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Abstract

The first chapter studies how households respond to school quality. I combine large-scale

administrative and survey data from Chile to estimate parental and child time investment

responses to classroom inputs and teachers from fourth to tenth grade. Since classroom

inputs are not directly observable, I estimate a dynamic skill formation technology that

provides classroom and teacher effects as a by-product, in a similar fashion as value-added

models. I address selection by leveraging repeated observations of students and rich data

on factors involved in household decisions. Parents of fourth graders compensate for low

quality teachers and classroom inputs, while parents of high school students reinforce the

quality of these inputs. Students, on the other hand, increase time self-investment if their

classroom environment improves at every grade, but the responses are larger for older

children.

The heterogeneous responses by grade found in Chapter 1 motivate the analysis of

optimal resource allocation policies across education levels. Chapter 2 builds on Chapter 1

to understand how the differential impact by grade of school resources and home investment

can be used to design the optimal allocation of the school resources across grades. To that

end, I build and estimate a child development model using an indirect inference approach.

I use the estimated model to simulate counterfactuals of the dynamics of the cognitive

skills of students and I characterize the optimal allocation of school resources across grades.

The results suggest that, on average, it is optimal to allocate relatively more resources in

lower grades than in upper grades with respect to the allocation observed in the data.
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Moreover, the behavioral response of households plays a key role in the characterization of

the optimal allocation.

In the last chapter, I develop an empirical test for employer asymmetric learning about

the productivity gains of On-the-Job (OTJ) training programs. I developed a model of

OTJ training and employer learning. I solve the model under two types of learning: (i)

asymmetric, current employer learns faster than potential employers and (ii) symmetric,

the whole market learns simultaneously. The solution suggests different wage profile

predictions under each form of learning. I build an empirical test based on these predictions

and implement it on the Chilean Social Protection Survey by estimating a wage equation

with interactions of training variables and tenure on the job. The results provide evidence

of employer asymmetric learning.
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Chapter 1

Time Investment Responses of Parents

and Students to School Inputs

Chapter summary

The first chapter studies how households respond to school quality. I combine large-scale

administrative and survey data from Chile to estimate parental and child time investment

responses to classroom inputs and teachers from fourth to tenth grade. Since classroom

inputs are not directly observable, I estimate a dynamic skill formation technology that

provides classroom and teacher effects as a by-product, in a similar fashion as value-added

models. I address selection by leveraging repeated observations of students and rich data

on factors involved in household decisions. Parents of fourth graders compensate for low

quality teachers and classroom inputs, while parents of high school students reinforce the

quality of these inputs. Students, on the other hand, increase time self-investment if their

classroom environment improves at every grade, but the responses are larger for older

children.
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1.1 Introduction

Cognitive development plays a key role in social and economic well-being. This process

involves two main sources of inputs: home and school. The relationship between these

inputs in the human capital accumulation process is complex. There are several agents

providing investments, and it is unclear how the different inputs interact. Most of the

existing literature has focused on home or school inputs in isolation.1 A large body of work

shows large teacher and classroom effects on educational achievement. If households make

investments decisions based on their school environment, parents’ and students’ behavioral

responses explain part of these estimates. For example, if parents compensate for low

quality teachers, the value-added estimates for these teachers—the most extensively used

measure of effectiveness—would be higher than in the absence of the parental response.2

This is particularly relevant if the response varies by grade, since two equally good teachers

assigned to different grades would then not have the same expected value-added estimate.

This implies that behavioral responses to classroom inputs have implications on school

resource allocation, teacher selection, and pay-for-performance policies.

In this chapter, I analyze the interaction of school and home investments in the child

development process and the behavior of the actors that provide these investments. First,

I study how parents and children adjust their time investments based on the quality of

their school inputs. Second, I examine the evolution of the responses as children grow up.

Third, given that extensive research shows a large contribution of teachers to educational

achievement, I isolate the specific response of parents and students to teacher quality.

Finally, motivated by the heterogeneity in responses by grade, I characterize the allocation
1The education production function literature has studied the effect of school inputs on academic achieve-

ment (see Hanushek (2020) for a survey). The child development literature in economics studies the skills
formation process and households’ investment decisions. See for example, Todd and Wolpin (2003, 2007),
Cunha and Heckman (2008), Cunha et al. (2010), Fiorini and Keane (2014), Caetano et al. (2019), Del Boca
et al. (2014), among others.

2In the education production function literature, teacher value-added represents the systematic variation
in achievement across students assigned to the same teacher. See Hanushek and Rivkin (2012), Koedel et al.
(2015), and Strøm and Falch (2020) for surveys on teacher value-added and related estimation methods.
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of school resources across grades that maximizes the cognitive development of children.

To that aim, I use large-scale administrative data from Chile that provides information

on the population of students and teachers and tracks them over time and across class-

rooms. This unique data reports standardized tests scores as well as parents’ and children’s

answers to questionnaires on time investments—i.e., time parents spent with their children

and time students spent on academic activities outside school—along with demographic

characteristics. The data presents a challenge. The time investment questions have an

ordered categorical structure and are not consistent across grades or calendar years.3 To

address this issue, I estimate each student’s time investment measured in hours using a

response model for these questions and the time investment distribution estimated from

the Chilean Time Use Survey. Since classroom and teacher quality are not directly observed,

I estimate the household’s responses in two steps. First, I estimate the production function

of cognitive skills of children which provides, as a by-product, measures of classroom and

teacher quality. Second, I use these measures to estimate an approximation of the time

investment policy function of parents and students.

To estimate the skill formation technology, I follow Agostinelli et al. (2020)’s framework

that estimates classroom effects as the systematic variation in skills of students assigned

to the same classroom. This methodology shares features with the child development

literature, such as treating test scores as arbitrary scaled measures of latent cognitive skills

and incorporating home inputs in the analysis.4 In addition, my data allows me to estimate

teacher effects as well. Since test scores in the data are not comparable across grades,

identification of the dynamics of the skill formation process is challenging. To overcome

this issue, I develop a measurement system of skills and I identify the dynamic system by

exploiting additional survey data on cognitive development measures to track the evolution

of the skills distribution across grades.
3Questions regarding time investments are not consistent across school grades or calendar years because

they ask about different activities, the wording of the question changes, or the possible answers change.
4Work in the child development literature shows that ignoring mis-measured skills can lead to substantial

bias in the estimation of the skill formation technology (Cunha and Heckman, 2008; Cunha et al., 2010).
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I then use the measures of classroom and teacher quality to estimate the time investment

responses of households. There are two threats to identification: 1) estimation error in the

classroom and teacher effects and 2) potential selection on unobservables. To tackle the

first issue, I estimate the responses to classroom and teacher effects using a two-stage least

squares (2SLS) estimator. To acquire additional measures of classroom and teacher effects,

I estimate the skill technology multiple times by randomly selecting half of the students in

each classroom—in the spirit of leave-one-out estimators. Each iteration provides additional

measures that provide exclusion restrictions to identify the responses. The second concern

implies that the empirical correlation between classroom quality and time investment could

be attributed to the assignment of students across classrooms based on unobservables. To

address this, I leverage the multiple observations per student to control for time-invariant

unobservables and rich data on the relevant factors involved in the household’s decision.

The resulting procedure estimates an approximation of the household’s time investment

policy function.

The estimates of the time investment responses are not homogeneous across grades.

Consider reassigning a student from the 25th to the 75th percentile of the classroom quality

distribution. For students in grade 4, parents compensate by decreasing parental time by

around 1.8 weekly hours. The magnitude decreases as children grow up. For tenth graders,

in contrast, parents reinforce classroom quality by increasing parental time by 45 minutes

per week. Students, on the other hand, reinforce classroom quality at all ages—between 20

and 30 minutes per week—and responses are larger for older children. These responses

are quantitatively significant, representing over 10 percent of the average time investment.

Furthermore, the households’ responses to classroom quality imply a non-trivial effect on

the cognitive skills of children, representing between 3 and 11 percent of the total effect of

classroom quality (depending on the school grade). Meanwhile, household’s responses

to teacher quality follow a similar pattern with smaller magnitudes, although students at

grade 10 are unresponsive.



5

This chapter contributes to two large bodies of research that study the human capital

accumulation process of children. First, the education production function literature that

studies the influence of school inputs in academic performance of students, and second,

the child development literature that focuses on home investments in the development

process. The contributions build bridges between these two strands of the literature but

some are particularly more relevant for one of these blocks of research.

First, I contribute to both branches of the literature by analyzing a more complete picture

of the technology of cognitive skills formation of children. Some studies, such as Todd

and Wolpin (2007) and Agostinelli et al. (2020), consider both home and school inputs in

the development process. I build on their work by also incorporating in the technology

home investment provided by different members of the household (parents and children)

and specifications with teachers’ and other observable classroom inputs’ contribution—as

opposed to a unique generic home and school investment measure. Moreover, I consider

a dynamic skill formation technology across school grades that allows for the effects of

inputs and the relationship between inputs to be grade-specific. The additional dimensions

of inputs and the flexibility of the technology across grade improve our understanding of

the inputs’ effects and the relationship between inputs in the skill formation process.

I also contribute by studying the behavior of the actors providing investments. There is

a small but growing line of research studying the responses of families to school inputs.5

These papers study responses to specific classroom components or proxies of school qual-

ity.6 Their results can inform the design of specific policies. For example, family responses

to peer composition inform the design of student tracking policies but are less helpful

for the analysis of teacher-related policies. The magnitude, and even the direction, of
5See Rabe (2020) for a survey of studies on families’ responses to school inputs.
6For example, class size (Datar and Mason, 2008; Fredriksson et al., 2016), per-pupil expenditure

(Houtenville and Conway, 2008), grants (Das et al., 2013), enrollment in preferred school (Pop-Eleches and
Urquiola, 2013), peer composition (Fu and Mehta, 2018; Agostinelli, 2018), elicited parental beliefs on school
quality (Attanasio et al., 2018), school quality information (Greaves et al., 2019), teachers’ qualifications and
training programs (Chang et al., 2020; Gensowski et al., 2020), among others. Meanwhile, Nicoletti and
Tonei (2020) and Jacqz (2020) study parental responses to human capital shocks and Berniell and Estrada
(2020) analyze parental responses to age of school entry.
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the responses to specific inputs might be different than to the combination of all inputs

provided by the school—or teachers in particular.

In addition, I consider heterogeneity in responses by school grade and by members

of the household that provide the investment. Stylized facts from existing work show

that home investments, such as parental and child time investment, vary substantially as

children grow up, and while children’s investment increases with age, it decreases for

parents (Del Boca et al., 2014). Furthermore, the literature shows that these investments

have a differential impact on cognitive skills by age.7 These results suggest a dynamic skill

formation technology and different investment costs across school grades, which potentially

could lead to heterogeneity in responses of parents and children by grade. Thus, I estimate

grade-specific responses of both parents and children between grades 4 to 10, in contrast

with existing work that do not compare responses for children of different age and mainly

focus on parental investments.8 The estimates of the parents’ and children’s responses to

classroom and teacher quality across grades inform about the role of households and their

interaction with schools in the development process of children.

In particular, the estimates of the households’ responses contribute to the education

production function literature by improving our understanding of teachers’ and classrooms’

influence in the development of children. This literature interprets the estimates of teacher

and classroom value-added as their intrinsic quality. The estimates of the household

responses shed light on the mechanics in play within the black box of classroom and teacher

value-added and quantify the behavioral component in these measures of effectiveness.

This information can be used in the design of school resource allocation and teacher-related

policies.

The structure of the chapter is as follows. Section 1.2 develops a child development
7Carneiro and Heckman (2003) and Del Boca et al. (2014) show parental time’s effect diminishes as

children grow while Cooper et al. (2006) and Del Boca et al. (2019) show that the effect of child time
investment increases.

8An exception is Greaves et al. (2019) that finds that children increase effort in light of positive information
about school quality.
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model and specifies the household problem, the skill formation technology and time

investments functions. Section 1.3 presents the data and descriptive statistics. Section 1.4

describes the measurement systems of skills and time investment. Sections 1.5, 1.6, and 1.7

present identification, estimation methodology and estimates, respectively. Each section

addresses measurement systems, skill technology, and time investments functions. Finally,

Section 2.4 concludes the chapter.

1.2 Child development model

I build a child development model which follows existing models in the literature, such

as Del Boca et al. (2014, 2016, 2019), Caucutt and Lochner (2020), and Agostinelli (2018),

among others. The key difference with existing work is that I explicitly incorporate class-

room inputs as a composite input which summarizes all school inputs in a particular

classroom–i.e., teacher quality, peer composition, money resources, etc.9

1.2.1 Household problem

The model consists of a unitary household comprised of parents and a single child. Through-

out the chapter the index i is used interchangeably between child and household and the

index t between the age of the child and the school grade she attends. The household

maximizes its lifetime utility by choosing the amount of time to invest in the cognitive skill

formation of the child at each school grade.10 Let Ωit = {θit, Cit,xit, zit} be the state space,

where θit is the child’s cognitive skill, Cit is classroom inputs, and the vectors xit and zit are

exogenous characteristics. The vectors xit and zit might share elements and they influence

preferences and the skill formation technology, respectively. The instantaneous utility
9In this model, I do not consider explicitly the interactions between parents and children (De Fraja et al.,

2010; Caetano et al., 2019; Del Boca et al., 2019). Albornoz et al. (2018) develop a theoretical model that
analyzes the interaction between student, parents and teachers.

10The household problem in a more general setting could include additional decisions, such as consump-
tion and leisure. However, the data has no information on hourly wages, working time, or leisure. Thus, I
specify the problem only in terms of the skills accumulation and time investments.
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function is denoted by uit and its arguments are the child’s skill stock at the beginning of

the period θit, time investment hit (vector size D), and the vector xit. The value function of

the recursive problem is denoted by Vit(·). Both utility and value functions are indexed by

i allowing for an idiosyncratic component. Lastly, H is the household time endowment

at each period and β is the discount factor. To simplify notation, I omit the i index in this

section. The problem of the household is:

Vt(Ωt) ≡ max
ht

{
ut(θt, ht,xt) + βE[Vt+1(Ωt+1)]

}
subject to

Time constraint ht ∈ [0, H]D;

Production function θt+1 = Ft(θt, ht, Ct, zt, νt),

(1.2.1)

where the control variable ht is the time the household invests in the child. I assume that,

conditional on Ωt, the household does not choose a classroom—i.e., classroom inputs are

exogenous.11 The skills’ dynamics is governed by the technology defined by Ft(·), which is a

function of current skill, the time the household invests in the child, classroom inputs, other

observable characteristics zt, and an unobserved (to the household and econometrician)

shock νt. Note that this function is indexed by t allowing for the effects of inputs to be

specific to the grade the child is attending. The household knows the skill formation

technology Ft(·) and it has rational expectations. The household forms expectation over

the skill shock νt and future classroom inputs.

Note that time investment ht can be multidimensional. For example, household mem-

bers can provide time investments with different implications in the cognitive development

of the child. In the empirical implementation there are two time investment choices (D = 2),

parental and child time investment. The former is the time parents spend with their chil-
11A more general model can incorporate school choice and allow this decision to affect the expected

classroom input at each school grade. However, after that choice is made, the actual peer composition or
the teacher in the classroom is out of the control of the household. Additionally, this requires the school
choice to be irreversible; at least in terms of the expected quality of the school inputs. Thus, classroom inputs
exogeneity, conditional on Ωt, is arguably a weak assumption.
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dren while the latter is the time children spend (on their own) studying, doing homework,

or engaging in other academic activity while not in school. However, without loss of gener-

ality, I lay out the model, the identification and estimation methodologies assuming time

investment is one-dimensional—i.e., D = 1—in order to simplify notation and facilitate

tractability. Nevertheless, generalization to higher dimensions is straightforward.

With one-dimensional investment, the first order condition (of the interior solution) is

given by the following equation:

∂ut(ht, θt,xt)
∂ht

+ β
∂E[Vt+1(Ωt+1)]

∂ht
= 0. (1.2.2)

The first term of equation (1.2.2) is the marginal disutility cost of the time investment, and

the second term is the marginal benefit, given by the change in the expected continuation

value. The optimal level of investment that solves equation (1.2.2)—i.e., the policy function—

can be expressed as:

ht = hft (θt, Ct,xt, zt). (1.2.3)

If the marginal disutility cost does not depend on classroom inputs, then the relation-

ship between time investment and classroom inputs is determined by how the classroom

environment affects the marginal benefit of time investment. If a higher quality of school

inputs increases the marginal benefit, the household responds by investing more in the

child and vice versa. Ignoring the expectation operator (i.e., assuming no uncertainty)

for the sake of exposition, the partial derivative of the marginal benefit with respect to

classroom inputs is:

∂2Vt+1(Ωt+1)
∂θ2

t+1

∂Ft
∂Ct

∂Ft
∂ht

+ ∂Vt+1(Ωt+1)
∂θt+1

∂2Ft
∂ht∂Ct

. (1.2.4)

The interpretation of equation (1.2.4) is straightforward. The first term accounts for the

change in the marginal benefits as a result of the curvature of the value function weighted
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by the productivity of both inputs. For example, if the value function is concave, a higher

skill stock as a result of an improvement in school inputs decreases the marginal utility

of time investment, so this term is negative. Assuming skills increase the continuation

value, the second term’s sign depends on the relationship between these two inputs in

the technology of skill formation. If ∂2Ft/∂ht∂θt < 0, these inputs are substitutes in

production, so that higher levels of classroom quality are associated with lower productivity

of time investment. Instead, ∂2Ft/∂ht∂θt > 0 implies complementarity in production,

and classroom quality makes the households investment more productive.12 The overall

sign depends on preferences and on the skill technology; ultimately, this is an empirical

question.13

1.2.2 Skill formation technology

This section describes the dynamics of the skill accumulation process. The cognitive skills

of a child θit follow a first order Markov process. This is consistent with the specifications

of the skill formation technology in Cunha and Heckman (2008), Cunha et al. (2010),

Agostinelli and Wiswall (2016), and Agostinelli et al. (2020). The skill formation process is:

θit+1 = Ft(θit, hit, Cit, zit, νit), (1.2.5)

where Ft(·) is a grade-specific function that depends on current skill, θit, the time the

household invest in its child hit, the classroom inputs Cit, household characteristics zit, and

the structural shock νit.
12See Cunha et al. (2006) for a discussion on the definitions of complemetarity and substitutability in the

skill formation technology.
13In the multidimensional case of time investments, the direction of the response is ambiguous as well.

However, the analysis is more complex and it depends on the relative productivity and complementarity/-
substitutability between different time investments.
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Baseline parametrization

I assume the technology is a trans-log production function. However, the relationship be-

tween the logarithms of skills and time investment is linear, allowing for a corner solution.14

This parametrization is flexible in terms of the relationship between inputs in the produc-

tion of skills—i.e., it is possible to have a negative cross-derivative (see Agostinelli and

Wiswall, 2016). It allows complementarity or substitutability between time and classroom

inputs.15 The parametric functional form is the following:

log θit+1 = logFt(θit, hit, Cit, zit, νit)

= logAt + γ1t log θit + γ2thit + γ3t logCit + γ4thit × logCit + z′itγ5t + νit,

(1.2.6)

where At exp(z′itγ5t) is the total factor productivity. The set {γjt}5
j=1 defines the elasticity or

semi-elasticity of next grade’s skills and inputs and νit is a mean zero shock.

The specification is more general in the empirical implementation. Besides the terms

in equation (1.2.6), it includes second order polynomials of current skill and time inputs,

interactions between time investment, classroom inputs, and current skills and interactions

between time investments of different members of the household—i.e., parental and child

time investments. However, equation (1.2.6) reduces notation burden and the identification

and estimation analysis under this simplification is without loss of generality.

Within-classroom components

The previous setting includes the effect of all observable and unobservable (to the econome-

trician) classroom components as a composite input. The education production function

literature studies the effects of different classroom inputs on students’ performance (see
14In the data, I observe a non-trivial fraction of households choosing to invest zero time in the skill

formation process.
15Assuming a Cobb-Douglas or constant returns to scale production function with standard parameters

values implies weakly complementarity between all the inputs. It is important to allow for this flexibility
since the signs of cross-derivatives are relevant in terms of households’ responses.
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Hanushek, 2020). In particular, there is an extensive line of research studying the contri-

bution of teachers to the academic achievement of students. These results motivate the

analysis of the response of households to teacher quality. I use an additional specification

that decomposes the classroom inputs into its different components. This allows for a more

flexible technology in terms of the complementarity or substitutability between teacher

quality and time inputs. Teacher effects are denoted by log Tit while rit and ξit are the

observed and unobserved (to the econometrician) classroom inputs, respectively.16 The

technology of the classroom inputs is:

logCit = ψ1t log Tit + r′itψ2t + ξit, (1.2.7)

where ψ1t and ψ2t represent each of these components’ contributions to the classroom

effects. Under this specification, the skill formation technology has the following structure:

log θit+1 = logAt + γ1t log θit + γ2thit + γ3t log Tit + r′itγ4t

+ γ6thit × log Tit + hit × r′itγ7t + z′itγ8t + νit.

(1.2.8)

It should be noted that the error term νTit includes unobserved classroom level inputs ξit—

in contrast with νitin equation (1.2.6). Thus, identification of these parameters requires

stronger assumptions than the ones in equation (1.2.6).

1.2.3 Time investment function

The amount of time households decide to invest in their children is an equilibrium object,

since it is the solution to the household problem. The policy function of time investment is

denoted by hit = hfit(θit, Cit,xit, zit). It is a function of current skill, classroom inputs and
16In the empirical implementation the observed classroom inputs are classroom average share of male

students, household income, parents’ age, child effort and parental time, shares of parents’ education levels,
share of poor students, class size, number of teachers and subjects, average skill of peers, teacher-student
gender match indicator, and share of classmates in the bottom and top 5 percent of the skill distribution.
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observable inputs. The policy function might have an idiosyncratic component—induced by

heterogeneous preference—that leads to different time allocation choices.17 The household

response to classroom quality is then given by the partial derivative of hfit with respect toCit.

Following Cunha et al. (2010), Agostinelli and Wiswall (2016), Attanasio et al. (2020b,a),

among others, I use a parametric specification that represents an approximation of the

(unknown) true underlying policy function:

hit = δ0,t + δC,t logCit + δθ,t log θit + Γ′itδΓ,t + πi + ηit, (1.2.9)

where {δ0, δC,t, δθ,t, δΓ,t}t are parameters, Γit ⊆ {xit, zit} is a vector of time-varying demo-

graphic characteristics, πi is a household idiosyncratic component and ηit is a disturbance

term. Under the specification that includes within-classroom components, the time invest-

ment function is:

hit = δ0,t + δT,t log Tit + δθ,t log θit + r′itδr,t + Γ′itδΓ,t + πi + ηit. (1.2.10)

In equation (1.2.10) I allow for household responses to teachers (log Tit) to be different

than responses to other observable classroom inputs (rit). Similar to the case of the skill

technology, the required identification assumptions over ηit are stronger, since there are

additional parametric assumptions on the technology of classroom inputs and potential

unobserved classroom inputs.18 If equations (1.2.9) and (1.2.10) incorporate all relevant

factors influencing the household decision, these equations are an approximation of the

policy function of the time investment. Making the policy function linear in the logarithm of

classroom inputs and skills follows from the parametric assumption of the skill technology.

Nevertheless, the interpretation of the coefficients is relative to movements across the
17An idiosyncratic component of the utility function implies that the function hfit(·) is indexed by i.
18The household should care about all teachers’ characteristics that contribute to the skill formation. Thus,

I redefined teacher effects in equation (1.2.10) to be the innate teacher effect, log T it, and the contribution
of tenure at the school and teaching experience—i.e., log Tit = log T it + polten

t (tenure) + polexp
t (experience),

where polt is a second order polynomial function.
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distribution of classroom inputs—e.g., moving a student from the 25th to 75th percentile

in the classroom quality distribution.

Estimating equations (1.2.9) and (1.2.10) provides estimates of the responses of house-

holds without the need to specify and estimate the full household model in equation (1.2.1).

However, this equation can only evaluate policies that change resources in a particular

school grade, holding everything else constant—i.e., expectations of future classroom

environments. To evaluate a wider set of policies, it is necessary to specify and estimate

the dynamic decision process. Del Boca et al. (2014, 2019) and Cunha et al. (2013) explic-

itly model household preferences and beliefs and estimate models which allows them to

evaluate counterfactual policies that require household to update expectations. In this

chapter, I follow both approaches. I estimate the reduced form (in the literal sense) given by

equations (1.2.9) and (1.2.10) that provide the household responses. Then, with additional

structure on preferences and the expectation process, I estimate the child development

model from equation (1.2.1), which allows me to evaluate a broader policy space.

1.3 Data and descriptive evidence

1.3.1 Data

In this chapter, I use large-scale administrative data of Chile from two sources. These

databases are called Sistema de Información General de Educación (SIGE) and Sistema de

Medición de la Calidad de la Educación (SIMCE). The SIGE database is provided by the

Ministry of Education of Chile and it contains information on the entire education system

of Chile. That is, this database has information on every student, teacher, and school, and

it tracks students and teachers over time and across schools, classrooms, and subjects. It

reports basic demographic information of students, such as age and gender, as well as

academic information—e.g., students’ subject grades, GPA, attendance, among others. In

addition, it provides teachers’ characteristics, such as age, teaching experience, tenure at
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school, and education.

The SIMCE database is provided by the Agency for Quality of Education.19 It has scores

from standardized tests designed to measure academic achievement. The objective of this

exam is to evaluate the performance of schools and track its evolution. Since the late 1990s,

every year students in specific grades take these exams in a set of subjects, close to the end

of the academic year (October/November).20 Table S.1.1 indicates for which grades and

years there is information available for the time period relevant for the analysis.21 For every

year there is a math and language exam plus at least one additional exam in a particular

subject—e.g., natural sciences and social sciences. These exams are meant to evaluate the

curricula established by law at each grade in Chile.

The test scores from these exams are generated using item response theory. Under

certain conditions, described in Ballou (2009), the test scores are interval scales—i.e., each

point represents the same amount of learning or skill at any point of the distribution.22

This property implies that the test score scale is invariant to affine transformations, but not

invariant to monotone transformations. However, the test scores are not comparable across

school grades and I explain how I deal with this issue in the following sections. Either way,

it should be noted that many authors have suggested that test scores should be treated

as ordinal measures, as opposed to interval scaled (Ballou, 2009; Jacob and Rothstein,

2016). We should be cautious when drawing conclusions from the results that depend

on test scores being treated as interval scaled, as opposed to ordinal. For example, the

interpretation of the household responses does not depend on the scale of the test scores,

but the scale’s properties play a key role in comparing the effects of inputs on cognitive
19For details, see the technical report Agencia de Calidad de la Educación (2015).
20One drawback of the database is that the exams are not taken in consecutive grades.
21The time frame of the analysis is between 2011 and 2018. During this period the exams were taken by

students in 2nd, 4th, 6th, 8th and 10th grade. Since in 2008 there was a large voucher program that change
significantly the school market (Neilson, 2013), I use information post 2011 to avoid variation related to this
policy. Moreover, the first year the exams took place in second grade was 2012.

22A measure is interval scale if the ratio between two intervals is unit free—i.e., the measure has two
degrees of freedom: unit and origin. Ballou (2009) and Jacob and Rothstein (2016) point out the importance
of this property to estimate value-added models.



16

skills across grades.

A unique feature of the SIMCE data is that while these exams take place, every parent

and student taking the test fill in a questionnaire (separately). These consist of a series of

questions about household characteristics, such as household income, parents’ education

and age and information related to the time parents spent with their child and the time

the student spent studying, doing homework or other academic activities. Hanushek

and Rivkin (2012) point out that it is very unusual to have information on the students

performance together with home investments measures, making the SIMCE data well

suited to study the relationship between classroom inputs and the time investment of

households.23

I use two additional sources of survey data. One is the Time Use Survey of Chile, which

is a nationally representative household survey collected in 2015. The survey collects

information on the members of the sampled households regarding the time they spent

in activities taking place in the most recent weekday and weekend day. In particular, it

provides information on parents’ and children’s time allocations: hours parents spent with

their children and time children spent on academic activities outside school.

The second survey was collected by the Center for the Development of Inclusion Tech-

nologies (CEDETi UC) of the School of Psychology of the Pontifical Catholic University of

Chile (PUC). This survey was collected in 2017 and it is a nationally representative sample

of the population of children between 6 and 16 years old. The data reports test scores on

the Wechsler Intelligence Scale for Children, fifth edition (WISC-V). It consists of a set

of fifteen cognitive tests that aim to evaluate the cognitive development of children. The

CEDETi UC collected this survey in coordination with government institutions to define

the standards of the WISC-V test for the population of Chile.

It should be noted that the administrative data is virtually a census of the population
23Bharadwaj et al. (2018) use data from the same source to explore the relationship between health at

birth, academic outcomes and the role of parental investments.
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of children at each age while both surveys are representative of the same population.24

Appendix A describes the data in additional detail.

1.3.2 Descriptive statistics

In Chile, children start attending primary school when they are 6 years old. Primary school

consists of grades 1 to 8. By the end of second grade most students are 8 years old—i.e.,

when the younger children in the sample take their first SIMCE exam.25 Secondary school

includes grades 9 to 12. At the end of tenth grade, students take their last SIMCE exam,

when most of them are 16 years old.

I drop all students in classrooms with less than 10 students or with missing test scores or

time investments measures. Table 1.1 shows descriptive statistics of students. The sample

is an unbalanced panel and the number of students at each school grade varies. Around

80 percent of the parents’ questionnaires were answered by the students’ mothers. On

average, they are 38 years old for fourth graders and almost 44 years old for students in

grade 10. I split the education level of parents in three categories: less than high school,

high school, and more than high school. The students in the analysis sample are from

slightly more affluent households than the entire population. The education distribution of

fathers is roughly a third at each education category while mothers’ distribution is skewed

towards higher education levels. Monthly household income is around 600 thousand

Chilean pesos, equivalent to around 900 dollars (in 2018 values). Classroom size is large

relative to the US and other developed countries, with an average class size between 33 and

36 students. Similar to most education systems, the average number of teachers interacting

with students and subjects increases in higher levels of education, but relatively less for the

latter.
24The dropout rate is virtually zero for primary school in Chile and below 5 percent in grade 10. This

should not lead to any substantial issues in terms of representativeness between the administrative and
survey data.

25In Chile the cutoff date to start formal education is March and the academic year overlaps the calendar
year. That is, all children who turn 6 years old by March of the academic year attend first grade. By the end
of the academic year around 75 percent have turned 7 years old.
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Table 1.1:
Descriptive statistics - Students

Fourth grade Sixth grade Eighth grade Tenth grade

Mean SD Mean SD Mean SD Mean SD

Female student (%) 50.6 51.5 50.5 49.8
Mom answered (%) 79.8 81.5 80.4 78.9
Age parent (years) 38.3 7.3 40.1 7.2 42.0 7.1 43.9 7.0
Father <HS (%) 28.3 29.2 32.6 30.8
Father HS (%) 36.4 36.6 35.5 36.4
Father >HS (%) 35.2 34.2 31.9 32.8
Mother <HS (%) 25.1 26.4 30.0 27.8
Mother HS (%) 38.4 38.6 38.0 39.3
Mother >HS (%) 36.5 35.0 32.0 33.0
Monthly household 617.2 579.9 608.5 575.7 581.8 557.6 634.5 567.3income (ths. CLP)
Class size 33.4 7.6 34.7 7.4 34.0 7.2 36.5 6.6
No. teachers 5.8 2.2 8.6 1.4 8.5 1.2 10.5 1.4
No. subjects 9.8 0.8 10.3 0.6 9.5 0.8 11.3 1.4
Classrooms 19,370 30,188 24,568 18,567
Students 407,720 596,617 457,782 336,470

Note: Sample consists of students in classrooms with at least 10 students with non-missing values in
test scores and time investment questions. Mom answered is an indicator that the mother answered
the questionnaire. Household income is in thousands Chilean pesos in 2018 values ($1 dollar∼
$650 Chilean pesos). HS refers to high school education.

The estimates involving teachers require additional sample restrictions.26 I drop stu-

dents whose math teachers I do not observe in at least two years in their careers.27 Table 1.2

shows the characteristics of math teachers in this sample. They are on average around 40

years old at every school grade.28 The share of female teachers decreases across grades

from more than 80 percent in grade 4 to 52 percent in grade 10. Additionally, teachers in

lower grades tend to have proportionally more education degrees relative to other degrees,

and they have more teaching experience and higher tenure at the school than teachers in
26The sample restrictions are required to identify teacher effects and are usual in the literature to estimate

teacher value-added.
27I consider math teachers since I use math test scores to estimate teacher effects. I make this restriction to

separately identify the effects of teaching experience and tenure at school from the time-invariant teacher
effects—i.e., I need to observe teachers in at least at two different points in their careers.

28See Behrman et al. (2016) and Tincani (2020) for work that studies the market of teachers in Chile.
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Table 1.2:
Descriptive statistics - Teachers

School grade

Fourth Sixth Eighth Tenth

Mean SD Mean SD Mean SD Mean SD

Female (%) 83.6 66.1 59.4 52.1
Age (years) 41.1 11.1 40.3 11.9 40.9 12.0 40.2 12.2
Education degree (%) 97.2 94.7 93.9 89.8
Other degree (%) 2.8 5.3 6.1 10.2
Teaching experience (years) 14.1 11.4 12.7 12.1 13.1 12.1 12.6 11.6
Tenure at school (years) 9.2 9.0 7.6 9.3 7.7 9.2 7.7 9.0
Teachers 3,103 5,683 4,728 3,462

Note: Sample consists of math teachers in classrooms with at least 10 students with non-missing
values in test scores and time investment questions. I include teachers assigned to at least two
classrooms in different calendar years.

upper grades.

Table 1.3 shows descriptive statistics of parental and child time self-investment. As

reported in existing work (e.g., Del Boca et al., 2014), parents decrease the time they spend

with their children as they grow up. Average parental time is 14.5 hours per week when

children are 10 years old and 6.5 hours per week for 16 year olds. Children increase time

self-investment as they grow up—from 2 to almost 7 hours per week. Figure S.1.1 shows

the distribution for both time investments by school grade.

1.3.3 Time investments and classroom inputs

The SIMCE questionnaires answered by parents and students include a series of questions

regarding parental and child time investment. These are framed as ordered categorical

questions—e.g., How often do you help your child with her homework? Answers: never, sometimes,

often, always.29 Some of these questions vary across calendar years and school grades

because wording of the question changes, the possible answers change or they ask about

different activities. Thus, direct comparisons between these variables across school grades,
29Table S.1.2 reports a subset of questions and their structure translated to English.
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Table 1.3:
Descriptive statistics - Time investments

Child’s School Parental time Child time
age grade (weekly hours) (weekly hours)

Mean SD Mean SD

10 4th 14.5 13.1 1.9 1.9
12 6th 13.0 12.8 4.5 3.8
14 8th 9.6 12.1 4.8 3.2
16 10th 6.5 8.6 7.6 6.9

Note: Calculations are based on the Chilean Time Use Survey 2015. The survey
reports hours spent in activities in the last weekday and weekend day. Parental
time refers to hours parents spend in activities with their children and child time
is hours a child spends studying, doing homework or other academic activities
outside school.

or even within grade but across calendar years, is not possible.

Using only information from the administrative data, I perform an exercise that allows

me to analyze the direction of the household response to classroom inputs. First, I estimate

a classroom value-added model for each school grade. It identifies and estimates class-

room value-added on student achievement.30 Second, I estimate a regression of each time

investment question on the classroom value-added estimates. The sign of the coefficients

provide evidence of the direction of the response to school inputs.31

Figure 1.1 plots the coefficients of the regressions. Each dot represents the coefficient

using a different time investment question (standardized to have mean zero and standard

deviation one). The units on the vertical axis represent the response as a percent of the

standard deviation of the time investment question. These numbers are not comparable
30Let Aijt be the academic achievement of student i at classroom j in school grade t, measured by the

math test score standardized at the school-grade level. The classroom value-added model has the following
specification:

Aijt = X ′itβ + Vjt + εijt

where Xit is a vector of the student’s characteristics including a second order polynomial in previous test
scores, student’s gender and age, parents’ education and age, household income, indicator of mother answered
questionnaire and indicators of missing controls. The Vjt are classroom fixed effects and εijt is an error term.
The estimates of Vj are the measures of classroom value-added.

31I regress each time investment measure on classroom value-added conditioning of a set of variables:
second order polynomials of previous scores, household income, student’s gender and age, parents’ education
and age, and school fixed effects. The sample is restricted to students in schools with at least two classrooms.
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across questions, either within or between school grades. Nevertheless, the sign of the

coefficient helps us understand the direction of the household response to the classroom

effects. The left panel of the figure shows the coefficients for parental time. The coefficients

are mostly negative for grades 4 to 8 while for grade 10 the coefficients are largely posi-

tive. This suggests that parents respond differently depending on the grade their child is

attending. The right panel shows the same estimates but for child time investment. The

coefficients are mainly positive at every school grade indicating that children reinforce

classroom effects.

Figure 1.1:
Ordered categorical questions of time investment and classroom value-added
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Note: The sample consists of students at schools with at least two classrooms. Each dot presents
the coefficient of a regression of parental time or child effort (standardized) ordered categorical
variable on classroom value-added. All specifications control for second order polynomials of
previous scores, parents’ education and age, student’s age and gender, household income (second
order polynomial), and school fixed effects.

The main drawback of this approach is the interpretation and comparability of the

estimates across questions. The coefficients are informative about the direction of the

response, but their magnitudes are difficult to interpret. This does not allow an analysis of

the evolution of the responses across school grades or their magnitude. To deal with this

problem it is necessary to formalize a measurement system. In the next section, I describe

the measurement strategy that I follow.
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1.4 Measurement of skills and time investments

In this section, I describe the measurement of the cognitive skills and the time investment

of households. For skills I consider a linear (or log-linear) system of measures for the latent

skills stocks. And for time investment, I build a non-linear response model for ordered

categorical questions.

1.4.1 Skill measurement

The cognitive skills of children are not directly observable. Following Cunha and Heckman

(2008), I assume test scores are arbitrary scaled measures of latent cognitive skills. Test

scores are denoted by Mitm, measures (test scores in different subjects) are indexed by m

and the measurement structure is:

Mitm = µtm + λtm log θit + εitm (1.4.1)

where θit is the skill level of child i at school grade t, µtm and λtm are the parameters of the

measurement system and εitm is a zero mean error term. Assuming that the measures are

linearly related to the natural logarithm of skills constrains the skill values to be positive

numbers, which is required given the functional form assumed for the skill formation

technology in equation (1.2.6). The parametric assumption of the technology and its

implications for the measurement system are without loss of generality for the estimation

and interpretation of household responses. However, these assumptions do affect the

interpretation of the skill technology and the preference parameters.
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1.4.2 Time investment measurement

Existing work has used linear and non-linear measurement systems for latent investments.32

Typically, observed measures of investments are ordered categorical variables with two

to five categories. Linear models are estimated under the assumption that these ordered

categorical questions are continuous measures. Instead, non-linear models are built on the

discrete structure of the questions at the expense of imposing functional form assumptions

on the distribution of error terms. The objective of these measurement systems is to identify

and estimate parameters characterizing the relationship between the latent investment and

other variables—e.g., skills and classroom inputs. Whether the latent factor is a dependent

or independent variable in the analysis has relevant implications regarding the assumptions

of the measurement system.

I use a non-linear measurement system for time investments. The main reason is that

the categorical ordered questions of time investments are not consistent across grades

or calendar years. Assuming a linear model requires re-normalizations to identify the

system, which places stringent assumptions on the system’s parameters (Agostinelli and

Wiswall, 2016). However, a non-linear system is not necessarily a sub-optimal approach, it

depends on the trade-off between additional error due to the continuity assumption and

misspecification.33 A nice feature of the non-linear approach is that it estimates the time

investment of each student measured in hours, as opposed to standard deviations, leading

to a clearer interpretation of the parameters of interest.

The questions of time investment in the administrative data are denoted by Zits and

different questions are indexed by s. The total number of questions at grade t is labeled

by St. These are ordered categorical variables—i.e., Zits ∈ {1, 2, . . . , Ks} where Ks denotes
32Cunha and Heckman (2008), Cunha et al. (2010), and Agostinelli et al. (2020) use linear systems, while

Fu and Mehta (2018), Agostinelli (2018), and Wang (2020) use non-linear measurement models.
33Appendix C presents a Monte Carlo simulation in which I evaluate the asymptotic properties of linear

and non-linear models. In the linear case, the consequence of treating categorical variables as continuous
results in additional measurement error. In the non-linear case, estimates are more efficient but this is not
necessarily true under misspecification. Both alternatives produce consistent estimators of the parameters of
interest, but neither choice is preferred a priori in terms of efficiency.
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the number of categories of measure s.34 I assume a multivariate ordered response model

where the time investment hit (measured in hours) is the latent variable. The structure of

the response rule is:

Zits = k if and only if αstk ≤ βsthit + εits < αstk+1

for k = 1, 2, . . . , Ks,

(1.4.2)

where αst1 = −∞ and αstKs+1 =∞. I assume that the error terms εits have logistic distri-

butions.35 Note that the parameters in the measurement system are indexed by question

and school grade. Typically, latent variables do not have a natural scale and location or

known distribution. Researchers address this with a normalization and by assuming the

distribution of the latent variable. However, parental and child time investment have a

ratio scale, the only degree of freedom is the units—e.g., weekly or daily hours.36 Even

though these parameters are identified within grade, the properties of the scale of the

latent variable allows comparisons across school grades.

1.5 Identification of measurement systems, skill

technology, and policy functions

In this section, I present the identification analysis of the parameters of the measurement

systems of cognitive skills and time investment, the skill formation technology, and the

approximations of the time investment policy functions.
34See Table S.1.2 for examples of the structure of these variables.
35This is similar to models of the item response theory literature. In graded response models each measure

has its own discrimination parameter βst and thresholds {αstk}Ks

k=1, which identify boundaries between the
ordered outcomes (Samejima, 1969).

36Ratio scale implies that the ratio of two intervals is unit free and the measure has natural origin.
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1.5.1 Measurement systems

I build a measurement system for the cognitive skills of children and the time investment

of households. First, I describe the dynamic measurement system of cognitive skills where

the measures are given by the standardized test scores in the administrative data and

the WISC-V cognitive test survey. Second, I present the measurement system for time

investment of households using the ordered categorical questions of time investment from

the questionnaires filled out by parents and children in the administrative data.

Skill measurement

This section describes the identification of the skill measurement system. Driven by the

structure of the data, I assume there are two kinds of skill measures: age-invariant and age-

varying measures.37 In addition, the joint distribution of the age-invariant skill measures

and any other variable (including the age-varying measures) is not observed, whereas the

joint distribution of age-varying measures and other variables is observed.

The skill measurement system is a dynamic linear (or log-linear) latent factor model.

Existing work in the child development literature has developed two different strategies to

identify the dynamic system: 1) Placing parametric assumptions on the skill technology

and anchoring skills’ scales to outcomes in adulthood (Cunha and Heckman, 2008; Cunha

et al., 2010); or 2) using age-invariant measures of skills (Agostinelli and Wiswall, 2016). I

do not follow these strategies because the administrative data does not have age-invariant

measures or future outcomes of children, such as earnings.

With only age-varying measures available it is not possible to identify the skill tech-

nology’s parameters across grades without re-normalization (Agostinelli and Wiswall,
37I follow the definition of age-invariant measures in Agostinelli and Wiswall (2016). This definition

follows from a line of research in psychometrics that aims to measure children’s cognitive development and
track its evolution as they grow up. That is, it aims to measure the cognitive development regardless of the
age of children. The term “age-varying measures” is not quite accurate. It is not that the measures themselves
are age-varying, they are technically different across grades—e.g., math tests are designed differently at every
grade. However, I follow this nomenclature to facilitate the comparison between the two kinds of measures.



26

2016). Nevertheless, the system within grades is identified by exploiting orthogonality

conditions under usual assumptions (Cunha and Heckman, 2008). Since the household

responses are estimated through variation within grades, re-normalization on the skill

measurement system does not prevent the identification of the coefficients of the time

investments functions—i.e., equation (1.2.9). However, re-normalization implies that the

skill technology is not comparable across grades. This restricts the analysis of the dynamics

of the skill formation process and it frustrates the identification of the preference parame-

ters of the child development model. To overcome this problem, I use additional data from

the WISC-V cognitive development test survey, which has age-invariant measures and is

representative of the same population. This information allows me to track the evolution

of the skill distribution across grades and to identify the dynamic measurement system.

Let MA
itm be a age-invariant measure of skills, where i, t, and m index children, their

age/grade, and measure, respectively. These are the measures available in the WISC-V

cognitive development test survey. Their structure is as follows:

MA
itm = µAm + λAm log θit + εitm, (1.5.1)

where θit is the skill of the child and εitm is a mean zero error term. Note that the parameters

µAm and λAm are not indexed by t—i.e., the measures are age-invariant. I assume the usual

independence assumption about the error terms to identify linear latent factor models:

Assumption 1:

• εitm ⊥ εitm′ for all t and all m 6= m′;

• εitm ⊥ log θit for all m and all t.

Skills do not have a natural scale and location and consequently identification requires a

normalization. At this point, it is important to remember that the measures are assumed to

proxy for the logarithm of skills due to the parametric assumption of the technology. Thus,

it follows that the normalization is over the scale of the latent factor log θit, rather than θit.
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That is:

Normalization 1:
• E(log θi0) = 0;

• Var(log θi0) = 1.

The normalization is for the variance and mean of the log skill distribution at an arbitrary

age t = 0. I set t = 0 to be the age of 8 years old when children attend second grade. Then,

exploiting the orthogonality conditions in Assumption 1, the parameters are identified

using expectation and covariance moments through the following equations:

µAm = E(MA
i0m); λAm =

√√√√Cov(MA
i0m,M

A
i0m′)Cov(MA

i0m,M
A
i0m′′)

Cov(MA
i0m′ ,M

A
i0m′′)

. (1.5.2)

Once these parameters are identified, it is possible to identify the expected value and

variance of the latent skill for children at each grade t:

E(log θit) = E(MA
itm)− µAm
λAm

; Var(log θit) = Cov(MA
itm,M

A
itm′)

λAmλ
A
m′

. (1.5.3)

The evolution of these moments allows me to identify the parameters of the skill measure-

ment system of the age-varying measures, Mitm. These measures have similar structure as

the age-invariant measures but their parameters vary by the age of children:

Mitm = µmt + λmt log θit + εitm, (1.5.4)

where the error terms are assumed to have the same properties defined in Assumption 1.

The only difference is that the parametersµmt and λmt are indexed by t. Since Var(log θit) and

E(log θit) are identified, λmt and µmt can be identified using the orthogonality conditions:

λmt =

√√√√ 1
Var(log θit)

× Cov(Mitm,Mitm′)Cov(Mitm,Mitm′′)
Cov(Mitm′ ,Mitm′′)

µmt = E(Mitm)− λtmE(log θit).

(1.5.5)
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Thus, the latent skills are identified up to some measurement error through the following

equation:

M̃itm = Mitm − µmt
λmt

= log θit + εitm
λmt

. (1.5.6)

It is important to note that the operation in equation (1.5.6) is an affine transformation of

the test scores. Thus, the original scale of the test scores is preserved.38

Time investments measurement

This section explains the identification regarding the parameters of the response model of

the time investments questions and the identification of each student’s time investment.

The identification of the model parameters follows from the expected outcomes of the

ordered categorical questions of time investment and the distribution of time investment at

each school grade t, denoted by gt(·).39 I follow San Martín et al. (2013) for the identification

of the response model’s parameters. I assume there are at least three questions available

within a grade, St ≥ 3, and that:

Assumption 2:

• εits ⊥ hit for all s and all t;

• εits ⊥ εits′ for all t and all s 6= s′.

To simplify notation and without loss of generality, I drop the school grade index t and

take the case that Ks = 2 for all s and that Zis is equal to 0 or 1. Let Pr(Zis = 1 | hi;αs, βs)

be the probability of Zis = 1, conditional on the time investment. Note that for Ks = 2 for

all s the response model has two parameters for each measure s: αs and βs. The expected

value of observing outcome 1 for measure s is:

ps ≡ Pr(Zis = 1) =
∫

Pr(Zis = 1 | hi;αs, βs)g(hi)dhi, (1.5.7)
38In value-added models of academic achievement it is usual to use a standardized version of test scores.

These procedures are affine transformation as well and preserve the original scale of the test scores.
39In item response theory, where the latent variable is student ability, it is assumed that ability is distributed

as a standard normal. The advantage of the current framework is that parental and child time investment
have ratio scales and their marginal distributions can be estimated from the time use survey.
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Given g(·) and ps, for any βs the function Pr(Zis = 1) is strictly decreasing in αs, so the

inverse with respect to αs exists and is unique. So we can define αs = α(βs, ps). The joint

probability of measures s and s′ being both equal to one is:

ps,s′ = Pr(Zis = 1, Zis′ = 1)

=
∫

Pr(Zis = 1 | hi;α(βs, ps), βs)× Pr(Zis′ = 1 | hi;α(βs′ , ps′), βs′)g(hi)dhi

≡ q(βs, ps, βs′ , ps′).

(1.5.8)

Then, since q(·) is strictly increasing in βs and βs′ (see Appendix B for the proof), we can

define βs′ = q(βs, ps, ps,s′ , ps′). If there are at least three time investment questions—i.e.,

S ≥ 3—we have for s = 1, 2, 3:

p1,2 = q(β1, p1, β2, p2)

p1,3 = q(β1, p1, β3, p3)

p2,3 = q(β2, p2, β3, p3).

(1.5.9)

It follows that:

p2,3 = q(q(β1, p1, p1,2, p2), p2, q(β1, p1, p1,3, p3), p3) ≡ r(β1, p1, p2, p3, p1,2, p1,3). (1.5.10)

Lastly, since r(·) is strictly decreasing in β1 (Appendix B presents the proof), it follows that

the inverse of r(·) on β1 exists and so β1 is identified. Similarly, βs and αs are identified for

all s. Note that without knowledge of gt(·) identification of this parameters is not possible.

In the empirical application I estimate this distribution from additional data from the

Chilean Time Use Survey.

Besides identification of the parameters of the response model, we need to identify each

student’s time investment. This is a difficult and complex task. In a similar framework,

the item response theory has developed several strategies to identify students’ latent
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ability from their answers to a series of questions. Both time investment and ability are

continuous variables and the objective is to identify a point in their support from a set

variables with discrete and finite support. Any attempt of point identification requires

the number of questions to go to infinity. However, even under this condition, S → ∞,

identification is not achieved under several natural strategies—i.e., using moments from

the individual likelihood or posterior distribution. For example, Lord (1980) suggested

identifying the latent value of each individual up to some error with the mode of the

individual likelihood or the mode of the conditional posterior distribution. The difference

between these moments and the individual’s latent value are of order S−1—i.e., O(S−1).

Mislevy (1991) develops a different approach. He focuses on the identification of

parameters that relate the latent variable and other variables—e.g., the effect of time

investment on cognitive skills or the effect of classroom inputs on time investments.40 His

work has been widely used and extended (Mislevy, 1993; Junker et al., 2012; Schofield, 2014;

Schofield et al., 2015). Mislevy proposed using plausible values but from the posterior

distribution conditional on the ordered categorical questions and additional variables. The

additional variables are those whose relationship to the latent variable is of interest.41 Using

draws from this distribution secures identification of the parameters that relate the latent

variable and other variables. However, this strategy requires identifying the latent variable

distribution conditional on the questions and additional variables. In my framework, this

strategy is not possible, since the distribution of the time investment is identified from the

Chilean Time Use Survey and, for example, it does not have test scores or the students’

classroom assignment to identify the conditional distribution.

I follow the identification strategy proposed by Warm (1989). In particular, he suggested

identifying the latent value of each student as the mode of the individual likelihood times
40In the same vein, Williams (2019) uses a semiparametric approach to identify the relationship of two

variables while “controlling” for the latent variable.
41Plausible values are defined as random draws from the latent variable’s posterior distribution. The

plausible values (Rubin, 1987) differences from the true latent value are O(S−1) and the parameters of the
relationship between the latent and other variables are not identified in general.
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a weighting function as:

h̃it ≡ argmax
hit

w(hit)× f(zit | hit;α, β) (1.5.11)

where w(hit) is the weighting function. By definition, the derivative of the function of the

right side of equation (1.5.11) is equal to zero at the mode:

∂ log f(zit | hit;α, β)
∂hit

+ ∂ logw(hit)
∂hit

= 0. (1.5.12)

The first term of the equation (1.5.12) is the derivative of the individual log likelihood. Note

that if the weighting function is equal to one, the solution of this equation is the mode of the

individual likelihood while if the weighting function is the prior distribution—i.e., the time

investment distribution—the result is the mode of the posterior conditional distribution.

Warm suggested as the weighting function a function such that its derivative with respect

to the time investment is a function B(hit), defined as the difference between the mode of

the individual likelihood and the time investment, times the Fisher information function

I(hit):4243

∂ log f(zit | h̃it)
∂hit

+ B(h̃it)I(h̃it) = 0. (1.5.13)

Then, Warm proves that h̃it → hit as S →∞—i.e., the asymptotic difference between

h̃it and hit is o(S−1). However, since (α, β) are not observed, the identification of hit is up

to some error. I define this error as ζitl and the index l indicates the set of variables Zit

included in the identification of hit. These error terms are i.i.d. with mean zero and finite

variance.
42Warm (1989) considered dichotomous ability measures and Samejima (1993) provided an extension of

the second term in Warm’s equation (1.5.12) for polytomous measures, such as these in the current setting.
43Even though w(hit) does not have closed form, both B(hit) and I(hit) do have closed form; I provide the

analytic functions in Appendix B.
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1.5.2 Skill formation technology

The identification of the skill technology closely follows Agostinelli et al. (2020). I plug in

the noisy measures of skills and time investment defined by equations (1.5.6) and (1.5.13)

in equation (1.2.6) and rearrange:

M̃it+1m = logAt + γ1tM̃itm + γ2th̃itl + γ3t logCit + γ4th̃itl × logCit + z′itγ5t + ν̃it, (1.5.14)

where the term ν̃it includes the structural shock and additional measurement error; in

particular:

ν̃it ≡ νit −
γ1tεitm
λmt

− γ2tζitl − γ4tζitl × logCit + εit+1m

λmt+1
. (1.5.15)

There are two threats to identification of the parameters in equation (1.5.14). One is the

presence of measurement error, and second is the potential correlation between the variables

on the right-hand side with the structural shock νit. I identify the classroom effects as the

natural logarithm of classroom inputs. As in the case of the skills, this follows from the

functional form assumption of the technology and it is without loss of generality regarding

the identification of the household responses. However, it does matter for the interpretation

of the parameters of the skill technology and preferences. Moreover, since classroom effects

do not have a natural scale or location, I perform the following normalization:

Normalization 2:

• E[logCit] = 0 and;

• Var[logCit] = 1 for every t.

The identification of the parameters under the presence of measurement error requires

exclusion restrictions from additional noisy measures of time investments and skills. Be-

sides Normalization 1 and Assumption 1 and 2, I require the following assumptions on the

error terms for exclusion conditions to be valid:

Assumption 3: For dit ∈ {logCit, log θit, hit, zit} and ωitj ∈ {εitm, ζits}where j = m, s.

• ωitj ⊥ ωit′j for all j and t 6= t′;



33

• ωitj ⊥ ωit′j′ for every t 6= t′ and all j and j′;

• ωit ⊥ ω′it′ for all ω 6= ω′ and all t and t′;

• ωitj ⊥ dit for all j and all t;

• ωitj ⊥ νit′ for all j and all t and t′.

The last assumption is mean-independence of the structural shock:

Assumption 4: mean-independence:

E[νit | logCit, log θit, hit, zit] = 0. (1.5.16)

Then, under Normalization 1 and 2 and Assumptions 1 to 4 the parameters of equa-

tion (1.5.14) are identified. The proof is the usual one in the framework of fixed effects

models with instrumental variables. Assumption 4 is fundamentally not testable. How-

ever, I follow Chetty et al. (2014a) and perform an indirect test using omitted observable

variables, such as household income. Moreover, I evaluate out-of-sample prediction perfor-

mance of the skill technology as in Agostinelli et al. (2020). I describe these tests and the

results in detail in the estimates section.

Additionally, under Assumptions 1 to 4 and Normalizations 1 and 2, the classroom

effects are identified up to some error. Since the classroom effect measures have error, we

require additional measures to exploit orthogonality conditions between error terms to

identify the household responses. Thus, using disjoint random groups of students at each

classroom, I identify classroom effects with different error terms. The identified classroom

effect is defined as:

log C̃itc = logCit + χitc, (1.5.17)

where χitc is the error associated with a particular sample of students, indexed by c.
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1.5.3 Time investment functions

This section describes the identification of the time investment functions. I plug in the noisy

counterparts of time investment, classroom effects, and skills defined by equations (1.5.6),

(1.5.13), and (1.5.17) into equation (1.2.9) and rearrange:

h̃itl = δ0,t + δC,t log C̃itc + δθ,tM̃itm + Γ′itδΓ,t + πi + η̃it,

where η̃it ≡ ηit − δC,tχitc − δθ,t
εitm
λtm

+ ζitl.

(1.5.18)

As in the case of the skill technology, there are two threats to identification of the

parameters in equation (1.5.18): measurement error and selection on unobservables. The

former is addressed by exploiting exclusion conditions using additional skill and classroom

effects measures.44 These exclusion restrictions hold if additionally to Normalization 1 and

2 and Assumptions 1 to 4, the following assumption is met:

Assumption 5: For dit ∈ {logCit, log θit, hit, zit} and ωitj ∈ {εitm, ζitl}where j = m, l.

• χitc ⊥ χit′c for all j and t 6= t′;

• χitc ⊥ ωit′j for every t and t′ and all c and j;

• χitc ⊥ dit for all c and all t;

• χitc ⊥ ηit′ for all c and all t and t′.

Finally, the last assumption required is mean-independence—i.e., ηit is mean zero

conditional on current skills, classroom inputs, observable characteristics, and all individual

time-invariant unobservables. Formally,

Assumption 6: mean-independence:

E[ηit | logCit, log θit,Γit, πi, t] = 0. (1.5.19)

Under Normalization 1 and 2 and Assumptions 1 to 5 the parameters in equation (1.2.9)

are identified. The proof is the usual one in the framework of fixed effects models with
44The additional skill measures are provided by test scores of different subjects and the additional measures

of classroom effects are generated using disjoint random groups of students to identify the classroom effects.
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instrumental variables. Note that if we only care about identification of δC,t we only require

conditional mean independence, which is a weaker assumption.

1.6 Estimation of measurement systems, skill technology,

and policy functions

In this section I describe the estimation procedure, which consists of three blocks. The

first block is the estimation of the measurement systems of skills and household time

investments. The output is noisy measures of each student’s time inputs and skills. The

second block consists of the estimation of the skill formation technology that, as a by-

product, provides estimates of classroom and teacher effects. Lastly, I estimate the time

investment functions that provide the household response to school inputs.

1.6.1 Measurement system

In the current section, I present the estimation strategy of the measurement system of

cognitive skills and time investment of parents and children.

Skill measurement

The skill measurement system is estimated by replacing the moments in equations (1.5.2),

(1.5.3) and (1.5.5) with their sample analogs. Note that using different combinations of

measures provides several estimates of each parameter, the final estimate corresponds to the

average across the estimates of different combination of measures. Using these estimates, I

implement the affine transformation over the test scores given in equation (1.5.6).

Time investment measurement

The time investments questions in the administrative data—i.e., both parental and child

time investment—are ordered categorical questions. Under the assumptions made over the
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response rule and error terms, I build the sample likelihood and estimate the parameters of

the system using a maximum likelihood estimator. The probability of observing outcome

k or higher for measure s, conditional on the individual time investment, is given by:

Pr(Zits ≥ k | hit) = exp(βsthit − αstk)
1 + exp(βsthit − αstk)

. (1.6.1)

The conditional probability of observing outcome k can be expressed as the difference of

two of the previous probabilities,

Pr(Zits = k | hit) = Pr(Zits ≥ k | hit)− Pr(Zits ≥ k + 1 | hit), (1.6.2)

where Pr(Zits ≥ 0 | hit) = 1 and Pr(Zits > Ks | hit) = 0. Let zits be a possible response of

Zits. Given the independence assumption across the error terms of different questions, the

density function for a student, conditional on hit, is:

f(zit | hit;α, β) =
∏
s

Pr(Zits = zits | hit), (1.6.3)

where zit = (zit1, . . . , zitSt). The likelihood for a single student is computed by integrating

out the latent variable—i.e., time investment—from the joint density,

Lit(α, β | zit) =
∫
f(zit | hit;α, β)gt(hit)dhit, (1.6.4)

where gt(·) is the density function of the time investment. I estimate density function

gt(·) using the Chilean Time Use Survey of 2015. There are two assumption required to

perform this step: 1) the population in both databases are the same—i.e., the administrative

data and the time use survey; and 2) the time input distribution at each school grade is

stable during the time frame of the analysis. The first assumption is fairly weak, since the

administrative data is virtually a census of children at each school grade and the survey
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is nationally representative. The main concern comes from missing data. The missing

information rate is around 15 percent in the administrative data and less than 5 percent in

the time use survey.45 This is not a problem as long as the sample selection is independent

or similar in both samples. The second assumption is made due to data availability since

the time use survey was only collected in 2015. However, the entire period covered in

the analysis is from 2011 to 2018, and there was not a significant event that might have

dramatically affected the time investment distribution during this period.

The log likelihood of the sample is simply the sum of the log likelihoods of the Nt

students at the school grade t:

logLt(α, β | zit) =
Nt∑
i=1

logLit(α, β | zit), (1.6.5)

and the maximum likelihood estimator is defined as:

(α̂, β̂) ≡ argmax
(α,β)

logLt(α, β | zit). (1.6.6)

As the estimation procedure, I use the Marginal Maximum Likelihood/EM approach of

Bock and Aitkin (1981). Once these parameters are estimated, the response model can be

use to estimate each household’s time inputs. The item response theory literature develops

several strategies in the context of students’ ability. The most common estimators are

Bayesian or frequentist. The former estimates each individual latent value using statistics of

the posterior conditional distribution, such as the expected value or mode. The frequentist

approach estimates the latent value by maximizing each individual’s likelihood. Both

strategies result in biased estimators where the bias is a function of the level of the latent

factor. While the Bayesian approach compresses the estimated latent variable’s distribution

towards the prior distribution’s expected value, the maximum likelihood approach tends
45The administrative data on time investments is collected via questionnaires to parents and students,

which are not mandatory.
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to spread the estimates’ distribution relative to the distribution of the true latent variable

across individuals.

Existing work that uses non-linear measurement models for time investments, such as

Agostinelli (2018) and Wang (2020), relies on Bayesian strategies. Agostinelli (2018) uses

indicator variables of parents spending time with children in specific activities. He assumes

a uniform distribution as the prior distribution of the probability of a positive answer and

estimates the posterior distribution using the conjugate multinomial using the answers

to the dichotomous questions. Then, he draws realizations of the probabilities from the

estimated posterior. The time investment of each child is estimated by applying the inverse

of the parental time unconditional distribution (estimated from a time use survey) to

these drawn probabilities.46 In contrast, Wang (2020) uses a multivariate ordered response

model similar to the one presented in sections 1.5. She uses the model to estimates the

posterior distribution (augmented with covariates) of household investments and takes

draws from these distributions.

Both authors generate bias estimates of each individual’s investments. This bias de-

pends on the level of the investment and is O(S−1). Their approaches are Bayesian and in

consequence put some weight on the prior distribution. Students with parental time in the

extremes of the distribution have a larger bias than those closer to the prior’s mean. Wang’s

approach, however, ameliorates this issue by including covariates in her posterior distribu-

tion, resulting in estimates that are biased towards the expected value of the conditional

distribution instead of the unconditional one. Wang is not interested in estimating the

time allocation of individual parents, but rather moments of the conditional distribution of

parental time. Thus, her estimates are not bias due to the use of this Bayesian methodology.

Fu and Mehta (2018) use an ordered response framework for parental effort in a general

equilibrium model of school tracking. They build the likelihood of the data using the

distribution of ordered categorical questions conditional on the true value of parental
46In item response theory this kind of estimators of individuals’ latent variables are usually called plausible

values (Rubin, 1987).
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effort. They estimate the model’s parameters without estimating each student’s parental

effort. I do not follow this strategy because the estimation of the skill technology and time

investment functions require estimating a large number of classroom effects and students

fixed components, respectively. It would imply estimating thousands of parameters or using

a random effects approach which requires strong assumptions regarding the distribution

of classroom effects and the student heterogeneity distribution.

Instead, I use a strategy proposed in Warm (1989). In the context of student ability,

Warm (1989) developed an estimator that aims to correct for the bias in estimates of each in-

dividual’s latent value, called the weighted maximum likelihood estimator. The estimation

of each student’s time investment uses as input the estimates of the model’s parameters.

In particular, replacing the maximum likelihood estimates, α̂, β̂, in equation (1.5.13) and

solving for h̃itl. That is,

∂ log f(zit | h̃itl; α̂, β̂)
∂h̃itl

+ B(h̃itl; α̂, β̂)I(h̃itl; α̂, β̂) = 0. (1.6.7)

Note that h̃itl is estimated using the estimates (α̂, β̂) instead of the true parameters. Then,

the estimates h̃itl have additional estimation errors, denoted as ζit. I estimate the response

model several times using disjoint sets of the categorical outcome questions Zits. Each of

these estimates provide time investment measures that have different estimation error ζitl,

where each disjoint set of questions is indexed by l. It follows that ζitl ⊥ hit for all t and l

and ζitl ⊥ ζitl′ for all l 6= l′ and all t.

1.6.2 Skill formation technology

In this section, I describe the methodology I employ to estimate the technology of skill

formation. In particular, I use an estimation strategy developed by Agostinelli et al. (2020).

They provide an extension of the algorithm in Arcidiacono et al. (2012) which allows

them to estimate classroom effects with interaction terms with observable inputs and
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exploit instrumental variables to correct for bias due to measurement error in inputs. The

methodology estimates classroom effects as the systematic variation in the skills of students

assigned to the same classroom, in a similar fashion as the education production function

literature.

I use the algorithm to estimate the technology of each school grade separately. The

algorithm is as follows: It starts by taking an initial guess of the parameters of the skill

technology γ0
t ≡ (A0

t , γ
0
1t, . . . , γ

0
4t, γ

0
5t). Each iteration n ∈ {0, 1, . . .} of the algorithm consists

of computing the following steps:

Step 1: Taking as given the current parameter guess n, γnt , compute the classroom effect as

the average within-classroom residual in skills at grade t:

logCn
it =

∑
i′∈c(i)

[
Mi′t+1m − logAnt − γn1tMi′tm − γn2th̃i′t − z′i′tγn5t

]
∑
i′∈c(i)

[
γn3t + γn4th̃i′t

] (1.6.8)

where c(i) is the set of children in the classroom that child i attends at grade t (including

child i).

Step 2: Taking as given the distribution of classroom effects logCn
it from Step 1, estimate

the skill technology using the noisy measures of skills and time inputs:

M̃it+1m = logAn+1
t + γn+1

1t M̃itm + γn+1
2t h̃itl + γn+1

3t logCn
it + γn+1

4t h̃itl × logCit + z′itγn+1
5t + ν̃it

(1.6.9)

I estimate these parameters with 2SLS estimator using additional measures of skills and

time inputs in the first stage.47 This produces the parameters for a new iteration n+ 1. The

iteration procedure stops when all of the parameters converge—i.e., ||γn+1
t − γnt ||∞ ≈ 0.

Otherwise the algorithm returns to Step 1 with the updated set of parameters γn+1
t . Once

convergence is achieved, it provides the classroom effects distribution. I run the estimation
47OLS estimation of the Step 2 equation produces inconsistent estimates of the remaining parameters due

to measurement error bias.
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by (disjoint) random samples of 50 percent of the students in each classroom to estimate

classroom effects with different estimation error to exploit exclusion restrictions in the

estimation of the time investment functions.48

I used a modified version of this algorithm to estimate the effects of different components

of the overall classroom effect, such as the teacher effect log Tit and the effect of other

observable classroom characteristics rit. In my sample, I do not observe a set of teachers

in every school teaching at some point at a different school. Thus, it is not possible to

identify teacher and school effects separately while also generating a global ranking of

teacher effects as in Mansfield (2015) and Chetty et al. (2014a,b). A popular alternative is

to estimate within-school teacher effects. However, I estimate teacher effects as a compound

of the effects of the school and teacher to leverage the variation of students across schools;

which is ultimately the effect that should matter to the households. As for classroom effects,

identification requires normalization of the teacher effects—i.e., teacher effects are set to be

on average (sum up to) zero as in the normalization of the classroom effects.

1.6.3 Time investment functions

This section presents the estimation methodology of the time investment functions. Plug

the observed noisy measures of time investment, skill and classroom effects defined in

(1.5.13), equations (1.5.6) and (1.5.17) into equation (1.2.9) and rearrange:

h̃itl = δ0,t + δC,t log C̃itc + δθ,tM̃itm + Γ′itδΓ,t + πi + η̃it (1.6.10)
48Note that there is an implicit assumption that νit is not observed by parents and children when they are

making their investment choices. This can be relaxed by allowing correlation between νit and ηit and using a
control function approach as in Attanasio et al. (2020b). Under this framework, the estimation of the skill
technology and time investment functions should is done in a single step—i.e., including the estimation of
the time investment function in Agostinelli et al. (2020)’s estimator. The algorithm is initialized by assuming
a guess of the parameters and of the distribution of ηit to include a control function in the estimation of the
skill technology. Then, at each iteration, after estimating the skill technology and classroom effects logCit it
is possible to estimate the time investment functions. The residuals provide estimates of ηit that can be used
in the subsequent iterations until convergence is achieved.
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There are three concerns that could bias the estimates of the parameters of equation (1.6.10):

(i) non-classical measurement error in time investment; (ii) classical measurement error in

skills or classroom effects; and (iii) unobserved factors that systematically influence time

inputs, skills and classroom inputs. The potential bias related to point (i) is addressed

by implementing the Warm (1989) weighted maximum likelihood estimator. Either way,

it should be noted that the estimated time investment of each student has measurement

error. However, this error is independent, which implies a precision cost but not bias in the

estimates.

Point (ii) considers the situation where, even if hit is observed and the structural shock ηit

is not correlated with the observed inputs, the OLS estimates of δC,t and δθ,t could be biased

due to measurement error. I use the additional measures of each of these variables to exploit

exclusion restrictions to estimate the parameters of equation (1.6.10). The additional skill

measures are generated using test scores in different subjects and the additional classroom

effects are estimated using disjoint samples of students at each classroom.49 Finally, point

(iii) suggests that the unconditional correlation between classroom (teacher) effects and

time inputs could be the result of other unobserved factors. To deal with this concern, I

use a student fixed effect approach leveraging the panel structure of the data and include

time varying covariates, such as household income.50 Thus, I estimate equation (1.6.10)

using a 2SLS estimator with student fixed effects.

Since the coefficients are grade-specific, I rewrite equation (1.6.10) with a vector of

variables in fourth grade and the variables in the upper grades interacted with a school

grade indicator. Define the vectors Xit = (log C̃itc, M̃itm,Γ′it)′ and δt = (δC,t, δθ,t, δ′Γ,t)′. The
49As mentioned before, the instruments for the classroom effects are generated by estimating the technology

with half the students randomly selected in each classroom. This strategy follows the spirit of leave-one-out
estimators. There are two classroom effects estimates for each child; in only one was the student included
in the estimation. In order for the estimate to be a valid instrument, it should be the estimate in which the
student was not included. That is, the instrument is the classroom effect of each student estimated without
her/him.

50Controlling for household income could be problematic. The parents’ earnings might be affected by the
parental time choice. However, the results are not quantitatively or qualitatively affected by the inclusion of
this variable. The underlying assumption is that changes in parental time correspond to changes in leisure
time and not in working hours.
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vector of variables to include in the 2SLS estimator is:

bit = (1,Xit, {1(t = t′), 1(t = t′)×Xit}t′>4)′, (1.6.11)

with t′ = 4, 6, 8, 10 and 1(t = t′) as an indicator function equal to 1 if t = t′ and zero

otherwise. Similarly, I define the vector of associated coefficients:

δ = (δ0,4, δ4, {δ̃0,t′ , δ̃
′
t′}t′>4)′, (1.6.12)

where δ̃0,t = δ0,t− δ0,4 and δ̃t = δt− δ4. Next, define the demean transformation for a variable

ait as:

äit = ait − ai + a, (1.6.13)

where ai is the average value across all grades in which student i is observed and a is the

grand average. The first step of the 2SLS estimator consists of regressing the noisy measures

in b̈it on their demean equivalent measures and Γ̈it. Then, the estimated coefficients are

use to generate predicted values of those noisy measures. Lastly, the second step consists

of estimating a regression of ḧitl on the predicted measures and Γ̈it using OLS estimator.

1.7 Estimates of measurement systems, skill technology,

and policy functions

In this section, I describe the estimates of the measurement systems, the skill technology

and time investment functions. Since the estimation methodology involves several steps,

I estimate standard errors and 95% confidence intervals using the bootstrap with 1000

replications. The data has three dimensions: students, school grade and classrooms.

The bootstrap sampling requires tracking students’ entire history across grades and their

classmates’ as well. Moreover, students in connected schools might share similar shocks.
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Thus, I cluster the bootstrap samples at the school network level. I define school networks

as schools from which at least 20 students move between schools during the period of

analysis. Note that at every bootstrap iteration, I estimate every step—i.e., measurement

systems, skill formation technology, and time investments functions.

1.7.1 Measurement systems

Figure S.1.2 shows the estimates of the expected value of the log skills and its variance for

ages between 8 and 16 years old. These estimates correspond to the empirical analogs of

equation (1.5.3) estimated using the WISC-V cognitive test survey. Children’s cognitive

development improves as they grow up and its variance is larger for all ages relative to

8 and 16 years old where the variance is similar. Table S.1.3 presents the estimates of

the parameters of the measurement system for the age-invariant measures and the signal

share of each measure—i.e., the fraction of the measure’s variance that is not attributed to

the error.51 Table S.1.4 shows the estimates and signal share for the measurement system

estimated using the test scores from the administrative data. The signal share of these

measures is similar to previous work using other databases.

1.7.2 Skill formation technology

Tables S.1.5 and S.1.6 present the estimates of the skill formation technology. The former

shows the specification with the composite classroom input, while the later reports the

within classroom inputs specification—i.e., teacher effects and observable classroom char-

acteristics. These specifications are more general than those described in the previous

sections. First, they include two sources of household time investment—i.e., parental and

child time investment relabeled as hit and eit, respectively. Second, they include interactions

of time inputs with current skills, between time inputs and between classroom inputs and

current skills. This parameterization provides flexible heterogeneous effects of each input.
51The definition of the signal share is 1− Var(εitm)/Var(Mitm). See equation (1.4.1) for more details.
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Consider parental time’s marginal effect for a particular student:52

∂ log θit+1

∂hit
= γ3t + 2γ4thit + γ9t logCit + γ11teit + γ12t log θit. (1.7.14)

The parameters’ signs in equation (1.7.14) define how inputs relate in production with

parental time. For example, if γ9t > 0, the effect of parental time is higher for children

with better classroom inputs.53 In the case of parental time and classroom inputs these

parameters are positive for all grades except for sixth grade, where it is negative but not

statistically significant. This means that at least for fourth, eight, and tenth grade there is

complementarity in production between these inputs.

From these tables it is difficult to get a sense of the magnitude of each input’s effect.

Figure 1.2 plots the sample average of predicted values of equation (1.7.14) for each input.

The top panel presents the average effect of parental (left) and child (right) time investment

while the bottom panel shows the average effect of classrooms (left) and current skills

(right). The grey areas represent school network-clustered bootstrap 95% confidence

intervals. The average sample effect of one weekly hour of parental time is around 0.02 SD

(of the log skills in second grade) at fourth grade and the effect decreases to 0.01 SD at

tenth grade. The sample average effect of child time investment is higher at every grade

but shows a decreasing pattern as well. The sample average marginal effects at fourth and

tenth grade are 0.08 SD and 0.03 SD, respectively. Classroom inputs and current skills in
52The notation of this specification is as follows:

log θit+1 = logAt + γ1tθit + γ2t log2 θit + γ3thitl + γ4th
2
itl + γ5teitl + γ6te

2
itl

+γ7t logCit + γ8t log θit × logCit + γ9thit × logCit + γ10teit × logCit
+γ11thit × eit + γ12thit × log θit + γ13teit × log θit + z′itγ5t + νit.

where hit and eit are parental and child time investment.
53Under the technology’s parametric assumption, this conclusion can only be reached if the sign is positive.

If it is negative the opposite conclusion does not follow. Formally: ∂2 log θit+1
∂hit∂ logCit

= ∂2θit+1
∂hit∂Cit

Cit

θit+1
− ∂θit+1

∂hit

1
θ2

it+1
=

γ9t.
Thus, it could be that γ9t < 0 and ∂θit+1m/∂hit∂Cit > 0, that is, there is complementarity in production

between inputs even though the sign of the parameter is negative. At this point it is clear how the interpretation
of the estimated parameters depends on the assumptions made regarding the technology is parametric
functional form. For example, if the function were assumed to be linear, the parameters are the cross
derivative as opposed to the elasticity or semi-elasticity.
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equation (1.2.6) have a log-log relationship with skills in the next grade. Hence, under

the parametric assumption, the equivalent equation (1.7.14) for these inputs represent

an elasticity. A 1 percent increase in classroom inputs increases skills between 0.56 and

0.44 percent.54 The elasticity of skills or previous skills across grades are between 0.86

and 0.54. Following Cunha and Heckman (2008) these effects are interpreted as skills

self-productivity.

A note of caution applies when comparing these effects across grades. There are two

considerations to keep in mind. One, the comparison and conclusions crucially depend

on the cardinal normalization of skills across grades, which requires stringent conditions

to hold. Second, these are sample average marginal effects; decreasing marginal return of

inputs could be the reason the average effect of child time investment at tenth grade is

lower than at fourth grade.55 Figure S.1.4 presents the average marginal effect of inputs in

terms of changes in percentiles of the skill distribution. The pattern is similar for both time

investments. Parental time presents a small decrease after fourth grade; the average effect

of one weekly hour goes from 0.4 to 0.3 percentiles. The average effect of one weekly hour

is larger for child self-investment; it decreases monotonically from 1.5 to 0.6 percentiles

from grades 4 to 10. Classroom effects in terms of percentiles have a U-shape across grades,

with values between 10.5 and 9.0 percentiles. Lastly, the average effect of current skills

monotonically decreases from over 14 to 12 percentiles.56

54These effects seem large relative to the literature. The education production function literature finds
that a 1 SD increase in the distribution of classroom value-added is associated with an effect on educational
achievement between 0.3 and 0.4 SD. These results are larger for two reasons: 1) I am anchoring the skills
scale to the standard deviation of skills at second grade. The skills’ standard deviations at grades 4, 6 and
8 are around 20 percent larger than that of grade 2, while second and tenth grades’ SD are similar (see
Table S.1.3). 2) the specifications in Tables S.1.5 and S.1.6 are more general than typical education production
functions; they incorporate heterogeneous effects of classrooms. However, standard classroom and teacher
value-added models estimated in this data produce results similar to those in the literature. I present these
results in Table S.1.7.

55Table 1.3 shows the average level of time investment by school grade. Child time investment increases
substantially between fourth and tenth grade. At least partially, this drives the decreasing average marginal
effect across grades. Note that under decreasing effects across grades, the fact that investment level is
increasing implies that the associated cost should decrease relatively more to rationalize the data.

56The equivalent results for the specification with within-classroom inputs are similar. These results are
presented in Figures S.1.3 and S.1.5.
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Figure 1.2:
Sample average marginal effects of skill inputs (SD)
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Note: The values on these graphs show the average marginal effect calculated using the estimates from the
specifications in Table S.1.5. The grey area reports school network-clustered bootstrapped 95% confidence
intervals. I compute each student’s marginal effect using each input’s analogous equation (1.7.14) and
calculate the average over the sample.
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The technology estimates could be biased if there are unobservable inputs or charac-

teristics that systematically influence skills and inputs. If conditional on the classroom

assignment there is selection bias in the estimates of the observable inputs’ effects, and if

the classroom effects are bias due to omitted variable bias.

The identification assumption relies on the rich data available on inputs and students’

characteristics on an attempt to include a sufficient number of key factors that influence the

skill formation process. This mean independence assumption is fundamentally untestable.

Nevertheless, I follow Chetty et al. (2014a) and Agostinelli et al. (2020) and provide an

indirect test of selection in unobservables and test the out-of-sample prediction perfor-

mance of the estimated technology. The tests require an observable variable that is highly

correlated with skills but that is not included in the specification of the skill technology. As

in the mentioned studies, I use household income as the omitted observable variable. Since

household income is correlated with skills, it is likely correlated with its inputs. Then, if

there were important omitted inputs they should be correlated with income. The indirect

test of the omitted inputs has as null hypothesis that household income is not correlated

with the residual of the skill technology. If the hypothesis is not rejected it suggests that

there are not relevant omitted inputs.

Table 1.4 presents the results of this test. The first row shows the coefficients from

a regression of skills at each grade on household income—measured in units of 3,000

dollars, which represents around 30 percent of the standard deviation and average annual

household income in the sample.57 An additional 3,000 dollars is associated with skills

between 0.12 and 0.18 SD higher. The second row of the table shows the coefficient of

regressing the estimated residuals of the skill technology on household income. In this case,

an additional 3,000 dollars in household income is associated with residuals between 0.0007

and 0.0037 SD (of skills) higher. These estimates are statistically significant. However,

given that a large income change implies only a small associated change in residuals, the
57Table 1.1 presents the average monthly household income in Chilean pesos. The equivalent yearly

household income in 2018 dollars has an average and standard deviation around 11,000 dollars.
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Table 1.4:
Validation Test: Selection on observables — Household income

Fourth grade Sixth grade Eighth grade Tenth grade
(1) (2) (3) (4)

log θit+1 (skills) 0.1352 0.1531 0.1824 0.1266
(0.0043) (0.0045) (0.0055) (0.0042)

[0.1271;0.1436] [0.1445;0.1621] [0.1721;0.1937] [0.1187;0.1353]
ν̂it (residual skill tech.) 0.0033 0.0028 0.0037 0.0007

(0.0004) (0.0002) (0.0003) (0.0002)
[0.0025;0.004] [0.0023;0.0032] [0.0031;0.0041] [0.0001;0.0011]

N 407,720 596,617 457,782 336,470
Note: Schools network-clustered bootstrapped standard errors and 95% confidence intervals in
parentheses and brackets respectively. Skills are log θit+1 and ν̂it represents the residual of the
estimated technology from the specification in Table S.1.5. The first row shows the coefficients
from a regressing skills on household income, measured in units of $3000 dollars US in 2018 values
(0.3 SD of the household annual income distribution). The second row shows the coefficients of
regressing the technology’s residuals on household income.

results suggest this relationship is not economically significant. The conclusion I draw

from the results is that if there is an omitted factor, the implied bias should be minimal.

As in Agostinelli et al. (2020), I use household income to test the out-of-sample predictive

performance of the estimated skill technology. In particular, I evaluate if the technology

is able to predict the average skills by household income deciles. Figure S.1.8 plots the

average predicted skills (grey bars) against the average skills observed in the data (white

bars) for each decile of the household income distribution and by school grade. The figure

shows that the estimated technology predicts the average skill of each household income

decile extremely well even though this variable in not included in the specification.

Lastly, classroom effects are biased if the assignment of students to classroom is based

on unobserbable factors. To test this hypothesis, I regress the estimated classroom effects on

household income. The results are in the first row of Table 1.5. An additional 3,000 dollars

is associated with classroom effects between 0.04 and 0.09 SD larger. This suggest that

students are assigned to classrooms based on characteristics correlated with income. The

second row of Table 1.5 shows the coefficient of the same regression of classroom effects

on income but including school fixed effects. In this case the coefficients are below 0.01 SD
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Table 1.5:
Coefficient of regression of classroom effects on household income

Fourth grade Sixth grade Eighth grade Tenth grade
(1) (2) (3) (4)

No school FE 0.0493 0.0704 0.0906 0.0896
(0.0039) (0.0028) (0.0037) (0.0007)

[0.0418;0.0573] [0.0648;0.0764] [0.0812;0.0975] [0.0840;0.0967]
School FE 0.0080 -0.0035 0.0039 0.0083

(0.0007) (0.0008) (0.0011) (0.0008)
[0.0067;0.0093] [-0.0052;-0.0021] [0.0027;0.0067] [0.0068;0.0098]

N 407,720 596,617 457,782 336,470
Note: Schools network-clustered bootstrapped standard errors and 95% confidence intervals
in parentheses and brackets respectively. The table presents the coefficients from regressing
classroom effects on household income, measured in units of $3000 dollars US in 2018 values
(0.3 SD of the household annual income distribution). The first row “No school FE” does not
include school fixed effects, while the second row “School FE” adds school fixed effects. The
classroom effects correspond to the estimated technology from the specification in Table S.1.5.

and the relationship is not economically significant. This result suggest that most of the

selection is through the school choice.58 This results motivates the estimation strategy of the

time investment policy function. The unconditional correlation between time investment

and classroom effects would potentially be different than the causal response of parents

and students to classroom quality. Including additional time-varying covariates and a

student idiosyncratic component in equation (1.6.10) aims to address this selection.

1.7.3 Time investment functions

This section describes the estimates of the time investment functions in equation (1.2.9).

There are two different types of household time investments: parental and child time

investment. Table S.1.8 presents the estimates; columns (1) and (2) show the estimates

of parental and child time investment responses to classroom effects associated with the

skill technology specification of Table S.1.5, while columns (3) and (4) show the responses

to teacher effects associated with the estimated technology reported in Table S.1.6. Note
58In Chetty et al. (2014a)’s environment most of the selection is due to school choice as well, rather than

across teachers.
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that both classroom and teacher effects are normalized to be mean zero and variance one.

Thus, the coefficients are interpreted as the response—in weekly hours— to a change of

one standard deviation (SD) of classroom or teacher effects.

The left panels of Figures 1.3 and 1.4 present the responses of parents and students to a

reassignment of the student from a classroom in the 25th to one in the 75th percentile of the

classroom quality distribution, while the right panels show their responses of reassigning

the class’ teacher from the 25th to 75th percentile of the teacher quality distribution. The

empty bars show the estimates without measurement error correction—i.e., the OLS esti-

mates. The colored bars show the estimates using 2SLS to correct for measurement error.

The vertical lines on top of each bar represent 95% confidence intervals and the symbol

x on top indicates the response is statistically significant different at 1% from the fourth

grade’s response.

Figure 1.3:
Parental time responses (weekly hours)

to reassignment from 25th to 75th percentile of classroom and teacher quality distributions
Classrooms Teachers
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Note: The values on the graphs are calculated using the estimates of Table S.1.8. The vertical lines are school
network-clustered bootstrapped 95% confidence intervals. The symbol on top (x) indicates that the difference
between the response with that of fourth grade is statistically significant at 1%. The values on the bottom of
each plot are the responses as a percent of the average parental time at each grade.

The estimates show that the responses are not homogeneous across school grades.
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Parents of fourth graders compensate for the classroom reassignment; they respond by

decreasing the time they spend with their children by around 1.8 weekly hours. However,

the magnitude of the responses decreases as children grow up. At grade 10, the responses

are in the opposite direction, the additional classroom inputs increase parental time by

45 minutes per week. The results for younger children are consistent with the literature

of parental responses to specific school inputs (Houtenville and Conway, 2008; Das et al.,

2013; Fu and Mehta, 2018). These responses represent 13 and 12 percent of the average

parental time in fourth and tenth grades respectively.59 The responses to teachers follow the

same pattern, but with smaller magnitudes. In particular, as a result of the improvement in

teacher assignment parental time decreases by 0.7 and 0.8 hours per week for fourth and

sixth graders and in tenth grade parental time increase by a quarter hour per week.

Figure 1.4:
Child time responses (weekly hours)

to reassignment from 25th to 75th percentile of classroom and teacher quality distributions
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Note: The values on the graphs are calculated using the estimates of Table S.1.8. The vertical lines are school
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between the response with that of fourth grade is statistically significant at 1%. The values on the bottom of
each plot are the responses as a percent of the average child time self-investment at each grade.

As a response to the same classroom reassignment students increase time investment

at every grade; by 20 minutes per week in fourth grade and by half an hour per week
59The average time investments by school grade are presented in Table 1.3.
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in the upper grades (Figure 1.4). These responses are large relative to the average child

self-investment (between 17 and 7 percent, respectively).60 Meanwhile, the responses to

teachers are smaller as for parents and the response is virtually zero for tenth graders. One

possible reason teacher quality induce no response in tenth grade is that teachers in lower

grades tend to teach most subjects and so they spend more time interacting with students.61

These responses imply a non-trivial impact on skills. An increase of 1 SD in classroom

effects implies a response of fourth graders’ parents that decreases skills in 0.036 standard

deviations (SD) of log skills in second grade. At tenth grade the parental response increases

skills by 0.022 SD. Meanwhile, students’ responses increase skills in 0.044 and 0.023 SD in

grades 4 and 10, respectively. The impact of the responses on skills represent between 3

and 11 percent of the overall effect of classrooms on children.62

It is difficult to pinpoint the reasons of the change in the direction for the parental

responses to school inputs. In the model this is the result of the interaction of the evolution

of the skill formation technology as children grow up and preferences or costs associated

with investments at different points in the development of children. The technology might

vary across education stages for many reasons. As an example, parents and teachers

might be more “substitutable” to teach certain skills when children are younger, such as

basic math. As children start learning subjects with more specialized knowledge—e.g.,

calculus—parents are less able to substitute for teachers. However, parents might spend

relative more time with their children in different activities, like advising, that could be

more complementary to teacher quality in the formation of skills.63

60Figure S.1.10 shows the responses to classroom and teacher reassignment between percentiles 10 and 90
across each distribution. The magnitudes can be quite large, e.g., a decrease of almost 3.5 weekly hours in
grade 4, and 1.5 weekly hours increase in tenth grade. Meanwhile, for students the figure shows an increase
of student effort of over half a weekly hour in fourth grade and almost a weekly hour in the remaining grades.

61Students interact, on average, with around 6 teachers in fourth grade and with almost 11 teachers in
tenth grade (Table 1.1). Moreover, usually in the lower grades there is a main teacher who is in charge of the
“core” subjects, such as math, language, biology, and so on, while auxiliary teachers teach music, art and
physical education.

62The impact on skills of parents’ responses are -0.036, -0.008, -0.005 and 0.010 SD and the effects of
children’s responses are 0.024, 0.021, 0.011 and 0.010 SD for grades 4, 6, 8 and 10, respectively

63Figure S.1.9 presents results from the National Household Education Survey that attempt to provide
suggestive evidence regarding this conjecture. It shows the share of parents that help with homework at
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1.8 Conclusions

In this chapter, I study the time investment responses of students and their parents to the

quality of school inputs and how these responses evolve as children grow up. I combine

administrative and survey data from Chile to estimate the household responses to classroom

inputs and teachers from grades 4 to 10. The responses differ by school grade; parents of

fourth graders compensate for classroom and teacher quality, while parents of secondary

school students reinforce quality. Students increase effort if the classroom environment

improves, with larger magnitudes for older children. Moreover, household responses to

teachers have smaller magnitudes but show a similar pattern across grades. However,

students virtually do not adjust their time investments for different teacher quality at grade

10.

The estimates shed light on the mechanics at play in the black box of classroom and

teacher value-added. Further, they inform policy design on teacher selection and pay-for-

performance.64 Simulations of policies that remove the lowest-performing teachers (e.g.,

Hanushek, 2011; Goldhaber and Theobald, 2013; Chetty et al., 2014b) and analysis of opti-

mal rules for teacher dismissal (Staiger and Rockoff, 2010; Neal, 2011) could be improved

by addressing the behavioral response of households. For example, these exercises usually

include students at different school grades. If behavioral responses vary by students’ age,

then these policies hold some teachers to a higher standard than others, which generates in-

efficiency costs. Similarly, families’ responses might weaken the link between rewards and

teacher effort, leading to ineffective policy schemes (Neal, 2011).65 Behrman et al. (2015)

study teacher-incentive schemes and find no effect on academic achievement, unless the
least 3 days in an average week and the share of parents that discussed time management in the past week
across ages of children. The former shows a monotonic decline while the latter slightly increases as children
grow up. This result suggests that parents might modify the composition of the activities considered as time
investments as children grow up.

64See Jackson et al. (2014) for a review of the literature on teacher-related policies.
65As an example, Springer et al. (2011) find that the teacher-incentive POINT program in Tennessee did

not result in performance improvements of students assigned to eligible teachers. Neal (2011) argues this
may be explained by too high performance targets. This is exacerbated if teacher effort crowds out parental
investment, dampening the impact of the policy.
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program includes an additional student-incentive component. Their result could be driven

in part by a decrease in parental investment in response to teacher effort. The estimates of

household responses suggest potential gains from schemes that include a parent-incentive

component, in addition to students’ and teachers’ components.66 Moreover, the Chilean

government introduced a teaching reform that sets new teacher hires to be compensated

based on measures of competency. Not taking into account the heterogeneous household

responses could lead to inefficiency costs in the implementation of the policy.67

66Levitt et al. (2016) study an incentive-based program with students and parents as beneficiaries, but it
did not include a teacher-incentive component.

67The government introduced the policy in 2017 and it is gradually implemented through 2023. See
Tincani (2020) for a detailed description of the policy and an ex ante evaluation of the Chilean merit-based
teaching reform.
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Chapter 2

Optimal Allocation of School Resources

Across Grades

Chapter summary

The heterogeneous responses by grade found in chapter 1 motivate the analysis of optimal

resource allocation policies across education levels. Chapter 2 builds on chapter 1 to

understand how the differential impact by grade of school resources and home investment

can be used to design the optimal allocation of school resources across grades. To that end,

I build and estimate a child development model using an indirect inference approach. I

use the estimated model to simulate counterfactuals of the dynamics of the cognitive skills

of students and I characterize the optimal allocation of school resources across grades.

The results suggest that, on average, it is optimal to allocate relatively more resources in

lower grades than in upper grades with respect to the allocation observed in the data.

Moreover, the behavioral response of households plays a key role in the characterization of

the optimal allocation.
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2.1 Introduction

A dynamic skill formation technology and the differential response of households to

classroom quality by grade found in chapter 1 raises the question: what would be the

optimal allocation of school resources, such as teachers or monetary resources, across

school grades? For example, a teacher’s direct impact on cognitive skills and parents’ and

children’s time investment responses depend on the school grade. The optimal assignment

of the teacher should account for these differential effects across grades. The estimates of

the household responses inform how parents and children adjust their time investments

based on exogenous changes in classroom inputs. Unless households are myopic, these

responses vary with changes in the expected classroom environments of subsequent grades.

To evaluate the implications of different allocations of resources across grades it is necessary

to add structure on preferences and on the expectations process of households. To that end,

I build and estimate a dynamic child development model based on a unitary household

that maximizes lifetime utility by choosing parental and child time investment subject to

the skill formation technology.

I estimate the child development model with an indirect inference estimator. The

auxiliary model consists of the time investment policy functions and moments of the

conditional distribution of skills and time investment. The child development model then

allows me to characterize the allocation of resources across grades that maximizes each

student’s cognitive development. I find that the optimal allocation improves skills by 0.20

standard deviations (SD) with respect to the baseline allocation. On average, it is optimal

for schools to invest relatively more resources in lower grades. Moreover, the behavioral

response plays a key role in characterizing the optimal allocation. Ignoring the response

of households to classroom quality leads to an optimal allocation that yields cognitive

improvements that are between 25 and 65 percent lower. These findings highlight the

importance of the role of the behavioral response in school resource allocation policies.

This chapter contributes by characterizing the optimal allocation of school resources
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across grades. There is a line of research that studies the dynamic complementarity of

investments in the formation of cognitive skills (e.g., Cunha et al., 2010) and Johnson

and Jackson (2019) show evidence of complementarity of school investments at different

education levels. However, the literature does not address how school resources should be

distributed across school grades. Furthermore, the heterogeneous response of households

adds an additional margin to optimize the allocation of school resources. Using the child

development model that explicitly incorporates school inputs, I characterize the allocation

that maximizes cognitive development while considering the differential impact and re-

lationship of inputs across grades in the skill formation process as well as the behavioral

response of households.

The structure of the chapter is as follows. In Section 2.2, I specify the parameterization

of preferences and the expectations process, outline the estimation methodology of the

child development model and describe the estimates. Section 2.3 consists of the policy

counterfactual analysis of the optimal resource allocation across grades. Finally, Section 2.4

concludes the chapter.

2.2 Model parameterization and estimation

The estimates in the previous chapter are the responses of parents and students to classroom

and teacher quality holding everything else constant. The policy space that these estimates

are able to evaluate is constrained to policies that do not change the expected classroom

environments of subsequent grades. For example, consider evaluating the impact of

increasing fourth grade’s resources at the expense of reducing resources at grade 10. If we

were to evaluate this policy with the estimated skill technology and the time investment

functions, we would assume that households respond to the additional resources in fourth

grade ignoring any resource changes at tenth grade. By the time students attend grade 10,

they receive lower resources at school and respond accordingly. If households were aware
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of the resources reallocation across grades, these results do not represent the true policy’s

impact.

In this section, I parameterize the preferences of the child development model described

in Section 1.2 of Chapter 1. The model allows evaluation of the policies that require

households to update expectations of future classroom environments. I use the model to

evaluate different allocations of resources across grades and characterize the allocation

that maximizes the cognitive development of children.

2.2.1 Model parametrization

I depart from the standard utility function in terms of consumption. In the model, house-

holds value the cognitive skills of the child and incurs in a disutility cost for each hour of

parental and child time investment.1 I relabel parental and child time investment as hit and

eit, respectively. The utility functional form is:

uit(θit, hit, eit,xit) = θ1−φ1t
it − 1
1− φ1t

− φ2ithit − φ3iteit (2.2.1)

where φ1t is the curvature parameter on skills and φ2it > 0 and φ3it > 0 are the disutility

costs of parental and child time investment, respectively. The disutility cost parameters

are indexed by i to allow for heterogeneity in preferences across households. In particular,

φ2it = exp(φ̃′2txit + υi) and φ3it = exp(φ̃′3txit + ιi), where υi ∼ N(0, σ2
υ) and ιi ∼ N(0, σ2

ι ).

The vector xit consists of demographic characteristics. Note that the disutility costs are

correlated with classroom effects through xit. This captures the observed correlation

between classroom effects and investments.

All parameters are index by t. The age-specific parameters associated with children’s

disutility cost follow from existing work on child development.2 However, it is less common
1A more natural modeling assumption is for the utility to depend on time inputs through forgone

consumption. However, since I do not observe leisure or the hourly wage, I cannot adopt that specification.
2For example, Del Boca et al. (2019) assign age-dependent discount rates for children following the work

by developmental psychologists that shows that the capacity to delay gratification changes substantially as
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for parental time’s disutility cost to vary across children’s age. The age-specific parameter

implies that parental time is a different consumption good (bad) depending on the age of

the child.

The household has time constraints for both types of investment, ht ∈ [0, H] and et ∈

[0, E], where H and E are the time endowments of parents and children, respectively.

However, this is not the usual time constraint of economic models where households

allocate the time endowment between leisure and hours of work. Instead, this constraint

represents an interval of the possible choices of time investment. The state space is given by

Ωit = {θit, Cit,xit, zit}. Where Cit is classroom inputs, the vector zit include demographic

characteristics that influence total factor productivity in the production of cognitive skills.

The vectors zit and xit include elements which are grade-invariant like parental education

and elements like parent’s age that deterministically evolve across grades. Additionally, xit

includes household income yit which is modeled as an AR(1) random process.

The cognitive skills of a child θit follow a first order Markov process, similar to Cunha

and Heckman (2008), Cunha et al. (2010), Agostinelli and Wiswall (2016), and Agostinelli

et al. (2020):

θit+1 = Ft(θit, hit, Cit, zit, νit), (2.2.2)

where Ft(·) is a grade-specific function that depends on current skill, θit, the time the

household invest in its child hit, the classroom inputs Cit, household characteristics zit, and

the structural shock νit.

I assume the technology is a trans-log production function. However, the relationship be-

tween the logarithms of skills and time investment is linear, allowing for a corner solution.3

This parametrization is flexible in terms of the relationship between inputs in the produc-

tion of skills—i.e., it is possible to have a negative cross-derivative (see Agostinelli and
children grow up (e.g., Steinberg et al., 2009). Moreover, studies show that attention capacity varies across
children at different development stages (e.g., Rueda et al., 2004)

3In the data, I observe a non-trivial fraction of households choosing to invest zero time in the skill
formation process.
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Wiswall, 2016). It allows complementarity or substitutability between time and classroom

inputs.4 The parametric functional form is the following:

log θit+1 = logFt(θit, hit, Cit, zit, νit)

= logAt + γ1t log θit + γ2thit + γ3t logCit + γ4thit × logCit + z′itγ5t + νit,

(2.2.3)

where At exp(z′itγ5t) is the total factor productivity. The set {γjt}5
j=1 defines the elasticity or

semi-elasticity of next grade’s skills and inputs and νit is a mean zero shock.

The specification is more general in the empirical implementation. Besides the terms

in equation (2.2.3), it includes second order polynomials of current skill and time inputs,

interactions between time investment, classroom inputs, and current skills and interactions

between time investments of different members of the household—i.e., parental and child

time investments. However, equation (2.2.3) reduces notation burden and the identification

and estimation analysis under this simplification is without loss of generality.

The household has rational expectations and forms expectations over three variables:

future classroom inputs, skill shocks and future household income shocks. I assume the

classroom process is:

logCit = κ′txit + ∆it, (2.2.4)

where κt are grade-specific parameters and ∆it ∼ N(0, σ2
∆,t). I assume the distribution of

skill shocks νit is N(0, σ2
ν,t). Finally, the household income AR(1) process is:

log yit = yt + ρt log yit−1 + ωit, (2.2.5)

where {yt, ρt}t are parameters and ωit ∼ N(0, σ2
ω,t). The timing of the model is as follows:

First, νit−1, ∆it, and ωit are realized at the beginning of grade t, and the household learns

Ωit. Next, the household makes the time investment decisions without knowing νit.
4Assuming a Cobb-Douglas or constant returns to scale production function with standard parameters

values implies weakly complementarity between all the inputs. It is important to allow for this flexibility
since the signs of cross-derivatives are relevant in terms of households’ responses.
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Finally, the terminal value at age T (grade 10) is defined as:

VT (Ωi,T ) = φ4
θ1−φ1T
iT − 1
1− φ1T

(2.2.6)

where φ4 > 0. The terminal value can be thought as the initial condition of a new problem.

2.2.2 Model estimation procedure

I implement a two-step estimation procedure to reduce computational burden. In the first

step, I estimate the measurement system, skill formation technology and household income

and classroom processes. The estimation methodologies of the measurement systems

and skill technology are described in Sections 1.6.1 and 1.6.2 of Chapter 1, respectively. I

estimate the household income and the classroom processes defined in equation (2.2.5)

and (2.2.4) with the OLS estimator.

The second step estimates the preference parameters. This step is an indirect inference

estimator. Let M be the set of targeted moments which I describe below. The estimator

is a simulation-based method. Given the primitive preference parameters Σ and initial

conditions, I simulate the households’ choices and skills across school grades.5 I then

compute the analogous targeted moments in the simulated data, denoted by MS(Σ), and

the estimator is defined as:

Σ̂ ≡ argmin
Σ

(M −MS(Σ))′ ×W × (M −MS(Σ)), (2.2.7)

where W is a weighting matrix. I set the weighting matrix to be the inverse of the diagonal

variance–covariance matrix of the moments computed by bootstrapping the data. The

auxiliary model consists of: (i) the time investment functions (ii) first- and second-order

moments for the conditional distribution of skills and time investments.
5Appendix D describes the solution of the model.
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2.2.3 Model estimates

The estimates of the measurement system and skill technology are presented and described

in Sections 1.7.1 and 1.7.2 of Chapter 1, respectively. Additionally, Table S.2.9 provides the

estimates of the variance of the skill technology shock at each school grade. Table S.2.10 and

S.2.11 present the estimates of the household income and classroom processes. Finally, the

estimates of the indirect inference estimator of the second step appear in Table S.2.12. That

is, the parameters of the curvature of the utility with respect to skills and the parameters

governing the disutility of parental and child time investment.

2.2.4 Model fit

Figure 2.1 compares the values of the data moments with moments from the simulated

data. There are four different sets of moments, the moments of the auxiliary model given

by the policy functions of parental time and child effort as well as the expected value and

the variance of the conditional distribution of skills.6

Additionally, Figure 2.2 shows the model fit in terms of the average and standard

deviation of cognitive skills, parental and child time investment. The model estimates are

able to predict the average skill and investments across grades. The model also predicts

reasonably well the standard deviation of the skill, and somewhat larger standard deviation

for time investment.

2.3 Optimal school resource allocation policies

The dynamics of the skill formation technology and the heterogeneous responses of house-

holds across school grades suggest that, depending on how we distribute the available

resources across school grades, we can influence the skill accumulation paths of children.

For example, additional resources at grade 10 have a direct effect on students’ cognitive
6Figure S.2.12 expands the graph for each group of moments.
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Figure 2.1:
Model fit of targeted moments

Note: Each dot represents a moment of the auxiliary model in the indirect
inference estimator. The horizontal axis shows the values of the moments
true data and the vertical axis shows the values of the moments from the
simulated data.

skills. However, allocating those resources at earlier grades improves cognitive skills

across grades through the self-productivity of skills and so at tenth grade as well. The

optimal allocation trade off between the direct effect of resources and the effects through

self-productivity of skills. On top on this, households respond differently across grades,

which has additional implications for the optimal allocation.

This section presents the policy counterfactual analysis of optimal resource allocation

across school grades. The analysis is at the student level—i.e., I evaluate what is the

optimal allocation for each student. In this section, I evaluate policies that aim to capture

the consequences of the schools’ allocation decisions regarding monetary resources, teacher

assignment, and other transferable resources across grades.

In addition, optimization requires taking a stand on the objective function. The goal

is to evaluate the allocation that maximizes students’ well-being. A welfare proxy could

be earnings in adulthood, but this information is not available. Another strategy is to

maximize skills at the terminal period. However, existing work shows that the effects



65

Figure 2.2:
Model fit of targeted moments

Mean and SD of skills and parental and child time investment
Skills

Mean SD

Parental time
Mean SD

Child time self-investment
Mean SD

Note: The bars labeled data and model show the mean and standard deviation (SD) estimated in the real
data and in simulated data generated by the child development model.
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of teacher and class quality on test scores fade out in subsequent grades but “reemerge”

in later outcomes (Deming, 2009; Heckman et al., 2010; Chetty et al., 2011, 2014b). It is

possible that skills accumulated in a particular grade are not reflected in subsequent grades’

test scores, even though these skills are valued later in life. Thus, setting the terminal skills

as the objective function could fail to take into account all gains from certain allocations.

To address this issue, I set as the objective function a weighted average of skills across

grades. Each grade weight assigns value to the skills accumulated at that particular grade.

I define the weights as follows: For a subset of students in my sample,7 I observe if they

enrolled in college in the year following high school graduation.8 For these students, I

regress an indicator variable of college attendance on the skill measures at each school

grade. I then set as the weights the coefficients of this college attendance regression. That

is, the (student-specific) optimal policy maximizes the weighted average of skills across grades

or weighted skills index. The weights (normalized to sum up to one) are 0.10, 0.17, 0.24, and

0.49 in grades 4, 6, 8, and 10, respectively.

Lastly, I need to specify households’ behavior and their expectation process. I perform

the simulations for three household types based on different assumptions regarding their

behavior: 1) No response: households do not adjust their time investments to different re-

source allocations; 2) Policy-myopic: households respond to the contemporaneous changes

in resources but under the belief that in subsequent grades the resources are those of the

baseline allocation; and 3) Forward-looking: household are forward-looking and make

their decisions internalizing the dynamic implications of different allocations.

I simulate choices and skills using different estimates for each type. For non-responsive

households, I simulate the counterfactual of different allocations using the skill formation

technology. If households are policy-myopic, I simulate their choices using the approx-

imated policy functions of time investment. Note that the estimated time investment

functions do not take a stand on the expectation process—e.g., if households are myopic or
7The subset of students corresponds to students that by 2018 could have graduate from high school
8This information is available in the administrative data of higher education of Chile.
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forward-looking. However, simulations based on these estimates implicitly assume that

households are not taking into consideration that the expected resources in future grades

are different than those in the baseline allocation. If household were truly myopic (not

only in terms of the policy), the time investment functions provide the correct responses

for any policy implemented. Finally, the simulation under forward-looking households is

carried out with the dynamic child development model.

2.3.1 Policy-myopic households

In this exercise, I consider fourth graders in the sample and I simulate their classroom effects

at each grade using equation (2.2.4). The time investment functions and the skill technology

provide their choices and skills’ dynamics, respectively, for every possible assignment

across grades of the classroom effects {logCit}t=4,6,8,10. The optimal allocation for each

student maximizes their weighted average of skills. Note that reallocating classroom effects

across grades might seem extreme in terms of feasibility. However, even though this has

implications for the magnitude of the policy’s impact on skills, given the linearity of the

functions, it does not alter the conclusions drawn from the optimal allocation. Additionally,

the exercise in done under the implicit assumption of indivisibility of the classroom effect.

Nevertheless, in the next section I account for these potential restrictions in the allocation

decisions. The current exercise help us understand the mechanics of the impact of different

resource allocations.

Figure 2.3 plots the distribution of the difference between the classroom effects in

tenth and fourth grades (logCit=10 − logCit=4). Positive values imply school resources in

grade 10 are larger than in grade 4 and vice versa. Pushing on the technology’s parametric

assumption, this difference represents the logarithm of the rate of late to early classroom

investments.9 The white bars show the distribution under the baseline allocation and the
9This is similar to the exercise implemented in Cunha et al. (2010) regarding the optimal ratio of early to

late investments. The main difference is that their optimization problem allows resource reallocation across
children, while in the current setting resource reallocation is within students over time.
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Figure 2.3:
Policy myopic households: Optimal allocation that maximize (weighted) skills

Note: The white bars plot the distribution of the difference between the classroom effects in grades
10 and 4, under the baseline allocation. The colored bar shows the difference between the classroom
effect in grade 10 and 4 resulting from the optimal allocation. For students attending fourth
grade in the sample I draw classroom effects for grades 4 to 10 using equation (2.2.4). Then, with
the time investment functions (Table S.1.8) and the skill technology (Table S.1.5) I simulate the
household choices and their skills for every possible assignment of the realizations of classroom
effects {logCit}t=4,6,8,10 across grades. The optimal allocation maximizes the weighted skills index
of each student. The weighted skills are a weighted average of the skills across grades 4 to 10 and
the weights correspond to the coefficients of a regression of college attendance on measures of skills.
The weights (normalized to sum up to one) are 0.10, 0.17,.0.24 and 0.49 for grades 4, 6,8 and 10,
respectively. Note that using the investment functions for the simulations implicitly assumes that
households respond as if resources in subsequent grades are the given by baseline allocation.

colored bars plot the distribution resulting from the allocation that maximizes the weighted

skills index. For most students it is optimal if relatively more resources are allocated in

fourth grade than in tenth grade. Moreover, the distribution shifts substantially toward the

left suggesting that the baseline allocation is far from “optimal” and that there is room for

improvement under a balanced budget policy.

In addition, I perform the optimization setting as the objective function the terminal

skills of students. Figure 2.4 shows the distribution of the difference between the classroom

effects in tenth and fourth grades with terminal skills as the objective function. In contrast

to the case with the weighted skills index as the objective function, the distribution of the

difference between late and early school investments shifts toward the right—i.e., investing
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Figure 2.4:
Policy myopic households: Optimal allocation that maximize skills at grade 10

by mother education

Note: This figure shows the allocation that maximizes the skills at grade 10 of each student, as
opposed to maximizing a weighted average of skills. See note in Figure 2.3 for details.

relatively more in the upper grades maximizes the terminal skill stock of children. However,

assigning even a small weight to skills in previous grades alters the conclusion, leading to

a graph similar to Figure 2.3.

To characterize the optimal allocation of students of different backgrounds, I split

the distribution based on the demographic characteristics of students. The two panels

of Figures 2.5 and ?? show the distribution of the difference of classroom effects that

maximizes the weighted skills index but splitting the sample by the education level of

students’ mothers and household income quintiles, respectively. The bottom panels show

the corresponding cumulative distribution in each case. These graphs show that a larger

share of students from more affluent backgrounds have a negative difference between

classroom effects. For example, only around 10 percent of students whose mothers have

more than high school education have a (optimum) positive difference while this share is

20 percent for students whose mothers have high school or less education. This is largely

driven by higher self-productivity of skills for students from more affluent backgrounds.10

10See Figures S.1.6 and S.1.7, where the sample average of the marginal effects of current skills is larger for
students from more affluent families. This result is also invariant to the choice of objective function.
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Figure 2.5:
Policy myopic households: Optimal allocation that maximize (weighted) skills

by mother education

by household income

Note: See note in Figure 2.3 for details.

2.3.2 Forward-looking households

I use the child development model to evaluate resource allocations across grades and

define the optimal allocation of each student as the one that maximizes their weighted

skills index. Relying on the parametric assumptions on the skill formation technology and

the classroom process, a student has expected classroom inputs at each grade, conditional
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on xi0, given by:11

Rit = exp
∫ · · · ∫ (κ′txit + ∆it)× f∆,t(∆it)× d∆it ×

∏
t′≤t

fxt′ |xit′−1
(xit′ | xit′−1)× dxit′

 ,
(2.3.8)

where f∆,t is a density function of a normal distribution with mean zero and variance σ2
∆,t

and fxt|xit−1(xit | xit−1) is the transition function of xit. Thus, we can choose a policy that

allocates optimally those resources across grades.

A concern is that schools might face limitations on “moving” resources from one grade to

another; the classroom effects include school inputs such as teachers or monetary resources

that can be easily reallocated and others, like peer composition, that are not transferable.

Calculating the share of transferable resources is a complex task. As a simple solution,

I assume only 30 percent of inputs are transferable across grades. Nevertheless, below I

show results that suggest that this ad hoc assumption does not play an important role. At

most, setting the share of transferable resources has small implications for the magnitudes

of the impact of different allocations, but it does not affect the qualitative conclusions.

Let sit be the share of total transferable resources assigned to grade t. The policy assigns

expected classroom inputs at each grade given by:

E[Cit] = 0.7×Rit + sit
∑
t′

0.3×Rit′ . (2.3.9)

That is, the expected classroom inputs at grade t are given by 70 percent of the baseline’s

resources at grade t plus a share sit of the total transferable resources (the sum of 30 percent

of baseline resources at each grade). The optimal shares s∗i ≡ {s∗it}t are defined as:

s∗i ≡ argmax
si

∑
twt × log θit

subject to ∑
t sit = 1,

(2.3.10)

11The law of motion of classroom effects is logCit = κ′txit + ∆it. Before attending grade t, there is
uncertainty about the realization of the classroom shocks ∆it and the income process shock ωit (note that xit
includes household income).



72

Figure 2.6:
Optimal resource allocation across grades
Average shares of transferable resources

Note: This figure shows the average optimal shares of transferable resources at each school grade.
For students attending fourth grade in the sample I draw classroom effects for grades 4 to 10 using
equation (2.2.4). Then, with the child development model, I simulate the household choices and
skills under each possible resource allocation across grades for each student. The optimal allocation
is given by the shares of total transferable resources at each grade that maximize the weighted skills
index of each student. The weighted skills are a weighted average of the skills across grades 4 to 10
and the weights correspond to the coefficients of a regression of college attendance on measures of
skills. The weights (normalized to sum up to one) are 0.10, 0.17, 0.24 and 0.49 for grades 4, 6, 8 and
10, respectively. In this exercise I allow 30 percent of the resources of the baseline allocation of each
grade to be transferable across grades. See section 2.3.2 for additional details.

where the weights wt are the coefficients from the regression of college attendance on skill

measures.

Figure 2.6 shows the average (across students) optimal shares of transferable resources

assigned at each school grade.12 On average, the shares are decreasing across grades; at

fourth grade is around 47 percent and it decreases monotonically to 12 percent in grade 10.

Figure S.2.13 shows the average optimal shares by mother education and household income

quintiles. Similar to the policy-myopic setting, students from more affluent backgrounds,

given their higher skills’ self-productivity, tend to be assigned a larger share of transferable

resources at the lower grades.

Figure 2.7 shows the difference in average cognitive skills, classroom effects and time

investment between the optimal and baseline resource allocations. The difference in skills
12Figure S.2.17 presents the distribution of the shares by school grade.
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follows a inverse-U shape across grades and represents an increase of the weighted skills

index of 0.2 SD. In grade 4, on average, students receive additional school resources relative

to the baseline, which leads to an improvement in their cognitive skills. Households update

their expectations about the future school environment and increase parental and child

time investment. This improves cognitive skills in addition to the direct effect of the class

inputs. In subsequent grades, skills increase because the skills at the start of the grade

are, on average, higher. At these grades, changes in classroom inputs and parents’ and

children’s responses affect cognitive skills as well. However, in grade 6, average classroom

effects are practically unchanged and in grades 8 and 10 there are fewer resources with

respect to the baseline allocation, leading to an improvement in cognitive skills relatively

smaller than that in grade 6.

In order to understand the relevance of the ad hoc assumption of 30 percent transferable

resources at each grade, I carry out the same exercise under different constraints. The

top panel of Figure S.2.14 shows the average increase in the weighted skills index of

implementing the optimal allocation allowing from 10 to 50 percent of the baseline resources

at each grade to be transferable. If only 10 percent of the resources are transferable, this is

enough to increase the weighted skills index by 0.15 SD—25 percent lower than in the case

of 30 percent transferable resources. As we increase this percentage, the set of possible

allocations expands. Changing the restriction from 30 to 40 percent implies virtually zero

change in the weighted skills index. That is, for most household this constraint is not

binding and the unconstrained optimal allocation is (or is almost) achieved.

In addition, the bottom panel of Figure S.2.14 shows the policy impact on the average

weighted skills index for the top and bottom 20 percent of the household income distri-

bution. The increase in the weighted skills index is substantially larger for poor students;

between 45 and 70 percent higher than for richer students (depending on the percentage

of transferable resources). This result indicates that student from less affluent background

benefit relatively more from the optimal allocation.



74

Figure 2.7:
Difference between optimal and baseline allocation

of average skills, classroom effects and time investments

Average difference in weighted skills = 0.2 SD of skills

Note: The top, middle and bottom panels presents the difference between the optimal and baseline
allocation of the average skills, classroom effects and time investments, respectively. See note in
Figure 2.6 for additional details.
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The last exercise aims to quantify the contribution of the behavioral response in the

design of the optimal allocation policy. I calculate the optimal allocation defined by equa-

tion (2.3.10) for three households’ types: 1) forward-looking; 2) policy-myopic; and 3)

no response. Figure 2.8 shows the average optimal shares under the three scenarios. In

all cases, on average, it is optimal to allocate relatively more resources in lower grades,

especially in fourth grade for forward-looking and non-responsive types. The pattern

is more pronounced if households do not alter their behavior. However, policy myopic

households assign at fourth grade an average share of around 25 percent—almost half of

the other two types. Part of the reason is that policy myopic households decrease parental

time as a response to additional resources, diminishing the benefits of allocating resources

at this grade.13 Forward-looking households, on the other hand, increase their parental

time (on average) when additional resources are allocated in fourth grade. The difference

is because forward-looking households internalize that these additional resources imply

lower resources in subsequent grades.

I perform a thought experiment to quantify the relevance of households’ responses in

the design of the optimal allocation. I can characterize the optimal allocation under the

assumption that households do not respond. I then calculate the impact of this allocation

on child development in the scenario that parents and children do actually respond. Finally,

I compare the outcome with the impact of the optimal allocation that internalizes the

behavior of households. The differences between the outcomes indicate the importance of

the behavioral response in the characterization of the optimal allocation.

In Figure 2.9, I plot the average difference in the weighted skills index between the

optimal and baseline allocations. Each bar corresponds to a particular household type (first

line of the bar’s label) and implements the optimal allocation calculated for an specific

household type (second line of the bar’s label). For example, the first bar from the left

(light blue), shows the average difference between the optimal and baseline allocation
13Figure S.2.15 presents the difference of the average classroom effects between the optimal and baseline

allocation for each household type.
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Figure 2.8:
Average shares of optimal allocation

by household behavioral type

Note: The figure presents the average shares of total transferable resources of the optimal allocation
for each household type. No response: households do not respond to different allocations; Policy
myopic: households respond as if resources in subsequent grades are the given by baseline allocation;
Forward-looking: households are forward-looking and make their decisions understanding the
dynamic implications of different allocations. For non-responsive households I simulate skills
dynamics using the skill technology (Table S.1.5). For policy myopic household I simulate their
choices and skills with the time investment functions (Table S.1.8) and skill technology. For forward-
looking households I simulate their choices and skills with the full child development model (see
Section 2.2.1 or the note in Figure 2.6 for additional details).

assuming households do not respond and the allocation is optimal for this household

type. Under this scenario, the weighted skills index improves, on average, by 0.09 SD.

This allocation would be the one we would characterize as optimal if we did not consider

behavioral responses of households at all.

Now, if households actually do respond and this allocation is implemented, the average

change in the index would be that of the second (orange) and fourth (purple) bars from

the left of Figure 2.9—i.e., 0.06 and 0.16 SD for policy-myopic and forward-looking types, re-

spectively. Meanwhile, if the allocation implemented is optimal for the “correct” household

type, the average impact of the optimal allocation equals 0.17 and 0.20 SD for policy-myopic

and forward-looking types, respectively, as shown by the third (green) and last (dark blue)

bars from the left of of Figure 2.9. Not considering behavior in the characterization of the

optimal allocation of school resources implies considerably smaller average improvements
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Figure 2.9:
Average differences in weighted skills between optimal and baseline allocation

Note: The figure presents the difference of the average weighted skills between the optimal and
baseline allocation. The results are by household type (first line in bar’s label) and by implementing
the optimal allocation for a particular household type (second line in bar’s label). Household
types: No response: households do not respond to different allocations; Policy myopic: households
respond as if resources in subsequent grades are the given by baseline allocation; Forward-looking:
households are forward-looking and make their decisions understanding the dynamic implications
of different allocations. For non-responsive households I simulate skills dynamics using the skill
technology (Table S.1.5). For policy myopic households I simulate their choices and skills with the
time investment functions (Table S.1.8) and skill technology. For forward-looking households I
simulate their choices and skills with the full child development model (see section 2.2.1 or note in
Figure 2.8 for additional details.).

in the weighed skills index, between 25 and 65 percent lower depending on the type of

household behavior.14

2.4 Conclusions

Motivated by the heterogeneous responses by grade found in chapter 1, in this chapter, I

analyze optimal resource allocation policies across education levels to understand how

the differential impact by grade of school resources and home investments can be used to
14Figure S.2.16 shows the average difference between the optimal and baseline allocations in skills at each

grade associated with the scenarios presented in Figure 2.9.
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design the optimal allocation of the school resources across grades.

I build and estimate a child development model using an indirect inference approach.

The estimates help us understand the extent of the behavior’s contribution in the design of

the optimal allocation of school resource across grades. I characterize the optimal allocation

across grades that maximize weighted skills. Where the weights are given by a regression

of college attendance of skills. The optimal allocation improves the (weighted) skills

outcome by 0.20 SD with respect to the baseline allocation. On average, it is optimal for

schools to invest relatively more in the lower grades. Considering household behavioral

responses plays a key role in the design of policies. The characterization of the optimal

allocation under the assumption of no behavioral response implies substantially smaller

improvements if households do respond to school inputs; between 20 and 65 percent lower

depending on the assumptions made regarding the household’s expectations process.
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Chapter 3

On-the-Job Training and Employer

Asymmetric Learning

Chapter summary

In the third chapter, I develop an empirical test for employer asymmetric learning about

the productivity gains of On-the-Job (OTJ) training programs. I developed a model of

OTJ training and employer learning. I solve the model under two types of learning: (i)

asymmetric, where the current employer learns faster than potential employers and (ii)

symmetric, where the whole market learns simultaneously. The solution suggests different

wage profile predictions under each form of learning. I build a test based on these pre-

dictions and implement it on the Chilean Social Protection Survey by estimating a wage

equation with interactions of training variables and tenure on the job. The results provide

evidence of employer asymmetric learning.
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3.1 Introduction

Under the classical microeconomic model of labor supply, firms have the same information

about workers’ productivity and there is no uncertainty (whether a worker has been

employed at a particular firm or not). Several papers have theorized scenarios where the

current employer of a worker has better knowledge about her productivity than other

potential employers. In the literature, this phenomenon is referred as employer asymmetric

learning. The consequences usually involve inefficiencies in several dimensions, such as

wages, job mobility and assignment, and human capital accumulation, among others.1

In this chapter, I build an empirical test for employer asymmetric learning regarding the

productivity gain from on-the-job training programs.

Using different strategies a large set of studies have attempted to test the hypothesis that

a worker’s current employer has better information or learns faster about her productivity

(e.g., Acemoglu and Pischke, 1998; Schönberg, 2007; Kahn, 2013; Zhang, 2007; Pinkston,

2009, among others). These papers focus on information asymmetries regarding the innate

ability of the worker. If in some degree the information is transmitted between employers,

inefficiencies should decline as the worker spends more time in the labor market. The

seminal work of Farber and Gibbons (1996) and Altonji and Pierret (2001) evaluates the

hypothesis of the employer learning. Furthermore, the work of Schönberg (2007) builds

on their methodology to test asymmetric learning regarding workers innate ability and

her results suggest that learning might have a non-trivial symmetric component. However,

workers’ productivity changes along their lives—e.g., via human capital accumulation due

to training or learning by doing. For instance, if a worker participates in a training program

and her firm has a better understanding of the training’s productivity gain than other

potential employers, even if every potential employer know the worker’s innate ability,

inefficiencies might still arise as a consequence of these changes in productivity.
1Some examples are Waldman (1984), Greenwald (1986), Waldman (1990), Gibbons and Katz (1991)

and Golan (2005).
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In this chapter, I focus on employer asymmetric learning about productivity changes

due to on-the-job training (OJT). I develop a model of on-the-job training and employer

learning. I solve the model under two distinct forms of employer learning: asymmetric

and symmetric. In the former, the current firm of the worker—i.e., the firm where the

worker received the training—learns the productivity gain from training faster than other

potential employers. In the symmetric case, the whole market learns the returns of the

training undertaken by workers simultaneously.2 The model implies different predictions

under the two types of learning. These results provide testable implications regarding

the way information is transmitted across employers. I develop a test for the presence of

asymmetric learning using these predictions. I implement the test on the Chilean Social

Protection Survey (SPS) data by estimating a wage equation with interactions of training

variables and tenure on the job.

The model consists of a competitive spot labor market, where each period firms make

wage offers to workers. Current and potential employers can make wage offers to every

worker. Firms and workers can only commit to one-period non-contingent contracts.

Training delivers heterogeneous productivity returns and employers learn the return to

training after workers participate in the production process. I assume a mass one of workers

and infinite number of firms; both types of agents live forever in a discrete time setting. In

the initial period workers receive wage offers and some participate in training programs

depending on training cost and expected benefits. At the end of the period production takes

place and firms learn workers’ productivity. Current employers can lay off workers using

that information and with some probability workers are separated exogenously. Workers

are laid off only if there is asymmetric learning, since outside offers are based on expected

productivity. The current firm is not willing to match offers of workers with productivity

below the expected productivity and lay offs workers for which it is not possible to make
2In the model, I further assume that learning is instantaneous. The difference between asymmetric and

symmetric learning is that in the former the current firm learns immediately and potential employers only
learn if they hire the worker. In contrast, in the symmetric learning case the entire market learns the workers’
productivity right after the training takes place.
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profits. Instead, under symmetric learning, the entire marker knows the training returns

and firms make offers accordingly. The incumbent firm matches outside offers making

workers indifferent. In the symmetric case, workers change jobs only if they are exogenously

separated.

The offers to the pool of separated workers also depends on the type of learning. If

asymmetric, outside firms do not know which are laid off and which ones exogenously

separated, and the framework gives rise to adverse selection. As a result wage offers in the

secondhand market are lower than the ones to those who remain at the firm that trained

them. However, in the following period, new employers learn their newly hired workers’

productivity and makes new wage offers and layoff decisions accordingly. Those who

are not laid off will experience an increase in their wages, since the market gathers new

information about their productivity. In contrast, in the symmetric case every firm knows

every workers’ productivity after the first period and make offers accordingly, regardless

of whether workers switch jobs or not. These are the key predictions of the model: On the

one hand, workers who stay with the firm at which they received training will get wage

returns from training and it will be constant across tenure. On the other hand, workers

who change jobs lose their wage gains from training due to the adverse selection problem,

but if they remain at their current job they recover those wage gains.

To develop the testing strategy, I build on previous work that tests for employer asym-

metric learning regarding workers’ innate ability. In particular, Schönberg (2007) builds

on the employer learning framework of Farber and Gibbons (1996) and Altonji and Pierret

(2001). The latter studies suggest that employer learning could be tested by comparing the

evolution across workers experience in the labor market of the wage effect of the variables

observed and not observed by employers, such as education and ability, respectively. If

employers learn to some degree, then for low experience workers, characteristics easily

observed by employers, such as education, should be highly priced in the marker. In

contrast, characteristics difficult to observe, such as ability, should not affect wages. As
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experience in the labor market increases the returns to education should get weaker as the

returns of ability gets larger.

Schönberg (2007) suggests that in the presence of asymmetric learning the evolution of

these variables’ effects on wages should be associated with tenure and not experience. Her

results suggest that employers learn about their employees’ innate ability symmetrically.3

In a similar spirit, I estimate a wage equation with interacting indicator variables of training

with current and previous employer and tenure on the job. Under the predictions of

symmetric learning the coefficients of the interaction variables should be equal to zero. In

contrast, under the asymmetric setting, the interaction between training at the previous

jobs and tenure should be positive.

I build a secondary test following a different strategy. Some studies use exogeneous

variation that allows them to identify asymmetric information between current and poten-

tial employers. If firms can be discretionary about which workers to lay off, they would

first let go those with the lowest productivity. If outside firms do not observe these workers’

productivity, this implies adverse selection in the pool of laid off workers. Gibbons and

Katz (1991) argue that if this is the case, workers who were laid off due to plant closings

should have, on average, higher wages at their new firms, relative to those laid off for other

reasons—since these workers are less affected by the adverse selection problem. Comparing

these workers groups they find evidence of asymmetric information.

Acemoglu and Pischke (1998) use a similar strategy. They suggest that workers who

are drafted in the military should not be subject to the adverse selection problem and their

wages should be, on average, larger than those who change jobs for different reasons. Using

a sample of young workers from Germany they find evidence of asymmetric information.

I perform a test in the spirit of the Gibbons and Katz (1991) strategy. The adverse selection

problem should affect trained workers as well; the laid off workers should be those with
3It should be noted that under similar but extended frameworks Zhang (2007) and Pinkston (2009) find

evidence that employer learning about workers innate ability is strongly asymmetric.
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lower training productivity returns.4 I can then compare the returns of training of workers

who were laid off because of plant closing and those separated for other reasons. In the

presence of asymmetric information, the former group should have, on average, larger

wage returns to training.

The data in the chapter comes from the Social Protection Survey (SPS). The SPS is a

nationally representative Chilean household survey with a panel scheme with five waves—

2002, 2004, 2006, 2009 and 2015. It contains detailed employment and training histories as

well as other socioeconomic characteristics of the respondents. Thus, following Loewenstein

and Spletzer (1998) it is possible to estimate the returns to training. Moreover, under

specifications that nest the predictions of the model under both types of learning, I can

build the empirical test of asymmetric learning. In addition, it is possible to use a similar

strategy as Gibbons and Katz (1991) since there is information on reason for job separation.

Under the assumption that displacement due to plant closing implies no adverse selection,

the return to training that took place at previous jobs should be larger for those displaced

because of plant closings. Both sets of results suggest that learning about training returns

is asymmetric.

The structure of the chapter is as follows: The next section develops the theoretical

framework. It includes the model and the equilibrium under two extremes forms of learning,

that is, with employer symmetric and asymmetric learning. Section 3.4 presents the data

and descriptive statistics. I present the empirical testing strategy for testing employer

asymmetric learning regarding the productivity gain from OTJ programs in Section 3.5.

Section 3.6 presents the results. Finally, Section 3.7 concludes the chapter.
4In the model there is exogenous separation of workers, however, I assume that potential employers can

not distinguish between those workers and the laid off ones. This strategy is in turn somewhat conflicting
with the setting of the model. Nevertheless, it should be thought as a particular case of separation shock
where firms are aware of this separation. Instead the exogenous separation in the model should be though as
a idiosyncratic shocks instead.
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3.2 Model of on-the-job training and employer learning

I develop a model of on-the-job training with heterogeneous productivity returns and

employer learning regarding the productivity gains. The aim is to obtain wage profile

predictions under two types of learning: symmetric and asymmetric. On the one hand,

symmetric learning across current and potential employers means that, once an employer

learns a worker’s productivity following participation in a training program, the whole

market does as well. On the other hand, asymmetric learning refers to when the current

employer learns faster than outside firms. In particular, I consider the extreme case were

the learning of the incumbent firm represents perfect information while outside firms do

not learn at all.5 The different predictions that follow from the two scenarios allow me to

empirically evaluate the existence of employer asymmetric learning.

The equilibrium sheds light on the mechanisms by which learning affects training

decisions and wage profiles depending on whether all firms learn at the same time or

asymmetrically. This section proceeds as follows: First, I outline the main features of

the model. Second, I present a characterization of agents and technology, information

structure, timing of events, agents’ behavior, and equilibrium conditions. Finally, I provide

a parametrization and the solution of the model under both learning settings.

3.2.1 Description of the model

The model consists of firms and workers who maximize discounted profits and earnings,

respectively. While firms are homogeneous, workers are heterogeneous across innate

ability.

At the initial period of the model there is the possibility of a training program which

increases the productivity of workers. The productivity gains are heterogeneous, and an
5Learning may take different forms, and information can spread across the market in many ways. For

the current chapter, I only consider the distinction between the learning of the incumbent firm and outside
firms. Furthermore, learning could be gradual. However, the extreme cases I consider make the model more
tractable, and the qualitative theoretical results are not affected.
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employer learns the change of the worker’s productivity only after she participates in the

production process at that firm. The assumption about the symmetry of learning plays

a role at this point. If the current firm of the worker learns her productivity gain at the

same time that any other potential employer, it would be considered symmetric learning.

In contrast, if only the current employer learns the return, but it is still unknown to any

other potential employer, it is asymmetric learning.

Firms compete for workers and free entry implies ex-ante zero profits. However, it is

assumed that firms incur costs to hire workers. Therefore, firms have ex-post monopsony

power and pay workers below their productivity, regardless of the worker’s training status.

If workers are trained, the presence of asymmetric information and hiring costs allow

firms to extract additional rents. For example, if outside firms do not observe the pro-

ductivity of trained workers, incumbent firms offer wages below productivity and extract

additional rents, while workers from whom firms cannot extract rents at equilibrium are

lay off. In addition, the model includes exogenous separation; that is, even workers the

incumbent firm prefer to retain are separated from the job with some probability. Outside

firms know the probability distribution of that event but do not observe if a particular

worker was lay off due to her productivity or for exogenous reasons.

In the following subsections I describe the features of the model. In particular, I will

focus on the setting with asymmetric employer learning. First, I describe the agents and

environment, following with the information structure and timing of the model. Then,

I detail the behavior of the agents and the conditions that characterize the equilibrium.

Finally, I describe the parametrization and solution of the model under the two learning

scenarios.

3.2.2 Agents and environment

There is a mass 1 of workers, heterogeneous across innate ability, denoted by µ and drawn

from the distribution Γ. Workers live forever and discount future values with the parameter
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β. There is a training cost, c, drawn from the distribution G. Firms offer wages and workers

select into training by observing their own cost. It would be not profitable for the worker

to get training if she has a sufficiently large training cost.

Firms are homogeneous and there is free entry. The firm where the worker is currently

employed will be labeled the incumbent firm, while any potential employer will be called an

outside firm. The terms firm and employer will be used interchangeably. The production

function has constant returns to scale, and the output generated by each worker equals

their productivity. To hire a worker firms will have to pay a fixed cost denoted by h. Hiring

costs play a key role as in Gibbons and Katz (1991) and Hu and Taber (2011). These costs

could be interpreted as mobility costs incurred by the worker, hiring costs incurred by the

new employer or firing costs incurred by the current employer.6 Anything that implies an

advantage to the current employer with respect to potential outside employers will lead to

the same results.

The model includes investment decisions in on-the-job training. Those who are trained

increase their productivity by α, which is drawn from a distribution F with density f .

The α will also be referred to as the “type” of a worker. Thus, given the realization of c

and the expected returns to training, there is a threshold on the support of the training

cost distribution G such that every worker with a c below it will be trained. If workers

participate in a training program their productivity is µ+ α; otherwise it is given by µ.

3.2.3 Information structure

Every agent in the model observes the innate ability of workers, µ, and their associated

training cost, c. However, employers only learn α after the production process takes place.

It is assumed that α is independent of c and µ. The qualitative results hold without this

restriction and it simplifies the analysis. Firms know all labor histories of workers—i.e.,
6This assumption seems quite reasonable, especially in a context like Chile. At least in the formal sector,

the firing costs in Chile are high. For every year the employee worked at the firm, the employer must give a
severance payment of one monthly salary. The payments start running after half a year of contract, and the
maximum corresponds to 11 years.
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wages and jobs they previously had. Moreover, since employers observe c they also know

which workers were and were not trained. Firms know the distribution of training returns,

F .

Given the existence of hiring costs, the incumbent firm has ex-post monopsony power

and is able to generate positive profits from some workers, while laying off non-profitable

workers. Even though outside firms do not observe each worker’s α, they know F and

the threshold incumbent firms use to make lay off decisions. It is assumed that there is a

potential shock by which some employees are separated from the job exogenously. With

probability ξ—known by workers and firms—a retained worker is separated from her

job due to reasons exogenous to the model. Outside firms, however, cannot distinguish

between laid off workers and those who were hit by this shock. This assumption introduces

turnover that is not a consequence of asymmetric information. To simplify calculations,

and without loss of generality, it is assumed that this shock happens only at the end of the

period in which training takes place.

In summary, firms and workers observe everything in the model but the productivity

returns from training. Under asymmetric learning, only the incumbent firm learns its

trained workers’ α after they finish the production process. However, in the symmetric

learning setting, once one firms learns the workers productivity, the whole market has

that information. By assumption, workers do not know their own α—workers have the

same information as outside firms. If this were not the case, outside firms would be able

to design wage contracts such that workers would reveal their α. This assumption shuts

down this possibility.

3.2.4 Timing

Similar to Hu and Taber (2011), workers live forever but all the interesting features of

the model happen in the first three periods. In a finite period version of the model, wage

profiles will be affected by the retirement decision. The assumptions imply that the training
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decisions are made far before retirement. The events that occur at each period are as

follows:

• Period 1: First, each worker gets a realization of µ and c drawn from the distribu-

tions Γ and G, respectively. Those with training costs below a certain threshold are

trained. Second, firms make offers to workers, competing away any discounted value

of expected future profits and workers choose which one to accept. Third, workers

participate in the production process and employers learn their trained workers’ pro-

ductivity. Finally, employers make lay off decisions and there is a potential separation

shock to retained workers.

• Period 2: At the beginning of the period firms make offers and workers decide which

one to accept. The production process takes place and firms—if they did not know

them already—learn their workers’ productivity and lay off the ones who are not

profitable (there is no separation shock at this period or beyond).

• Period 3 and all later periods: Firms make offers and workers decide which one to accept.

Workers participate in the production process, and there are no more layoffs.

It is assumed that a firm only lays off workers at the end of the period in which it

learned their productivity. It may be profitable for firms to lay off workers in later periods;

however, they should be few in number and the assumption of no later layoffs simplifies

the calculations. It is also assumed for similar reasons that the separation shock arrives

only at period 2.

3.2.5 Behavior of workers and firms

Workers are risk neutral and they maximize the expected present value of their earnings.

By assumption trained workers do not know their own realization of α. Workers have the
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same knowledge than outside firms about their productivity. Therefore, workers behavior

is quite simple: it only involves choosing the optimal offer at each period.

Risk neutral firms maximize discounted expected profits and employ different groups

of workers; (i) those who were not trained, (ii) those who were trained, and the firm knows

their productivity and (iii) those who were trained, and the employer does not know their

productivity. Constant returns to scale imply that firms could have any combination and

number from these groups of workers—i.e., there could be one worker at each firm, a single

firm hiring every worker, or any combination in between.

When firms make offer to workers at the beginning of period 1 they know which workers

will receive training but they do not know the realizations of α. Firms will compete away

any positive expected profit. After trained workers participate in the production process,

their employers learn their productivity. Since outside firms do know this information in

the asymmetric learning case and there are hiring costs, incumbent firms lay off workers

from whom they cannot make profits. However, given the possibility of the separation

shock, workers who leave the firm will be a combination of laid off workers and those who

received the shock. Outside firms are not be able to distinguish between them but will use

this information.

At period 2, outside firms make offers knowing which workers are laid off or separated

and which ones are retained. There are workers from all three groups in the economy. First,

workers produce, and firms learn workers’ productivities. Second, at this period there are

two kinds of incumbent firms: those which already made their lay off decisions and those

which have not done so yet. The latter will decide which worker lay off, retaining only

those who are profitable.

By assumption there are no more layoffs after period 2. Thus, at period 3 and in all

later periods, firms make wage offers and workers decide which offer to accept maximizing

their expected present value of earnings.
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3.2.6 Equilibrium

The equilibrium in the model comes from four conditions:

1. Outside firms’ wage offers are determined such that firms earn on expectation zero profit.

2. Incumbent firms’ wage offers are chosen such that workers are indifferent between staying or

leaving.

3. Firms retain workers for whom it is profitable to do so.

4. Workers make choices such that they maximize the expected present discounted value of

earnings.

3.2.7 Parametrization and solution

Let F ∼ Uniform(0, α) and G ∼ Uniform(0, c). The functional forms of these distributions

has implications for the model; however, it makes the calculations simpler, and the results

hold for any well-behaved distributions. It is assumed that hiring costs are small enough

such that it is profitable to hire lay off workers, but large enough that is not profitable to

lay off workers at the third period. To solve the model, it is not necessary to parameterize

the distribution of workers’ innate ability; it will just be denoted by Γ.

Figure 3.1 presents the timeline of the first three periods of the model—all further

periods will be exactly the same as the third one. Some notation clarification: letters w

and v denote incumbent and outside firms’ offers to trained workers; letters x and z refer

to incumbent and outside firm offers to not trained workers. First period wage offers to

(future) trained and untrained workers are denoted by v1 and z1, respectively. After period

1, workers who did not receive training are offered xt by their current firm and their outside

offer is denoted by zt, where t ≥ 2 index periods.

Wage offers to trained workers require additional notational detail. Let wk,jt denote a

wage offer of an incumbent firm at period t, where the supra-index k denotes the separation
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Figure 3.1: Timeline of the model
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status—k = R and k = L for retained and laid off (or exogeneously separated) workers,

respectively— and j ≥ 1 indexes the period at which the worker was retained for the first

time or, if k = L, it states the period the worker was laid off.7 Outside firms observe the

layoff/retained status of the worker, thus, they will offer different wages to each group. In

summary, there are three possible offers associated with trained workers; Incumbent firms’

offer, wR,jt , outside offers to retained workers, vR,jt , and outside offer to laid off workers,

vL,jt .

Under the previous notation and parametrization, I solve the model in the following

subsection. First, I describe the solutions in an environment with asymmetric employer

learning, and second, the solution under symmetric learning.
7Incumbent firms’ wage offers to retained workers will vary depending on the period they were retained

for the first time. Firms will track this information because it implicitly assigns the worker to a particular
group of types.
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Asymmetric learning equilibrium

This section presents the solution of the model under asymmetric learning. I solve the

model by backward induction. First, I develop the solution of the non-trained workers’

problem.

The productivity of these workers is known. When a firm hires a worker it incurs the

costs denoted by h. Nevertheless, once the worker is hired, the firm has monopsony power—

any potential employer will have to pay the hiring cost. However, any positive profits the

firm may get are competed away in the first place due to the free entry assumption. Thus,

at any period t non-trained workers will be offered their productivity minus the hiring cost

plus the present value of expected profits of future periods.8 Formally, the outside wage

offers at period t are:

zt = µ− h+ βEξ(πNt+1), (3.2.1)

where πNt+1 denotes firm’ discounted value of profits from period t + 1 and on and the

expectation operator is over the distribution of the exogenous separation shock, ξ. I define

π(α, yt, yt+1, . . .) as the profits discounted value from period t and beyond a firm obtains if

it retains a worker of type α forever with the wage sequence (yt, yt+1, . . .). These profits do

not include hiring costs. To reduce notation, I denote the wage sequence (yt, yt+1, . . .) as

y(t). Formally:

π(α, y(t)) =
∞∑
τ=0

βτ (µ+ α− yt+τ ). (3.2.2)

Thus, πNt+1 ≡ π(0, z(t + 1)). The current employer has no incentives to offer more than a

tiny bit above the outside offer and it faces the same problem at every period. Hence, the

solution at every t is the same and for every t ≥ 2,

zt = µ− (1− β)h, (3.2.3)
8In equilibrium, the only uncertainty about workers who were not trained comes from the exogenous

separation shock that hits at the end of period 1; there is no uncertainty after µ and c are realized.
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and π(0, z(t+ 1)) = h. Incumbent and outside firms’ wage offers to untrained workers will

be zt = µ− (1− β)h for every t ≥ 2. In contrast, given the exogenous shock probability ξ at

the beginning of period 2, for t = 1 we have that z1 = µ− [1− β(1− ξ)]h.

The wage determination of trained workers is more interesting. To solve for the firms’

offers I follow a similar path as for non-trained workers: first, the retained workers’ outside

offers, and so the retention offer by the incumbent firms; second, lay off decisions; and

third, outside offers to separated workers. Consider a firm that at period 2 wants to poach

a worker from a firm that retained her at period 1. The expected value of a worker is the

sum of her expected productivity at each period minus the hiring cost, h,

∞∑
t=2

βt−2
[
µ+ E(α | α ≥ α∗)

]
− h. (3.2.4)

where α∗ is the cut-off level in the support of F where every trained worker below it is laid

off in period 1 and those above it are retained. This equation is crucial for the determination

of the incumbent firms’ wage offers. Outside firms will compete away any expected future

profit to attract the workers. Thus, the outside offer, vR,12 , is given by the worker’ expected

value. The current employer is not willing to offer more than a tiny bit above it—i.e., at

equilibrium wR,1t = vR,1t for any t ≥ 2.

If an outside firm poaches a worker with productivity µ+ α at period 2, the period 3

discounted value of equilibrium profits is π(α,wR,1(3)).9 It is worth noticing that, if the

firm poaches the worker, in the following periods it will pay exactly the same (equilibrium)

wages that the previous employer would have paid, wR,1t for t ≥ 3. Thus, the outside offers

to a retained worker at period 2, vR,12 , are:

vR,12 = µ+ E(α | α ≥ α∗)− h+ βE(π(α,wR,1(3)) | α ≥ α∗), (3.2.5)
9In equilibrium this does not happen. Workers will not accept outside offers if they are not laid off;

however, outside offers are crucial for the determination of their wages in equilibrium.
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and the incumbent firm will match the offer—i.e., wR,12 = vR,12 .10 Furthermore, it chooses

α∗ such that it is indifferent to retaining the worker or not. That is,

µ+ α∗ − wR,12 + βπ(α∗, wR,1(3)) = 0. (3.2.6)

It should be noted that profits in the previous equation are certain, there is nothing that the

current employer does not know about the worker. Those who are laid off receive offers

from outside firms that only know that their α is below α∗. Thus, these offers are expressed

as

vL,12 = µ− h+ F (α∗)
F (α∗) + [1− F (α∗)]ξ ×

[
E(α | α < α∗) + β

[F (α∗)− F (α∗∗)]
F (α∗) E(π(α,wR,2(3)) | α∗∗ ≤ α < α∗)

]

+ [1− F (α∗)]ξ
F (α∗) + [1− F (α∗)]ξ ×

[
E(α | α ≥ α∗) + βE(π(α,wR,2(3)) | α ≥ α∗)

]
(3.2.7)

where α∗∗ is the cut-off level by which the new firm makes its lay off decisions—i.e., it

will lay off all workers with α below α∗∗, and retain them otherwise. The share of trained

workers that change jobs at the end of period 1 is F (α∗) + [1− F (α∗)]ξ. Among those, a

fraction F (α∗)/(F (α∗)+[1−F (α∗)]ξ) was laid off and the complement [1−F (α∗)]ξ/(F (α∗)+

[1− F (α∗)]ξ) was exogenously separated employees.

Furthermore, [F (α∗)− F (α∗∗)]/F (α∗) is the fraction of laid off workers who will not be

laid off at the end of period 2. These workers at period 3 have an outside offer given by its

expected productivity minus hiring costs plus any positive expected discounted value of
10The offer vR,12 does not include the probability of exogenous separation in the expectation of profits

since that kind of separation only happens at the end of period 1 by assumption.
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future profits, formally:

vR,23 = µ− h+ F (α∗)− F (α∗∗)
F (α∗)− F (α∗∗) + [1− F (α∗)]ξ ×

[
E(α | α∗∗ ≤ α < α∗) + βE(π(α,wR,2(4)) | α∗∗ ≤ α < α∗)

]

+ [1− F (α∗)]ξ
F (α∗)− F (α∗∗) + [1− F (α∗)]ξ ×

[
E(α | α ≥ α∗) + βE(π(α,wR,2(4)) | α ≥ α∗)

]
(3.2.8)

New incumbent firms match the previous offers, wR,23 = vR,23 . Thus, firms choose α∗∗ such

that they are indifferent between retaining and laying off the worker with α = α∗∗. That is,

µ+ δα∗∗ − wR,23 + βπ(α∗∗, wR,2(4)) = 0. (3.2.9)

Workers with α < α∗∗ are laid off at the end of period 2. Using that information outside

firms make offers,

vL,23 = µ− h+ E(α | α < α∗∗) + βE(π(α,wR,3(4)) | α < α∗∗) (3.2.10)

The last condition needed to close the model is to define period 1 wage offers to those

who are trained. Firms know the value of c, so they know which workers will be trained.

Nevertheless, potential employers do not know the productivity return of each worker.

They offer workers their expected productivity plus the discounted value of expected future

profit from period 2 and beyond, minus the hiring and training costs:

v1 = µ+ E(α)− h+ β[1− F (α∗)](1− ξ)E(π(α,wR,1(2)) | α ≥ α∗)− c. (3.2.11)

The assumption that workers are credit constrained sets the training cost threshold’s

value at which workers are trained or not. Let cA denote the threshold such that workers

with a lower training cost get training and those above it do not, where the superscript A
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denotes the presence of asymmetric information. In the presence of symmetric information

the threshold will be denoted by cS .

Thus, with credit constrained workers and employer asymmetric learning, cA = β[1−

F (α∗)](1 − ξ)E(π(α,wR,1(2)) | α ≥ α∗). There are two sources of inefficiency, one comes

from the fact that under asymmetric learning firms do not collect profits from all workers

who are trained—only from a fraction [1 − F (α∗)](1 − ξ). However, as other firms can

extract rents from those workers, it would be optimal for them to contribute to additional

workers’ training, but there is no channel by which they could it. The second source is

trivially the financial constraint of the workers. The value of the cut-off is11

cA = β(1− ξ)2(1− β)h
α

h (3.2.12)

Note that if workers are not credit constrained, investment in training is optimal re-

gardless of whether learning is symmetric or asymmetric. In the first period, workers

receive wages that include all expected benefits, so perfect financial markets lead to optimal

training decisions. However, if workers are financially constrained to some degree, asym-

metric learning implies under-investment in human capital. Nevertheless, the predictions

of the model under the two types of learning does not differ by whether workers are credit

constrained or not; only the fraction of trained workers differs under the two scenarios.

Symmetric learning equilibrium

Symmetric learning implies that after the incumbent firm knows the productivity return

of training every other potential employer also knows the exact value of each worker’s

productivity. The symmetric case is an environment where the labor market is competitive

but there are hiring costs. These costs imply ex-post monopsony power, however, in this

environment firms cannot make additional profits out of the workers’ training returns,
11See Appendix E.
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unlike the asymmetric learning setting. Thus, there are no lay offs, workers separate only

exogenously at the end of the first period and remain at their job from period 2 on in

equilibrium.

At period 2, outside offers to untrained workers are the same as in the asymmetric

environment. At the beginning of period 2, some trained workers were separated from

their job due to exogenous reasons with probability ξ and firms make them offers. In the

symmetric case, separation information is irrelevant to outside firms because they observe

the worker’s productivity and make offers to retained and separated workers accordingly.

As in the asymmetric environment they compete away any discounted value of future

profits and subtract the hiring cost, so that,

v2 = µ+ α− h+ βπ(α,w(3)). (3.2.13)

The previous offer will be exactly the same at each period and the current employers match

it—i.e., wt = vt for every t ≥ 2. Profits are given by:

π(α,w(3)) =
∞∑
t=3

βt−3 (µ+ α− wt) . (3.2.14)

Thus, offers made by incumbent firms—and outside firms— are defined as wt = µ+ α−

(1 − β)h for every t ≥ 2. At period 1, competition among firms determines the wages

(future) trained workers will earn:

v1 = µ+ E(α)− h+ β(1− ξ)E[π(α,w(2))]− c (3.2.15)

where the profits’ discounted value is given by π(α,w(2)) = h. If workers are credit

constrained, the training costs threshold is given by the profits’ discounted value—i.e.,

cS = β(1− ξ)h.
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3.3 Predictions of the model

The model predicts different patterns of wages across tenure under employer asymmetric

and symmetric learning. Those results can be used to develop a testing strategy for asym-

metric learning. In particular, if employers learn the training return symmetrically, the

wages will not vary across tenure levels beyond the training period, whether the worker is

at the training firm or at a different one. After a firm learns the productivity of a worker,

that information spreads through the whole market and competition implies that workers

collect the returns to training at any firm.

In the asymmetric environment the previous result for trained workers does not hold

anymore. The wage profile with tenure is different if the worker stays at the training firm

or if she moves to a new job. If the worker is retained at the training firm, after the training

period there is no change in wages, however, after the training process is over and learning

takes place wages go from v1 to wR,12 , that is the following increase

wR,12 − v1 = E(α | α ≥ α∗)− E(α) + (F (α∗) + [1− F (α∗)]ξ)βh+ c (3.3.16)

In contrast, those who change jobs have lower wages than in the previous firm. Their wages

are lower due to the adverse selection effect. The wage difference is given by vL,12 − wR,12 .

Furthermore, if those workers are retained at their new job, they get a wage increase in the

following period wR,23 − vL,12 , and adverse selection in job separation guarantees that this

difference is positive.

3.4 Data

The Social Protection Survey (SPS) is a Chilean nationally representative survey with a

panel scheme with five waves— 2002, 2004, 2006, 2009, and 2015. Each wave surveyed

around 16,000 individuals who were older than 18 years old (except for 2002 when the
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threshold was 15 years old). It contains detailed employment and training histories as

well as other socioeconomic characteristics of the respondents. In particular, every employ-

ment, unemployment, and inactivity spell since each individual was 18 years old (or since

their age in 1980 if they were older at that time). Furthermore, the survey reports spell

characteristics—type of contract, social security information, average monthly earnings,

hours worked, separation reasons and inactivity reasons, among others. Information on

wages and hours worked is available starting in 2002.

The SPS includes a section that collects information about formal training undertaken

by the respondents throughout their lives and characteristics of that training— e.g., funding

source, institution carrying out the program and length. There are some drawbacks; most

notably the information of training programs is only available for the three main programs

undertaken before the wave 2002 or between waves.12 Thus, at least to some degree we

cannot observe all the training programs undertaken by each individual. However, only 10

percent of the sample reports having more than 3 training programs between interviews,

suggesting that the issue may not bias the results to a large extent.

Since the focus is on employer-sponsored training, the sample includes only wage

and salary workers aged between 18 and 65 years old. Furthermore, I drop respondents

without information when they were younger than 20 years old; to avoid individuals

lacking complete labor or training histories. In addition, I do not include observations on

the top 1 percent of wages or those whose wages change between to jobs belongs to the

top 1 percent of the wage change distribution. Lastly, I drop workers with weekly hours

worked above 90 (top 1 percent) or below 9 (bottom 1 percent) as well. This restriction is

made since some wages and wage growth seem large and are likely measured with error,

as in the case of hours worked during a week.

Descriptive statistics on workers’ characteristics appear in Table 3.1, where column (3)
12Each wave reports detailed information on the three most relevant training programs in the time

interval between surveys (in 2002 since the respondent was 18 years old or since 1980 if older at the time).
Nevertheless, there is information of whether there was participation in 4 or more programs.
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shows the statistics for the full sample and columns (1) and (2) split the sample in two:

individuals with (Column 1) and without (Column 2) employer-sponsored training. In

this chapter the term “training” refers only to employer-sponsored training. The first row

(Percent) shows the proportion of trained workers, 25 percent of the sample has gone

through a training program. The average age at the time of the 2004 wave was 32 years old,

and on average trained workers are 2 years older and a larger share are men.

These two groups have marked differences regarding their labor market outcomes. As

expected, trained workers, on average, earn a higher hourly wage while weekly hours

worked are similar (but have a higher variance for those with no OJT). Untrained individu-

als have a larger share of part-time and informal labor. While informal labor accounts for 5

percent of OJT workers, it is 18 percent for untrained ones. More than a quarter of trained

employees are in a union while about 12 percent of their untrained counterparts are.

There is a gap of labor experience of almost 5 years in favor of trained workers. Job

duration is another dimension where these groups differ. Trained employees remain at

a job, on average, 3.5 years more (3.7 and 6.3 years for untrained and trained workers,

respectively). Parent (1999) finds similar results for United States National Longitudinal

Survey of Youth (NLSY) 1979 sample, however, that is a younger sample and thus levels are

lower. Since average age does not differ much between groups, this may be explained by

shorter inactivity or unemployment spells of OJT workers. Moreover, the average number

of previous jobs held do not present substantial difference.

The model suggests different patterns of wages across tenure if workers are at the firm

where they were trained or at a different one. Table 3.2 has information for workers without

training, trained at the current firm or at a previous one.13 Wages are higher for workers

who are currently at the firm at which they participated in the training program, and having

training, on average, implies a higher hourly wage. On average, tenure is substantially
13Table 3.2 presents two subgroups of trained workers at previous firms. Those who received training at a

previous firm and may or may not have participated in training programs at the current firm, and another
groups of workers who only got training at a previous firm.
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Table 3.1:
Characteristics of workers by On-the-Job training status

Without With TotalOJT OJT
(1) (2) (3)

Percent 74.4 25.6 100.0
(43.7) (43.7)

Age (at 2004) 31.8 33.9 32.2
(7.4) (6.5) (7.3)

Male (percent) 54.0 62.1 56.1
(49.8) (48.5) (49.6)

Log hourly wage (CLP) 8.3 8.7 8.4
(0.6) (0.6) (0.6)

Weekly hours worked 45.7 46.4 45.9
(10.3) (8.2) (9.8)

Tenure (in years) 3.7 6.3 4.4
(4.8) (6.0) (5.2)

Experience (in years) 10.9 14.5 11.9
(7.9) (7.2) (7.9)

No. previous jobs 3.6 3.3 3.5
(3.9) (3.0) (3.7)

Part-time (percent) 9.1 4.2 7.8
(28.7) (20.0) (26.8)

Informal (percent) 18.2 5.0 14.8
(38.6) (21.8) (35.5)

Union (percent) 12.1 27.7 16.1
(32.6) (44.7) (36.7)

No. of observations 21, 055 7, 254 28, 309
No. of individuals 7, 894 2, 571 10, 465

Source: Own calculations based on microdata from Social Protection Survey (SPS) 2002-2015.
Note: Standard deviations in parentheses. OJT = On-the-Job Training. Wages are denominated
in Chilean pesos (ClP). Definitions: Informal if does not make contributions to social security;
Part-time if works less than 35 hours a week. Sample includes wage and salary workers aged
between 22 and 65 years old. Individuals for whom there is no information before they were 20
years old are not included.

higher for worker at the training firm (around 5 years higher). As expected, the number

of jobs is lower for these groups as well. Finally, labor market experience presents similar

levels for both groups of trained workers. The lower panel of Table 3.2 presents an F-test of

the null of no differences in means among the trained workers groups, and all reject the

null for every usual test size.
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Table 3.2:
Characteristics of workers by current and previous employer on-the-job training

Log Hourly Tenure Experience No. Previous No. of
Wage Jobs Obs.

TC 8.8 8.6 14.3 2.3 4, 505
(0.6) (6.2) (7.3) (2.3)

TP 8.7 2.9 15.0 4.7 3, 388
(0.6) (3.1) (7.2) (3.2)

TP (not TC) 8.6 2.4 14.9 4.9 2, 748
(0.6) (2.7) (7.1) (3.3)

No training 8.3 3.7 10.9 3.6 21, 053
(0.6) (4.8) (7.9) (3.9)

All 8.4 4.4 11.9 3.5 28, 306
(0.6) (5.2) (7.9) (3.7)

F-test TC=TP 16.5 128.0 9.1 72.0
p-value 0.0000 0.0000 0.0000 0.0000
F-test TC=TP (not TC) 66.7 3172.2 14.0 995.3
p-value 0.0000 0.0000 0.0002 0.0000

Source: Own calculations based on microdata from Social Protection Survey (SPS) 2002-2015.
Note: Standard deviation in parenthesis. TC = On-the-Job Training with current employer. TP = On-
the-Job Training with previous employer. Wages are denominated in 2015 Chilean pesos. Experience
and Tenure are measured in years. Sample includes salary workers aged between 22 and 65 years old.
Not included individuals for whom there is no information before they were 20 years old.
Source: Own calculations based on microdata from Social Protection Survey (SPS) 2002-2015.
Note: Standard deviations in parentheses. OJT = on-the-job training. TC = On-the-Job Training with
current employer. TP = On-the-Job Training with previous employer. Sample includes wage and
salary workers aged between 18 and 65 years old. Sample does not include individuals for whom there
is no information when they were younger than 20 years old.

Table 3.3 shows the distribution of employees across job separation reasons. Columns

(1) and (2) present the distribution for untrained and trained employees, respectively,

while column (3) accounts for the full sample. Most workers are separated from their jobs

because their contract ended, they quit, or because they were fired. The previous statement

is true for both sub-samples. However, the share of fired workers is larger among trained

workers, while the “contract ending” category shows the opposite relationship. Separation

by plant closing is about 3.5 percent of all separation, and this proportion is not different

by training status. Column (4) shows the share of workers who received training at each

category. Almost 11 percent of workers displaced due to plant closing received training.

In the following section, I describe the empirical strategy used to test for the presence
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Table 3.3:
Separation reasons share by On-the-Job training status

Without With Total Percent
OJT OJT OJT
(1) (2) (3) (4)

Mutual arrangement 6.2 6.9 6.3 21.3
(24.0) (25.4) (24.3) (41.0)

Quit 20.7 20.0 20.5 18.9
(40.5) (40.0) (40.4) (39.2)

Contract ended 34.0 23.3 31.9 14.2
(47.4) (42.3) (46.6) (34.9)

Fired 15.3 25.1 17.2 28.3
(36.0) (43.4) (37.7) (45.1)

Firm shut down 3.6 4.0 3.7 20.9
(18.7) (19.5) (18.8) (40.7)

Found better job 5.9 7.0 6.1 22.2
(23.5) (25.5) (23.9) (41.6)

Health reasons 1.7 1.2 1.6 14.8
(12.8) (10.9) (12.5) (35.6)

Retired 0.1 0.3 0.1 50.0
(2.8) (5.7) (3.6) (51.3)

Incidental event 2.8 2.2 2.7 16.3
(16.4) (14.8) (16.1) (37.0)

Other 9.9 10.0 9.9 19.5
(29.9) (30.0) (29.9) (39.7)

No. of observations 12, 772 3, 075 15, 847 15, 847
Source: Own calculations based on microdata from Social Protection Survey (SPS) 2002-2015.
Note: Standard deviations in parentheses. OJT = On-the-Job Training. Sample includes wage and
salary workers aged between 18 and 65 years old. Sample does not include individuals for whom
there is no information when they were younger than 20 years old.

of employer asymmetric learning about the productivity returns to training.

3.5 Empirical Implementation

3.5.1 Statistical strategy

In this section I describe how the predictions of the model can be taken into the data.

Farber and Gibbons (1996) and Altonji and Pierret (2001) developed an strategy to test

employer learning; they argued that the effect on wages of variables correlated with ability



105

not observed by employers, such as the Armed Forces Qualification Test (AFQT) in the

NLSY, will increase over time, while the effect of those easily observed by employers—e.g.,

education— should get weaker over time. Schönberg (2007), Zhang (2007), and Pinkston

(2009) extend the analysis to test asymmetric learning by comparing the effects of these

variables across tenure and experience levels.

To test for asymmetric learning regarding training’s productivity returns, I will use a

strategy that follows the same spirit as the previous literature. My model predicts that

training carried out at previous jobs should have lower wage effects at the beginning of a

new employment spell. However, the effect should increase with tenure at the job.

The empirical implementation follows a richer model than the theoretical model pre-

sented in the previous section. The simplicity of the latter aims to focus the attention on the

consequences of the types of employer learning. The empirical model, to test the predictions

under different types of employer learning, considers a richer setting to control for other

factors. First, the empirical implementation considers returns to tenure and experience,

while the theoretical model assumes no returns to experience or tenure. Second, it allows

for a more flexible relationship between training returns and tenure—in the theoretical

model, productivity returns from training are constant across tenure. For example, we

could add to the theoretical model a positive trend in the productivity return of training.

In this scenario, we draw the predictions under asymmetric learning by comparing the

difference in the trend with respect to the trend under symmetric learning. Third, the

theoretical model assumes no additional separations after period 2 which simplifies the

calculations but does not alter the predictions. That is, if these features are added to the

theoretical model, the employer learning predictions under the two types of learning hold.

Thus, consider the following log hourly wage equation for an individual i on a job j at
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the survey wave t:

logwijt = TCijt × δc + TPij × δp

+TCij × Tenureijt × δT,c + TPij × Tenureijt × δT,p

+X′ijt × β + µi + εijt,

(3.5.17)

where wijt is the hourly wage, TCijt and TPij are equal to one if the worker received

training at current and previous job, respectively, and zero otherwise. Tenureijt equals

tenure of worker i at job j at survey’s wave t. Xijt is a vector of worker and job observable

characteristics (including tenure and its squared). Individual heterogeneity is capture

by µi, and it can be thought as workers’ innate ability. Finally, εijt is an error term. The

coefficients δc, δp, δT,c, δT,p, and β represent the effects of the associated variables on the

log hourly wage. There have been studies that relate training return and tenure. Lentz

and Roys (2015) develop a setting in which search frictions and firm heterogeneity imply

that even if training is specific or general, the workers will collect the return as new job

offers arrive, and the result holds at the training firm or future firms. These results would

suggest that δT,c, δT,p > 0.

Barron et al. (1989), among others, point out a possible bias of estimating δp and δc

with OLS as a result of correlation of unobserved individual heterogeneity, µi, and training

variables TCijt and TPij—with more able workers more likely be trained.14

Following e.g. Loewenstein and Spletzer (1998), I estimate the wage equation including

individual fixed effects, which control for µi. Thus, if there is employer asymmetric learning,

it should be the case that δT,p > 0 (or δT,p 6= δT,c if δT,c > 0. While if this coefficient equals

zero, it would be evidence of symmetric learning. In the following section, I present the

results of this exercise.

I perform an additional test following the Gibbons and Katz (1991) strategy using
14Job match heterogeneity could cause a similar issue (e.g. Loewenstein and Spletzer, 1998; Parent, 1999,

2003). However, the specification does not control for this component.
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information on job loss due to plant closings. If workers are separated from their jobs

due to plant closing, there should not be adverse selection, and so the effect of training

in previous jobs should be larger for workers for this reason. This suggests the following

specification:

logwijt = TCijt×δc+TPij×δp+TPij×Plant Closingij×δ
PC+X′ijt×β+µi+εijt, (3.5.18)

where Plant Closingijt takes the value 1 if the worker was separated from the previous job

due to a plant closing, and zero otherwise. Under my assumptions, a positive δPC suggests

the presence of asymmetric information between employers.

3.6 Results

The main testing strategy follows the specification in equation (3.5.17)—i.e., estimating

the effects of training in previous jobs on wages across tenure. To get further evidence, I

performed an additional test by estimating the specification stated in equation (3.5.18)–i.e.,

comparing the effects of previous training on wages for workers who were separated due

to plant closings against those who were separated for other reasons. The results suggest

employers learn about training productivity gains asymmetrically. Firms who train workers

seem to learn changes in productivity because of training programs faster than outside

firms.

Table 3.4 shows the training effect estimates. The sample consists of salary workers

between 18 and 65 years old with information available before they turn 20 years old.

Every specification includes controls for observable characteristics.15 As before, TC and
15The observable characteristics are: tenure, tenure squared, experience, experience squared, age at the

beginning of the job and its square, part-time job, informal job, number of previous jobs, union status,
first job indicator, marital status, region, type of employment (permanent, temporal, fixed time, by task or
other), economic activity, occupation, survey year, accumulated time on unemployment, inactive, and in
self-employment, participation in emergency employment program indicator, transitions between economic
activities and occupations, accumulated time on each economic activity and occupation, separation reasons
in previous jobs, attended educational institution for training indicator, and training in current and previous
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TP denote training at current and previous jobs. Column (1) shows the estimates without

considering individual fixed effects, while column (2) presents the results including in-

dividual fixed effects. Training returns drop dramatically after controlling for individual

heterogeneity. The coefficient of TC goes from approximately 16 to 5 percent of the hourly

wage, while the for TP , it decreases 8 percentage points (pp), and it is not statistically

significant after controlling for individuals fixed effects.

The next two columns, (3) and (4), are meant to test asymmetric learning using the

strategy suggested by equation (3.5.17). In column (3) the interaction between previous

training and tenure is linear and in column (4) quadratic. Training at the current job has

a similar estimated effect in the specifications, about 5 percent of the hourly wage, while

the coefficient of training at previous jobs is close to zero and not statistically significant.

However, the coefficient of the interaction of that variable with tenure is positive and

statistically different from zero. After one year at the new job the hourly wage increases

by 1 percent if the worker had training within a previous job. Column (4) indicates that

the effect of previous training along tenure may be not linear. The returns of training at

previous jobs increase with tenure at a decreasing rate.

Columns (5) and (6) are the estimates associated with the second strategy—i.e., using

the specification of equation (3.5.18). The only difference between these two columns is

that the second one includes the interaction between tenure and TP . Under this strategy it

is assumed that there is not adverse selection for workers who are separated from their

jobs due to plant closing. The plant closing indicator variable has a negative coefficient in

both columns, but in neither of them is statistically significant. The interaction between

plant closings and training at the previous job has a positive sign and it is statistically

significant but only at a 10 percent confidence level. The magnitude of the coefficient

in each specification is larger than the one of training at the current job. However, the

standard error of the coefficients of the interaction terms are relatively large. The test with
job sponsored by the worker, government, or other indicators.
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Table 3.4: Employer-sponsored training returns
Dependent Variable: Log of Hourly Wages

(1) (2) (3) (4) (5) (6) (7)

TC 0.161 0.052 0.051 0.050 0.042 0.043 0.050
(0.009)∗∗∗ (0.015)∗∗∗ (0.015)∗∗∗ (0.015)∗∗∗ (0.016)∗∗∗ (0.016)∗∗∗ (0.015)∗∗∗

TP 0.116 0.031 0.011 −0.008 0.001 0.015 0.016
(0.010)∗∗∗ (0.023) (0.025) (0.027) (0.027) (0.026) (0.041)

Tenure 0.033 0.008 0.007 0.007 0.006 0.007 0.007
(0.003)∗∗∗ (0.004)∗∗ (0.004)∗ (0.004)∗ (0.004) (0.004)∗ (0.004)∗

TP × Tenure 0.010 0.027 0.008 0.010
(0.004)∗∗ (0.009)∗∗∗ (0.005)∗ (0.004)∗∗

TP × Tenure2 −0.002
(0.001)∗∗

Plant Closing −0.007 −0.007
(0.025) (0.025)

TP × Plant Closing 0.114 0.115
(0.060)∗ (0.059)∗

Experience 0.021 0.067 0.067 0.066 0.067 0.067 0.067
(0.005)∗∗∗ (0.012)∗∗∗ (0.012)∗∗∗ (0.012)∗∗∗ (0.013)∗∗∗ (0.013)∗∗∗ (0.012)∗∗∗

TP × Experience −0.001
(0.003)

Fixed Effects No Yes Yes Yes Yes Yes Yes
F-test
TC=TP 10.6 1.1 3.5 6.7 1.7 3.2 0.8
p-value 0.001 0.289 0.060 0.010 0.190 0.073 0.385
Observations 23, 343 23, 343 23, 343 23, 343 21, 837 21, 837 23, 343
Individuals 9, 059 9, 059 9, 059 9, 059 8, 871 8, 871 9, 059

Source: Own calculations based on microdata from Social Protection Survey (SPS) 2002-2015.
Note: Robust standard errors in parentheses in (1) and cluster standard errors at the individual
level in parentheses in columns (2) to (7). TC=1 if training with current employer and 0 otherwise,
TP=1 if training with previous employer and 0 otherwise, All equations control for an intercept,
tenure, tenure squared, experience, experience squared, age at the beginning of the job, part-time
job, informal labor, number of previous jobs, union status, first job, marital status, region, type of
employment (permanent, temporal, fixed time, by task or other), economic activity, occupation,
survey year, accumulated time on unemployment, inactive and on self-employment, if participated
in emergency employment program, transitions between economic activities and occupations,
accumulated time on each economic activity and occupation, separation reason in previous jobs,
attend educational institution and training in current and previous job sponsored by the worker,
government or other. Sample includes salary workers aged between 22 and 65 years old. Individuals
for whom there is no information before they were 20 years old are not included. ***, **, * statistical
significance at the 1%, 5%, and 10% level, respectively.

the null hypothesis that the coefficient of TC is the same as the one of the interactions

cannot be rejected (F = 1.40, p-value = 0.237, not reported in the table). These results

provide additional evidence of asymmetric learning.
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Finally, column (7) presents a different specification. It includes an interaction term

between experience and training with previous employer. If the coefficient were positive, it

could suggest that the relationship between tenure and TP is due to different reasons than

asymmetric learning. However, the coefficient is small and not statistically different from

zero.

In summary, these results suggest that firms learn training quality asymmetrically.

Training that takes place with the current employer seems to have a return of 5 percent

of the hourly wage, but workers lose these returns when they change jobs. And as firms

learn their productivity, workers get those returns back. The second panel of Table 3.4

presents F-tests that evaluate if the coefficients of TC and TP are statistically different. The

null hypothesis is rejected in specifications reported in columns (1), (3), (4), and (6). That

is, every time the interaction between tenure and TP is included (except for column 7),

supporting the previous description.

Lastly, Table 3.5 presents specification including interactions between tenure and the

indicator variables of training with the current and previous employer. The interaction

between tenure and training with current employer is small and not statistically significant.

This result is in line with the prediction of the model for the difference of the evolution of

the wage return depending on if the worker participated in the training program with the

current or previous employer.

3.7 Conclusions

Several papers have argued and empirically tested for the presence of employers asym-

metric learning. They focus on uncertainty about workers’ innate ability not considering

possible changes in productivity over time. The consequence of this phenomenon involves

inefficiencies in many outcomes, such as wages, job mobility, job assignment, and human

capital accumulation. However, these issues should disappear over time if, at least to some
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Table 3.5: On-the-Job training returns and tenure

Dep. variable: (1) (2) (3)Log of Hourly Wages
TC 0.053 0.052 0.051

(0.018)∗∗∗ (0.018)∗∗∗ (0.021)∗∗
TP 0.030 0.010 −0.010

(0.023) (0.025) (0.027)
Tenure 0.008 0.007 0.007

(0.004)∗∗ (0.004)∗ (0.004)∗
TC × Tenure −0.001 −0.001 −0.001

(0.002) (0.002) (0.004)
TC × Tenure2 −0.000

(0.000)
TP × Tenure 0.010 0.027

(0.004)∗∗ (0.009)∗∗∗
TP × Tenure2 −0.002

(0.001)∗∗
Fixed Effects Yes Yes Yes
F-test
TC = TP 1.1 3.1 4.9
p-value 0.302 0.078 0.027
TC× Tenure = TP× Tenure 5.2 7.7
p-value 0.022 0.005
TC× Tenure2 = TP× Tenure2 5.5
p-value 0.019
Observations 23, 342 23, 342 23, 342
Individuals 9, 059 9, 059 9, 059

Source: Own calculations based on microdata from Social Protection Survey (SPS) 2002-2015.
Note: Cluster standard errors at individual level in parenthesis. Sample includes salary workers
aged between 22 and 65 years old. Individuals for whom there is no information before they were
20 years old are not included. TC=1 if training with current employer and 0 otherwise, TP=1 if
training with previous employer and 0 otherwise, Same controls included than specification in
presented in Table 3.4. ***, **, * statistical significance at the 1%, 5%, and 10% level, respectively.
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degree, there is symmetric learning. Nevertheless, if the information asymmetry exists for

any changes in productivity further inefficiencies still arise.

This chapter considers asymmetric learning about the productivity returns of on-the-job

training programs. This chapter’s contribution is twofold: First, I build a model where

the information asymmetry comes from changes in workers’ productivity with testable

implications regarding the way information is transmitted across employers. Moreover, I

perform the tests on the Chilean Social Protection Survey.

I use the Chilean Social Protection Survey to empirically test the predictions of the

model using a fixed effects estimator for the returns of on-the-job training on hourly

wages. The results suggest that the training firm has more information than potential

employers. Asymmetric learning regarding the productivity gains of OTJ training can lead

to inefficiency costs in job allocation and human capital accumulation. Policies that aim

to provide information regarding different training programs and their benefits can help

ameliorate these problems.
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Appendix

Appendix A Data

3.7.1 Chilean Time Use Survey 2015

The Time Use Survey of Chile was collected in 2015. It provides information on the activity

diaries for the last week and weekend day of each individual in the sample. I identify the

activities parents do with their children, such as helping with studying, doing homework,

or any other activity, and the time children spend doing homework, studying or doing

other academic activity outside of school. From this information, I estimate the empirical

distribution of parental time and children time self-investment.

3.7.2 Survey of Wechsler Intelligence Scale for Children (WISC-V)

The survey of the Wechsler Intelligence Scale for Children (WISC-V) test was collected by

the Center for the Development of Inclusion Technologies (CEDETi UC) of the School of

Psychology of the Pontifical Catholic University of Chile (PUC). This survey was collected

in 2017 and it is nationally representative of the population of children between 6 and

16 years old. The WISC-V test takes 45-65 minutes to administer. The test is designed

to generate a full scale IQ measure that represents a child’s general intellectual ability.

It consists of a set of fifteen different cognitive test. These subtests are labeled as: block

design, similarities, matrix reasoning, digit span, coding, vocabulary, picture completion,
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picture concepts, symbol search, information, letter-number sequencing, cancellation,

comprehension, arithmetic, word reasoning.

Appendix B: Time investments measurement

3.7.3 Results identification measurement system

The identification of the parameters of the response model follows San Martín et al. (2013).

Proof that q(·) is increasing in βs. Let f and F be the density and cumulative distribution

of the logistic distribution, respectively, and assume S ≥ 3 and Ks = 2 for all s.

ps,s′ =
∫
F (βsh− α(βs, ps))F (βs′h− α(βs′ , ps′))g(h)dh ≡ q(βs, ps, βs′ , ps′) (3.7.1)

Taking the derivative of equation (3.7.1) with respect to βs and rearranging:

∂q(βs, ps, βs′ , ps′)
∂βs

=
∫
f(βsh−α(βs, ps))(h−

∂α

∂βs
(βs, ps))F (βs′h−α(βs′ , ps′))g(h)dh (3.7.2)

Replaceα(βs, ps) in equation (1.5.7) and take the derivative with respect to β1 and rearrange:

∂α

∂βs
(βs, ps) =

∫
hgC(h; βs, ps)dh = Eβs,α(βs,ps)[h] (3.7.3)

where

gC(h; βs, ps) = f(βsh− α(βs, ps))g(hi)∫
f(βsh− α(βs, ps))g(h)dh (3.7.4)

Multiply and divide equation (3.7.2) by
∫
f(βsh − α(βs, ps)g(h)dh, we can rewrite the

equation as:

∂q(βs, ps, βs′ , ps′)
∂βs

=
∫

(h− Eβs,α(βs,ps)[h])F (βs′h− α(βs′ , ps′))gC(h; βs, ps)dh (3.7.5)
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Then, define:

Eβs,α(βs,ps)[F (βs′h− α(βs′ , ps′))] =
∫
F (βs′h− α(βs′ , ps′)gC(h; βs, ps)dh (3.7.6)

Subtracting Eβs,ps [F (βs′h − α(βs′ , ps′))]
∫

(h − Eβs,ps [h])gC(h; βs, ps)dh = 0 on left side of

equation (3.7.5) and rearranging:

∂q(βs, ps, βs′ , ps′)
∂βs

=

∫
(h− Eβs,α(βs,ps)[h])(F (βs′h− α(βs′ , ps′))− Eβs,α(βs,ps)[F (βs′h− α(βs′ , ps′))])gC(h; βs, ps)dh

×
∫
f(βsh− α(βs, ps)g(hi)dhi

= Covβs,α(βs,ps)(h, F [βs′h− α(βs′ , ps′)])×
∫
f(βsh− α(βs, ps)g(h)dh > 0

(3.7.7)

This is positive since βs′ > 0 and so the covariance between h and F (βs′h − α(βs′ , ps′)) is

positive as well.

Proof that r(β1, p1, p2, p3, p1,2, p1,3) is strictly decreasing in β1.

∂r

∂β1
(β1, p1, p2, p3, p1,2, p1,3) =

∂q

∂β2
(q(β1, p1, p1,2, p2), p2, q(β1, p1, p1,3, p3), p3)× ∂q

∂β1
(β1, p1, p1,2, p2)

+ ∂q

∂β3
(q(β1, p1, p1,2, p2), p2, q(β1, p1, p1,3, p3), p3)× ∂q

∂β1
(β1, p1, p1,3, p3)

(3.7.8)

Since ∂q/∂βs > 0 for all s and given that:

q(β1, p1, q(β1, p1, p1,2, p2), p2) = p1,2 (3.7.9)
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take the derivative with respect to β1

∂q

∂β1
(β1, p1, q(β1, p1, p1,2, p2), p2) + ∂q

∂β2
(β1, p1, q(β1, p1, p1,2, p2), p2)× ∂q

∂β1
(β1, p1, p1,2, p2) = 0

(3.7.10)

Rearranging terms and since ∂q/∂βs > 0 for all s we have:

∂q

∂β1
(β1, p1, p1,2, p2) = −

∂q

∂β1
(β1, p1, q(β1, p1, p1,2, p2), p2)

∂q

∂β2
(β1, p1, q(β1, p1, p1,2, p2), p2)

< 0 (3.7.11)

Then, since ∂q/∂βs > 0 and ∂q/∂βs < 0 for all s, it follows from equation (3.7.8) that

∂r/∂β1 < 0.

3.7.4 Functional forms

As stated in the main text, the time investment variables observed in the administrative data

are denoted by Zits, where s indexes the measure. These are ordered categorical questions—

i.e., Zits ∈ {1, 2, . . . , Ks}whereKs denotes the number of categories of measure s. I assume

a multivariate ordered response model with a latent factor, hit (time investment). Let St be

the number of ordered categorical questions at grade t. The Fisher information function is:

I(hit) =
St∑
s=1

Ks∑
k=1

(
∂Prsk
∂hit

)2

− Prsk
∂2Prsk
∂h2

it

Pr2
sk

. (3.7.12)

where Prsk = Pr(Zits = k | hit). Lord (1983) provides a specification for the bias function

of the maximum likelihood estimator in the dichotomous measure setting, while Samejima

(1993) extends the result for the polytomous case. See next section for the definition of this

estimator. This corresponds to the function B(·) in equation (1.5.13) of Section 1.5.1. This
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function is:

Bias(hit) = − 1
2[I(hit)]2

St∑
s=1

Ks∑
k=1

∂Prsk
∂hit

∂2Prsk
∂h2

it

Prsk
. (3.7.13)

3.7.5 Alternative estimators of time investments

Expected a posteriori Estimator

With the estimates of (α, β), it is possible to compute the posterior distribution of time

investment—i.e., the distribution of hit conditional on the responses to ordered categorical

questions of a particular student, zit. This distribution tells us how likely the student is to

have each level of time investment conditional on the responses to these ordered categorical

question.

g̃t(hit | zit;α, β) = ft(zit | hit;α, β)gt(hit)∫
f(zit | hit;α, β)gt(hit)dhit

(3.7.14)

The posterior expected value estimator is defined as follows:

hEAPit = E(hit | zit) =
∫
hitg̃(hit | zit;α, β)dhit (3.7.15)

Other Bayesian estimators are the mode or median of g̃(hit | zit;α, β) and the same properties

apply to them.

Maximum Likelihood Estimator

Another estimator for each student’s time investment is the value that maximizes the

individual likelihood. That is,

hML
it ≡ argmax

hit

log f(zit | hit;α, β) (3.7.16)

The bias of this estimator is Bias(hit) in equation (3.7.13).
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Appendix C: Monte Carlo of time measurement systems

This appendix presents a Monte Carlo exercise to compare the performance of linear and

non-linear latent factor models using ordered categorical questions. The latent factor

system is used to estimate parameter of the structural relationship between the latent

factor (time investment) and additional variables—e.g., classroom inputs and skills. Data

generating process: Let the classroom inputs be C ∼ N(0, 1), and the time investment

policy function:

h = δC + η (3.7.1)

where η ∼ N(0, σ2
η) and without loss of generality ση =

√
(1− δ2). So that h ∼ N(0, 1).

Skills, labeled by θ, have a production technology with a single input h:

θ = γh+ ν (3.7.2)

where ν ∼ N(0, 1) is an error term. Time investment h is the latent variable and its

distribution its known. The parameters of interest are δ and γ.

Time investment is imperfectly measured by the variables Zs, where s indexes the

measure. These are ordered categorical questions—i.e., Zs ∈ {1, 2, . . . , Ks} where Ks

denotes the number of categories of measure s. In this exercise Ks = 4 for all s. These

measures are generated with a multivariate ordered response model:

Zs = k if and only if αsk ≤ βsh+ εs < αsk+1

for k = 1, 2, . . . , Ks,

(3.7.3)

where αs1 = −∞ and αsKs+1 =∞. The parameters of each ordered categorical questions

are drawn from the following distributions: βs ∼ Uniform(0, 2) and αsk̃ ∼ N(0, β2
s ) with

k̃ = 1, . . . , Ks − 1. The Ks − 1 realizations of αsk̃ are then ordered in increasing values and

the index k̃ is replace by the corresponding ordered index k = 1, . . . , Ks − 1.



129

I perform the simulation under several assumptions of the distributions of the errors

εs. However, the non-linear model estimation assumes logistic error terms. I perform the

simulations under different distribution to evaluate potential bias of miss-specification

under non-linear systems.

In the literature, researchers have used linear and non-linear latent factor models for

household investments. Linear models treat the ordered categorical variables as continuous

variables and assume the following structure:

Zs = α̃s + β̃sh+ εs, (3.7.4)

under the assumption that εs ⊥ εs′ for all s 6= s′ and h ⊥ εs for all s. The system is identified

exploiting these orthogonality conditions.

Instead, the non-linear models follow a similar identification strategy than the one pre-

sented in Section 1.5.1. Estimation procedures used are the weighted maximum likelihood

(WML) estimator described section Section 1.6.1, and maximum likelihood (ML) and

expected a posteriori (EP) estimators lay out in Appendix B.

I simulate a sample of size N , M times. The Monte Carlo exercise evaluates the asymp-

totic properties of estimators of δ and γ using different measurement models under different

data generating processes. For each simulation, I estimate both the linear and non-linear

measurement models. I generate estimates of h for each individual under different estima-

tors. For the linear model:

hLs = Zs − α̃s
β̃s

(3.7.5)

For the non-linear model, I estimate each individual h using the WML, ML, and EP esti-

mators, and labeled them as hEw , where E = WML,ML,EP and w is an index of the set of

measures used in the estimation. Disjoint sets of the categorical ordered questions generate

different measures that provide exclusion conditions for the 2SLS estimator. Table C.1

presents the results.
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Table C.1:
Monte Carlo Simulation

measurement δ = 0.5 γ = 1
error εs Linear Non-linear Linear Non-linear
distribution OLS EP-OLS ML-OLS WML-OLS IV EP-OLS ML-OLS WML-IV
logistic(0,1) 0.496 0.482 0.511 0.488 0.981 1.008 0.945 0.995

(0.095) (0.017) (0.019) (0.018) (0.089) (0.029) (0.030) (0.034)
uniform(-3,3) 0.488 0.479 0.510 0.485 0.976 1.009 0.943 0.998

(0.105) (0.016) (0.019) (0.018) (0.174) (0.029) (0.032) (0.036)
normal(0,1) 0.495 0.481 0.505 0.481 0.965 1.013 0.956 1.016

(0.045) (0.016) (0.019) (0.020) (0.094) (0.038) (0.035) (0.053)
degenerate 0 0.493 0.481 0.510 0.484 0.948 1.022 0.936 1.067

(0.036) (0.099) (0.096) (0.103) (0.100) (0.230) (0.157) (0.338)
Note: Monte Carlo simulation. Standard deviations in parentheses. All non-linear model are
estimated under the assumption than εs ∼ logistic(0,1). Estimators of each individual h: weighted
maximum likelihood (WML), maximum likelihood (ML), expected a posteriori (EP). Estimators of
γ and δ: ordinary least squares (OLS) and two-stage least squares (2SLS).

I estimate γ with 2SLS estimator and δ with OLS estimator. Treating a categorical

variable as continuous “adds” measurement error. However, the 2SLS estimator of γ

deals with this measurement error and it converges to its true value. Similarly, the 2SLS

estimator of γ using the non-linear model is consistent as well. However, under the logistic

distribution—i.e., assuming the correct model—the linear model has standard deviation 5

times larger than the non-linear case.

The main difference comes from the estimation of δ. When the noisy measure is on

the left side of the equation is not possible to use instrumental variables. Either way,

if the measurement error is i.i.d., it implies a precision cost but not bias. However, as

mentioned, the continuity assumption over a categorical variable could result in additional

measurement error.

Appendix D: Model Solution

I estimate the model using using an indirect inference estimator. This is a simulation based

method and it requires to simulate, given the initial conditions, the choices of household

at each school grade. Let Ωit = {θit, Cit,xit, zit} be the state space vector, where the state
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variables are child’s skill θit, classroom inputs Cit, a vector of demographic characteristics

xit (including household income yit) and other observable inputs zit in the skill formation.

The classroom and income processes—known by the household—are logCit = κ′txit + ∆it

and log yit = yt + ρt log yit + ωit. When household make decisions they know ∆it and ωit,

but they don’t know their in subsequent grades or the current skill shock νit—i.e., the skill

technology shock. The household makes expectations regarding the classroom, skill, and

income shocks. There are two continuous control variables (parental and student time) and

three variables for which I have to integrate to generate expectations of continuation values,

which makes this problem computationally intensive. To decrease the computation burden,

I use an interpolation approach of the value function. I use Monte Carlo integration for

∆it, and Gauss–Hermite quadratures for ωit and νit. I estimate an interpolation function

as follows: I take as given the current guess of the preference parameters. First, in period

T = 4, that is, when the household has a child attending tenth grade. I draw D = 200

realizations of ∆it from the assumed distribution. Second, I draw randomly S = 200

points of support the rest of the variables in Ωit. Third, I simulate the household choices,

calculate the value function, and take the average across the D realizations of ∆it and the

Gauss–Hermite quadrature integration of ωit and νit. The end result is the expected value

of the value function. Lastly, I regress that expected value function on the values drawn

of Ωit (second order polynomial in continuous variables). That is, this regression is run

in a size S sample. The coefficients defined the interpolation function and can be used to

predict the expected value of the value function at each point in the support of the state

space without solving the problem.

Next, using the interpolation function, I proceed to the same exercise for T = 3 and

T = 2. Once I have the interpolation function at each school grade. I simulate the choices

of the households in my sample using their initial conditions.
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Appendix E: OJT Model Solution

In this appendix I will solve for the close-form solution of equilibrium wage offers.

At any period t non-trained workers will offered their productivity minus hiring cost

plus the net present value of expected profits from future periods. Formally, the outside

wage offer at period t is:

zt = µ− h+ βEξ(π(0, z(t+ 1))). (3.7.1)

The separation shock only hit at the beginning of period 2. At every period t ≥ 2, the

incumbent firm faces the same problem and the solution for every t is the same. Then, for

t ≥ 2,
zt = µ− h+ β

∑∞
τ=t+1 β

τ−t−1(µ− zτ )

= µ− h+ β

1− β (µ− zt)
zt

1− β = µ

1− β − h

zt = µ− (1− β)h,

(3.7.2)

Thus, incumbent and outside firms’ wage offers to untrained workers will be zt = µ−(1−β)h

for every t ≥ 2. Instead, for t = 1 since with probability ξ the workers is exogeneously

separated at the beginning of period 2, we have that z1 = µ− [1− β(1− ξ)]h.

The offer at period 1 for workers who are not trained are:

z1 = µ− [1− β(1− ξ)]h. (3.7.3)

and zt = µ− (1− β)h for t ≥ 2.

For the sake of simplicity, I will assume the distribution of training productivity returns

is uniform—i.e., α ∼ Uniform(0, α). Workers who were retained in period 2 will receive
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offers from outside firms. The offers are:

vR,12 = µ+ E(α | α ≥ α∗)− h+ βE(π(α,wR,1(3)) | α ≥ α∗)

= µ+ E(α | α ≥ α∗)− h+ βE
[∑∞

τ=0 β
τ
(
µ+ α− wR,13+τ

) ∣∣∣ α ≥ α∗
]

= µ+ E(α | α ≥ α∗)
1− β − h− βvR,12

1− β

= µ+ E(α | α ≥ α∗)− (1− β)h = wR,12

wR,12 = µ+ α + α∗

2 − (1− β)h

(3.7.4)

The replacement in the previous third line comes from the fact that outside wage offer in

equilibrium will be the same at each period t ≥ 2. Again, the incumbent firm will match

the offer, that is, wR,12 = vR,12 . Furthermore, it will choose α∗ such that the firm is indifferent

between retaining the worker. That is,

µ+ α∗ − wR,12 + βπ(α∗, wR,1(3)) = 0

µ+ α∗ − µ− α + α∗

2 + (1− β)h+ β
∞∑
τ=0

βτ
(
µ+ α∗ − wR,13+τ

)
= 0

1
1− β

(
α∗ − α

2 + (1− β)h
)

= 0

(3.7.5)

where the step from the second line to the third comes from the fact that from period

2 outside offer to these group of workers will not change at equilibrium. Thus, α∗ =

α− 2(1− β)h and the wage offers of period 2 are

wR,12 = µ+ α + α∗

2 − (1− β)h

= µ+ α− 2(1− β)h.

(3.7.6)
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The outside offer to lay off/separated workers are given by the following equation:

vL,12 = µ− h+ F (α∗)
F (α∗) + [1− F (α∗)]ξ ×

[
E(α | α < α∗) + β

[F (α∗)− F (α∗∗)]
F (α∗) E(π(α,wR,2(3)) | α∗∗ ≤ α < α∗)

]

+ [1− F (α∗)]ξ
F (α∗) + [1− F (α∗)]ξ ×

[
E(α | α ≥ α∗) + βE(π(α,wR,2(3)) | α ≥ α∗)

]

= µ− h+ α∗

α∗ + [α− α∗]ξ ×
[
α∗

2 + β
[α∗ − α∗∗]

α∗
1

1− β (µ+ α∗∗ + α∗

2 − wR,23 )
]

+ [α− α∗]ξ
α∗ + [α− α∗]ξ ×

[
α + α∗

2 + β
1

1− β (µ+ α + α∗

2 − wR,23 )
]

(3.7.7)

The retained workers at period 3 (that were previously laid off) will be poach by outside

firms. The outside offers are derived in the following equations:

vR,23 = µ− h+ F (α∗)− F (α∗∗)
F (α∗)− F (α∗∗) + [1− F (α∗)]ξ ×[

E(α | α∗∗ ≤ α < α∗) + βE(π(α,wR,2(4)) | α∗∗ ≤ α < α∗)
]

+ [1− F (α∗)]ξ
F (α∗)− F (α∗∗) + [1− F (α∗)]ξ ×

[
E(α | α ≥ α∗) + βE(π(α,wR,2(4)) | α ≥ α∗)

]

= µ− (1− β)h+ α∗ − α∗∗

α∗ − α∗∗ + [α− α∗]ξ ×
(
α∗∗ + α∗

2

)

+ [α− α∗]ξ
α∗ − α∗∗ + [α− α∗]ξ ×

(
α + α∗

2

)
(3.7.8)

where wR,23 is defined by the outside offer of those workers (who will not be lay off again),

essentially the same as the one they would had have if their stayed with the previous

employer. New incumbent firm offers wR,23 = vR,23 . Moreover, it chooses α∗∗ such that it is
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indifferent between retaining and laying off the worker. Formally,

µ+ α∗∗ − wR,23 + βπ(α∗∗, wR,2(4)) = 0

µ+ α∗∗ − wR,23 + β
∞∑
τ=0

βτ
(
µ+ α∗∗ − wR,24+τ

)
= 0

µ+ α∗∗ = wR,24 .

(3.7.9)

The step from the second line to the forth one comes from the fact that there are no more

lay off or exogeneous separation, the retained workers will receive the same offer at period

3 than any subsequent offer, that is wR,23 = wR,24+τ with τ = 0, 1, . . .. Thus, the cut off solve

the following equation:

α∗∗ = −(1− β)h+ α∗ − α∗∗

α∗ − α∗∗ + [α− α∗]ξ ×
(
α∗∗ + α∗

2

)
+ [α− α∗]ξ
α∗ − α∗∗ + [α− α∗]ξ ×

(
α + α∗

2

)
.

(3.7.10)

Thus, α∗∗ = α− 4(1− ξ)(1− β)h and,

wR,23 = µ+ α− 4(1− ξ)(1− β)h

= vR,23 .

(3.7.11)

The outside offer to lay off workers

vL,23 = µ− h+ E(α | α < α∗∗) + βE(π(α,wR,3(4)) | α < α∗∗)

= µ− h+ α∗∗

2 + β
∞∑
τ=0

βτ
(
µ+ α∗∗

2 − w
R,3
4+τ

)
= wR,34

wR,34 = µ+ α∗∗

2 − (1− β)h.

(3.7.12)

We can rewrite the offer to laid off workers at period 2,
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vL,12 = µ− h+ α∗

α∗ + [α− α∗]ξ ×
[
α∗

2 + β
[α∗ − α∗∗]

α∗
1

1− β

(
µ+ α∗∗ + α∗

2 − wR,23

) ]

+ [α− α∗]ξ
α∗ + [α− α∗]ξ ×

[
α + α∗

2 + β
1

1− β

(
µ+ α + α∗

2 − wR,23

) ]

= µ+ α

2 + βh+ α− 2(1− β)h
α− 2(1− ξ)(1− β)h ×

[
(2(1− ξ)− 1)22(1− β)h

α− 2(1− β)h βh

]

+ [2(1− β)h]ξ
α− 2(1− ξ)(1− β)h ×

[
α

2 +
(

4(1− ξ)− 1)
)
βh
]

(3.7.13)

The wage offer at period 1 for workers who will be trained is as follows:

v1 = µ+ E(α)− h+ β[1− F (α∗)](1− ξ)E(π(α,wR,1(2)) | α ≥ α∗)− c

= µ+ E(α)− h+ [1− F (α∗)](1− ξ)βh− c

v1 = µ+ α

2 − h+
[

2(1− β)h
α

]
(1− ξ)βh− c

Ec(v1) = µ+ α

2 − h+
[

(1− β)h
α

]
(1− ξ)βh

(3.7.14)
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Supplemental Tables and Figures

Supplemental Tables

Table S.1.1:
SIMCE data

Grade 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018
2 x x x x
3
4 x x x x x x x x x
5
6 x x x x x
7
8 x x x x x
9

10 x x x x x
Note: The x states which year-school grade combination the SIMCE database has available
information. Note that for every cell there is information in the administrative data of the
Chilean educational system. Back to Section 1.3.1.
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Table S.1.2:
Examples of time investment questions in the SIMCE data

Measure Parent Question and answersor child
Parental time

1 C My parents help me with my homework.
1: never, 2: sometimes, 3: often, 4: always.

2 C My parents help me study.
1: never, 2: sometimes, 3: often, 4: always.

3 C My parents explain me what I do not understand.
1: never, 2: sometimes, 3: often, 4: always.

4 C My parents are willing to help me when I have problems
with a subject or homework.

1: never, 2: sometimes, 3: often, 4: always.
5 P You talk with the student about how she/he feels in school.

1: never, 2: a few times in a month,
3: a few times in a week, 4: every or almost every day.

6 P You help the student with school activities.
1: never, 2: a few times in a month,
3: a few times in a week, 4: every or almost every day.

Child time
1 C How many days a week from Monday to Friday do you

study or do homework?
1: never, 2: 1 or 2 days a week,
3: 3 or 4 days a week, 4: every day.

2 C I always do my homework.
1: very false, 2: false, 3: true, 4: very true.

3 C I read what they ask me in school.
1: never or almost never, 2: 1 or 2 a month,
3: 1 or 2 a week, 4: every day or almost every day.

4 C I strive to do well in all subjects.
1: strongly disagree, 2: disagree, 3: agree, 4: strongly agree.

5 C I am a person who strives to learn.
1: strongly disagree, 2: disagree, 3: agree, 4: strongly agree.

6 C I strive to get good grades.
1: strongly disagree, 2: disagree, 3: agree, 4: strongly agree.

Note: These are examples of time investment questions reported in the parent and student ques-
tionnaires in the SIMCE administrative data. Back to Section 1.3.3.
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Table S.1.3:
Measurement system of skills: WISC-V survey data

Wechsler Intelligence Location Scale Signal share
Scale for Children V

µAm λAm
Age

Sub-test 8 10 12 14 16
Block Design 21.3 3.4 0.25 0.23 0.17 0.27 0.14
Similarities 18.6 4.9 0.59 0.49 0.64 0.80 0.49
Matrix Reasoning 15.1 2.8 0.44 0.62 0.68 0.77 0.41
Digit Span 19.3 4.0 0.78 0.84 0.97 0.90 0.83
Coding 30.3 6.5 0.63 0.50 0.37 0.33 0.18
Vocabulary 18.0 4.8 0.66 0.69 0.47 0.78 0.36
Word Reasoning 16.5 3.2 0.53 0.56 0.43 0.57 0.27
Picture Completion 12.4 2.9 0.65 0.77 0.58 0.80 0.62
Picture Concepts 22.9 5.1 0.61 0.85 0.65 0.79 0.83
Symbol Search 18.7 2.6 0.30 0.21 0.17 0.24 0.19
Information 10.8 2.3 0.41 0.35 0.37 0.36 0.24
Cancellation 51.4 3.7 0.10 0.06 0.06 0.07 0.05
Comprehension 12.2 3.6 0.61 0.54 0.32 0.54 0.40
Arithmetic 14.6 2.7 0.67 0.57 0.60 0.51 0.46

Source: Estimates using Chilean Wechsler Intelligence Scale for Children (WISC-V) survey.
Note: Test scores are assumed to be arbitrary scaled measures of skills θit. The test score MA

itm

of child i at grade t in test m follows the structure MA
itm = µAm + λAm log θit + εitm, where εitm is

measurement error and µAm and λAm are the location and scale parameters. The estimates of location
and scale are for the initial period; when children are 8 years old. The signal share (out of the
measure variance) is 1−Var(εitm)/Var(MA

itm). See the measurement equation (1.5.1) for additional
details. Back to Section 1.7.1.
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Table S.1.4:
Measurement system of skills: Administrative data

Second grade Fourth grade Sixth grade

µmt λmt
Signal

µmt λmt
Signal

µmt λmt
Signal

share share share

Math SIMCE - - - 217.6 32.9 0.64 163.5 35.5 0.65
Language SIMCE 253.1 29.2 0.35 222.3 34.4 0.63 155.8 37.1 0.66
Natural sciences SIMCE - - - - - - 162.4 36.2 0.60
Social sciences SIMCE - - - 216.1 30.5 0.66 162.0 35.5 0.64
Math. grade 5.6 0.7 0.69 4.8 0.5 0.55 3.9 0.5 0.47
Language grade 5.5 0.8 0.98 4.8 0.5 0.62 4.1 0.5 0.50

Eighth grade Tenth grade

µmt λmt
Signal

µmt λmt
Signal

share share

Math SIMCE 165.3 32.0 0.65 41.4 56.0 0.66
Language SIMCE 146.8 32.9 0.62 85.2 41.2 0.55
Natural sciences SIMCE 176.4 29.7 0.58 75.5 41.9 0.64
Social sciences SIMCE 170.6 30.2 0.54 97.7 38.3 0.53
Math grade 3.8 0.4 0.36 2.5 0.6 0.35
Language grade 4.0 0.4 0.41 3.1 0.5 0.42
Source: Estimates using SIMCE and SIGE administrative databases.
Note: Test scores are assumed to be arbitrary scaled measures of skills θit. The test score Mitm of student i at
grade t in subject m follows the structure Mitm = µtm + λtm log θit + εitm, where εitm is measurement error
and µmt and λmt are the location and scale parameters. The signal share (out of the measure variance) is
1− Var(εitm)/Var(Mitm). See the measurement equation (1.5.4) for additional details. Back to Section 1.7.1.
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Table S.1.5:
Skill formation technology

School grade
Fourth Sixth Eighth Tenth

(1) (2) (3) (4)

log θit (Skill) 0.795 0.495 0.588 0.493
(0.017) (0.008) (0.011) (0.012)

[0.761;0.829] [0.480;0.511] [0.569;0.61] [0.471;0.519]
log2 θit 0.066 0.063 0.034 0.003

(0.003) (0.001) (0.002) (0.002)
[0.06;0.071] [0.06;0.066] [0.031;0.038] [0.000;0.007]

hit (parental time - 0.442 0.104 0.278 0.144
daily hours) (0.051) (0.020) (0.037) (0.031)

[0.340;0.547] [0.069;0.144] [0.203;0.349] [0.082;0.206]
h2
it -0.056 -0.035 -0.059 -0.048

(0.009) (0.005) (0.009) (0.008)
[-0.074;-0.039] [-0.045;-0.025] [-0.077;-0.040] [-0.064;-0.032]

eit (child time - -1.787 0.462 0.096 -0.095
daily hours) (1.074) (0.043) (0.043) (0.046)

[-3.968;0.361] [0.375;0.544] [0.003;0.18] [-0.183;-0.006]
e2
it 8.106 -0.153 -0.132 0.041

(3.103) (0.017) (0.029) (0.019)
[1.968;14.726] [-0.185;-0.117] [-0.187;-0.077] [0.001;0.075]

logCit (classroom effects) 0.577 0.479 0.541 0.422
(0.017) (0.008) (0.012) (0.012)

[0.542;0.608] [0.461;0.494] [0.516;0.565] [0.394;0.444]
(table continues in next page)
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Table S.1.5: — Continued
Skill formation technology

School grade
Fourth Sixth Eighth Tenth

hit (parental time - (1) (2) (3) (4)
daily hours)

log θit × logCit -0.042 0.009 0.007 0.002
(0.003) (0.003) (0.003) (0.003)

[-0.048;-0.036] [0.004;0.013] [0.000;0.014] [-0.003;0.009]
hit × logCit 0.014 -0.003 0.013 0.033

(0.007) (0.004) (0.003) (0.010)
[0.004;0.028] [-0.011;0.006] [0.007;0.020] [0.015;0.052]

eit × logCit -0.130 0.024 -0.036 -0.031
(0.083) (0.009) (0.007) (0.007)

[-0.292;0.040] [0.008;0.042] [-0.052;-0.022] [-0.046;-0.018]
hit × eit (parental time -s -0.610 -0.030 0.052 0.092

(0.176) (0.026) (0.013) (0.022)
[-0.965;-0.248] [-0.081;0.025] [0.026;0.077] [0.049;0.142]

hit × log θit -0.013 0.061 -0.021 -0.009
(0.005) (0.005) (0.003) (0.005)

[-0.023;-0.002] [0.049;0.070] [-0.028;-0.015] [-0.019;0.002]
eit × log θit 0.332 0.062 0.103 0.056

(0.094) (0.007) (0.007) (0.007)
[0.171;0.529] [0.048;0.077] [0.090;0.117] [0.043;0.069]

N 407,720 596,617 457,782 336,470
Note: Schools network-clustered bootstrapped standard errors and 95% confidence intervals in parentheses
and brackets respectively. Sample consists of students in classrooms with at least 10 students with non-missing
values in test scores and time investment questions. All specifications include an intercept, student’s gender
and age, mother answered questionnaire indicator, parents’ education and age, and indicator variables for
missing controls. Back to Section 1.7.2.
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Table S.1.6:
Skill formation technology - specification with within classroom inputs

School grade
Fourth Sixth Eighth Tenth

(1) (2) (3) (4)

log θit (Skill) 0.815 0.487 0.497 0.510
(0.023) (0.009) (0.033) (0.035)

[0.765;0.858] [0.467;0.504] [0.476;0.508] [0.485;0.533]
log2 θit 0.062 0.059 0.068 0.000

(0.005) (0.002) (0.005) (0.002)
[0.053;0.071] [0.055;0.062] [0.065;0.073] [-0.003;0.003]

hit (parental time - 0.073 0.119 0.035 0.009
daily hours) (0.053) (0.020) (0.033) (0.027)

[-0.018;0.181] [0.073;0.152] [-0.027;0.100] [-0.06;0.044]
h2
it -0.009 -0.030 -0.016 0.002

(0.011) (0.004) (0.008) (0.006)
[-0.029;0.014] [-0.037;-0.021] [-0.031;0] [-0.009;0.013]

eit (child time - 2.200 0.576 0.238 0.045
daily hours) (1.427) (0.041) (0.059) (0.042)

[-0.507;4.984] [0.516;0.682] [0.110;0.346] [-0.049;0.114]
e2
it -5.263 -0.204 -0.100 0.038

(4.277) (0.020) (0.043) (0.020)
[-13.523;2.677] [-0.254;-0.174] [-0.187;-0.013] [0.004;0.086]

log Tit (teachers effects) 0.437 0.375 0.493 0.350
(0.023) (0.012) (0.039) (0.029)

[0.388;0.476] [0.345;0.391] [0.456;0.545] [0.313;0.385]
(table continues in next page)
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Table S.1.6: — Continued
Skill formation technology - specification with within classroom inputs

School grade
Fourth Sixth Eighth Tenth

(1) (2) (3) (4)
daily hours) (0.053) (0.020) (0.033) (0.027)

log θit × log Tit -0.040 0.008 -0.037 -0.019
(0.005) (0.003) (0.006) (0.004)

[-0.050;-0.031] [0.001;0.013] [-0.052;-0.031] [-0.026;-0.011]
hit × log Tit -0.006 -0.023 0.001 0.000

(0.007) (0.007) (0.004) (0.006)
[-0.021;0.007] [-0.038;-0.008] [-0.008;0.008] [-0.013;0.011]

eit × log Tit 0.165 0.061 0.006 0.000
(0.119) (0.011) (0.010) (0.008)

[-0.048;0.436] [0.039;0.086] [-0.016;0.023] [-0.014;0.018]
hit × eit (parental time -s 0.151 -0.067 0.070 -0.029

(0.233) (0.024) (0.021) (0.021)
[-0.271;0.636] [-0.108;-0.019] [0.024;0.106] [-0.062;0.020]

hit × log θit -0.025 0.063 -0.007 0.009
(0.007) (0.007) (0.003) (0.005)

[-0.037;-0.010] [0.049;0.075] [-0.013;0.001] [0.001;0.022]
eit × log θit 0.267 0.070 0.055 0.050

(0.133) (0.008) (0.011) (0.008)
[0.007;0.525] [0.055;0.087] [0.034;0.077] [0.032;0.060]

N 199,000 452,575 328,888 253,721
Note: Schools network-clustered bootstrapped standard errors and 95% confidence intervals in parentheses
and brackets respectively. Sample consists of students in classrooms with at least 10 students with non-
missing values in test scores and time investment questions and their math teacher is observed teaching at
least two classrooms in different calendar years. All specifications include an intercept, student’s gender and
age, mother answered questionnaire indicator, parents’ education and age, math teacher teaching experience
and tenure at school (second order polynomial), class size, class share male students, poor students and
parents education (less than high school, high school, and more than high school), class average parents age,
household income, peers’ skills in previous grade, and parental and student time, number of teachers and
subjects and indicator variables for missing controls. Back to Section 1.7.2.
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Table S.1.7:
Classroom and teacher value added

School grade
Fourth Sixth Eighth Tenth

Math Lang. Math Lang. Math Lang. Math Lang.

Classroom VA 0.39 0.26 0.31 0.26 0.32 0.28 0.37 0.33
Classrooms 31,639 31,499 38,102 38,438 30,771 30,579 29,477 29,199
Students 721,942 719,470 876,631 882,752 675,334 670,766 701,621 693,673

Teacher VA
general 0.36 0.21 0.28 0.19 0.30 0.22 0.33 0.24
within school 0.18 0.13 0.22 0.17 0.19 0.20 0.24 0.33
Teachers 3,362 3,174 5,268 4,674 3,517 3,159 4,514 4,607
Classrooms 9,153 8,566 19,229 16,413 11,509 10,384 22,557 22,769
Schools 1,478 1,380 2,706 2,324 1,844 1,637 1,800 1,850
Students 238,681 224,218 462,374 403,760 270,196 246,726 522,911 517,716

Source: SIMCE and SIGE administrative data.
Note: Table reports classroom and teacher value-added (VA), estimated as the dispersion of classroom
or teacher fixed effects in the regression of test scores on second order polynomials of previous scores
(both math and language), parents’ education and age, mom answered survey indicator, and household
income. In the case of teacher value-added, the specification includes classroom average of parents’
education, age, household income, peers’ previous test score, share poor classmates, class size, second
order polynomial teacher’s tenure at school and teaching experience, and teacher-student gender match
indicator. Additionally, specification of teacher VA within school includes school fixed effects. Classroom
and teacher VA is adjusted for measurement error by subtracting the mean error variance (the average
of the squared standard errors on the estimated fixed effects) from the variance of the fixed effects.
Fixed effects’ standard errors are estimated by bootstrap. Sample classroom value-added includes all
students in classrooms with at least 10 students. Sample teacher value-added includes all students in
classrooms with at least 10 students, and their schools have enrollment all years in the period, and at
least two teachers for whom there are observation in at least two different points in their careers. Back
to Section 1.7.2.
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Table S.2.9:
Standard deviation of the skill technology shock

School grades
4th grade 6th grade 8th grade 10th grade

σν,t 1.209 0.869 0.982 0.711
(0.005) (0.003) (0.002) (0.005)

[1.202;1.222] [0.863;0.874] [0.977;0.986] [0.702;0.722]
Note: Schools network-clustered bootstrapped standard errors and 95% confidence in-
tervals in parentheses and brackets respectively. The standard deviation of the skill
technology shock is estimated as the standard deviation of the residuals from the specifi-
cation in Table S.1.5. Back to Section 2.2.3.
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Table S.2.10:
Household income process

School grades
4th grade 6th grade 8th grade 10th grade

yt - 3.434 3.365 3.383
(0.026) (0.024) (0.025)

[3.397;3.498] [3.336;3.43] [3.335;3.433]
ρyt - 0.743 0.749 0.748

(0.002) (0.002) (0.002)
[0.738;0.746] [0.744;0.751] [0.744;0.751]

σ2
ω,t - 0.269 0.268 0.285

(0.002) (0.002) (0.002)
[0.266;0.273] [0.266;0.273] [0.282;0.289]

Note: Schools network-clustered bootstrapped standard errors and 95% confidence
intervals in parenthesis and brackets respectively. The household income process is
log yit = yt + ρt log yit + ωit, where ωit ∼ N(0, σ2

ω,t). It is estimated with OLS estimator.
Household income is measured as monthly income in Chilean pesos. For details of the
household income process see equation (2.2.5). Back to Section 2.2.3.
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Table S.2.11:
Classroom process

School grades
4th grade 6th grade 8th grade 10th grade

Constant -0.260 -0.525 -0.610 -0.804
(0.0270) (0.0213) (0.0272) (0.0295)

[-0.315;-0.208] [-0.57;-0.485] [-0.664;-0.56] [-0.866;-0.752]
Montly HH 0.250 0.258 0.355 0.333
income (ths. CLP) (0.0185) (0.0145) (0.0140) (0.0116)

[0.216;0.288] [0.229;0.285] [0.33;0.383] [0.312;0.357]
Father HS 0.019 0.084 0.099 0.137

(0.0083) (0.0078) (0.0088) (0.0091)
[0.003;0.035] [0.069;0.1] [0.083;0.115] [0.12;0.156]

Father >HS 0.029 0.176 0.177 0.230
(0.0120) (0.0102) (0.0120) (0.0129)

[0.006;0.053] [0.157;0.197] [0.153;0.201] [0.206;0.256]
Mother HS 0.055 0.143 0.161 0.202

(0.0088) (0.0075) (0.0079) (0.0091)
[0.038;0.073] [0.127;0.157] [0.146;0.176] [0.185;0.221]

Mother >HS 0.066 0.217 0.239 0.304
(0.0114) (0.0101) (0.0106) (0.0123)

[0.043;0.089] [0.197;0.237] [0.218;0.26] [0.282;0.331]
Age parent 0.002 0.005 0.006 0.008

(0.0004) (0.0003) (0.0004) (0.0004)
[0.002;0.003] [0.004;0.005] [0.005;0.007] [0.008;0.009]

σ2
∆ 0.926 0.901 0.875 0.864

(0.0073) (0.0068) (0.0097) (0.0094)
[0.909;0.939] [0.887;0.912] [0.855;0.893] [0.843;0.881]

N 407,720 596,617 457,782 336,470
Note: Schools network-clustered bootstrapped standard errors and 95% confidence intervals
in parentheses and brackets respectively. The classroom process is logCit = κ′txit + ∆it, where
∆it ∼ N(0, σ2

∆,t), is estimated with OLS estimator. For additional details see equation (2.2.4).
HS refers to high school education. Monthly HH income (ths. CLP) refers to monthly house-
hold income in thousands of 2018 Chilean pesos. Back to Section 2.2.3.
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Table S.2.12:
Estimates of preference parameters

School grade
Fourth Sixth Eighth Tenth

Estimate SE Estimate SE Estimate SE Estimate SE

CRRA utility parameter on skills:
φ1t 0.566 (0.0001) 0.053 (0.0001) 0.383 (0) 0.061 (0.0108)

Parent time disutility costs parameters: φ̃2it
Constant 4.579 (0.1081) 4.610 (0.0145) 2.336 (0.0549) 5.859 (0.0698)
HH income -1.798 (0.0048) -0.040 (0.0052) -0.261 (0.0004) -0.023 (0.0003)
Father HS -2.228 (0.0079) -0.279 (0.0002) -0.003 (0.0061) -1.781 (0.007)
Father >HS 0.000 (0.0002) -1.451 (0.0313) -0.011 (0.0003) -0.004 (0.0001)
Mother HS -0.046 (0.0001) -2.803 (0.0074) -0.062 (0.0009) -0.391 (0.0012)
Mother >HS -0.412 (0.0005) -0.007 (0.0007) -0.001 (0.0003) -0.371 (0.0001)
Parent age -1.414 (0.0041) -2.218 (0.0006) -2.215 (0.0065) -1.332 (0.0036)

Student time disutility costs parameters: φ̃3it
Constant 5.936 (0.1383) 4.285 (0.0144) 4.913 (0.0112) 5.257 (0.1022)
HH income 1.779 (0.0035) 1.413 (0.0050) 1.934 (0.0028) -2.550 (0.0057)
Father HS 1.765 (0.0020) -1.495 (0.0015) 0.544 (0.0023) 0.620 (0.0045)
Father >HS 1.373 (0.0016) -1.535 (0.0041) 0.356 (0.0027) 1.987 (0.0035)
Mother HS 1.985 (0.0020) -0.237 (0.0067) -2.509 (0.0049) 1.114 (0.0038)
Mother >HS 1.478 (0.0016) -0.236 (0.0019) -1.699 (0.0038) 1.762 (0.0037)
Parent age 1.991 (0.0047) -0.569 (0.0002) -1.323 (0.0023) -2.230 (0.0055)

Estimate SE

Terminal period parameter: φ4 1.007 (0.0015)
Variance υi: σ2

υ 0.025 (0.0001)
Variance ιi: σ2

ι 0.059 (0.0020)
Note: Schools network-clustered bootstrapped standard errors in parentheses. The preference parameters are
specified as: CRRA parameter on skills φ1t, parental and student time disutility costs φi2t = exp(φ̃′2txit + υi) and
φi3t = exp(φ̃′3txit + ιi), respectively, where υi ∼ N(0, σ2

υ) and ιi ∼ N(0, σ2
ι ). Terminal period parameter φ4t. For

additional detail see Section 2.2.1. The vector xit includes a one, household income, parents’ education and age.
HS refers to high school education. HH income refers to monthly household income measured in thousands of
Chilean pesos. Back to Section 2.2.3.
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Supplemental Figures

Figure S.1.1:
Parental and child time investment distributions
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Note: Calculations are based on the Chilean Time Use Survey 2015. The survey reports hours spend in
activities in the last week and weekend day. Parental time refers to hours parents spent in activities with
their children and child time is hours a child spends studying, doing homework or other academic activities
outside school. I transformed the reported time to hours per week by multiplying by 5 and 2 times during the
week and weekend day, respectively. Back to Section 1.3.2.

Figure S.1.2:
Expected value and standard deviation of cognitive skills
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Note: Estimated with the Chilean WISC-V cognitive development test survey. The estimation consist on re-
placing the moments of equation (1.5.3) with their sample analogs and the measurement system’s parameters
presented in Table S.1.3. Back to Section 1.7.1.
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Figure S.1.3:
Sample average marginal effects of skill inputs (SD)

specification with within classroom components
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Note: The values on these graphs show the average marginal effect calculated using the estimates from the
specifications in Table S.1.6. The grey area reports school network-clustered bootstrapped 95% confidence
intervals. I compute each student’s marginal effect using each input’s analogous equation (1.7.14) and
calculate the average over the sample. Back to Section 1.7.2.
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Figure S.1.4:
Sample average marginal effects of skill inputs (Percentiles)
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Note: The values on these graphs show the average shift in percentiles across the skill distribution of an
additional unit of input. Calculated using the estimates from the specifications in Table S.1.5. The grey area
reports school network-clustered bootstrapped 95% confidence intervals. I compute each student’s percentile
shift implied by the marginal effect from the each input’s analogous equation (1.7.14) and calculate the
average over the sample. Back to Section 1.7.2.
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Figure S.1.5:
Sample average marginal effects of skill inputs (Percentiles)

specification with within classroom components
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Note: The values on these graphs show the average shift in percentiles across the skill distribution of an
additional unit of input. Calculated using the estimates from the specifications in Table S.1.6. The grey area
reports school network-clustered bootstrapped 95% confidence intervals. I compute each student’s percentile
shift implied by the marginal effect from the each input’s analogous equation (1.7.14) and calculate the
average over the sample. Back to Section 1.7.2.
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Figure S.1.6:
Sample average marginal effects of skill formation inputs (in SD log skill 2nd grade)

by mother education
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Note: The values on these graphs present the average marginal effect calculated using the estimates from the
specifications in Table S.1.5. The grey area reports school network-clustered bootstrapped 95% confidence
intervals. I compute each student’s marginal effect using each input analogous equation (1.7.14) and calculate
the average over the sample for the grand average (black + line). And for the blue diamond and red triangles,
I calculate the average within each mother with high school or less and more than high school education,
respectively.
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Figure S.1.7:
Sample average marginal effects of skill formation inputs (in SD log skill 2nd grade)

by household income
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Note: The values on these graphs present the average marginal effect calculated using the estimates from the
specifications in Table S.1.5. The grey area reports school network-clustered bootstrapped 95% confidence
intervals. I compute each student’s marginal effect using each input analogous equation (1.7.14) and calculate
the average over the sample for the grand average (black + line). And for the blue diamond and red triangles,
I calculate the average within the first and fifth household income quintile, respectively.
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Figure S.1.8:
Validation test: skill formation technology
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Note: The graphs compares the average predicted skill by the estimated skill technology (Model) and the
average of the skill estimated in the data (Data) by household income deciles. Back to Section 1.7.2.
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Figure S.1.9:
Activities of parental time across age of children
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Source: National Household Education Survey (NHES), 2016.
Note: This figure shows share of parents that in the previous week discussed time man-
agement with their children and the share of parents (or other caretaker) that help the
child with her/his homework more than 2 days in an average week. Back to Section 1.7.3.
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Figure S.1.10:
Parental time and child effort responses

to reassignment from 10th to 90th percentile of classroom and teacher distributions
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Note: The values on the graphs are calculated using the estimates of Table S.1.8. The top and bottom
panels reports parental and student responses, respectively. The vertical lines are school network-clustered
bootstrapped 95% confidence intervals. The symbol on top (x) indicates that the difference between the
response with that of fourth grade is statistically significant at 1%. The values on the bottom of each plot are
the response as a percent of the average time investment at each grade. Back to Section 1.7.3.
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Figure S.1.11:
Household responses by child gender (F=female, M=male)

to reassignment from 25th to 75th percentile of classroom distributions
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Note: The values on the graphs are calculated using the estimates of Table S.1.8. The top and bottom
panels report parental and students responses, respectively. The vertical lines are school network-clustered
bootstrapped 95% confidence intervals. Symbols on top (x) indicate that the difference in responses between
female and male students is statistically significant at 1%. The values of graphs in the top panel represent
weekly hours, while the values at the bottom of each plot indicate the response as a percent relative to the
average time investment at each specific grade. Back to Section 1.7.3.
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Figure S.2.12:
Model fit of targeted moments

All moments skills distribution
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Note: Each dot in the graphs represents a moment used in the auxiliary model of the indirect inference
estimator. The horizontal axis shows the value of the moment estimated in the data and the vertical axis
shows the value from the data simulated with the child development model. Back to Section 2.2.4.
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Figure S.2.13:
Optimal resource allocation across grades

Average shares of transferable resources by students’ characteristics

Note: This figure shows the average optimal shares of transferable resources at each school grade by
mother education level and household income. For students attending fourth grade in the sample I
draw classroom effects for grades 4 to 10 using equation (2.2.4). Then, with the child development
model, I simulate the household choices and skills under each possible resource allocation across
grades for each student. The optimal allocation is given by the shares of total transferable resources
at each grade that maximize the weighted skills index of each student. The weighted skills are a
weighted average of the skills across grades 4 to 10 and the weights correspond to the coefficients of
a regression of college attendance on measures of skills. The weights (normalized to sum up to
one) are 0.10, 0.17, 0.24 and 0.49 for grades 4, 6, 8 and 10, respectively. In this exercise I allow 30
percent of the resources of the baseline allocation of each grade to be transferable across grades.
See section 2.3.2 for additional details.
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Figure S.2.14:
Difference in average weighted skills index between optimal and baseline allocation

by share of transferable resources

Note: The top panel presents the difference between the optimal and baseline alloca-
tion of the average weighted skills by fraction of transferable resources of each grade.
The bottom panel shows the equivalent results for the top and bottom 20 percent
of the household income distribution. For students attending fourth grade in the
sample I draw classroom effects for grades 4 to 10 using equation (2.2.4). Then, with
the child development model, I simulate the household choices and skills under each
possible resource allocation across grades for each student. The optimal allocation is
given by the shares of total transferable resources at each grade that maximize the
weighted skills index of each student. The weighted skills are a weighted average
of the skills across grades 4 to 10 and the weights correspond to the coefficients of
a regression of college attendance on measures of skills. The weights (normalized
to sum up to one) are 0.10, 0.17, 0.24 and 0.49 for grades 4, 6, 8 and 10, respectively.
In this exercise I allow 30 percent of the resources of the baseline allocation of each
grade to be transferable across grades. See section 2.3.2 for additional details.
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Figure S.2.15:
Average differences in classroom effects between optimal and baseline allocation

by household behavioral type

Note: The figure presents the difference of the average classroom effects between the optimal
and baseline allocation by household type. No response: households do not respond to different
allocations; Policy myopic: households respond as if resources in subsequent grades are the given
by baseline allocation; Forward-looking: households are forward-looking and make their decisions
understanding the dynamic implications of different allocations. For non-responsive households I
simulate skills dynamics using the skill technology (Table S.1.5). For policy myopic households I
simulate their choices and skills with the time investment functions (Table S.1.8) and skill technology.
For forward-looking households I simulate their choices and skills with the full child development
model (see section 2.2.1). For students attending fourth grade in the sample I draw classroom
effects for grades 4 to 10 using equation (2.2.4). Then, with the child development model, I simulate
the household choices and skills under each possible resource allocation across grades for each
student. The optimal allocation is given by the shares of total transferable resources at each grade
that maximize weighted skills index of each student. The weighted skills are a weighted average
of the skills across grades 4 to 10 and the weights correspond to the coefficients of a regression
of college attendance on measures of skills. The weights (normalized to sum up to one) are 0.10,
0.17,.0.24 and 0.49 for grades 4, 6,8 and 10, respectively. In this exercise I allow 30 percent of the
resources of the baseline allocation of each grade to be transferable across grades. See section 2.3.2
for additional details.
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Figure S.2.16:
Average differences in skills between optimal and baseline allocation

by household behavioral type

Note: The figure presents the difference of the average skills between the optimal and baseline
allocation. The results are by household type (first word in bar’s label) and by implementing
the optimal allocation for a particular household type (second word in bar’s label). Household
types: No response: households do not respond to different allocations; Policy myopic: households
respond as if resources in subsequent grades are the given by baseline allocation; Forward-looking:
households are forward-looking and make their decisions understanding the dynamic implications
of different allocations. For non-responsive households I simulate skills dynamics using the skill
technology (Table S.1.5). For policy myopic households I simulate their choices and skills with
the time investment functions (Table S.1.8) and skill technology. For forward-looking households
I simulate their choices and skills with the full child development model (see section 2.2.1). For
students attending fourth grade in the sample I draw classroom effects for grades 4 to 10 using
equation (2.2.4). Then, with the child development model, I simulate the household choices and
skills under each possible resource allocation across grades for each student. The optimal allocation
is given by the shares of total transferable resources at each grade that maximize weighted skills
index of each student. The weighted skills are a weighted average of the skills across grades 4 to 10
and the weights correspond to the coefficients of a regression of college attendance on measures of
skills. The weights (normalized to sum up to one) are 0.10, 0.17,.0.24 and 0.49 for grades 4, 6,8 and
10, respectively. In this exercise I allow 30 percent of the resources of the baseline allocation of each
grade to be transferable across grades. See section 2.3.2 for additional details.
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Figure S.2.17:
Policy counterfactual: Distribution of optimal shares of transferable resources
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Shares grade 8 Shares grade 10

Note: This figure shows results of policy that reallocates optimally transferable resources across
grades 4 to 10. Each plot shows the distribution of optimal shares of total transferable resources
assigned at each grade. Note that at each plot the bars sum up to one. See section 2.3.2 for additional
details.
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Figure S.2.18:
Optimal resource reallocation across grades
Estimates with and without error correction

Note: The figure shows the difference in average skills at each grade between the optimal and
baseline allocation of transferable resources. The bars labeled “Estimates” simulate the skills under
the full model estimates. The bars labeled “No behavior” show the estimated impact under the
assumption that households do not respond—i.e., I simulating the skills under the policy only
with the skill technology (Table S.1.5). Lastly, the bars labeled “+No error correction” and “+No
time inputs in technology” simulate the skills with only the skill technology without correcting for
measurement error and additionally not including time inputs, respectively. For students attending
fourth grade in the sample I draw classroom effects for grades 4 to 10 using equation (2.2.4).
Then, with the child development model, I simulate the household choices and skills under each
possible resource allocation across grades for each student. The optimal allocation is given by the
shares of total transferable resources at each grade that maximize weighted skills index of each
student. The weighted skills are a weighted average of the skills across grades 4 to 10 and the
weights correspond to the coefficients of a regression of college attendance on measures of skills.
The weights (normalized to sum up to one) are 0.10, 0.17, 0.24 and 0.49 for grades 4, 6, 8 and 10,
respectively. In this exercise I allow 30 percent of the resources of the baseline allocation of each
grade to be transferable across grades. See section 2.3.2 for additional details.
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