. Towards this end, a spot’s malignancy score is defined to be the proportion of
tumor cells estimated by SPOTlight.

Following clinical practice, we label a spot as malignant if there is any evidence of
malignancy. Specifically, we annotate spots as malignant if the estimated malignant
cell composition exceeds 10%, which corresponds to approximately 1 malignant
cell in the spot since the estimated number of cells in a spot is approximately 10
in Visium data (Elosua-Bayes et al., 2021). We further define non-malignant spots
as "strongly non-malignant" if the non-malignant cell composition exceeds 95%,
and "strongly malignant" if the malignant cell composition exceeds 30% in both raw
and decontaminated data. "Questionably malignant" is used to refer to spots called
malignant in the raw data, but not the SpotClean decontaminated data.

Figure 4.7a shows spots annotated using SpotClean data versus spots annotated
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using data that has not been decontaminated via SpotClean for the breast cancer
sample discussed above. Compared with the H&E image annotations shown in
Figure 4.7a, which we consider to be a gold standard, the non-decontaminated
data misidentifies many spots as malignant including those containing benign
cells surrounding the tumor; the SpotClean decontaminated data more closely
resembles identification of malignant cells on the H&E image. Specifically, over 13%
of the spots are labelled malignant in the raw, but not SpotClean decontaminated,
data. Figure 4.7b-c show that expression in these "questionably malignant" spots is
more similar to spots known to harbor non-malignant cells suggesting that these
questionably malignant spots are false calls.

Similar results are shown in Figure 4.8 in a study of colorectal cancer where Spot-
Clean decontaminated data leads to improved delineation of tumor and non-tumor
regions as evidenced by enhanced tumor malignancy scores in tumor spots, and
lower malignancy scores in non-tumor spots, compared with raw data (Figure 4.8b).
In order to investigate the effect of SpotClean on clustering tumor subtypes, we
applied BayesSpace (Zhao et al., 2021), the state-of-the-art clustering algorithm for
ST data, to tumor spots under default settings to obtain tumor clusters in raw and
SpotClean decontaminated data. SpotClean identifies a novel cluster (SpotClean
tumor cluster 1 shown in Figure 4.8c); and multiple analyses suggest that this cluster
is a distinct tumor subtype containing both tumor and tumor-infiltrating immune
cells. First, a careful look at the H&E image shows that this group of spots is non-
normal, but distinct from other tumor regions (red boxes, Figure 4.8a). Second, 9
of the top 10 genes identified as DE between SpotClean tumor cluster 1 and other
tumor clusters are immunoglobulin marker genes (from 74 total DE genes with
adjusted p-value <=0.01); and immunoglobulin expression for these 9 genes is
largely specific to this cluster (Figure 4.8d). Finally, the average malignancy score for
this group is lower than other tumor clusters, but higher than normal spots, further
suggesting that this group of spots contains both tumor cells and tumor-infiltrating
immune cells (average malignancy scores at normal, tumor cluster 1, and other
tumor spots are 0.384, 0.430, and 0.477, respectively). Taken together, this evidence
suggests that the novel cluster identified by SpotClean maintains biologically rel-
evant information and, in this case, provides for a more specific clustering that
captures subtle structure present in the tissue.
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Figure 4.7: Data from a study of human breast cancer, sample human_breast_2. (a)
Malignant spot composition as estimated via SPOTlight (Elosua-Bayes et al., 2021)
is shown for the raw data (upper left) and SpotClean decontaminated data (upper
middle). The raw data identifies many spots as malignant whereas the SpotClean
decontaminated data more closely resembles the annotations derived from the
H&E image (upper right). The insets highlighted in the upper panel are shown
in the lower panel. (b) Spearman correlations between average expression in the
malignant scRNA-seq cells and spot-specific expression were calculated. Boxplots
of correlations are shown for 265 strongly non-malignant spots, 216 questionably
malignant spots (spots labelled malignant in the raw data, but not the SpotClean
decontaminated data), and 546 strongly malignant spots. Correlations with non-
malignant scRNA-seq cells are also shown. The correlations show that expression
in the questionably malignant spots more closely resembles that in non-malignant
cells suggesting that the malignant classification in the raw data at these spots is
likely false due to spot swapping. (c) The UMAP plot further demonstrates that
the questionably malignant spots in the raw data are likely false positives as their
expression more closely resembles that at non-malignant spots.
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Figure 4.8: Data from a study of human colorectal cancer, sample human_colorectal.
Panel (a) shows the H&E image (left) and spots annotated as tumor vs. non-tumor
via a pathologist’s visual inspection (right). Red boxes highlight the spots belong-
ing to SpotClean’s tumor cluster 1 (panel (c)). (b) Malignant spot composition as
estimated via SPOTlight (Elosua-Bayes et al., 2021) is shown for the raw (left) and
SpotClean decontaminated data (right). SpotClean results in higher malignancy
scores in tumor regions, and lower in normal regions. (c) BayesSpace (Zhao et al.,
2021) clustering for the raw data (top) and SpotClean decontaminated data (bot-
tom). The SpotClean decontaminated data identifies a novel cluster (SpotClean
tumor_1, red boxes). The SpotClean tumor_1 spots are distinct on the H&E image
(red boxes in panel (a)) and likely contain tumor-infiltrating immune cells as evi-
denced by high expression in the immunoglobulin markers shown in panel (d).
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Potential factors affecting the extent of spot swapping

In the SpotClean model, the bleeding rate directly measures the extent of spot
swapping as it is the probability that an RNA transcript bleeds out from its original
spot. SpotClean assumes a constant bleeding rate across all genes for a ST dataset.
However, given that genes with different biotypes (protein-coding genes, long non-
coding RNAs, mitochondrial genes, etc.) may have different binding affinities to
poly-A capture regions, we would like to know if the extent of spot swapping differs
among different gene biotypes. Here we approximate the gene-specific bleeding rate
using the proportion of background UMI counts for each gene. Figure 4.9 shows
boxplots of the proportion of background UMI counts for genes having at least 10
counts in the background (we did not consider genes with fewer than 10 counts
since the variability of background proportion is too high, and the estimation is
less reliable) in the 12 publicly available datasets and the chimeric experiments that
we used in section 4.2. Each panel has two boxplots; the left (salmon) corresponds
to the mitochondrial and long noncoding RNAs (mt_lnc); the right (turquoise)
corresponds to the remaining genes. Results show that there is no consistent trend,
indicating that there is no computational evidence that the extent of spot swapping
varies in the different gene biotypes considered here.

We also investigated the relationship between overall bleeding rate and per-
meabilization time, another important factor in ST experiments. Permeabilization
refers to the process that removes more cellular membrane lipids to allow mRNAs
to get outside the cell. Permeabilization time plays a crucial role for the success of a
ST experiment. Over-permeabilization can lead to higher diffusion rates between
spots. To address this question, ideally we would like a series of ST experiments
where only permeabilization times vary. Unfortunately, no such experiments exist.
To get some insight computationally using existing data, we compared results from
samples with different permeabilization times in different studies. We collected
additional datasets with permeabilization times varying from 6 to 30 minutes. In
this case, the bleeding rates cannot be approximated using the proportion of back-
ground UMIs since the number of background spots varies across datasets. We
use the estimated bleeding rate from SpotClean instead. Figure 4.10 shows that
there are no clear patterns between estimated bleeding rates and permeabilization
times. Datasets coming from the same study tend to have similar bleeding rates, but
we do not observe a clear trend of bleeding rates as a function of permeabilization
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time. Note that the estimated effect of permeabilization is confounded by different
species, tissue types, sample preparations, etc. As more data become available,
it will be interesting to continue to assess whether or not there is a relationship
between bleeding rate and permeabilization time.
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Figure 4.9: Boxplots of background UMI proportions for mitochondrial and long
noncoding RNAs (mt_lnc) and the remaining genes (not_mt_lnc) in 12 publicly
available datasets as well as the chimeric experiments.
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Figure 4.10: Scatter plot showing the relationship between estimated bleeding rates
and permeabilization times for the human brain data, chimeric data, and additional
ST datasets (figure legend shows GEO accession numbers of these data). There are
no clear patterns between estimated bleeding rates and permeabilization times.
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4.5 Implementation
SpotClean is implemented as an R package SpotClean, which is publicly available
at GitHub. The source code and vignette can be found at https://github.com/
zijianni/SpotClean.

The required input data of SpotClean is a gene-by-barcode matrix, as well as
barcode-level information including barcode locations and whether a barcode is
tissue or background. Additional data, such as the H&E image file, are not required
by SpotClean, but can be useful in downstream analysis.

Given that most ST experiments are conducted using the 10x Visium platform,
SpotClean provides functions to directly read the raw files from Space Ranger (10x
Visium’s computational pipeline) and get the gene-by-spot count matrix and spot-
level information in R (barcode in Visium corresponds to spot). For other platforms,
users need to manually create the gene-by-barcode matrix and barcode-level infor-
mation.

The first step of running SpotClean is to create a "slide object", which is a bundled
object containing the raw gene-by-spot count matrix, spot-level information, and
other related data from Space Ranger. This helps put everything in one place for
easy access and management. Next, the main function in the package is to perform
decontamination. It takes the slide object of raw data as input together with some
parameters for controlling optimization and convergence, and returns a slide object
with decontaminated gene expressions and other model-related parameters and
statistics appended to the spot-level information. To evaluate and visualize the
performance of decontamination, SpotClean provides functions to plot the spots
in the 2D space and color them by either expression levels of certain gene, or
other spot-level numerical or categorical values. In addition, SpotClean provides
functions to evaluate contamination levels of the data. For example, our model is
able to estimate the proportion of contaminated expression at each tissue spot (i.e.
expression at a tissue spot that orginated from a different spot due to spot swapping).
Another contamination metric provided is the ambient RNA contamination (ARC)
score. Intuitively, the ARC score is a conserved lower bound of the proportion of
contamination in observed tissue spots. In the end, SpotClean provides functions to
convert the slide object to other commonly used objects, such as the Seurat spatial
object, for a smooth transfer to other downstream analysis pipelines. More details
can be found in the package vignette.

https://github.com/zijianni/SpotClean
https://github.com/zijianni/SpotClean
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The computational speed depends mainly on the number of tissue spots, as
the number of unknown parameters is proportional to the number of tissue spots.
SpotClean does not require parallel computation, and thus does not use up too many
CPU or memory resources. As a reference, SpotClean running on a medium-size
dataset (around 30,000 genes and 2,000 tissue spots) under default gene filtering
takes less than 15 minutes.

4.6 Discussion and future work
Common sources of contamination in next-generation sequencing experiments such
as barcode swapping (Griffiths et al., 2018; Larsson et al., 2018; Costello et al., 2018)
and ambient RNA contamination (Young and Behjati, 2020; Yang et al., 2020) have
been widely recognized over the past decade. We here identify spot swapping, a re-
lated but distinct form of contamination present in the 10x Visium (Ståhl et al., 2016),
SpatialTranscriptomics (Ståhl et al., 2016), and Slide-seqV2 (Stickels et al., 2021)
platforms. SpotClean adjusts for the effects of spot swapping using a probabalistic
model that accommodates spot-swapped reads to provide improved estimates of
gene-specific UMI counts at each spot. SpotClean may be used to obtain improved
estimates of expression given data from the 10x Visium or SpatialTranscriptomics
platforms; it is not applicable to platforms where background barcodes and/or
accurate barcode positions are not provided (e.g. Slide-seqV2).

We have demonstrated the utility of SpotClean to adjust for spot swapping and,
in doing so, to provide improved estimates of expression. Since the probability of
a spot-specific barcode binding reads from another spot increases as the distance
between spots decreases, most of the adjustments made by SpotClean are local (i.e.
reads are reassigned from one spot to a nearby spot). Given this, SpotClean will
have only a modest impact on some downstream analyses, but a more major impact
on others. Specifically, since average expression within a region will remain largely
unchanged post SpotClean, downstream analyses that rely on average expression
(e.g. DE analyses) will show only slight improvements over the raw data, as shown
here. Modest improvements can also be expected for data where clusters are easily
separated. However, for more specific analyses and/or more subtle signals, the
effects of SpotClean are greater. Specifically, SpotClean provides substantial im-
provements in marker gene analyses by decreasing expression in regions where
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markers are known to be lowly expressed, while maintaining expression levels in
other regions. In addition, SpotClean substantially improves clustering results and
spot annotations in situations where regions are not easily separated, which may
have important implications for clinical applications of the ST technology (e.g. in
cancer diagnosis and staging).

Spot swapping is a novel artifact that has not been discovered before. As a
result, there still remain a number of interesting problems to investigate. As shown
in section 4.4, we have investigated the potential relationship between bleeding
rate and gene biotype as well as permeabilization time in a computational way
using publicly available data. However, a carefully designed experiment could
better answer these questions. For example, the relationship between bleeding
rate and permeabilization time can be more rigorously evaluated by conducting ST
experiments with varying permeabilization times while controlling everything else.
Other factors such as species, tissue type, and tissue preparation procedures may
also be evaluated via controlled experiments.

In summary, spatial transcriptomics provides unprecedented opportunity to
address biological questions and enhance patient care, but artifacts induced by spot
swapping must be adjusted for to ensure that maximal information is obtained
from these powerful experiments. SpotClean provides for more accurate estimates
of expression, thereby improving spot annotations and increasing the power and
precision of downstream analyses.
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a appendix of "cb2 improves power of cell detection in
droplet-based single-cell rna sequencing data"

A.1 Supplementry Figures and Tables

Figure A.1: Partition of barcode groups in CB2. UMI counts are plotted against
barcodes that have been ordered by total count. Both CB2 and ED automatically
call high count barcodes real cells (they are not tested); low count barcodes are
considered background. The remaining barcodes are tested. By default, the high
count (upper) threshold is defined by the knee point, where the counts vs. rank
curve begins to drop rapidly; the low count threshold is set to 100. Either, or both,
may be changed by a user.
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Figure A.2: The average power and average FDR of CB2 and ED for SIM IB data
(average taken over 5 simulated datasets). SIM IB is similar to SIM IA, but in SIM
IB 10% of the genes in the real cells are shuffled making the real cells more different
from the background and therefore easier to identify (Figure 2.3). Since both CB2
and ED automatically identify high count barcodes as real cells (they are not subject
to statistical test; Figure A.1), we report results for all barcodes as well as those tested
by CB2 and ED. The top panel shows the average power for tested barcodes; the
middle panel for tested as well as high count barcodes. The bottom panel shows the
average FDR. For the PanT4K dataset, all G1 cells are above the upper threshold and
so no barcodes were tested (as a result, power for tested barcodes is not defined).
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Figure A.3: The average power and average FDR of CB2 and ED for SIM IA data
(average taken over 5 simulated datasets), with lower threshold = 50.
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Figure A.4: The average power and average FDR of CB2 and ED for SIM IA data
(average taken over 5 simulated datasets), with lower threshold = 150.
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Figure A.5: Additional analysis of Alzheimer dataset. Mathys et al. (2019) consid-
ered marker genes to identify neurons (SYT1, SNAP25, GRIN1), excitatory neurons
(SLC17A7, CAMK2A, NRGN), inhibitory neurons (GAD1, GAD2) and oligoden-
drocytes (MBP). (a) The same t-SNE plot as in Figure 2.5. Panels (b)-(e) show that
t-SNE plot colored by marker gene expression in all cells (upper) as well as those
identified uniquely by CB2 (lower). Distribution plots of the 10 marker genes within
the specified subpopulations are shown in the bottom panels for the common cells
(pink) and those uniquely identified by CB2 (yellow). Expression levels of these
markers calculated across all cells are shown in blue as a reference. Cells uniquely
identified by CB2 have marker gene expression patterns similar to those observed in
the cells identified in common between CB2 and ED, providing further support that
they are real cells. As shown in panel (e), the novel subpopulation identified by CB2
is the only subpopulation showing high expression of both oligodendrocyte and
astrocyte marker genes, suggesting that this group may be mixed phenotype glial
cells (GFAP+ oligodendrocytes) (Dyer et al., 2000). Panel (f) shows distribution
plots of the 100 genes having highest average expression in Subpop5 for cells identi-
fied by both CB2 and ED (upper) and identified uniquely by CB2 (middle). The
estimated background distribution is also shown (lower). Cells uniquely identified
by CB2 in Subpop5 have a distribution similar to other Subpop5 cells and differ
from the background.
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Figure A.6: Analysis of PBMC8K dataset. (a) t-SNE plot of cells identified by CB2
and ED. High-count barcodes exceeding an upper threshold are identified as real
cells by both methods without a statistical test (dark pink); barcodes identified
as cells by both methods following statistical test are shown in pink. Cells identi-
fied uniquely by CB2 (yellow) and ED (black) are also shown. (b) Distribution
plots of the 100 genes having highest average expression in Subpop1 are shown
for cells identified by both CB2 and ED (upper) and identified uniquely by CB2
(middle). The estimated background distribution is also shown (lower). Cells
uniquely identified by CB2 in Subpop1 have a distribution similar to other Subpop1
cells and differ from the background. (c) Heatmap of log transformed raw UMI
counts for the same 100 genes for barcodes identified by CB2 and ED (left) and
barcodes uniquely identified by CB2 (right). (d) t-SNE plots of cells colored by
known marker genes for B-cells (CD79A, CD19), CD14+ Monocytes (CD14), and
Megakaryocytes (PF4)(Zheng et al., 2017)
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Figure A.7: Analysis of mbrain1K dataset. (a) t-SNE plot of cells identified by CB2
and ED. High-count barcodes exceeding an upper threshold are identified as real
cells by both methods without a statistical test (dark pink); barcodes identified as
cells by both methods following statistical test are shown in pink. Cells identified
uniquely by CB2 (yellow) and ED (black) are also shown. (b) Distribution plots
of the 100 genes having highest average expression in Subpop1 are shown for cells
identified by both CB2 and ED (upper) and identified uniquely by CB2 (middle).
The estimated background distribution is also shown (lower). Cells uniquely iden-
tified by CB2 in Subpop1 have a distribution similar to other Subpop1 cells and
differ from the background. (c) Heatmap of log transformed raw UMI counts for
the same 100 genes for barcodes identified by CB2 and ED (left) and barcodes
uniquely identified by CB2 (right). (d) t-SNE plots of cells colored by expression
of hemoglobin-related marker genes (Hba-a1, Hba-a2, Hbb-bs, Hbb-bt). (b)-(d)
indicate that CB2 reveals a novel subpopulation of cells with expression patterns
consistent with high stress and neurogenerative disorders in both human(Vanni
et al., 2018) and mouse(Stankiewicz et al., 2014) brain studies.
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Figure A.8: Analysis of placenta dataset. (a) t-SNE plot of cells identified by CB2 and
ED. High-count barcodes exceeding an upper threshold are identified as real cells
by both methods without a statistical test (dark pink); barcodes identified as cells by
both methods following statistical test are shown in pink. Cells identified uniquely
by CB2 (yellow) and ED (black) are also shown. (b) Distribution plots of the 100
genes having highest average expression in Subpop1 are shown for cells identified by
both CB2 and ED (upper) and identified uniquely by CB2 (middle). The estimated
background distribution is also shown (lower). Cells uniquely identified by CB2
in Subpop1 have a distribution similar to other Subpop1 cells and differ from the
background. (c) Heatmap of log transformed raw UMI counts for the same 100
genes for barcodes identified by CB2 and ED (left) and barcodes uniquely identified
by CB2 (right). (d) t-SNE plots of cells colored by expression of a placenta-specific
marker gene (KISS1) and marker genes related to placental lactogen secretion
(CSH1, CSH2)(Mannik et al., 2010). Panels (a) and (d) indicate that CB2 reveals a
novel subpopulation (Subpop2) that may be related to placental lactogen secretion.
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Dataset Link

Alzheimer https://www.synapse.org/#!Synapse:syn16780177

PBMC8K https://support.10xgenomics.com/single-cell-gene-
expression/datasets/2.1.0/pbmc8k

PBMC33K https://support.10xgenomics.com/single-cell-gene-
expression/datasets/1.1.0/pbmc33k

mbrain1K https://support.10xgenomics.com/single-cell-gene-
expression/datasets/2.1.0/neurons_900

mbrain9K https://support.10xgenomics.com/single-cell-gene-
expression/datasets/2.1.0/neuron_9k

PanT4K https://support.10xgenomics.com/single-cell-gene-
expression/datasets/2.1.0/t_4k

MALT https://support.10xgenomics.com/single-cell-gene-
expression/datasets/3.0.0/malt_10k_protein_v3

PBMC4K https://support.10xgenomics.com/single-cell-gene-
expression/datasets/2.1.0/pbmc4k

jurkat https://support.10xgenomics.com/single-cell-gene-
expression/datasets/1.1.0/jurkat

T293 https://support.10xgenomics.com/single-cell-gene-
expression/datasets/1.1.0/293t

placenta https://jmlab-gitlab.cruk.cam.ac.uk/publications/
EmptyDrops2017-DataFiles

Table A.1: Links to all datasets used in chapter 2.

https://www.synapse.org/#!Synapse:syn16780177
https://support.10xgenomics.com/single-cell-gene-expression/datasets/2.1.0/pbmc8k
https://support.10xgenomics.com/single-cell-gene-expression/datasets/2.1.0/pbmc8k
https://support.10xgenomics.com/single-cell-gene-expression/datasets/1.1.0/pbmc33k
https://support.10xgenomics.com/single-cell-gene-expression/datasets/1.1.0/pbmc33k
https://support.10xgenomics.com/single-cell-gene-expression/datasets/2.1.0/neurons_900
https://support.10xgenomics.com/single-cell-gene-expression/datasets/2.1.0/neurons_900
https://support.10xgenomics.com/single-cell-gene-expression/datasets/2.1.0/neuron_9k
https://support.10xgenomics.com/single-cell-gene-expression/datasets/2.1.0/neuron_9k
https://support.10xgenomics.com/single-cell-gene-expression/datasets/2.1.0/t_4k
https://support.10xgenomics.com/single-cell-gene-expression/datasets/2.1.0/t_4k
https://support.10xgenomics.com/single-cell-gene-expression/datasets/3.0.0/malt_10k_protein_v3
https://support.10xgenomics.com/single-cell-gene-expression/datasets/3.0.0/malt_10k_protein_v3
https://support.10xgenomics.com/single-cell-gene-expression/datasets/2.1.0/pbmc4k
https://support.10xgenomics.com/single-cell-gene-expression/datasets/2.1.0/pbmc4k
https://support.10xgenomics.com/single-cell-gene-expression/datasets/1.1.0/jurkat
https://support.10xgenomics.com/single-cell-gene-expression/datasets/1.1.0/jurkat
https://support.10xgenomics.com/single-cell-gene-expression/datasets/1.1.0/293t
https://support.10xgenomics.com/single-cell-gene-expression/datasets/1.1.0/293t
https://jmlab-gitlab.cruk.cam.ac.uk/publications/EmptyDrops2017-DataFiles
https://jmlab-gitlab.cruk.cam.ac.uk/publications/EmptyDrops2017-DataFiles
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Dataset Threshold

90% 80% 70%

Alzheimer 1 2 2

PBMC8K 0 0 0

PBMC33K 0 0 0

mbrain1K 0 1 1

mbrain9K 0 1 1

PanT4K 0 0 0

MALT 1 1 2

PBMC4K 0 0 0

jurkat 0 0 1

T293 0 0 0

placenta 0 0 1

Table A.2: Number of novel subpopulations identified by CB2 in each dataset.
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A.2 Software versions for reproducibility
Below are the versions of language and packages at the time generating results in
chapter 2. For cell identification with scCB2-0.99.12 and DropletUtils-1.5.4, the latest
version of R was used: 3.7-devel (2019-07-17 r76847). Other packages were not
yet compatible or not stable with the R developers version and so for scran-1.12.1,
Seurat-3.1.0, and ggplot2-3.2.1, R 3.6.0 (2019-04-24 r76423) was used.

A.3 Data and code availability
Links to all the public datasets used in chapter 2 are listed in Table A.1. The R package
scCB2 is available at https://bioconductor.org/packages/release/bioc/html/
scCB2.html. All simulation codes and case study data analysis scripts are available
at https://github.com/zijianni/codes-for-CB2-paper.

https://bioconductor.org/packages/release/bioc/html/scCB2.html
https://bioconductor.org/packages/release/bioc/html/scCB2.html
https://github.com/zijianni/codes-for-CB2-paper
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b appendix of "benchmarking cell detection
algorithms for droplet-based single-cell rna-seq data"

B.1 Supplementry Figures and Tables

Figure B.1: UpSet plots for 6 datasets (PBMC8K, mbrain1K, mbrain9K, PanT4K,
MALT, PBMC4K) showing the number of common and distinct barcodes of the four
cell barcode sets as well as the size of the sets. For EmptyDrops, CB2, and DIEM,
the background thresholds are 100, 100, 150, 100, 100, 100, respectively.
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Figure B.2: UpSet plots for 6 datasets (jurkat, T293, PBMC10K_tg, Lymphoma3K_tg,
BrainTumor200_LT, BreastCancer750_LT) showing the number of common and
distinct barcodes of the four cell barcode sets as well as the size of the sets. For
EmptyDrops, CB2, and DIEM, the background thresholds are 100, 100, 10, 10, 100,
300, respectively.
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Figure B.3: UMAP plots of the Alzheimer data. Barcodes highlighted in red in each
panel are the ones detected as cells by each of the four methods.
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Figure B.4: Distribution plots and expression heatmaps of the top 50 genes in
different barcode groups for (a)-(b) microglia and (c)-(d) excitatory neurons. For
the excitatory neurons, housekeeping genes are not filtered out from the top 50 genes
since they contributed the most to distinguishing cell barcodes against background
distribution.
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Figure B.5: Distribution plots of the top 50 genes in barcodes with UMI counts
between 101 and 300 that are identified as cells by CB2, DIEM, and EmptyDrops
for BreastCancer750_LT data. These barcodes have similar overall distributions
across methods, and are similar to the background barcodes with UMI counts below
100, indicating that the default threshold=100 is not sufficiently high to accurately
estimate background distribution, which results in false positive cells.
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Figure B.6: Distribution plots of the top 50 genes in barcodes with UMI counts
between 101 and 300 that are identified as cells by CB2, DIEM, and EmptyDrops for
(a)PBMC10K_tg and (c)Lymphoma3K_tg data. These barcodes have similar overall
distributions across methods, but they different from the background barcodes with
UMI counts below 10, indicating that these barcodes are real small cells which will
be incorrectly filtered out under the default threshold=100.
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Dataset Link

PBMC8K https://support.10xgenomics.com/single-cell-gene-expression/
datasets/2.1.0/pbmc8k

mbrain1K https://support.10xgenomics.com/single-cell-gene-expression/
datasets/2.1.0/neurons_900

mbrain9K https://support.10xgenomics.com/single-cell-gene-expression/
datasets/2.1.0/neuron_9k

PanT4K https://support.10xgenomics.com/single-cell-gene-expression/
datasets/2.1.0/t_4k

MALT https://support.10xgenomics.com/single-cell-gene-expression/
datasets/3.0.0/malt_10k_protein_v3

PBMC4K https://support.10xgenomics.com/single-cell-gene-expression/
datasets/2.1.0/pbmc4k

jurkat https://support.10xgenomics.com/single-cell-gene-expression/
datasets/1.1.0/jurkat

T293 https://support.10xgenomics.com/single-cell-gene-expression/
datasets/1.1.0/293t

PBMC10K_tg https://www.10xgenomics.com/resources/datasets/pbm-cs-from-
a-healthy-donor-targeted-immunology-panel-3-1-standard-4-0-
0

Lymphoma3K_tg https://www.10xgenomics.com/resources/datasets/hodgkins-
lymphoma-dissociated-tumor-targeted-gene-signature-panel-3-
1-standard-4-0-0

BrainTumor200_LT https://www.10xgenomics.com/resources/datasets/200-sorted-
cells-from-human-glioblastoma-multiforme-3-lt-v-3-1-3-1-
low-6-0-0

BreastCancer750_LT https://www.10xgenomics.com/resources/datasets/750-sorted-
cells-from-human-invasive-ductal-carcinoma-3-lt-v-3-1-3-1-
low-6-0-0

mheart1K https://www.10xgenomics.com/resources/datasets/1-k-heart-
cells-from-an-e-18-mouse-v-3-chemistry-3-standard-3-0-0

mheart10K https://www.10xgenomics.com/resources/datasets/10-k-heart-
cells-from-an-e-18-mouse-v-3-chemistry-3-standard-3-0-0

PBMC1K https://www.10xgenomics.com/resources/datasets/1-k-pbm-cs-
from-a-healthy-donor-v-3-chemistry-3-standard-3-0-0

PBMC10K https://www.10xgenomics.com/resources/datasets/10-k-pbm-cs-
from-a-healthy-donor-v-3-chemistry-3-standard-3-0-0

Table B.1: Links to all datasets used in chapter 3.

https://support.10xgenomics.com/single-cell-gene-expression/datasets/2.1.0/pbmc8k
https://support.10xgenomics.com/single-cell-gene-expression/datasets/2.1.0/pbmc8k
https://support.10xgenomics.com/single-cell-gene-expression/datasets/2.1.0/neurons_900
https://support.10xgenomics.com/single-cell-gene-expression/datasets/2.1.0/neurons_900
https://support.10xgenomics.com/single-cell-gene-expression/datasets/2.1.0/neuron_9k
https://support.10xgenomics.com/single-cell-gene-expression/datasets/2.1.0/neuron_9k
https://support.10xgenomics.com/single-cell-gene-expression/datasets/2.1.0/t_4k
https://support.10xgenomics.com/single-cell-gene-expression/datasets/2.1.0/t_4k
https://support.10xgenomics.com/single-cell-gene-expression/datasets/3.0.0/malt_10k_protein_v3
https://support.10xgenomics.com/single-cell-gene-expression/datasets/3.0.0/malt_10k_protein_v3
https://support.10xgenomics.com/single-cell-gene-expression/datasets/2.1.0/pbmc4k
https://support.10xgenomics.com/single-cell-gene-expression/datasets/2.1.0/pbmc4k
https://support.10xgenomics.com/single-cell-gene-expression/datasets/1.1.0/jurkat
https://support.10xgenomics.com/single-cell-gene-expression/datasets/1.1.0/jurkat
https://support.10xgenomics.com/single-cell-gene-expression/datasets/1.1.0/293t
https://support.10xgenomics.com/single-cell-gene-expression/datasets/1.1.0/293t
https://www.10xgenomics.com/resources/datasets/pbm-cs-from-a-healthy-donor-targeted-immunology-panel-3-1-standard-4-0-0
https://www.10xgenomics.com/resources/datasets/pbm-cs-from-a-healthy-donor-targeted-immunology-panel-3-1-standard-4-0-0
https://www.10xgenomics.com/resources/datasets/pbm-cs-from-a-healthy-donor-targeted-immunology-panel-3-1-standard-4-0-0
https://www.10xgenomics.com/resources/datasets/hodgkins-lymphoma-dissociated-tumor-targeted-gene-signature-panel-3-1-standard-4-0-0
https://www.10xgenomics.com/resources/datasets/hodgkins-lymphoma-dissociated-tumor-targeted-gene-signature-panel-3-1-standard-4-0-0
https://www.10xgenomics.com/resources/datasets/hodgkins-lymphoma-dissociated-tumor-targeted-gene-signature-panel-3-1-standard-4-0-0
https://www.10xgenomics.com/resources/datasets/200-sorted-cells-from-human-glioblastoma-multiforme-3-lt-v-3-1-3-1-low-6-0-0
https://www.10xgenomics.com/resources/datasets/200-sorted-cells-from-human-glioblastoma-multiforme-3-lt-v-3-1-3-1-low-6-0-0
https://www.10xgenomics.com/resources/datasets/200-sorted-cells-from-human-glioblastoma-multiforme-3-lt-v-3-1-3-1-low-6-0-0
https://www.10xgenomics.com/resources/datasets/750-sorted-cells-from-human-invasive-ductal-carcinoma-3-lt-v-3-1-3-1-low-6-0-0
https://www.10xgenomics.com/resources/datasets/750-sorted-cells-from-human-invasive-ductal-carcinoma-3-lt-v-3-1-3-1-low-6-0-0
https://www.10xgenomics.com/resources/datasets/750-sorted-cells-from-human-invasive-ductal-carcinoma-3-lt-v-3-1-3-1-low-6-0-0
https://www.10xgenomics.com/resources/datasets/1-k-heart-cells-from-an-e-18-mouse-v-3-chemistry-3-standard-3-0-0
https://www.10xgenomics.com/resources/datasets/1-k-heart-cells-from-an-e-18-mouse-v-3-chemistry-3-standard-3-0-0
https://www.10xgenomics.com/resources/datasets/10-k-heart-cells-from-an-e-18-mouse-v-3-chemistry-3-standard-3-0-0
https://www.10xgenomics.com/resources/datasets/10-k-heart-cells-from-an-e-18-mouse-v-3-chemistry-3-standard-3-0-0
https://www.10xgenomics.com/resources/datasets/1-k-pbm-cs-from-a-healthy-donor-v-3-chemistry-3-standard-3-0-0
https://www.10xgenomics.com/resources/datasets/1-k-pbm-cs-from-a-healthy-donor-v-3-chemistry-3-standard-3-0-0
https://www.10xgenomics.com/resources/datasets/10-k-pbm-cs-from-a-healthy-donor-v-3-chemistry-3-standard-3-0-0
https://www.10xgenomics.com/resources/datasets/10-k-pbm-cs-from-a-healthy-donor-v-3-chemistry-3-standard-3-0-0


92

B.2 Software versions for reproducibility
Below are the versions of language and packages at the time generating results in
chapter 3: R-4.1.0. R/DropletUtils-1.14.1. R/scCB2-1.5.1. R/diem-2.3.0. R/Seurat-
4.0.5. Python-3.7.10. Python/dropkick-1.2.6.

B.3 Data and code availability
The Alzheimer study dataset was downloaded from https://www.synapse.org/#!
Synapse:syn16780177. Other public datasets in this study are available at the 10x
Genomics website (https://support.10xgenomics.com/singlecell-gene-expression/datasets)
(Table B.1). All simulation codes and case study data analysis scripts are available
at https://github.com/zijianni/codes_for_CB2_benchmark_paper.

https://www.synapse.org/#!Synapse:syn16780177
https://www.synapse.org/#!Synapse:syn16780177
https://github.com/zijianni/codes_for_CB2_benchmark_paper
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c appendix of "spotclean adjusts for spot swapping in
spatial transcriptomics data"

C.1 Supplementary Figures and Tables

Figure C.1: Overview of the 10x Genomics Visium (10x) spatial transcriptomics
experiment. (a) The 10x Visium spatial gene expression slide contains four tissue
capture sites for processing multiple tissue samples simultaneously. Each capture
site contains 4992 spots, with each spot containing millions of spot-specific probes
that bind mRNA. (b) Fresh frozen or FFPE tissue is sectioned, placed on a capture
area, and imaged, typically via Hematoxylin and Eosin (H&E) staining. (c) Follow-
ing imaging, the tissue is permeabilized to release mRNA. The lower panel shows
five background spots (gray) and two tissue spots (orange and blue). Due to spot
swapping, mRNAs from one tissue spot bind probes at other spots. (d) The bound
mRNAs are released, processed, sequenced and quantified to give a gene-by-spot
matrix of UMI counts. In this hypothetical example, due to spot swapping, UMI
counts at each of the seven spots are a mixture of mRNAs from the two distinct
tissue spots.
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Figure C.2: Data from six human brain samples from Maynard et al. (2021). (a)
H&E images for the six different samples. (b) UMI total counts in the background
decrease with increasing distance from the tissue. (c) Spots on the slide are colored
by their cluster membership via graph-based clustering (clusters not shown). Black
arrows highlight areas of spot swapping. (d) UMI count densities for tissue and
background spots show relatively high counts in the background. (e) Counts of
the top 50 genes (genes with highest total UMI expression) from a select tissue
region (upper), from a nearby background region (middle), and from a distant
background region (bottom) show the similarity between expression in tissue spots
and nearby background spots due to spot swapping from tissue to background, an
effect that decreases as distance from the tissue increases. The tissue region and
background regions used for each sample are highlighted in panel (a) in pink and
white, respectively. Tissue spots on the perimeter (shown in white in panels (b)
and (c)) were removed prior to calculating the summaries in panels (d)-(e) in an
effort to ensure that the effects shown are not due to spots on the tissue-background
boundary.
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Figure C.3: Data from six publicly available 10x Visium datasets. (a) H&E images
for the six different samples. (b) UMI total counts in the background decrease
with increasing distance from the tissue. (c) Spots on the slide are colored by
their cluster membership via graph-based clustering (clusters not shown). Black
arrows highlight areas of spot swapping. (d) UMI count densities for tissue and
background spots show relatively high counts in the background. (e) Counts of
the top 50 genes (genes with highest total UMI expression) from a select tissue
region (upper), from a nearby background region (middle), and from a distant
background region (bottom) show the similarity between expression in tissue spots
and nearby background spots due to spot swapping from tissue to background, an
effect that decreases as distance from the tissue increases. The tissue region and
background regions used for each sample are highlighted in panel (a) in pink and
white, respectively. There is considerable overlap of tissue and background spots
in the UMAP plots. Tissue spots on the perimeter (shown in white in panels (b)
and (c)) were removed prior to calculating the summaries in panels (d)-(e) in an
effort to ensure that the effects shown are not due to spots on the tissue-background
boundary.
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Figure C.4: Data from the three chimeric samples composed of human and mouse
tissues. (a) H&E images for the three different samples. (b) UMI total counts in the
background decrease with increasing distance from the tissue. (c) Spots on the slide
are colored by their cluster membership via graph-based clustering (clusters not
shown). Black arrows highlight areas of spot swapping. (d) UMI count densities
for tissue and background spots show relatively high counts in the background.
(e) Counts of the top 50 genes (genes with highest total UMI expression) from
a select tissue region (upper), from a nearby background region (middle), and
from a distant background region (bottom) show the similarity between expression
in tissue spots and nearby background spots due to spot swapping from tissue
to background, an effect that decreases as distance from the tissue increases. The
tissue region and background regions used for each sample are highlighted in panel
(a) in pink and white, respectively. There is considerable overlap of tissue and
background spots in the UMAP plots. Tissue spots on the perimeter (shown in
white in panels (b) and (c)) were removed prior to calculating the summaries in
panels (d)-(e) in an effort to ensure that the effects shown are not due to spots on
the tissue-background boundary.
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Figure C.5: Evidence of spot swapping in Slide-seqV2 data. (a) DAPI stain of E15
mouse brain (left) and Slide-seqV2 data of E15 brain with cluster labels (right)
reported in Stickels et al. (2021). Three background regions identified from the
DAPI image are shown in pink and labeled as (1), (2) and (3). The same regions
are also identified in the graph-based clustering of beads. (b) Raw UMI counts
data colored by total UMI counts for all spatial barcodes shows positive UMI counts
detected in the three background regions. (c)-(d) are identical to (a)-(b), but for
the E12.5 mouse embryo data. The black circle shown in (c) is part of the original
image and not relevant here.
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Figure C.6: The effect of spot swapping on layer-specific marker genes in three hu-
man brain sample datasets. The upper left panel shows the annotated LIBD_151507
sample and a stripe with width equal to five spots. Each spot in the stripe is colored
by expression of GFAP, a marker for white matter (WM) and Layer1; the "+" denotes
the regions where marker expression is expected to be high (here, WM and Layer
1). Average expression of each row in the stripe is shown in the right subpanel. The
average is taken across the five spots for every row contained completely within a
layer; for rows containing two layers, the average is taken across the three or four
spots making up the major layer. When spot swapping occurs, marker expression
is relatively high in nearby layers, as observed here. While it is possible that some
increase in marker expression in adjacent tissue spots may be due to the presence of
WM (or Layer1) cells at those spots, we note that the rate of expression decay into
the background spots (where no cells are present) is similar to the rate of decay
into adjacent tissue regions. Consequently, the possible presence of cells from a
given layer in adjacent tissue spots outside that layer is not sufficient to fully explain
the observed expression patterns shown here. The lower middle and lower left
panels show the same plot for different tissue samples; the right panels show MOBP,
another WM marker.
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Figure C.7: Gene expression heatmaps for GFAP, MBP, SNAP25, PCP4, CCK in brain
samples are shown for the raw and SpotClean decontaminated data. Columns 1 and
3 show raw expression in brain samples LIBD_151507 and LIBD_151673; columns 2
and 4 show SpotClean decontaminated data for these same samples. Brain layer
annotations are also shown at the bottom. SpotClean maintains expression in the
marker layers and reduces expression in adjacent layers, thereby increasing marker
specificity.
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Figure C.8: The effect of spot swapping on breast cancer specific marker genes
in a human breast cancer sample, human_breast_2. Panel (a) shows the H&E
image (left) and spots annotated as tumor, non-tumor, and background via visual
inspection (right). Panel (b) shows high expression for ERBB2 in the tumor spots
of the inset; also shown is relatively high expression in adjacent spots that decreases
with increasing distance from the tumor. Panel (c) shows ERBB2 expression for
spots in each row of the inset. Some of the decrease into adjacent spots shown in
panels (b) and (c) may be due to the presence of both tumor and normal cells in
spots near the tumor tissue. However, this is unlikely given that the rate of decay
into the adjacent spots is similar to the rate of decay into the background (where no
tissue is present).
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Figure C.9: Panel (a) shows total UMI counts in human-specific genes (upper) and
mouse-specific genes (lower) for the three chimeric experiments. Panel (b) shows
the proportion (out of total UMIs) of spot-swapped UMI counts (human-specific
UMIs in background or mouse spots; mouse-specific UMIs in background or human
spots). Also shown are the proportion of human-specific UMIs in human spots
and mouse-specific UMIs in mouse spots. Note that there may be spot swapped
reads in these latter proportions (e.g. reads from human spot t bound by probes at
human spot t’), but they cannot be identified in this experiment. Panel (c) shows
spot-specific proportions. Tissue spots on the perimeter as well as spots annotated
as mixtures (shown in white in panel (a)) were removed prior to calculating the
summaries in panels (b) and (c) in an effort to ensure that the effects shown are
not due to spots on the tissue-background boundary.
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Figure C.10: Data from the human brain sample LIBD_151507. Data decontaminated
by SpotClean (middle left), SoupX (middle right), and DecontX (right) for SNAP25
(a) and MOBP (b). The raw data is shown left. SoupX decontaminates SNAP25, but
reduces expression even in Layer2-Layer6, where SNAP25 expression is expected
to be high; DecontX imposes little change on this marker’s expression. SoupX
works well for MOBP, but DecontX removes almost all of the signal for this marker.
Panel (c) shows results from SimV data generated using sample LIBD_151507; 500
spatially varying (SV) genes and 500 genes showing no change in expression across
the slide were simulated (non-SV). Shown far left in panel (c) is summed expression
for the 500 non-SV genes. To ensure that the summation is not dominated by a few
highly expressed genes, gene-specific expression was scaled so that the maximum
value of each gene equals 1. The same sum is shown for data decontaminated by
SpotClean (middle left), SoupX (middle right), and DecontX (right). SoupX and
DecontX impose artificial patterns upon non-SV genes.
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Figure C.11: Shown for the six human brain sample datasets are the fold changes
and p-values for 10 genes known to be differentially expressed (DE) between WM
and Layer6 for the raw data (salmon) and SpotClean processed data (turquoise).
By reducing noise due to spot-swapped UMIs, SpotClean improves fold changes
and p-values for the majority of known DE genes.
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Dataset Prop. UMIs in
Background

Number of
background

spots

Normalized
prop. UMIs in
Background

LPSS

LIBD_151507 6.4% 766 0.0084% NA

LIBD_151508 4.2% 606 0.0069% NA

LIBD_151669 8.3% 1329 0.0062% NA

LIBD_151670 7.6% 1494 0.0051% NA

LIBD_151673 8.6% 1353 0.0064% NA

LIBD_151674 10.4% 1319 0.0079% NA

mouse_brain 8.3% 2290 0.0036% NA

mouse_kidney 7.7% 3554 0.0022% NA

human_breast 4.3% 1005 0.0043% NA

human_lymphnode 10.7% 957 0.0112% NA

human_spinalcord 14.2% 2180 0.0065% NA

HM-1 20.8% 2962 0.0070% 14.9%

HM-2 17.6% 3666 0.0048% 10.2%

HM-3 26.9% 3092 0.0087% 13.3%

Table C.1: The proportion of UMI counts in background spots, the number of
background spots, the per-spot proportion of UMI counts in background spots, and
the LPSS (which is only defined for the three chimeric datasets). The proportion of
UMI counts in background spots serves as an underestimate of the proportion of
spot-swapped UMI counts (since the proportion quantifies tissue-to-background
swapping but does not account for tissue-to-tissue swapping). We also report the
normalized proportion, which is the proportion of UMI counts in background spots
divided by the number of background spots in each dataset. LPSS is defined in the
chimeric experiment as the proportion of misclassified reads in tissue spots (mouse
reads in human spots and human reads in mouse spots). This is a lower bound as
it does not account for spot swapping within species, and it does not count reads in
background spots.
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Dataset No decontami-
nation

SpotClean SoupX DecontX

LIBD_151507 30.720 14.957 NA 58.651

LIBD_151508 26.102 12.909 NA 122.332

LIBD_151669 21.610 12.001 NA 266.682

LIBD_151670 17.452 10.221 NA 154.391

LIBD_151673 21.472 12.172 NA 74.319

LIBD_151674 25.131 13.469 NA 57.744

mouse_brain 24.161 9.625 824.134 284.147

mouse_kidney 12.165 7.903 319.903 121.810

human_breast 13.790 9.987 118.043 71.458

human_lymphnode 108.288 31.581 464.735 196.503

human_spinalcord 122.037 14.431 181.217 515.027

Table C.2: Average mean squared error (MSE) between true and decontaminated
gene expression (average taken over 3000 genes) in 11 SimII datasets simulated using
input from the dataset indicated. NA denotes datasets for which the corresponding
method failed to run. The lowest MSE for each dataset is bolded.
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Dataset No decontami-
nation

SpotClean SoupX DecontX

LIBD_151507 32.472 14.998 NA 87.570

LIBD_151508 27.371 13.248 NA 196.679

LIBD_151669 22.892 11.710 NA 81.707

LIBD_151670 18.538 10.255 62.989 63.855

LIBD_151673 23.502 11.719 NA 184.707

LIBD_151674 27.832 13.372 NA 61.567

mouse_brain 26.856 9.508 685.702 284.959

mouse_kidney 12.989 7.912 302.584 119.542

human_breast 15.222 9.953 135.952 74.705

human_lymphnode 120.495 28.026 534.534 195.524

human_spinalcord 133.396 13.414 186.904 563.552

Table C.3: Average mean squared error (MSE) between true and decontaminated
gene expression (average taken over 3000 genes) in 11 SimIII datasets simulated
using input from the dataset indicated. NA denotes datasets for which the corre-
sponding method failed to run. The lowest MSE for each dataset is bolded.
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Dataset No decontami-
nation

SpotClean SoupX DecontX

LIBD_151507 36.056 15.388 NA 144.595

LIBD_151508 30.580 13.639 NA 141.042

LIBD_151669 25.767 12.677 NA 79.926

LIBD_151670 21.365 10.553 NA 196.039

LIBD_151673 27.271 12.769 97.401 339.906

LIBD_151674 32.751 13.967 NA 67.959

mouse_brain 31.022 9.419 829.479 458.233

mouse_kidney 14.756 7.771 331.323 131.421

human_breast 16.731 9.348 136.516 76.562

human_lymphnode 132.168 29.893 523.708 209.594

human_spinalcord 152.092 13.154 223.067 215.555

Table C.4: Average mean squared error (MSE) between true and decontaminated
gene expression (average taken over 3000 genes) in 11 SimIV datasets simulated
using input from the dataset indicated. NA denotes datasets for which the corre-
sponding method failed to run. The lowest MSE for each dataset is bolded.
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Dataset Link

human_brain https://github.com/LieberInstitute/spatialLIBD

mouse_brain https://support.10xgenomics.com/spatial-gene-expression/
datasets/1.1.0/V1_Adult_Mouse_Brain

mouse_kidney https://support.10xgenomics.com/spatial-gene-expression/
datasets/1.1.0/V1_Mouse_Kidney

human_breast https://support.10xgenomics.com/spatial-gene-expression/
datasets/1.1.0/V1_Breast_Cancer_Block_A_Section_2

human_breast_2 https://support.10xgenomics.com/spatial-gene-expression/
datasets/1.3.0/Visium_FFPE_Human_Breast_Cancer

human_lymphnode https://support.10xgenomics.com/spatial-gene-expression/
datasets/1.1.0/V1_Human_Lymph_Node

human_spinalcord https://support.10xgenomics.com/spatial-gene-expression/
datasets/1.2.0/Targeted_Visium_Human_SpinalCord_Neuroscience

human_colorectal https://www.10xgenomics.com/resources/datasets/human-
colorectal-cancer-whole-transcriptome-analysis-1-standard-1-
2-0

human_pancreatic https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE111672

Slide-seqV2 https://singlecell.broadinstitute.org/single_cell/study/
SCP815/highly-sensitive-spatial-transcriptomics-at-near-
cellular-resolution-with-slide-seqv2#study-download

GSE169749 https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE169749

GSE178361 https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE178361

GSE188888 https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE188888

GSE190595 https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE190595

GSE193460 https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE193460

Table C.5: Links to 30 publicly available spatial transcriptomics datasets used in
chapter 4 (27 from the 10x Visium, 1 from the SpatialTranscriptomics, and 2 from
the Slide-seqV2 protocol).

https://github.com/LieberInstitute/spatialLIBD
https://support.10xgenomics.com/spatial-gene-expression/datasets/1.1.0/V1_Adult_Mouse_Brain
https://support.10xgenomics.com/spatial-gene-expression/datasets/1.1.0/V1_Adult_Mouse_Brain
https://support.10xgenomics.com/spatial-gene-expression/datasets/1.1.0/V1_Mouse_Kidney
https://support.10xgenomics.com/spatial-gene-expression/datasets/1.1.0/V1_Mouse_Kidney
https://support.10xgenomics.com/spatial-gene-expression/datasets/1.1.0/V1_Breast_Cancer_Block_A_Section_2
https://support.10xgenomics.com/spatial-gene-expression/datasets/1.1.0/V1_Breast_Cancer_Block_A_Section_2
https://support.10xgenomics.com/spatial-gene-expression/datasets/1.3.0/Visium_FFPE_Human_Breast_Cancer
https://support.10xgenomics.com/spatial-gene-expression/datasets/1.3.0/Visium_FFPE_Human_Breast_Cancer
https://support.10xgenomics.com/spatial-gene-expression/datasets/1.1.0/V1_Human_Lymph_Node
https://support.10xgenomics.com/spatial-gene-expression/datasets/1.1.0/V1_Human_Lymph_Node
https://support.10xgenomics.com/spatial-gene-expression/datasets/1.2.0/Targeted_Visium_Human_SpinalCord_Neuroscience
https://support.10xgenomics.com/spatial-gene-expression/datasets/1.2.0/Targeted_Visium_Human_SpinalCord_Neuroscience
https://www.10xgenomics.com/resources/datasets/human-colorectal-cancer-whole-transcriptome-analysis-1-standard-1-2-0
https://www.10xgenomics.com/resources/datasets/human-colorectal-cancer-whole-transcriptome-analysis-1-standard-1-2-0
https://www.10xgenomics.com/resources/datasets/human-colorectal-cancer-whole-transcriptome-analysis-1-standard-1-2-0
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE111672
https://singlecell.broadinstitute.org/single_cell/study/SCP815/highly-sensitive-spatial-transcriptomics-at-near-cellular-resolution-with-slide-seqv2#study-download
https://singlecell.broadinstitute.org/single_cell/study/SCP815/highly-sensitive-spatial-transcriptomics-at-near-cellular-resolution-with-slide-seqv2#study-download
https://singlecell.broadinstitute.org/single_cell/study/SCP815/highly-sensitive-spatial-transcriptomics-at-near-cellular-resolution-with-slide-seqv2#study-download
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE169749
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE178361
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE188888
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE190595
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE193460
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Gene -log10_pval logfc t CI df

ENC1 21.6772 -0.59211 -10.0715 -0.77218,-
0.52024

716.6266

TUBB2A 26.82923 -0.5005 -11.4299 -0.87942,-
0.62153

611.6922

MBP 68.23467 0.43074 20.62996 1.31259,1.58892 502.7044

MAP1B 24.09136 -0.4268 -10.7987 -0.90317,-
0.62517

558.5923

SNAP25 38.24431 -0.42293 -14.1973 -1.12206,-
0.84929

526.9102

VSNL1 23.18776 -0.41835 -10.5489 -0.85222,-
0.58468

578.5369

CCK 30.67843 -0.41324 -12.3489 -0.97287,-
0.70589

605.6358

RTN1 21.56528 -0.41252 -10.0983 -0.77982,-
0.5259

616.3649

YWHAH 22.66223 -0.40974 -10.4066 -0.85579,-
0.58405

586.1957

OLFM1 21.10679 -0.4048 -9.99412 -0.8003,-
0.53742

590.4734

Table C.6: Summary statistics of t-test results for known DE genes in LIBD_151507
raw data. -log10_pval: -log10 transformed p-value. logfc: log transformed fold
change. t: t statistic. CI: 95% confidence interval. df: degrees of freedom.
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Gene -log10_pval logfc t CI df

ENC1 26.81212 -0.81797 -11.2768 -0.84106,-
0.59168

828.6978

TUBB2A 36.07802 -0.73195 -13.3537 -1.07278,-
0.79781

785.5271

MBP 47.97652 0.458097 16.37517 1.41258,1.79774 507.8979

MAP1B 30.97989 -0.64203 -12.3232 -1.15413,-
0.83691

696.4673

SNAP25 64.89745 -0.85097 -19.0397 -1.70572,-
1.38683

710.7584

VSNL1 34.64576 -0.70785 -13.0801 -1.12332,-
0.83014

751.8196

CCK 53.54393 -0.84157 -16.7963 -1.49164,-
1.17946

779.5883

RTN1 34.02306 -0.69379 -12.915 -1.0405,-
0.76594

787.7664

YWHAH 32.53661 -0.6964 -12.6217 -1.1375,-
0.83128

752.0688

OLFM1 34.35643 -0.71864 -13.0144 -1.08758,-
0.80248

755.607

Table C.7: Summary statistics of t-test results for known DE genes in LIBD_151507
data decontaminated by SpotClean. -log10_pval: -log10 transformed p-value. logfc:
log transformed fold change. t: t statistic. CI: 95% confidence interval. df: degrees
of freedom.
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C.2 Software versions for reproducibility
Below are the versions of language and packages at the time generating results in
chapter 4: R-4.0.2; R/SpotClean-0.99.0; R/SoupX-1.5.0; R/celda-1.5.11; R/Seurat-
3.2.2; R/scran-1.17.20; R/SPOTlight-0.1.7; R/reticulate-1.16; Python-3.7.4; Python/spatialde-
1.1.3; FastQC-0.11.7; MultiQC-1.9; Space Ranger-1.2.2; Loupe Browser-4.2.0.

C.3 Data and code availability
Raw sequence data for the 3 human-mouse chimeric experiments are available at
GEO (accession number: GSE178221). Links to 16 public spatial transcriptomics
datasets are available in Table C.5. The human breast cancer single-cell RNA-seq data
from Chung et al. (2017) is available at GEO (accession number: GSE75688). The
human colorectal cancer single-cell RNA-seq data from Li et al. (2017) is available
at GEO (accession number: GSE81861).

The R package SpotClean is available at https://github.com/zijianni/SpotClean.
Codes for simulation and real data analyses as well as processed data can be found
at https://github.com/zijianni/codes_for_SpotClean_paper.

https://github.com/zijianni/SpotClean
https://github.com/zijianni/codes_for_SpotClean_paper
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