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Abstract

Understanding ice, the solid state of water, has enormously broad and far-reaching implications

for our daily life and basic science. In our endeavors to seek a better understanding of ice,

vibrational spectroscopy has been and is still playing an essential role due to its sensitivity to

molecular structure and motion. However, decoding molecular information from vibrational

spectra often requires the assistance of theory and molecular simulations. This thesis presents

our recent efforts simulating various vibrational spectroscopies of ice Ih, the most common

form of ice, from realistic molecular models, and we believe that these efforts constitute a step

towards a reliable and versatile simulation scheme for the vibrational spectroscopy of ice.

We first model the low-frequency infrared spectrum of ice Ih, which contains information

about molecular arrangement and hydrogen bonding in ice, and a related macroscopic property,

the static dielectric constant, which reveals the structural heterogeneity (proton disorder) in ice

Ih. These pieces of information could be also extracted from high-frequency OH (OD) stretch

optical vibrational spectroscopy. Both linear and nonlinear OH (OD) stretch optical vibrational

spectroscopies of ice Ih are simulated in subsequent chapters, and the spectrum-structure rela-

tionship for ice Ih (e.g., relation between inhomogeneous broadening and proton disorder) is

investigated on the basis of reasonable agreement between theory and experiment. In addition

to optical vibrational spectroscopy, the last chapter of the thesis is devoted to the modeling of

a different type of vibrational spectroscopy — incoherent inelastic neutron scattering — and

connections and differences between these two types of vibrational spectroscopy is discussed.
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Chapter 1

General Introduction

Contents
1.1 Motivation for Studying Ice . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Present Knowledge of Ice Ih . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.3 Vibrational Spectroscopy . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.3.1 As a Probe of Molecular Structure . . . . . . . . . . . . . . . . . . 5

1.3.2 As a Probe of Molecular Dynamics . . . . . . . . . . . . . . . . . 6

1.4 Role of Theoretical Vibrational Spectroscopy . . . . . . . . . . . . . . . . 7

1.1 Motivation for Studying Ice

He raised a finger and winked at me. “But suppose, young man, that one Marine had with him

a tiny capsule containing a seed of ice-nine, a new way for the atoms of water to stack and lock,

to freeze. If the Marine threw that seed into the nearest puddle . . .”

“The puddle would freeze?” I guessed.

· · ·
“And the rain?”

“When it fell, it would freeze into hard little hobnails of ice-nine - and that would be the end of

the world! And the end of the interview, too! Good-bye!”

- Kurt Vonnegut, Cat’s Cradle
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Fortunately, the devastating “ice-nine” in Vonnegut’s fiction does not exist in real life (the real

“ice IX” has nothing to do with the fictional “ice-nine”). However, understanding ice is still

essential for our life, especially in the modern era.1 Modern aviation industry connects people

all over the world, and flight safety is its most important concern. One serious hazard to flight

safety is actually in-flight icing,2 and some fatal accidents were due to the formation of ice

crystals on aircrafts (e.g., the Air France Flight 447 accident).3 The basic scientific question

here is how to prevent ice formation from supercooled moisture (water droplets) in clouds,

and its solutions rely on our understanding of homogeneous or heterogeneous ice nucleation.

Understanding ice is also important for ground transportation, especially for people living in

cold regions. During the winter season, roads and highways in these cold regions might be

shifted or deformed due to the effects of frost heaves.4 It is often mistakenly thought that simply

the expansion of water on freezing gives rise to this destruction. However, frost heaving is a very

complex non-equilibrium process, and it involves ice surface premelting and ice segregation

within porous materials.4 In order to reduce these destructive effects, one needs to understand

ice surface premelting and ice nucleation in confined environments.

Because of its extreme practical importance, ice has been an exciting research topic for over

a century, and an enormous number of studies have been published. Comprehensive discussions

could be found in some books and many review articles,5–7 and only a few historical milestones

will be mentioned here to emphasize the importance of studying ice in basic science. In 1900,

the polymorphism of ice was discovered by Tammann,8 and since then the effort to find new

phases of ice has lasted for over a century and is still going on. So far there are 16 crystalline

phases and 3 amorphous phases for ice,9 the most common form of which in daily life is hexag-

onal ice, also called ice Ih. Investigating the rich phase behavior of ice greatly advances our

understanding of molecular systems (e.g., packing, order-disorder transition).10 Around 1935,

Bernal, Fowler, and Pauling proposed a structure for ice Ih (i.e., the Pauling structure),11, 12

which was confirmed by neutron diffraction experiments in 1949.13 In this structure, the ori-

entations of water molecules are disordered, and this disorder remains down to extremely low

temperature, making ice Ih the first identified frustrated system. Motivated by this structure,

people have proposed and prepared a type of magnetic system analogous to ice Ih, called “spin

ice”,14, 15 which is relatively a new topic in materials science. In the 1970s, people started build-

ing “artificial” ice Ih in computers,16–18 and since then computer simulation of ice has been an
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indispensible part of ice research. Moreover, simulating the properties and phase diagram of ice

has been a common practice to benchmark or develop water models recently.19–21 Therefore,

the aforementioned progress in the research field of ice not only elucidated some important

problems about ice, but also provided new insights to relevant scienctific topics.

1.2 Present Knowledge of Ice Ih

This section is meant to provide briefly a contemporary picture of a perfect crystal of ice Ih at

the molecular level based on studies since the beginning of the last century. A twelve-molecule

fragment of ice Ih is shown in Fig. 1.1, in which the blue spheres are oxygen atoms and the

smaller white spheres are hydrogen atoms. It is clear from Fig. 1.1 that the oxygen atoms form

a regular hexagonal lattice, and each water molecule is still intact in perfect ice Ih. Between

two adjacent oxygen atoms, there is one and only one hydrogen atom (we are not considering

defects here), which binds to one oxygen covalently, and to the other one via a hydrogen bond

(HB). However, which oxygen atom is binded covalently to hydrogen is more or less random

as long as each oxygen atom has two covalently bonded hydrogen atoms and two hydrogen

bonded ones. As a result, the orientation of the water molecule in ice Ih is disordered, and this

disorder is called proton disorder in the literature. The rules described above are the famous

Bernal-Fowler ice rules,11 and the resulting ice Ih structure is the Pauling structure.12 This

proton disorder leads to many peculiar properties of ice Ih, such as residual entropy, large static

dielectric constant, etc.7 Regarding the molecular dynamics (molecular motions) in ice Ih,

there are two types of motions, well-separated in their time scales. One is hindered translation

and rotation (i.e., libration) due to thermal fluctuation. These hindered motions involve small

but fast displacement or distortion of water molecules, and the hinderance comes from the

constraints exerted by the hydrogen-bond network in ice Ih. The other type of motion is the

reorientation of water molecule, which requires a large activation energy and local violations

of the Bernal-Fowler ice rules (i.e., defects). This is a very slow process in pure ice Ih, and

its (Debye) relaxation time scale is about a µs at T = −10 ◦C, and many years at 100 K.7, 22

However, this slow motion makes possible the interchange of all configurations allowed by the

ice rules, giving rise to the large static dielectric constant of ice Ih. Note that here we adopt a

molecular perspective (the water molecule is always intact), but in reality the reorientation of
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water molecule in ice Ih can be achieved by ionic defects in addition to the defects mentioned

above (i.e., Bjerrum defects), and both types of defects lead to the protonic conductivity of ice

Ih (see Ref. 7). The next section aims to provide a brief introduction of vibrational spectroscopy

as a tool to probe molecular structure and dynamics of ice Ih.

Figure 1.1: 12-molecule fragment of ice Ih. Blue spheres are oxygen atoms, smaller white

spheres are hydrogen atoms, and the dotted lines are hydrogen bonds. The crystallographic c

axis in hexagonal lattice is vertical.

1.3 Vibrational Spectroscopy

Vibrational spectroscopy has been a very useful tool to study the structure and dynamics of

condensed phase systems. In a typical vibrational spectroscopic measurement, the condensed

phase system is perturbed by incident waves (e.g., electromagnetic fields, neutrons), and ex-

perimentalists record the response of the nuclei in the condensed phase system to the external

perturbation. Assuming that the perturbation is small (which usually is a good approximation),

one can extract structural and dynamical information about the unperturbed system from the

response. This section will briefly discuss how people can learn something from vibrational

spectroscopy about structure and dynamics of a particular system — ice Ih.
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1.3.1 As a Probe of Molecular Structure

There are at least two strategies in terms of probing molecular structures using vibrational spec-

troscopy. One is using a vibrational chromophore (e.g., OH or OD stretch in water,23 amide

I mode in proteins,24and CN stretch in biological systems25) to probe the molecular structure

around it. Such a chromophore usually has a large absorption coefficient, and its vibrational

frequency is very sensitive to changes in its local environment (e.g., hydrogen bonding). For

ice Ih, the commonly chosen vibrational chromophore is the OH or OD stretch as it has a

large absorption coefficient, and the OH vibrational frequency is red-shifted by hundreds of

wavenumbers when it forms hydrogen bonds to nearby water molecules. In the 1930s, the

similarities between the Raman spectra (OH stretch region) of water vapor, liquid water and

ice Ih led Bernal and Fowler to speculate that the H2O molecule’s integrity is retained in ice

Ih.11 However, the further establishment of the spectrum-structure relationship for pure H2O

ice Ih was largely hindered due to vibrational couplings. Many OH chromophores in ice are

near-degenerate, and the vibrational couplings between them delocalize the vibrational eigen-

states to some extent, making the structural interpretation of the spectra very challenging. In the

1960s, experimentalists started measuring OH (OD) vibrational spectra for isotope-diluted ice

Ih, such as dilute HOD in D2O.26–28 Because of the large frequency mismatch between OH and

OD stretches, the OH stretch local mode is now essentially a normal mode, and its frequency

is mainly affected by its local environment. Therefore, the spectrum of such an isotope-diluted

system reflects the heterogeneity of local molecular environments in the system, as is discussed

thoroughly in Chapter 6. Another strategy is to make use of the interactions or correlations

between (nearby) molecules in condensed phase systems. One particularly useful technique is

coherent neutron scattering,29 from which one can extract the radial distribution function, one

key quantity characterizing molecular arrangement in condensed phases. Historically, Pauling’s

proposed structure for ice Ih was verified by this type of neutron scattering technique in 1949,13

as this techique is sensitive to hydrogen atoms (hydrogen has a larger neutron scattering cross

section than oxygen). For optical vibrational spectroscopy, as discussed above, the OH stretch

spectra for pure H2O ice Ih is influenced by OH vibrational coupling, which also carries some

information about local molecular structure. However, the extraction of this information from

spectra usually requires theoretical modeling, and our efforts on this are presented in Chapter 4.

Vibrational coupling can also lead to resonant vibrational energy transfer, and if Förster theory
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(an approximate theory for incoherent resonant electronic energy transfer, see Chapter 5) could

be applied here, information about molecular distance and orientation could be obtained just

like in the case of electronic energy transfer.30 In fact, experimentalists have taken advantage of

this to study ice Ih,31 and our theoretical interpretation on this is reviewed in Chapter 5.

1.3.2 As a Probe of Molecular Dynamics

There are at least two windows in the vibrational spectra of ice Ih from which people can learn

something about molecular dynamics. One regime is below about 1000 cm−1, which reflects

intermolecular motions directly. For example, a peak at about 225 cm−1 in the IR spectrum of

pure H2O ice Ih at 266 K32 is usually assigned to hydrogen bond stretching mode. The repro-

duction of this peak in theoretical modeling is discussed in Chapter 3. Details of this hydrogen

bond stretching motion can also be inferred from another regime of the vibrational spectra —

the OH-stretch region. Considering dilute HOD in D2O ice Ih, the OH-stretch frequency fluc-

tuates due to the change of its local environment, which results from intermolecular motions

(low-frequency motions modulate high-frequency vibrations), in particular from the hydrogen

bond stretching motion.23, 33–35 Therefore, if one can extract the time scale of the OH-stretch

frequency fluctuation from OH-stretch spectra, one would know something about the inter-

molecular motions. In fact, people have done this by analysing the line-widths of linear spectra

and performing ultrafast nonlinear vibrational spectroscopic experiments.35, 36 This is further

discussed briefly in Section 6.5.

A technique worth mentioning separately from the above general discussion is incoherent

inelastic neutron scattering (IINS). In linear optical vibrational spectroscopy (e.g., IR and Ra-

man), the perturbation to the system due to electromagnetic waves is largely through the dipole

moment (or induced dipole) of the system. Therefore, the spectral intensity is determined not

only by the intrinsic vibrational motion (i.e., vibrational density of states) but also by the dipole

moment change associated with the vibrational motion.37 This is basically the origin of the

so-called selection rules for IR and Raman spectra. However, within reasonable approxima-

tions, IINS can provide direct information about vibrational density of states.37–39 Moreover,

for hydrogen-containing systems, it is possible to extract the hydrogen velocity time correlation

function from IINS.40 This provides a direct route to the comparison with molecular dynamics

simulations. Chapter 7 is devoted to the modeling of IINS spectra for ice Ih as well as liquid
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and supercooled water.

1.4 Role of Theoretical Vibrational Spectroscopy

If experiment can be regarded as a top-down approach (i.e., speculating microscopic details

by observing macroscopic signals), theoretical modeling is often a bottom-up approach: one

builds an artificial molecular system (e.g., molecular dynamics (MD) and Monte Carlo (MC)

simulations with model Hamiltonians), then calculates macroscopic observables from that us-

ing appropriate theories. Nowadays, it is quite common to combine these two approaches:

experimentalists need modeling to verify their speculations or interpret their observations, and

theorists need experiment to validate their artificial molecular systems. In this sense, theoretical

simulations of vibrational spectroscopy are used widely to bridge the gap between experimental

spectroscopic measurements and molecular simulations. The next section is dedicated to the

formulation of theoretical vibrational spectroscopy with a focus on a mixed quantum/classical

approach developed in the Skinner group.23
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Chapter 2

Line Shape Theory and Its

Implementation

Contents
2.1 Line Shape and Time Correlation Function . . . . . . . . . . . . . . . . . 9

2.2 Approximation: System-Bath Treatment . . . . . . . . . . . . . . . . . . 10

2.3 Static Dielectric Constant: Slow Long-Range Structure Fluctuation . . . 13

2.4 Low-Frequency Vibrational Spectroscopy: Intermolecular Motions . . . 16

2.5 High-Frequency Vibrational Spectroscopy: OH (OD) Stretch . . . . . . . 16

2.5.1 Mixed Quantum/Classical Approach . . . . . . . . . . . . . . . . 17

2.5.2 Implementation of Mixed Quantum/Classical Approach . . . . . 18

2.6 Describing the Bath: E3B Water Model . . . . . . . . . . . . . . . . . . . 20

The scope of this chapter is limited to linear vibrational spectroscopy, and the discussion

is started with using Fermi’s Golden Rule based on the first-order time-dependent quantum-

mechanical perturbation theory. For nonlinear spectroscopy, the nonlinear response theory is

laid out in great detail in Ref. 41, and will be mentioned when necessary in subsequent chapters.

In order to keep the notation clean, unless we redefine them, throughout the thesis we use (i)

i, j, l as indices for OH (OD) stretch local modes and associated OH bonds or H atoms (when i is

not an index, it is usually the imaginary unit), (ii) p, q, r, s as indices for Cartesian components.

The dot above a symbol denotes a time derivative.
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2.1 Line Shape and Time Correlation Function

In this section, the procedure to derive a time correlation function formula for the line shape is

outlined briefly, and the details can be found in Ref. 37. Within the weak perturbation approx-

imation, the cross section of absorption or scattering can be written in a sum-over-states form

based on Fermi’s Golden Rule (for neutron scattering, the neutron-nuclei interaction is defined

by the Fermi pseudopotential, and its sum-over-states formula is called first Born approxima-

tion37). By using the Fourier transform representation of the delta function, the sum-over-states

expression can be recast into a formula containing the (full or half) Fourier transform of a time

correlation function (TCF) in the Heisenberg picture of quantum mechanics. The Fourier trans-

form of that TCF is usually defined as the line shape function (for neutron scattering, the TCF

is called the intermediate scattering function, and its Fourier transform is called the scattering

function). In this chapter, we will use the term “line shape function” as a more general term

for the Fourier transform of some TCF. Therefore, the focus of the spectral calculation is a

quantum-mechanical time correlation function, the general form of which is given by

CAB(t) = 〈A(t)B(0)〉 , (2.1)

where A(t) = U †(t)AU(t), U(t) ≡ e−iHt, and H is the unpertubed Hamiltonian of the whole

system. The brackets denote an equilibrium quantum-mechanical ensemble average. Note that

throughout the thesis, h̄ = 1. A listing of vibrational spectra and their corresponding TCFs is

shown in Table 2.1. The full Fourier transform in this thesis is defined as

F (ω) =
1

2π

∫ ∞

−∞
eiωtf(t)dt. (2.2)

The integration interval of the half Fourier transform is [0,∞].
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Spectrum Observable A(t) B(0) Fourier transform

IR37 Ip(ω) Mp(t) Mp(0) full

Raman37 Ipq(ω) αpq(t) αpq(0) full

SFG42 χR
pqr(ω) αpq(t) Mr(0) half

VCD43 ∆Ip(ω) Mp(t) Dp(0) full*

IINS37 S(~k, ω) e−i~k·~rj(t) ei~k·~rj(0) full

Table 2.1: Some vibrational spectra and corresponding TCFs. SFG: sum-frequency generation;

VCD: vibrational circular dichroism; IINS: inelastic incoherent neutron scattering; I(ω): line

shape function; χR(ω): resonant part of the second-order susceptibility for SFG; ∆I(ω): VCD

line shape function; S(~k, ω): incoherent scattering function; ~k: momentum transfer in IINS;

M : electric dipole; α: polarizability; D: magnetic dipole; ~r: position of nucleus; *: for VCD

line shape, one needs to take the imaginary part after performing the Fourier transform; p, q, r

are Cartesian coordinate indices.

2.2 Approximation: System-Bath Treatment

It is quite common in condensed phases that some motions are fast, and some are slow relatively.

For nuclear motions in ice Ih, intramolecular stretching and bending motions are fast (i.e., high-

frequency), and intermolecular libration and translation are slow (i.e., low-frequency). The

separation of timescales leads us to divide the material into two parts: system and bath. The

system consists of fast degrees of freedom, while the bath consists of the slow modes. This

division is not necessary, but it allows different levels of theoretical treatments for the system

and bath, especially when one is only interested in the system. Regarding the vibrational spec-

troscopy of ice Ih, many studies focus on the low-frequency region or the OH (OD) stretch

region. Even though the HOH (DOD) bending mode can couple to low-frequency modes or OH

(OD) stretches (e.g., via Fermi resonance), some previous studies suggested that this effect is

usually secondary.44–46 As a result, the bending mode is neglected in this work (note that we

do not have to do so). Similarly, when we consider dilute HOD in D2O ice Ih, we ignore OD

stretches. The system now is formed by all the OH (OD) stretches of interest on the ground
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electronic Born-Oppenheimer potential energy surface (PES), and librations and translations

(i.e., phonons) constitute the bath. The OH (OD) stretch frequency is usually over 3000 (2000)

cm−1, its accurate treatment requires quantum mechanics at typical temperatures (i.e., T <

300 K) as h̄ω À kBT (kBT ≈ 200 cm−1 at 300 K). For the bath, there is no guarantee that

classical mechanics is sufficient; however, many rigid water models have been able to reason-

ably reproduce many properties (thermodynamic, structural, and dynamical) of water and ice

Ih. Moreover, several path-integral based simulations showed that quantum treatment of nuclei

does not change the classical results for the low-frequency IR spectrum (below 1000 cm−1) for

liquid water by much.46, 47 Therefore, for the sake of computational efficiency, we use classical

molecular dynamics with rigid water models to treat the bath. A comprehensive discussion on

different levels of treatments for vibrational spectroscopy can be found in Ref. 23, and the rest

of this section briefly reviews the key steps in the system–bath treatment.

Suppose that we are considering the OH stretches as the system. The full Hamiltonian can

be written as

H = H0 |0〉 〈0|+
∑

i

Hi |i〉 〈i|+
∑

i6=j

Hij |i〉 〈j| , (2.3)

where |0〉 is the vibronic ground state, |i〉 is the vibronic state where only the ith OH chro-

mophore is excited to its first vibrational excited state on the ground electronic PES (i, j > 0),

Hi ≡ 〈i|H |i〉, and Hij ≡ 〈i|H |j〉. By writing the Hamiltonian in this way, we are using the

OH stretch local modes (i.e., diabatic states) rather than normal modes as the basis, and neglect-

ing the vibrational couplings between ground state and excited states. Note that H0, Hi and Hij

are bath operators now.

To proceed further, we employ the system–bath treatment based on the well-separated time

scales of the system and bath, and invoke an adiabatic approximation: the total density operator

ρ can be written as

ρ ≈ ρsρb, (2.4)

where ρs and ρb are system and bath density operators, respectively (note that the time depen-

dence is with operators). By doing this, we ignore the energy dissipation from system to bath,

which in reality is important (in other words, we only have vibrational phase relaxation, but no

energy relaxation). At ambient or lower temperatures, only |0〉 is significantly populated in the

system, and ρeq
s ≈ |0〉 〈0|. For the bath, ρeq

b ≈ ρ0 ≡ e−βH0/Trbe−βH0 , where β ≡ 1/kBT , and
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Trb denotes a trace over bath degrees of freedom.

With the completeness relation for the system Is =
∑

i |i〉 〈i|+ |0〉 〈0|, Eq. (2.3) becomes

H = Is ⊗H0 +
∑

i

(Hi −H0) |i〉 〈i|+
∑

i6=j

Hij |i〉 〈j| . (2.5)

Now, we move to work in the interaction picture of quantum mechanics with Is ⊗ H0 as the

reference Hamiltonian. Note that we always use this as our reference Hamiltonian even when

the second vibrational excited state is accessible in nonlinear spectroscopy, in contrast to the

reference choices in Ref. 41. The reason for this is that we will later run classical MD simu-

lations with rigid water models, in which we are sampling the configuration space of H0. The

standard machinery in the interaction picture41 leads to the following expression for CAB(t)

CAB(t) ≈ Trbρ0 〈0|U †
I (t)AI(t)UI(t)B(0) |0〉 , (2.6)

where UI(t) = eiIs⊗H0tU(t), and AI(t) = eiIs⊗H0tAe−iIs⊗H0t. Inserting the completeness

relation of the system states three times results in the expressions

CAB(t) = C l
AB(t) + Ch

AB(t), (2.7)

where

C l
AB(t) = 〈A00(t)B00(0)〉b , (2.8)

and

Ch
AB(t) =

∑
ij

〈A0i(t)Uij(t)Bj0(0)〉b . (2.9)

C l
AB(t) (l here is for low-frequency) is related to calculations of low-frequency vibrational

spectroscopy (bath motions: molecular translations and rotations), and Ch
AB(t) is related to cal-

culations of high-frequency vibrational spectroscopy (system motions: OH stretches). Other

symbols are defined as follows: 〈· · ·〉b ≡ Trb{ρ0 · · · }, A00(t) ≡ 〈0|AI(t) |0〉, B00(0) ≡
〈0|B(0) |0〉, A0i(t) ≡ 〈0|AI(t) |i〉, Bj0(0) ≡ 〈j|B(0) |0〉, and Uij(t) ≡ 〈i|UI(t) |j〉. The

next three sections are devoted to the implementations of the above theory in three different

frequency regimes: very low frequency regime (below 100 MHz), THz and far-infrared regime

(10 – 1000 cm−1), and mid-infrared regime (OH or OD stretch).



13

2.3 Static Dielectric Constant: Slow Long-Range Structure

Fluctuation

The static dielectric constant is a macroscopic property of molecular system (most molecu-

lar systems are dielectric materials), which tells how the charges in a molecular system are

re-distributed to respond to a static, external electric field. Therefore, if molecular rearrange-

ment gives rise to large change in the total dipole moment of the molecular system (in other

words, the dipole surface is very rough), the molecular system will have a large static dielec-

tric constant. By examining the static dielectric constant, one could learn something about the

slow long-range structural change of the molecular system. In this section, we derive the micro-

scopic expression for the static dielectric constant from absorption line shape theory, rather than

from direct perturbative treatment based on the macroscopic radiation-matter interaction.48–50

However, since the basis of the (linear) line shape theory is the same perturbative treatment,

both derivations essentially carry the same approximations (e.g., first-order perturbation, elec-

tric dipole approximation). The advantage of the indirect derivation below is that one can see

clearly what kind of motions significantly contribute to the static dielectric constant.

To simplify the derivation, we assume the material of interest is isotropic (i.e., 〈Mp(t)Mp(0)〉 =〈
~M(t) · ~M(0)

〉
/3)37 and not ferroelectric (i.e., 〈Mp〉 = 0). The absorption line shape I(ω) is

the Fourier transform of total dipole TCF, CMM(t) =
〈

~M(t) · ~M(0)
〉

, and is related to the

frequency-dependent imaginary part of the dielectric constant ε′′(ω) through

ε′′(ω) =
4π2(1− e−βh̄ω)

3h̄V
I(ω), (2.10)

where V is the volume of the material (assuming the whole material is absorbing light), and

h̄ is shown explicitly here for clarity. Note that the real and imaginary parts of the complex

dielectric constant (i.e., ε′(ω) and ε′′(ω)) are related through the Kramers-Kronig relation,51 so

we have

εs ≡ ε′(0) = 1 +
1

π
P.P.

∫ ∞

−∞
dω

ε′′(ω)

ω
, (2.11)

where εs is static dielectric constant and P.P. denotes the Cauchy principle value concerning the

singularity at ω = 0. Combining Eq. (2.10) and (2.11), the static dielectric constant can be
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obtained from the absorption line shape through

εs = 1 + b

∫ ∞

−∞

1− e−βh̄ω

βh̄ω
I(ω)dω, (2.12)

where b = 4πβ/3V . Note that P.P. is not needed because the singularity is gone. Eq. (2.12)

implies that only the low-frequency part of absorption spectrum will significantly contribute to

the static dielectric constant due to the ω factor in the denominator, and this is consistent with

the descriptive discussion in the previous paragraph. In practice, the static dielectric constant

is usually extrapolated from the measurement of frequency-dependent dielectric constant by

assuming Debye relaxation model and using the Cole-Cole diagram.7, 22, 52 Next, we may ask

how low frequency must be to generate a significant contribution to the εs. To do this, we define

a cutoff frequency ω0 and partition Eq. (2.12) into two parts:

εs = ε∞ + b

∫ ω0

−ω0

1− e−βh̄ω

βh̄ω
I(ω)dω, (2.13)

where

ε∞ ≡ 1 + b

∫ ∞

ω0

1− e−βh̄ω

βh̄ω
I(ω)dω + b

∫ −ω0

−∞

1− e−βh̄ω

βh̄ω
I(ω)dω. (2.14)

ε∞ takes into account the contribution from the high-frequency part, which is presumably small.

There are at least three choices of ω0 for liquid water and ice Ih. One is the onset frequency

of the optical (electronic) part of absorption spectrum, in which case ε∞ is related to optical

refractive index nop through ε∞ = n2
op, and also to the (isotropic) molecular polarizability

through Clausius-Mossotti relation (also called Lorenz-Lorentz relation if nop is used instead

of ε∞) within a simple classical dielectric model.51 Another choice is to place ω0 in the MHz

region (e.g., 100 MHz),53 which is often used by experimentalists to measure the static dielectric

constant. In this case, ε∞ includes the contributions from electronic response, intramolecular

vibrations and most intermolecular vibrations, which are usually still small. The last term on

the right-hand-side (RHS) of Eq. (2.13) is then due to very low-frequency long-range structural

rearrangment (also see Section 1.2), which accounts for the majority of the static dielectric

constant. Note that since the relevant frequency is so low (for ω0=100 MHz, βh̄ω0 ≈ 0.000016

at 300 K), a classical treatment is sufficient. The last senario is for molecular simulations with

nonpolarizable rigid water models, in which electronic degrees of freedom and intramolecular
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vibrations are frozen, and ω0 is around 1200 cm−1. Fortunately, as the contributions from high-

frequency motions (electronic motion and vibrations) to the static dielectric constant are fairly

small for liquid water and ice Ih, there is not a significant difference between these three choices

in practice. However, it is important to keep in mind that only in the second case is the classical

treatment of the problem entirely justified, although in practice a classical treatment can also be

applied to the third case.

Now, we focus on the third case, and recall the discussion in Section 2.2. Replacing I(ω)

with I l(ω) and extending the integral limits of the last term in Eq. (2.13) to infinity (allowed

because I l(ω) is zero for |ω| > ω0), we have

εs = ε∞ + b

∫ ∞

−∞

1− e−βh̄ω

βh̄ω
I l(ω)dω, (2.15)

where I l(ω) is the Fourier transform of C l
MM(t) =

〈
~M00(t) · ~M00(0)

〉
b

(see Eq. (2.8). Taking

the classical limit (h̄ → 0 or β → 0) and using the Fourier transform representation of the delta

function, we reach the widely used expression for the static dielectric constant:48–50

εs = ε∞ +
4πβ

3V

〈
~M00 · ~M00

〉
b
, (2.16)

where the brackets with subscript b now are an equilibrium classical ensemble average over

the bath. Eq. (2.16) and Eq. (2.10) only work with the conducting boundary condition in

simulations, which is used in all the simulations in this thesis (note that the line shape function

is independent of the choice of boundary condition, but how the line shape is related to the

complex dielectric constant is not.).54 In addition, the assumption that the system is isotropic

and not ferroelectric is not necessary, and a more general expression can be obtained easily by

redefining the TCF and considering εs as a tensor. In most cases, one can easily find dielectric

principal axes (e.g., crystallographic axes for hexagonal crystals) to make the static dielectric

constant tensor diagonal, and obtain the following expression:50, 55

εs,pp = ε∞,pp +
4πβ

V
(
〈
M2

00,p

〉
b
− 〈M00,p〉2b), (2.17)

where p is the coordinate in the frame formed by the dielectric principal axes.
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2.4 Low-Frequency Vibrational Spectroscopy: Intermolecu-

lar Motions

As discussed in Section 1.3.2, the low-frequency window (below about 1000 cm−1) can provide

useful information about the molecular dynamics of liquid water or ice Ih. Since the frequency

of interest is low, classical mechanics might be sufficient. The working equation in this section

is Eq. (2.8) and the ensemble average there is still quantum mechanical but only over bath

degrees of freedom. The simplest way forward is to replace the quantum ensemble average

with its classical counterpart, and to perform classical MD simulations to evaluate this average.

However, as the frequencies of most intermolecular vibrations are still not low enough to be

considered entirely classical, a more correct method is to run quantum MD simulations, which

are usually expensive. One simple method that balances accuracy and efficiency is the applica-

tion of a quantum correction factor (QCF) Q(ω): one first performs a classical MD simulation

to obtain the classical lineshape Icl(ω), and multiplies it by Q(ω) to get the quantum line shape

I(ω),23, 56

I(ω) = Q(ω)Icl(ω). (2.18)

This simple correction is phenomenological, but at least guarantees the symmetry property of

quantum I(ω) (i.e., detailed balance for quantum TCF).57 Fuller discussions on QCFs can be

found in Refs. 57 and 58. One popular QCF is the harmonic QCF, given by56

QH(ω) =
βh̄ω

1− e−βh̄ω
. (2.19)

The harmonic QCF is exact for harmonic systems in some cases (e.g., the observable in TCF

is a linear function of position and momentum operators),57–59 and also satisfies the fluctuation-

dissipation theorem in the linear response theory.60

2.5 High-Frequency Vibrational Spectroscopy: OH (OD) Stretch

For the high-frequency OH (OD) stretch, most classical simulations work very poorly (even

with the application of QCFs) except for those water models parametrized from vibrational

spectroscopy.61–64 Expensive quantum MD simulations could reproduce experimental OH (OD)
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stretch IR spectra well if a good water model is used, in which the intramolecular potential

for OH (OD) stretch has to capture the huge anharmonicity of OH (OD) stretch in condensed

phases.47, 65, 66 Also note that the ring-polymer MD (a popular quantum simulation method)

could suffer from its high-frequency problem so that one should be cautious to use it directly to

model OH (OD) vibrational spectroscopy.47, 67 A popular approach for modeling high-frequency

vibrational spectroscopy is to use semi-classical methods.41, 68–75 In particular, the Skinner

group has developed a reliable mixed quantum/classical approach,23 which will be reviewed

briefly in this section.

The starting equation here is Eq. (2.9). Note that the equation of motion for the time

evolution opertor UI(t) in the interaction picture is

iU̇I(t) = eiIS⊗H0t

(∑
i

(Hi −H0) |i〉 〈i|+
∑

i6=j

Hij |i〉 〈j|
)

e−iIS⊗H0tUI(t). (2.20)

We further define ωi(t) ≡ eiIS⊗H0t(Hi − H0)e
−iIS⊗H0t, and ωij(t) ≡ eiIS⊗H0tHije

−iIS⊗H0t.

Then, Eq. (2.20) can be written as

iU̇(t) = H̃(t)U(t), (2.21)

where subscript I for the interaction picture is omitted (and will be omitted henceforth for

simplicity), and H̃(t) is defined as

H̃(t) =
∑

i

ωi(t) |i〉 〈i|+
∑

i6=j

ωij(t) |i〉 〈j| . (2.22)

H̃(t) is sometimes called Frenkel exciton Hamiltonian, and its matrix element in the local mode

basis is κij(t) ≡ 〈i| H̃(t) |j〉 = ωi(t)δij+ωij(t)(1−δij). ωi(t) is fluctuating transition frequency

of ith OH chromophore, ωij(t)is fluctuating vibrational coupling between ith and jth OH chro-

mophores, and both are bath operators in our treatment.

2.5.1 Mixed Quantum/Classical Approach

The key step in the mixed quantum/classical (Q/C) approach is to assume the bath degrees of

freedom (i.e., intermolecular translations and rotations) are classical; therefore, the bath oper-
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ators (e.g., ωi(t), ωij(t), A0i(t), Bj0(0)) are classical variables (we use “variable” rather than

“observable” because if we take IR as an example, the total dipole operator is Hermitian, but the

transition dipole bath operator is not necessarily Hermitian, and we have to assume it is.). Note

that the evaluation of these transition variables still requires quantum mechanics, and will be

addressed in the next subsection. As mentioned in the Section 2.2, one important piece is still

missing — vibrational energy relaxation, which will be introduced phenomenologically.41, 76

Finally, we reach a useful expression for the TCF related to the OH (OD) stretch spectroscopy:

Ch
AB(t) =

∑
ij

〈A0i(t)Uij(t)Bj0(0)〉b e−|t|/2T1 , (2.23)

where T1 is the vibrational relaxation lifetime (usually taken from experiment), and Uij(t) is

determined by Eq. (2.21) with initial condition Uij(0) = δij . In practice, one usually only

considers positive time, and performs a half Fourier transform to obtain the spectrum of interest,

as the expression in Fourier transform can be converted to that in half Fourier transform using

the symmetry properties of a quantum TCF. When isotopic dilution is used (e.g., dilute HOD

in D2O), there is essentially only one chromophore in the system (no vibrational coupling), and

Uij(t) = δijexp[−i
∫ t

0
ωi(τ)dτ ] for positive t.

2.5.2 Implementation of Mixed Quantum/Classical Approach

In principle, the transition variables in Eq. (2.23) are functions of all the bath degrees of free-

dom, and could be calculated on-the-fly during simulations. However, such a calculation is

usually too expensive for condensed phases. Another strategy is to find few collective coordi-

nates, which are highly correlated with the transition variables and are also easy to calculate

during the simulation.77 One can then parametrize this correlation (“map”) prior to the simu-

lation, and apply the map on-the-fly to calculate line shapes. Previous studies in the Skinner

group showed that the classical electric field on hydrogen along the OH bond direction (Ei) is a

good collective coordinate for OH stretch,75 and maps for all the transition variables have been

developed. In Table 2.2, a set of maps which are used in Chapters 4 - 6 for TIP4P-like water

models are shown (for Chapter 7, a different set of maps is used after a reparametrization de-

scribed in Ref. 78). For instance, the key steps of the parametrization of the map for transition

frequency ωi are as follows: a one-dimensional (1D) stretch PES of a given OH chromophore
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is calculated using a DFT method in the presence of surrounding water molecules (nearby ones

are also treated explicitly by DFT, and distant ones are included as point charges in the DFT

calculation); then the resulting 1D vibrational Schrodinger equation is solved numerically by

a method called discrete variable representation.79 Therefore, the transition frequency map

captures many important charateristics of the OH stretch in condensed phases — large anhar-

monicity, high sensitivity to its hydrogen bonding condition (many-body effect), and nuclear

quantum effects. These maps turn out to be reasonally accurate and very efficient, and their

performance has recently been evaluated systematically against DFT calculations.78 Note that

the maps are dependent on the water models used, as snapshots from MD simulations were used

as sample configurations for map parametrization.

OH frequency, coordinate, and momentum maps

ω01 = 3732.9− 3519.8E − 153520E2

ω12 = 3606.0− 3498.6E − 198715E2

x01 = 0.19318− 1.7248× 10−5ω01

x12 = 0.26836− 2.3788× 10−5ω12

p01 = 1.6102 + 5.8697× 10−4ω01

p12 = 2.0160 + 8.7684× 10−4ω12

OD frequency, coordinate, and momentum maps

ω01 = 2748.2− 2572.2E − 102980E2

ω12 = 2673.0− 1763.5E − 138534E2

x01 = 0.16598− 2.0752× 10−5ω01

x12 = 0.23167− 2.8596× 10−1ω12

p01 = 1.9813 + 9.1419× 10−4ω01

p12 = 2.6233 + 13.1443× 10−4ω12

dipole derivative and intramolecular coordinate coupling constant map

µ′ = 0.1646 + 11.39E + 63.41E2

ka
ij = −1361 + 27165(Ei + Ej)

Table 2.2: Spectroscopic maps for TIP4P-like water models.35, 78, 80–82 ω01, x01 and p01 are tran-

sition frequency, coordinate and momentum matrix elements for the 0-1 vibrational transition,

respectively. Likewise, the quantities with the subscript 12 are for the 1-2 transition. µ′ is the
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dipole derivative, and ka
ij is the intramolecular coordinate coupling constant. E is the classical

electric field on water hydrogen along the OH (OD) bond direction from all other molecules

within a cutoff of 7.831 Å. The position of the transition dipole is 0.67 Å away from the water

oxygen along the OH (OD) bond. Regarding the polarizability for Raman, see Ref. 35.

2.6 Describing the Bath: E3B Water Model

The success of the calculations described in the previous section relies on how well the bath

is described: a good classical rigid water model is needed. Throughout this thesis, we use the

explicit three-body (E3B) water model,83, 84 developed in the Skinner group (for Chapters 3 - 6,

the second version84 is used, and for Chapter 7, the third version85 is used.). The E3B model

has been proven accurate and versatile in describing water properly in various molecular envi-

ronments (e.g., liquid water,86 ice Ih,35, 80, 81 air/water interface,87–89 hexamer90 and amorphous

ices91). Specifically for ice Ih, it can describe low-frequency vibrational dynamics fairly well.

This is the topic of the next chapter.
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Chapter 3

Dipole Fluctuations: Static Dielectric

Constant and Low-Frequency IR
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Most of the content of this chapter is drawn from a manuscript in prepartion with Yicun Ni,

Samuel Drews and James Skinner. We thank Prof. David Eisenberg for pointing out Ref. 92,

Prof. Marivi Fernández-Serra for explaining their results on ice Ih, Dr. Fu Li and Shushan He

for discussions on the IINS for ice Ih, Dr. Craig J. Tainter for helping with the E3B simulations,

and Zachary Kann for discussions on dielectrics.

3.1 Introduction

As mentioned in section 1.2, ice Ih has an unusually large static dielectric constant ε (130 at 200

K22) due to the proton disorder (the subscript s is dropped from εs for notational simplicity in

this chapter). In fact, liquid water also has a fairly large static dielectric constant (about 78.5 at
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298 K93), and even more interestingly the static dielectric constants for ice Ih and liquid water

near the melting point are quite close (ice has slightly larger ε). However, these experimental

observations have provided a challenge for rigid non-polarizable water models (“rigid” means

that the intramolecular degrees of freedom are frozen, and “non-polarizable” means that the

charge distribution in the water molecule is fixed, independent of its local environment). In Fig.

3.1, the calculated ε for liquid water and ice Ih with some common non-polarizable rigid water

models (symbols) are shown, along with experimental values (solid lines). It is clear that all of

these models significantly underestimate ε for ice Ih, and even worse, incorrectly predict that

the static dielectric constant of ice Ih is lower than that of liquid water near the melting point

(the dashed line).50, 55, 94–96 The failure to reproduce ε is also related to another shortcoming of

rigid non-polarizable models:97 they fail to reproduce the hydrogen-bond stretch peak (around

200 cm−1) in the low-frequency IR spectra for ice Ih32, 98 and liquid water.99–103 This is not

surprising at all since both properties are related to the low-frequency part of total dipole TCF,

discussed in Sections 2.3 and 2.4. In this chapter, both ice Ih and liquid water are considered as

these two issues exist for both systems, but the focus will be ice Ih.

100 150 200 250 300 350 400
T (K)
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100
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TIP4P
TIP4P/2005
TIP4P/ice
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Figure 3.1: Experimental static dielectric constants of liquid water and ice Ih (solid lines), and

calculated results from some rigid non-polarizable water models (symbols).

One attempt to solve these problems is to make the water molecule flexible, which intro-

duces the intramolecular degrees of freedom (i.e., OH stretches and HOH bend) into the molec-
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ular dynamics (MD) simulations. However, it seems that little success has been achieved in

this direction: TIP4P/2005f, a flexible non-polarizable model based on TIP4P/2005, gives quite

a similar ε for liquid water to that from TIP4P/2005;104 the low-frequency IR spectrum calcu-

lated with a flexible SPC model developed by Praprotnik and coworkers still misses the peak

at 200 cm−1;105 and although the flexible model SPC/Fw106 can reproduce ε fairly well for the

liquid water and supercritical water,107 it still underestimates ε for ice Ih significantly (ε = 60

at 240 K for this model)96 and fails to reproduce the 200 cm−1 peak for liquid water.64 An-

other approach is to make the water molecule polarizable, allowing the charge distribution of

water molecules to be influenced by their local environments. There are many approaches for

implementing the polarization effect, such as the fluctuating charge method, the Drude oscilla-

tor model, and the point dipole interaction model.108–113 This direction seems very promising:

rigid polarizable TIP4P-FQ model reproduces ε for both liquid water and ice Ih very well, and

some flexible polarizable water models (such as the ab initio based TTM3-F model,61, 65, 114 the

POLI2VS model,115 and the iAMOEBA model64) generate the peak at about 200 cm−1 in the IR

spectrum for liquid water. Furthermore, as computing power steadily increases, it is becoming

affordable to simulate the structure and even the molecular dynamics of water on-the-fly with

electronic structure methods.116–123 Car and his coworkers showed that ε for liquid water from

Car-Parrinello molecular dynamics (CPMD) is in good agreement with experiment,121 and the

low-frequency IR spectra for deuterated liquid water and ice Ih from CPMD show peaks around

200 cm−1,119, 122 though the overall lineshapes are somewhat different from the experiment.

From all the above theoretical efforts on modeling ε and the low-frequency IR for liquid water

and ice Ih, it is clear that the inclusion of the polarization effect in the water model is essential

for calculating these properties with a greater degree of accuracy.

Despite the success of some polarizable water models and electronic structure methods

(e.g., CPMD) mentioned above, they are usually much more computationally expensive than

the rigid non-polarizable water models. Another concern with these advanced models is that

their overall performance in modeling water is rarely benchmarked systematically against vari-

ous properties of liquid water and ice, whereas many rigid non-polarizable water models have

been assessed extensively.124 Therefore, it may be useful to incorporate polarization effects into

well-benchmarked rigid non-polarizable models without modifying their simple interaction po-

tentials. One straightfoward approach is to scale the molecular dipole associated with the model
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during post-simulation analysis,125 and Vega and coworkers pointed out that a simple scaling

factor can get ε in qualitative agreement with experiment for several different ice phases (al-

though a different scaling factor is needed for liquid water).55 However, scaling the molecular

dipole uniformly does not help the low-frequency IR spectrum. It is also worth mentioning that

the fluctuating charge model TIP4P-FQ does not introduce any additional intermolecular inter-

actions beyond those already in TIP4P, though it does require re-parametrization of TIP4P and

has its dipole polarizability only in the plane of water molecule, which is quite unphysical.110

Another strategy is to find a collective variable to correlate with the polarization effect on the

dipole surface, but keep the form of intermolecular potential in the rigid non-polarizable model,

as the polarization effect on the potential energy surface has already been implicitly taken into

account during model parametrization, especially for empirical water models. This final strat-

egy is chosen in this chapter. In principle, the dipole surface depends on all the electronic and

nuclear degrees of freedom in the system. If we assign a molecular dipole to each molecule

in the system, we can imagine the molecular dipole to consist of a permanent dipole from the

rigid non-polarizable model and an induced dipole generated by its environment. Therefore,

our goal is to find a collective variable to correlate with the molecular induced dipole. A natural

choice for this variable is the electric field on the water molecule from the classical electrostatic

perspective.

The first step in applying this strategy is to choose a good rigid, non-polarizable water model

for the molecular simulations; here, we choose the second version of the explicit three-body

(E3B) water model,84 mentioned in Section 2.6. The model utilizes TIP4P as a reference po-

tential and includes a two-body correction and three-body interactions, the functional forms of

which are based on electronic structure calculations. The parameters in the potential are empir-

ically fit to six experimental properties of water. It has been shown that the overall performance

of the E3B model in reproducing various properties of liquid water and ice is generally better

than the commonly used SPC/E and TIP4P models.84 For instance, the melting temperature,

ice density, second and third virial coefficients, and some dynamical properties (diffusion coef-

ficient and H–H rotational correlation time) from the E3B model are in better agreement with

experiment. It is also worth pointing out the connection and differences between the E3B model

and conventional polarizable models: the intermolecular potential energy of the whole system is

a sum of many-body interactions, and the E3B model is essentially an analytic potential fitting
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to the first two terms (i.e., two-body and three-body terms) in the many-body expansion; the

treatment of the polarization effect on the intermolecular interaction in most polarizable models

is an approximate way to account for the many-body interactions beyond the two-body term.

However, as the charge distribution in E3B water is still fixed as that in TIP4P, the polarization

effect on the dipole surface is still missing in the E3B model. As a result, ε calculated from the

E3B model is about 56 for liquid water at 298 K, close to 52 from TIP4P and much lower than

the experimental value of 78.5.84 Nevertheless, the E3B model provides a reliable potential

for modeling water in its condensed phases, and we would like to introduce the polarization

effect on the dipole surface into the E3B model by using the strategy described in the previous

paragraph, and resolve the two aforementioned issues for the E3B model.

The rest of the chapter is organized as follows. In Section 3.2, we outline the method for

generating ice Ih configurations and describe the details of the MD simulations; in Section 3.3,

the parametrization is performed, and the calculated static dielectric constants are compared

to experiment; in Section 3.4, we calculate and analyze the low-frequency IR spectra; and in

Section 3.5 we conclude.

3.2 Generating Ice Ih Configurations

For the ice simulation, we need to sample over many proton-disordered configurations be-

fore running conventional MD simulations as MD simulation is not able to reorient the wa-

ter molecules at the expense of overcoming large energy barriers between different proton-

disordered configurations. There are many algorithms available in the literature.95, 96, 126–128 In

the present work, we used the algorithm proposed by Buch and coworkers,127 and modified it

to work with the geometry of the E3B (TIP4P) water molecule. We started with setting up a

hexagonal lattice for oxygen atoms to match the experimental lattice constants (i.e., a, b and c)

at one given temperature; the size of the lattice is 6a × 3b × 3c, giving 432 H2O molecules in

the simulation box.7, 126 Then Buch’s algorithm was utilized to generate ice Ih configurations

subject to the Bernal-Fowler ice rule11 using a simple topological Monte-Carlo scheme.127 Note

that the HOH angle of the water molecule in the algorithm is about 109.5◦, whereas the value for

the E3B model is 104.5◦. We adjusted the bond angle to that of the model (i.e., 104.5◦) such that

the direction of the permanent molecular dipole (i.e., molecular bisector) is unchanged. This
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approach for generating proton-disordered configurations has been used recently by Vega and

coworkers,55 who termed it the Pauling model. For calculations of ε, we generated 5000 proton-

disordered configurations using the Pauling model, and calculated ε directly using these “static”

configurations without running further MD simulations. The rationale for this approach will be

explained in Section 3.3. For the calculation of the low-frequency IR spectrum at one given

temperature, further MD simulations were performed for 20 proton-disordered configurations

randomly picked from those 5000 using a modified version of GROMACS 3.3.129 The Berend-

sen thermostat with a coupling constant of 0.5 ps was employed to control the temperature of

the NVT-ensemble simulation in the production run.130 The SETTLE algorithm was used to

hold the water molecules rigid.131 Periodic boundary conditions (PBC) were applied with the

particle-mesh Ewald (PME) method for the electrostatic interactions.132, 133 In the production

run, a trajectory of 1 ns was saved every 4 fs for each configuration.

3.3 Static Dielectric Constant

The formula for the calculation of static dielectric constant is Eq. (2.16) (note that the ice sample

in Ref. 22 was polycrystalline ice). As we discussed earlier, if we can assign a molecular dipole

to each water molecule (this assignment has some ambiguities from the point of electronic

structure theory), we can write the total dipole of the system as a sum of molecular dipoles

~M =
∑

i

~µi, (3.1)

where ~µi is the molecular dipole of ith molecule. Also mentioned earlier, in order to implement

the polarization effect on the dipole surface in our model, we would like to write the molecular

dipole of ith molecule ~µi as the sum of the molecular permanent dipole ~µper
i associated with the

model and the molecular induced dipole ~µind
i : ~µi = ~µper

i + ~µind
i . Consequently, we have the

total dipole of the system as
~M = ~Mper + ~M ind, (3.2)

where ~Mper and ~M ind are the permanent and induced components of the total dipole, respec-

tively.

The goal of the present work is to come up with a practical way to calculate ~µind
i from MD
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simulations. In this work, we correlate ~µind
i with the classical electric field on the oxygen atom

of the ith molecule ~Ei from all the water molecules within 7.831 Å of the ith molecule based on

the oxygen-oxygen distance. The cutoff of 7.831 Å is chosen for historical reasons,35, 78, 134 but

we verified that larger cutoffs do not change our results in the parametrization. For the sake of

simplicity and for some physical reasons explained later, the correlation is chosen to be linear

~µind
i = γ ~Ei, (3.3)

where γ is parametrized below. Note that although γ resembles the conventional dipole po-

larizability, it should be regarded as a parameter for the most part as we do not calculate the

induced dipole in a self-consistent manner, as many polarizable models do. We will call Eq.

(3.3) a map between ~µind
i and ~Ei. Note that we also tried other parametrization schemes (e.g.,

using the electric field on oxygen atom along the bisector of the water molecule as the collec-

tive coordinate), but this seems to be of the simplest form that gives reasonable agreement with

experiment.

For the calculation of ε for ice Ih, we have to sample many proton-disordered configurations

first. For this purpose, the Pauling model was used to generate 5000 configurations as described

in the previous section. We used these configurations directly (without further MD simulations)

to calculate 〈M2〉, and fit ε to the experimental value of 130 at 200 K for ice Ih. The optimal γ

from this is 2.300 Å3 (we are using cgs units here), giving a calculated ε of 130.3±0.8 at 200

K. Note that the same strategy was also applied to liquid water (though one configuration with

a long enough MD simulation is sufficient for liquid water), and we obtained a γ of 1.495 Å3

by fitting it against the experimental ε of 76.75 at 303 K.93 The reason why we get a differ-

ent γ for liquid water from that for ice Ih is that the electronic structures are different in these

two phases, and rigid non-polarizable models do not capture this. As the polarization effect

is mainly an electronic structure effect, we need different mapping parameters (γ) to incorpo-

rate it into the non-polarizable model. A further point is that the molecular geometry (nuclear

charge distribution) is changed slightly from liquid water to ice Ih.135–139 This treatment is also

consistent with the observation by Vega and coworkers that different scaled molecular dipoles

for liquid water and ice Ih are required in order to match the experiment values of ε.55 With

γ = 2.300 Å3, we calculated ε as a function of temperature from 140 K to 270 K for ice Ih, and

the results are plotted as green circles on the left side of the blue, dashed line (which indicates
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the melting point) in Fig. 3.2. Note that for the volume of the system in the calculation of ε

from Eq. (2.16), we used the simulation box size at 200 K. The density of ice changes slightly

from 140 K to 270 K,7 but we verified that this density effect has little effect on the results of

ε. Surprisingly, the agreement between theory and experiment is excellent over a wide temper-

ature range considering the simplicity of our model. In Fig. 3.2 the calculated static dielectric

constants for liquid water at different temperatures based on the same parametrization scheme

are also shown as green circles on the right side of the blue dashed line. Moreover, the model

correctly captures the difference of ε for liquid water and ice Ih around the melting temperature.
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Figure 3.2: Calculated and experimental22, 93 dielectric constant of liquid water and ice Ih as a

function of temperature. The blue dashed line indicates the melting temperature of ice Ih.

Despite the success of our model in reproducing ε for ice Ih in a wide range of temper-

atures, it is worth discussing the implications and errors in our model. The Pauling model

(Buch’s algorithm) is based on a topological Monte-Carlo scheme, and we did not perform MD

simulation for the proton-disordered configurations. As a result, our model does not include

energy or temperature effects. The fact that the temperature dependence of our calculated ε is

in excellent agreement with experiment implies that the temperature dependence of ε for ice Ih

is simply due to the trivial 1/T factor (in β) in Eq. (2.16). In other words, 〈M2〉 is more or less

temperature-independent. In addition, the Pauling model assumes that each proton-disordered
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configuration is equally probable, and from our results it seems that this assumption is fairly

good for most relevant temperatures. Indeed, we find that the energy difference between these

configurations with the E3B potential is much smaller than the thermal energy at most temper-

atures (less that 1% at 200 K). This is also found by others,55, 96 though the energy difference

between different configurations with MD simulations is larger in their studies. We estimate

the error with our model in calculating ε by implementing the algorithm proposed by Lindberg

and Wang96 and running MD simulations after the configurations are generated. We find that

our model overestimates ε by about 12% at 100 K when γ is set to zero. Similar errors are

also found in the calculations of Vega and coworkers with the Pauling model and TIP4P/2005

potential.55 Even though this error is not negligible, and running MD simulations with more

advanced algorithms could give a different optimal γ during our parametrization, we think it

is more important to taken into account polarization effects, the biggest missing piece in the

non-polarization model. The apparent advantage of the Pauling model is its simplicity, and as

we will show later, our simple model reproduces the low-frequency IR for ice Ih fairly well.

Besides the static dielectric constant, researchers are also interested in the magnitude of the

molecular dipoles in condensed phases of water. The molecular dipole of an isolated water

molecule is about 1.85 D,140 and is believed to increase significantly in liquid water and ice.

Experiments suggest that the molecular dipole in liquid water is about 2.9-3.0 D.141, 142 The val-

ues from theoretical calculations vary greatly, 2.4 – 3.1 D for liquid water,64, 110, 111, 121, 143–161 and

2.3 – 3.7 D for ice Ih,16, 64, 92, 111, 121, 143, 160, 162–169 depending on the methods and the partitioning

of the charge density. We calculated the distribution of the molecular dipole in our model for

ice Ih at 245 K from MD simulations, shown in the panel (a) of Fig. 3.3. The average value

from the distribution is 3.56 D for ice Ih, greater than most theoretical estimates. Another inter-

esting property to examine is the angle between the molecular permanent and induced dipoles,

the distribution of which for ice Ih is shown in the panel (b) of Fig. 3.3. We find that for most

water molecules, the induced dipole is aligned with its permanent dipole (i.e., the bisector of the

molecule) to some extent. This is mainly due to the tetrahedral coordination of water molecules

in ice Ih. Moreover, this interesting observation provides a possible physical interpretation for

our empirical mapping parameter γ. In the seminal paper by Coulson and Eisenberg in 1966,

they investigated the dipole moment of a water molecule in ice Ih using a purely electrostatic

method.92 They argued that if the induced dipole is along the direction of the permanent dipole
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(with an isotropic dipole polarizability), the self-consistent treatment of the induced dipole can

be simplified to a sum of a geometric series, leading to a closed-form expression for the molec-

ular dipole (Eq. (7) in Ref. 92). In this sense, our parameter γ (at least for ice Ih) is an effective

polarizability that has already taken into account the effect of the self-consistent treatment. This

also explains why we do not need to calculate the induced dipole self-consistently as most po-

larizable models do. In fact, the parameter γ estimated from their model is close to our value of

2.300 Å3 for ice Ih. The analysis was also performed for liquid water, and the results are also

shown in Fig. 3.3: the calculated average molecular dipole in water is 2.96 D for liquid water,

in a good agreement with experiment,141, 142 and the molecular induced dipole is also aligned

with the molecular permanent dipole to some extent.
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Figure 3.3: Probability distribution functions of (a) molecular dipole and (b) the angle between

the molecular permanent dipole and induced dipole for liquid water at 303 K (green line) and
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ice Ih at 245 K (red line) from molecular dynamics simulations. Note that P (θ) satisfies the

normalization condition
∫ 180◦

0
P (θ)sinθdθ = 1 .

3.4 Low-Frequency Infrared Spectra

In this section, we attempt to use the γ parametrized in the previous section to reproduce the

peak around 200 cm−1 in the low-frequency IR spectrum of ice Ih. Using the Fourier transform

of Eq. (2.8) as Icl(ω) and harmonic QCF (Eq. (2.19)) as Q(ω) in Eq. (2.18), we obtain the final

expression for the low-frequency IR spectrum

S(ω) ≡ α(ω)n(ω) =
2πω2

3ckBTV

∫ ∞

−∞
dt eiωt〈 ~M(t) · ~M(0)〉, (3.4)

where α(ω) is the absorption coefficient, n(ω) is the frequency-dependent refractive index,

α(ω)n(ω) is often reported for low-frequency IR spectra, c is the speed of light, the brackets

indicate a classical ensemble average over the bath (subscript b is omitted), the subscript 00 is

also dropped from ~M00 in Eq. (2.8), and the relation 4π2ω(1 − e−βh̄ω)I(ω) = 3h̄cn(ω)α(ω)V

is used to convert I(ω) to n(ω)α(ω).37 Note that for ice Ih, the ensemble average includes the

average over different proton-disordered configurations (20 in our calculations). For the ice

configuration with a non-zero total dipole, one needs to subtract 〈 ~M〉 · 〈 ~M〉 from 〈 ~M(t) · ~M(0)〉
before performing the Fourier transform in order to avoid singularity at zero frequency. We have

verified that the IR spectra are converged for the simulation boxes used here (432 molecules for

ice Ih).

In Fig. 3.4, we show the calculated IR spectra (red lines) for ice Ih at 100 K (top panel) and

245 K (middle panel), in good agreement with the experimental spectra (black lines) at 100 K98

and 266 K,32 respectively. The reason why we choose 245 K is that the melting temperature of

the E3B model is 251 K.84 The experimental IR spectrum at 266 K (100 K) shows three main

peaks at 148 (160) cm−1, 208 (225) cm−1 and 800 (850) cm−1, as well as a small shoulder

on the red side of the second peak. The experimental spectrum at 266 K also shows some

features around 500 and 600 cm−1, which are not seen in the spectrum at 100 K due to its low

resolution. The peaks below 400 cm−1 can be assigned to the oxygen lattice modes (phonons),
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while the peak around 800 cm−1 is the librational mode.170 Our calculation at 100 K (245 K)

reproduces these peaks at about 170 (187) cm−1, 246 (266) cm−1 and 755 (809) cm−1, and even

the slight shoulder on the red side of the second peak. The peak positions are slightly shifted

compared to the experiment: the peaks of lattice modes are shifted to blue by about 25 cm−1

and 40 cm−1, respectively, and the librational peak is shifted to red by about 50 cm−1. This

is primarily due to inaccuracies in the E3B potential. The relative peak intensity between the

lattice and librational modes in our calculated spectra is also in good agreement with experiment

(the intensity of lattice modes is slightly too high). Moreover, the temperature dependence of

the peak positions for the calculated spectra is also consistent with the experimental trend (a

blue-shift as the temperature decreases). In fact, this temperature-dependence is primarily due

to the fact that ice Ih has a larger density at lower temperature.7, 171 Furthermore, we set γ to

zero for ice Ih (green line), we find that the lattice modes in ice Ih become almost IR-inactive.

Therefore, the polarization effect is responsible for the intensity below 400 cm−1, which is

associated with the hydrogen bond (HB) stretching mode (note that this interpretation focuses

on the local water dimer in ice Ih, while “lattice mode” or “phonon” adopts a global view).172–174

If the model is non-polarizable, the total dipole of the system does not change much during

the HB stretching so that little intensity is observed for this mode (green line). However, if

the model includes polarization effects, the molecular induced dipole will change significantly

because HB stretching changes the distance between the hydrogen-bonded molecules. Thus,

it is essential to include the polarization effect to make the HB stretching mode bright in the

IR spectrum. On the other hand, the librational mode, carrying the rotational characteristics,

gives rise to total dipole fluctuations even for the non-polarizable model (green line). Another

important observation to mention is that the low-frequency IR spectra for ice Ih calculated from

different proton-disordered configurations are quite similar, though these configurations have

quite different total dipoles.
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Figure 3.4: Experimental (black lines) and calculated (red lines) low-frequency infrared spectra

for liquid water and ice Ih. The experimental spectra, from top to bottom, are at 100 K,98 266

K32 and 298 K,103 respectively. The calculated spectra, from top to bottom, are at 100 K, 245 K

and 303 K, respectively. The green lines are the infrared spectra, calculated with γ set to zero.

It is surprising even to us that such a simple model with an empirical γ can reproduce the

low-frequency IR spectra for ice Ih fairly well. Therefore, we would like to understand the effect

of polarization on the IR spectrum further by decomposing the spectrum based on Eq. (3.2). The

spectrum can be modeled as of three parts, shown in Fig. 3.5: spectrum from the permanent-

permanent correlation Spp(ω) (red line), from the induced-induced correlation Sii(ω) (green

line), and from the permanent-induced cross correlation Spi(ω) (blue line). It is clear that

Sii(ω) and Spi(ω) are responsible for the enhancement of the intensity of the lattice modes,
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but most importantly Spi(ω) attenuates the intensity of the librational mode significantly. The

physical reason for this is easy to understand in ice Ih, and herein we will consider a hydrogen-

bonded water pair in the ice crystal: when the H-bond donor water molecule in the dimer

librates slightly away from its equilibrium position, the hydrogen atom originally involved in

the H-bond gets farther away from the oxygen atom of the H-bond acceptor water molecule,

leading to a smaller induced dipole of the H-bond acceptor; meanwhile, this rotation in most

cases makes the alignments of the two molecules better, leading to an increase of the total

permanent dipole. This anti-correlation gives rise to the negative intensity for the librational

mode in Spi(ω). A similar result was also observed by Saito and coworkers using their TTM3-F

model,175 while Hasegawa and Tanimura did not observe this in their spectral decomposition.115
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Figure 3.5: Decomposition of the calculated low-frequency infrared spectra (black lines) for

ice Ih at 245 K (top panel) and liquid water at 303 K (bottom panel) into permanent-permanent

terms (red lines), induced-induced terms (green lines) and permanent-induced cross terms (blue

lines).

Lastly, we would like to discuss the assignment of the peaks in the IR spectra further. Based

on the relation that 〈 ~M(t) · ~M(0)〉 =
∑

ij〈~µi(t) · ~µj(0)〉, we can decompose the IR spectrum

S(ω) to the contribution from the single-particle correlation Ss(ω) (i = j terms), and the contri-

bution from the intermolecular cross correlation Sc(ω) (i 6= j terms). Another important single-

particle correlation function is the velocity time correlation function Cvv(t) = 〈~v(t) ·~v(0)〉, and

its Fourier transform f(ω) is proportional to the phonon density of states for a harmonic sys-

tem,37 which in principle can be probed by the inelastic incoherent neutron scattering (IINS).

Note that we are considering the classical hydrogen velocity ~v here, and do not apply the har-

monic quantum correction factor for f(ω). In Fig. 3.6, we plot S(ω) (black line), Ss(ω) (red

line), Sc(ω) (green line) and f(ω) (blue line) for ice Ih at 245 K. For ice Ih, there are four

peaks/shoulders in the lattice-mode region of the calculated f(ω) for ice Ih, which are also ob-

served in the experimental IINS,173, 176 indicating that the E3B model is reliable in describing

the phonons in ice Ih, even though the peak positions are slightly shifted, explaining the discrep-

ancy in the peak positions in the IR spectrum. The assignments of these four peaks are available

in the literature,172–174 though new ideas have also been forwarded recently.117, 177, 178 We tenta-

tively take the simple assignments made by Prask and coworkers:172 the four peaks, from low to

high frequency, are from TA, LA, LO and TO lattice modes, respectively (T, L, A and O stand

for transverse, longitudinal, acoustic and optic, respectively), though other mechanisms might

be also involved (e.g., LO-TO splitting and proton disorder117, 174). In the librational region,

f(ω) shows three peaks/shoulders at 245 K. The calculated f(ω) at 15 K, meanwhile, shows

four peaks/shoulders, consistent with the experimental IINS at 15 K.176 Since Ss(ω) and f(ω)

are both calculated from single-particle correlation, Ss(ω) shows similar spectral features to

f(ω), though the peak intensities are different. With the inclusion of the intermolecular cross

correlation contribution Sc(ω), the TA peak in the translational region, and the first and third

librational peaks in Ss(ω) are largely attenuated, while the LA and LO peaks get further en-
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hanced. This leaves the two phonon peaks (LA and LO) and the second librational peak visible

in the IR spectrum, reflecting the effects of the IR selection rules.

The low-frequency IR spectrum for liquid water was also calculated (panel (c) of Fig. 3.4),

the same analysis was performed, and the results are presented in Figs. 3.5 and 3.6. The

agreement between experiment and theory for liquid water is not as good as for ice Ih, but the

overall physical picture is similar.
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Figure 3.6: Decomposition of the calculated low-frequency infrared spectra (black lines) for

ice Ih at 245 K (top panel) and liquid water at 303 K (bottom panel) into self terms (red lines)

and cross terms (green lines). The blue lines are the Fourier transform of the classical velocity

auto-correlation function for hydrogen atom (without harmonic quantum correction factor).
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3.5 Concluding Remarks

The static dielectric constant and low-frequency IR spectra, which reflect dipole fluctuations,

are excellent probes for the structures and dynamics of the H-bonded systems, such as liquid

water and ice Ih. However, conventional rigid, non-polarizable water models are not able to

reproduce these properties for liquid water and ice Ih due to the absence of the polarization

effect on the dipole surface in these models. In this chapter, we proposed a simple scheme

to incorporate the polarization effect into a reliable rigid, non-polarizable water model (i.e., the

E3B model) through a linear mapping between the induced dipole of the water molecule and the

electric field on its oxygen atom. The mapping parameter (γ) was obtained by a parametrization

against the experimental static dielectric constant at one temperature for either liquid water or

ice Ih. The optimal γ values are different for liquid water and ice Ih (1.495 Å3 for liquid water,

and 2.300 Å3 for ice Ih) as a result of their different electronic structures. The temperature

dependence of the static dielectric constant was reproduced well for both systems, and the gap

between the dielectric constants of liquid water and ice Ih around the experimental melting

temperature was captured quantitatively. Moreover, qualitative agreement between calculated

and experimental low-frequency IR spectra was also achieved. In the calculations of the static

dielectric constants for ice Ih, the topological algorithm proposed by Buch and coworkers127

was utilized to generate the proton-disordered configurations, and our results suggest that the

thermal fluctuation and the energy differences between different configurations play minor roles

in the determination of the dielectric constant, while the polarization effect contributes to the

dielectric constant considerably. By decomposing the IR spectra into the contributions from the

permanent dipole, induced dipole and their cross term, we showed that the polarization effect is

primarily responsible for the intensity of the peaks below 400 cm−1 for both liquid water and

ice Ih. We also demonstrated the effects of the IR selection rules (e.g., only two out of four

translational peaks and one out of three librational peak are visible in the low-frequency IR for

ice Ih) by decomposing the IR spectra to the single-particle contribution and the intermolecular

contribution. Overall, considering that it requires no further parametrization of the interaction

potential in the water model, the present scheme provides a simple and reasonably accurate

way to account for the polarization effect on the dipole surface in the calculations of the static

dielectric constant and low-frequency IR spectra for liquid water and ice Ih.

As mentioned in section 1.3.2, intermolecular motions will also modulate the high-frequency
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OH (OD) stretch in ice Ih. A good description of intermolecular degrees of freedom (i.e., trans-

lation and libration) is desirable for the accurate simulations of OH (OD) stretch vibrational

spectroscopy, which is the main topic of the subsequent chapters. The quality of the E3B model

(at least in terms of describing intermolecular interactions) makes it our choice for describing

the bath in the mixed quantum/classical approach for OH (OD) stretch vibrational spectroscopy.

The next chapter describes our use of the mixed quantum/classical approach to simulate the sim-

plest vibrational spectrocopy — linear IR and Raman — with the E3B model.
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Vibrational Coupling: IR and Raman
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for helpful discussions.

4.1 Introduction

As mentioned in Section 1.3.1, many coupled OH (OD) chromophores in pure H2O (D2O) ice

Ih could delocalize the OH vibrational eigenstates, and this fact is a double-edged sword for

spectral interpretation: on one hand some spectral features (e.g., peak positions) might not di-

rectly correspond to local structures in ice Ih (e.g., hydrogen bonding environments) because of
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this delocalization; on the other hand, if these spectra can be interpreted appropriately (usually

with the help of theory and simulation), additional information may be gleaned concerning the

structure and dynamics of ice Ih. In this chapter, we will examine the IR and Raman spec-

tra for neat H2O and D2O ice Ih using the mixed quantum/classical approach, and provide

assignments of some spectral features.

The OH (OD) stretch spectral range for neat H2O (D2O) ice Ih is about 3000-3500 cm−1

(2200-2600 cm−1), which is significantly red-shifted from the corresponding gas-phase frequen-

cies due to hydrogen-bonding in ice Ih. The widths of these spectra may arise from multiple

sources: 1) the proton disorder in ice Ih (structural heterogeneity); 2) thermal broadening, which

could be narrowed spectroscopically; 3) splitting due to the intramolecular coupling between

two OH (OD) stretches on the same water molecule; 4) splitting due to the intermolecular cou-

pling between OH (OD) stretches on different water molecules; 5) splitting due to the coupling

between stretching modes and lower-frequency modes, such as bending modes and lattice vi-

bations (this type of coupling is sometimes referred to as Fermi resonance). Along with the IR

and Raman selection rules, these factors lead to broad spectra with multiple peaks and shoul-

ders,27, 28, 36, 98, 179–193 which have attracted a number of theoretical investigations in the past 40

years,44, 45, 122, 183, 189, 194–199 including previous works in our group.35, 80, 81

Whalley183 summarized progress in the assignments of spectral features prior to 1977. The

lowest frequency peak in the ice Raman spectra was assigned to the globally in-phase symmetric

stretch, and the rest of the features resulted from the out-of-phase symmetric and anti-symmetric

stretches with longitudinal and transverse optical (LO-TO) phonon splitting.183 Rice and collab-

orators published a series of theoretical papers on this topic shortly thereafter.44, 45, 194–196 They

employed a model Hamiltonian including many factors mentioned above (e.g., proton disorder,

intra- and intermolecular couplings, Fermi resonance, etc.). They attributed most features in

the spectra of neat ice to the interplay between intra- and intermolecular couplings, and argued

that the Fermi resonance was a second-order effect, which has more influence on the spectra

of D2O ice Ih.44, 45 In fact, they concluded that the assignment of the spectral features to the

molecular symmetric and anti-symmetric stretch modes “may be meaningless.”194 They also

thought that the LO-TO splitting had little effect on the OH (OD) stretch vibrational line shapes

of ice Ih.44, 45 About two decades later, Buch and Devlin proposed a tetrahedral basic unit to

interpret the spectra of ice Ih.189 A similar theoretical study was later carried out by Wójcik
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and collaborators.197 Researchers are also beginning to employ ab initio molecular dynamics

methods to calculate vibrational spectra of ice Ih.122, 198 These approaches are promising, but

they typically underestimate the OH (OD) stretching frequency. A recent theoretical study by

our group found that the intermolecular couplings between the nearest-neighbor local-mode OH

chromophores determine most spectral features of H2O ice Ih.80, 81 In particular, in our model,

unlike in the gas phase, the intramolecular coupling in H2O ice is almost zero, and certainly

much smaller than the width of the local frequency distribution (diagonal disorder) and typical

intermolecular couplings. Thus, we concur with Rice and co-workers that interpretation of the

spectra in terms of the molecular symmetric and anti-symmetric stretches is not appropriate

for H2O ice Ih.80 We assigned the peaks in the spectra as arising from “strong” and “weak”

intermolecular coupling.

Despite the aforementioned studies, one observation remains unexplained: the intensities

and patterns of the spectral peaks are quite different in H2O and D2O ice Ih, which cannot

be simply explained by the frequency shift due to isotope substitution. For instance, the IR

spectrum of D2O ice Ih has a clear peak on the low-frequency side (about 2330 cm−1), while

there is only a shoulder in the IR spectrum of H2O ice Ih. In this chapter, we suggest the

intramolecular coupling as a possible reason for this spectral difference. The rest of the chapter

is organized as follows. In Section 4.2, we outline our methodology for the spectral calculations;

in Section 4.3, we compared our calculated spectra to experiment; in Section 4.4, we analyze

our theoretical spectra and provide assignments of the experimental spectral peaks for both H2O

and D2O; and in Section 4.5, we conclude.

4.2 Simulation Detail

4.2.1 Molecular Dynamics Simulation

As it turns out that OH stretch vibrational spectra of ice Ih are not sensitive to the choice of

proton-disordered configuration, a 432-molecule proton-disordered configuration generated by

Hayward and Reimer126 is employed as the initial configuration for MD simulation. This con-

figuration carries zero net dipole and a minimal net quadrupole,126 and is used as well in subse-

quent chapters. A molecular dynamics simulation of ice Ih is then performed in the NVT ensem-

ble at 245 K using GROMACS version 3.3,129 modified for the E3B potential. The simulation
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box is scaled to give the experimental lattice constants at 245 K.7 Simulations are performed

using the SETTLE constraint algorithm131 with a 1 fs time step, and a Berendsen thermostat

is employed with a 0.5 ps coupling constant for production runs.130 Periodic boundary condi-

tions are applied, the cut-off for Lennard-Jones interaction is set to 0.95 nm, and particle-mesh

Ewald132, 133 is used to compute the electrostatic interactions. The atomic coordinates are saved

every 2 fs in the production run for the spectral calculations. Molecular dynamics simulations

are also performed at 100 K and 10 K for spectral calculations using corresponding experimen-

tal lattice constants.7

4.2.2 Maps for Vibrational Couplings

The focus of this chapter will be vibrational coupling, and we have used two different schemes

to calculate the intra- and intermolecular couplings, respectively. In the local-mode basis, the

intramolecular coupling ωa
ij between the two OH (OD) stretches on the same molecule is ap-

proximated as200

h̄ωa
ij = ka

ijxixj +
cos(φ)

mO

pipj, (4.1)

where ka
ij is the mixed second derivative of the potential energy with respect to both bond

lengths, evaluated at the minimum, xi is the 0−1 position matrix element (using the anharmonic

states) of the stretch coordinate for local mode i, pi is the corresponding 0−1 momentum matrix

element, φ is the HOH (DOD) bond angle (φ = 104.52◦ for E3B water84), and mO is the oxygen

mass. ka
ij , xi, and pi all depend on the molecule’s environment, and this dependence is reflected

in their electric-field “maps” in Table 2.2.

For intermolecular coupling between chromophores i and j on different water molecules,

we assume the form of transition dipole coupling, given by

h̄ωe
ij =

µ′iµ
′
j{ûi · ûj − 3[(ûi · n̂ij)(ûj · n̂ij)]}

r3
ij

xixj, (4.2)

where û is the unit vector in the OH (OD) direction, n̂ij is the unit vector along the line connect-

ing the two point dipoles, rij is the distance between these point dipoles, and µ′i is the dipole

derivative associated with the ith chromophore. (This form comes from the standard dipole-

dipole interaction energy, expanding each dipole to first order in position, and then taking the
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appropriate matrix elements.) The map for µ′ has also been parametrized against DFT calcula-

tions.82 The only free parameter is then the location of the point dipole, and it was previously

parameterized to be 0.67 Å from the oxygen atom along the OH (OD) bond, for TIP4P water

model.80

4.2.3 Spectral Calculation

As explained in Section 2.5, the OH (OD) stretch has to be modeled quantum mechanically to

some extent. The mixed quantum/classical approach with DFT-based “maps” is used here and

in subsequent chapters. The working equation in this chapter is Eq. (2.23) with A and B chosen

to be the dipole operator, and the lifetime (T1) is taken to be 300 (700) fs for neat H2O (D2O)

ice Ih.31, 80

One subtle point for ice Ih concerns orientational averaging. For an aligned (anisotropic)

single crystal, the polarizations of the light electric field can be chosen to be along the a, a′ or c

crystal axes, leading to three IR spectra, three polarized Raman spectra, and three depolarized

Raman spectra. For (isotropic) polycrystalline samples, one needs to average over the orienta-

tions of the crystal axes with respect to the lab-fixed axes, as we usually have single crystal ice

in an anisotropic simulation box. This has been worked out by McQuarrie,37 and the formulae

we use to calculate spectra in these cases are given in Appendix B.

4.3 Results and Comparison with Experiment

In Fig. 4.1, we plot experimental polarized (cc and aa) and depolarized (aa′ and ca) Raman

spectra for single crystal H2O and D2O ice Ih at 269 K.182 The polarized spectra have a low-

frequency main peak, and two features at higher frequency, while the depolarized spectra only

show the higher frequency peaks. The peak frequencies are indicated by the vertical dashed

lines. The differences between the D2O and H2O spectra are three-fold: 1) the overall D2O

spectra are significantly narrower, 2) the peaks are sharper for D2O, 3) the spacing between

the peaks is even for H2O, but not so for D2O. In the same figure we also show our theoretical

spectra.
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Figure 4.1: Theoretical (E3B model at 245 K, top) and experimental182 (at 269 K, bottom)

polarized (cc and aa) and depolarized (aa′ and ca) Raman line shapes for single crystal D2O

(left) and H2O (right) ice Ih. The vertical dashed lines indicate the frequencies of the different

transitions.

Next we consider the IR and unpolarized Raman spectra of neat H2O and D2O polycrys-

talline ice Ih at 100 K. In Fig. 4.2 we show experimental spectra (black lines).183 The Raman

spectra again have three peaks, but now the middle peak is more pronounced. The spacings

between the peaks are more or less as above, but all peaks are slightly red-shifted at this lower

temperature. The IR spectra also have three peaks—the lowest frequency peak is more pro-

nounced in D2O. In each case the higher two frequency peaks correspond with the higher two

Raman peaks, while the lower frequency peak is blue-shifted from the lower frequency Raman

peak. Thus there appear to be four distinct transitions, which are present to greater or lesser ex-

tent in IR or Raman spectra. This experimental situation is indicated by the four vertical dashed

lines for each isotope. In the same figure we also show our theoretical calculations; theory is

again in qualitative agreement with experiment, although the theoretical H2O IR spectrum does

not exhibit the highest frequency peak.
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Figure 4.2: Theoretical (E3B model) and experimental IR (top) and unpolarized Raman (bot-

tom) line shapes for polycrystalline D2O (left) and H2O (right) ice Ih at 100 K. Experimental

line shapes are taken from Ref. 183. The dashed vertical lines indicate the frequencies of the

four experimental transitions.

We have also performed theoretical calculations at 10 K, at which temperature the spectra

sharpen up and are easier to interpret. (Note that the equilibrium phase at 10 K is ice XI,7 but

one can still study supercooled ice Ih at this temperature, both experimentally and theoretically.)

We show the evolution of the theoretical polarized (cc) Raman, depolarized (aa′) Raman, and

polycrystalline IR line shapes, as a function of temperature, for H2O and D2O ice Ih in Figs.

4.3 and 4.4. The frequencies of the four peaks, in all spectra taken together, are shown as the

vertical dashed lines for each temperature. All lines blue shift with increasing temperature, and

the spacings remain roughly the same. To summarize then, for both H2O and D2O there appear

to be four transitions, labeled from red to blue, 1 to 4. Peaks 1, 3 and 4 are Raman active, and

peaks 2, 3 and 4 are IR active.
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Figure 4.3: Theoretical line shapes for H2O ice Ih at 245 K, 100 K, and 10 K (from top to

bottom). The red lines are the (polycrystalline) IR line shapes, the green lines are the Raman

cc line shapes, and the blue lines are the Raman aa′ line shapes. The three line shapes are

normalized to the same peak height. The dashed lines in the 100 K panel are calculated line

shapes setting the intramolecular coupling to 0. The vertical dashed lines are the frequencies of

the four transitions at each temperature.
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Figure 4.4: Same as Fig. 4.3 but for D2O ice Ih.

In Figs. 4.5 and 4.6 we plot all available experimental data for the frequencies of these four

peaks, as a function of temperature. The open squares are Raman (polarized, depolarized, or

unpolarized; single crystal or polycrystalline) experimental results, and the open triangles are

IR (polycrystalline) experimental results. For each transition the dashed lines are guides to the

eye, to see the temperature dependence. From these graphs one can see how the spacing of

the lines differ for H2O and D2O. For each isotope we also plot our theoretical results (from

Figs. 4.3 and 4.4) as the filled squares for Raman transitions 1, 3, and 4, and filled triangles

for IR transitions 2 and 3. The theoretical results show the same trends as experiment, but are

uniformly somewhat too blue.
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Figure 4.5: Temperature dependence of peak frequencies for H2O ice Ih. The triangles are

from IR line shapes, and the squares are from Raman line shapes. Open symbols are from

experimental line shapes with reference number in the legend, and filled symbols are from

calculated line shapes. The dashed lines are guides to the eye for the experimental data.
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Figure 4.6: Same as Fig. 4.5 but for D2O ice.
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4.4 Spectral Interpretation and Discussion

With the success of our model in qualitatively reproducing several experimental spectra, we

can attempt to understand the differences between the line shapes of H2O and D2O ice Ih, and

to interpret their spectral features. The properties and nature of the vibrational eigenstates,

and their selection rules, reflect the competing effects in the exciton Hamiltonian (Eq. (2.22))

of diagonal (transition frequency ωi(t)) disorder due to the proton-disordered environments of

the local chromophores, intramolecular coupling (i.e., ωa
ij), the various kinds of intermolecular

coupling (i.e., ωe
ij), and thermal disorder. We can minimize the effect of the latter by focusing

here on results at 10 K.

As a first step, let us quantify the extent of diagonal disorder. The diagonal elements of

our exciton Hamiltonian are the local OH (OD) stretch 0 - 1 transition frequencies, which

are sensitive to hydrogen-bonding and local environments. In ice Ih, all water molecules are

tetrahedrally hydrogen bonded (with two donors and two acceptors) to four nearest neighbors,

which produces no dispersion in the frequency distribution. If we consider the configuration

of the hydrogen-bonding partner of a specific OH, however, one finds that there are four dis-

tinct classes201, 202 based on the relative orientations of hydrogen-bonded donor and acceptor, as

shown in Fig. 4.7. The hydrogen bonds in the eclipsed dimers (A and B) are along the c axis

of ice Ih, while those in the staggered dimers (C and D) are along a direction oblique to the c

axis.202 These motifs can be visualized from the 12-molecule fragment of ice Ih shown in Fig.

1.1 of Chapter 1, where the c axis is vertical and the dotted lines are hydrogen bonds.

Figure 4.7: Four possible hydrogen-bonding dimers in ice Ih based on the relative orientations

of the hydrogen bond donor and acceptor. The red and blue circles are hydrogen atoms in the



50

dimer. The hydrogen bonds in the eclipsed dimers (A and B) are along the c axis of ice Ih; the

hydrogen bonds in the staggered dimers (C and D) are along a direction oblique to the c axis.

We can decompose the site frequency distribution into contributions from each class, as

shown in Fig. 4.8 for ice Ih at 10 K. The relative area of the distribution for each class reflects

the statistical percentage of that class in ice Ih, which in our configuration is very close to

the percentage assuming the proton disorder is locally random (A: 1/6; B: 1/12; C: 1/2; D:

1/4). The frequency distributions of each class are very similar, indicating that this is not an

important source of diagonal disorder. This is not consistent with the claim of two different

kinds of hydrogen bonds in ice,201, 203 but is consistent with the refutation204, 205 of this claim.

The widths of the frequency distributions for each class are mainly due to the proton-disordered

environments of each dimer, but the imperfect tetrahedral hydrogen bond network of E3B water

molecules (with HOH angles of 104.52◦, not 109.47◦), and residual thermal motions at 10 K,

also contribute. A noticeable difference between H2O and D2O ice Ih is that the site frequency

distribution of D2O (∼55 cm−1) is narrower than that of H2O (∼80 cm−1) at 10 K, which

partially explains the difference in the line widths of H2O and D2O vibrational spectra. These

differences have to do with the difference in scale between OH and OD stretch frequencies,

whose ratio is approximately related to the square root of the ratio of the relevant reduced

masses (which is roughly
√

2).
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Figure 4.8: Calculated local OH (OD) stretch frequency distributions for the four classes of OH

(OD) bonds in ice Ih, and their sum, at 10 K. Left panel is for D2O; right panel is for H2O.

We next consider the off-diagonal elements of the Hamiltonian, the vibrational couplings

(i.e., ωa
ij and ωe

ij). Intramolecular couplings are calculated using Eq. (4.1), and intermolecular

couplings are calculated within the interacting transition dipole approximation, Eq. (4.2). In

order to understand the intermolecular couplings, we plot in Fig. 4.9 the radial distribution

function of the point dipole positions, gMM(r) (M designates point dipole position), for ice Ih

at 10 K. The dipolar couplings within 3.6 Å in gMM(r) are grouped into six classes, shown in

Fig. 4.10. Again, in order to understand these classes, it may be helpful to consult Fig. 1.1. The

nearest OH pairs are approximately 2.4 Å apart, denoted as S (for strong). Four types of pairs

are similar in terms of distances (from 3.1 to 3.5 Å ), and are all within the first solvation shell

of the hydrogen bond donor water molecule. They are denoted as W0, W60, W120 and W180

(W for weak), in which the numerals are the dihedral angles formed by the two OH bonds. The

final class, denoted as WII, is for molecules in the second solvation shell of the hydrogen bond

donor water molecule (II means the second solvation shell). However, point dipoles in the WII

pairs are not far away from each other (∼3.45 Å apart) in the imperfect tetrahedral hydrogen

bond network of E3B water molecules.
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Figure 4.9: Calculated radial distribution function of the dipole positions for OH stretches in ice

Ih, and its decomposition into the six classes of pairs in H2O ice Ih at 10 K. The dipole position

of the OH chromophore is located at 0.67 Å from the oxygen atom along the OH bond.80

Figure 4.10: Six possible classes of dipolar couplings between two OH chromophores within

3.6 Å at 10 K. Blue circles are the two hydrogen atoms in the pair. The oxygen atoms are

represented by the vertices.

We plot the distributions of intermolecular couplings, as well as intramolecular couplings,

for both H2O and D2O at 10 K, in Fig. 4.11. The S pairs lead to the strongest (in magni-

tude) intermolecular couplings (about -40 cm−1 for H2O). The dipolar intermolecular coupling

is affected not only by the distance between two transition dipoles, but also by their relative

orientations (see Eq. (4.2)), and so nearer pairs do not necessarily have stronger coupling. In

fact, relatively distant WII coupling pairs show the largest positive couplings in the exciton

Hamiltonian. As Li and Skinner have seen before,80, 81 the intramolecular couplings in H2O are

relatively small, peaked at -3 cm−1. Given that the diagonal disorder in the Hamiltonian for

H2O at 10 K is about 80 cm−1, one may anticipate that the intramolecular couplings will not
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significantly change the vibrational density of states, while the intermolecular couplings may

introduce splittings. The widths of the coupling distributions arise primarily from the intrin-

sic structural heterogeneity due to the proton disorder and imperfect tetrahedral hydrogen bond

network of E3B, rather than residual thermal motions at 10 K.
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Figure 4.11: Calculated distributions of dipolar intermolecular couplings within 3.6 Å, and

intramolecular coupling, for H2O (top) and D2O (bottom) ice Ih at 10 K.

The coupling distributions for D2O (bottom panel of Fig. 4.11) are quite different from

those for H2O. The intermolecular couplings (S pairs: on the order of -28 cm−1; WII pairs: 12

cm−1) are smaller in magnitude for D2O, while the intramolecular couplings (-18 cm−1) are

much larger. These can be qualitatively understood from Eqs. (4.1) and (4.2): for a harmonic

oscillator, the position matrix element x is proportional to the square root of the reduced mass

of the oscillator, while the momentum matrix element p is inversely proportional to the square

root.206 The intermolecular couplings in Eq. (4.2) depend on x, but not p, so a smaller reduced

mass leads to a larger coupling magnitude for H2O. In Eq. (2) for intramolecular couplings,

ka
ij is usually positive, and cos(φ)/mO is negative. It is the competition between the two terms

in Eq. (4.1) that results in more negative intramolecular couplings for D2O. As the diagonal

disorder in the Hamiltonian for D2O at 10 K is about ∼55 cm−1, we can expect that in D2O
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both inter- and intramolecular couplings will introduce splittings in the OD stretch vibrational

density of states (see below).

With a better understanding of the exciton Hamiltonian for H2O and D2O, we next investi-

gate the effects of these couplings on the OH (OD) vibrational frequency distribution.80 The top

(bottom) panel in Fig. 4.12 shows the vibrational frequency distribution with various couplings

for H2O (D2O) at 10 K. We begin by showing the frequency distribution when all vibrational

coupling is neglected—these are the black curves, which are identical to those in Fig. 4.8.

Next we include only the intramolecular coupling for each molecule, and then diagonalize the

Hamiltonian for each configuration, which produces the red lines. For H2O this coupling does

essentially nothing, since the magnitude of the coupling is small compared to the width of the

diagonal disorder, while for D2O, where the intramolecular coupling is much larger, it splits

the peak significantly. Next we remove the intramolecular coupling and include intermolecu-

lar coupling involving all pairs with separations greater than 3 Å (that is, we include all the

“weak” couplings). These results are shown by the green curves. The effect of these weak

couplings is similar for both H2O and D2O, broadening the frequency distribution, with the

highest amplitude on the low-frequency side. For D2O we next include both intramolecular and

weak coupling to obtain the orange curve, which shows that the intramolecular coupling fur-

ther broadens the frequency distibution, but the highest amplitude is still on the low-frequency

side. We next remove the weak and intramolecular coupling, and now include only the strong

couplings, which results in the blue curves. These show dramatic perturbations from the diag-

onal distributions, because these strong couplings are on the order of the width of the diagonal

disorder. One sees that the strong couplings substantially broaden the distributions (but less so

for D2O, since the couplings are smaller). Finally, if one includes all couplings, one obtains

the magenta lines. For both H2O and D2O these curves each have three main peaks, at about

3140, 3220, and 3360 cm−1 for H2O, and 2320, 2410, and 2490 cm−1 for D2O. Comparing the

magenta, blue, and green curves for H2O, one can reasonably conclude that these three peaks

arise from strong, weak, and strong couplings respectively, which we denote SL (L is for low-

frequency), W, and SH (H is for high), respectively. For D2O one compares the magenta, blue,

and orange curves, similarly labeling the three peaks as SL, W/I (I is for intramolecular), SH.
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Figure 4.12: Theoretical frequency distributions of H2O and D2O ice Ih at 10 K. The black

lines are the local OH (OD) stretch frequency distributions. The red lines include only the

intramolecular couplings. The green lines include only the “weak” intermolecular couplings.

The blue lines include only the “strong” intermolecular couplings. The orange line includes only

the intramolecular and weak intermolecular couplings. The magenta lines include all couplings.

The dashed vertical lines are the frequencies at 10 K from Figs. 4.3 and 4.4, and are labeled

from left to right, as C, SL, W (W/I), SH in H2O (D2O) ice.

The frequency distributions are related to spectra, but are, of course, not the same thing,

since the latter are weighted by the square of the transition dipoles or polarizability, and also

have dynamical and lifetime effects. Still, one would expect to see signatures of the frequency

distribution in the spectra, to different extents for the different kinds of line shapes. In Figs.

4.3 and 4.4 we showed vertical dashed lines for the four peaks in the different spectra, for each

of the temperatures and isotopes. In Fig. 4.12 we also show these same four dashed lines for

10 K for each isotope. In each case the three higher-frequency lines correspond roughly to the

peaks in the frequency distribution, and which we label as SL, W (W/I), SH for H2O (D2O).

For each isotope the lowest frequency line occurs where the frequency distribution is actu-

ally quite small. The transition only appears in polarized Raman spectra, where, as discussed
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earlier,80, 183, 189, 194, 195, 197, 207 the intensity is enhanced by the constructive interference of many

in-phase transitions, which we denote as C for collective. In summary, then, the four transitions

1, 2, 3, and 4, are designated C, SL, W (W/I), SH for H2O (D2O). Transition 1 occurs in the

polarized Raman (it is the main peak), transition 2 is in the IR, and transitions 3 (which is the

main peak in the IR) and 4 appear in all spectra.

Certainly for H2O our results show that the intramolecular coupling makes essentially no

contribution to the spectroscopy. To make this very clear, in Fig. 4.3 we show theoretical Ra-

man and IR line shapes for 100 K where the intramolecular coupling has been set to 0—one

sees essentially no change. Since the intermolecular couplings are so much larger than the in-

tramolecular couplings, this implies that the basis of the symmetric and anti-symmetric molec-

ular eigenstates is not useful or relevant for understanding the spectra. This is in agreement

with the previous anlaysis by Li and Skinner80 and with earlier work by Rice and coworkers,194

but in disagreement with the recent intrepretation by Shigenari and Abe.193 For D2O the in-

tramolecular coupling is clearly much more important (see the results for no intramolecular

coupling at 100 K in Fig. 4.4), and it changes the spacing among the four transitions, and their

intensities. Still, the qualitative features of the spectra do not change from H2O to D2O, and so

our conclusion is that here too the molecular eigenstates are not relevant.

With regard to the temperature dependence of the theoretical line shapes in Figs. 4.3 and

4.4, higher temperatures lead to larger amplitudes of the low-frequency motions, which on

average weakens hydrogen bonds, producing a blue shift in the frequencies. In addition, the

larger range of configurations sampled at higher temperatures broadens the lines. Obtaining the

correct frequency for the C (collective) line is particularly difficult for us, since it is collective

(and not related to specific more local vibrational eigenstates). And indeed, one sees in Figs.

4.5 and 4.6 that we do not predict the temperature dependence of the peak frequency for this

(lowest-frequency) transition very well.

4.5 Concluding Remarks

In this chapter, we employ our mixed quantum/classical approach to simulate high-frequency

OH (OD) spectra of neat H2O (D2O) ice Ih at different temperatures, including IR and Raman

spectra of single crystal and polycrystalline ice Ih. Reasonable agreement is found between
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calculated and experimental line shapes. Through investigation into the structure and frequency

distributions for both H2O and D2O, we find that it is the stronger intramolecular couplings

that change the spectral features (spacings and widths) in D2O, and it is primarily the smaller

“strong” intermolecular couplings that makes the line shapes for D2O narrower compared to

H2O, in agreement with Rice and co-workers’ results.44 Based on these, we have suggested

assignments for the experimental peaks for both H2O and D2O. Our assignments are based on

understanding the strong and weak intermolecular couplings and intramolecular couplings in

the basis of local OH (OD) stretches, rather than in the basis of molecular symmetric and anti-

symmetric stretches.183, 193 Large intermolecular couplings and diagonal disorder make molec-

ular symmetric and anti-symmetric stretches not useful as a basis for spectral interpretations.

The model is not without its shortcomings. These include: (1) Ice Ih should have nuclear

quantum effects.171, 208, 209 Classical molecular dynamics does not describe the spatial delocal-

ization of hydrogen (deuterium) positions in ice Ih,210 which will potentially affect the line

width, and the classical treatment of lattice librations at low temperature is not well justified.

(2) The Fermi resonance between OH (OD) stretches and bending overtones is neglected in our

model. This effect has been studied extensively by both experiments211, 212 and theory.44, 45, 196 It

is thought that the effects of Fermi resonance in D2O ice is likely to be more profound than for

H2O,44 so the peaks at∼2425 cm−1 and∼2485 cm−1 in the experimental Raman spectra at 100

K may have contributions from Fermi resonance. (3) In terms of the spectroscopic modeling,

the use of the transition bond polarizability model might contribute to the overestimation of the

intensity of high-frequency modes in Raman spectra. Transition dipole coupling is not neces-

sarily a good approximation for the nearest OH pairs. Actually, many researchers44, 189, 197 treat

these couplings differently from longer range intermolecular couplings. Finally, our frequency

maps may not be particularly accurate, since they were parameterized from liquid water.35, 80

Nonetheless, our model appears to be good enough to help us understand most of the qualita-

tive spectral features in both H2O and D2O ice Ih.

As demonstrated in this chapter, the extraction of the information about vibrational coupling

from linear vibrational spectroscopy requires some level of theoretical modeling. Therefore,

experimentalists would like some techniques to examine vibrational coupling more directly, and

pump-probe anisotropy decay measurement is one of such techniques. The next chapter aims

to understand this nonlinear vibrational spectroscopy and its relation to vibrational coupling.
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Chapter 5

Vibrational Coupling: Pump-Probe

Anisotropy Decay
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Most content of this chapter corresponds to a manuscript submitted to J. Chem. Phys. with

Fu Li and James L. Skinner. We thank Professor Mino Yang for helpful conversations.

5.1 Introduction

We have discussed vibrational coupling extensively in the previous chapter, primarily from a

frequency-domain perspective, and we know that vibrational coupling delocalizes vibrational

eigenstates in ice Ih so that the vibrational excitation is shared by many chromophores. How-

ever, we have not yet answered the question of how quickly the vibrational excitation is delo-

calized between these chromophores. In order to answer this question, experimentalists have

utilized time-domain ultrafast nonlinear vibrational spectroscopy, one type of which — vibra-
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tional pump-probe anisotropy decay — will be the focus of this chapter. In the time-domain

description, we use the term “resonant vibrational energy transfer (VET)” to describe the delo-

calization of vibrational excitation. “Resonant” is used because of the near-degeneracy of VET

donor and acceptor chromophores in vibrational energy levels. This resonant energy transfer

process, in fact, has been discussed extensively for electronic excitation in the past fifty years.

Most studies on electronic resonant energy transfer also adopt the system-bath description

mentioned in Section 2.2. The system includes many chromophores (excitons) coupled through

inter-chromophoric coupling, whose energy levels are modulated by the bath (i.e., phonons)

through the system-bath (exciton-phonon) coupling. With a perturbative treatment and within

the Markovian approximation, there are two limits for resonant energy transfer:213–216 incoher-

ent and coherent. The former case is in the weak inter-chromophoric coupling limit, and can be

described either by a master equation in the local site basis,214, 215 or by the Förster theory with

some additional approximations.30, 215, 217 The latter case is in the weak system-bath coupling

limit, and can be described by the Redfield equation218 or Lindblad equation.219, 220 The Förster

theory in the incoherent limit is particularly useful as it allows the extraction of some structural

information (e.g., distance and relative orientation) of molecular systems from some signatures

(e.g., pump-probe anisotropy decay) of resonant energy transfer in ultrafast spectroscopic mea-

surements.

Due to the recent development of ultrafast infrared spectroscopy, people have the opportu-

nity to examine resonant vibrational energy transfer.31, 221–229 Specifically, OH (OD) vibrational

energy transfer has been studied in liquid water and ice Ih.225–229 The system-bath descrip-

tion for vibrations in ice is already discussed in Section 2.2, and it is very natural for experi-

mentalists to apply the theories developed originally for electronic excitation to the vibrational

case. In fact, Bakker and coworkers have used the Förster theory to interpret their pump-probe

anisotropy decay results, which carry information about OH (OD) VET, for both liquid water

and ice Ih. On the theoretical side, a recent work by Yang, Li and Skinner230 showed that the

VET process in liquid water is incoherent on the time scale of the pump-probe anisotropy mea-

surement, and could be described by the Förster theory with some modifications. Therefore, the

remaining question is whether incoherent description is appropriate for VET in ice Ih.

To the best of our knowledge, there are only two theoretical papers by Poulsen, Nyman

and coworkers on the VET in ice Ih.231, 232 They used the clusters of 15 water molecules to
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represent ice Ih, and ran either the wave packet dynamics or Car-Parrinello molecule dynamics

(CPMD) to monitor the survival probability of the excitiation on the initially excited mode or

potential energy of the excited molecule.231, 232 Both methods led them to conclude that the

resonant OH vibrational energy transfer in ice Ih occurs within 100 fs,231, 232 in agreement with

the recent pump-probe experiment.31 However, they neither made direct comparison with the

pump-probe anisotropy measurement (since their calculations preceded the experiment), nor

identified the VET in ice to be incoherent or coherent. Therefore, in this chapter we take up the

task of resolving these two issues. The rest of the chapter is organized as follows: In Section

5.2, we introduce pump-probe anisotropy decay, and outline the methodology for calculating

it; in Section 5.3, we present our calculated anisotropy decay, and compare it to experiment; in

Section 5.4, we analyze the mechanism, timescales, and transport pathways of OH vibrational

energy transfer in neat H2O ice Ih; and in Section 5.5, we conclude.

5.2 Pump-Probe Anisotropy Decay

In a typical vibrational pump-probe experiment, two infrared pulses are incident on the sample:

the first (pump) pulse excites some chromphores (e.g., OH stretch), and after a delay time t,

a second (probe) pulse probes the vibrational excitation, which might remain on the original

excited chromophores or might be transferred to other chromophores. As the polarization (i.e.,

direction of the electric field) of laser pulse can be well controlled, the polarizations of pump

and probe pulses can be parallel or perpendicular to each other, and the collected signals are

denoted as I‖(t) and I⊥(t), respectively. As light preferentially interacts with chromophores

aligned with its polarization, the difference signal I‖(t) − I⊥(t) will decrease with t primarily

due to three mechanisms: 1) molecular rotation: the excited chromophore, which is aligned well

with the pump pulse, might rotate during t; 2) VET: the vibrational excitation is transferred to

another chromophore, which might interact more strongly with the perpendicular probe pulse;

3) vibrational energy relaxation (VER): vibrational excitation is dissipated thermally. In order

to eliminate the effect of VER one can construct a quantity r(t) called the anisotropy decay,

given by

r(t) =
I‖(t)− I⊥(t)

I‖(t) + 2I⊥(t)
. (5.1)
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Therefore, anisotropy decay could tell one something about molecular rotation and VET in

molecular systems. Specifically for OH stretch in ice, molecular rotation is hindered due to the

hydrogen-bond network (see section 1.3.2), so the anisotropy decay is an ideal way to under-

stand OH stretch VET in ice Ih experimentally.

As there are multiple interactions between the sample and light in a pump-probe exper-

iment, the calculation of vibrational anisotropy decay usually involves the doubly-excitated

vibrational states, as well as the singly-excited states and the ground state. However, Yang, Li

and Skinner230 showed that within some reasonable approximations, the anisotropy decay for

the frequency-integrated detection in the context of the mixed quantum/classical approach can

be calculated approximately for isotropic systems by

r(t) =
2

5

〈∑j mj(t)
2|Uji(t)|2mi(0)2P2(ûi(0) · ûj(t))〉i

〈∑j mj(t)2|Uji(t)|2mi(0)2〉i , (5.2)

where mi ≡ µ′ixi is the magnitude of the transition dipole of chromophore i, Uji(t) ≡ 〈j|U(t) |i〉,
P2 is the second Legendre polynomial, and the brackets with the subscript i denote a time aver-

age over the trajectories and over all initially excited chromophores i.

To clarify the physical meaning behind anisotropy decay r(t), we can make further approx-

imations. If we make the Condon approximation (i.e., the magnitudes of the transition dipoles

mi are taken to be constants.), Eq. (5.2) becomes

r(t) =
2

5

〈∑
j

|Uji(t)|2P2(ûi(0) · ûj(t))

〉

i

(5.3)

where the identity
∑

j |Uji(t)|2 = 1 is used. Note that the Condon approximation is good for

ice since all the water molecules in ice are fully hydrogen bonded.35 The physical meaning of

Eq. (5.3) is evident: |Uji(t)|2 is the transition probability of the excitation from chromophore i

to j for j 6= i at time t, and P2(ûi(0) · ûj(t)) describes the molecular rotation and the molecular

arrangement in the material. If there is no energy transfer in the system (i.e., Uji(t) = δji),

Eq. (5.3) recovers the conventional P2 rotational time correlation function with a prefactor 2/5.

If the molecular rotation can be ignored in the material on the time scale of experiment (i.e.,



62

ûj(t) ≈ ûj(0)), which is the case for ice, Eq. (5.3) becomes

r(t) =
2

5


S(t) +

〈∑

j 6=i

|Uji(t)|2P2(ûi(0) · ûj(0))

〉

i


 , (5.4)

where S(t) is the so-called survival probability, defined by

S(t) =
〈|Uii(t)|2

〉
i
. (5.5)

This survival probability tells one the average probability of finding the excitation remaining

on chromophore i at time t given that the initial excitation is localized on chromophore i. By

monitering the time evolution of the survival probability, one can characterize the resonant

energy transfer in the system. Therefore, the anisotropy decay in this situation reflects the

resonant energy transfer weighted by some geometric factors P2(ûi(0) · ûj(0)).

5.3 Results and Comparison with Experiment

The system that Timmer and Bakker studied is the OH stretch in ice Ih of either neat H2O or

H2O/HOD/D2O mixture at 270 K. The effect of OD here is essentially to dilute the OH chro-

mophores in the system as the OD stretch is not an effective VET acceptor for OH vibational

excitation due to large frequency mismatch between the OH and OD stretches. Since fewer OH

stretch acceptors surround an OH stretch donor in the H2O/HOD/D2O mixture compared to

neat H2O, one might expect that VET in ice is impeded or slowed down in the isotopic mix-

tures. Indeed, Timmer and Bakker observed that as the hydrogen mole fraction decreases, the

anisotropy decay r(t) slows down dramatically, and the “plateau” in r(t) at 1 ps rises. As men-

tioned earlier, these observation was interpreted in terms of the Förster theory of incoherent

hopping by Timmer and Bakker, and they concluded that VET outside the first solvaion shell

was negligible, and the level of the plateau reflected the probability of finding acceptors (i.e.,

OH chromophores) within the first solvation shell. Within their dipole-dipole coupling model,

the rate of intramolecular hopping was larger than all intermolecular rates since the distance

between the two dipoles is the closest.

To mimic the experiment, we performed MD simulations for ice Ih of neat H2O and of
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H2O/HOD/D2O mixtures using the E3B model at 245 K (the melting point of the E3B model is

251 K84). For neat H2O, the simulation is the same as that in Section 4.2. For isotopic mixtures,

the simulation is run with D2O, then we assign the D atoms at random to be H atoms to match the

given hydrogen mole fraction, and to obey the rule of the geometric mean for the equilibrium

constant of the isotopic self-exchange reaction of water (i.e., KD = 4 for H2O + D2O →
2HOD), which is close to the experimental value for liquid water at about 300 K.233, 234 Then

we perform an average over 80 different random realizations of the H2O/HOD/D2O mixture to

obtain a spectrum for each concentration.

Fig. 5.1 displays the experimental (270 K)31 and calculated (245 K) (from Eq. (5.2)) pump-

probe anisotropy decay for H2O/HOD/D2O ice Ih at various hydrogen mole fractions including

100%. Note that the experimental work by Timmer and Bakker showed that the anisotropy

decay for this system has little temperature dependence and is not sensitive to the probe fre-

quency,31 so our calculation is done for the frequency-integrated detection at 245 K, even though

their experimental data are frequency-averaged signals with their two-color pump-probe exper-

imental setup at 270 K.31 As shown in Fig. 5.1, our calculations are in fairly good agreement

with the experiment for all hydrogen mole fractions.31 In addition to the fast initial decay and

the plateau after 300 fs, our calculated anisotropy decays also have some oscillations, especially

for the mixtures at low hydrogen mole fractions. A high-frequency component is seen at short

times, especially at low OH concentrations, and a low-frequency component is observed on a

longer time scale. However, only the low-frequency oscillation is observed in the experiment.

We confirm that the oscillations in our calculated results are mainly due to the hindered rotation

(libration) in ice Ih by checking the OH rotational time correlation function.
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Figure 5.1: Calculated (at 245 K) and experimental (at 270 K) pump-probe anisotropy for

H2O/HOD/D2O ice Ih at hydrogen mole fractions (as indicated by the colors and the legend).

5.4 Discussion

In spite of some discrepancies between our theoretical results and experiment, we believe that

our model qualitatively captures the physics of the OH stretch resonant energy transfer in ice

Ih. Therefore, we will attempt to understand the mechanism and paths of the resonant energy

tranfer in ice Ih with our theoretical model, and will focus our attention on the case of neat H2O

hereafter. To this end, we first classify the relevant OH donor-acceptor pairs in the system, and

this classification has been already done in Section 4.4 (Fig. 4.10). In order to show these VET

donor-acceptor pairs in ice Ih more clearly, a six-molecule fragment of ice Ih with a vertical c

axis of the hexagonal crystal lattice is shown in Fig. 5.2. The large blue spheres are oxygen

atoms, and other color-coded small spheres are hydrogen atoms. For pictorial clarity, we assume

the initial excitation locates on the red hydrogen atom, and the water molecule to which the red

hydrogen atom belongs is regarded as the central water molecule. The red and purple hydrogen

atoms in the central water form an intramolecular donor-acceptor pair, and the magnitude of

its coupling is very small as shown in Fig. 4.11. The strongest intermolecular couplings are

the four red-green pairs (i.e., S pairs), and we expect these four green hydrogens to be the

main acceptors of the vibrational energy. The other four yellow hydrogen atoms within the first
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solvation shell of the central water molecule might also accept the excitation through the weak

intermolecular couplings, which can be further classified to W0, W60, W120 and W180 pairs

(see Fig. 4.10). Note that in this particular fragment in Fig. 5.2, only W60, W120 and W180

pairs are shown. The final important donor-acceptor class is the red-orange pairs (WII pairs);

as mentioned in the previous chapter, the vibrational coupling of the WII pair is the second

strongest intermolecular coupling in the system.82 The couplings of donor-acceptor pairs other

than these six (e.g., red-white hydrogen pairs in Fig. 5.2) are probaby negligible since they

are very apart, and their coupling strengths are very small. We thus group all these couplings

together as a seventh class.

Figure 5.2: Vibrational resonant energy transfer donor-acceptor pairs in a six-molecule fragment

of ice Ih. The c axis is vertical, and the dotted lines are hydrogen bonds. The large blue spheres

are oxygen atoms, and the small spheres of white and other colors are hydrogen atoms. The

locations of the vibrational excitation are taken to be on the hydrogen atoms for pictorial clarity.

Assume that the initial vibrational excitation is localized on the OH chromophore involving the

red hydrogen atom, and the vibrational excitation can transfer to the four green hydrogen atoms

through the intermolecular couplings of S class. The excitation can also transfer to the orange

hydrogen atom through the intermolecular coupling of WII class, to the yellow hydrogen atoms

through the intermolecular coupling of weak classes (only W60, W120 and W180 shown here),
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and to the purple hydrogen atom through the intramolecular coupling. The classification of the

intermolecular pairs is explained in the main text.

With a better understanding of the donor-acceptor pairs in the system, we now examine the

survival probability S(t) of the OH vibrational excitation, which is a direct way to investigate

the resonant energy transfer process. As shown in Fig. 5.3, the survival probability (solid black

line, from Eq. (5.5)) decays on a similar (albeit slightly longer) time scale to the anisotropy

decay. This suggests the initial rapid drop in the anisotropy decay is mainly due to resonant

energy transfer for high OH concentrations. To further verify this, we consider Eq. (5.4), in

which the molecular rotation is neglected. As mentioned above, the S pairs (red-green hydro-

gen atoms in Fig. 5.2) are expected to be the main donor-acceptor pairs in the system, which

we confirm in Fig. 5.3 by calculating the survival probability including only the intermolecular

couplings of S pairs in the Hamiltonian (dashed black line). Therefore, at short times the ex-

citation will primarily transfer from the initially excited OH chromophore to its four neighbor

chromophores through the intermolecular couplings of S pairs (that is from the red hydrogen

atom to the four green hydrogen atoms in Fig. 5.2). Considering that the angle between the two

OH chromophores in the S pairs is about (180◦ − 109.52◦ =) 70.48◦, the geometrical factor

P2(ûi(0) · ûj(0)) gives -1/3, leading to an approximate relation between the anisotropy decay

and the survival probability at short times for ice Ih:

r(t) =
2

15
[4S(t)− 1], (5.6)

where the identity that
∑

j |Uji(t)|2 = 1 is applied again. The anisotropy decay estimated

in this way, using the “exact” survival probability (solid black line in Fig. 5.3), is plotted

as the dotted line in Fig. 5.4. Within about 100 fs, the agreement between the dashed and

dotted lines is fairly good, but the dotted line is higher within about 50 fs and lacks the initial

oscillation as a result of the negligence of the hindered molecular rotation. Hence, it is evident

that the main physical origin of the initial drop is resonant energy transfer, which will be shown

below to have coherent characteristics. The discrepancy between the dashed and dotted lines

after 100 fs is not surprising, as Eq. (5.6) is only valid at short times, and at long times the

excitation is delocalized further (beyond the first solvation shell of the central molecule). By



67

examining the survival probabilities and the anisotropy decays for the H2O/HOD/D2O mixutres,

we find the dependence of the end level on the hydrogen mole fraction results from the level

of delocalization of the excitation. The contribution from molecular rotation, meanwhile, is

constant for different hydrogen mole fractions.
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Figure 5.3: Calculated survival probability of the vibrational excitation. The solid black line is

the “exact” result from Eq. (5.5), and the dashed black is also from Eq. (5.5) but with only the

intermolecular couplings of S class included in the excitonic Hamiltonian. The red and green

curves are the results from the master equation (Eq. (5.7)) with the hopping rates calculated

using Eq. (5.10) and Eq. (5.12), respectively.
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Figure 5.4: Anisotrpy decay for neat H2O calculated “exactly” from Eq. (5.2) (solid line), and

estimated approximately from Eq. (5.6) (dotted line).

The survival probability shows a recurrence between 200 fs and 300 fs, which is a character-

istic feature of the coherent energy transfer. This recurrence also contributes to the oscillation

between 200 fs and 300 fs in the anisotropy decay. To further investigate the mechanism of

the energy tranfer in ice Ih, we would like to examine whether an incoherent hopping model

can reproduce this survival probability. A perturbative Markovian treatment of the Liouville

equation for the system density matrix leads to a master equation214, 215

Ṗi(t) = −
∑

j 6=i

kijPi(t) +
∑

j 6=i

kjiPj(t), (5.7)

where Pi(t) is the probability of finding the excitation on chromophore i at time t, and kij is

the hopping rate constant for the energy transfer from chromophore i to j. Note that with this

master equation, S(t) = 〈Pi(t)〉i given the initial condition Pi(0) = 1. In the context of our

exciton Hamiltonian (Eq. (2.22)) and our mixed quantum/classical approach, the hopping rate

constant kij can be expressed as215, 217, 230

kij = 2Re
∫ ∞

0

dt
〈
ωij(t)ωij(0)ei

R t
0 dτ(ωi(τ)−ωj(τ))

〉
, (5.8)

where ωij is either intramolecular or intermolecular coupling between chromophores i and j,

and the brackets indicate a time average over the trajectory. Note that since the bath is treated

classically, we have kij = kji.

In principle, we can evaluate the hopping rate for each pair in the system (about 0.4 million

pairs in a 432-molecule simulation box), but it is not practical (and not necessary) to do so.

Instead, we rewrite Eq. (5.8) as

kij = 2Re
∫ ∞

0

dt ei〈ωi〉−〈ωj〉t
〈
ωij(t)ωij(0)ei

R t
0 dτ(δωi(τ)−δωj(τ))

〉
, (5.9)

where 〈ωi〉 is the time-averaged transition frequency of chromophore i, and δωi(τ) ≡ ωi(τ) −
〈ωi〉. Then we assume that the quantity in brackets in Eq. (5.9) is the same for all the pairs
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belonging to a given class of donor-acceptor pairs. With this assumption, we obtain

kc
ij = B̂c(〈ωi〉 − 〈ωj〉), (5.10)

where the superscript c indicates the pair of chromophores i and j belongs to the class c of

donor-acceptor pairs, B̂c(ω) =
∫∞
−∞ dt eiωtBc(t), and Bc(t) is defined as

Bc(t) =
〈
ωij(t)ωij(0)ei

R t
0 dτ(δωi(τ)−δωj(τ))

〉
c
. (5.11)

The brackets with the subscript c indicate a time average over the trajectory as well as an average

over the pairs of class c. Note that as it is mentioned in the previous chapter and will be

elaborated further in the next chapter, ice Ih has static structural inhomogeneity due to the

proton disorder so that the time-averaged frequency difference between chromophores i and

j (that is 〈ωi〉 − 〈ωj〉) is not necessarily zero for each pair. Therefore, Eq. (5.10) takes this

static inhomogeneity into account. Thus, the hopping rate between chromophores i and j can

be evaluated as the Fourier transform of the time correlation function in Eq. (5.11) at their

time-averaged frequency difference.
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Figure 5.5: The histogram of the hopping rates between the intermolecular pairs of S class,

calculated from Eq. (5.10).
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In Fig. 5.5, we show the histogram of the hopping rates for all the S pairs (1728 pairs) in

the system, calculated from Eq. (5.10). The majority of the S pairs have the hopping rates close

to 9.2 ps−1, which corresponds to zero time-averaged frequency difference. However, the static

inhomogeneity indeed spreads out the distribution of the hopping rates in Fig. 5.5. To check

the accuracy of Eq. (5.10), we calculate the hopping rates “exactly” from Eq. (5.8) for all the

S pairs, and the mean relative absolute error is 11%. Also, we verify that this error for the S

pairs does not bring much difference in the survival probability, calculated by solving the master

equation numerically. The hopping rates between the pairs of other classes are also calculated

from Eq. (5.10). In Fig. 5.3, the solid red line is the calculated survival probability based on

solving the master equation numerically using Eq. (5.10). A significant underestimation of the

survival probability is observed compared to the “exact” calculation (solid black line), implying

that the incoherent hopping is not a proper picture for resonant OH vibrational energy transfer

in ice Ih. Also, the recurrence is absent in the result from solving the master equation (solid

red line). Therefore, the resonant OH vibrational energy transfer has some coherent features

at least up to 300 fs. The validity of the incoherent hopping model hinges on the assumption

that the dephasing rate caused by the bath fluctuation is much faster than the resonant energy

transfer rate.215, 235 (A more straightforward way to understand this is that the system-bath

coupling has to be much larger than the inter-chromophoric coupling for the incoherent hopping

model.) However, this is not the case for the OH stretch in ice Ih, for which the resonant energy

transfer is also ultrafast within 100 fs (the intermolecular coupling of S pairs is comparable to

the system-bath coupling in magnitude). Since Förster theory is an approximate way to solve

the master equation,230 it is not appropriate to apply Förster theory directly to understand the

resonant OH vibrational energy transfer in ice Ih.

Even though the incoherent hopping model is not correct here, the hopping rate constants

are still helpful for recognizing the important donor-acceptor pairs in the system. Therefore, we

calculate the average hopping rates for the pairs of a given class c as follows

〈k〉c = 2Re
∫ ∞

0

dt
〈
ωij(t)ωij(0)ei

R t
0 dτ(ωi(τ)−ωj(τ))

〉
c
, (5.12)

where 〈k〉c is the average hopping rate over the trajectory and the sub-ensemble of the donor-

acceptor pairs of class c. The average hopping rates for all the seven classes of pairs are shown

in Table 5.1. The average hopping rate for S pairs is one order of magnitude larger than those for
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other pairs, and 6.73 ps−1 agrees with the value (1/140 fs−1) estimated by Timmer and Bakker.31

This explains why including only the S pairs is sufficient to get the survival probability semi-

quantitatively correct (Fig. 5.3). The hopping rates of other pairs are all less than 1.00 ps−1,

and the second largest hopping rate is from WII pairs as expected. The hopping rates for W0,

intra, W60 pairs are of the same order of magnitude as that for WII pairs, and other pairs are

not efficient energy transfer pairs. Note these results agree with the six-nearest-neighbor idea,

suggested by Timmer and Bakker, though their treatment of the intramolecular couplings is not

adequate as they assumed the dipolar coupling form for them.31 Another point of interest to

investigate here is the effect of the static inhomogeneity on the energy transfer process. We

assign the average hopping rate of a class (Table 5.1) to all the pairs in that class, and solve

the master equation (Eq. (5.7)) numerically to obtain the survival probability, shown as the

solid green line in Fig. 5.3. The difference between the solid red and green lines is essentially

negligible, indicating that the static structural inhomogeneity due to the proton disorder has little

effect on the energy transfer. This is because the time-averaged frequency differences between

chromophores in ice Ih are small, and the overlap of the absorption line shapes for the donor

and acceptor is dominated by the homogeneous broadening in the context of the Förster theory,

which has been discussed by Rosenfeld and Fayer recently.236

donor-acceptor pair class average hopping rates (ps−1)

S (red-green) 6.73

WII (red-orange) 0.77

Intra (red-purple) 0.36

W0 (not shown) 0.64

W60 (red-yellow) 0.31

W120 (red-yellow) 0.05

W180 (red-yellow) 0.02

Other (red-white) 0.002

Table 5.1: Average hopping rates for different donor-acceptor pairs calculated from Eq. (5.12).

The color pairs in the parentheses correspond to the pairs of the color-coded hydrogen atoms in

Fig. 5.2.
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Finally, we can discuss the time scale and length scale of the energy transfer in neat H2O ice

Ih. For simplicity, we assume the OH vibrational excitation locates on the hydrogen atoms.

To examine the delocalization of the excitation, we define a root mean square displacement

(RMSD) for the excitation, given by237

RMSD(t) =

√√√√
〈∑

j

|~rj(t)− ~ri(0)|2|Uji(t)|2
〉

i

, (5.13)

where ~rj(t) is the position vector of the hydrogen atom of chromophore j at time t. If there is

no energy transfer, the RMSD reflects the diffusion of the hydrogen atom in ice. As a result,

Eq. (5.13) is the generalized RMSD with the energy transfer included. The calculated RMSD is

plotted in Fig. 5.6, with the H-H radial distribution function (RDF) to its left (the intramolecular

hydrogen peak is not shown) and the anisotropy decay below it. It is clear that the excitation

is delocalized to the nearest chromophores of the initially excited chromophore on its neighbor

molecules (the position of the chromophore is taken to be on the hydrogen atom) through the

intermolecular couplings of S pairs within 100 fs, causing the anisotropy decay to fall below

0.1. At about 200 fs, the excitation has been transported to the second solvation shell of the

central molecule, and the anisotropy decay has almost vanished. Considering that the donor-

acceptor pairs of the S class are much more efficient than other pairs in transferring the OH

vibrational energy and that the excitation is transported between the solvation shells almost at

an equal time interval (100 fs), we speculate that the vibrational excitation is mainly transferred

stepwise through the intermolecular couplings of S pairs in ice Ih, with a diffusion rate of about

one solvation shell every 100 fs. To verify this, we calculate the RMSD of the excitation with

only the intermolecular couplings of S pairs included in the Hamiltonian, shown as the red solid

line in the top right panel of Fig. 5.6. Indeed, the S pairs account for the largest part of the

OH resonant vibrational energy transfer in ice Ih. Another noteworthy observation in Fig. 5.6

is that up to 50 fs the RMSD is roughly linear in time, which is a signature of coherent energy

transfer.238–240
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Figure 5.6: RMSD of the OH vibrational excitation in neat H2O ice Ih. The black solid line in

the top right panel is the RMSD of the excitation calculated from Eq. (5.13), the top left panel is

the H-H radial distribution function, and the bottom right panel is the “exact” anisotropy decay

from Eq. (5.2). The vertical dashed lines indicate the time scale of the excitation spreading, and

the horizontal dashed lines indicate the corresponding length scale. The red solid line in the top

right panel is the RMSD of the excitation with only the intermolecular couplings of S pairs in

the Hamiltonian.

5.5 Concluding Remarks

In this chapter, we simulated the vibrational pump-probe anisotropy decays with the mixed

quantum/classical approach for neat H2O ice Ih and mixtures with deuterium substitution, and

the agreement between theory and experiment is fairly good. By calculating the survival proba-

bility, we find the resonant OH vibrational energy transfer in ice Ih has coherent characteristics

up to about 300 fs for neat H2O, so that the incoherent hopping model cannot describe this pro-

cess appropriately, not to mention the Förster theory. From the analysis of our theoretical model,

we are able to interpret some features in the experimental anisotropy decay: (1) the rapid initial

decay mainly arises from the fast resonant energy transfer for high hydrogen mole fractions;

(2) the end levels reflect the level of the delocalization of the excitation at different hydrogen
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mole fractions; (3) the oscillations are attributed to mainly the hindered rotation of the water

molecules, and in part to the coherent characteristics of the energy transfer. We also find that

the dominant donor-acceptor pairs in the energy transfer process are the nearest intermolecular

pairs of OH chromophores (S pairs). For neat H2O, the OH vibrational excitation is transferred

to the first solvation shell of the initially excited molecule mostly through the S pairs on the time

scale of 100 fs, and is subsequently transferred to further solvation shells in a stepwise manner

through the S pairs. It is also shown that the static inhomogeneity due to the proton disorder

in ice Ih has little effect on the energy transfer process. Given all this, we answer the question

raised in the introduction by asserting that the resonant OH vibrational energy transfer in ice Ih

(coherent) is qualitatively different from that in liquid water (incoherent) on the time scale of

pump-probe experiments.
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Chapter 6

Proton Disorder: Inhomogeneous

Broadening
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The content of this chapter corresponds to Ref. 241. Reprinted with permission from J.

Phys. Chem. B 117, 15536 (2013); copyright 2013 American Chemical Society. We thank Dr.

Fivos Perakis and Prof. Peter Hamm for sending their raw experimental data, and for helpful

correspondence.

6.1 Introduction

In the previous two chapters, we have mentioned the structural heterogeneity due to the proton

disorder in ice Ih, and its effect on linear spectra and vibrational energy transfer. This struc-

tural heterogeneity gives rise to different time-averaged transition frequencies for different OH
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(OD) chromophores in ice Ih due to their slightly different local environments, and the result-

ing line shape broadening in the linear spectra is often called inhomogeneous broadening (the

corresponding line-width is called inhomogeneous line-width). Therefore, understanding inho-

mogeneous broadening is particularly important because it provides an experimental window

for understanding proton disorder. In this chapter, we focus primarily on this inhomogeneous

broadening.

As discussed extensively in Chapter 4, vibrational coupling will further broaden vibrational

spectra for ice Ih, making the spectral interpretation difficult. Therefore, a desirable system to

understand the inhomogeneous broadening is an isotope-diluted ice Ih sample, such as dilute

HOD in D2O (HOD/D2O for short),26–28 for which the local OH stretch is essentially a normal

mode of the system due to the large frequency mismatch between OH and OD stretches. Unlike

the situation for neat H2O, the IR spectrum for dilute OH consists of a single peak. The width

of this peak is temperature dependent, ranging from about 125 cm−1 near the melting point to

about 65 cm−1 at 86 K.35 Note, however, that one experiment at 70 K has a line-width below 50

cm−1.185 Raman spectra have been measured down to lower temperatures, in one case finding a

line-width as small as 25 cm−1 at 10 K.186

One can then ask: what fraction of the line-width is due to inhomogeneous broadening, and

what fraction is due to homogeneous broadening, in this case due to low-frequency vibrational

modes (phonons) and the excited-state lifetime (T1)? Note that the homogeneous broaden-

ing comes from the system-bath interaction (low-frequency modes lead to transient OH stretch

frequency fluctuation, and they can also accept vibrational energy from the excited OH chro-

mophore through vibrational energy relaxation). Therefore, the homogeneous line-width due

to thermal fluctuation will be temperature dependent, while the temperature dependence of T1

is very small.242 In contrast, the nature and extent of proton disorder is essentially temperature

independent,12 so the observed strong temperature dependence of the line-width shows that it

must have at least some homogeneous contribution. However, for temperatures much less than

the Debye temperature (which for ice is approximately 226 K7), the homogeneous contribu-

tion from phonons should become unimportant.243, 244 Therefore, at 80 K one might expect that

the line-width would be dominated by an inhomogeneous contribution from proton disorder,

and a homogeneous contribution from the excited state lifetime. The latter is about 400 fs and

roughly temperature independent,242 which by itself would lead to a line-width of 13 cm−1. A
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convolution of a Lorentzian (i.e., homogeneous line shape) with this width, and a Gaussian (i.e.,

inhomogeneous line shape), suggests that the experimental width at 86 K of 65 cm−1 therefore

has an inhomogeneous contribution with a width of 58 cm−1. Li and Skinner have modeled the

linear vibrational spectroscopy of the HOD/D2O ice Ih system.35 The calculated temperature-

dependent IR line-widths are in reasonable agreement with experiment. The density of ice

depends on temperature (it increases as T decreases),7 and so even though the proton disorder is

temperature independent, we found (see Fig. 12 in Ref. 35) that the inhomogeneous broadening

is weakly temperature dependent, with widths ranging from 59 cm−1 at 245 K, to 63 cm−1 at

125 K, to 70 cm−1 at 1 K.35 A simple interpolation suggests a theoretical inhomogeneous width

of about 65 cm−1 at 80 K due to the proton disorder.

Recently, the emergence of ultrafast vibrational spectroscopy rendered the experimental ex-

traction of the inhomogeneous width possible at relatively high temperature.41 Graener and

coworkers carried out a picosecond IR hole-burning experiment on HOD in D2O ice Ih at 230

K in 1997.245 They found an inhomogeneous width of ∼50 cm−1, which they attributed to

proton disorder. Another cutting-edge nonlinear technique is two-dimensional infrared spec-

troscopy (2DIR), which adds an additional frequency dimension to the linear IR, analogous to

two-dimensional NMR.246 If inhomogeneous broadening is dominant, the 2DIR spectrum will

usually be elongated along the diagonal. If homogeneous broadening is dominant, the 2DIR

spectrum will be more round. If both broadening mechanisms are important, the anti-diagonal

line-width of the 2DIR spectrum will provide some information about the homogeneous broad-

ening, while the diagonal line-width will reflect both broadening mechanisms.246 A very recent

2DIR study on isotope-diluted ice Ih at 80 K by Hamm and coworkers showed even less inho-

mogeneous broadening in their 2DIR spectra as their 2DIR line shape looked round.36, 241

To summarize, then, linear IR spectroscopy suggests that the inhomogeneous line-width

in HOD/D2O ice Ih at 86 K is about 58 cm−1, hole-burning experiments at 230 K suggest

an inhomogeneous width of about 50 cm−1, 2DIR experiments at 80 K suggest probably an

even smaller inhomogeneous width (probably less than 50 cm−1), and theoretical calculations

indicate an inhomogeneous width about 65 cm−1 at 80 K and 59 cm−1 at 245 K.

In this chapter, we will simulate the 2DIR spectrum for HOD/D2O ice Ih at 80 K, and in-

vestigate how the 2DIR line shape changes with the amount of the inhomogeneous broadening

due to the proton disorder. Moreover, we propose a potentially better way to examine this in-
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homogeneous broadening. The rest of this chapter is organized as follows. In Section 6.2, we

outline the methodology for calculating linear and 2DIR; in Section 6.3, we compare our calcu-

lated linear and 2DIR to experiment; in Section 6.4, we investigate the effect of inhomogeneous

broadening on linear and 2DIR line shapes; in Section 6.5, we propose 3PEPS as a better way

to examine this inhomogeneous broadening; in Section 6.6, we conclude.

6.2 Theoretical Method: 1D and 2DIR

As the OH chromophores of dilute HOD in D2O are essentially isolated, ice Ih, Eq. (2.23) is

greatly simplified, and the expression for the IR absorption spectrum for light with polarization

p̂ is given by35

Ip(ω) ∼ Re
∫ ∞

0

eiωt〈µp
10(0)µp

10(t)U10(t)〉e−t/2T1 , (6.1)

where U10(t) = exp [−i
∫ t

0
ω10(τ)dτ ], ω10(τ) is the fluctuating 1-0 transition frequency of that

OH stretch, and µp
10 is the pth Cartesian component of the corresponding transition dipole (p

is now a superscript). The phenomenological vibrational lifetime is T1 = 0.4 ps for HOD in

D2O.242

In a typical time-domain 2DIR experiment, three ultrafast laser pulses are applied to interact

with the sample, and the time delays between three pulses and the detected signal are denoted

as t1, t2 and t3; t2 is often called the waiting time.246 The time-domain signal is then tran-

formed to the frequency domain by performing Fourier transforms for t1 and t3. The resulting

spectrum S(ω3, t2, ω1) is plotted as a two-dimensional coutour with ω1 and ω3 as the x and y

axes, respectively (this is the convention we choose in this chapter). The 2DIR spectrum for

an isotope-diluted system is more or less a correlation spectrum: the chromophore (e.g., OH

stretch) is excited resonantly at a frequency of ω1 (sometimes called the pump frequency), and

after the waiting time t2, it is probed to be vibrating at a frequency of ω3 (sometimes called the

probe frequency). If the molecular environment around that chromophore is basically unaltered

during t2, ω3 will be highly correlated with ω1, leading to a diagonally elongated 2DIR line

shape (i.e., an inhomogeneously broadened line shape). In the other limit, when the molecular

environment around that chromophore is changed drastically during t2, ω3 and ω1 are uncor-

related, leading to a round 2DIR line shape (i.e., an homogeneously broadened line shape).

Certainly, whether the line shape is dominated by inhomogeneous or homogeneous broadening
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depends upon the waiting time t2. By varying t2, one can see how the 2DIR line shape changes

with time due to the gradual loss of frequency correlation (sometimes called spectral diffusion),

providing an estimate of the time scale for the fluctuation of the local environment around the

chromophore. Therefore, 2DIR is powerful for understanding structural heterogeneity (from

inhomogeneous broadening) as well as molecular dynamics (from spectral diffusion). Note that

as 2DIR can access the second vibrational excited state (i.e., pump 1-0 transition, but probe 2-1

transition), peaks are shown as pairs in 2DIR spectrum, and the gap along the ω3 axis between

1-0 (positive) and 2-1 (negative) peaks reflects the anharmonicity of the chromophore.

From a theoretical perspective, calculating the 2DIR line shape S(ω3, t2, ω1) is much more

challenging than linear IR, requiring the calculation of the so-called third-order nonlinear re-

sponse functions (at least six of them: R1,2,3,4,5,6(t3, t2, t1)). Within the mixed quantum/classical

approach and delta-pulse approximation, the calculation is simplified; details are shown in Ap-

pendix A. For these calculations, we employ molecular dynamics simulations of D2O at 80 K,

the details of which are the same as in Section 4.2. To calculate spectra, we average over the

putative substitution of each D with an H, and use the maps for OH spectroscopy.

6.3 Results and Comparison with Experiment

In Fig. 6.1, the experimental IR line shape for HOD/D2O ice Ih at 80 K is plotted (black solid

line).36 This line shape is more or less consistent with older data,35 although a bit broader (full-

width-half-max (FWHM) is 79 cm−1, compared to 65 cm−1 at 86 K180). The theoretical IR line

shape at 80 K is also plotted (red solid line). It is in reasonable agreement with the experiment,

although the calculated line shape is slightly red-shifted and narrower (FWHM of 75 cm−1)

compared to the experimental line shape (but 10 cm−1 broader than the older experiment). Both

line shapes show a single peak with little if any structure.
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Figure 6.1: Calculated (from Eq. (6.1)) and experimental36 infrared (IR) line shapes for

HOD/D2O ice Ih at 80 K. Note that the baseline of the original experimental spectrum36 has

been subtracted, and the absorbance is converted to the line-shape function. The red dashed line

is the line shape for HOD/D2O ice Ih with the approximate linear response function (from Eq.

(A10)). All line shapes are normalized to have the same peak height.

Next, we consider the 2DIR spectra for HOD in D2O ice Ih at 80 K. The experimental 2DIR

spectra were reported in Refs. 36 and 241, and only the 2DIR spectrum with the waiting time

t2 = 200 fs is replotted in the right panel of Fig. 6.2 using the raw experimental data,247 as the

spectral diffusion is expected to be slow (the experimental spectrum at 100 fs suffers from a

so-called “coherent artifact”, and the spectrum at a long waiting time (t2 = 1 ps) loses intensity

because of VER). Note that this version of the 2DIR spectrum for HOD/D2O ice Ih as it is an

anisotropic 2DIR spectrum (i.e., S‖−S⊥),241 which is discussed in Appendix B. The advantage

of anisotropic 2DIR is that it suppresses the effects of the local heating on the spectrum, which

might occur in S‖ and S⊥ in experiment (see the old spectrum in Ref. 36). The apparent

anharmonicity (difference between the 1-0 and 2-1 peak maxima) in this spectrum is about 285

cm−1. The 1-0 transition peak (red lobe) appears to be primarily homogeneously broadened

(the diagonal elongation is small). The 2-1 transition peak (blue lobe) is much broader than 1-0

transition peak, which is also observed in the pump-probe248 and hole-burning245 experiments.

If we compare the experimental HOD/D2O 2DIR spectra for ice Ih to those for liquid water,249

there are two major differences: (1) The 2DIR spectra for ice barely change with increasing
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waiting time (at least for 1-0 transition peak, see t2=200 fs and 500 fs in Fig. 2 of Ref. 36),

while 2DIR spectra for liquid water becomes circular gradually;250, 251 (2) the 2DIR spectrum

for ice is much narrower than that for liquid water.
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Figure 6.2: Calculated (from Eqs. (A2) - (A5) and (B3) for S‖) and experimental36 (S‖ − S⊥)

2DIR spectra for HOD/D2O ice Ih at 80 K (t2=200 fs). The red lobe is the 1-0 transition peak

associated with ground state bleach and stimulated emission processes, and the blue lobe is

the 2-1 transition peak associated with the excited state absorption process. The spectra are

normalized to have the same 1-0 transition peak height. The dashed line indicates the diagonal.

In Fig. 6.2, we also show our theoretical 2DIR spectrum (t2 = 200 fs, parallel polarization

geometry) for HOD/D2O ice Ih at 80 K (left panel). Note that the calculated 2DIR is S‖, as

theoretically S⊥ ≈ S‖/3 for HOD/D2O ice Ih (see Appendix B). Both the 1-0 and 2-1 transition

peaks in our theoretical 2DIR spectrum are elongated along the diagonal (actually, along a

line steeper than the diagonal for the 2-1 transition), indicative of substantial inhomogeneous

broadening (more evident than in experiment). The frequency gap between the 1-0 and 2-1

peaks (apparent anharmonicity of 217 cm−1) is smaller in our calculated 2DIR spectra compared

to that in the experiment at this waiting time. Except for these issues, the agreement between

the theoretical and experimental 2DIR for HOD/D2O ice Ih is reasonable.
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6.4 Discussion: Inhomogeneous Broadening

Each individual putative OH chromophore has a time-averaged frequency determined by its

proton-disordered environment, and fluctuations about this average frequency due to thermal

motion (phonons). The distribution of time-averaged frequencies represents the inhomogeneous

broadening. For the 864 chromophores in our crystal at 80 K, this distribution is shown in Fig.

6.3 for both the 1-0 and 2-1 transition frequencies. The dashed lines are the best Gaussian fits

for the histograms. The standard deviations are about 26 cm−1 and 32 cm−1, for the 1-0 and

2-1 transitions respectively. The corresponding FWHM of the 1-0 distribution is about 62 cm−1.

This is few cm−1 less than the interpolated value of 65 cm−1 from the work by Li and Skinner;35

this small discrepancy presumably arises because the earlier work used the first version of the

E3B model.83 Since the width of the theoretical absorption spectrum at 80 K is 75 cm−1, this

means that the line shape is dominated by inhomogeneous broadening.

2900 3000 3100 3200 3300 3400

ω (cm
-1

)

0

0.005

0.01

0.015

0.02

P 
(ω

)

Figure 6.3: Histograms of time-averaged transition frequencies ω̄ for HOD/D2O ice Ih at 80 K.

The dashed lines are the best Gaussian fits. Red lines are for 1-0 transition frequency, and blue

lines are for 2-1 transition frequency.

The inhomogeneous broadening of the 2-1 peak is larger than for the 1-0 peak, which is

reflected in the wider peak in the theoretical 2DIR spectrum. The reason for the broader 2-1
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distribution is that the OH-stretch potential curve in ice is very anharmonic, and the anhar-

monicity increases with the hydrogen bond strength.78 Since the 1-0 and 2-1 frequencies are

highly correlated, this also explains the steeper slope of the 2-1 transition peak in our theoretical

2DIR. It is worth mentioning that the large breadth of the 2-1 transition peak has been discussed

extensively in some experimental studies, and many explanations have been conjectured, such

as an asymmetric double well potential for the proton between two oxygen atoms,245 vibra-

tional energy relaxation of the second excited state through some intermediate states,248 and the

non-adiabatic coupling of the OH stretch with the quantal low-frequency modes.36

In order to understand the sensitivity of the 2DIR spectrum to the amount of inhomoge-

neous broadening, it is convenient to derive some approximate expressions for the response

functions. Basically, we make the Condon approximation, neglect the rotational dynamics of

the chromophores, make the Gaussian approximation for the inhomogeneous broadening, make

the cumulant approximation for the frequency fluctuations of each chromophore, and assume

that the frequency time-correlation function for each chromophore is the same. The details are

described in Appendix A. In turns out that these approximations all work well (compared to the

“exact” theoretical results) for ice (although most of them do not work at all well for liquid wa-

ter). To show this, in Fig. 6.1 we plot the approximate result using Eq. (A10) for the absorption

spectrum (red dashed line), and in Fig. 6.4 we plot the approximate result using Eq. (A12) for

the 2DIR spectrum for HOD/D2O ice Ih. In both cases comparison with the exact theoretical

results is excellent.
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Figure 6.4: Calculated 2DIR spectra for HOD/D2O ice Ih at 80 K (t2=200 fs): (a) “exact”

spectrum with the exact 3rd-order response functions in Eq. (A2), identical to the left panel in

Fig. 6.2; (b) approximate spectrum with the approximate 3rd-order response functions in Eq.

(A12).

Our approximate expressions involve the variances of the time-averaged frequency distri-

bution for the 1-0 transition, σ2
1 , the 2-1 transition, σ2

3 , and the covariance, σ2
2 , as defined in

Appendix A. For the sake of argument and illustration, we can artifically decrease σ1, σ2, and

σ3, to see the effect on the 1D and 2DIR spectra. We consider three cases: where these values

are decreased by 1/3, decreased by 2/3, and set to 0. The results for the 1D spectrum are shown

in Fig. 6.5. All three of these new spectra are quite a bit too narrow and not consistent with the

experiment by Hamm and coworkers36 (note that their IR spectrum is a bit broader than that in

a previous study at 86 K180). The results for the 2DIR spectra are shown in Fig. 6.6. Here we

see that the result with the inhomogeneous broadening decreased by 1/3 in panel (c) is perhaps

in best agreement with experiment. Indeed, this would give an inhomogeneous width of about

62 × 2/3 = 42 cm−1 for the 1-0 transition, consistent with our estimate (less than 50 cm−1)

based on the experimental spectrum.
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Figure 6.5: Absorption line shapes with full inhomogeneous broadening (blue), reduced by 1/3

(green), reduced by 2/3 (red), and set to 0 (black).
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Figure 6.6: Calculated 2DIR spectra for HOD/D2O ice Ih at 80 K (t2=200 fs) with the approx-

imate 3rd-order response functions in Eq. (A12), and inhomogeneous broadening due to the

proton disorder (σa, a = 1, 2, 3): (a) set to 0; (b) reduced by 2/3; (c) reduced by 1/3; (d) kept in

full, identical to Fig. 6.4(b).

This leaves the rather uncomfortable situation where our model results are consistent with

the experimental 1D but not the 2D spectrum, whereas if we decrease the inhomogeneous broad-

ening by 1/3 our results are consistent with the 2DIR but not the 1D experiments. If we consider,

for the moment, reasons why our theoretical inhomogeneous broadening could be too large, the

most likely candidate is the accuracy of our frequency map for ice. After all, the map was

parameterized for liquid water. However, we have recently compared our map to DFT calcula-

tions from ice configurations, and while there is a small more or less uniform frequency shift

from the ice results to the map, the slope of the map (versus electric field) and slope of the

ice points are about the same, and therefore the amount of inhomogeneous broadening would

be unchanged.78 To reiterate, the slope of the map reflects the dispersion in the frequencies

for different electric fields, and so two maps with the same slope would have the same width

in the frequency distribution. Decreasing the inhomogeneous broadening by 1/3 is equivalant

to decreasing the slope of the map by 1/3, which is incompatible with the DFT calculations.78

Therefore, in the next section, we propose the vibrational three-pulse photon-echo peak-shift

(3PEPS) experiment as a better way to estimate this inhomogeneous broadening as well as to

probe low-frequency dynamics in ice.
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6.5 Proposed Experiment: 3PEPS

Ultrafast spectroscopy of liquid HOD/D2O has shown that the 3PEPS experiment actually leads

to higher resolution dynamical information than does the 2DIR (3PEPS shows the oscilla-

tion due to the hydrogen bond stretch for liquid water, where 2DIR does not).252 In fact, at

“long” times the peak shift can be shown to be proportional to the frequency-frequency time-

correlation function,253–256 which is the object of primary theoretical interest. For ice the the-

oretical phonon contribution to the frequency-frequency time-correlation function (C1(t), see

Eq. (A9)) is shown in Fig. 6.7. It shows pronounced structure indeed, reflecting the various

low-frequency modes of the system.

In the vibrational 3PEPS measurement, a series of time-integrated three-pulse photon-echo

measurements with different waiting times are taken. In the impulsive limit, the integrated

photon echo intensity is given by257

I(t2, t1) =

∫ ∞

0

dt3

∣∣∣∣∣
3∑

m=1

Rm(t3, t2, t1)Lm(t3, t2, t1)

∣∣∣∣∣

2

, (6.2)

where Rm and Lm are defined in Appendix A. The peak shift t∗1(t2) is defined by256

∂I(t2, t1)

∂t1

∣∣∣∣
t1=t∗1(t2)

= 0. (6.3)

As the approximate third-order response functions (Eq. (A12)) perform very well in the calcu-

lation of the 2DIR spectrum (Fig. 6.4), we again use them to calculate the 3PEPS signal. In

order to get a smooth 3PEPS curve, we increase the resolution of the time-correlation functions

to 0.1 fs using the cubic spline interpolation method.258 The calculated 3PEPS signal is shown

in Fig. 6.7(b), and we see that it does show similar structure as the time-correlation function

itself in panel (a).
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Figure 6.7: (a) Time-correlation function for the dynamic fluctuations; (b) Calculated vibra-

tional three-pulse photon echo peak shift (3PEPS) (from Eqs. (6.2) and (6.3)) for HOD/D2O ice

Ih at 80 K with the approximate 3rd-order response functions in Eq. (A12).

Another interesting feature of the theoretical 3PEPS signal is that it does not decay to 0 as

t2 gets large. In fact, as mentioned above we have previously shown256 that at long times the

peak shift is related to the frequency-frequency time-correlation function, but for ice the full

time-correlation function does not decay to zero (as in Eq. (A9)). In Appendix C we show that

under certain conditions

t∗1(∞) = Tpσ
2
1/(σ

2
1 + C1(0)), (6.4)

where σ1 and C1(0) are defined in Appendix A, and Tp is defined in Appendix C. The value of

t∗1(∞) from Fig. 6.7 is about 7.5 fs, compared to 11.1 fs from the above. In any case, since

t∗1(∞) depends on the amount of inhomogeneous broadening, σ1, it may well be an interesting

quantity to measure in experiment.

6.6 Concluding Remarks

OH (OD) stretch vibrational spectroscopy has been used to study the microscopic structure of

ice Ih for almost a century. However, the presence of a spectral signature of proton disorder is
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still controversial, even with the power of nonlinear spectroscopy. In this work, we attempt to

deepen our understanding of this issue by calculating 2DIR spectra for HOD/D2O ice Ih with

our mixed quantum/classical approach. Our calculated 2DIR line shape shows evident inhomo-

geneous broadening, which is not very pronounced in the experimental line shape, while our

calculated linear IR spectrum is in good agreement with the experiment at the same temper-

ature. We explore the effect of inhomogeneous broadening due to the proton disorder on the

2DIR line shapes. If the amount of inhomogeneous broadening is reduced, the model becomes

compatible with the 2DIR spectrum, but incompatible with the 1DIR spectrum. This situation

is not satisfactory, and further experimental and theoretical work needs to be done to resolve

this controversy. As a possible experiment to probe low-frequency dynamics in ice, and also

to study inhomogeneous broadening further, we encourage experimenters to perform a 3PEPS

experiment. To this end, we have presented a theoretical calculation of such.
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Chapter 7

Vibrational Dynamics: Incoherent

Inelastic Neutron Scattering
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7.1 Introduction

In the previous several chapters, we have discussed vibrational spectroscopy with photons (e.g.,

IR and Raman). Although these optical techniques are very useful in probing structure and dy-

namics in condensed phases, they still have some limitations:259 for instance, the sample usually

has to be optically transparent or thin as photons often do not penetrate deeply into materials;

optical spectroscopy is usually subject to the optical selection rules so that spectra do not nec-

essarily reflect the vibrational density of states in the system; successful theoretical modeling

of these optical spectra requires not only a good description of inter-atomic potential energy
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surface, but also a reliable reproduction of other quantities (for IR, dipole moment surface or

transition dipole moment); and last but not least, if there are many degenerate chromophores in

the system (e.g., OH stretches in neat H2O), these chromophores can interfere “coherently” due

to vibrational coupling, further complicating the spectra.

Over the past fifty years, vibrational spectroscopy with neutrons has been an alternative

method to optical vibrational spectroscopy for investigating the structure and dynamics of con-

densed phases. Neutrons, which carry almost the same mass as hydrogen atoms, can pene-

trate deeply into most bulk materials and interact primarily with nuclei (especially hydrogen),

making neutron vibrational spectroscopy a natural choice to probe nuclear arrangement and

motions.259 Furthermore, coherent and incoherent contributions to neutron scattering can be

measured separately. As the de Brogile wavelength of a thermal neutron is close to interatomic

distances, coherent (inelastic) neutron scattering is widely used to determine radial distribu-

tion functions for condensed phases.29, 260 Meanwhile, if the energy of the incident neutron is

comparable to molecular vibrational energies, incoherent (inelastic) neutron scattering enable

experimentalists to extract vibrational density of states directly.37, 259 In this chapter, we will

focus on incoherent inelastic neutron scattering.

Nowadays, neutron spectrometers can cover the whole infrared region for typical molecular

(fundamental) vibrations (i.e., 0-4000 cm−1).259, 261, 262 As the incoherent scattering cross sec-

tion of hydrogen atom (80.3 barn) is at least one order of magnitude larger than that of any other

atom including deuterium (5.6 barn),261 the incoherent inelastic neutron scattering (IINS) spec-

tra of hydrogen-containing materials are dominated by scattering from hydrogen atoms, making

IINS a good probe for vibrations involving hydrogen motions (e.g., OH stretch, hydrogen-bond

stretch).259, 261 In fact, hydrogen bonding in various phases of ice (e.g., Ih, Ic, II, V, VI, VII,

VIII, IX, XI, and amorphous ices) has been studied experimentally by IINS (typically below

1000 cm−1),173, 176, 201, 203, 205, 263–266 and many theoretical methods have been scrutinized against

these experimental IINS spectra.172, 177, 204, 267–276 Due to the availability of higher energy neu-

trons (above 1000 cm−1), IINS spectra for OH stretch have also been measured and analysed to

understand hydrogen-bonding in condensed phases, just like OH-stretch IR and Raman spectra.

Recent IINS spectral analysis has triggered a debate in the literature277–283 on the existence of

another water anomaly: an excess of proton mean kinetic energy in supercooled water. More-

over, one recent study283 suggests a very counter-intuitive view that the hydrogen bond might
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be weaker in ice than that in supercooled water at similar temperatures. Clearly, the resolution

of these controversial issues needs further experimental and especially theoretical studies.

The formal theory for incoherent neutron scattering was developed right after the IINS ex-

periments were achievable.38, 40, 284–286 There are two basic methods for treating IINS spectra of

condensed phases: one is a phonon approach, which is primarily applied to solids; the other is

based on time-correlation functions (TCFs), and can be applied to both solids and liquids.38–40

In this chapter, we adopt the second approach as both liquid and solid water will be discussed

here. The key quantity to calculate IINS spectra is a TCF shown in the last row of Table 2.1.

If we consider the low-frequency IINS (below 1000 cm−1) of water, this TCF can be eval-

uated readily from molecular dynamics simulations as discussed in Section 2.4 and Chapter

3.267, 269, 287 If the modeling of nuclear quantum effects is desired, a quantum correction factor

can be applied, and there are also existing approaches in the literature to calculate this quantum

TCF directly.288–291 For the OH-stretch IINS of water, a mixed quantum/classical approach is

highly desirable, and we are aware of the theoretical works only by Bratos and coworkers in this

direction.292–295 However, their method requires the input of empirical parameters. Therefore,

in this chapter we extend our mixed quantum/classical approach to the calculation of OH IINS

spectra for water. The rest of the chapter is organized as follows. In Section 7.2, the theoretical

methodology for calculating IINS is outlined; in Section 7.3, we compare our calculated OH

IINS for liquid water, supercooled water and ice Ih to experiment, and make connections to

OH IR spectra; in Section 7.4, the calculated low-frequency IINS spectra for these systems are

presented and compared to experiment; in Section 7.5, hydrogen bonding in these systems is

discussed in the context of our calculations; in Section 7.6, we conclude.

7.2 Theoretical Method: IINS

For H-containing systems like water, the IINS cross section is dominated by hydrogen, as its

scattering cross section is much larger than those of other atoms including deuterium. It is thus

a rather good approximation to only consider the scattering due to hydrogen in the IINS cal-

culation for water. Assuming the first Born approximation and Fermi pseudopotential between

the incident neutron and the scattering atom (e.g., hydrogen), the IINS double differential cross

section is proportional to the incoherent scattering function (sometimes also called incoherent



92

dynamical structure factor), given by37

S(~k, ω) =
1

2π

∫ ∞

−∞
dte−iωtI(~k, t), (7.1)

where ~k is the momentum transferred during the scattering, and I(~k, t) is the incoherent inter-

mediate scattering function, defined by37

I(~k, t) =
〈
e−i~k·~rj(0)ei~k·~rj(t)

〉
, (7.2)

where the brackets denote an equilibrium quantum-mechanical ensemble average and an av-

erage over all hydrogen atoms in the system (see Section 2.1 and Table 2.1), and ~rj(t) is the

time-dependent position operator associated with the jth hydrogen in the Heisenberg picture.

Note that I(~k, t) can also be expressed as follows

I(~k, t) =

∫ ∞

−∞
dωeiωtS(~k, ω). (7.3)

These two equivalent ways of writing I(~k, t) lead to a very useful relation between the ex-

perimentally measurable incoherent scattering function and the microscopic velocity TCF for

isotropic systems, given by

lim
k→0

ω2

k2
S(~k, ω) =

1

6π
f(ω), (7.4)

where k = |~k|, and f(ω) is the Fourier transform of the velocity TCF mentioned in Chapter 3,

given by

f(ω) =

∫ ∞

−∞
dteiωt〈~v(t) · ~v(0)〉. (7.5)

A proof of Eq. (7.4) is given in Appendix D.

As the velocity TCF can be calculated easily from molecular dynamics simulations, IINS

provides a route to a direct comparison between theory and experiment in terms of molecular

dynamics. Moreover, for a harmonic system (e.g., molecular vibrations in ice Ih at low tem-

peratures), one can show that this f(ω) is identical with the phonon density of states (i.e., the

frequency distribution of the normal modes),38, 286 which might be obtained from lattice dynam-

ics calculations or electronic structure methods. Therefore, a new quantity is often defined in
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the literature

G(~k, ω) ≡ ω2

k2
S(~k, ω), (7.6)

which is sometimes called k-dependent proton density of states. For low-frequency IINS (i.e.,

below 1000 cm−1), f(ω) might be directly evaluated from classical MD simulations (see Section

2.4), sometimes with an additional quantum correction factor.58

For high-frequency IINS (e.g., OH stretch), as in the case of IR and Raman, quantum

mechanics is essential. As mentioned in Section 2.5.1, mixed quantum/classical approaches

are particularly attractive in dealing with high-frequency vibrations in condensed phases, and

in the rest of this section, our mixed quantum/classical approach is applied to calculate OH

stretch IINS. In order to keep our convention consistent, we consider a time correlation func-

tion C(~k, t) = I(~k,−t) so that

C(~k, t) =
〈
e−i~k·~rj(t)ei~k·~rj(0)

〉
, (7.7)

and I(~k, t) = C∗(~k, t). Recalling the general discussion in Section 2.5.1, C(~k, t) can be eval-

uated using our mixed quantum/classical approach (see Eq. (2.23)), and we need to evaluate

transition moments, such as 〈0| e−i~k·~rj(t) |l〉 (l is used here as a system state index instead of i

for the avoidance of confusion with the imaginary unit). Note that the position operator within

the system-bath treatment can be written as ~rj(t) = ~Rj(t) + ~qj(t), where ~Rj(t) is the equilib-

rium position of hydrogen atom regarding OH stretch (i.e., ~Rj(t) = 〈0|~rj(t) |0〉), and can be

obtained from classical MD simulations. The remaining ~qj(t) is the vibrational displacement

of hydrogen atom from its equilibrium position during the OH stretch. If we consider that the

vibrational coordinate x of OH stretch is dominated by hydrogen atom displacement, we have

approximately ~qj(t) ≈ xj(t)ûj(t), where ûj(t) is taken to be the jth OH bond unit vector. Now

we have

〈0| e−i~k·~rj(t) |l〉 ≈ e−i~k·~Rj(t) 〈0| e−ikxj(t)(ε̂·ûj(t)) |l〉 , (7.8)

where ε̂ ≡ ~k/k. It would be desirable to have a “map” for 〈0| e−ikx(ε̂·û) |1〉, but this is not

easy to obtain. We have two approaches to proceed given the maps in Table 2.2. One is

to make a harmonic approximation for the oscillators, which is not particularly good for OH

stretch. For a harmonic oscillator, 〈0|xn |1〉 is equal to (〈0|x |1〉)n for odd n, and otherwise

zero. Therefore, 〈0| e−ikx(ε̂·û) |1〉 can be evaluated by Taylor expansion. Alternatively, as we
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are only interested in the limit k → 0, we can simply truncate 〈0| e−ikx(ε̂·û) |1〉 at the first or-

der in its Taylor expansion. This approximation is what we take in this chapter, and we have

〈0| e−ikxj(t)(ε̂·ûj(t)) |l〉 ≈ −ikx01,j(t)(ε̂ · ûj(t))δjl, where x01,j(t) ≡ 〈0|xj(t) |j〉. Now, the inco-

herent intermediate scattering function for small k values is approximated by

I(~k, t) ≈
〈
e−i~k·(~Rj(0)−~Rj(t))k2m01,j(0)U∗

jj(t)m01,j(t)
〉

b
, (7.9)

where m01,j(t) ≡ (ûj(t) · ε̂)x01,j(t), and the brackets with the subscript b denote ensemble

averages over the bath and the OH chromophores in the system.

Finally, in the limit k → 0 we have

G0(ε̂, ω) ≡ lim
k→0

G(~k, ω) ≈ 2ω2Re
∫ ∞

0

dteiωt 〈m01,j(t)Ujj(t)m01,j(0)〉b e−t/2T1 , (7.10)

where vibrational relaxation is again included phenomenologically. For isotropic systems,

G0(ω) = (G0(x̂, ω) + G0(ŷ, ω) + G0(ẑ, ω))/3, where x̂, ŷ and ẑ are unit vectors along the

Cartesian coordinate axes in the simulation-box frame. Eq. (7.10) is very similar to the formula

we used for IR spectrum except that: 1) an extra factor of ω2 is in Eq. (7.10) due to the defi-

nition of G(~k, ω); 2) the transition moment m01,j in IR (transition dipole moment, denoted as

µ01,j later) has a component µ′j due to the dipole interaction between the IR light and the sam-

ple, which is absent for IINS; 3) as we are considering incoherent neutron scattering, Eq. (7.10)

has only an incoherent part (Ujj(t)), while the IR line shape usually contains both incoherent

and coherent parts (Uij(t)). Despite these differences, the calculations of IINS (Eq. (7.10))

and of the IR spectrum within our mixed quantum/classical approach are under the same level

of approximation — truncation at the first order in OH stretch coordinate x. From the second

and third differences, one can see clearly that IINS is more suitable (than IR and Raman) for

probing full vibrational density of states.

The MD simulations in this chapter are performed in the NPT ensemble with the third ver-

sion of the E3B model (E3Bv3).85 Liquid water, supercooled water and ice Ih are all simulated

with 432-molecule simulation boxes. The pressure is controlled by a Parrinello-Rahman baro-

stat296 with a coupling constant of 10.0 ps in production runs, and the temperature is controlled

by a Nosé-Hoover thermostat297, 298 with a coupling constant of 5.0 ps. Other simulation details

are the same as in Section 4.2. For low-frequency IINS, we directly calculate the Fourier trans-
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form of velocity TCF f(ω) and include the harmonic quantum correction factor (see Section

2.4). For the calculation of high-frequency IINS, the latest maps in Ref. 78 are used. Note

that for all the spectral calculations, the molecular geometry and charges on atoms are adjusted

from TIP4P/2005 (the reference potential for the E3Bv3 model) to TIP4P, for which all the

spectroscopic maps were developed.

7.3 High-Frequency IINS: OH Stretch

Fig. 7.1 displays the calculated G0(ω) for liquid water (top panel), supercooled water (middle

panel), and ice Ih (bottom panel), along with extrapolated results from experiment for the same

systems. Note that as the melting temperature of the E3Bv3 model employed in this chapter

is 260 K,85 we choose 258 K for ice Ih and supercooled water in our simulations. All the

theoretical and experimental spectra show essentially single peaks, except that the theoretical

spectrum for ice Ih shows a shoulder on the low-frequency side of the main peak. This shoulder

may also exist in experiment, but the low frequency-resolution of the experiment precludes a

definitive answer. In terms of peak position, a fair agreement between theory and experiment

is seen for liquid and supercooled water. However, for ice Ih, the calculated spectrum is blue-

shifted by about 50 cm−1 compared to the experiment. This blue shift is probably due to the

fact that the frequency map overestimates the OH 0-1 transition frequency in ice Ih by about 30

- 40 cm−1.78 Regarding the line-width, our theory is too narrow for supercooled water and ice

Ih, and this discrepany might be due to the inadequacy of the experimental extrapolation or the

fact that our simulation temperatures (258 K) are lower than corresponding experimental ones

(∼270 K).
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Figure 7.1: Experimentally extrapolated (black lines) and calculated (red lines) G0(ω) for OH

stretch in liquid water, supercooled water and ice Ih. Reference numbers for experiment are:

(a) Ref. 283; (b) Ref. 299; (c) Ref. 300. All the spectra are normalized to have the same height

of 1.

In order to see the connection between IR and IINS spectra, we also calculate IR spectra for

ice Ih and supercooled water at 258 K, shown as solid black lines in Fig. 7.2, along with IINS

spectra (solid red lines). IR spectra in both cases show a single peak, red-shifted compared

to the main peaks in IINS. In order to understand this, we decompose IR line shape into its

incoherent and coherent parts, given by, respectively

I inc
IR (ω) = 2Re

∫ ∞

0

dteiωt 1

3

∑
p

∑
j

〈
µp

01,j(t)Ujj(t)µ
p
01,j(0)

〉
b
e−t/2T1 , (7.11)

and

Icoh
IR (ω) = 2Re

∫ ∞

0

dteiωt 1

3

∑
p

∑

j,l 6=j

〈
µp

01,j(t)Ujl(t)µ
p
01,l(0)

〉
b
e−t/2T1 , (7.12)

where µp
01,j(t) is the pth Cartesian component of 0-1 transition dipole associated with the jth OH

chromophore, and µp
01,j(t) ≈ µ′j(t)x01,j(t)(ûj(t) · p̂) (p̂ = x̂, ŷ, ẑ). It is clear that the incoherent
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part of IR spectrum I inc
IR (ω) (dashed black line) is very similar to G0(ω) from IINS, especially

in the case of ice Ih. This is simply because within our mixed quantum/classical approach, the

only difference between Eqs. (7.11) and (7.10) is that Eq. (7.11) contains dipole derivative

µ′j(t), the main contributor to the so-called non-Condon effect in IR spectra. As mentioned in

Chapter 6, the non-Condon effect is negligle in ice Ih, so I inc
IR (ω) and G0(ω) are very similar

for ice. The non-Condon effect is more pronounced in supercooled water, and I inc
IR (ω) shows

a slightly visible shoulder on the red side of the main peak, which is not seen in G0(ω). Even

though the incoherent part of the IR spectra essentially carries the same information as IINS

does, the coherent part of the IR spectra (which arises from vibrational couplings) considerably

diminishes the intensity over 3400 cm−1, and enhances the red side of the spectra. Therefore,

if one is interested in the vibrational density of states, IINS is to be preferred over IR. In order

to demonstrate this further, we also calculate the distribution of vibrational eigen-frequencies

(solid blue lines in Fig. 7.2), defined by

F (ω) = 〈δ(ω − λm)〉 , (7.13)

where λm is the mth vibrational eigen-frequency obtained by diagonalizing κ matrix (Eq.

(2.22)). This frequency distribution is basically the OH stretch vibrational density of states,

and G0(ω) from IINS resembles it quite well, while IR spectrum is quite different from it. This

observation could be understood as follows. If we consider Eq. (7.10) in the inhomogeneous

limit (transition moments and exciton Hamiltonian are time-independent), assume that m01,j is

a constant for all j’s (usually a good assumption for IINS of isotropic systems), and also neglect

the ω2 prefactor and the lifetime factor (e−t/2T1), we will have G0(ω) ∼ F (ω). As the system is

not exactly in the inhomogeneous limit (motional narrowing exists) and the lifetime does play

a role, G0(ω) is narrowed and sharpened from F (ω). Within the same approximations, we also

have I inc
IR (ω) ∼ F (ω), but this relation does not hold for total IR line shape.
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Figure 7.2: Calculated OH stretch IR and IINS spectra for ice Ih (left panel) and supercooled

water (right panel) at 258 K. IR line shapes (solid black lines) with incoherent (dashed black

lines, from Eq. (7.11)) and coherent (dotted black lines, from Eq. (7.12)) contributions are

shown in the top, and IINS spectra G0(ω) (red lines, from Eq. (7.10)) are in the middle. Fre-

quency distributions (solid blue lines), calculated from Eq. (7.13), along with local OH-stretch

frequency distributions (dashed blue lines, from Eq. (7.14)) are shown at the bottom. IR and

IINS spectra are shifted by 3 and 1.5 arbitrary units, respectively, for pictorial clarity.

7.4 Low-Frequency IINS: Intermolecular Motions

We also calculate low-frequency IINS for liquid water, supercooled water and ice Ih with (blue

lines) and without (red lines) the harmonic quantum correction factor (HQCF), shown in Fig.

7.3 along with experimental results. The theoretical spectra without the HQCF seem to resemble

the experimental ones better than those with HQCF. The reason for this might be that the em-

pirical E3Bv3 model has already included some nuclear quantum effects in its parametrization;

supporting this idea is the fact that the E3Bv3 model reproduces the diffusion constant and rota-

tional correlation time semi-quantitatively.91 Nevertheless, the qualitative spectral features are

unchanged regardless of whether the HQCF is included. For liquid phases, the peak at about 50

cm−1 is seen in both experimental and theoretical spectra, and it is usually assigned to O–O–O

bending motion.301 The peaks and shoulders above 400 cm−1 (due to librations) are blue shifted
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compared to experiment, which is presumably related to the flaw of the E3Bv3 model for de-

scribing water rotation (the E3Bv3 model overestimates the H-H rotational correlation time,85 as

it exhibits too strong of a hydrogen-bond network). We also see some intensity buildup between

200 and 300 cm−1 in our calculated spectrum, the existence of which is difficult to confirm in

experiment. However, this feature is believed to be associated with the hydrogen-bond stretch,

which is well resolved in the low-frequency IR spectrum for liquid water (see below). For ice

Ih, it is well-known that at 15 K there are four peaks below 400 cm−1 in IINS, the assignment

of which has triggered some debates in the literature.117, 172–174, 178, 201, 203–205, 275, 302 Because the

calculated spectrum below 400 cm−1 is still somewhat noisy, we claim only that our theory re-

produces the first and fourth peaks in experiment, and that we see considerable phonon density

of states between 100 and 300 cm−1. The librational peaks in our theoretical spectrum for ice

are also blue-shifted, but all three experimentally observed peaks are present in the calculated

spectrum.

0

0.5

1

Exp. (d) 298K
Exp. (e) 300K
Theory 300K
Theory HQCF 300K

0

0.5

1

G
0(ω

) Exp. (f) 258K
Theory 245K
Theory HQCF 245K

0 200 400 600 800 1000

ω (cm
-1

)

0

0.5

1

Exp. (g) 15K
Exp. (h) 15K*
Theory 15K
Theory HQCF 15K

Liquid water

Supercooled

Ice Ih

Figure 7.3: Experimentally extrapolated (black lines) and calculated G0(ω) in the frequency

range of 0-1000 cm−1 for liquid water, supercooled water and ice Ih. The red lines are calculated

G0(ω) without harmonic the QCF, while the blue lines are with it. Reference numbers for

experiment are: (d) Ref. 303; (e) Ref. 304; (f) Ref. 305; (g) Ref. 173; (h) Ref. 176. All the

spectra are normalized to have the same height of 1, except for that from Ref. 176, denoted by



100

an asterisk. The spectrum from Ref. 176 is raw experimental IINS intensity data, so only the

peak positions should be considered in the comparison with theory. Fig. 23 in Ref. 176 shows

G0(ω) between 0 and 400 cm−1, which is similar to the result from Ref. 173.

As in the high-frequency case, we also compare the low-frequency IR and IINS (includ-

ing the harmonic quantum correction factor) for ice Ih and supercooled water at 258 K. As

discussed in Chapter 3, a successful reproduction of low-frequency IR for ice Ih requires the

incorporation of the polarization effect on the dipole surface, and we have developed a simple

scheme to include this effect for the E3B model (see Chapter 3). The parameter γ (which can

be regarded as an effective polarizability) for ice Ih is 2.300 Å3, and for supercooled water we

choose 1.495 Å3, the value for liquid water. Note that we change the water molecule from

TIP4P/2005 to TIP4P in the calculation of low-frequency IR spectrum in order to use these

values of parameter γ. Fig. 7.4 displays calculated low-frequency IR (solid black lines) for su-

percooled water and ice Ih at 258 K, along with the low-frequency IINS (red lines). In Chapter

3, we decomposed low-frequency IR into single-particle correlation and intermolecular cross

correlation, which in the language of this chapter are the incoherent and coherent parts of the

low-frequency IR. Therefore, we repeat this decomposition for supercooled water and ice Ih,

and incoherent and coherent parts of low-frequency IR are shown as dashed and dotted black

lines in Fig. 7.4. Similarly to the case for OH stretch, the incoherent part looks like IINS, but

due to the optical selection rules the peak intensities are slightly changed in the incoherent IR.

The coherent IR then acts to selectively enhance and attenuate some peaks. Experimentally,

due to this enhancement or attenuation, low-frequency IR and IINS could play complementary

roles in assigning spectral features.261
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Figure 7.4: Calculated low-frequency IR and IINS spectra (below 1000 cm−1) for ice Ih (left

panel) and supercooled water (right panel) at 258 K. IR line shapes (solid black lines) with

incoherent (dashed black lines) and coherent (dotted black lines) contributions are shown in the

top, and IINS spectra G0(ω) (solid red lines) are at the bottom. IR spectra are shifted by 2

arbitrary units, for pictorial clarity.

7.5 Discussion: Hydrogen Bond Strength

As mentioned in Section 7.1, the conventional widsom that hydrogen bonding is stronger in

ice Ih than that in supercooled water has been challenged recently.283 A stronger hydrogen

bond presumably leads to a stronger intermolecular interaction between the donor and acceptor

molecules (i.e., more negative potential energy), a smaller O· · ·H distance (· · · denotes a hy-

drogen bond) in O-H· · ·O (i.e., the first intermolecular peak in gOH(r) occurs at a smaller r), a

red-shift of OH stretch frequency, and a blue-shift of hydrogen-bond stretch frequency. In this

section, we attempt to discuss the hydrogen bond strength in supercooled water and ice using

these four descriptors in the context of our model.

In panel (a) of Fig. 7.5, we plot the distribution of pairwise intermolecular potential energies

P (E) in supercooled water and ice Ih. Note that as TIP4P/2005 is a good effective two-body

potential, the pairwise intermolecular potential energy is calculated using the parameters (e.g.,

charges, L-J parameters) of TIP4P/2005, and three-body interaction is not considered here. We
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see in all cases that most pair energies are close to zero simply because that the paired molecules

are far apart. A minimum in the distribution is observed at -11.85 kJ/mol for supercooled water,

and at -9.85 kJ/mol for ice Ih (the grid size we use is 0.1 kJ/mol). This minimum is widely

used as a threshold in energetic definitions of the hydrogen bond.306, 307 If the pair energy is

lower than this minimum, a hydrogen bond is believed to be formed between the pair, so the

peak below this minimum in P (E) reflects the hydrogen bond strength to some extent. This

peak lies at -23.05 kJ/mol for supercooled water, and at -24.65 kJ/mol for ice Ih. Given that the

thermal energy at 258 K is about 2.15 kJ/mol, this observation implies that the hydrogen bond in

ice Ih might be slightly stronger than that in supercooled water, consistent with the conventional

wisdom. In panel (b), we also plot the OH radial distribution functions (RDFs) gOH(r) for these

two phases (intramolecular OH peak is not shown), and both RDFs show the first peak at 0.18

nm. Given the resolution (0.005 nm) we use, we cannot tell in which phase the intermolecular

O· · ·H distance is shorter, so it seems that the OH RDF is not sensitive enough to tell the small

difference in hydrogen bond strength between these two phases. However, one common feature

in P (E) and gOH(r) is that the peak associated with hydrogen-bonded pairs is always more

intense in ice than that in supercooled water, indicating that there are more hydrogen bonds in

ice Ih, even if they are not stronger.
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Figure 7.5: (a) Distributions of pairwise intermolecular potential energy P (E), and (b) OH

radial distribution functions gOH(r) for supercooled water (black lines) and ice Ih (red lines) at

258 K from simulations with the E3Bv3 model.

As we discussed in Section 1.3, both OH-stretch and low-frequency vibrational spectra can

be utilized to examine hydrogen bonding in water. From Fig. 7.2, all the spectra (IR and IINS)

for ice are red-shifted with respect to the spectra for supercooled water. These spectra, including

F (ω), are all complicated by vibrational couplings. In order to remove the effect of vibrational

couplings, in Fig. 7.2 we also plot the distribution of local OH stretch transition frequency

(dashed blue lines), given by

F0(ω) = 〈δ(ω − ωj)〉 , (7.14)

where ωj is the vibrational frequency of the jth local OH chromphore. In fact, the red-shift

from supercooled water to ice is even more evident in F0(ω) than in F (ω). This red-shift of the
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OH-stretch peak suggests that the hydrogen bond is stronger in ice. In examining low-frequency

vibrational spectra in Fig. 7.4, we find that the positions of translational peaks below 400 cm−1

for supercooled water and ice Ih are very close, and no blue shift is evident (at least within our

calculations).

To sum up, two out of four descriptors (pairwise intermolecular potential energy and OH-

stretch peak position) in our calculations seem to support the conventional wisdom, but disagree

with a recent study,283 while the other two (OH RDF and hydrogen-bond stretch peak positions

in low-frequency IR) evince no clear distinction between the hydrogen-bond strength in super-

cooled water and in ice Ih at 258 K. Certainly, we do not treat low-frequency motions quantum

mechanically in these systems (note that we do treat OH stretch quantum mechanically in our

spectral calculations), so we cannot rule out the possibility that the quantum nature of water

in these phases will make the hydrogen bond in supercooled water stronger than that in ice.

However, this scenario is not supported by a recent path-integral study either.282 Further studies

might be required to fully understand this issue. Also, note that we have only approached the

problem about the hydrogen-bond strength in an averaged sense, but we have not yet addressed

this problem given that we consider the same type of hydrogen bond in both phases (hydrogen

bond can be classified according to the hydrogen bonding conditions of the donor and acceptor

molecules). Such an analysis is ongoing.

7.6 Concluding Remarks

The mixed quantum/classical approach developed in the Skinner group has been extended to

calculate incoherent inelastic neutron scattering (IINS) for the OH stretch. Reasonable agree-

ment is reached between theory and experiment for liquid water, supercooled water and ice Ih.

Along with presenting the low-frequency IINS, we have shown the connection between IINS

and IR spectra, and argued that IINS provides a more direct way to measure vibrational density

of states. Moreover, the analysis of our calculated spectra and simulations seem to support the

conventional wisdom that the hydrogen bond is stronger in ice Ih than that in supercooled water

at similar temperatures, but probably only by a very small amount.
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Chapter 8

Summary and Future Directions

In this thesis, we have illustrated with five examples how vibrational spectroscopy can help

us to understand the structure and dynamics of ice Ih with the aid of theory and molecular

simulations. On one hand, from these studies we are able to interpret many features in various

vibrational spectra. On the other hand, the agreement between theory and experiment validates

our theoretical models, especially the E3B water model. It is our hope that we can provide a

versatile and robust theoretical model (water model and spectral calculation approach) to the ice

and even the water research community. There is clearly still much work to be done to validate

and refine our theoretical model, and some of our ideas in this regard are briefly discussed

below.

As mentioned in Chapter 1, there are 16 crystalline phases and 3 amorphous phases for

ice.9 Here, we note a few interesting observations in other ice phases, and basic scientific

questions behind them. IR and Raman spectra have been recently reported for ice XI, the

proton-ordered hexagonal ice,193, 264, 308, 309 and its OH-stretch Raman and low-frequency IINS

spectra look similar to those for ice Ih, but its OH-stretch IR spectrum and low-frequency Raman

look quite different from those for ice Ih. Simulating these spectra may help us understand

proton order/disorder in ice phases. 2DIR spectra for isotope-diluted low- and high-density

amorphous ices reported recently shows much more inhomogeneous broadening than for ice

Ih,91, 310, 311 meaning that there will be more diagonal and off-diagonal disorder in amorphous

ices. Therefore, studying vibrational resonant energy transfer in these phases could enhance

our understanding of energy transfer in disordered systems, for which many models (e.g., the

Anderson model312, 313) have been developed in the past.
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Ice in heterogeneous or confined environments is very important practically, and vibrational

spectroscopy has been very useful for studying these systems. Surface premelting at the air/ice

interface is relevant for the frost heave phenomenon mentioned in Chapter 1, and glancing angle

Raman and sum-frequency generation spectra for this interface have been measured,314–320 but

their interpretation still requires the aid of theoretical modeling. Understanding ice nucleation

is essential for environmental science as well as public transportation interests, such as the

aviation industry (mentioned in Chapter 1). Vibrational spectra of mesoscopic water clusters of

various sizes (∼ nm), which might be precursers to macroscopic ice crystals in clouds (∼ mm),

have been measured,321, 322 and again theoretical modeling might shed light on this problem.

There is still plenty of room to improve our spectral calculation approach. The water bend-

ing mode is ignored in our current approach, but experiment suggests that it might influence

stretching modes through Fermi resonance.196, 323, 324 Including the bend in our exciton Hamil-

tonian represents a natural extension of our current method. Furthermore, vibrational nonadia-

baticity is suggested by Hamm and coworkers to be possibly important in ice,36, 325 and including

this in the spectral calculation requires revisions of our system-bath treatment. In fact, surface

hopping326 and Ehrenfest327 methods have been implemented in the spectral calculations by

Jansen and coworkers. Nuclear quantum effects are pronounced in ice, especially in H2O ice at

low temperatures.171, 209, 210, 282 Including these in our approach requires a quantum description

of the bath evolution, and path-integral-based methods might be promising in this regard.328–332
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Appendix A: Third-Order Nonlinear Response Functions for

2DIR

In this appendix, we provide details of the third-order nonlinear response functions for 2DIR

as well as the linear response function for linear IR within the mixed quantum/classical approach

for isotope-dilute ice Ih (only one chromophore). The linear response function for light with

polarization p̂ is given by35

Rp
L(t) = 〈µp

10(0)µp
10(t)U10(t)〉 (A1)

where the subscript L indicates the linear response function, and U10(t) = exp [−i
∫ t

0
ω10(τ)dτ ],

ω10(τ) is the fluctuating 1-0 transition frequency of that OH stretch, µp
10 is the pth Cartesian

component of the corresponding transition dipole (p is now a supercript).

The third-order response functions have four polarization indices (i.e., p, q, r, s), and are

given by41, 333

Rpqrs
1 (t3, t2, t1) = 〈µp

10(0)µq
10(t1)µ

r
10(t1 + t2)µ

s
10(t1 + t2 + t3)

U∗
10(t1)U

∗
10(t1 + t2)U10(t1 + t2 + t3)〉

Rpqrs
2 (t3, t2, t1) = Rpqrs

1 (t3, t2, t1)

Rpqrs
3 (t3, t2, t1) = −〈µp

10(0)µq
10(t1)µ

r
21(t1 + t2)µ

s
21(t1 + t2 + t3)

U∗
10(t1)U

∗
21(t1 + t2)U21(t1 + t2 + t3)〉

Rpqrs
4 (t3, t2, t1) = 〈µp

10(0)µq
10(t1)µ

r
10(t1 + t2)µ

s
10(t1 + t2 + t3)

U10(t1)U
∗
10(t1 + t2)U10(t1 + t2 + t3)〉

Rpqrs
5 (t3, t2, t1) = Rpqrs

4 (t3, t2, t1)

Rpqrs
6 (t3, t2, t1) = −〈µp

10(0)µq
10(t1)µ

r
21(t1 + t2)µ

s
21(t1 + t2 + t3)

U10(t1)U
∗
21(t1 + t2)U21(t1 + t2 + t3)〉,

(A2)

where t1, t2 and t3 are the three time delays in the four-wave-mixing experiments, and U21(t) =

exp [−i
∫ t

0
ω21(τ)dτ ]. ω21(τ) is the fluctuating 2-1 transition frequency of the OH stretch, and

µp
21 is the pth Cartesian component of the corresponding 2-1 transition dipole. For a polycrys-

talline sample, one needs to average over all orientations of the polarizations with respect to the

crystal axes in order to obtain the response functions in the lab frame (RL, and R1,2,3,4,5,6), and
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details are given in Appendix B.

The 2DIR line shape in the impulsive limit is then given by246, 333, 334

S(ω3, t2, ω1) ∼ Re
6∑

i=1

Si(ω3, t2, ω1), (A3)

where

S1(ω3, t2, ω1) = S2(ω3, t2, ω1) =

∫ ∞

0

dt3

∫ ∞

0

dt1 exp(iω3t3 − iω1t1)R1(t3, t2, t1)L1(t3, t2, t1)

S3(ω3, t2, ω1) =

∫ ∞

0

dt3

∫ ∞

0

dt1 exp(iω3t3 − iω1t1)R3(t3, t2, t1)L3(t3, t2, t1)

S4(ω3, t2, ω1) = S5(ω3, t2, ω1) =

∫ ∞

0

dt3

∫ ∞

0

dt1 exp(iω3t3 + iω1t1)R4(t3, t2, t1)L4(t3, t2, t1)

S6(ω3, t2, ω1) =

∫ ∞

0

dt3

∫ ∞

0

dt1 exp(iω3t3 + iω1t1)R6(t3, t2, t1)L6(t3, t2, t1),

(A4)

and

L1(t3, t2, t1) = L2(t3, t2, t1) = L4(t3, t2, t1) = L5(t3, t2, t1) = e−(t3+2t2+t1)/2T1

L3(t3, t2, t1) = L6(t3, t2, t1) = e−(3t3+2t2+t1)/2T1 .
(A5)

Note that as in the calculation for linear IR, the lifetime is taken into account phenomenologi-

cally.334, 335 The linear line shape is given by Eq. (6.1).

The calculation of the third-order response functions is relatively expensive, but for ice we

can make some approximations to simplify the calculation. The first two approximations we

make are the Condon approximation (i.e., the magnitudes of the transition dipoles are taken

to be constants), and the harmonic approximation for their magnitudes (µ21 =
√

2µ10). For

ice Ih, all water molecules are fully hydrogen bonded to four nearest neighbors. Therefore,

the Condon approximation is expected to hold. Regarding the harmonic approximation for the

transition dipoles, our DFT calculations show that the anharmonicity for the transition dipole

of the OH chromophores is very small throughout the frequency range of interest.78 We can

also neglect the orientational dynamics (changes in the directions of the transition dipoles) as

the reorientation of the water molecules are hindered due to the rigid hydrogen bond network

in ice Ih. With these three approximations, the orientationally-averaged linear and third-order



109

response functions become

RL(t) ∼ 〈U10(t)〉, (A6)

and
R1(t3, t2, t1) = R2(t3, t2, t1) ∼ 〈U∗

10(t1)U
∗
10(t1 + t2)U10(t1 + t2 + t3)〉

R3(t3, t2, t1) ∼ −2〈U∗
10(t1)U

∗
21(t1 + t2)U21(t1 + t2 + t3)〉

R4(t3, t2, t1) = R5(t3, t2, t1) ∼ 〈U10(t1)U
∗
10(t1 + t2)U10(t1 + t2 + t3)〉

R6(t3, t2, t1) ∼ −2〈U10(t1)U
∗
21(t1 + t2)U21(t1 + t2 + t3)〉.

(A7)

For each chromophore we can write

ω10(τ) = 〈ω10〉+ δω̄10 + δω10(τ). (A8)

The first term on the right-hand side is the global average over all chromophores, the second

term is the deviation of the time-averaged frequency for a given chromophore from the global

average, and the third term represents the dynamic fluctuations for each chromophore. Thus,

the second term results from proton-disorder-induced static inhomogeneity, and the third term

comes from phonon fluctuations. The time-averaged frequency for a given chromophore dis-

cussed before is the sum of the first two terms. A simple, and it turns out, accurate approxi-

mation, is to take static fluctuations to be uncorrelated with the dynamic ones, and assume that

the dynamic fluctuations are independent of chromophore. In this case the frequency-frequency

time-correlation function is

C(τ) = 〈(ω10(τ)−〈ω10〉)(ω10(0)−〈ω10〉)〉 = 〈δω̄2
10〉+〈δω10(τ)δω10(0)〉 ≡ σ2

1 +C1(τ). (A9)

The average in the first term on the right-hand side is an ensemble average over the chro-

mophores, while the average in the second term is a time average over the fluctuations.

At this point we can make the cumulant expansion, which is valid for the two terms in

Eq. (A8) for completely different reasons. The inhomogeneous broadening evidently (see Fig.

6.3) is Gaussian because of the central limit theorem, while the time-dependent fluctatuations

are Gaussian because the low-frequency vibrations are approximately harmonic. Therefore, we

obtain41

RL(t) ∼ e−i〈ω10〉te−
1
2
σ2
1t2e−g1(t), (A10)
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where

gm(t) =

∫ t

0

dτ(t− τ)Cm(τ) (A11)

(see below for m = 2, 3).

Similarly,

R1(t3, t2, t1) = R2(t3, t2, t1) ∼ ei〈ω10〉t1−i〈ω10〉t3

e−
1
2
σ2
1(t1−t3)2e−g1(t1)+g1(t2)−g1(t3)−g1(t1+t2)−g1(t2+t3)+g1(t1+t2+t3)

R3(t3, t2, t1) ∼ −2ei〈ω10〉t1−i〈ω21〉t3

e−
1
2
(σ2

1t21+σ2
3t23−2σ2

2t1t3)e−g1(t1)+g2(t2)−g3(t3)−g2(t1+t2)−g2(t2+t3)+g2(t1+t2+t3)

R4(t3, t2, t1) = R5(t3, t2, t1) ∼ e−i〈ω10〉t1−i〈ω10〉t3

e−
1
2
σ2
1(t1+t3)2e−g1(t1)−g1(t2)−g1(t3)+g1(t1+t2)+g1(t2+t3)−g1(t1+t2+t3)

R6(t3, t2, t1) ∼ −2e−i〈ω10〉t1−i〈ω21〉t3

e−
1
2
(σ2

1t21+σ2
3t23+2σ2

2t1t3)e−g1(t1)−g2(t2)−g3(t3)+g2(t1+t2)+g2(t2+t3)−g2(t1+t2+t3),

(A12)

where σ2
2 = 〈δω̄10δω̄21〉, σ2

3 = 〈δω̄2
21〉,

C2(t) = 〈δω21(t)δω10(0)〉
C3(t) = 〈δω21(t)δω21(0)〉,

(A13)

and g2(t) and g3(t) are defined above.
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Appendix B: Orientational Averaging for IR, Raman and 2DIR

For a polycrystalline (isotropic) ice Ih sample, one needs to average over all orientations

of the light polarizations with respect to the crystal axes in the calculation of response func-

tions.37, 336 In this appendix, we only consider the line shapes for isotope-diluted samples (one

chromophore) within the mixed quantum/classical approach.

The linear response function for linear IR is given by

RIR =
1

3
(xx + yy + zz), (B1)

where xx ≡ 〈µx
10(0)µx

10(t)U10(t)〉, etc.

For 2DIR, we first define

A = xxxx + yyyy + zzzz,

B = xxyy + xxzz + yyxx + yyzz + zzxx + zzyy,

C = xyxy + yxyx + yzyz + zyzy + zxzx + xzxz,

D = xyyx + yxxy + yzzy + zyyz + zxxz + xzzx,

(B2)

where for R1, xxxx ≡ 〈µx
10(0)µx

10(t1)µ
x
10(t1+t2)µ

x
10(t1+t2+t3)U

∗
10(t1)U

∗
10(t1+t2)U10(t1+t2+

t3)〉, etc. The response functions for 2DIR spectra in the parallel and perpendicular geometries

are given, respectively, by

R‖ =
1

30
(6A + 2B + 2C + 2D), (B3)

and

R⊥ =
1

30
(2A + 4B − C −D). (B4)

Note that this orientational averaging is applied for all six response functions in 2DIR, after

which one performs appropriate Fourier transform (Eq. (A4) in Appendix A) to get S‖ and S⊥

in Chapter 6. For static systems, B = C = D. Therefore, S⊥ = S‖/3. This relation is, to a

good approximation, valid for ice Ih.

For Raman, the terms in Eq. (B2) are redefined: for instance, xyxy ≡ 〈αxy
10(0)αxy

10(t)U10(t)〉,
where αxy

10 is the xy tensor element of transition polarizability. As αpq = αqp for p, q = x, y, z,
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we further define

E ≡ C = D = 2(xyxy + yzyz + zxzx). (B5)

Now the polarizaed and depolarized Raman line shapes are given, respectively, by

RVV =
1

30
(6A + 2B + 4E), (B6)

and

RVH =
1

30
(2A−B + 3E). (B7)

For neat H2O (D2O) ice Ih, the expressions for orientational averaging are the same, but the

terms in Eqs. (B1), (B2) and (B5) have to be redefined, and the expressions for IR and Raman

can be found in Ref. 82. Also note that Eq. (5.2) in Chapter 5 has already taken the orientational

averaging into account.230, 337



113

Appendix C: 3PEPS and Inhomogeneous Broadening

In a paper by Piryatinski and Skinner256 they showed that under certain approximations

(including C1(t) = C2(t) = C3(t) and σ2
1 = σ2

2 = σ2
3) at long times the peak shift is related to

the full frequency-frequency time-correlation function C(t) by

t∗1(t2) = TpC(t2)/C(0), (C1)

where

Tp =
1√

πC(0)

ζD(ζ/2)

(1− e−ζ2/4)
, (C2)

ζ = ∆/
√

C(0), D(z) = e−z2 ∫ z

0
dx ex2 is Dawson’s integral, and ∆ = 〈ω10〉 − 〈ω21〉 is the

anharmonicity.

In the case of ice C(t) is given by Eq. (A9), and so C(0) = σ2
1 + C1(0). Since C1(∞) = 0,

that means that

t∗1(∞) = Tpσ
2
1/(σ

2
1 + C1(0)). (C3)
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Appendix D: IINS and the Velocity Time Correlation Function

Eq. (7.4) is well-known to be true for isotropic classical systems, and in this appendix, we

show that it is also valid for isotropic quantum systems. The derivation strategy is the same

for both classical and quantum systems, and details for the classical case can be found in Ref.

37. (Note that in Ref. 40, if one manipulates Eq. (1.39), Eq. (1.45), Eq. (1.46) and Eq. (8.5)

correctly, the relation for the quantum case can be also verified.)

Following elegant work by Rahman, Singwi and Sjölander,286 the incoherent part of the

intermediate scattering function (Eq. (7.2)) can be written as a cumulant expansion

I(~k, t) = exp

[
it

h̄k2

2m
+

∞∑
n=1

(−k2)nγn(t)

]
, (D1)

where γn(t) is related to a 2n-point velocity time correlation function (TCF), such as

γ1(t) =

∫ t

0

dt1

∫ t1

0

dt2〈vk(t2)vk(t1)〉 =

∫ t

0

dτ(t− τ)〈vk(0)vk(τ)〉, (D2)

and

γ2(t) =

∫ t

0

dt1

∫ t1

0

dt2

∫ t2

0

dt3

∫ t3

0

dt4〈vk(t4)vk(t3)vk(t2)vk(t1)〉 − 1

2
[γ1(t)]

2, (D3)

where vk = ~v · ~k/k. Note that h̄ is shown explicitly here for clarity.

Now we differentiate Eq. (D1) with respect to t twice, and have

− 1

k2

∂2I(~k, t)

∂t2
= γ̈1(t)e

ith̄k2/2m + o(k2), (D4)

where

γ̈1(t) =
1

3
〈~v(0) · ~v(t)〉, (D5)

and o(k2) denotes the second and higher order terms in k. Note that the identity 〈vk(0)vk(t)〉 =

〈~v(0) · ~v(t)〉/3 for isotropic systems is applied to get Eq. (D5). Then we also differentiate Eq.
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(7.3) with respect to t twice, and obtain

∫ ∞

−∞

ω2

k2
S(~k, ω)eiωtdω = − 1

k2

∂2I(~k, t)

∂t2
. (D6)

Combining Eqs. (D4) and (D6), we have

ω2

k2
S(~k, ω) =

1

2π

∫ ∞

−∞
e−iωtdt

[
1

3
〈~v(0) · ~v(t)〉eith̄k2/2m + o(k2)

]
, (D7)

where the Fourier transform is inverted. Finally, taking the limit k → 0 and employing the

symmetry property of quantum TCFs, we reach Eq. (7.4).
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