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ABSTRACT 

The microbes inhabiting in the mammalian gut have profound effects on host biology and 

health. Alterations in the intestinal microbiome have been associated with a broad spectrum of 

human health conditions, including metabolic and cardiovascular diseases. Environmental factors, 

including diet and host genetic variation influence the gut microbiome and subsequently affect its 

interactions with the host. However, the molecular bases of how host genetic variation impacts 

the gut microbiome remain largely unknown. In this thesis, I investigated the effects of host genetic 

variation on gut microbiome composition and function in two genetically diverse mouse cohorts. I 

performed the shotgun metagenomic analyses to characterize gut microbiome. I applied systems 

genetics approaches and integrated gut microbiome with other omics datasets, including lipidome, 

transcriptome, and host genotypes, to evaluate how host genetics impact gut microbiome-host 

interactions.  

In Chapter 1, I provided an overview of gut microbiome roles to human health and disease 

and discuss how host genetics associate with the gut microbiome in human and mouse studies. 

In Chapter 2, I performed quantitative trait locus (QTL) mapping in the Diversity Outbred 

(DO) mouse cohort to identify genetic loci that are associated with variations in the gut microbiome, 

cecal lipidome, and intestinal transcriptome. I found overlapping QTL for the abundance of 

Akkermansia muciniphila and cecal levels of ornithine lipids (OL). I discovered that A. muciniphila 

is a major source of OL in the gut, provided evidence that OL have immunomodulatory effects 

and identified intestinal transcripts co-regulated with these traits including Atf3, which encodes for 

a transcription factor that plays vital roles in modulating metabolism and immunity. 

In Chapter 3, I performed genome-wide association study (GWAS) in 90 inbred 

hyperlipidemic mouse strains from the Hybrid Mouse Diversity Panel (HMDP). I identified genomic 

loci that were associated with microbial enterotypes in the gut. I discovered genetic variants of 

Amy1 gene that were associated with alterations in the abundance of taxa in the Firmicutes 



 

 

ii 

(Lachnospiraceae family) and Bacteroidetes (Muribaculaceae family). Interestingly, these taxa 

encode distinct starch and sugar metabolism functions. Additionally, I applied Mendelian 

randomization to reveal that host physiology phenotypes, including liver fibrosis and plasma HDL-

cholesterol levels, were causally associated with gut microbiome enterotypes. 

Together, this thesis demonstrates the application of systems genetics to the study of gut 

microbiome-host interactions in mice and provides a foundation for the future mechanism studies 

and therapeutic opportunities. 
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The mammalian intestinal tract harbors trillions of diverse microorganisms including 

bacteria, archaea, fungi, and viruses, which together constitute the gut microbiota and their 

aggregate genomes constitute as gut microbiome (Lozupone et al., 2012). These symbiotic 

microorganisms, forming a complex ecology system, are indispensable to host physiology. Gut 

microbes have the ability to breakdown indigestible dietary compounds, harvest essential 

nutrients and provide genetic and metabolic attributes that are absent in the mammalian genome 

(Bäckhed et al., 2005). Given the diverse functional repertoire, the gut microbiota plays a critical 

role in host immune maturation (Wu & Wu, 2012), harvesting energy (Canfora et al., 2015), 

protecting host from pathogens (Kamada et al., 2013), regulating neurologic signaling (Yano et 

al., 2015) and maintaining gut homeostasis (Lee et al., 2022). It has been demonstrated that 

changes in gut microbiota composition and microbial functions are associated with a broad 

spectrum of human health including chronic disorders such as metabolic (Turnbaugh et al., 2006), 

cardiovascular (Z. Wang et al., 2011) and neurodegenerative diseases (Vogt et al., 2017). 

Therefore, the gut microbiota represents a target with potential to improve human health. 

Understanding the mechanisms underlying microbiome-host interactions may facilitate 

therapeutic developments. 

The gut microbiome carries at least 10 times more unique genes than the host genome 

(Ley, Peterson, et al., 2006). Advances in sequencing technologies and development of 

computational methods provide the opportunity to characterize and profile the microbial 

communities with unprecedented resolution. Gene amplicon sequencing using the amplification 

and sequencing of the variable regions of the 16S ribosomal RNA (rRNA) genes can profile the 

taxonomic features of bacteria and archaea in a sample (Eckburg et al., 2005), while in the 

shotgun metagenomic approach, all genomic content of a sample is sequenced, enabling analysis 

of the entire microbiome including microbial functions and metabolic pathways (Turnbaugh et al., 

2007). These techniques facilitate the observation of variations in gut microbiome that are driven 

by a variety of variables. Because of the contributions of the gut microbiome to various diseases, 
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it has become increasingly important to identify and understand how specific factors influence the 

gut microbiome. In this introduction chapter, I first summarize the current understanding of how 

the gut microbiome modulate health and disease, and discuss the importance of bacterial-derived 

metabolites for gut microbiome-host interactions, using lipids and bile acids as examples. Then I 

review how host genetic variation is associated with gut microbiome in human and mouse studies. 

Additionally, I discuss how systems genetics can help to generate new hypotheses relating 

different omics datasets in genetically diverse populations and to investigate mechanisms of gut 

microbiome-host interactions. 

 

1.1 Gut Microbiome in Human Health and Disease 

Contributions to host physiology 

Gut microbes colonize in mucosal tissues early in life and have profound influence on the 

host immune system. Exposure to microbes begins in utero and expands rapidly after birth 

(Rackaityte et al., 2020). After birth, the establishment of the infant gut microbiome is derived from 

different sources including maternal milk and the environment, such as other family members and 

pets (Enav et al., 2022). Early life colonization influences host immune system education and the 

stability of the microbiota during early life impacts the host resistance (or susceptibility) to disease 

in later life. The germ-free (GF) animals allowed for experiment development to study the 

microbiota influences on the host physiology. Conventional mice, compared with GF mice, 

showed activation and de novo generation of colonic regulatory T cells, a specialized population 

of CD4+ T cells that restrict immune activation, and maintained intestinal homeostasis (Geuking 

et al., 2011). Therefore, the immune maturation is influenced by the presence of commensal 

microbes.  

An important function of the gut microbiome is to aid the host in nutrient digestion. Dietary 

compounds such as complex carbohydrates and plant polysaccharides can’t be digested by 

human enzymes. Instead, the gut microbiota can ferment these non-digestible carbohydrates 
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such as inulin and resistant starch to yield energy source for microbial growth in the gut. On the 

other hand, the end products of these no-digestible carbohydrates such as short-chain fatty acids 

(SCFAs), mainly acetate, propionate and butyrate, have profound effects on host health (Canfora 

et al., 2015). Butyrate is a major energy source for colonic epithelium, regulator of glucose 

homeostasis and modulator of inflammation.  

Metabolic disorders such as obesity, insulin resistance and type 2 diabetes are associated 

with systemic inflammation (Osborn & Olefsky, 2012). The gut microbiota contains high levels of 

lipopolysaccharide (derived from gram negative bacteria) and peptidoglycan (higher levels in 

gram positives, but present in all bacteria), which can cause inflammation. Colonization of germ-

free mice with Escherichia coli promoted macrophage infiltration of adipose tissue and leaded to 

expression of pro-inflammatory cytokines (Caesar et al., 2012). Patients with type 2 diabetes have 

increased level of plasma lipopolysaccharide, and feeding lipopolysaccharide to mice increased 

adipose tissue inflammation and reduce insulin sensitivity (Cani et al., 2007). Lipopolysaccharide 

molecules bind to Toll-like receptor 4 (TLR4), and peptidoglycan fragments are recognized by 

nucleotide-binding oligomerization domain (NOD) receptors, both of which activates 

proinflammatory signaling cascades. It is well accepted in the field that the gut microbiota can 

affect host metabolism by altering tissue inflammation. 

 

Factors influencing the gut microbiome  

Diet modulates the composition of gut microbiota in humans and mice. Long-term dietary 

habits have a considerable effect on the human gut microbiota. Diet supplemented with resistant 

starch elicit an increase in fecal levels of Ruminococcus bromii and Eubacterium rectale which 

are both associated with higher fiber fermentation in humans (Walker et al., 2011). Mice fed on 

high-fat diets had reduced members of Bacteroidetes and increased members of Firmicutes and 

Proteobacteria (Turnbaugh et al., 2008). In another study, mice fed on high-fat diet containing 

lard had lower abundance of the beneficial bacteria Akkermansia muciniphila, Lactobacillus and 
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Bifidobacterium, compared with mice fed on high-fat diet containing fish oil (Caesar et al., 2015). 

The lard diet also reduced insulin sensitivity and increased inflammation in white adipose tissue 

(WAT) through activation of Toll-like receptor 4 (TLR4) signaling.  

The effects of antibiotics on gut microbiota are relative larger than other factors. The gut 

microbiota are not resilient to repeated antibiotic administration in human (Dethlefsen & Relman, 

2011). The antibiotics taken early in life have a profound effect on the gut microbiome that can 

result in later development of obesity, asthma, inflammatory bowel disease and other disorders 

(Trasande et al., 2013).  

Lifestyle is another important environmental factor that influences the gut microbiota. 

Exercise produces gut microbial community changes by reducing inflammation, which are 

correlated with changes in cytokine profile (Clarke et al., 2014). Sleep deprivation is associated 

with gut microbiota changes, a study showed that the sleep loss is associated with higher level of 

Firmicutes and lower of Bacteroidetes (Benedict et al., 2016). Stress increases intestinal 

permeability and is associated with increased level of Firmicutes and decreased level of 

Bacteroidetes, which are also corresponding to the shifts of inflammation markers (Karl et al., 

2017).  

 

Dynamics and dysbiosis of gut microbiome 

The human microbiome demonstrates extremely robustness and plasticity over the long 

timescale and in response to many types of perturbations such as short-term dietary change and 

traveling (host geography) (David et al., 2014). The composition of gut microbiota is also 

influenced by circadian rhythm. Disturbance of gut microbiome composition and function can lead 

to the disruption of host circadian rhythms, which can specifically alter hormone regulation in mice 

(Leone et al., 2015). Association studies showed the gut dysbiosis is linked with a broad range of 

diseases in humans and mice. For example, in both humans and mice, the gut microbiome 

changes are associated with obesity. Genetically obese ob/ob mice had more Firmicutes and 
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fewer Bacteroidetes than the lean wide-type littermates mice (Ley et al., 2005). This phenotype 

was transferred to germ-free mice that were colonized with the microbiota from the obese donors 

mice (Turnbaugh et al., 2006). Similar changes have been observed in humans, i.e., 

Bacteroidetes levels increase when weight is reduced, suggesting Bacteroidetes may be 

responsive to calorie intake (Ley, Turnbaugh, et al., 2006). Type 2 diabetes (T2D) patients 

showed a decline in butyrate-producing bacteria, which in preclinical models show metabolic 

benefits, and increased levels of different opportunistic pathogens (J. Qin et al., 2012). Studies 

also suggested that T2D patients were likely to have a functional dysbiosis in the gut instead of 

having specific microbial species that have a direct association with T2D pathophysiology.  

Gut microbiome also plays an important role in cardiovascular diseases, including 

atherosclerosis. Patients with symptomatic atherosclerosis (myocardial infarction or 

cerebrovascular events) had increased level of genus Collinsella and decreased level of genus 

Eubacterium and Roseburia compared with health control people (Karlsson et al., 2012). Patients 

with coronary artery disease had increased number of Lactobacillales and the ratio of Firmicutes 

to Bacteroidetes compared with control (Kazemian et al., 2020). Gut microbial derived 

lipopolysaccharides (LPS) can trigger host immune system response via Toll-like receptors 

(TLRs), incuding a low-grade inflammatory state and aggravate the progression of atherosclerosis. 

The gut microbiota also regulates host metabolism such as cholesterol and plasma lipids levels 

to induce atherosclerosis(Velagapudi et al., 2010). 

Gut dysbiosis influences liver health and disease. Patients of nonalcoholic fatty liver 

disease (NAFLD) with advanced fibrosis had shifted microbiota such as lower fecal 

Ruminococcus obeum and Eubacterium rectale (Loomba et al., 2017). NAFLD can progress to 

non-alcoholic steatohepatitis (NASH) in 20–30% of cases with its sequelae of liver scarring, 

cirrhosis and liver cancer. Patients with NASH show decreased intestinal viral diversity and a 

reduction of phages (Lang et al., 2020). Gut dysbiosis induces intestinal inflammation, which 

contributes to intestinal barrier dysfunction and translocation of microorganism associated 
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molecular patterns (MAMPs) to the liver and cause liver damage. The dysbiosis is also associated 

with functional metabolic consequences such as microbiome-derived ethanol, whose 

concentration was higher of individuals with NAFLD or NASH (Meijnikman et al., 2022).  

 

Therapeutic opportunities 

Large-scale and longitudinal clinical studies have revealed associations between gut 

microbiome and the various disease states discussed above. In some cases, these associations 

have been replicated in animal models, leading to a mechanistic understanding of how gut 

microbes influence disease (Fischbach, 2018). Introduction of a group selected bacteria 

containing selected functions (e.g., probiotics), associated with healthy status, can provide health 

benefits to the host. Direct supplementation with beneficial proteins or metabolites derived from 

gut microbes can also improve host health (Sorbara & Pamer, 2022). Changes in dietary alteres 

the gut microbiome in humans. A better understanding of the nutrient requirements and 

metabolism of beneficial microbes could inform food choices or prebiotics that support these 

species through targeted supplementation of preferred growth substrates, and further inducing 

the beneficial effects to the host. 

Gut microbiome has also been explored in oncology. Selected gut bacteria can modulate 

the tumor microenvironment and anticancer therapies (Iida et al., 2013) and certain microbes 

enhance the efficacy of cancer immunotherapy (Sivan et al., 2015). Engineering of exogenous 

bacterial and viral agents can be used for cancer therapy, particularly as powerful immunotherapy 

options or neoadjuvants (Sepich-Poore et al., 2021).  

 

1.2 Metabolites in Microbiome-Host Interactions 

The gut microbiome generates a massive number of small molecules through de novo 

biosynthesis or modification of host and dietary substrates. Because the complex diets digested 

by the host and gut microbes creating the intricate molecular trafficking, the metabolites in the 
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body are highly dynamic. These metabolites include dietary compounds, gut microbial metabolites 

produced from dietary and host substrates, host-derived metabolites, drug compounds and 

microbiome-modified drugs (Koppel et al., 2017). These broad categories of metabolites regulate 

host metabolism, play important roles for gut microbiome-host communications, and thus it is 

informative to study the underlying mechanisms that regulate their abundance. 

 

Bile acids 

Bile acids (BA) are potent “digestive surfactants” that promote absorption of lipids in the 

small intestine as well as regulate cholesterol homeostasis. The synthesis of BA occurs 

exclusively in the liver in a series of enzymatic reactions in the hepatocyte that convert cholesterol 

into more water-soluble amphipathic compounds, called primary bile acids; these include cholic 

acid (CA) and chenodeoxycholic acid (CDCA). Primary BA are then conjugated to taurine or 

glycine. Upon consumption of a meal, BA are secreted into the small intestine, where they aid 

with fat absorption and taken up (reabsorbed) in the distal ileum and stored in the gallbladder. BA 

that are not reabsorbed by the host are metabolized by bacteria from small intestine. Gut bacteria 

deconjugate these bile acids by removal of the glycine or taurine conjugate and are further 

metabolized in the large intestine into secondary bile acids, including lithocholic acid (LCA) from 

CDCA and deoxycholic acid (DCA) from CA (Wahlström et al., 2016). Bile acid deconjugation is 

carried out by bacterial bile salt hydrolase (BSH), which are wildly present in gut microbial 

community (Song et al., 2019). Deconjugated primary bile acids conversion into secondary bile 

acids is carried out by bacterial 7-dehydroxylation, a series of reactions by bacterial bile acid-

inducible (bai) genes (Funabashi et al., 2020). Germ-free mice had less diverse bile acids profiles 

compared with conventionally raised mice (Swann et al., 2011). Bile acids function as signaling 

molecules that can act on cellular receptors such as G protein-coupled receptor TGR5, which 

promotes glucose homeostasis (C. Thomas et al., 2009). Therefore, host metabolism can be 
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affected through microbial modifications of bile acids, which lead to altered bile acid receptors 

signaling. 

 

Lipids 

Microbial lipids encompass a variety of structures and functions. Lipids are not only 

important for their structural roles such as in cell membranes, also for their signaling activities to 

host (Zhang & Rock, 2008). Microbial-derived lipids can be sensed by the host to modulate innate 

and adaptive immune pathways and to regulate metabolic pathways that in turn influence the 

progression of chronic inflammation, metabolic syndrome and cardiovascular disease (Yoon et 

al., 2021). The major lipid classes found in bacterial membranes include phospholipids, such as 

phosphoethanolamine (PE), phosphoserine (PS), phosphocholine (PC), phosphoinositol (PI) and 

phospho- glycerol (PG); glycerolipids, such as diacylglycerol (DAG) and triacylglycerol (TAG); 

cardiolipins (CL); saccharolipids, such as lipopolysaccharides (LPS); and sphingolipids (Heaver 

et al., 2018). Each lipid class has unique architectures, structural features, and functions. 

Many bacterial lipids can be sensed by host pattern recognition receptors, such as Toll-

like receptors (TLRs), NOD-like receptors (NLRs) and G protein-coupled receptors (GPCRs) 

(Miller et al., 2005). For example, a diacyl phosphatidylethanolamine with two branched chains 

(a15:0-i15:0 PE) produced by gut bacteria Akkermansia muciniphila activates host pattern 

recognition receptor (PRR) heterodimer consisting of TLR2-TLR1 and induces host inflammatory 

cytokines (Bae et al., 2022). The best characterized saccharolipids are lipopolysaccharides (LPS) 

from Gram-negative bacteria (Raetz & Whitfield, 2002). Bacterial LPS are recognized by the Toll-

like receptor 4 (TLR4) on host cells to initiate pro-inflammatory responses (Park et al., 2009). The 

alerted structures of Lipid A from LPS induce host immune responses differently, for example, 

Bacteroides LPS is structurally distinct from E. coli LPS and inhibits innate immune signaling and 

endotoxin tolerance (Vatanen et al., 2016). Bacterial sphingolipids also impact host inflammatory 

and metabolic pathways. A recent study showed that the colonization of germ-free mice with 
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sphingolipid-deficient bacteria resulted in gut inflammation and changes in host ceramide pools 

(Brown et al., 2019). The sphingolipids from the outer membrane of Bacteroides act as agonists 

for TLR2 signaling in macrophages and are important in limiting inflammatory signaling (Rocha et 

al., 2021). Altogether these results suggest that bacterial lipids are key molecules mediating 

microbe-host interactions. 

 

1.3 Effects of Host Genetics on Gut Microbiome 

The human microbiome is unique in each individual and the interpersonal differences are 

larger than the differences within a person over time (“The Integrative Human Microbiome Project,” 

2014). Identical twins had more similar gut microbial composition and structure than the 

nonidentical twins (Goodrich et al., 2014). These suggest the genetic variation influences gut 

microbial composition. Although previous evidences suggests that the environment including 

diets dominate over host genetics in shaping the gut microbiome in humans and mice (Carmody 

et al., 2015; Rothschild et al., 2018). With the increasing statistic powers, recent population 

genetics studies have identified enormous genomic loci associated with gut microbiome, which 

provide the bases to study molecular mechanisms of gut microbiome-host interactions. 

 

Host genetic associations in humans 

Recent advances in genotyping methods and sequencing technologies have enabled 

large-scale genome-wide association studies (GWAS) for population genetics in humans. Studies 

analyzing the effect of host genetics on the human microbiome in larger cohort (> 1,000 

individuals) showed that a proportion of gut microorganisms were substantial heritable, ~10% of 

taxa having heritability (h2) greater than 0.20, in TwinsUK cohort (Goodrich et al., 2016), Canadian 

(GEM Project Research Consortium et al., 2016) and Dutch cohort (Lopera-Maya et al., 2020). 

These taxa are in the range of the heritability of many human common complex traits such as 
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fasting glucose levels (h2 = 0.31), insulin levels (h2 = 0.25) and blood pressure (h2 = 0.15) 

(DIAGRAM Consortium et al., 2010).  

Among the identified genomic loci and heritable taxa, some have been consistently 

confirmed across multiple studies. The abundance of Bifidobacterium genus was associated with 

the functional genetic variant near the lactase gene (LCT). This association was reported at 

genome wide significance in UK (Goodrich et al., 2016), Canadian (GEM Project Research 

Consortium et al., 2016), Dutch (Lopera-Maya et al., 2020) and Finnish (Y. Qin et al., 2020) 

cohorts and a lower significance level in German cohort (J. Wang et al., 2016). The 

Bifidobacterium are the most heritable taxa reported in the UK and Dutch cohorts. The strong 

genomic associations for the Bifidobacterium were the functional variant rs4988235 and its 

proxies near LCT gene. The G allele of rs4988235 corresponds to the phenotype of decreased 

ability to metabolize lactose, that is lactase non-persistence. The selective pressure due to 

consumption of milk after weaning increases of lactase-persistence alleles frequency (Suzuki & 

Ley, 2020). The lactase non-persistence genotype is associated with higher gut abundance of 

Bifidobacterium, which can degrade lactose, and this association is dependent on milk 

consumption (Bonder et al., 2016).  

Another consistent associations are variants at gene ABO locus. In the German cohort, 

two independent SNPs in the ABO locus were associated with the abundance of Faecalibacterium 

(rs3758348) and Bacteroides (rs8176632) (Rühlemann et al., 2021). In the Finnish cohort, 

variants in partial linkage disequilibrium (LD) near ABO were associated with the abundance of 

Faecalicatena lactaris and Collinsella (Y. Qin et al., 2020). In the Dutch cohort, the same and 

other variants in LD are associated with Bifidobacterium abundance, Collinsella abundance and 

the lactose-degradation pathway (Lopera-Maya et al., 2020). In these three studies, the variant 

rs601338 from FUT2 gene was associated with ABO antigens expression. The individuals with G 

allele at rs601338 do not express or expose the A or B antigens of ABO. The associations 

between gut microbiome and variants at ABO locus were dependent on ABO antigens secretor 
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status (A/B/AB-oligosaccharides on H-antigen), blood types (O group or A/B/AB groups) and fiber 

intake (Y. Qin et al., 2020).  

 

Host genetic associations in mice 

Mouse models are instrumental to study disease biology, as they enable precise control 

of the environment and genetic composition, allowing more rigorous observations and 

reproducible measurements. The external environment of lab mice can be well controlled and 

monitored, which also facilitates the study of gene by environment interactions. Mouse genetic 

populations are equivalent to the genetic diversity of human populations and are adequate for 

genetic association analyses (Li et al., 2018). Many genetic determinants of complex traits have 

been identified using mouse populations and verified in human cohorts. In human studies, it is 

challenging to assess critical environmental factors influencing disease development, thus limiting 

the ability to study the underlying genetic determinants of complex traits and diseases, as well as 

the gene by environment interactions (D. Thomas, 2010). Mouse models can be used to examine 

the influence of genome in the response to nutrients or drugs. The most extensively used mouse 

strain in biomedical research is C57BL/6J, which however only carries the minor alleles for 19% 

of the high-impact variants among other inbred mouse strains (Keane et al., 2011). Thus, use of 

other genetically diverse mouse cohorts is needed for large-scale genomic association studies. 

There are different resources for this purpose. This includes the BXD cohort, which was derived 

from the C57BL/6J (B6 or B) and DBA/2J (D2 or D) strains that have different response to drugs 

and diet-induced obesity (Ashbrook et al., 2021) and the collaborative cross (CC) and diversity 

outbred (DO) cohorts, which are derived from eight parental strains including three wild derived 

strains (Saul et al., 2019). The CC/DO founder strains capture around 90% (versus ~13% in BXD) 

of the common genetic variations in Mus musculus strains, approximating human genetic diversity 

(The Complex Trait Consortium, 2004). Another mouse cohort frequently used by scientists 

comprises more than 100 inbred strains of mice, which is hybrid mouse diversity panel (HMDP) 
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(Bennett et al., 2010). Many associations between mouse genomic loci and gut microbiome were 

identified from these resources. 

Studies identified quantitative trait loci (QTLs) for genus level of Bacteroides, Oscillibacter 

and Bifidobacterium and family levels of Rikenellaceae and Prevotellaceae in BXD cohorts, where 

the candidate genes involved in Toll-like receptor pathways and cytokine genes (McKnite et al., 

2012; Perez-Munoz et al., 2019). A study used HMDP cohort identified associations for species 

of Akkermansia muciniphila, Ruminococcus gnavus, Roseburia spp., Oscillospira spp., and 

Turicibacter spp. (Org et al., 2015). Furthermore, these taxa were associated with metabolic and 

cardiovascular traits, and A. muciniphila improved obesity and metabolic parameters in mice fed 

a high-fat/high-sucrose diet. A study used CC cohort identified hundreds of loci and genes 

enriched in gastrointestinal cancer, inflammatory responses and lipid metabolism that controlling 

abundance taxa such as Lactobacillus (Snijders et al., 2017). A study used DO cohort identified 

genetic determinants of gut microbiota composition and bile acid profiles and an overlapping QTL 

for Turicibacter sp. and plasma cholic acid, which mapped to a locus containing the gene for the 

ileal bile acid transporter, Slc10a2 (Kemis et al., 2019). All these studies used gut microbiota 

composition (16S rRNA sequencing) as traits. A major limitation of these studies is lack of 

microbial function and pathway. Thus, identifying host genomic associations with gut microbial 

functions and metabolic pathways is necessary for a better understanding of gut microbiome-host 

interactions. 

 

1.4 Systems Genetics 

Mendel’s experiments over a century ago explained how specific genetic alleles influence 

single trait or phenotype, such as color or size of peas. Recently developed technologies can 

comprehensively dissect the genetic architecture of complex traits with a better understanding of 

links from genotypes to phenotypes. This new area has been termed as systems genetics 

(Civelek & Lusis, 2014). From single phenotype to phenomics, the quantitative and detailed 
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measurements on a broad spectrum of phenotypes, systems genetics aims to integrate genome-

wide data across many different levels. In a broader sense, systems genetics uses a genome-

wide analysis with many quantitative phenotypes at molecular or organismal level, in different 

conditions or environments to understand the flow of biological information that underlies complex 

traits, including human diseases. It also combines a range of both experimental and statistical 

methods to integrate intermediate phenotypes, such as transcripts, proteins, and metabolites, in 

genetically diverse populations including humans or model organisms. Systems genetics studies 

provide global view of the molecular architecture of complex traits and are useful to identify the 

causal genes, pathways and networks underlying common human diseases. 

A linkage or an association is the link between a phenotype with a genotype in a population 

of individuals. Usually, associations refer to the natural populations of unrelated individuals and 

linkages refer to the families or groups of families from experimental populations. Such 

associations and linkages can be identified by the mapping of quantitative trait loci (QTL). A QTL 

is a region of genome that modulate a phenotype of interest, which include gene expression QTL 

(eQTL), protein QTL (pQTL), metabolite QTL (mQTL), microbiome QTL (mbQTL) and QTL for 

other molecular phenotypes. When a genomic region is associated with traits, the causal genetic 

variants that are responsible for these complex traits can be determined by evaluation of their 

likely function based on publicly available genomic annotation and prior knowledge. Usually, the 

cost-efficient genotyping microarrays containing a large number of SNPs which may not be the 

causal SNPs. In this case the causal SNPs are those highly correlated in the neighborhood region 

with a large amount of linkage disequilibrium (LD). In human GWAS, fine-mapping strategies seek 

to determine the causal variants using statistical methods (Schaid et al., 2018). These efforts 

generate the hypotheses between the natural genetic variants with complex traits. Systems 

genetics extend from these hypotheses to explore how the information flow from DNA to 

phenotypes with complementary experiments including transgenic mice model and small 

interfering RNA (siRNA) and other complementary data sets. 
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In a systems genetics study, genetic mapping between different molecular layers can 

provide evidence of a relationship by co-mapping or colocalization. This is based on the idea that 

if two traits map to the same genomic region, one trait could be the cause to the other one. For 

example, a study in DO mice performed genetic mapping of gut microbiome and bile acids profiles 

and found the overlapping QTL for Turicibacter sp. and plasma cholic acid, which mapped to a 

locus containing the gene for the ileal bile acid transporter Slc10a2 (Kemis et al., 2019). Beyond 

the co-mapping strategy, mediation analysis seeks to determine whether a QTL has separate 

effects on two traits, or if it affects one trait through its effect on another trait, in which case the 

intermediate trait is called a mediator. For example, a study investigated the consequences of 

natural genetic diversity on the proteome and identified the second protein or transcript as the 

causal mediator of distant pQTL in DO mice (Chick et al., 2016). Given the dynamic nature of gut 

microbiome, leveraging the systems genetics would deconvolute the complexity between gut 

microbiome with other traits and facilitate to understand the mechanisms underlaying the gut 

microbiome-host interactions. 
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CHAPTER 2: Genetic mapping of microbial and host traits reveals production of 

immunomodulatory lipids by Akkermansia muciniphila in the murine gut 
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2.1 Abstract 

The molecular bases of how host genetic variation impacts the gut microbiome remain 

largely unknown. Here we used a genetically diverse mouse population and applied systems 

genetics strategies to identify interactions between host and microbe phenotypes including 

microbial functions, using faecal metagenomics, small intestinal transcripts and caecal lipids that 

influence microbe–host dynamics. Quantitative trait locus (QTL) mapping identified murine 

genomic regions associated with variations in bacterial taxa; bacterial functions including motility, 

sporulation and lipopolysaccharide production and levels of bacterial- and host-derived lipids. We 

found overlapping QTL for the abundance of Akkermansia muciniphila and caecal levels of 

ornithine lipids. Follow-up in vitro and in vivo studies revealed that A. muciniphila is a major source 

of these lipids in the gut, provided evidence that ornithine lipids have immunomodulatory effects 

and identified intestinal transcripts co-regulated with these traits including Atf3, which encodes for 

a transcription factor that plays vital roles in modulating metabolism and immunity. Collectively, 

these results suggest that ornithine lipids are potentially important for A. muciniphila–host 

interactions and support the role of host genetics as a determinant of responses to gut microbes. 
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2.2 Introduction 

The gut microbiome plays fundamental roles in mammalian physiology and human health 

(Tremaroli & Bäckhed, 2012; Turnbaugh et al., 2006; Wen et al., 2008). Environmental exposures 

and host genetic variation modulate gut microbiota composition (Ley et al., 2006; Rey et al., 2013; 

Yatsunenko et al., 2012) and contribute to the large degree of interpersonal variation observed in 

human gut microbial communities. Recent advances in sequencing technologies and analytical 

pipelines have fuelled progress in our understanding of the impact of host genetics and the gut 

microbiome on health. Population studies have revealed host genetic-gut microbial trait 

associations in human (Bonder et al., 2016; GEM Project Research Consortium et al., 2016; 

Hughes et al., 2020; Kurilshikov et al., 2021; J. Wang et al., 2016) and mouse cohorts (Kemis et 

al., 2019; Org et al., 2015). Additionally, studies leveraging host genetic information and 

Mendelian randomization have highlighted connections between the gut microbiome and other 

molecular complex traits including faecal levels of short-chain fatty acids (Sanna et al., 2019), 

plasma proteins (LifeLines cohort study et al., 2018) and ABO histo-blood group type (Rühlemann 

et al., 2021) in humans. However, most of these studies have focused on microbial organismal 

composition and there is currently a major gap in our understanding of the impact of host genetic 

variation on the functional capacity of the gut microbiome. 

Microbial metabolites are critical nodes of communication between microbes and the host. 

These include small molecules derived from dietary components (for example, Trimethylamine N-

oxide) (Z. Wang et al., 2011) or de novo synthesized by microbes such as vitamins (Kjer-Nielsen 

et al., 2012) and lipids (Brown et al., 2019). Lipids including eicosanoids, phospholipids, 

sphingolipids and fatty acids act as signalling molecules to control many cellular processes 

(Baxter et al., 2015; de Carvalho & Caramujo, 2018; Dennis & Norris, 2015). Gut microbes not 

only modulate absorption of dietary lipids via regulation of bile acid production and metabolism 

but are also a major source of lipids and precursor metabolites for lipids produced by the host 

(Kindt et al., 2018; Schoeler & Caesar, 2019). Bacterial cell membrane-associated lipids are also 
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important for microbe–host interactions (Brown et al., 2019; Kim et al., 2018), although our 

understanding of their roles in these dynamics is only emerging for gut bacteria. 

Defining the general principles that govern microbe–host interactions in the gut ecosystem 

is a daunting task. Systems genetic studies can generate hypotheses that invoke processes and 

molecules that have no precedent, which can be used for the identification of genes, pathways 

and networks underlying these interactions. To investigate the connections between gut microbes, 

intestinal lipids and host genetic variation, we leveraged the Diversity Outbred (DO) mouse cohort, 

a genetically diverse population derived from eight founder strains: C57BL/6J (B6), A/J (A/J), 

129S1/SvImJ (129), NOD/ShiLtJ (NOD), NZO/HLtJ (NZO), CAST/EiJ (CAST), PWK/PhJ (PWK) 

and WSB/EiJ (WSB) (Churchill et al., 2012; Svenson et al., 2012). These eight strains harbour 

distinct gut microbial communities and exhibit disparate metabolic responses to diet-induced 

metabolic disease (Kreznar et al., 2017). The DO population is maintained by an outbreeding 

strategy aimed at maximizing the power and resolution of genetic mapping. We characterized the 

faecal metagenome, intestinal transcriptome and caecal lipidome in DO mice and performed 

quantitative trait locus (QTL) analysis to identify host genetic loci associated with these traits. We 

integrated microbiome QTL (mbQTL) and caecal lipidome QTL (clQTL) to uncover microbe–lipid 

associations and identified candidate genes expressed in the distal small intestine associated 

with these co-mapping traits. These datasets represent a valuable resource for interrogating the 

molecular mechanisms underpinning interactions between the host and the gut microbiome. 
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2.3 Results 

Gut microbial features are associated with host genetics 

We characterized the faecal microbiome from 264 DO mice fed a high-fat high-sucrose 

(HF/HS) diet for ~22 weeks (Supplementary Figure 2.1). We and others previously showed that 

this diet elicits a wide range of metabolic responses in the eight founder strains that are associated 

with microbiome changes, and identified loci associated with variation in abundance of bacterial 

taxa in the gut (Kreznar et al., 2017; O’Connor et al., 2014); here we examine the role of host 

genetics in influencing gut microbiome traits with a focus on gut bacterial functions. Metagenomic 

analysis revealed ~1.9 million unique predicted microbial open reading frames (that is, 

metagenes), 2,803 bacterial functions (KEGG orthologues, KOs) and 187 bacterial taxa across 

all mice. We also performed metagenomic binning to obtain metagenome-assembled genomes 

(MAGs), corresponding to species-level bacterial genomes (Supplementary Figure 2.2, 

Supplementary Tables 1-4 and Supplementary Note 1). 

We next used QTL analysis to identify regions of the mouse genome associated with the 

abundance of these traits. We detected 760 associations for KOs (logarithm of odds 

(LOD) > 6.87, Pgenome-wide-adj < 0.2), 200 of which were genome-wide significant 

(LOD > 7.72, Pgenome-wide-adj < 0.05) and 45 associations for bacterial taxa (LOD > 6.87, Pgenome-wide-

adj < 0.2), 15 of which were genome-wide significant (LOD > 7.72, Pgenome-wide-adj < 0.05) 

(Figure 2.1a and Supplementary Tables 5 and 6). We identified a QTL hotspot on chromosome 

15 at 63–64 Mbp; this genomic region was associated with 154 microbial traits with LOD score > 6 

(Supplementary Table 7). We estimated DO founder allele effects as best linear unbiased 

predictors for the traits that mapped to this locus. Among these, we detected two clear groups of 

traits that exhibited opposite allele effects: a group of KOs and taxa showing positive association 

with the 129 allele, and another group of KOs and taxa that were negatively associated with the 

129 allele (Supplementary Figure 2.3). As detailed below, the two most abundant gut bacterial 

phyla, Firmicutes and Bacteroidetes, mapped to this locus with opposite allele effects. 
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Pathway enrichment analysis showed that bacterial ‘motility proteins’ and ‘cell growth’ 

functional categories were significantly enriched in the group of KOs associated most strongly 

with 129 alleles (Figure 2.1b,c). More specifically, abundances of 14 sporulation functions were 

negatively associated with 129 alleles (Figure 2.1d). Further investigation of the KO distribution 

across all MAGs revealed that all bacterial sporulation KOs were only present in MAGs belonging 

to Firmicutes, whereas most of KOs that showed positive 129 allele effects were present in MAGs 

belonging to Bacteroidetes (Supplementary Figure 2.4a). To assess whether the allele effects 

observed from QTL mapping corresponded to the trait patterns in the DO founder strains, we 

examined previously published 16S ribosomal RNA gene data from age-matched mice from the 

eight founder strains, also fed an HF/HS diet (Kemis et al., 2019). Consistent with these findings, 

we found that the 129 mouse strain had higher levels of Bacteroidetes and the highest 

Bacteroidetes/Firmicutes ratio (Supplementary Figure 2.4b). Interestingly, we detected a 

significant positive correlation between the number of sporulation KOs in Firmicutes MAGs 

mapping at this locus and the LOD scores for these MAGs (Figure 2.1e). Importantly, Firmicutes 

MAGs commonly detected in our dataset that do not contain sporulation KOs (for 

example, Lactobacillus, Lactococcus) did not exhibit significant association to this QTL. These 

results support the notion that host genetic variation affects gut community structure in part by 

modulating the abundance of sporulating bacteria. 

Single nucleotide polymorphism (SNP) association analysis within the Chr15 QTL hotspot 

identified six significant SNPs: two intron variants, SNP rs582880514 in the Gsdmc gene and 

SNP rs31810445 in the Gsdmc2 gene, both with LOD scores of 8.0; four SNPs that were 

intergenic variants (Supplementary Figure 2.4c). Gasdermins (Gsdm) are a family of pore-forming 

proteins that cause membrane permeabilization and pyroptosis (Shi et al., 2015), an inflammatory 

form of programmed cell death that is triggered by intra- and extracellular pathogens (Liu et al., 

2021). These results indicate that host genetic variation in Gsdmc/Gsdmc2 is associated with 
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abundance of gut bacterial functions and raises the hypothesis that these host proteins could 

modulate the abundance of bacterial taxa harbouring motility and/or sporulation functions. 

 

Caecal lipids are associated with gut microbes and host genetics 

We employed a broad discovery strategy to agnostically detect lipid actors potentially 

relevant to gut microbiome–host interactions. We used liquid chromatography coupled with 

tandem mass spectrometry (LC–MS/MS) to characterize the caecal lipidome of 381 DO mice, 

including all mice used for the metagenomic analysis. We identified 1,048 lipid species 

representing 35 lipid classes (Figure 2.2a,b) and the four major lipid categories: (1) fatty acyls, (2) 

phospholipids, (3) sphingolipids and (4) glycerolipids. The highest numbers of lipids were 

recorded for the classes of triglycerides (TG) and phosphatidylcholines (PC), species known to 

be abundant in the mammalian host (Jain et al., 2014). Of the 3,384 lipid species detected in DO 

caecum, 547 (16.2%) were detected at higher levels in the caecum of conventionally raised mice 

compared with caecum of germ-free animals (fold-change >10-fold, adjusted P < 0.05). 

Phosphatidylglycerols (PG), for example, which represent the second largest phospholipid class 

in our data, are known to be a major component of the bacterial lipidome (Sohlenkamp & Geiger, 

2016). In mammals, on the other hand, PG are only a minor component. Similarly, among 

glycerolipids, monogalactosyldiacylglycerols (MGDG) account for the second highest number of 

lipids detected in this class. While they are found at high levels in bacteria and plants, these lipids 

are only minor components of animal tissue (Parsons & Rock, 2013). These findings suggest that 

our analysis of the caecal lipidome captures components of the host and the gut microbiome. 

Correlation analysis between MAGs and caecal lipids abundance, plus comparison of the caecal 

lipidome of conventionally raised vs germ-free mice identified taxa that potentially modulate the 

abundance of lipids in the gut (Supplementary Figure 2.5a,b, Supplementary Tables 8-10 and 

Supplementary Note 2). Furthermore, QTL mapping identified 399 significant QTL associations 

for caecal lipid features (LOD > 7.60, Pgenome-wide-adj < 0.05) (Figure 2.2c, Supplementary 
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Table 11 and Supplementary Note 3). Altogether these associations provide a wealth of 

information offering potential molecular descriptors of the genetic regulation of the microbiome. 

 

Mediation analysis reveals bacteria–caecal lipids connections 

To identify causal links between gut microbial traits and caecal lipid traits, we performed 

mediation analysis between individual gut microbial metagenes and lipid features that co-map 

(Methods). Mediation analysis seeks to determine whether a QTL has separate effects on two 

traits, or if it affects one trait through its effect on another trait, in which case the intermediate trait 

is called a mediator. Figure 3a shows gut microbial metagenes mediating the QTL effect on a 

caecal lipid trait. We reasoned that if a microbial trait influenced a caecal lipid that was 

independent from the caecal lipid’s QTL, its inclusion as a covariate would be unlikely to affect 

the caecal lipid QTL signal significantly. However, for microbial traits that mediate the QTL effect 

on the caecal lipid, there would be a large drop in the original caecal lipid QTL LOD score. 

Interestingly, we found three caecal lipid features with QTL that were mediated by microbial 

metagenes. Most of these mediating microbial traits were genes belonging to the 

bacterium Akkermansia muciniphila. It is important to note that the direction of the causal effect 

between microbial trait and caecal lipid cannot be directly inferred from the data. These results 

suggest that A. muciniphila levels and the abundance of these lipid species in the gut are 

modulated by the same loci and that the two traits are potentially connected (Figure 2.3b,c). 

We further tested whether these caecal lipids and A. muciniphila mapped to the same loci. 

Mapping of the 46 reconstructed A. muciniphila MAGs to the host genome revealed multiple QTL 

including Chr1: 92.9 Mbp, Chr2: 79.4 Mbp, Chr7: 129.8 Mbp, Chr12: 59.4 Mbp, and Chr15: 

75.9 Mbp (Figure 2.3d). Interestingly, the three caecal lipids also showed QTL at the same loci 

and exhibited similar founder allele effect patterns (Figure 2.3e). These founder allele effects on A. 

muciniphila abundance are consistent with a previous study of gut bacterial abundance in the DO 

founder strains (Kemis et al., 2019). Although these lipid features were not initially identified by 
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our lipidomic analysis pipeline, they appeared to be closely related to each other. Further analysis 

of their fragmentation spectra suggested that these unidentified features were ornithine lipids (OL) 

(Figure 2.3b and Supplementary Note 4). This was confirmed with a synthetic OL (see below). 

The three features would have the sum compositions of OL 30:0, OL 31:0 and OL 32:0, detected 

as [M+H]+ ions. In OL, a 3-hydroxy fatty acid is connected via an amide linkage to the ornithine 

amino acid that serves as the headgroup. A second fatty acid is then connected to the first via an 

ester linkage (Vences-Guzmán et al., 2012). OL are bacteria-specific non-phosphorus glycolipids 

that are found in the outer membranes of selected Gram-negative bacteria (Geiger et al., 2010; 

López-Lara et al., 2003). 

 

A. muciniphila produces OL in the mouse and human gut 

A. muciniphila is a Gram-negative bacterium that has been associated with many 

beneficial effects on host metabolic health (Depommier, 2019; Everard et al., 2013). While 

previous research suggests that OL are important for microbe–host interactions (Diercks et al., 

2015; Kim et al., 2018), the occurrence of these lipids in gut bacteria was not known. To test 

whether A. muciniphila produces OL, we first profiled lipids in A. muciniphila and two other Gram-

negative species, Bacteroides thetaiotaomicron and Escherichia coli grown under anaerobic 

conditions. We found similarly high levels of all three targeted OL species in extracts from A. 

muciniphila but not in the other species, which were indistinguishable from the solvent blank 

(Figure 2.4a). Since phosphate limitation triggers production of OL in some bacterial species (Kim 

et al., 2018), in follow-up experiments we tested whether phosphate levels modulated abundance 

of OL in A. muciniphila grown in vitro. We examined three different levels of phosphate (0.02 mM 

(growth limiting), 0.2 mM (adequate) and 2 mM (excess)). LC–MS/MS analysis confirmed that OL 

are a dominant lipid species detected in A. muciniphila cell extracts regardless of the phosphate 

levels included in the growth media (Supplementary Figure 2.6a,b). Furthermore, OL were 

detected in extracellular vesicles isolated from A. muciniphila grown in vitro (Supplementary 



 

 

39 

Figure 2.6c and Supplementary Note 6). These results suggest that OL are probably localized in 

the A. muciniphila outer membranes and provide insights into how these lipids may interact with 

the host. 

We further profiled lipids produced by A. muciniphila colonizing the gut of gnotobiotic mice. 

Five groups of adult germ-free B6 mice were mono-colonized with each of the species mentioned 

above, bi-associated with E. coli and A. muciniphila or kept germ-free (n = 3–5 per group). Mice 

were maintained in the same HF/HS diet used for the DO study for two weeks after inoculation. 

LC–MS/MS analysis of caecal contents from these mice showed that only mice colonized with A. 

muciniphila had detectable levels of OL in their caecum (Figure 2.4b). Altogether, these results 

confirm that A. muciniphila gut colonization is causally linked with high levels of OL. 

We examined whether A. muciniphila colonization is associated with the presence of OL 

in the human gut. We analysed lipid content in a subset of faecal samples from a previously 

characterized cohort of old adults (Dill-McFarland et al., 2019) spanning a wide range of A. 

muciniphila relative abundances (not detectable to 39.8%). LC–MS/MS analysis of these human 

faecal samples detected a broader range of OL species than axenic cultures or mice colonized 

with A. muciniphila, but the levels of the three previously identified OL 15:0_15:0, OL 16:0_15:0 

and OL 17:0_15:0 were all significantly correlated with A. muciniphila levels (Figure 2.4c). 

Together, these results suggest that A. muciniphila is a major producer of OL in the mouse and 

human gut. 

 

OL modulate lipopolysaccharide (LPS)-induced cytokine responses 

To test whether A. muciniphila-derived OL elicit immune responses on the host, we first 

chemically synthesized the most abundant OL detected in the DO mouse gut, that is, 

OL_15:0_15:0. Because of the generally beneficial effects of A. muciniphila on host health as 

previously documented in both human and mouse studies, and on the basis of the structural 

similarity between OL and lipid A from LPS, we speculated that the OL might function as 
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antagonists of lipid A. We examined the effects of the OL preparation in the absence and presence 

of LPS on cytokine production by bone-marrow-derived-macrophages (BMDM). Treatment with 

LPS induced a significant increase in the production of TNF-α and IL-6 by BMDM obtained from 

B6 and 129 mice (Supplementary Figure 2.7a). In contrast, treatment with OL preparation did not 

stimulate significant production of TNF-α and IL-6 by these cells (Supplementary Figure 2.7b), 

except for a modest increase at 500 ng ml−1 and 1,000 ng ml−1. However, we observed that 

pretreatment of macrophages with OL had an inhibitory effect on LPS-induced TNF-α and IL-6 in 

both B6 and 129 mice without causing significant changes in cell viability (Supplementary Figure 

2.7c,d). These results suggest that A. muciniphila-derived OL can prevent LPS-induced 

inflammation response. Furthermore, we measured other cytokines secreted by LPS-treated 

BMDM and observed that the OL preparation inhibited the production of IL-1β, MCP-1, MIP-1α, 

GM-CSF, IL-12 and RANTES (Figure 2.5), although there were differences in the responses to 

LPS and OL as a function of BMDM genetic background. In addition, OL increased the levels of 

anti-inflammatory cytokine IL-10 in these cells (Figure 2.5), suggesting that OL may modulate 

inflammation by altering the levels of both pro-inflammatory and anti-inflammatory cytokines. 

Interestingly, production of IL-12 in the presence of LPS was more than ten times higher in 129 

mice than in B6 mice, and OL had a larger inhibitory effect in these mice (Figure 2.5). These 

results indicate that A. muciniphila-derived OL may influence host innate immune responses and 

their effects may vary as a function of host genetics. 

 

Intestinal genes co-map with A. muciniphila and OL QTL 

We sought to generate regulatory maps of gene expression regulation in the small 

intestine and to identify overlapping SNPs associated with gut microbiome. We reasoned that 

identifying genes whose expression demonstrate shared genetic architecture with bacterial 

taxa/genes/lipids would not only narrow the list of candidate genes at each locus but would also 

provide invaluable insights into the biology underlying the microbe–host interactions. Furthermore, 
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the power of expression QTL (eQTL) mapping to connect genetic polymorphism and complex 

traits has been well documented by others (Gusev et al., 2016; Tian et al., 2015). We profiled 

transcript levels in the distal small intestines of 234 DO mice using RNA-seq. We detected 8,137 

transcripts with a minimum of ten counts per million (CPM) in at least 10% of DO mice. We 

identified 4,462 local eQTL with an average LOD score of 21.2 and 10,894 distal eQTL with an 

average LOD score of 7.1 (Supplementary Table 12). By comparing eQTL allele effects with those 

for the co-mapping mbQTL and clQTL, we identified gut microbial features and caecal lipids that 

were potentially co-regulated with intestinal transcripts (Supplementary Figure 2.8 and 

Supplementary Note 7). 

We searched the support intervals for the five co-mapping QTL regions for A. 

muciniphila and OL (Chr1, Chr2, Chr7, Chr12 and Chr15) for candidate host genes of interest 

using the eQTL data. By comparing the allele effects between co-mapping eQTL and the A. 

muciniphila/OL QTL, we identified several candidate host genes whose eQTL allele effects were 

correlated with A. muciniphila/OL (Figure 2.6, Supplementary Figure 2.9 and Supplementary 

Table 13). At the Chr1 QTL region, there were four candidate genes: (1) Gene Activating 

transcription factor 3 (Atf3) had a distal eQTL at Chr1: 92.96 Mbp with QTL LOD score of 6.55. 

ATF3 plays an important role during host immune response events by negatively regulating the 

transcription of pro-inflammatory cytokines induced by the activation of toll-like receptor 4 

(Gilchrist et al., 2006). (2) The gene TRAF-interacting protein with a forkhead-associated domain 

(Tifa) had a distal eQTL at Chr1: 90.95 Mbp with LOD score of 6.19. TIFA has been reported to 

sense bacterial-derived heptose-1,7-bisphosphate—an intermediate in the synthesis of LPS—via 

a cytosolic surveillance pathway triggering the NF-kB response (Gaudet et al., 2015; Zhou et al., 

2018). Additionally, TIFA interacts with TRAF6 to mediate host innate immune responses. (3) The 

gene Jumonji domain-containing protein 8 (Jmjd8) had a distal eQTL at Chr1: 92.14 Mbp with 

LOD score of 6.72. JMJD8 functions as a positive regulator of TNF-induced NF-kB signalling (Yeo 

et al., 2016). A recent study showed that JMJD8 is required for LPS-mediated inflammation and 
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insulin resistance in adipocytes (You et al., 2021). (4) The gene Gcg had a distal eQTL at Chr1: 

92.36 Mbp with LOD score of 7.11. Gcg encodes multiple peptides including glucagon, glucagon-

like peptide-1(GLP-1). GLP-1 levels are induced by a variety of inflammatory stimuli, including 

endotoxin, IL-1β and IL-6 (Kahles et al., 2014). The finding that these genes with distal eQTL that 

co-map with A. muciniphila and OL QTL on Chr1 are involved in host immune responses to 

microbial-associated molecular patterns (MAMPs) such as LPS suggests that expression of these 

genes contributes to the regulation of host responses to OL and/or potentially modulates the 

abundance of A. muciniphila. 

 

Dissecting the link between A. muciniphila and Atf3 

We investigated whether the co-mapping between A. muciniphila/OL QTL and Atf3 gene 

eQTL could be explained by ATF3 impacting the abundance of these traits. To address this 

question, we measured the abundance of this taxon in wild-type (WT) mice and animals lacking 

the Atf3 gene consuming HF/HS diet for four weeks. We observed that Atf3−/− and WT mice had 

comparable levels of A. muciniphila in faeces as detected by qPCR. Abundance of A. 

muciniphila was ~15% lower in faecal samples from Atf3−/− mice compared with wild type (n = 7 

per genotype), yet the differences did not reach significance (Supplementary Figure 2.10a). These 

results suggest that Atf3 does not play a major role in A. muciniphila fitness. It might also act in 

combination with other factors, which would align with the observation that the abundance of gut A. 

muciniphila is a polygenic trait. 

An alternative explanation for the observed co-mapping is that A. muciniphila/OL modulate 

expression of Atf3. To examine this idea, we assessed expression profiles of B6 and 129 BMDM 

stimulated with LPS or a combination of the OL preparation and LPS. DESeq2 analysis identified 

674 genes differentially expressed in cells from B6 mice treated with OL (420 genes were 

upregulated and 254 genes downregulated), whereas 384 genes (304 genes were upregulated 

and 80 genes downregulated) were impacted by OL in BMDM derived from 129 mice. While 
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differences in gene expression of some of the cytokines discussed above (Supplementary Figure 

2.10b) were consistent between genotypes, the overall overlap of differentially expressed genes 

between genotypes was relatively low (Supplementary Figure 2.10c) and the responses to the 

OL varied significantly by genotype (Supplementary Figure 2.10e). As mentioned above, ATF3 is 

a negative regulator of TLR4 signalling. We observed that OL upregulated Atf3 expression for 

both B6 and 129 BMDMs (Supplementary Figure 2.10d). Furthermore, a previous study (Labzin 

et al., 2015) identified 30 genes downregulated by ATF3 in BMDMs (B6 background). Consistent 

with this result, we found that OL downregulated the expression of these genes in BMDM derived 

from B6 mice. In contrast, we found that 18 out of these 30 genes were upregulated by OL in 

BMDM from 129 mice (Supplementary Figure 2.10f). These results suggest that the observed co-

mapping between A. muciniphila/OL QTL and Atf3 eQTL could be explained by the effect of OL 

on Atf3 gene expression and that increased expression of this gene may trigger distinct 

programmes as a function of host genotype potentially impacting immune and metabolic 

responses differently. 

Altogether, the work supports the notion that A. muciniphila is the major producer of caecal 

OL in the distal gut and that A. muciniphila-produced OL can negatively regulate host LPS-

induced inflammation by upregulating Atf3 expression. 
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2.4 Discussion 

We applied a systems genetics approach to identify relationships between gut microbes, 

their encoded functions, caecal lipids and host intestinal gene expression. We identified bacterial 

functions influenced by host genetic variation and discovered that the bacterium A. 

muciniphila produces immunoactive OL that are detected in faecal samples from humans and 

mice colonized with this bacterium. A. muciniphila has been previously associated with host 

genetic variation at several loci in both mice and humans (Benson et al., 2010; Kurilshikov et al., 

2021; Leamy et al., 2014; Org et al., 2015); however, environmental conditions including diet, 

which is a major known determinant of microbiome composition, differ dramatically among these 

studies. The associations described in the present study differ from the ones previously reported 

in other mouse studies using different diets (Benson et al., 2010; Org et al., 2015). We also 

examined whether gut microbiome traits acted as mediator to previously published metabolic 

traits for the same cohort of DO mice (Keller et al., 2018); however, no significant mediation was 

detected, possibly due to the limited statistical power of our study to infer the influence of the gut 

microbiome on complex metabolic traits. 

Previous work suggested that some Gram-negative bacteria produce OL under 

phosphate-limiting conditions (Dees & Shively, 1982; Kawai et al., 1988; Vences-Guzmán et al., 

2015). In contrast, we observed that OL levels were consistently high across a 100-fold phosphate 

level range, suggesting that phosphate is not a major driver of OL synthesis in A. muciniphila. 

Notably, a recent study showed that increased OL production by the bacterial 

pathogen Pseudomonas aeruginosa makes its cellular surface more hydrophobic, and resulted 

in lower virulence and higher resistance to antimicrobials and host immune defences (Kim et al., 

2018). A. muciniphila consumes host glycans present in the mucus layer, which is in proximity to 

the host epithelium. While mucin carbohydrates and amino acids serve as substrates for A. 

muciniphila, there are also soluble host defence molecules trapped in this layer that prevent 

invasion of microbes to the underlying mucosal epithelial cells. We speculate that membrane OL 
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impact interactions of A. muciniphila with the intestinal milieu and may represent an adaptation 

critical to its niche and important for its interactions with the host. Development of tools to 

genetically manipulate A. muciniphila will be needed to test these hypotheses. 

The inhibitory effects of OL on LPS-induced cytokines that we and others have observed 

(Kawai et al., 1991; Kawai & Akagawa, 1989) may represent an important aspect of how A. 

muciniphila impact host physiology. Previous studies identified both natural and synthetic 

molecules that can inhibit TLR4-mediated LPS signalling—compounds that prevent septic shock, 

and have anti-inflammatory and anti-neuropathic pain activities in vivo (Peri et al., 2010). One 

group of LPS antagonist molecules targeting CD14 shares structural features with A. 

muciniphila OL including a glucose unit linked to two hydrophobic chains and a basic nitrogen on 

C-6 (Piazza et al., 2009), supporting the potential anti-inflammatory effects of OL. Although the 

precise mechanisms of how OL inhibit LPS signalling are unknown, our study suggests that A. 

muciniphila-derived OL may modulate inflammatory responses. 

Remarkably, three host innate immunity genes—Atf3, Tifa and Jmjd8—were co-regulated 

with A. muciniphila. Tifa is located in the ‘cytokine-dependent colitis susceptibility locus’ (Cdcs1) 

region, a critical genetic determinant of colitis susceptibility in 129 and B6 strains (Ryzhakov et 

al., 2018). TIFA is an important modifier of innate immune signalling through its regulation of 

TRAF proteins, leading to the activation of NF-κB and inflammation. Considering the importance 

of TIFA-dependent immunity to Gram-negative bacteria (Gaudet et al., 2015), and the differential 

effects of OL on LPS-treated BMDM from 129 and B6 strains, our results suggest that this gene 

could be a key player in A. muciniphila-OL–host interactions. Previous studies suggested that 

ATF3 modulates inflammatory responses by suppressing the expression of TLR4 or CCL4 in 

macrophages (Gilchrist et al., 2006; Khuu et al., 2007) and revealed a critical role of microbiota 

in ATF3-mediated gut homoeostasis (Cao et al., 2020). These studies showed that ATF3 

negatively regulates Il6 and Il12 gene expression levels (Gilchrist et al., 2006). In line with this, 

we found that OL negatively influence these cytokines in LPS-treated BMDM, and their 
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abundance is associated with the same locus that influences Atf3 expression. Previous studies 

also showed that ATF3 positively regulates host expression of antimicrobial peptides (Du et al., 

2022) and suggested that the production of OL makes the bacterium P. aeruginosa more 

hydrophobic and resistant to cationic antimicrobial peptides (Kim et al., 2018). However, we 

observe neither co-mapping of A. muciniphila with expression of antimicrobial peptides nor 

pronounced differences in A. muciniphila colonization levels between Atf3−/− mice and WT 

littermates. Instead, the co-mapping of A. muciniphila and Atf3 could be explained by our findings 

suggesting that (1) A. muciniphila is a major producer of OL in the gut and (2) OL upregulate 

expression of this key regulator. Although the molecular mechanisms underlying these 

observations warrant further investigation, these results suggest that A. muciniphila and OL levels 

are linked to central players of the host immune defence system and support the predominant 

role of host genetics as a determinant of responses to gut microbes, in particular to A. muciniphila. 

In summary, the work presented here links the presence of OL in the human and mouse 

gut with A. muciniphila and suggests that these lipids are key players in A. muciniphila–host 

interactions. Our work highlights the importance of bacterial functions and lipids as mediators of 

the influence of host genetics on the gut microbiome. 
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2.5 Methods 

Animal studies 

Animal care and study protocols were approved by the AAALAC-accredited Institutional 

Animal Care and Use Committee of the College of Agricultural Life Sciences at the University of 

Wisconsin-Madison (UW-Madison). All experiments with mice were performed under protocols 

approved by the UW-Madison Animal Care and Use Committee (Protocol number A005821 for 

the DO mice, Protocol number M00559 for gnotobiotic and Atf3 KO mice). 

 

DO mouse model 

DO mice were obtained from the Jackson Laboratory at ~four weeks of age and 

maintained in the Department of Biochemistry vivarium at the UW-Madison. DO mice were 

allocated in waves of 100 animals, each with an equal number of males and females. All mice 

were maintained in a temperature (22.2 °C) and humidity (60%) controlled environment under a 

12 h light/dark cycle (lights on at 6:00 and off at 18:00). All mice were fed an HF/HS diet (TD.08811, 

Envigo Teklad, 44.6% kcal fat, 34% carbohydrate and 17.3% protein) and received sterilized 

water ad libitum upon arrival at the facility. Mice were kept in the same vivarium room and were 

individually housed to monitor food intake and prevent cross-inoculation via coprophagy. DO mice 

were killed at 22–25 weeks of age. Faecal samples were collected immediately before euthanasia 

after a four h fast. Caecal contents and additional tissues were collected promptly after killing and 

all samples were immediately flash frozen in liquid nitrogen and stored at −80 °C until further 

processing. Other studies have been published with these mice (Keller et al., 2018, 2019; Kemis 

et al., 2019; Linke et al., 2020). 

 

Gnotobiotic studies 

C57BL/6J germ-free mice were bred and housed in the gnotobiotic mouse facility at the 

UW-Madison. Male mice were used for the ornithine lipid study. All mice were maintained in a 
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controlled environment (22.2 °C, 60% humidity) in plastic flexible film gnotobiotic isolators under 

a strict 12 h light/dark cycle (lights on at 6:00 and off at 18:00) on standard chow diet (LabDiet 

5021). At eight weeks of age, mice were switched to a western-style HF/HS diet (44.6% kcal fat, 

34% carbohydrate and 17.3% protein) from Envigo Teklad (TD.08811) and orally gavaged with 

200 µl of bacterial cultures. At two weeks after colonization, mice were euthanized and caecal 

contents collected. 

 

DO founder mice 

C57BL6J (B6) and 129S1/SvImJ (129) male mice (five weeks old) were obtained from the 

Jackson Laboratory. All mice were maintained in a controlled environment (22.2 °C, 60% humidity) 

under a strict 12 h light/dark cycle (lights on at 6:00 and off at 18:00). All mice were fed a standard 

chow diet (LabDiet 5021) and received sterilized water ad libitum for 1 week. At six weeks of age, 

all mice were euthanized to collect bone marrow cells. 

 

Atf3 mouse studies 

Atf3 heterozygous mice (B6.129X1-Atf3tm1Dron/HaiMmnc) were obtained from the Mutant 

Mouse Resource and Research Center at University of North Carolina. Age- and sex-matched 

littermates of Atf3-deficient whole body knockout mice (Atf3−/−) and WT mice were generated by 

crossing Atf3 heterozygous mice. Mice were maintained in a controlled environment under a strict 

12 h light/dark cycle (lights on at 6:00 and off at 18:00) at 22.2 °C and 60% humidity. Animals 

were fed an HF/HS diet (TD.08811, Envigo Teklad, 44.6% kcal fat, 34% carbohydrate and 17.3% 

protein) and received sterilized water ad libitum after weaning. Faecal samples were collected at 

seven weeks of age. 

 

Metagenomic shotgun DNA sequencing 
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Faecal DNA was extracted from individual pellets collected from DO mice using previously 

described methods (Kreznar et al., 2017; Turnbaugh et al., 2009). Following DNA extraction, 

Illumina paired-end (PE) libraries were constructed using a previously described protocol (Faith 

et al., 2011), with a modification of gel selecting DNA fragments at ~450 bp length. PE reads 

(2 × 125) were generated using a combination of MiSeq and HiSeq 2500 platforms. 

 

Metagenomic reads processing 

Raw reads were preprocessed using Fastx Toolkit (v0.0.13) as follows: (1) for 

demultiplexing raw samples, fastx_barcode_splitter.pl with –partial 2, mismatch 2 was used; (2) 

when more than one forward and reverse read file existed for a single sample (due to being run 

on more than one lane, more than one platform or at more than one time), read files were 

concatenated into one forward and one reverse read file; (3) barcodes were trimmed to form reads 

(fastx_trimmer -f 9 -Q 33) and (4) reads were trimmed to remove low-quality sequences 

(fastq_quality_trimmer -t 20 -l 30 -Q33). Following trimming, unpaired reads were eliminated from 

the analysis using custom Python scripts. To identify and eliminate host sequences, reads were 

aligned against the mouse genome (mm10/GRCm38) using bowtie2 (v2.3.4) (Langmead & 

Salzberg, 2012) with default settings, and microbial DNA reads that did not align with the mouse 

genome were identified using samtools (v1.3) (samtools view -b -f 4 -f 8). 

 

Metagenomic de novo assembly and gene prediction 

After removing low-quality sequences and host contaminating DNA sequences, each 

metagenomic sample was de novo assembled into longer DNA fragments (contigs) using 

metaSPAdes (v3.11.1) (Nurk et al., 2017) with multiple k-mer sizes (metaspades.py -k 21, 33, 55, 

77). Contigs shorter than 500 bp were discarded from further processing. Open reading frames 

(ORFs) (that is, microbial genes, also called metagenes) were predicted from assembled contigs 

via Prodigal (v2.6.3) (Hyatt et al., 2010) using Hidden Markov Model (HMM) with default 
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parameters. All predicted genes shorter than 100 bp were discarded from further processing. To 

remove redundant genes, all predicted ORFs were compared pairwise using the criterion of 95% 

identity at the nucleotide level over 90% of the length of the shorter ORFs via CD-HIT (v4.6.8) (W. 

Li & Godzik, 2006). In each CD-HIT cluster, the longest ORF was selected as representative. This 

final non-redundant (NR) microbial gene set was defined as the DO gut microbiome NR gene 

catalogue. 

 

Metagenomic annotation 

Gene taxonomic annotation was performed using DIAMOND (v0.9.23) (Buchfink et al., 

2015) by aligning genes in the DO gut microbiome NR gene catalogue with the NCBI NR database 

(downloaded 21 December 2018) using default cutoffs: e-value <1 × 10−3 and bit score >50. 

Taxonomic assignment used the following parameters: ‘–taxonmap prot.accession2taxid.gz–

taxonnodes nodes.dmp’ in DIAMOND command and was determined by the lowest common 

ancestor (LCA) algorithm when there were multiple alignments. Gene functional annotation was 

done using the KEGG orthology and links annotation (KOALA) method via the KEGG server 

(https://www.kegg.jp/ghostkoala/), using 2,698,820 prokaryote genus pan-genomes as reference. 

The bit score cut-off for K-number assignment was 60. 

 

Microbiome trait quantification 

Quantification of microbial genes was done by aligning clean PE reads from each sample 

with the DO gut microbiome NR gene catalogue using Bowtie2 (v2.3.4) and default parameters. 

RSEM (v1.3.1) (B. Li & Dewey, 2011) was used to estimate microbial gene abundance. Relative 

abundances of microbial gene CPM were calculated using microbial gene expected counts 

divided by gene effective length, then normalized by the total sum. We focused the taxonomic 

analysis on bacteria since these represented the vast majority of annotated metagenes. We 

detected 1,927,034 total metagenes and from these, 1,636,209 were annotated as bacterial 
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genes, 195 as archaeal genes, 17,372 as eukaryotic genes and 946 as viruses. There were also 

272,312 genes that were unclassified. To obtain abundance information for microbial functions, 

the CPM of genes with the same KO annotation were summed together. In case there were 

multiple KO annotations for a single gene, we used all KO annotations. To obtain taxonomic 

abundance, the CPM of genes with the same NCBI taxa annotation were summed together at 

phylum, order, class, family and genus levels, with a minimum of ten genes per taxon. 

 

MAGs reconstruction 

To reconstruct bacterial genomes, we clustered assembled contigs with the density-based 

algorithm DBSCAN using features of two reduced dimensions of contigs 5-mer frequency and 

contig coverage. The binning process was performed by the pipeline Autometa (docker image: 

ijmiller2/autometa:docker_patch) (Miller et al., 2019) and allowed deconvolution of taxonomically 

distinct microbial genomes from metagenomic sequences. The quality of reconstructed 

metagenomes was evaluated using CheckM (v1.1.3) (Parks et al., 2015); genome 

completeness >90% and genome contamination <5% were required to assign high-quality MAGs. 

MAGs quantification was done by aligning all clean PE reads from each sample with MAGs from 

the same sample. Genome coverage was calculated using the bedtools (v2.29.2) ‘genomecov’ 

command, followed by normalization by library size across all samples. To further remove 

redundant MAGs, we clustered high-quality MAGs on the basis of whole-genome nucleotide 

similarity estimation (pairwise average nucleotide identity (ANI)) using Mash software (v2.2) 

(Ondov et al., 2016) with 90% ANI. From high-quality MAGs, we also annotated predicted ORFs 

from each MAG against the KEGG database and compared the functional potential encoded 

among different taxa. A. muciniphila MAG IDs are included in Supplementary Table 14. 

 

Sample preparation for caecal lipidomic analysis 
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Caecal contents (30 ± 7.5 mg) along with 10 μl SPLASH Lipidomix internal standard 

mixture were aliquoted into a tube with a metal bead and 270 μl methanol (MeOH) were added 

for protein precipitation. Control samples comprised 30 ± 7.5 mg of bead beat-combined DO 

founder strain caecum (NZO, PWK, NOD, B6, 129, AJ) extracted with each batch. To each tube, 

900 μl methyl tert-butyl ether (MTBE) and 225 μl of water were added as extraction solvents. All 

steps were performed at 4 °C on ice. The mixture was homogenized by bead beating for eight min 

at 25 Hz. Finally, the mixture was centrifuged for eight min at 11,000 × g at 4 °C, after which 240 μl 

of the lipophilic upper layer were transferred to glass vials and dried by vacuum centrifuge for 

60 min. 

The dried lipophilic extracts were re-suspended in 200 μl MeOH:toluene (9:1 v/v) per 

10 mg dry weight (minimum of 100 μl) to account for varying water content in the samples. The 

dry weight was determined by drying down the remaining mixture including all solid parts. 

 

LC–MS/MS analysis of DO mouse caecal samples 

Sample analysis by LC–MS/MS was performed in randomized order on an Acquity CSH 

C18 column held at 50 °C (2.1 mm × 100 mm × 1.7 μm particle diameter; Waters) using an 

Ultimate 3000 RSLC binary pump (400 μl min−1 flow rate; Thermo Fisher) or a Vanquish binary 

pump for validation experiments. Mobile phase A consisted of 10 mM ammonium acetate in 

acetonitrile/H2O (70:30 v/v) containing 250 μl l−1 acetic acid. Mobile phase B consisted of 10 mM 

ammonium acetate in isopropanol/acetonitrile (90:10 v/v) with the same additives. Mobile phase 

B was initially held at 2% for two min and then increased to 30% over three min; further increased 

to 50% over one min and 85% over 14 min; and then raised to 95% over one min and held for 

seven min. The column was re-equilibrated for two min before the next injection. 

DO lipid extracts (20 μl) were injected by an Ultimate 3000 RSLC autosampler (Thermo 

Fisher) coupled to a Q Exactive Focus mass spectrometer by a HESI II heated electrospray 

ionization (ESI) source. Both source and inlet capillary were kept at 300 °C. Sheath gas was set 
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to 25 units, auxiliary gas to ten units and the spray voltage was set to 5,000 V (+) and 4,000 V (−), 

respectively. The MS was operated in polarity switching mode, acquiring positive and negative 

mode MS1 and MS2 spectra (Top2) during the same separation. MS acquisition parameters were 

17,500 resolving power, 1 × 106 automatic gain control (AGC) target for MS1 and 1 × 105 AGC 

target for MS2 scans, 100 ms MS1 and 50 ms MS2 ion accumulation time, 200- to 1,600 Th MS1 

and 200- to 2,000 Th MS2 scan range, 1 Th isolation width for fragmentation, stepped HCD 

collision energy (20, 30, 40 units), 1.0% under fill ratio and ten s dynamic exclusion. 

 

QTL mapping 

Genetic QTL mapping was performed using the R/qtl2 (v0.24) package (Broman et al., 

2019) which fit a linear mixed effect model that included accounting for overall genetic relationship 

with a random effect, that is, kinship effect. The leave one chromosome out (LOCO) method was 

used, which accounts for population structure without reducing QTL mapping power. For each 

gut microbiome trait and caecal lipidome traits, sex, days on diet and mouse cohort (wave) were 

used as additive covariates as described previously (Kemis et al., 2019). For gut microbiome traits 

and caecal lipidome traits, normalized abundance/coverage was transformed to normal quantiles. 

The mapping statistic reported was the log10 likelihood ratio (LOD score). The QTL support 

interval was defined using the 95% Bayesian confidence interval (Broman et al., 2019). 

Significance thresholds for QTL were determined by permutation analysis (n = 1,000). We 

included 2,803 gut microbiome function traits, 197 gut microbiome taxon traits and 3,384 caecal 

lipid feature traits for our QTL mapping. The reported genome-wide P values were not adjusted 

for the multiple phenotypes to avoid overly declaring QTL in the initial analysis. We used genome-

wide P < 0.05 for significant QTL and used genome-wide P < 0.2 to find concordant QTL mapping 

and hotspots. 

 

Mediation analysis 
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Mediation analysis was carried out as previously described (Chick et al., 2016). Mediation 

analysis was used to relate individual gut microbial metagenes and lipid features by scanning all 

136,200 identified metagenes with at least ten CPM in 20% of the samples to all 3,963 caecal 

lipid features. We used the subset of animals for which both gut metagenomic and caecal lipid 

data were available (n = 221). We first defined gut microbial traits with suggestive QTL as the 

outcome variable; we then included candidate caecal lipid mediators as additive covariates in the 

suggestive mbQTL mapping model and re-ran the QTL analysis. We performed the same analysis 

with caecal lipid features as the outcome and gut microbial features as candidate mediators. A 

mediatory role was supported by a significant decrease in LOD score from the original outcome 

QTL. Significance of the LOD score drop for a given candidate gut microbial metagene mediator 

on a given caecal lipid QTL was estimated by z-score scaled by LOD score drop, and a 

conservative z-score ≤ −6 was recorded as a potential causal mediator. The mean of fitted 

distributions for a given gut bacterial taxon, for example all metagenes from A. muciniphila gut, 

was scaled to the corresponding z-score to evaluate the mediation significance for this gut 

bacterial taxon. 

 

Bacterial culturing and bacterial extracellular vesicle isolation 

A. muciniphila was grown anaerobically in defined medium (Supplementary Table 15). To 

test for the effects of phosphate condition, the concentration of phosphate in the medium was 

adjusted to 0.02, 0.2 or 2 mM. E. coli MS200-1 strain was grown in LC medium (10 g l−1 bacto-

tryptone, 5 g l−1 bacto-yeast extract, 5 g l−1 NaCl). B. thetaiotaomicron strain VPI-5482 was grown 

in CMM medium. All bacterial strains were grown at 37 °C. Cells for lipid analyses from the three 

strains were obtained by centrifugation. Isolation of A. muciniphila extracellular vesicles used a 

previously described method (Ashrafian et al., 2019). 

 

Human faecal samples 
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Stool samples were obtained from a previous study (Dill-McFarland et al., 2019). Samples 

were collected from participants of the Wisconsin Longitudinal Study. Briefly, participants 

collected stool samples directly into sterile containers, then samples were kept at ~4 °C until 

arrival (48 h or less) at the processing laboratory. Upon arrival, sterile straws were filled with the 

faecal material and stored at −80 °C as previously described (Dill-McFarland et al., 2019). 16S 

rRNA gene sequencing data for these samples were previously published. The use of the 

Wisconsin Longitudinal Study faecal samples was approved by the Institutional Review Board at 

UW-Madison. Consent from participants was obtained via a process involving both verbal and 

written components by trained interviewers, and records were archived both digitally and 

physically at UW-Madison. This effort did not include collection of samples from vulnerable 

populations or from minors. 

 

Sample preparation for OL validation experiments 

For caecal contents, 30 ± 6 mg caecal contents were aliquoted into a tube with a metal 

bead and 280 μl MeOH were added for protein precipitation. To each tube, 900 μl MTBE and 

225 μl of water were added as extraction solvents. All steps were performed at 4 °C on ice. The 

mixture was homogenized by bead beating for eight min at 25 Hz. For bacterial cultures, ~75 μl of 

bacterial culture were aliquoted into a tube and 280 μl MeOH were added for protein precipitation. 

After the mixture was vortexed for 10 s, 900 μl MTBE were added as extraction solvent and the 

mixture was vortexed for ten s and mixed on an orbital shaker for six min. Phase separation was 

induced by adding 225 μl of water followed by 20 s of vortexing. All steps were performed at 4 °C 

on ice. Finally, each mixture was centrifuged for eight min at 11,000 × g at 4 °C, after which 240 μl 

of the lipophilic upper layer were transferred to glass vials and dried in a vacuum centrifuge for 

60 min. The dried lipophilic extracts were re-suspended in 200 μl MeOH:toluene (9:1 v/v). 

 

LC–MS/MS analysis of OL validation experiments 
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Sample analysis by LC–MS/MS was performed in randomized order on an Acquity CSH 

C18 column held at 50 °C (2.1 mm × 100 mm × 1.7 μm particle diameter; Waters) using an 

Ultimate 3000 RSLC binary pump (400 μl min−1 flow rate; Thermo Fisher) or a Vanquish binary 

pump. The same mobile phase and gradient as for the DO samples were used. 

For the validation experiments, 10 μl of caecal or culture extract were injected by a 

Vanquish Split Sampler HT autosampler (Thermo Fisher) coupled to a Q Exactive HF mass 

spectrometer by a HESI II heated ESI source. Both source and inlet capillary were kept at 350 °C 

(Thermo Fisher). Sheath gas was set to 25 units, auxiliary gas to 15 units and spare gas to five 

units, while the spray voltage was set to 3,500 V and the S-lens RF level to 90. The MS was 

operated in polarity switching dd-MS2 mode (Top2), acquiring positive and negative mode MS1 

and MS2 spectra during the same separation. MS acquisition parameters were 30,000 resolution, 

1 × 106 AGC target for MS1 and 5 × 105 AGC target for MS2 scans, 100 ms MS1 and 50 ms MS2 

ion accumulation time, 200 to 2,000 Th MS1 scan range, 1.0 Th isolation width for fragmentation 

and stepped HCD collision energy (20, 30, 40 units). 

 

Lipidomic analysis 

All resulting LC–MS lipidomics raw files were converted to mgf files via MSConvertGUI 

(ProteoWizard, Dr Parag Mallick, Stanford University) and processed using LipiDex (Hutchins et 

al., 2018) and Compound Discoverer 2.0 or 2.1.0.398 (Thermo Fisher) for DO and validation 

experiments, respectively. All raw files were loaded into Compound Discoverer with blanks 

marked as such to generate two result files using the following workflow processing nodes: Input 

Files, Select Spectra, Align Retention Times, Detect Unknown Compounds, Group Unknown 

Compounds, Fill Gaps and Mark Background Compounds for the so called ‘Aligned’ result and 

solely Input Files, Select Spectra and Detect Unknown Compounds for an ‘Unaligned’ Result. 

Under Select Spectra, the retention time limits were set between 0.4 and 21 min, MS order as 

well as unrecognized MS order replacements were set to MS1. Further replacements were set to 
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FTMS Mass Analyzer and HCD Activation Type. Under Align Retention Times, the mass tolerance 

was set to ten ppm and the maximum shift according to the data set to 0.6 min for the DO and 

0.5 min for the validation experiments. Under Detect Unknown Compounds, the mass tolerance 

was also set to ten ppm, with an S/N threshold of five (DO) or three (validation), and a minimum 

peak intensity of 5 × 106 (DO) or 1 × 105 (validation). 

For the DO samples, [M+H]+1 and [M−H]−1 were selected as ions and a maximum peak 

width of 0.75 min as well as a minimum number of scans per peak equalling seven were set. For 

the validation samples, [M+H]+1 and [M−H+TFA]−1 were selected as ions and a maximum peak 

width of 0.75 min as well as a minimum number of scans per peak equalling five were set. Lastly, 

for Group Unknown Compounds as well as Fill Gaps, mass tolerance was set to ten ppm and 

retention time tolerance to 0.2 min. For best compound selection, rules #1 and #2 were set to 

unspecified, while MS1 was selected for preferred MS order and [M+H]+1 as the preferred ion. 

For everything else, the default settings were used. Resulting peak tables were exported as Excel 

files in three levels of Compounds, Compound per File and Features (just Features for the 

‘Unaligned’) and later saved as csv. In LipiDex’ Spectrum Searcher ‘LipiDex_HCD_Acetate’, 

‘LipiDex_HCD_Plants’, ‘LipiDex_Splash_ISTD_Acetate’, LipiDex_HCD_ULCFA’ and 

‘Ganglioside_20171205’ were selected as libraries for the DO, and 

‘Coon_Lab_HCD_Acetate_20171229’, ‘Ganglioside_20171205’ and ‘Ornithine-Lipids_20180404’ 

for the validation experiments. For all searches, the defaults of 0.01 Th for MS1 and MS2 search 

tolerances, a maximum of one returned search result and an MS2 low mass cut-off of 61 Th were 

kept. Under the Peak Finder tab, Compound Discoverer was chosen as peak table type, and its 

‘Aligned’ and ‘Unaligned’ results, as well as the MS/MS results from Spectrum Researcher were 

uploaded. Features had to be identified in a minimum of one file while keeping the defaults of a 

minimum of 75% of lipid spectral purity, an MS2 search dot product of at least 500 and reverse 

dot product of at least 700, as well as a multiplier of 2.0 for FWHM window, a maximum of 15 ppm 

mass difference, adduct/dimer and in-source fragment (and adduct and dimer) filtering and a 
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maximum RT M.A.D Factor of 3.5. As post-processing in the DO, all features that were only found 

in one file and had no ID were deleted, and duplicates were also deleted. Peak areas of the three 

targeted ornithine lipid species were obtained via TraceFinder v3.3.350.0 (Thermo Fisher). Details 

of the lipid classes searched for in these databases with their respective adducts are shown in 

Supplementary Table 15. Lipids ID matching was performed at <±5 ppm between runs. 

 

OL synthesis 

Chemicals and methods 

All chemicals were obtained from Chem-Impex, Sigma-Aldrich, Agros Organics or TCI 

America. All reagents and solvents were used without further purification except for hexane, ethyl 

acetate and dichloromethane, which were distilled before use. Analytical thin-layer 

chromatography (TLC) was performed on 250 µm glass-backed silica plates with F-254 

fluorescent indicator from Silicycle. Visualization was performed using UV light and iodine. 

 

General instrumentation information 

Nuclear magnetic resonance (NMR) spectra were recorded in deuterated solvents at 

400 MHz on a Bruker-Avance spectrometer equipped with a BFO probe, and at 500 MHz on a 

Bruker-Avance spectrometer equipped with a DCH cryoprobe. Chemical shifts are reported in 

parts per million using residual solvent peaks or tetramethylsilane (TMS) as a reference. 

Couplings are reported in hertz (Hz). ESI–exact mass measurement (ESI–EMM) mass 

spectrometry data were collected on a Waters LCT instrument. 

 

OL synthesis 

Tridecanoic acid (compound 1, 3.2 g, 15 mmol) was dissolved in dichloromethane (150 ml, 

0.1 M) in a round-bottom flask equipped with a stir bar. 1-(3-dimethylaminopropyl)-3-

ethylcarbodiimide hydrochloride (EDC-HCl) (4.3 g, 22.5 mmol), 4-dimethylaminopyridine (DMAP) 
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(273 mg, 2.25 mmol) and Meldrum’s acid (3.2 g, 22.5 mmol) were added to the flask, and the 

reaction was stirred overnight at room temperature. The next day, the reaction mixture was 

washed with 1 M HCl (3 × 75 ml), saturated NaHCO3 (3 × 75 ml) and brine (3 × 75 ml). The mixture 

was then dried over magnesium sulfate and concentrated under reduced pressure. The resultant 

oil was then dissolved in benzene (19 ml) in a round-bottom flask with a stir bar, and benzyl alcohol 

(45 mmol, 4.7 ml) was added. The reaction was heated to 95 °C for three hours and then 

concentrated under reduced pressure. The crude reaction mixture was purified by silica gel flash 

chromatography (5–10% ethyl acetate in hexane as eluent), yielding 3.6 g of compound 2 as an 

oil (69% yield over two steps). 

Compound 2 (3.6 g, 10.4 mmol) was added to a round-bottom flask equipped with a stir 

bar and dissolved in a 2:1 mixture of tetrahydrofuran (16 ml) and ethanol (8 ml). The round-bottom 

flask was cooled in an ice bath, and sodium cyanoborohydride (1.6 g, 26 mmol) was added to the 

mixture. One M aqueous HCl (26 ml, 26 mmol) was added via addition funnel, and the reaction 

was allowed to stir to room temperature and monitored by TLC. Upon consumption of starting 

material, the aqueous portion of the reaction was extracted with dichloromethane (3 × 20 ml) and 

combined with the organic portion. The combined organic portions were washed with brine 

(3 × 20 ml), dried over MgSO4 and concentrated under reduced pressure to yield 3.26 g of 

compound 3 (93% crude). The material was used without further purification. 

Pentadecanoic acid (1.93 g, 9 mmol) was added to a round-bottom flask equipped with a 

stir bar and dissolved in dichloromethane (80 ml). To the flask was added EDC-HCl (2.68 g, 

14 mmol), DMAP (974 mg, 8 mmol) and compound 3 (2.78 g, 8 mmol). The reaction mixture was 

allowed to stir overnight at room temperature. The next day, the mixture was washed with 1 M 

HCl (3 × 50 ml), saturated NaHCO3 (3 × 50 ml) and saturated brine (3 × 50 ml). The mixture was 

then dried over magnesium sulfate and concentrated under reduced pressure. The crude material 

was purified by silica gel flash chromatography (5–10% ethyl acetate in hexane as eluent), 

yielding 4.3 g of compound 4 (94% isolated yield). 
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To a flame-dried round-bottom flask equipped with a stir bar was added Pd/C (798 mg, 

0.75 mmol Pd). Dry dichloromethane was added to the flask to make a slurry, and the atmosphere 

was exchanged for nitrogen. Compound 4 (4.3 g, 7.5 mmol) was dissolved in anhydrous methanol 

and added to the reaction vessel. The atmosphere was then exchanged for hydrogen (balloon 

pressure), and the reaction was allowed to proceed overnight. The next day, the reaction was 

diluted with ethyl acetate and filtered over celite. The mixture was concentrated under reduced 

pressure to yield compound 5 as a white solid (3.5 g, 97% crude yield). The material was used 

without further purification. 

Compound 5 (256 mg 0.5 mmol) was added to a round-bottom flask equipped with a stir 

bar and dissolved in dimethylformamide (DMF) (5 ml). To the flask was added N,N-

Diisopropylethylamine (DIPEA) (277 μl, 1.6 mmol) and hexafluorophosphate azabenzotriazole 

tetramethyl uronium (HATU) (216 mg, 5.5 mmol), and the mixture was stirred for 15 min. Protected 

ornithine (250 mg, 0.6 mmol) was added to the mixture, which was stirred at room temperature 

and monitored by TLC. When starting material was no longer observed by TLC, the mixture was 

diluted in diethyl ether (20 ml) and washed with 1 M HCl (3 × 20 ml), saturated NaHCO3 (3 × 20 ml) 

and brine (3 × 20 ml). The mixture was dried over magnesium sulfate and concentrated under 

reduced pressure to yield a white solid (376 mg crude). This sample was combined with an 

additional sample of the same crude material that appeared identical by 1H NMR analysis and 

was then purified by silica gel flash chromatography (25% ethyl acetate in hexane as eluent) to 

yield 131 mg of compound 6. 

To a flame-dried round-bottom flask equipped with a stir bar was added Pd/Cn (17.0 mg, 

0.16 mmol Pd). Dry dichloromethane was added to the flask to make a slurry, and the atmosphere 

was exchanged for nitrogen. The protected ornithine lipid (compound 6, 131 mg, 0.160 mmol) was 

dissolved in a mixture of 4 ml anhydrous methanol/dichloromethane (DCM) (1:1) and added to 

the reaction vessel. The atmosphere was then exchanged for hydrogen (balloon pressure), and 

the reaction was allowed to proceed overnight. The next day, the reaction was filtered over celite. 
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The mixture was concentrated under reduced pressure to yield OL as an off-white solid (82.2 mg, 

86% crude yield). Deprotected OL was identified using LC and ESI-EMM ([M]+ calculated 

597.5207, measured 597.5188, 0.002 ppm) in the resultant mixture and the material was used 

without further purification in the experiments described herein. 

 

RNA-seq and eQTL analysis 

Samples of flash-frozen distal ileum from DO mice were homogenized with Qiagen 

Tissuelyser (two step two min at 25 Hz, with flipping plate homogenization with five min ice 

incubation). Total RNA was extracted from homogenized samples using Qiagen 96 universal kit 

(Qiagen). RNA clean-up was performed using Qiagen RNeasy mini kit (Qiagen). DNA was 

removed by on-column DNase digestion (Qiagen). Purified RNA was quantified using a Nanodrop 

2000 spectrophotometer and RNA fragment analyzer (Agilent). Library preparation was 

performed using the TruSeq Stranded mRNA sample preparation guide (Illumina). IDT unique 

dual indexes (UDIs), Illumina UDIs or NEXTflex UDIs were used as barcodes for each library 

sample. RNA sequencing was performed on an Illumina NovaSeq 6000 platform. Raw RNA-seq 

reads quality control was performed using Trimmomatic (v0.39) (Bolger et al., 2014) with default 

parameters. Genotype-free genome reconstruction and allele specific expression quantification 

were performed using the GBRS tool (http://churchill-lab.github.io/gbrs/). Genes with at least ten 

transcripts per million in at least 10% of DO mice were used for downstream analyses. For eQTL 

mapping, sex, RNA-seq index, RNA-seq wave and mouse cohort (wave) were used as additive 

covariates. eQTL analysis was otherwise the same as previously described (Keller et al., 2018). 

 

BMDM assay and cell viability measurement 

Bone marrow was isolated from femur and tibia from ~six-week-old B6 and 129 mice fed 

with chow diet. Bone marrow cells were re-suspended into single-cell suspensions and cultured 

in complete DMEM medium supplemented with 10% fetal calf serum (FCS), 2 mM l-glutamine, 1% 
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penicillin/streptomycin and 20 ng ml−1 mouse macrophage colony stimulating factor (M-CSF) 

(BioLegend) for the purpose of differentiation. BMDM cells were randomly allocated into treatment 

groups. BMDMs were collected at day seven and treated with LPS, OL or LPS + OL for 6 hours 

in media supplemented with 1% fetal bovine serum (FBS), then supernatants were collected for 

measurement of cytokines. For optimization, cytokine (TNF-α and IL-6) production from LPS- or 

OL-treated BMDM was performed using mouse TNF-α ELISA MAX Deluxe kit and mouse IL-6 

ELISA MAX Deluxe kit (BioLegend), respectively. Follow-up cytokine (IL-1β, IL-6, IL-10, IL-12, 

MCP-1, TNF-α, MIP-1α, GM-CSF and RANTES) production assays in response to LPS + OL co-

cultured BMDM were performed using Q-Plex Mouse Cytokine Screen 16-Plex (Quansys). Cell 

viability was determined by flow cytometry (Thermo Fisher Attune NxT) after staining with 7-

amino-actinomycin D (eBioscience). 

 

RNA-seq of BMDM 

Frozen BMDM were homogenized with Qiagen Tissuelyser (two min at 20 Hz) and total 

RNA was extracted using Qiagen 96 universal kit (Qiagen). RNA clean-up was performed using 

Qiagen RNeasy mini kit (Qiagen). DNA was removed by on-column DNase digestion (Qiagen). 

Library preparation was performed using the TruSeq Stranded mRNA sample preparation guide 

(Illumina). RNA sequencing was performed on an Illumina NovaSeq 6000 platform. Raw RNA-

seq reads quality control was performed using Trimmomatic v0.39) (Bolger et al., 2014) with 

default parameters. Gene quantification was performed using RSEM (v1.3.1) (B. Li & Dewey, 

2011). DESeq2 (v1.26.0) (Love et al., 2014) was used to identify differentially expressed genes 

between groups. 

 

Akkermansia-specific qPCR for mouse faecal samples 

To quantify Akkermansia abundance in mouse faecal samples, previously validated 

primers specific for A. muciniphila were used (forward CAGCACGTGAAGGTGGGGAC and 
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reverse CTTGCGGTTGGCTTCAGAT) (Collado et al., 2007). A. muciniphila genomic DNA 

isolated from a pure culture was used to generate a standard curve encompasing seven points 

(range: 1 ng μl−1–0.015625 ng μl−1). The PCR reaction contained SsoAdvanced Universal SYBR 

Green Supermix (Bio-Rad). Faecal A. muciniphila abundance was normalized by faecal weight. 

 

Data analysis and statistical analysis 

All data integration and statistical analysis were performed in R (v3.6.3). Data collection 

and analysis were not performed blind to the conditions of the experiments. No data were 

excluded from the analysis. No statistical methods were used to pre-determine sample sizes, but 

our sample sizes are similar to those reported in previous publications (Kemis et al., 2019). 

Differences between groups were evaluated using unpaired two-tailed Welch’s t-test. Enrichment 

analysis was performed with Fisher’s exact test using a custom R function. Correlation analysis 

was performed with two-sided Spearman’s correlation using the R function ‘cor.test()’. For multiple 

testing, Benjamini-Hochberg false discovery rate (FDR) procedure was used to adjust P values. 

Data integration was performed using R packages dplyr (v1.0.6), tidyr (v1.1.3), reshape2 (v1.4.4) 

and data.table (v1.14.0). Heat maps were plotted using the R package pheatmap (v1.0.12). Other 

plots were created using the R packages ggplot2 (v3.3.3), gridExtra (v2.3), RcolorBrewer (v1.1-

2) and ggsci (v2.9). 

 

Data availability 

DO metagenomic WGS data are available from the Sequence Read Archive (SRA) 

under accession PRJNA744213. RNA-seq data are available from the Sequence Read Archive 

(SRA) under accession numbers PRJNA772743 and PRJNA896574. Mass spectrometry data 

files are available on Chorus (chorusproject.org) under accession with project ID 1681 (direct 

links to DO caecum 

lipidomics: https://chorusproject.org/anonymous/download/experiment/10cb106716da44cd924a
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3c73ac30083d and founder strains caecum 

lipidomics: https://chorusproject.org/anonymous/download/experiment/ad7566e8f45942d2ba0f5

79857629b55). Genotypes data and additional phenotype data associated with DO mouse are 

available at Dryad (https://doi.org/10.5061/dryad.pj105). SNP associations data 

cc_variants.sqlite are available at https://ndownloader.figshare.com/files/18533342 and mouse 

genes data mouse_genes_mgi.sqlite used for QTL mapping are available 

at https://ndownloader.figshare.com/files/17609252. Source data are provided with this paper. 

 

Code availability 

All code used in this study is available in GitHub 

(https://github.com/qijunz/Zhang_DO_paper) or in the corresponding software package websites. 
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2.9 Figures 
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Figure 2.1. Genetic architecture of QTL for microbial traits in the DO mouse cohort. a, QTL 

mapping results for 2,803 gut microbial KO function traits (top panel) and 187 bacterial taxa traits 

(bottom panel) using sex, days on diet and cohort as covariates. Each dot represents a QTL on 

the mouse genome for a given trait. Dashed lines represent significance thresholds for QTL 

determined by permutation tests (LOD > 9.19, Pstudy-wide-adj < 0.05; LOD > 7.72, Pgenome-wide-adj < 0.05; 

LOD > 6.87, Pgenome-wide-adj < 0.2). QTL hotspot at Chromosome 15 is highlighted by grey shading 

and orange colour text. b, Gut microbiome QTL hotspot on Chr15 has multiple bacterial 

sporulation and motility functions mapping to it. Protein coding genes are displayed for Chr15: 

61–65 Mbp region, Gasdermin genes are highlighted in blue. c, Enrichment analysis (Fisher’s 

exact test) for functions mapping at hotspot on Chr15. d, QTL for microbial functions that mapped 

to Chromosome 15 hotspot had negative 129S1/SvImJ allele effects. QTL for Firmicutes mapping 

to Chromosome 15 hotspot had negative 129S1/SvImJ allele effects, whereas QTL for 

Bacteroidetes mapping to this locus had positive 129S1/SvImJ allele effects. e, Spearman 

correlation analysis between the number of sporulation KOs detected in Firmicutes MAGs 

mapping at Chromosome 15 QTL hotspot and the LOD scores for these MAGs (P = 3.87 × 10−3, 

Spearman’s ρ = 0.346). 
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Figure 2.2. Genetic architecture of the caecal lipidome in DO mice. a, A total of 3,384 caecal 

lipid features were quantified across 381 DO mice, 1,048 of which were identified as lipids from 

four major classes. Each dot represents a caecal lipid feature. Features of each class occupied 

characteristic regions in the m/z – RT space. b, Identified lipids belonged to 35 lipid subclasses, 

with bacteria-associated PG and MGDG as common subclasses. c, A total of 3,964 suggestive 

caecal lipid QTL (LOD > 6, Pgenome-wide-adj < 0.2) and 12 QTL hotspots were identified. Hotspots are 

marked with arrows and the corresponding genomic locus indicated. Dashed lines represent 

significance thresholds for QTL as determined by permutation tests (LOD > 7.60, Pgenome-wide-

adj < 0.05). Of the identified lipids, 68.2% showed a total of 1,162 QTL (top panel), while a similar 
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portion of 70.1% of unidentified features contributed 2,802 QTL (bottom panel). RT, retention time. 

For lipid class abbreviations, see Supplementary Table 16. 
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Figure 2.3. Mediation analysis revealed potential causal relationship between A. 

muciniphila and OL. a, Illustration of Mediation effect model and Null model. Each dot in the 

scatterplot represents the result of the mediation test for a gut microbial metagene–caecal lipid 

feature pair; x axis shows the drop in QTL LOD score for caecal lipid features when adding gut 

microbial metagenes as covariates to the caecal lipid QTL model; y axis shows the original QTL 

LOD score for each caecal lipid. Dots with the same y axis value represent the mediation test of 

individual metagenes with one caecal lipid feature. A high QTL LOD score drop represents a 

significant mediation effect of the gut microbial feature to the caecal lipid feature. Association of 
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three unknown caecal lipid features with the host genome was impacted by A. muciniphila genes. 

This is depicted as multiple red dots (many dots appear as lines) showing significant mediation 

effects. b, Three lipid features mediated by A. muciniphila genes were identified as ornithine lipids. 

The dashed lines connecting a and b point to the fragmentation patterns of identified ornithine 

lipids, as shown by the m/z values; key fragments are shown in red colour together with their 

respective chemical structures. c, Distribution of LOD score drop when adding individual A. 

muciniphila genes as covariates (Mediation model) or adding individual genes not from A. 

muciniphila as covariates (Null model) for three identified ornithine lipids. d, Three ornithine lipids 

species QTL co-mapped at five loci (Chromosome 1, Chromosome 2, Chromosome 7, 

Chromosome 12, Chromosome 15) with A. muciniphila MAGs QTL.QTL with LOD > 5.5 are 

highlighted by red colour. e, Founder allele effects for A. muciniphila MAGs and caecal OL were 

estimated in the DO population from the founder strain coefficients observed for the 

corresponding QTL at each locus from d. 
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Figure 2.4. A. muciniphila produces OL in the mouse and human gut. a, OL abundance for 

the three major species detected in mice in cell pellets collected from A. muciniphila (A. m), B. 

thetalotamicron (B. t) and E. coli (E. c) grown in vitro (n = 3 biologically independent samples per 

organism). b, OL detected in caecal contents from gnotobiotic mice colonized with A. 

muciniphila, B. thetaiotaomicron, E. coli and A. muciniphila plus E. coli for two weeks (n = 3–4 

mice per treatment). c, Detection of prominent OL species in human faecal samples is 

significantly correlated with A. muciniphila abundance as determined by two-sided Spearman 

correlation (n = 16 independent faecal samples). Box and whisker plots denote the interquartile 

range, median and spread of points within 1.5 times the interquartile range; data beyond the end 

of the whiskers are plotted individually. Statistical difference between treatment groups was tested 

by unpaired two-sided Welch’s t- test. 
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Figure 2.5. OL modulate LPS-induced production of cytokines from BMDM. Levels of IL-1β, 

IL-6, IL-10, IL-12, TNF-α, MCP-1, MIP-1α, GM-CSF and RANTES detected in supernatants from 

B6 and 129 mice BMDM stimulated with LPS (10 ng ml−1) and different concentrations of OL. Box 

and whisker plots denote the interquartile range, median and spread of points within 1.5 times the 

interquartile range; data beyond the end of the whiskers are plotted individually. 
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Figure 2.6. eQTL for distal small intestine (ileum) genes that co-map with A. 

muciniphila and caecal OL at Chromosome 1. a, QTL of A. muciniphila, caecal OL and eQTL 

for Tifa, Atf3, Jmjd8 and Gcg co-map at Chr1: 90–95 Mbp. LOD score in y axis represents 

significance of QTL for each trait. b, Spearman correlation of allele effects 

between Tifa, Atf3, Jmjd8 and Gcg gene eQTL and A. muciniphila/OL QTL. 
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Supplementary Figure 2.1 Overview of the study. Fecal metagenomes (n = 264 animals), 

caecal lipidomes (n = 381 animals) and distal small intestine transcriptomes (n = 234 animals) 

were generated from Diversity Outbred mice. Quantitative trait loci (QTL) analysis identified 

genomic regions associated with variations in bacterial taxa, bacterial functions, levels of 

bacterial- and host-derived lipids and small intestine transcript levels. Mediation analysis and co-

mapping comparisons were used to identify causal links between traits. 
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Supplementary Figure 2.2 DO metagenomic analysis. a, Average percent of assembled reads 

across all samples. b, Comparison of percent of reads mapping to our generated assembly vs. 

public database (n = 297 animals). c, Microbial functions detected for KEGG pathways across all 

metagenomes. KEGG Orthology (KO) numbers were identified by annotating predicted ORFs to 
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the KEGG database. d, Top 20 gut microbial genera detected across all DO mice (n = 264 

animals). e, Quality of metagenome-assembled genomes. f, Two variants of A. 

muciniphila MAGs detected in the DO mice. Box and whisker plots denote the interquartile range, 

median and spread of points within 1.5 times the interquartile range, data beyond the end of the 

whiskers are plotted individually. 
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Supplementary Figure 2.3 DO gut microbiome QTL hotspot at Chr15: 61–65Mbp. Founder 

allele effects of KO and taxa trait QTL at Chr15 hotspot (LOD > 6). 
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Supplementary Figure 2.4 DO gut microbiome QTL hotspot and SNP associations. a, 

Presence/absence of KOs that mapped to Chr15 hotspot across all MAGs. Sporulation 

functions were not detected in Bacteroidetes. b, Estimated founder allele effects for 

Bacteroidetes and Firmicutes, and Bacteroidetes/Firmicutes ratio (left panel). Observed 

abundance of Bacteroidetes Firmicutes and Bacteroidetes/Firmicutes ratio in founder strains as 

determined by Kemis et al. (right panel, n = 9-12 animals/founder strain). c, SNPs significantly 

associated with these traits in Chr15 hotspot include two intron SNPs 

in Gsdmc and Gsdmc2 genes. Box and whisker plots denote the interquartile range, median 

and spread of points within 1.5 times the interquartile range, data beyond the end of the 

whiskers are plotted individually. 
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Supplementary Figure 2.5 Correlation between gut bacterial MAGs and caecal lipids.. a, 

Presence/absence of KOs that mapped to Chr15 hotspot across all MAGs. Sporulation 

functions were not detected in Bacteroidetes. b, Estimated founder allele effects for 

Bacteroidetes and Firmicutes, and Bacteroidetes/Firmicutes ratio (left panel). Observed 

abundance of Bacteroidetes Firmicutes and Bacteroidetes/Firmicutes ratio in founder strains as 

determined by Kemis et al. (right panel, n = 9-12 animals/founder strain). c, SNPs significantly 

associated with these traits in Chr15 hotspot include two intron SNPs 

in Gsdmc and Gsdmc2 genes. Box and whisker plots denote the interquartile range, median 

and spread of points within 1.5 times the interquartile range, data beyond the end of the 

whiskers are plotted individually. 
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Supplementary Figure 2.6 Detection of ornithine lipids (OL) in Akkermansia muciniphila. 

a, Heatmap showing relative abundance of all OL species detected in cell pellets from A. 

muciniphila grown in vitro in defined media supplemented with different levels of phosphate: 

20 µM, 200 µM and 2000µM. b, Relative abundance of lipid features detected in cell pellets 

from A. muciniphila grown in defined media with different levels of phosphate. Top 200 most 

abundant lipids features are shown. c, Relative abundance of OL features detected extracellular 

vesicles (AmEVs) purified from A. muciniphila grown in defined medium with the comparison 

to A. muciniphila cells. 
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Supplementary Figure 2.7 Cytokine production by BMDM. a,b, (a) TNF-α and (b) IL-6 levels 

detected in supernatants from BMDM cells in B6 and 129 mice treated for six hours with 

different concentrations of LPS or OL. c, Cell viability of BMDM cells in B6 and 129 mice treated 

for six hours with 10 ng/mL LPS and different concentrations of OL. d, Flow cytometry gating 

strategy for BMDM cell viability assays. N = 3 biological replicates/treatment group. Box and 

whisker plots denote the interquartile range, median and spread of points within 1.5 times the 

interquartile range, data beyond the end of the whiskers are plotted individually. 
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Supplementary Figure 2.8 Examples of co-mapping QTL. a, At Chr8: 10.5-14.5 Mbp, co-

mapping of gut bacterial lipopolysaccharide cholinephosphotransferase function 

with Pglyrp1 eQTL was observed. b, At Chr4: 50 Mbp, co-mapping of an unidentified caecal 

feature and a local Acnat1 eQTL was observed. c, The knowledge of Acnat1 conjugating taurine 

to fatty acids guided the identification of the feature as an N-acyl taurine. d, Fragmentation 

pattern of identified N-acyl taurine. e, At Chr17: 30-34 Mbp, several unidentified features co-

mapped which subsequently could be identified as tocopherols and exemplarily shown for the 

most significant feature alpha-tocopherol glucuronide. f, Fragmentation pattern of identified 

alpha-tocopherol glucuronide. 
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Supplementary Figure 2.9 Founder allele effects on co-mapping traits associated with A. 

muciniphila levels. A. muciniphila, caecal OL and eQTL genes co-mapping at Chr1: 90-95 

Mbp, Chr2: 77-81 Mbp, Chr7: 126-131 Mbp, Chr12: 55-63 Mbp and Chr15: 75-79 Mbp. 
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Supplementary Figure 2.10 Expression of genes in BMDM treated with OL/LPS. a, 

Abundance of A. muciniphila in faecal pellets from Atf3-/- mice and WT mice (n = 7 

mice/genotype; four females, three males for both genotypes). b, Gene expression level 

of Il1b, Il6 and Il12a from BMDM cells derived from B6 and 129 mice treated for six hours with 

LPS (10 ng/ml) or with LPS (10 ng/mL) and OL (1 µg/mL). N = 3 biological replicates/treatment 

group. c, Number of differentially expressed genes in BMDM derived from B6 and 129 mice. d, 

Gene expression levels of Atf3 in BMDM from B6 and 129 mice treated for six hours with LPS 

(10 ng/mL) or LPS (10 ng/mL) and OL (1 µg/mL). N = 3 biological replicates/genotype/treatment 

group. e, Differentially expressed genes in BMDM from B6 and 129 mice. f, Previously reported 

ATF3 regulated genes in BMDM. Impact of OL on these genes in B6 and 129 mice. Box and 

whisker plots denote the interquartile range, median and spread of points within 1.5 times the 
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interquartile range; data beyond the end of the whiskers are plotted individually. Statistical 

difference between treatment groups was tested by two-sided Welch’s t- test. 
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3.1 Abstract 

Host genetic variation has been associated with gut microbiome composition differences 

in humans and mice, including several large scale human cohorts. However, we lack a molecular 

understanding of how host genetics influences microbial community and metabolic niches. We 

leveraged 90 inbred hyperlipidemic mouse strains from the Hybrid Mouse Diversity Panel (HMDP). 

Metagenomic analysis of fecal DNA followed by genome-wide association analysis identified 

genomic loci that were associated with microbial enterotypes in the gut. We discovered genetic 

variants of Amy1 gene that were associated with abundance of Firmicutes (Lachnospiraceae 

family) and Bacteroidetes (Muribaculaceae family) taxa that encode distinct starch and sugar 

metabolism functions. Host amylase activity impacts availability of carbohydrates to the host and 

potentially to gut bacteria. The genetic variants described above were associated with distinct gut 

microbial communities (enterotypes) with different metabolic capacity. Mendelian randomization 

revealed that host physiology phenotypes, including liver fibrosis and plasma HDL-cholesterol 

levels were causally associated with gut microbiome enterotypes. This work provides evidence 

for a causal relationship between host genetic variation, gut microbial enterotypes and host 

physiology phenotypes in mice. 

 

 

 

 

 

 

 

 

 

 



 

 

107 

3.2 Introduction 

The microbial communities that inhabit mammals have profound effects on host biology 

and health. Alterations in the intestinal microbiome have been associated with myriad conditions 

including cardiovascular disease and metabolic disorders (Lynch & Pedersen, 2016; Wang et al., 

2011). Emerging evidence showed the influences of gut bacteria on host metabolism and 

immunity (Belkaid & Hand, 2014; Tremaroli & Bäckhed, 2012). A range of intrinsic factors, 

including host genetics, and environmental factors, including diet, modulate the gut microbiome 

and subsequently affect its interactions with the host (Gacesa et al., 2022; Kurilshikov et al., 2021). 

Over the years several groups have identified distinct gut microbial communities that reflect 

stratification in a population and define the metabolic niche and functional characteristics of the 

gut microbiome. These well-defined and frequently recurring microbial communities were termed 

enterotypes (Costea et al., 2017; MetaHIT Consortium (additional members) et al., 2011). 

However, it remains largely unknown how host genetics modulate microbial enterotypes as well 

as enterotype associated functions and metabolic pathways in the gut. 

Carbohydrates are important energy source for both human and microbial cells. Dietary 

compounds that cannot be digested by human enzymes, including plant polysaccharides and 

other carbohydrates such as resistant starches, reach the distal gut where they are broken down 

and fermented by resident bacteria and serve as energy source for these gut microbes (Oliphant 

& Allen-Vercoe, 2019). However, it is also known that digestible carbohydrates such as starch 

and sugars can influence the gut microbiota and its associations with the host (Hutchison et al., 

2023; Murga-Garrido et al., 2021). Thus, digestible carbohydrates can also be accessed by gut 

microbes as the ability of different hosts to access these carbohydrates is variable.  Human 

amylase facilitate starch digestion (Perry et al., 2007). Recent work revealed that humans with 

lower amylase gene copy number harbor gut microbiomes with a greater capacity for breakdown 

of complex carbohydrates (Poole et al., 2019). This work suggested that genetic variation in host 

amylase gene may potentially impact gut microbiome and its subsequential effects on the host. 
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In addition to the study mentioned above, several mouse and human studies have 

examined the role of host genetics in shaping the composition of gut microbiota. These efforts 

mostly applied 16S rRNA gene sequencing (Kemis et al., 2019; Org et al., 2015; Sanna, 2022). 

Shotgun metagenomics allows comprehensive profiling of the functions and metabolic pathways 

present in gut communities. However, there is lack of metagenomic characterization of gut 

microbiome in large-scale genetically diverse phenotypically characterized cohorts. A valuable 

resource for such genetically diverse cohort is the Hybrid Mouse Diversity Panel (HMDP), which 

consists of over 100 common inbred strains. Recently, each strain from this panel was made 

hyperlipidemic by transgenic expression of human apolipoprotein E-Leiden (APOE-Leiden) and 

human cholesteryl ester transfer protein (CETP). This was done by breeding each of the HMDP 

strains to a common strain (C57BL/6J) that donated these two dyslipidemia-inducing transgenes. 

Genetic differences among these animals arise only from sequence variations present in the 

individual recipient strains. This set of F1 animals termed Ath-HMDP mice (Bennett et al., 2015). 

Here, we used metagenomics to characterize the gut microbiome from 90 Ath-HMDP strains fed 

high-fat supplemented with 1% cholesterol. Our analysis identified three microbial enterotypes, 

dominated by Firmicutes, Bacteroidetes and Verrucomicrobiota, in this mouse cohort and 

identified two host genomic loci that are significantly associated with the enterotypes. Our results 

suggest that genetic variance, potentially in host amylase genes, could be a causal determinant 

of gut microbial enterotypes by selecting specific carbohydrate metabolizing bacterial species. 

Furthermore, our results also suggest that the functional niches of the selected enterotypes 

subsequently influence host biomarkers including plasma cholesterol and triglycerides and 

disease phenotypes including liver fibrosis. 
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3.3 Results 

Characterization of the gut metagenomes from 90 Ath-HMDP mouse strains 

We generated metagenomic datasets from cecal DNA collected from 355 F1 Ath-HMDP 

mice encompassing 90 strains (2-6 mice/sex/strain, 188 male and 161 female) fed high-fat with 

1% cholesterol containing diet for 16 weeks (37.8 million paired-end reads/sample). Generation 

of this mouse cohort has been previously described (Bennett et al., 2015). These animals 

developed atherosclerosis and liver fibrosis which varies widely as a function of strain (Bennett et 

al., 2015; Hui et al., 2018), additional clinical data is also available for these animals 

(Supplementary Table 1).   

Phylogenetic and functional analyses identified 461 bacterial taxa (7 phyla, 43 classes, 49 

orders, 63 families, 131 genera and 166 species), 2,127 microbial functions (KEGG orthology 

database) and 294 metabolic pathways (MetaCyc database) across all mice. Gut microbiota 

composition was highly variable across the 90 strains; for example, the relative abundance of 

Firmicutes (Bacillota) phylum ranged from 10% to 55% whereas the relative abundance of 

Bacteroidetes (Bacteroidota) ranged from 5% to 77% (Supplementary Figure 3.1a). The most 

abundant species (> 0.5%) that were present in at least 90% of mice are Muribaculaceae family 

(Paramuribaculum intestinale, Muribaculum intestinale, Muribaculum gordoncarteri, Duncaniella 

muris, Duncaniella freteri), Alistipes finegoldii, Parabacteroides goldsteinii, Faecalibaculum 

rodentium, Lachnospiraceae bacterium, Bilophila sp. and Parasutterella sp (Supplementary 

Figure 3.1b). For the purpose of our analyses, we define these taxa as the “core microbiome 

species” of Ath-HMDP mice. 

 

Enterotypes and associated bacterial species 

Principal coordinate analysis (PCoA) of the microbial communities described above using 

species abundance data resulted in three clusters each dominated by a different phylum: (i) 

Firmicutes, (ii) Bacteroidetes and (iii) Verrucomicrobiota respectively (Supplementary Figure 
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3.2a). Using microbial function abundance resulted in similar clustering each dominated by one 

these three phyla (Supplementary Figure 3.2b). The first principal component (PC1) of the 

microbial functions, which explains the most variance for the functional profiles, was highly 

correlated with several taxa, including the Lachnospiraceae family (Spearman’s r = 0.86, P = 5.7 

x 10-99) and the Desulfovibrionaceae family (Spearman’s r = 0.72, P = 1.9 x 10-53) 

(Supplementary Table 2). Because we observed gradient stratification in taxonomic composition 

and functions in the gut microbiome data, we next detected three enterotypes using partitioning 

around medoid (PAM) clustering of Bray-Curtis distance of species abundance. Each enterotype 

is identifiable by the levels of Firmicutes, Bacteroidetes and Verrucomicrobiota respectively 

(Figure 3.1a). Previous studies reported distinct enterotypes dominated by Bacteroides, 

Prevotella and Ruminococcaceae in human gut. We observed clusters dominated by different 

taxa as compared to humans, which is likely due to the distinct overall gut microbiota composition 

detected in these two mammals. 

To identify microbial species that shape the enterotypes, we summarized the top abundant 

species (relative abundance > 0.1% and present at least > 20% mice) into co-abundance groups 

(CAGs) by co-occurrence scores (Figure 3.1b). The Bacteroidetes-dominated CAG contained 

mostly Bacteroidetes taxa including Muribaculaceae, the most abundant family in mouse gut 

(Lkhagva et al., 2021), (Duncaniella muris, Duncaniella freteri, Duncaniella dubosii, 

Muribaculaceae CAG-495 sp., Muribaculaceae CAG-873 sp.), Bacteroides genus (Bacteroides 

acidifaciens, Bacteroides sp.) and Alistipes sp. The Firmicutes-dominated CAG consisted mostly 

of Firmicutes taxa including Lachnospiraceae family (Roseburia sp., Dorea sp., Acetatifactor sp., 

Sporofaciens sp., Kineothrix sp. and Schaedlerella arabinosiphila), Oscillospiraceae family 

(Lawsonibacter sp., Enterenecus sp. and Pelethomonas sp.) and Proteobacteria including 

Bilophila sp. 
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Associations between gut microbiome features and host genetics  

To identify associations between mouse genomic variation and gut bacterial features, we 

performed genome-wide association analysis and mapped the abundance of bacterial functions, 

taxa and metabolic pathways to the mouse genome (Figure 3.2a). We observed 646 functions, 

138 taxa and 109 pathways that were associated with at least one significant locus by genome-

wide significance cutoff (P < 4 x 10-6). We further examined the density of these significantly 

associated gut microbial traits over the whole mouse genome and identified a GWAS hotspot on 

chromosome 3 at 113-115 Mbp; this genomic locus was associated with 347 different functions. 

Pathway enrichment analysis using Fisher’s exact test revealed that genes encoding for bacterial 

flagellar assembly, bacterial chemotaxis and bacterial motility proteins were significantly 

overrepresented among the functional traits mapping to this GWAS hotspot (Figure 3.2b).  

The genomic regions identified by GWAS most likely contain candidate gene/genes that 

are in strong linkage disequilibrium (LD) with the peak SNP. Nine protein coding genes are in the 

LD region (determined by correlation r2 with peak SNP > 0.8) at chromosome 3 GWAS hotspot, 

including mouse amylase cluster genes (Amy1, Amy2a1, Amy2a2, Amy2a3, Amy2a4 and 

Amy2a5), Rnpc3, Col11a1 and Olfm3 (Figure 3.2c). Gene expression data were available from 

a subset (n = 4-8 mice/ strain; 40 strains) of the same Ath-HMDP mice (Bennett et al., 2015). We 

searched for candidate genes by correlation between functions’ PC1 and these candidate genes 

and found a significantly correlation for Amy1 gene (Supplementary Figure 3.3a,b). In humans, 

the amylase gene copy number is associated with nearby SNPs, structural haplotypes of the 

amylase locus (Usher et al., 2015), and gut microbiome composition (Poole et al., 2019). In 

addition, a previous study showed that individuals with higher amylase gene copy number had 

higher levels of Firmicutes, the primary phylum containing flagellated bacteria in the human gut 

(Poole et al., 2019). Our data suggested that genomic variants of the amylase gene locus in mice 

might be associated with abundance of bacterial functions. 
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Because of multiple functional traits mapped to this hotspot locus, we also found that the 

PC1 of function abundance mapped to the same locus as expected (Figure 3.3a). PC1 explained 

the most variance of microbial functions, which are also clustered by the three enterotypes 

(Supplementary Figure 3.1b). The lead SNP rs31001780 has two alleles, A and G, which are 

associated with the enterotypes (Figure 3.3b). More specifically, mice with the allele A at SNP 

rs31001780 had higher Firmicutes and lower Bacteroidetes levels in the gut (Figure 3.3c,d). The 

other genetic locus associated with the enterotypes was at Chr1 (Figure 3.3e). This locus has 

the lead SNP rs31965376 with two alleles, A and T, which are associated with Akkermansia levels 

in the gut (Figure 3.3f-h). 

 

Co-abundance groups (CAGs) are associated with bacterial carbohydrate metabolism 

To explore potential bacterial functions and pathways that were modulated by enterotype 

associated SNPs. We examine the metabolic niche differences between the two identified CAGs, 

we first compared correlations between functions from starch and sugar metabolism pathway with 

the species abundance from two CAGs (Supplementary Figure 3.4). Glycoside hydrolases are 

enzymes that catalyze the hydrolysis of the glycosidic linkage in sugars. Glucosidases that 

breakdown oligo- and disaccharides, such as amylosucrase (K05341, predicted to degrade 

sucrose), b−glucosidase (K05350), b−fructofuranosidase (K01193) and oligo−1,6−glucosidase 

(K01182), were associated with Firmicutes species. a−amylase (K07405 and K01176, predicted 

to degrade starch), endoglucanase (K01179, predicted to degrade cellulose), dextranase 

(K05988, predicted to degrade dextran) and pullulanase (K01200, predicted to degrade pullulan), 

were associated with Bacteroidetes species. In addition, bacteria species from Firmicutes CAG 

were positively correlated with sugar transport system and phosphotransferase system (PTS).  

Higher mouse amylase gene expression was associated with higher gut Firmicutes levels 

(Lachnospiraceae family) and lower Bacteroidetes levels (Muribaculaceae family) representing 
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two enterotypes. We reasoned that the variant of host amylase genes could lead to different 

carbohydrates available in the gut for microbes. This in turn would lead to distinct gut microbial 

community (enterotype) that has different metabolic capacity. To test this hypothesis, we 

characterized gut microbiome by shotgun metagenomic sequencing from three mouse strains 

with a variety of amylase gene copy number (CN): C57BL/6J (B6) has high amylase CN (Amy1, 

Amy2a1, Amy2a2, Amy2a3, Amy2a4, Amy2a5, Amy2b, Amy2-ps1); NZO/HLtJ (NZO) has 

medium amylase CN (Amy1, Amy2a1, Amy2a2, Amy2b, Amy2-ps1); CAST/EiJ (CAST) has low 

amylase CN (Amy1, Amy2a2, Amy2-ps1). These mice were fed a high carbohydrate diets for 16 

weeks. We found the abundance of Muribaculaceae family is significantly higher in CAST mouse 

compared to those in B6 and NZO (Figure 3.4a) and the bacteria alpha-amylase enzyme (K07405) 

are higher in CAST compared to those in B6 and NZO (Figure 3.4b). Furthermore, recent studies 

showed that Muribaculaceae, who have the starch utilization genes, were dramatically more 

abundant in acarbose-treated mice (Smith et al., 2019, 2021), Acarbose inhibits α-amylase activity 

in the small intestine, which resulted in increased starch availability in the lower digestive tract. 

These results suggest that lower copy number of amylase genes from mouse genome resulted in 

increased Muribaculaceae abundance in the gut. These results also support the notion that 

genetic variation is amylase gene region is causal for enterotype associated variants at 

Chromosome 3 in mice.  

 

Enterotype species are associated with host physiology traits 

We next explored the associations between CAG species with previously reported host 

cardiometabolic phenotypes for these mice. Species from the two CAGs discussed above showed 

distinct associations (Figure 3.5a). Atherosclerotic lesion size was positively associated with 

Bacteroides sp. (Spearman’s r = 0.35, P = 4.1 x 10-6) and Bilophila sp. (Spearman’s r = 0.17, P 

= 4.4 x 10-2) and negatively correlated with Roseburia sp.  (Spearman’s r = -0.31, P = 5.6 x 10-5)  
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as reported in a previous study (Kasahara et al., 2018). We further identified positive associations 

for Turicimonas muris (Spearman’s r = 0.18, P = 0.03), Atopobiaceae bacterium sp. (Spearman’s 

r = 0.2, P = 0.015) and negative associations for Dorea sp. (Spearman’s r = -0.29, P = 2 x 10-4) 

and Enterenecus sp. (Spearman’s r = -0.16, P = 0.05). Plasma levels of HDL and LDL/VLDL were 

positively associated with bacteria from Firmicutes CAG and negatively associated with bacteria 

from Bacteroidetes CAG. Liver fibrosis was negatively associated with Bacteroidetes CAG 

species such as Bacteroides sp. and Muribaculaceae bacterium and positively associated with 

Firmicutes CAG species such as Sporofaciens sp., Enterenecus sp. And Kineothrix sp. These 

results indicated the host physiology phenotypes are highly associated with gut microbiome 

enterotypes (Firmicutes and Bacteroidetes CAG) in the mice. 

 

Gut bacterial flagella is causally associated with host phenotypes 

We further examined whether other gut microbial function abundances associated with 

enterotypes with a focus on bacterial flagellar genes as they were overrepresented among the 

functions that mapped at Chr3 locus and the noteworthy characteristic that distinguish Firmicutes 

and Bacteroidetes CAGs (Supplementary Figure 3.5). We observed a high correlation between 

fliC abundance (K02406; encoding flagellar filament structural protein) with LDL+VLDL 

cholesterol (Spearman’s r= 0.31, P = 5.8 x 10-10), HDL cholesterol (Spearman’s r = 0.17, P = 1.8 

x 10-3), liver fibrosis area (Spearman’s r = 0.17, P = 2.5 x 10-3), liver cholesterol levels 

(Spearman’s r = 0.24, P = 4.1 x 10-5) and liver triglycerides (Spearman’s r = -0.27, P = 4.3 x 10-

6) (Supplementary Figure 3.6a). We also detected correlation between gut bacterial fliC 

abundance with aortic lesion area size in male mice (Spearman’s r = 0.2, P = 0.052). Structural 

variations in flagellin genes determine the recognition by host Toll-like receptor 5 (TLR5) and 

antibody responses (Bourgonje et al., 2023; Clasen et al., 2023). We examined the most 

abundant (relative abundance > 0.01%) flagellin genes, from Lachnospiraceae (Roseburia, Dorea) 
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and Desulfovibrionaceae (Desulfovibrio) family, and their individual associations with the host 

phenotypes (Supplementary Figure 3.6b). We found the conserved N-terminal and C-terminal 

motifs from flagellin genes which are important for TLR5 binding and activation, but the amino 

acid variations in these motifs may determine the different associations with the host phenotypes. 

We next performed bi-directional Mendelian randomization (MR) to assess whether gut 

bacterial flagellar causally contributes to host traits. We focused on gut bacterial flagellin encoding 

gene fliC abundance, as this trait was associated with four independent genetic variants with P < 

1 x 10-4, which were used as instrument variables in MR. We carried out inverse variance weighted 

(IVW) test using fliC abundance as exposure and nine clinical traits as outcome. We observed 

significant causal relationships between gut bacterial fliC with liver fibrosed area (P = 7.3 x 10-3) 

and HDL cholesterol (P = 4.6 x 10-4) (Figure 3.5b). When we tested MR considering clinical traits 

as exposure and fliC abundance as outcome, we didn’t observe significant causal effects (Figure 

3.5c).  
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3.4 Discussion 

Genome-wide association studies have identified multiple host genomic loci associated 

with gut microbiome in humans and mice, however most of these efforts have many of which 

focused on microbial organismal composition and there is lack of evidence linking specific 

functions and pathways with host genetic variation. Additionally, gut microbiome enterotypes were 

described in human cohorts where a small number of bacterial taxa determines the stratification 

of whole community, but no such study conducted in large genetically diverse mouse cohort so 

far. Our work comprehensively characterized gut microbiome composition, functions, and 

metabolic pathways in the Ath-HMDP mouse cohort.  We identified three enterotypes dominated 

by different phyla including Firmicutes, Bacteroidetes and Verrucomicrobiota. We further found 

that the enterotypes were associated with bacterial taxa (Firmicutes and Bacteroidetes CAGs) 

and microbial functions (starch and sugar metabolism and flagellar assembly). The Bacteroidetes 

CAG included many bacteria from Muribaculaceae, the most abundant family in mouse gut 

(Lkhagva et al., 2021).  

Using genetic mapping, we identified host genomic loci associated with bacterial taxa, 

functions and pathways, where two of these loci were associated with enterotypes. The genetic 

variant rs31001780 (A/G) at Chr3 locus was significantly associated with Firmicutes and 

Bacteroidetes enterotypes and genetic variant rs31965376 (A/T) at Chr1 locus was significantly 

associated with the Verrucomicrobiota enterotype. Importantly, expression level of Amy1 gene, 

which spans in LD region of Chr3 locus, was correlated with Firmicutes, Bacteroidetes and 

Verrucomicrobiota. Given the same carbohydrate rich diets, mouse genetic variants of Amy1 gene 

may induce different carbohydrate accessibility for gut microbiota and shape the different 

enterotypes. In humans, the amylase gene copy number determines the abundance of gut and 

oral microbiome; individuals with higher amylase gene copy number show higher levels of many 

genera within the Firmicutes in the gut (Poole et al., 2019), which aligns with our results in in mice; 

i.e.,  Amy1 gene expression is positively associated with Firmicutes abundance. Bacteria in this 
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enterotype harbors different metabolic capacity.  We reason that the differences in sugar and 

starch metabolism between Firmicutes and Bacteroidetes CAG species, may explain how genetic 

variants of Amy1 gene shapes the enterotypes in mouse gut. Previous work showed that 

acarbose-treated mice show increased abundance of the Muribaculaceae family (Smith et al., 

2019, 2021). Analyses of genome content revealed the starch utilization genes from 

Muribaculaceae MAGs (Smith et al., 2021). We found Muribaculaceae were more abundant in 

low amylase gene copy number mouse CAST. Although loss of function mouse experiment (Amy1) 

should be conducted to eliminate the effects of other genetic variants to gut microbiome in the 

future. 

We also found the enterotype associated bacteria species correlated with host 

cardiometabolic phenotypes, especially the bacterial flagellin causally associated with increased 

liver fibrosed area and HDL cholesterol levels. Previous studies showed that gut microbiome 

partially explained the variations of plasma triglyceride and HDL cholesterol levels in human (Fu 

et al., 2015). Another study showed that the high-fat diet increased flagellated bacteria in the gut, 

which increased apolipoprotein A1 (ApoA1) production and HDL cholesterol levels in mice (Yiu et 

al., 2020). Interestingly, we also observed gut Firmicutes levels and bacterial fliC abundance were 

significantly positively correlated with ApoA1 gene expression levels in liver. Mendelian 

randomization (MR) seeks to find causal effects between phenotypes. Successful applications of 

MR in humans revealed the causal relationships between gut microbiome and other molecular 

traits, including blood metabolites (Liu et al., 2020), short-chain fatty acids (Sanna et al., 2019), 

and host metabolic traits (Qin et al., 2020; Rühlemann et al., 2021). To our best knowledges, our 

study is the first MR application of gut microbiome in genetically diverse mouse cohort. Our MR 

results confirmed the casual relationship between gut flagellated bacteria and plasma HDL 

cholesterol levels. We further reasoned that not only high-fat diet can increase the flagellated 

bacteria in the gut, but the amylase gene copy number can also affect flagellated bacteria 

abundance. A recent study showed bacteria flagellin gene variants from Lachnospiraceae family 
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were associated with TLR5 activation. We also found that nD1 TLR5 epitope motif in fliC gene 

were associated differently with host physiology phenotypes, including atherosclerotic lesion. This 

indicated the importance of bacterial genetic variations in gut microbiome association studies. A 

recent study found bacterial SNPs in human gut microbiome were associated with host BMI 

(Zahavi et al., 2023). Future investigation of bacterial SNPs in the mouse gut microbiome, 

especially in genetically diverse cohort such as HMDP, is required for a better understanding of 

their associations with the host.  

Together, our work highlights how host genetics can shape different microbial enterotypes 

in mouse gut and identifies a potential candidate host gene involved. The microbial enterotype 

associated functions and pathways are the consequence of host genetic variants and are also 

the causes of host cardiometabolic phenotype variations, making them pivotal during host-gut 

microbiome interactions. 
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3.5 Methods 

Mouse cohort  

Male and female mice from the F1 Ath-HMDP panel are maintained in a temperature and 

humidity controlled environment under a 12 h light/dark cycle (lights on at 6:00 and off at 18:00). 

Mice were housed by strain. All mice were fed a high fat diet (33 kcal % fat from cocoa butter) 

supplemented with 1% cholesterol (Research Diets D10042101) for 16 weeks. Cecum contents 

were collected after animals were euthanized. Clinical phenotypes for this cohort was described 

in a previous study (Bennett et al., 2015).  

 

Metagenomic DNA sequencing 

Cecal DNA was extracted from individual mice using the PowerSoil DNA Isolation Kit. 

DNA concentration was verified using the Qubit® dsDNA HS Assay Kit (Life Technologies, Grand 

Island, NY). Samples were prepared using Illumina NexteraXT library preparation kit. Quality and 

quantity of the finished libraries were assessed using an Agilent bioanalyzer and Qubit® dsDNA 

HS Assay Kit, respectively. Libraries were standardized to 2nM. Paired end, 150 bp sequencing 

was performed using the Illumina NovaSeq6000. Images were analyzed using the standard 

Illumina Pipeline, version 1.8.2. 

 

Profiling microbiome taxon 

Gut microbial taxon was profiled by MetaPhlAn4 pipeline (ver 4.0.2) using the MetaPhlAn 

database (mpa_vOct22) and the ChocoPhlAn pan-genome database 

(mpa_vOct22_CHOCOPhlAnSGB_202212) that contain a collection of around 1 million 

prokaryotic metagenome-assembled genomes (Blanco-Míguez et al., 2023). The taxonomy 

clades with average relative abundance > 0.01% and present in at least >20% samples are kept 

as microbial taxon for downstream analyses. The unclassified SBG taxa were further annotated 
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to Genome Taxonomy Database (GTDB) using 

mpa_vOct22_CHOCOPhlAnSGB_202212_SGB2GTDB.tsv data from MetaPhlan4 pipeline. 

 

Profiling microbiome function 

Raw reads quality control was performed using Trimmomatic (ver. 0.39) with default 

parameters. To identify and eliminate host sequences, reads were aligned against the mouse 

genome (mm10/GRCm38) using Bowtie2 (ver. 2.3.4) with default settings and microbial DNA 

reads that did not align to the mouse genome were identified using samtools (ver. 1.3; samtools 

view -b -f 4 -f 8). Samples with total read depth <10 million were excluded for downstream 

analyses. Quantification of microbial genes was done by aligning clean paired end reads to a 

previous published mouse gut microbiome non-redundant gene catalog (Zhang et al., 2023) using 

Bowtie2 (ver. 2.3.4) and default parameters. RSEM (ver. 1.3.1) was used to estimate microbial 

gene abundance. Relative abundance of microbial gene counts per million (CPM) were calculated 

using microbial gene expected counts divided by gene effective length then normalized by the 

total sum. To obtain abundance information for microbial functions, CPM of genes with the same 

KEGG orthologous (KO) annotation were summed together. In case there were multiple KO 

annotations for a single gene, we used all KO annotations.  

 

Microbiome pathway profiling 

Gut microbial pathways were profiled using the HUMAnN3 pipeline (ver 3.0.0), the 

MetaPhlAn database (mpa_v20_m200), the ChocoPhlAn pan-genome database 

(v296_v201901b) and the UniRef90 protein database (ver 0.1.1) (Beghini et al., 2021). Pathways 

with average relative abundance > 0.01% detected in at least >20% samples were used for 

downstream analyses. 

 

Enterotype clustering 
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Gut microbiome data was clustered using partitioning around medoid (PAM) clustering via 

pam() function from R package cluster (ver. 2.1.2). The Bray-Curtis distance of species 

abundance was used for PAM clustering. The dominant phylum in each cluster was determined 

by highest abundant taxon comparing to other clusters. 

 

Microbial co-abundance groups 

Similarity scores between species were calculated using CCREPE (compositionality 

corrected by renormalization and permutation) package (ver. 1.1.3) (Gevers et al., 2014). The 

species network was visualized using ggnet2() function from R package ggnet (ver. 0.1.0). 

 

Genome-wide association of gut microbiome 

The Mouse Diversity Genotyping Array was used for genotyping and gave approximately 

450,000 SNPs. SNPs used for each trait were filtered by the following criteria: the minor allele 

frequency (MAF) > 5% and missing genotype frequency < 10%. GWAS analyses was performed 

using FaST-LMM (Lippert et al., 2011) (Python ver. 3.7.4). When testing SNPs on chromosome 

N, all SNPs from other chromosome besides N were used for kinship matrix construction, that is 

leave out one chromosome (LOOC) approach. Sex was used as covariance in the regression 

model. GWAS significant thresholds were determined by permutation tests. The significant of a 

genome-wild association has threshold of P < 4 x 10-6. We defined a study-wide significance 

threshold of P < 4 x 10-6/ (2127+108+300) = 1.58 x 10-9. 

 

Heritability estimation 

Broad sense heritability for each trait was estimated using “repeatability()” function from 

“heritability” (ver. 1.3) R package. Narrow sense heritability for each trait was calculated using all 

filtered SNPs to estimate the proportion to explain total variations for each trait.  
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Data and statistical analysis 

All data integration and statistical analysis were performed in R (v3.6.3). Differences 

between groups were evaluated using unpaired two-tailed Welch’s t-test. Enrichment analysis 

was performed with Fisher’s exact test using a custom R function. Correlation analysis was 

performed with two-sided Spearman’s correlation using the R function ‘cor.test()’. For multiple 

testing, Benjamini-Hochberg false discovery rate (FDR) procedure was used to adjust P values. 

Data integration was performed using R packages dplyr (v1.0.6), tidyr (v1.1.3), reshape2 (v1.4.4) 

and data.table (v1.14.0). Heat maps were plotted using the R package pheatmap (v1.0.12). Other 

plots were created using the R packages ggplot2 (v3.3.3). 
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3.9 Figures 

 

 

Figure 3.1 Enterotypes and bacterial species co-abundance groups in the gut. a. Clustering 

identified three enterotypes in F1 Ath-HMDP mouse cohort. Significance was calculated by 

unpaired two-tailed Welch’s t-test and is designated as follows: ** p value < 0.01; *** p value < 

0.001; **** p value < 0.0001. ET-B, Bacteroidetes enterotype; ET-F, Firmicutes enterotype; ET-V, 

Verrucomicrobia enterotype. b. The correlation network of bacteria species (average relative 

abundance > 0.1 % and present in at least 20% of samples) using CCREPE with a checkerboard 

score, indicating a strong co-occurrence between species of the same behavior and a co-
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exclusion between taxa of a different behavior. Nodes represent the species and lines represent 

similarity score. Solid lines represent co-occurrence species and dashed lines represent co-

exclusion species.  
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Figure 3.2 Genetic association of gut microbiomes in Ath-HMDP. a. Genetic associations of 

gut microbial functions, taxa and metabolic pathways. The density of associated gut bacterial 

function features at mouse genome is showed on the top. Dashed lines represent significance 

thresholds determined by permutation tests (P < 4 x 10-6). b. Enrichment analysis using Fisher’s 

exact test for gut bacterial functions that are mapped at the hotspot locus on Chr3: 112–116 Mbp. 

c. SNP associations for PC1 of microbial functions at chromosome 3. Protein coding genes are 

displayed for Chr3: 112–116 Mbp region.  
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Figure 3.3 Genomic loci are associated microbial enterotypes in gut. a. Genomic locus at 

Chr3 113-114 Mbp is associated with PC1 of microbial functions. The lead SNP is an intron SNP 

rs31001780. Dashed lines represent significance thresholds determined by permutation tests (P 

< 4 x 10-6). b. Mouse with allele AA, AG or GG at SNP rs31001780 visualized in PCoA of species 

beta-diversity (left) and functions beta-diversity (right). b. Relative abundance of Firmicutes, 
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Bacteroidetes and Verrucomicrobia from mouse with AA or GG at SNP rs31001780. d. Number 

of mice with AA or GG at SNP rs31001780 in each of three enterotypes. e. Genomic locus at 

Chr1 193-194 Mbp are associated with Akkermansia muciniphila abundance. The lead SNP is 

rs31965376. Dashed lines represent significance thresholds determined by permutation tests (P 

< 4 x 10-6). f. Mouse with allele AA or TT at SNP rs31965376 visualized in PCoA of species beta-

diversity (left) and functions beta-diversity (right). g. Relative abundance of Firmicutes, 

Bacteroidetes and Verrucomicrobia from mouse with AA or TT at SNP rs31965376. h. Number of 

mice with AA or TT at SNP rs31965376 in each of three enterotypes. 
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Figure 3.4 Gut microbiome of high/medium/low amylase copy number mouse in high 

carbohydrate diet. a. Relative abundance of Muribaculaceae family in B6, NZO and CAST 

mouse fed on 16 weeks of high carbohydrate diet. b. Relative abundance of bacteria alpha-

amylase enzyme (K07405) in B6, NZO and CAST mouse fed on 16 weeks of high carbohydrate 

diet. Statistical difference between treatment groups was tested by unpaired two-sided Welch’s t- 

test. 
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Figure 3.5 Host phenotypes are associated with CAGs and gut bacteria flagellar. a. 

Spearman’s correlation between bacteria species and host physiology phenotypes. Bacteria 

species from Firmicutes CAG and Bacteroidetes CAG showed different associations. b. 

Bidirectional MR analysis between host clinical traits and gut bacterial flagellin gene abundance. 

MR results using gut bacterial fliC abundance as exposure and clinical traits as outcome. c. MR 

results using clinical traits as exposure and gut bacterial fliC abundance as outcome.  
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Supplementary Figure 3.1 Gut microbiota composition summary. a. The relative abundance 

of phyla levels taxa in Ath-HMDP mouse. b. The relative abundance of top 50 bacteria species 

and their prevalence in Ath-HMDP mouse cohort. 
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Supplementary Figure 3.2 Gut microbial species and functions in the F1 Ath-HMDP mice. 

a. PCoA showing community-level difference among mice in the cohort. Three major phyla show 

large inter-individual variance and stratify the mouse samples. b. PCoA visualizing the beta-

diversity of functions in the cohort. Three major phyla show large inter-individual variance and 

stratify the mouse samples.  
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Supplementary Figure 3.3 Amy1 gene expression level correlated with microbial 

enterotypes. a. Spearman’s correlation between candidate genes (Amy1, Rnpc3, Col11a1 and 

Olfm3) in Chr3 locus with PC1 of microbial functions. a. Spearman’s correlation between 

candidate genes (Amy1 and Rnpc3) in Chr3 locus with abundance of Firmicutes, Verrucomicrobia 

and Bacteroidetes. 

 

 



 

 

142 

 

 

Supplementary Figure 3.4 Bacteria starch and sugar metabolism is associated with 

microbial enterotypes species. a. Spearman’s correlation between bacteria species and 

bacterial functions involved in starch and sugar metabolism. Bacteria species from Firmicutes 

CAG and Bacteroidetes CAG showed different associations. 
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Supplementary Figure 3.5 Bacteria flagellar assembly genes are associated with microbial 

enterotypes species. a. Spearman’s correlation between bacteria species and bacterial 

functions involved in flagellar assembly. Bacteria species from Firmicutes CAG and Bacteroidetes 

CAG showed different associations. 
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Supplementary Figure 3.6 Correlation between gut bacterial fliC gene with host 

phenotypes. a. Spearman’s correlation between host clinical traits and gut bacterial flagellin gene 

abundance. b. Spearman’s correlation between host clinical traits and most abundant individual 

gut bacterial flagellin gene abundance from Lachnospiraceae and Desulfovibrionaceae family. 

The conserved N-terminal and C-terminal motifs from flagellin genes were aligned. 
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Comprehensive characterization of the gut microbiome in a population is a demanding 

task. This thesis leverages shotgun metagenomic methods to profile gut microbial composition, 

function and metabolic pathway in two genetically diverse mouse cohorts, the Diversity Outbred 

(DO) and the Hybrid Mouse Diverse Panel (HMDP). These datasets provide valuable references 

for future mouse gut microbiome research. The interindividual variation in gut microbiome 

observed in these cohorts is associated with host cardiovascular and metabolic phenotypes. This 

thesis work aims to further understand the effects of host genetics on gut microbiome and how 

gut microbiome-host interactions contribute to the host health outcomes. Applying of systems 

genetics methods in DO and HMDP cohorts, I further identified novel connections between gut 

microbiome and the host. This work provides the foundation for the future mechanistic studies 

and exploration of potential therapeutic avenues. 

Shotgun metagenomic sequencing allows us to characterize the microbial functions and 

metabolic pathways in addition to the microbial compositions. I performed de novo assembly and 

used reference-based methods to quantify microbial phenotypes using the metagenomic reads. 

A limitation of current metagenomic studies is the lack of robust references to annotate microbial 

genes and genomes accurately. This leads to a considerable proportion of genes from analyzed 

results are taxonomically or functionally uncharacterized. Bioinformatic techniques to analyze 

shotgun metagenomic data have been developed rapidly in the past five years. New tools and 

algorithms are enabling us to profile the gut microbiome more efficiently and accurately (Blanco-

Míguez et al., 2023, p. 4). Together with the exponentially increase in the number of the reference 

and metagenome-assembled genomes available over time, re-analyzing the metagenomic data 

in the future using update databases and tools would allow to detect rare bacteria or 

uncharacterized microbial functions present in these mice.  

Previous efforts for identification of host genetic associations to gut microbiome are limited 

by the environmental cofounding variables in humans (Sanna, 2022), or only focused on microbial 

composition in mice (Kemis et al., 2019; Org et al., 2015). In Chapter 2, we leveraged the DO 
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mouse cohort, a genetically diverse population derived from eight founder strains including five 

common laboratory mouse strains (A/J, C57BL/6J, 129S1/SvImJ, NOD/ShiLtJ, NZO/HLtJ) and 

three wild derived mouse strains (CAST/EiJ, PWK/PhJ, WSB/EiJ). These eight strains were used 

for high-resolution genetic mapping of gut microbiome. The DO mice were housed under strict 

and identical environment conditions to eliminate environmental cofounding variables. The DO 

mice were fed with high fat and high sucrose diets based on the previous study showed that this 

diet elicits a wide range of metabolic responses in the eight founder strains that are associated 

with microbiome changes (Kemis et al., 2019). In addition, the diversity of gut microbiome is higher 

in HF/HS diet mice compared with low fat diet mice, thus mice fed by HF/HS offer more gut 

microbiome traits to investigate (Kemis et al., 2019).  

We found overlapping QTL for the abundance of Akkermansia muciniphila and cacal 

levels of ornithine lipids in DO mice. Interestingly, we identified multiple genomic loci 

(Chromosome 1, Chromosome 2, Chromosome 7, Chromosome 12, Chromosome 15) that were 

associated with these two traits. This indicates the abundance of A. muciniphila and cacal levels 

of ornithine lipids (OL) are polygenetic. Indeed, I compared the co-mapping between eQTL genes 

in small intestine with A. muciniphila QTL to select one of the candidate host gene Atf3 for 

validation experiments. However, we didn’t see significant difference of gut A. muciniphila 

abundance, but only the trend, in Atf3 knockout and wild type mice. These suggest that there 

exist more than one QTL, dependently or independently, associated with the abundance of A. 

muciniphila and cacal levels of OL. The current genetic mapping methods focus on single QTL 

model, that is considering no interactions between genomic loci to a trait. Applying multiple-QTL 

model in the future would allow to better identify the genetic associations of polygenetic traits such 

as the abundance of A. muciniphila. 

We found the A. muciniphila derived OL modulate lipopolysaccharide-induced cytokine 

responses in mouse macrophage cells, suggesting the immunomodulatory role of OL to the host. 

This inhibitory effects of OL on LPS-induced cytokines aligned with the observation from previous 
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studies (Kawai et al., 1991; Kawai & Akagawa, 1989). Other studies showed that both natural and 

synthetic molecules that can inhibit TLR4-mediated LPS signaling—compounds that have anti-

inflammatory and anti-neuropathic pain activities in vivo. Thus, further investigation using mouse 

model need to be done to directly test the OL effects on host in vivo. In addition, we hypothesized 

the anti-inflammatory effects of OL to the host may through the TLR4 pathway. Additional 

experiments using TLR4 knock out or knock down macrophage cells will provide a better 

understanding of the molecular mechanisms of OL-host interactions in the future. 

In Chapter 3, we comprehensively characterized gut microbiome composition, functions, 

and metabolic pathways in 90 inbred hyperlipidemic mouse strains from the HMDP. We identified 

the genomic loci that were associated with microbial enterotypes in the gut. The genetic variant 

rs31001780 (A/G) at Chr3 locus was significantly associated with Firmicutes and Bacteroidetes 

enterotypes. We found the expression level of Amy1 gene, which spans in LD region of Chr3 

locus, was positively correlated with Firmicutes (Lachnospiraceae family) and negatively 

correlated with Bacteroidetes (Muribaculaceae family) abundance in the gut. We reasoned that 

amylase activity differences, that is caused by genetic variantion including single nucleotide 

polymorphisms and gene copy variants in Amy1 gene region, lead to different sugar and starch 

availability in the gut and subsequently modulate the abundance of Muribaculaceae bacteria that 

contain starch utilization genes in their genomes. This hypothesis is supported by the previous 

evidence that humans with higher amylase gene copy number have more Firmicutes in their gut 

(Poole et al., 2019). We further examined this idea in B6 and CAST mice, which vary in Amy copy 

number. We found Muribaculaceae and bacterial alpha-amylase genes were more abundant in 

the low amylase gene copy number CAST strain and less abundant in the high amylase gene 

copy number mouse B6 strain. Further investigation of amylase activity effects on gut microbiome 

using mouse models need to be done to validate this hypothesis. 

We found enterotype associated bacterial species correlated with host cardiometabolic 

phenotypes, especially the bacterial flagellin, which was causally associated with increased liver 
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fibrosed area and HDL cholesterol levels. Previous studies showed that gut microbiome partially 

explained the variations of plasma triglyceride and HDL cholesterol levels in human (Fu et al., 

2015). Another study showed that the high-fat diet increased flagellated bacteria in the gut, which 

increased apolipoprotein A1 (ApoA1) production and HDL cholesterol levels in mice (Yiu et al., 

2020). Interestingly, we also observed gut Firmicutes levels and bacterial fliC abundance were 

significantly positively correlated with ApoA1 gene expression levels in liver. Mendelian 

randomization (MR) seeks to find causal effects between phenotypes. Successful applications of 

MR in humans revealed the causal relationships between gut microbiome and other molecular 

traits, including blood metabolites (Liu et al., 2020), short-chain fatty acids (Sanna et al., 2019), 

and host metabolic traits (Qin et al., 2020; Rühlemann et al., 2021). To our best knowledges, our 

study is the first MR application of gut microbiome in genetically diverse mouse cohort. Our MR 

results confirmed the casual relationship between gut flagellated bacteria and plasma HDL 

cholesterol levels. We further reasoned that not only high-fat diet can increase the flagellated 

bacteria in the gut, but the amylase gene copy number can also affect flagellated bacteria 

abundance. A recent study showed bacteria flagellin gene variants from Lachnospiraceae family 

were associated with TLR5 activation. We also found that nD1 TLR5 epitope motif in fliC gene 

were associated differently with host physiology phenotypes, including atherosclerotic lesion. This 

indicated the importance of bacterial genetic variations in gut microbiome association studies. A 

recent study found bacterial SNPs in human gut microbiome were associated with host BMI 

(Zahavi et al., 2023). Future investigation of bacterial SNPs in the mouse gut microbiome, 

especially in genetically diverse cohort such as HMDP, is required for a better understanding of 

their associations with the host.  

This thesis presents a comprehensive analysis of host genetic associations to gut 

microbiome in mouse. Because of the fact that environment dominates over host genetics in 

shaping gut microbiota (Rothschild et al., 2018), the genetic associations identified in this thesis 

can be dependent on environmental variables, especially diets. In both Chapter 2 and Chapter 3, 
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studies were conducted using the same diet among all individuals from the same cohorts. I expect 

some of the identified genetic associations are diet- dependent. In the future, genetic associations 

need to be done in different diets to learn the gene by environment (GxE) effects on gut 

microbiome. Further efforts need to be considered to enhance the gut microbiome-genetic 

associations research in mouse, using a visualization platform such as that for lipidome study 

(Linke et al., 2020), or the platform integrating association results across studies and cohorts.  

Shotgun metagenomic sequencing of microbial DNA allows us to profile microbial genes. 

However, genes express differently among the same bacterial genome. Studies showed that the 

microbiome pathways are transcribed by a limited subset of microorganisms encoding them 

metagenomically (Abu-Ali et al., 2018) and gene expression varies significantly among subjects 

with metagenomic concordance (Franzosa et al., 2014). Therefore, RNA-sequencing of gut 

microbial community (i.e., metatranscriptome) need to be considered for future genetic 

association study. 

The gut microbiome is a high dimensional trait, modulated by environmental and genetic 

factors. The interplay between gut microbiome and host is complex. The work done in thesis 

enhances our understanding of effects of host genetics on gut microbiome and provides the 

framework for mechanisms investigation of gut microbiome-host interactions in the future. 
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A.1 Abstract 

The microbes and microbial pathways that influence host inflammatory disease 

progression remain largely undefined. Here, we show that variation in atherosclerosis burden is 

partially driven by gut microbiota and is associated with circulating levels of uric acid (UA) in mice 

and humans. We identify gut bacterial taxa spanning multiple phyla, including Bacillota, 

Fusobacteriota, and Pseudomonadota, that use multiple purines, including UA as carbon and 

energy sources anaerobically. We identify a gene cluster that encodes key steps of anaerobic 

purine degradation and that is widely distributed among gut-dwelling bacteria. Furthermore, we 

show that colonization of gnotobiotic mice with purine-degrading bacteria modulates levels of UA 

and other purines in the gut and systemically. Thus, gut microbes are important drivers of host 

global purine homeostasis and serum UA levels, and gut bacterial catabolism of purines may 

represent a mechanism by which gut bacteria influence health. 
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A.2 Introduction 

Metabolic disorders including obesity, type 2 diabetes, and atherosclerosis have 

historically been viewed as lipid conditions primarily driven by overindulgence of calorie-dense 

foods. However, it is now widely appreciated that chronic inflammation plays a central role in the 

development and progression of these disorders (Wolf & Ley, 2019). Atherosclerosis, the leading 

cause of cardiovascular disease (CVD), is characterized by vascular inflammation and is 

influenced by multiple genetic and environmental factors (Lusis, 2000; Stylianou et al., 2012; Wolf 

& Ley, 2019). Large-scale genome-wide analyses in human populations have identified over 100 

loci significantly associated with atherosclerosis itself (Kessler & Schunkert, 2021) and hundreds 

of additional loci for traits associated with atherosclerosis such as plasma lipids, obesity, and 

diabetes (MAGIC et al., 2010; Selvaraj et al., 2022; Xue et al., 2018, p. 143). Nevertheless, while 

genetics significantly influences atherosclerosis, the environment, especially diet, also plays a 

major role in its progression. Furthermore, several recent studies have provided evidence 

suggesting that dietary contributions to disease progression are often mediated by the gut 

microbiome (Kasahara et al., 2018; Koeth et al., 2013; Wang et al., 2011). 

The gut microbiome exerts profound influence on metabolism and inflammatory diseases 

(Brandsma et al., 2019; Tilg et al., 2020). Diet and host-derived factors modulate the composition 

of the gut microbiome, which in turn transforms dietary components consumed by the host, 

generating bioactive molecules that interact with the immune system and virtually every host 

organ, including the vascular system. Changes over the last century in food production, dietary 

habits, antibiotic usage, and lifestyle have caused major changes in the microbiome and have 

affected human health in discordant ways (Bolte et al., 2021; De Filippo et al., 2010; Modi et al., 

2014): the prevalence of acute infectious diseases has decreased, while it increased for chronic 

inflammatory diseases. Furthermore, several diet-derived gut-bacterially produced metabolites 

have been uncovered as potential drivers of metabolic and cardiovascular ailments. These 

metabolites constitute a direct link between environmental exposures and host cellular function 
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and encompass several uremic toxins (i.e., waste products that cannot be eliminated properly by 

subjects with impaired kidney function), including p-cresyl sulfate, indoxyl sulfate, trimethylamine-

N-oxide (TMAO), and phenylacetylglutamine (Beker et al., 2022). For example, dietary choline, 

betaine, and carnitine serve as substrates for TMAO production, which is generated in the liver 

from gut-bacterially produced trimethylamine (TMA) (Wang et al., 2011). TMAO enhances 

inflammation and aortic thrombosis in mice and it is associated with CVD risks in humans (Tang 

et al., 2013; Wang et al., 2011; W. Zhu et al., 2016). More recently it was found that 

phenylacetylglutamine, synthesized by the microbiota from dietary protein, enhances platelet 

activation and thrombosis via host G-protein-coupled receptors (Nemet et al., 2020). Together, 

this evidence supports the notion that gut bacteria metabolism contributes to CVD-related traits 

by modulating abundance of uremic toxins in circulation. 

Several purines, including xanthine, hypoxanthine, and uric acid (UA) are also considered 

uremic toxins (Falconi et al., 2021) and contribute to several symptoms observed in subjects with 

chronic kidney disease (Beker et al., 2022; Falconi et al., 2021). UA—the end product of the 

metabolic breakdown of purines in humans—is mostly studied for the complications it causes 

when its concentration reaches saturation levels, forming pro-inflammatory crystals that deposit 

in joints (e.g., gout). However, a recent study showed that concentrations of UA within the 

solubility range can promote atherosclerosis via induction of AMP-activated protein kinase 

(AMPK)-mediated inflammation (Kimura et al., 2020). UA exacerbates inflammation, endothelial 

dysfunction, increases the renin-angiotensin-aldosterone system activity (Falconi et al., 2021), 

and it is increased in patients with hypertension and heart failure (Falconi et al., 2021). Several 

studies have suggested that pharmacological interventions effective at reducing UA production 

or increasing its excretion in hyperuricemic patients improves cardio-renal outcomes (Weisman 

et al., 2019), although these benefits are not consistently observed. While the kidneys play a 

major role in regulating levels of UA in circulation, a significant fraction of this metabolite is 

secreted into the intestine (Méndez-Salazar & Martínez-Nava, 2022), and a recent metagenomic 
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study identified bacterial pathways associated with blood levels of UA (Chu et al., 2021). However, 

no causal relationships have been established between abundance of this uremic toxin and 

specific gut bacteria, and although the bacterial mechanisms of anaerobic purine metabolism 

have been studied biochemically, their genetic underpinnings remains undefined (Hartwich et al., 

2012). 

We sought to examine the role of the gut microbiome on atherosclerosis and identify 

potential microbial pathways that contribute to disease burden. First, we transplanted microbial 

communities derived from mouse strains with disparate atherosclerosis phenotypes into germ-

free (GF) Apolipoprotein E knockout (ApoE KO) mice. We found that microbial-driven variation on 

atherosclerosis progression was associated with abundance of purine metabolites including UA. 

We also observed that this pro-inflammatory metabolite was associated with atherosclerosis 

burden and gut microbial features in a human cohort. We identified bacterial taxa able to degrade 

purines anaerobically, uncovered a gene cluster encoding key components needed for anaerobic 

purine degradation, demonstrated environmental factors affecting its activity, and showed that 

colonization with taxa containing this locus lowered multiple purines in the gut and UA 

systemically in mice. Altogether, this work strengthens the connection between gut microbes and 

atherosclerosis and provides insights into how bacterial metabolism influences host biology. 
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A.3 Results 

Gut microbes modulate atherosclerosis progression and plasma metabolites associated 

with disease burden in mice 

Previous work revealed a large degree of variation in atherosclerosis burden among 100 

inbred strains of mice from the Hybrid Mouse Diversity Panel (HMDP), which harbor distinct 

microbial communities (Bennett et al., 2015; Org et al., 2015). We hypothesized that the gut 

microbiome contributed to the variation observed in disease progression among HMDP strains. 

We transplanted cecal samples from four HMDP strains into GF ApoE KO recipient mice. We 

selected two strains that exhibited large atherosclerotic lesions (AXB10/PgnJ and BXD5/TyJ) and 

two strains that showed little signs of disease (BTBR T+tf/J and BXA8/PgnJ), hereinafter referred 

as “AXB10,” “BXD5,” “BTBR,” and “BXA8,” respectively. Transplanted mice were maintained on 

a chow diet supplemented with 0.2% cholesterol for 8 weeks. After this period, atherosclerotic 

lesions, gut microbiome composition, and disease biomarkers were evaluated (Figure A.1a and 

Supplemental Figure A.1). We found that mice colonized with cecal communities from HMDP 

donors prone to atherosclerosis development (i.e., AXB10 and BXD5) exhibited larger lesions 

compared with recipient mice colonized with samples from donors that showed little signs of 

atherosclerosis (i.e., BTBR and BXA8). These results support the notion that the gut microbiome 

contributes to the development of atherosclerosis and possibly to the variation in disease burden 

observed among the HMDP strains (Figure A.1b–g). Neither traditional CVD risk factors such as 

body weight and cholesterol, nor previously identified gut microbiota-derived metabolites 

including lipopolysaccharides (LPSs), TMAO, and short-chain fatty acids explained the 

differences in atherosclerosis burden observed among the transplanted mice (Supplementary 

Figure A.1). 

Shotgun metagenomic analyses of cecal contents from the transplanted mice identified 

1,649 functional features and 52 bacterial taxonomic features. Principal component analysis of 

functional features shows distinct clustering by donor strain (p value <0.001, PERMANOVA), 
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suggesting unique gut bacterial function profiles for each of the four HMDP strains used (Figure 

A.1). Pearson correlation analysis identified several bacterial functions associated with 

atherosclerosis lesion size among recipient mice (Supplementary Figure A.2a,b). These included 

several functions related to production and conversion of purines. We also observed that bacterial 

pathways including energy metabolism and amino acid metabolism were enriched among 

functions positively correlated with atherosclerosis lesion size, although these did not survive 

multiple hypothesis correction. 

To further investigate whether microbiota transplants impacted circulating metabolites 

associated with disease, we performed metabolome analysis of plasma samples using ultra-high 

performance liquid chromatography (uHPLC)-tandem mass spectrometry (MS/MS). A total of 682 

metabolites were measured (Table S1). Pearson correlation analyses identified purine 

metabolites including xanthine, xanthosine, inosine, and UA, positively associated with 

atherosclerotic lesions size (Figure A.1i,j). Altogether, these results may suggest that gut 

microbes influence atherosclerosis progression and abundance of purines in the blood of 

transplanted mice. 

 

Serum UA is correlated with gut microbial features and subclinical atherosclerosis in a 

human cohort 

UA is the end product of purine metabolism in humans, and it has been shown to cause 

inflammation (Braga et al., 2017; Kimura et al., 2020; Martinon et al., 2006), induce endothelial 

dysfunction (Khosla et al., 2005), and stimulate smooth muscle cell proliferation (Rao et al., 1991). 

We explored associations between atherosclerosis, gut bacteria, and UA in a human cohort 

previously characterized for gut microbiome and glucose homeostasis (n = 998) (Wu et al., 2020). 

Coronary artery calcium (CAC) score measurements were assessed for disease burden. 

Calcification of arteries is an accepted proxy for estimating overall plaque burden of 

atherosclerosis. We first classified individuals based on their CAC score status: CAC score = 0 
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(i.e., no detectable vascular calcification, n = 492) vs. CAC > 0 (n = 497). Logistic regression 

analysis revealed that distribution of UA concentrations was significantly different between 

individuals from these two groups (Figure A.2a) with individuals with CAC > 0 showing higher 

mean and median UA levels. Furthermore, Spearman correlation analysis for individuals with 

CAC score >0 showed a significant positive association between UA and CAC score (rho 

coefficient = 0.14, p value < 0.001, Figure A.2b). We then applied extreme gradient boosting 

(XGBoost) regression to identify gut bacterial taxa correlated with UA levels. XGBoost is a 

decision-tree-based ensemble machine learning algorithm that uses the gradient boosting 

method. The top 10 features associated with UA levels are shown in Figure A.2c and Table S2 

after adjusted for covariates (CAC score, Body Mass Index, gender, triglycerides, and 

HemoglobinA1c) in a mixed linear regression model. Interestingly, we found multiple taxa within 

the Clostridia class that were negatively associated with levels of UA. Altogether, these results 

suggest that the gut microbiome, particularly taxa within the Clostridia, may influence UA levels. 

These data are also consistent with gnotobiotic mouse work reported above and previous work 

connecting UA with CVD in humans (Agarwal et al., 2013; Drivelegka et al., 2020; Rahimi-Sakak 

et al., 2019; Sun et al., 2015). 

 

Gut microbiome modulates purines in cecum and circulation 

We next investigated whether the gut microbiome modulated abundance of purines in the 

intestine and circulation. We quantified purine-related metabolites, including nucleotides, 

nucleosides, and nucleobases by liquid chromatography-tandem mass spectrometry (LC-MS/MS) 

in cecal contents and plasma from GF mice and conventionally raised (Conv) animals (Tables 

S3A and S3B). We found that most purines were decreased in the cecal contents from GF mice 

compared with Conv mice, with a few exceptions being increased in GF mice, especially UA and 

allantoin, both terminal purine metabolites in mice (Figures A.3a,b). Given that cecal/fecal purines 
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arise from diet type, bacterial and host turnover, and metabolism, these analyses cannot establish 

the sources and fates of these compounds in the gut. 

Partial least squares-discriminant analysis (PLS-DA) of cecal purines showed separation 

of the two groups by principal components 1 and 2. While the separation for plasma samples was 

less evident (Supplementary Figures A.3a,b), we found that GF mice had significantly increased 

UA levels in plasma compared with Conv mice (Supplementary Figures A.3a,c). This result was 

confirmed using an enzymatic assay to quantify UA (Figure A.3c). These results again suggested 

that the gut microbiome modulates abundance of purines both in the gut and systemically and 

was the impetus for attempts to isolate anaerobic purine-degrading bacteria (PDB). 

 

Human gut bacteria degrade purines anaerobically 

The intestine is a key organ for purine homeostasis. Dietary purines are absorbed in the 

gut, resident microbes produce and recycle purines needed for their anabolism and ∼30% of the 

UA generated by the body is secreted into the intestine (Sorensen & Levinson, 1975; Yun et al., 

2017). We hypothesized that gut bacteria influence purine levels by metabolizing them to non-

purine products. While this notion has been previously discussed, isolates from the human or 

mouse gut able to grow on these metabolites anaerobically have not been identified. We 

attempted anaerobic enrichments using fecal slurries (human samples) on media supplemented 

with UA as the primary source of carbon and energy. Culture medium included non-fermentable 

acetate (often beneficial for butyrate-producing Firmicutes) plus 0.1% yeast extract as the sole 

complex nutrient. Enrichments were plated and colonies isolated on bilayer agar plates bearing a 

top agar layer supplied with saturating amounts of UA or other purines as described in the 

Methods section. We obtained several isolates from the Bacillota (Firmicutes) and 

Pseudomonadota (Proteobacteria) phyla including species identified as Enterocloster bolteae and 

Escherichia coli by 16S rRNA gene sequencing. Additional confirmatory assays were used to 

verify the identity of the E. coli isolate (designated “I-11,” see Methods). 
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Using the same medium, we verified growth and UA utilization by E. bolteae ATCC BAA-

613—the species type strain, which has been previously sequenced. We observed that 10-ml 

cultures of this strain supplemented with 12-mg UA degraded 49.6 μmol of substrate in a 24-h 

period, with accumulation of 106.9 μmol acetate, a known fermentation product of this organism 

(Song et al., 2003). HPLC and headspace gas chromatography (GC) analysis did not detect 

significant ethanol, formate, propionate, lactate, and butyrate accumulation under this condition. 

We then expanded our search for bacteria with this capability and by using methods 

described above screened a culture collection of 34 isolates encompassing gut-dwelling bacteria 

from six phyla (Supplementary Figure A.4; a representative subset of these species is shown in 

Figure A.4). The screen utilized monolayer plates containing no nitrogen (other than 0.1% yeast 

extract) or fermentable carbon or energy source, the same medium supplemented with soluble 

substrates (glucose or allantoin), or bilayer plates (briefly described above, see also Methods) 

containing insoluble purines (UA, adenine, or hypoxanthine). These assays demonstrated the 

anaerobic allantoin- and purine-dependent growth characteristics of these strains as evident by 

growth of the applied bacterial patch and a zone of disappearance of the insoluble purine 

substrates. Our screen showed evidence of purine utilization among the Bacillota (Firmicutes), 

Fusobacteriota, and Pseudomonadota (Proteobacteria) phyla (Figures A.4 and Supplementary 

Figure A.4), although this property was not universal among strains belonging to these phyla. Of 

particular note, these assays showed different purine utilization capacities among UA-degrading 

strains: (1) E. coli MS 200-1 and lab isolate E. coli I-11 showed greater UA utilization compared 

with the commonly used E. coli K12 strain (Figure A.4); (2) allantoin supported growth of E. 

bolteae and E. coli but not medically-relevant Clostridioides difficile or Edwardsiella tarda (Figure 

A.4); (3) adenine supported the growth of several strains of Proteobacteria (E. coli MS200-1, E. 

coli I-11, E. tarda) and Firmicutes (E. bolteae, E. asparagifome), but not C. difficile, C. sporogenes 

or E. coli K12) (Figures A.4 and Supplementary Figure A.4); (4) consistent with previous work, 

growth of Proteobacteria strains on UA was enhanced by the addition of formate (Supplementary 
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Figure A.4) (Iwadate & Kato, 2019), while the addition of formate had more modest effects, if any, 

for strains from other phyla tested, and did not appear to enhance the utilization of the more 

reduced purines (adenine, hypoxanthine, Supplementary Figure A.5a) in any of the strains tested. 

In multiple organisms, the ability to use UA was diminished or eliminated in media containing 

glucose or fructose, consistent with regulation by catabolite repression (Supplementary Figure 

A.4 and Supplementary Figure A.5b). It is also important to note that none of the six Bacteroides 

strains tested showed any growth on UA, allantoin, or adenine (Figures A.4 and Supplementary 

Figure A.4). 

Extensive biochemical analyses of environmental clostridial isolates has previously 

demonstrated molybdenum and selenium dependences for purine metabolism (Dürre & 

Andreesen, 1982, 1983; Schiefer-Ullrich et al., 1984). While no attempt was made to limit trace 

minerals—i.e., the medium contained a high amount of phosphate buffer plus low levels of yeast 

extract and cysteine (a possible source of Se contamination), and the inocula were prepared in 

rich medium—a requirement for micromolar additions of Mo and Se was evident for both species 

of Proteobacteria tested on UA (Supplementary Figure A.5b). However, these effects were not 

observed with the two Firmicutes tested, C. difficile and E. bolteae (Supplementary Figure A.5b). 

Additional assays did not show an effect of Fe, Co, Mn, Ni, W, or Zn supplementation on UA 

utilization by any of the strains tested (E. bolteae, C. difficile, E. coli MS 200-1, E. tarda, again the 

media were not rigorously depleted of these metals). Altogether, the results presented above 

suggested that common gut bacteria can use purines for carbon and energy, and that availability 

of other carbon sources and metals could modulate this process. 

 

PDB modulate abundance of purines in cecum and circulation 

To test the impact of PDB identified above in vivo, we created synthetic bacterial 

communities that varied in their capacity to degrade UA and used them to colonize GF mice. We 

colonized GF mice with a core community that included seven species spanning major phyla from 
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the human gut and that did not degrade purines in vitro as determined by the assays described 

above (and as described below they lack genes encoding functions necessary for anaerobic 

purine metabolism). These included Bacteroides caccae, Bifidobacterium dentium, Blautia 

hansenii, Bacteroides thetaiotaomicron, Coprococcus comes, Mitsuokella multacida, and 

Ruminococcus torques. Half of the animals were also colonized with three PDB, including E. 

bolteae, Hungatella hathewayi, and E. coli isolate I-11 (Figure A.5a). In vitro tests of UA utilization 

for each of the strains used in these communities are shown in Figure A.4 (highlighted in red), 

and their combined activities measured using fecal innocula verified that colonization with PDB 

was required for UA degradation (Figure A.5a). A third group of animals remained GF throughout 

the experiment. The engrafted bacterial communities were analyzed by COPRO-seq (community 

profiling by sequencing) analysis (Faith et al., 2011). All taxa included in these communities 

successfully colonized the gut of GF mice. E. bolteae was the most abundant among the three 

PDB (relative abundance: E. bolteae 19.5%, H. hathewayi 5.6%, and E. coli 0.9%; Figure A.5b). 

We next performed targeted quantification of purines, pyrimidines, and related metabolites in 

cecal contents and plasma (Tables S4A and Supplementary Figure A.4b). Global analysis of the 

data showed distinct patterns for cecal purine-related metabolites between GF mice and mice 

with the “core” or the “core plus PDB,” where nucleosides were increased, but nucleotides were 

decreased in the cecum of GF mice (Figure A.5c). Surprisingly, mice colonized with the core plus 

PDB community showed significantly higher levels of UA in the cecum compared with mice 

colonized with the core community, while cecal levels of other purines/nucleosides including 

hypoxanthine and allantoin were significantly reduced in mice co-colonized with the three PDB 

(Figure A.5d). It is important to note that these metabolites were detected at significantly higher 

concentrations in the gut of mice relative to UA (Figure A.5d; Table S4A). PLS-DA analysis 

separated plasma samples from the core plus PDB from the ones from the other two groups 

(Supplementary Figure A.6a,b). Colonization with core plus PDB resulted in consistently lower 

levels of several purine metabolites in plasma, including UA (Supplementary Figure A.6a,c), 
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recapitulating previous data (Figure A.3c). Plasma UA results were again confirmed by an 

enzymatic assay (Figure A.5e). Altogether these results suggested that PDB impacted levels of 

several purines in the gut and specifically UA both locally and in circulation. 

 

Transcriptional analysis identifies bacterial genes required for anaerobic growth on 

multiple purines 

Having established the role of PDB on lowering levels of UA systemically and having 

identified gut isolates capable of anaerobic purine metabolism, we sought to identify genes 

encoding these functions. Cultures of E. bolteae were cultivated in medium supplemented with 

UA or xylose plus NH4Cl (henceforth, “xylose”). We selected xylose for comparison as the growth 

rate of E. bolteae on this substrate was similar to that of UA, with doubling times of 2.6 h for xylose 

and 4.6 h for UA. For both substrates, log-phase cells were harvested, and libraries subjected to 

sequencing. We obtained ∼3.6 × 107 reads/sample, of which 99.2% mapped to the E. bolteae 

genome. Figure A.6a shows reads per million (RPM) normalized to gene size plotted against the 

relative expression level for growth on the two substrates, limited to the 3,217 (of 5,993) 

differentially-expressed genes (FDR < 0.01, Table S5). As expected, genes encoding 30S and 

50S RNA polymerase (RNAP) subunits show a slight bias (1.6-fold, Supplementary Figure A.7) 

toward the xylose substrate side, consistent with the faster growth rate observed on this substrate 

and the rate-limiting nature of RNAP subunit expression (Gaal et al., 1997). Growth on UA 

promoted higher expression of 51 genes relative to xylose (cutoff > 25-fold; Figure A.6a), including 

several predicted to encode micronutrient transport functions, one glycine-cleavage system, and 

a probable electron bifurcating hydrogenase (Supplementary Figure A.7). 

Two adjacent and divergently oriented putative operons, each encoding 6 genes, 

amounted to 12% of all RNA-seq reads in E. bolteae grown on UA. These highly upregulated 

genes are indicated by the filled blue and red circles with their corresponding operons and putative 

gene products diagrammed (Figures A.6a,b). Notably, the encoded proteins are predicted to 
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catalyze C-N cleavage and Se-dependent hydrolytic reactions. Also indicated are a purine 

permease, likely specific for UA uptake based on the conservation of residues S99 and S314 

(T100 and S317 in E. coli UacT) (Papakostas et al., 2013) and a knotted carbamoyl 

transferase/carbamate kinase, presumably required for ATP synthesis (Y. Li et al., 2011). 

Alignments of conserved chromosomal regions of purine-fermenting organisms illustrated 

conservation of five genes (E. coli nomenclature: dpaL, hydA, ssnA, ygeY, and xdhD) among all 

taxa, although not with a conserved organization nor exclusively present in a contiguous genomic 

region across phyla (Figure A.6c). A variant of E. coli MS 200-1 bearing a deletion of the ygeW-

dpaL-ygeY-hydA-arcC operon grew as the wild-type strain in medium supplied with glucose or 

allantoin but was unable to grow anaerobically using UA, adenine, or hypoxanthine as the carbon 

and energy source. Conversely, a variant of E. coli MS 200-1 bearing a deletion of allB, encoding 

the enzyme catalyzing the first step of anaerobic allantoin metabolism (Cusa et al., 1999), was 

unable to utilize allantoin but retained the ability to catabolize UA, adenine, and hypoxanthine, 

indicating distinct mechanisms of allantoin and purine metabolism in this organism (Figure A.6d), 

and in good agreement with low expression level of all genes in UA-grown E. bolteae cells. Finally, 

a variant of E. coli MS 200-1 bearing a deletion of the ygeV gene (Figure A.6c) encoding a single-

component sigma 54-type transcription factor grew normally on glucose and allantoin but failed 

to grow on all tested purines (Figure A.6d), consistent with previous data indicating transcription 

regulation of the adjacent ygeW operon by YgeV (Iwadate & Kato, 2019). 

To assess the role of this bacterial gene cluster involved in purine metabolism in vivo, we 

used the same approach as described for Figure A.5, where GF mice were colonized with the 

core community which lacks PDB, the “core community plus E. coli MS 200-1 wild-type,” or the 

“core community plus the deletion variant FER041” (Δ(ygeW-arcC)::tetA-sacB) (Figure A.6e). 

Both the wild-type and the variant showed comparable levels of colonization in the gut under the 

conditions tested (Figure A.6f). Colonization with the wild-type strain resulted in lower levels of 

plasma UA compared with mice colonized with the core or the deletion variant FER041 (Figure 
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A.6g). Collectively, these results suggest that the bacterial functions encoded by these genes 

contribute to UA homeostasis in vivo. 

 

Detection of genes encoding purine degradation functions in bacterial genomes and 

transplanted mice 

Having identified genes required for anaerobic purine metabolism and UA homeostasis in 

mice we then sought to identify bacterial taxa containing these genes. We performed BLASTP of 

the NCBI RefSeq Genome Database (refseq_genomes) using parameters described in Methods. 

We detected 230 non-redundant bacterial taxa that had the five genes reliably detected among 

all experimentally confirmed purine-degrading taxa (dpaL, hydA, ssnA, ygeY, and xdhD). These 

potential UA degraders included bacterial taxa belonging to Actinobacteria, Firmicutes, 

Proteobacteria, Fusobacteria, and Spirochaetes (Table S6). 

Lastly, we assessed the abundance of these genes in the cecum of ApoE gnotobiotic mice 

(Figures A.1 and A.7a) and correlated their abundance with levels of purine-related metabolites 

quantified in their cecum (Table S7). We found that cecal levels of several purine-related 

metabolites including deoxyxanthosine, xanthosine, and UA were negatively associated with the 

abundance of genes involved in anaerobic purine degradation (Figure A.7b). Altogether these 

results highlight the potential of these genes as biomarkers for purine breakdown in the gut. 

Understanding how to manipulate the representation and function (as opposed to abundance of 

relevant genes) of purine-consuming species in the intestinal microbiota could potentially lead to 

means for preventing or treating hyperuricemia and associated conditions, with caveats (see 

Discussion). 
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A.4 Discussion 

In this study, we sought to identify microbially regulated metabolites involved in 

atherosclerosis progression. Our initial gnotobiotic mouse transplant studies revealed that levels 

of several purines including UA were influenced by gut microbes and associated with 

atherosclerosis burden. These initial results motivated a deeper exploration into the role of the 

gut microbiome on purine homeostasis and led us to identify bacteria able to break down purines 

anaerobically, and to uncover a cluster of bacterial genes required for anaerobic catabolism of 

these substrates. We also demonstrated that taxa encoding these functions lowered circulating 

UA levels in mice. Altogether this work has implications beyond atherosclerosis: it provides 

insights into how gut bacterial metabolism may influence UA in the circulation and suggests that 

microbes able to catabolize purines anaerobically are important drivers of host purine 

homeostasis both locally (i.e., gut) and systemically. A recent preprint using complementary 

approaches, including hyperuricemic humans and mutagenesis in Clostridia species, identified 

the same bacterial gene cluster associated with UA degradation, and resulted in similar 

conclusions with regards to its role on host UA homeostasis (Liu et al., 2022). 

In humans, nearly two-thirds of purines are endogenously produced, whereas the 

remainder comes from diet, which are primarily absorbed in the duodenum, but absorption could 

occur in the large intestine as transporters of nucleosides are expressed in epithelial cells (Errasti-

Murugarren et al., 2007; Fernández-Calotti et al., 2016; Pastor-Anglada & Pérez-Torras, 2018), 

and their abundance increases when demand for purines increases, for example, in colon cancer 

(Naes et al., 2023). Absorbed purines can be used by enterocytes or colonocytes or be degraded 

to UA. In most mammals, UA can be further metabolized to allantoin, but in hominoids the 

presence of an uricase gene bearing multiple mutations and premature stop codons results in the 

accumulation of UA (Kratzer et al., 2014). Since UA is relatively insoluble, humans are susceptible 

to diseases resulting from precipitation of UA including gout and kidney stones. In fact, the 

prevalence of hyperuricemia in the US is ∼20% among adults and has been steadily increasing 
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in recent decades (Chen-Xu et al., 2019; G. Singh et al., 2019). This increase may be related to 

the prevalence of a high-purine diets, fructose beverages (known to increase UA levels), and 

alcohol consumption (Choi, 2010). 

The association between UA and CVD has been demonstrated for several conditions such 

as hypertension (Agarwal et al., 2013), chronic kidney diseases, metabolic syndrome (Sun et al., 

2015), atherosclerosis (Drivelegka et al., 2020), and adverse cardiovascular outcomes (Rahimi-

Sakak et al., 2019), even for UA levels in the normal to high range (from 5.2 to 6 mg/dL) (Feig et 

al., 2008). Several mechanisms have been proposed to explain the role of UA in CVD, including 

endothelial dysfunction, systemic inflammation, and renin-angiotensin-aldosterone system 

activation. Our results in gnotobiotic ApoE KO mice (Figure A.1) and humans (Figure A.2) support 

this notion and suggest that levels of UA within the soluble range may contribute to disease 

progression. This is consistent with a recent mechanistic study suggesting that soluble UA 

activates the NLRP3 (NOD- LRR- and pyrin-domain-containing protein 3) inflammasome.22 

However, whether elevated serum UA levels are an independent risk factor for CVD remains 

controversial. There is conflicting evidence regarding the benefits of UA-reducing strategies for 

treating patients with CVD (Ju et al., 2020; Mackenzie et al., 2022; J. A. Singh et al., 2017). 

Importantly, the beneficial effects of UA-lowering therapies on CVD are not yet established in 

large-scale randomized trials. Moreover, several Mendelian randomization studies showed mixed 

results for causal effects of serum UA on CVD outcomes (Keerman et al., 2020; J. Zhu et al., 

2022). These inconsistent results are also observed in experimental animals. For example, in one 

study increasing the levels of UA with a high-purine diet did not change the development of 

atherosclerosis (Wakuda et al., 2014), while in a second study, lowering UA levels by 

administration of xanthine oxidase inhibitor or using uricase transgenic mice reduced the 

atherosclerosis development (Kimura et al., 2020). Interestingly, the latter showed that UA 

promoted the production of the inflammatory cytokine IL-1b only in the presence of LPS, 

suggesting that the effects of UA on the cardiovascular system may be context dependent. 
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Collectively, more work is needed to clarify the contribution of hyperuricemia to atherosclerosis in 

humans: our study introduces an unappreciated factor, the microbial composition and nutritional 

milieu of the gut as discussed below. 

The kidneys play a critical role in maintaining plasma UA levels through complex transport 

systems that mediate both reabsorption and secretion of UA. Intestinal secretion is a substantial 

contributor to extra-renal elimination of UA, accounting for about one-third of total elimination of 

UA (Sorensen & Levinson, 1975; Yun et al., 2017). Our results showing that PDB lower the 

abundance of some purines in the intestine (Figure A.5) suggest that these organisms may lower 

circulating UA levels by decreasing the burden of purines bioavailable to the host. Alternatively, 

the increased levels of UA detected in the cecum of mice colonized with PDB (Figure A.5) may 

suggest that in the presence of these organisms, consumption of certain purines may trigger more 

secretion of UA into the intestine. More studies are needed to clarify how PDB influences gut and 

systemic levels of purines. Given the differential purine-metabolizing capabilities and 

environmental modulation of purine consumption among the examined PDB, this may vary widely 

depending on the specific PDB colonizing an individual. 

Anaerobic purine utilization by bacteria was first described over 100 years ago, yet 

relatively few species have been identified and these isolates were obtained from environmental 

sources and are obligate purinolytic Firmicutes. The biochemistry of their purine catabolic 

pathway was delineated prior to the advent of genetic manipulations and only in the past decade 

have their genomes been sequenced, although the genetic elements encoding the process 

remain undefined (Hartwich et al., 2012). More nutritionally diverse anaerobic purine-utilizing 

organisms, including Firmicutes and Proteobacteria isolated from termite intestines, metabolize 

purines and evidently recycle purine nitrogen in the nitrogen-limited host diet, but further 

biochemical and genetic analyses of these organisms have not been published (Tydell et al., 

2002). Operons encoding proposed pathways of anaerobic purine degradation have been 

identified through in silico analyses (Barba et al., 2013; Haft & Self, 2008), through overexpression 
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of individual genes (Y. Li et al., 2011; Uo et al., 2002), or by using cultures and cell suspensions 

cultivated in complex media containing additional carbon and energy sources (Iwadate & Kato, 

2019). While these efforts identified the appropriate genomic regions encoding functions 

necessary for anaerobic purine catabolism, the appropriate conditions allowing reproducible 

growth on multiple purines were not formulated, and a full understanding of the encoded 

metabolism has remained elusive. 

We asked to what extent UA could serve as a source of carbon and energy for gut bacteria, 

and to what extent the gut microbiota composition might affect host systemic purine 

concentrations. We tested 34 human gut isolates from six phyla cognizant of (1) the demonstrated 

requirements of trace elements (Mo and Se) for metabolic function (Schiefer-Ullrich et al., 1984) 

and (2) the well-known phenomenon of catabolite repression reported for the yge operon of E. 

coli and likely present in other bacteria (Z. Li et al., 2019). We identified representatives for three 

different phyla, primarily belonging to the Firmicutes and Proteobacteria, that readily degraded 

UA. A limited subset of organisms was shown to utilize adenine and hypoxanthine, and, 

independent of the ability to use UA or adenine, some organisms including strains of E. coli grew 

anaerobically in medium supplied with allantoin (Figures A.4, Supplementary Figure A.4, and 

Supplementary Figure A.5a), in contrast to reports describing that this compound only serves as 

a source of nitrogen (Cusa et al., 1999). However, these properties were not consistently present 

in any taxonomic group, and even strain differences between species were identified. Moreover, 

the presence of an alternative carbon source (glucose and/or fructose) reduced or eliminated UA 

metabolism, confirming transcriptional regulation by catabolite repression, and indicating one 

nutritional parameter that could modulate purine utilization in the gut. 

In two Proteobacteria, the ability to utilize UA was influenced by the presence of Se and 

Mo (Supplementary Figure A.5b). However, the effects of metals were not evident in C. difficile 

and E. bolteae, likely reflecting the high expression of multiple metal uptake systems identified in 

the RNA-seq data for E. bolteae (Supplementary Figure A.7) and the requirement for multiple 
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metal-limited transfers to affect mineral limitation in other purinolytic Firmicutes (Dürre & 

Andreesen, 1983; Schiefer-Ullrich et al., 1984; Schiefer-Ullrich & Andreesen, 1985). The notion 

that dietary Se might affect the metabolism of purines by human gut microbiota has been 

suggested (Dürre & Andreesen, 1982; Haft & Self, 2008), but the in vitro results shown here 

indicate that any requirement could depend upon microbiota composition: necessary if purine 

utilizers mainly are members of the Proteobacteria but perhaps of less importance if Firmicutes 

predominate. Altogether, these results (1) suggest that phylogeny is a poor predictor of microbial 

purine utilization; (2) indicate that the presence of the identified genes does not correlate with the 

breadth of purines utilized by an organism; (3) demonstrate effects on purine metabolism of two 

nutritional parameters, i.e., carbon source and metals availability; and (4) underscore the need 

for assessments beyond genomics when making predictions about purine metabolism by the gut 

microbiota. 

Lastly, it is important to note that while the notion of using bacteria able to degrade purines 

might be an appealing strategy to lower pro-inflammatory UA, more work is needed to fully 

understand the consequences to the host. For example, the intestinal epithelium is the most 

vigorously self-renewing tissue of adult mammals, which imposes a high demand of nucleotides 

that are needed for proliferation and energy (Crosnier et al., 2006). Adenine—a purine consumed 

by several taxa in our study (Figures A.4 and Supplementary Figure A.4)—is a precursor of 

nucleic acids in intestinal cells unable to synthesize purines de novo (Savaiano & Clifford, 1981). 

Furthermore, recent work from the Colgan group showed that gut bacteria are a major source of 

purines that are used for nucleotide generation by the intestinal mucosa. Importantly, 

supplementation of purines directly through bacterial colonization improved intestinal epithelial 

cell wound healing and barrier restitution capabilities and suggested that purines play essential 

roles for colonic epithelial proliferation, energy balance, and mucin barrier integrity (Lee et al., 

2018, 2020). Adenine also inhibits TNF (tissue necrosis factor)-α signaling in intestinal epithelial 

cells and reduces mucosal inflammation in a dextran-sodium-sulfate-induced colitis mouse model 
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(Fukuda et al., 2016). Consistent with these results, a recent study identified intestinal purine 

starvation associated with irritable bowel syndrome (Mars et al., 2020). Our results showing that 

PDB can metabolize a variety of purines and lower hypoxanthine levels in the intestine, and that 

the abundance of genes encoding for key proteins in anaerobic purine degradation is associated 

with lower purines in the gut, suggest that the influence of these organisms on purine availability 

to intestinal epithelial cells and barrier function needs to be carefully examined, especially 

considering that many of the taxa identified as anaerobic purine degraders, including E. coli, E. 

bolteae, F. varium, and C. difficile, have been associated with disease (Bartlett et al., 2022; 

Chandra et al., 2021). Thus, further studies are warranted to examine the contribution of purine 

degradation to the fitness of these taxa and host health. 

In summary, the work presented here shows that anaerobic purine utilization is 

widespread among gut-dwelling bacteria and suggests that microbial purine degraders are 

important modulators of host purine homeostasis in the gut and of UA levels in circulation. Studies 

are needed to dissect the contribution of aerobic vs. anaerobic purine-consuming pathways to the 

purine economy, gut ecology, and health conditions including atherosclerosis. 
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A.5 Methods 

Bacterial culture conditions 

Cultures and plates were prepared in an anaerobic (ca. 75% N2/20% CO2/5% H2) 

chamber. Media formulations and preparations are detailed in Methods S1. Cultures were 

routinely grown at 37°C in anaerobic septum-stoppered “Hungate tubes” containing rich, well-

buffered (pH 7) media, typically “Mega Medium”95 supplemented with maltose (0.9 g/l), cellobiose 

(0.86 g/l), fructose (0.46 g/l) and NaHCO3 (1.68 g/l) although most clostridial strains were reliably 

recovered from 20% glycerol freezer stocks using medium 11E (see Methods S1). Freshly-

prepared cultures were combined at roughly equivalent levels (normalized to OD600) for the 

purpose of colonizing germ free mice. Growth on purines utilized medium 23B, which contains 

0.1% yeast extract (0.05% for the RNA-Seq cultures) as the sole undefined component, with 

additions of carbohydrate and NH4Cl (25 and 10 mM, respectively) or purines (UA, 1 mg/ml; 

adenine, 1 mg/ml; allantoin, 45 mM) as carbon and nitrogen sources. These levels of UA and 

adenine did not dissolve fully, and growth in tubes was monitored by observing purine 

disappearance as well as culture OD600, measured using a Spectronic 20D+ (ca. 1.4 cm sample 

path length) after the saturating purine had settled (ca. 15 min). Commercially-available strains 

and isolates have been verified by 16S rRNA gene sequencing and are specified in the key 

resources table. As described below, additional steps were employed to verify isolate Escherichia 

coli I-11. 

 

Gnotobiotic husbandry 

All GF C57BL/6J and ApoE KO mice were maintained in a controlled environment in either 

plastic flexible film gnotobiotic isolators or individually ventilated cages under a strict 12 h light 

cycle and received sterilized water and standard chow (LabDiet 5021) ad libitum unless otherwise 

stated. The age and sex of mice used in different experiments are specified below. Sterility of GF 

animals was assessed by routine PCR testing (16S rRNA gene) and by incubating freshly 
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collected fecal samples under aerobic and anaerobic conditions using standard microbiology 

methods. The animal experiments were conducted according to relevant national and 

international guidelines and were approved by the UCLA Animal Research Committee, the UCLA 

IACUC, or the University of Wisconsin-Madison Animal Care and Use Committee, as appropriate. 

 

Human studies 

The Impaired Glucose Tolerance (IGT) and Microbiota study is a prospective 

observational study of subjects aged between 50 and 64 years. In the IGT-Microbiota study, more 

than 5,000 men and women born in Sweden with a range of glucose tolerance based on their 

fasting glucose values and an oral glucose tolerance test (OGTT) were screened. Here we 

included the same sub-population (n=1011, 44% male) as in Wu et al (Wu et al., 2020). where 

plasma urate levels were measured resulting in a cohort of 998 individuals after exclusion. 

Exclusion criteria were: known diabetes, other severe disease that may jeopardize interpretation 

of results, e.g. inflammatory bowel disease, rheumatic diseases, malignancy (unless no relapse 

during 5 years of follow-up), treatment with steroids or immune-modulating treatment, 

pharmacological treatment of infection during the last 3 months and major cognitive dysfunction. 

The ethics committee at Gothenburg University approved the study (Dnr 560-13) which was 

conducted in accordance with the Declaration of Helsinki. Participants gave written informed 

consent. 

 

Plate assay of anaerobic purine utilization 

These assays employed saturating levels of UA, adenine, or hypoxanthine using bilayer 

plates similar to those described previously (Barnes & Impey, 1974). Specifically, working in the 

glove bag a 25 ml base layer consisting of a 1:1 mixture of medium 26B plus 2.4% molten Bacto 

agar was poured into each 100 × 15 mm petri dish and allowed to solidify. The following day, the 

base layer was overlaid with a 7 ml top layer medium + agar plus (per 7 ml) 84 mg UA, 96 mg 
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adenine, or 91 mg hypoxanthine (see Methods S1). As for the liquid cultures, these levels of 

purines were saturating and formed and opaque overlay. Where indicated, filter-sterilized 

additions of concentrated stock solutions (e.g., glucose, fructose, NH4Cl, formate) were added to 

indicated levels in both base and overlay medium layers. Plates were allowed to dry for two days, 

then spotted with 4 μl of an overnight culture grown in rich medium (CMM or 11E) and incubated 

anaerobically at 37°C for 2 (UA, soluble substrates), 3 (hypoxanthine) or 7 (adenine) days, unless 

otherwise specified. Cultures that utilized purines both grew on the medium and formed zones of 

clearing as the saturating purine was depleted. Attempts to prepare overlay plates containing 

xanthine or guanine at levels useful to support growth did not show clear zones of purine utilization. 

Similarly, monolayer plates containing UA resulted in relatively indistinct zones of clearing relative 

to bilayer plates, often with formation of a dense ammonium urate precipitate especially after 

storage at 4°C. Five cultures were spotted/plate--E. bolteae or E. coli MS 200-1 as a positive 

control plus 4 test strains. 

 

Trace mineral requirements for growth on UA 

Tests utilized the standard phosphate-buffered basal medium formulation (“26B” with 

added 100 nM Mn, Ni, Zn, 50 nM Co, W) plus combinations of the following: 2.5 μM Fe, 5 μM Mo, 

0.5 μM Se as indicated (specific mineral compounds are listed in Methods S1). No attempt was 

made to rigorously exclude the individual metal being tested, and it is likely that other medium 

components—particularly phosphate buffer, cysteine and yeast extract—supplied trace levels; 

therefore, evidence of mineral requirements indicates a substantial demand. 

 

Inactivation of allB, ygeV, and ygeW-arcC 

The allB gene (Locus: NZ_GG773866; HMPREF9553_RS01540), the ygeV gene 

(HMPREF9553_RS03160), and the ygeW-arcC operon (HMPREF9553_RS03165 - RS03180) of 

E. coli MS 200-1 were deleted and replaced with the tetA-sacB cassette amplified from T-SACK 
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in accord with standard recombineering methods, followed by elimination of the pSIM5 helper 

plasmid.86 The resulting constructs were verified by sequencing across the cassette-genome 

junctions. Primers used in these constructs are listed in the key resources table. Unfortunately E. 

coli MS 200-1 proved to be resistant to phage P1 transduction and the constructs could not be 

transferred to naive recipients. 

 

Isolation of E. coli strain I-11 

This strain was isolated from a de-identified human fecal sample collected in accord with 

University of Wisconsin Health Science Institutional Review Board. For the isolation, 

approximately 20 mg of aseptically-sampled material was injected into a 10-ml medium 23B 

anaerobic culture supplemented with 10 mg of UA, then incubated at 37°C. Upon observation of 

growth and disappearance of the UA precipitate, the culture was transferred (1:100 dilution) into 

the same medium, maintained under the same conditions, this was repeated then the enrichment 

was streaked to UA bilayer plates. Colonies demonstrating UA metabolism were purified and 

identified by sequencing of the 16S rRNA gene. Strain I-11 was a facultative rod-shaped organism, 

which fermented glucose, sucrose and lactose but not cellobiose, as expected for E. coli. A 

diagnostic PCR analysis confirmed the identification. 

 

RNA isolation and sequencing 

10 ml cultures were grown in triplicate in tubes containing medium 23B (with 0.05% yeast 

extract) plus a) 25 mM xylose + 10 mM NH4Cl or b) 12 mg UA and harvested at OD600 = 0.25 

by plunging the tubes into an ice water slurry, then pelleting cells prior to storage at -80°C. RNA 

was isolated using the Monarch Total RNA Miniprep kit with yields of 2000 – 3000 ng RNA per 

sample, as assayed by dye binding (Qubit). Samples in were submitted to the Microbial Genome 

Sequencing Center (MiGS, Pittsburgh, PA) where Illumina Stranded RNA library preparation with 

RiboZero Plus rRNA depletion was performed, followed by Illumina sequencing [paired-end reads 
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(2x50bp)]. The sequence data was processed by MiGS as follows: quality control and adapter 

trimming was performed with bcl2fastq [ver. 2.20.0.445]. Read mapping was performed with 

HISAT2 [ver. 2.2.0] (Kim et al., 2019). Read quantification was performed using Subread’s 

featureCounts [ver. 2.0.1] functionality (Liao et al., 2014). Read counts were loaded into R [ver. 

4.0.2, R Core Team (2020)] and normalized using edgeR’s Trimmed Mean of M values (TMM) 

algorithm (ver. 1.14.5) (Robinson et al., 2010). Subsequent values were then converted to counts 

per million (cpm). 

 

Mouse experimental design 

We conducted four animal experiments as follows. i) At UCLA six-week-old female 

AXB10/PgnJ, BTBR T+tf/J, BXD5/TyJ, and BXA8/PgnJ conventionally-raised mice from the 

HMDP cohort were fed a Western diet (Research Diets D10042101) for 4 weeks, and cecal 

contents were collected. Frozen cecal samples were shipped to the University of Wisconsin-

Madison for microbiota transplant. Ten-week-old GF female ApoE KO mice (C57BL/6J 

background) fed a standard chow (LabDiet 5021) were inoculated by oral gavage with 0.2 mL of 

resuspended cecal slurry from these HMDP strains. Mice were switched to a standard chow diet 

supplemented with 0.2% cholesterol (TD.07798, Envigo). Mice were then euthanized at 18 weeks 

of age after 4h fasting and tissues collected. ii) Cecal and plasma samples were collected from 

eighteen-week-old GF or conventionally-raised ApoE KO mice fed the 0.2% cholesterol-

supplemented diet (TD.07798) for 8 weeks. iii) Three groups of adult gnotobiotic C57BL/6J mice 

on a standard chow were tested for purine metabolism: a) mice bearing a “core” community which 

included seven species that do not degrade purines in vitro, Bacteroides caccae, Bifidobacterium 

dentium, Blautia hansenii, Bacteroides thetaiotaomicron, Coprococcus comes, Mitsuokella 

multacida, and Ruminococcus torques; b) mice bearing the “core plus purine-degrading bacteria 

(PDB)” community that added three PDB to the “core” community mixture including E. bolteae, H. 

hathewayi, and E. coli; and c) one group remained germ-free. iv) Three groups of adult gnotobiotic 



 

 

182 

C57BL/6J mice on a standard chow were tested for purine metabolism: a) the same “core” 

community as above; b) the “core plus E. coli MS 200-1 wild-type”; and c) the “core plus the E. 

coli MS 200-1 deletion variant FER041”. In the latter two experiments, oxonic acid, a uricase 

inhibitor, was supplemented in the drinking water (1.5% w/v) as previously described (Dankers et 

al., 2013) and samples were collected 4 weeks after the colonization. 

 

Atherosclerotic lesion assessments 

Atherosclerotic lesions were assessed as previously described (Kasahara et al., 2017). 

Briefly, mice were anesthetized and the aorta was perfused with PBS. To assess the 

atherosclerotic lesion size at the aortic sinus, the samples were cut in the ascending aorta, and 

the proximal samples containing the aortic sinus were embedded in Tissue-Tek OCT compounds. 

Five consecutive sections (10 μm thickness) taken at 100 μm intervals (i.e. 50, 150, 250, 350, 

and 450 μm from a bottom of the aortic sinus) were collected from each mouse and stained with 

Oil Red O. Plaque area and Oil Red O-positive area were measured using Image J software. The 

volume of atherosclerosis in the aortic sinus was expressed as mean size of the 5 sections for 

each mouse. Immunohistochemistry was performed on formalin-fixed cryosections of mouse 

aortic roots using antibodies to identify macrophages (1:50), followed by detection with 

biotinylated secondary antibodies (1:400) and streptavidin-horseradish peroxidase (1:500). 

Smooth muscle cells were identified by immunostaining with fluorescein isothiocyanate (FITC)-

conjugated primary antibody against α- smooth muscle actin (1:100), followed by anti-FITC biotin-

conjugated secondary antibody (1:400). Negative controls were prepared by substitution with an 

isotype control antibody. Staining with Masson’s trichrome was used to delineate the fibrous area 

according to the manufacturer’s instructions. Stained sections were digitally captured, and the 

percentage of the stained area (the stained area per total atherosclerotic lesion area) was 

calculated. 
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Plasma biochemical analysis 

Blood samples were collected by cardiac puncture into EDTA-rinsed syringes under 

anesthesia using isoflurane. Plasma was acquired by centrifugation and stored at -80°C until 

measurement. The levels of triglycerides, total cholesterol, and high-density lipoprotein 

cholesterol were measured with commercially available kits from Wako Chemicals. Plasma LPS 

levels were quantitated with the QCL-1000 Endpoint Chromogenic LAL Assay. Plasma UA levels 

were determined by the Vistro DT60 II Analyzer at the University of Massachusetts Medical 

School MMPC (National Mouse Metabolic Phenotyping Center). For the experiment shown in 

Figure 6G, plasma UA was measured using the HPLC system described below, having first 

diluted plasma samples 8-fold in PBS and passing the diluted plasma through a 3kDa ultrafiltration 

device (Amicon Ultra-0.5). 

 

DNA extraction from cecal and fecal samples 

DNA was extracted from samples according to published bead-beating procedures 

(Kasahara et al., 2018; Kreznar et al., 2017; Turnbaugh et al., 2009). In short, fecal or cecal 

samples were resuspended in a solution containing 500 μl of 2× extraction buffer [200 mM Tris 

(pH 8.0), 200 mM NaCl, 20 mM EDTA], 210 μl of 20% SDS, 500 μl phenol:chloroform:isoamyl 

alcohol (pH 7.9, 25:24:1) and 500 μl of 0.1 mm diameter zirconia/silica beads. Cells were 

mechanically disrupted using a bead beater (BioSpec Products) for 3 min at room temperature. 

The aqueous layer was collected and DNA precipitated using 600 μl isopropanol and 60 μl 3M 

Na-acetate. Pellets were rinsed with ethanol, dried, and resuspended in TE buffer. A NucleoSpin 

Gel and PCR Clean-up Kit (Macherey-Nagel) was used to remove contaminants. Isolated DNA 

was stored at -80°C until downstream processing. 

 

qPCR analysis 



 

 

184 

The level of E. coli in the bacterial communities described in Figure 6F were assessed by 

quantitative extraction of DNA from fecal samples by bead beating followed by qPCR analysis of 

2 ng purified DNA samples using the E. coli-specific primers 401F and 611R and SsoAdvanced 

SYBR Green Supermix (BioRad) with 40 amplification cycles (Walker et al., 2017). The method 

generated a linear standard curve (0.02 - 20000 pg) using purified E. coli MS 200-1 DNA and a 

uniform melt curve for all standards and sample products. 

 

COPRO-Seq analysis 

Bacterial communities resulting from inoculation of GF animals were analyzed using 

Illumina sequencing according to the COPRO-Seq (community profiling by sequencing) 

method.93 Feces were collected 4 weeks after the colonization. In short, DNA isolated from feces 

via bead beating was used to prepare libraries for shotgun Illumina sequencing. Five hundred 

nanograms of DNA from each sample was fragmented by sonication and subjected to enzymatic 

blunting and adenine tailing. Customized Illumina adapters containing maximally distant 8-bp 

barcodes were ligated to the poly (A)-tailed DNA. Gel-extracted DNA (size selection ∼250 to 

300bp) was amplified by PCR using primers and cycling conditions recommended by Illumina. 

Purified PCR products were submitted to the UW-Madison Biotechnology Center for a single end 

50-bp Illumina MiSeq run. Results were processed using the software pipeline detailed by 

McNulty et al.93 

 

Metagenomic shotgun DNA sequencing 

DNA was extracted from cecal contents of individual mice as described above. Following 

DNA extraction, Illumina paired end libraries were constructed using a previously described 

protocol (Faith et al., 2011), with a modification of gel selecting DNA fragments at ∼450 bp in 

length. Paired end (PE) reads (2 × 125) were generated using HiSeq 2500 platform. 
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Metagenomic reads processing 

Raw reads were preprocessed using Fastx Toolkit (ver. 0.0.13): (1) for demultiplexing raw 

samples, fastx_barcode_splitter.pl, with –partial 2, mismatch 2 was used; (2) when more than one 

forward and reverse read file existed for a single sample (due to being run on more than one lane, 

more than one platform, or at more than one time), read files were concatenated into one forward 

and one reverse read file; (3) barcodes were trimmed to form reads (fastx_trimmer -f 9 -Q 33); (4) 

and reads were trimmed to remove low quality sequences (fastq_quality_trimmer -t 20 -l 30 -Q33). 

Following trimming, unpaired reads were eliminated from the analysis using custom Python 

scripts. To identify and eliminate host sequences, reads were aligned against the mouse genome 

(mm10/GRCm38) using bowtie2 (ver. 2.3.4) (Langmead & Salzberg, 2012, p. 2) with default 

settings and microbial DNA reads that did not align to the mouse genome were identified using 

samtools (ver. 1.3; samtools view -b -f 4 -f 8). 

 

Microbiome trait quantification 

Quantification of microbial genes was done by aligning clean paired end reads from each 

sample to a previous published mouse gut microbiome non-redundant gene catalog using 

Bowtie2 (ver. 2.3.4) and default parameters. RSEM (ver. 1.3.1) was used to estimate microbial 

gene abundance.89 Relative abundance of microbial gene counts per million (CPM) were 

calculated using microbial gene expected counts divided by gene effective length then normalized 

by the total sum. To obtain abundance information for microbial functions, CPM of genes with the 

same KEGG Orthology (KO) annotation were summed together. In case there were multiple KO 

annotations for a single gene, we used all KO annotations. To obtain taxonomic abundance, CPM 

of genes with the same NCBI taxa annotation were summed together at phylum, order, class, 

family, and genus levels with a minimum of 10 genes in each taxon. 

 

HPLC analysis 
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Analyses of growth media and ultra-filtered serum samples (Figure A.6g) were performed 

using a Shimadzu system comprised of a CBM-40 controller, LC-40D pumps, SIL-40C 

autosampler, CTO-40C column oven, and SPD-M40 diode array detector. Samples were applied 

to a Phenomenx Luna Omega 5μm Polar C18 LC column maintained at 25°C with a 0.5 ml/min 

gradient composed of (A) 100 mM KxHxPO4 pH 2.4 and (B) A with 40% acetonitrile as follows 

(Time in minutes, %A, %B): 0, 99, 1 / 15, 96, 4 / 25, 25, 75 / 35, 25, 75 / 36, 99, 1 / 50, 99,1. 

Under these conditions formate, lactate and acetate eluted at 7.1, 10.1, and 10.6 min and 1 mM 

concentrations were readily detected at 205 nm. UA eluted at 17.4 min and 10 μM was detected 

at 284 nm. As some samples contained saturating substrate levels, for UA analyses all samples 

were vigorously mixed and immediately diluted 40-fold in phosphate buffered saline to allow full 

UA dissolution prior to analysis. 

 

Headspace gas chromatography 

Analyses of short-chain fatty acids and ethanol in growth media were performed using a 

Shimadzu headspace GC/FID as previously described (Murga-Garrido et al., 2021). Briefly, 

samples were added to chilled 20 ml headspace vials containing 2.0 g NaHSO4 and 1.0 ml of 60 

μM 2-butanol (internal standard). Vials were crimp sealed immediately after sample addition and 

vortexed periodically to disperse and mix the contents. Headspace GC analyses were performed 

using a Shimadzu HS-20 headspace sampler connected to a Shimadzu GC-2010 Plus GC 

equipped with a 30 m SH-Stabilwax column linked to a FID. Samples were equilibrated with 

shaking to 80°C for 20 min and pressurized to 80 kPa for 3 min prior to column injection (2 ml 

injection loop, load time 0.2 min, sample and transfer line temperature 150°C, 1:15 split ratio, N2 

column flow 1.2 ml/min), with the following column temperature program: 40°C/2 min, increased 

to 200°C (20°C/min), held 2 min, decreased to 120°C (20°C/min), decreased to 40°C (40°C/min), 

and stabilized 1 min prior to the subsequent injection. The GC cycle time was approximately 23 
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min. Standard mixtures were prepared and analyzed by the same method, and peak areas 

determined using Shimadzu Lab Solution software (version 5.92). 

 

GC-MS measurement of short-chain fatty acids 

Sample preparation was based on a previously described procedure (Kasahara et al., 

2018). Cecal contents were weighed into 4 ml polytetrafluoroethylene (PTFE) screw cap vials and 

10 μl of a mixture of internal standards (20 mM of acetic acid-D4, propionic acid-D6, and butyric 

acid-D7) was subsequently added to each vial, followed by 20 μl of 33% HCl and 1 ml diethyl 

ether. For plasma samples, 50 μl of each sample, 1.25 μl of the internal standard mix, 5 μl of 33% 

HCl, and 0.75 ml of diethyl ether were mixed. The mixture was vortexed vigorously for 3 min and 

then centrifuged (4,000 × g, 10 min). The upper organic layer was transferred to another vial and 

a second diethyl ether extraction was performed. After combining the two ether extracts, a 60 μl 

aliquot was removed, combined with 2 μl N-tert-butyldimethylsilyl-N-methyltrifluoroacetamide 

(MTBSTFA) in a GC auto-sampler vial with a 200 μl glass insert, and incubated for 2 h at room 

temperature. Derivatized samples (1 μl) were injected onto an Agilent 7890B/5977A GC/MSD 

instrument with an Agilent DB1-ms 0.25 mm x 60 m column with 0.25 μm bonded phase. A 

discontinuous oven program was used starting at 40°C for 2.25 min, then ramping at 20°C/min to 

200°C, then ramping at 100°C/min to 300°C and holding for 7 min. The total run time was 18.25 

min. Linear column flow was maintained at 1.26 ml/min. The inlet temperature was set to 250°C 

with an injection split ratio of 15:1. Quantitation was performed using selected ion monitoring (SIM) 

acquisition mode and metabolites were compared to relevant labeled internal standards using 

Agilent Mass Hunter v. Acquisition B.07.02.1938. The m/z of monitored ions are as follows: 117 

(acetic acid), 120 (acetic acid-D4), 131 (propionic acid), 136 (propionic acid-D6), 145 (butyric 

acid), and 151 (butyric acid-D7). Concentrations were normalized to mg of cecal contents. 

 

uHPLC-MS/MS analysis of metabolites 
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Plasma samples were prepared for analysis by precipitating proteins with 4 volumes of 

ice-cold methanol spiked with 2.5 μM deuterium-labeled choline and TMAO internal standards. 

Samples were centrifuged at 18,213 × g at 4°C for 3 min. The recovered supernatants were 

diluted 1:1 in uHPLC-grade water prior to screening. Identification and quantification of choline 

and TMAO was performed using a uHPLC (Dionex 3000) coupled to a high-resolution mass 

spectrometer (Thermo Scientific Q Exactive). Liquid chromatography separation was achieved on 

a Dikma Bio-Bond C4 column (150 mm by 2.1 mm; 3-μm particle size) using a 7-min isocratic 

gradient (50:50 methanol-water, 5 mM ammonium formate, and 0.1% formic acid). A heated 

electrospray ionization interface, working in positive mode, was used to direct column eluent to 

the mass spectrometer. Quantitation of TMAO and D9-TMAO was performed via targeted MS/MS 

using the following paired masses of parent ions and fragments: TMAO (76.0762 and 58.0659) 

and D9-TMAO (85.1318 and 68.1301). Quantitation of choline and d9-choline was performed in 

full-MS scan mode by monitoring their exact masses: 104.1075 and 113.1631, respectively. 

 

UPLC-MS/MS for untargeted plasma metabolome 

Untargeted mass spectrometry data were collected at Metabolon Inc. Plasma samples 

were prepared using the automated MicroLab STAR system (Hamilton Company). To remove 

protein, dissociate small molecules bound to protein or trapped in the precipitated protein matrix 

and to recover chemically diverse metabolites, proteins were precipitated with methanol under 

vigorous shaking for 2 min (Glen Mills GenoGrinder 2000) followed by centrifugation. The 

resulting extract was divided into five fractions: two for analysis by two separate reverse phase 

(RP)/UPLC-MS/MS methods with positive ion mode electrospray ionization (ESI), one for analysis 

by RP/UPLC-MS/MS with negative ion mode ESI, one for analysis by HILIC/UPLC-MS/MS with 

negative ion mode ESI, and one sample was reserved for backup. Samples were placed briefly 

on a TurboVap (Zymark) to remove the organic solvent. The sample extracts were stored 

overnight under nitrogen before preparation for analysis. 
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All methods utilized a Waters ACQUITY ultra-performance liquid chromatography (UPLC) 

and a Thermo Scientific Q-Exactive high resolution/accurate mass spectrometer interfaced with 

a heated electrospray ionization (HESI-II) source and Orbitrap mass analyzer operated at 35,000 

mass resolution. The sample extract was dried then reconstituted in solvents compatible to each 

of the four methods. Each reconstitution solvent contained a series of standards at fixed 

concentrations to ensure injection and chromatographic consistency. One aliquot was analyzed 

using acidic positive ion conditions, chromatographically optimized for more hydrophilic 

compounds. In this method, the extract was gradient eluted from a C18 column (Waters UPLC 

BEH C18–2.1×100 mm, 1.7 μm) using water and methanol containing 0.05% perfluoropentanoic 

acid (PFPA) and 0.1% formic acid (FA). Another aliquot was also analyzed using acidic positive 

ion conditions, however it was chromatographically optimized for more hydrophobic compounds. 

In this method, the extract was gradient eluted from the aforementioned C18 column using 

methanol, acetonitrile, water, 0.05% PFPA and 0.01% FA and was operated at an overall higher 

organic content. Another aliquot was analyzed using basic negative ion optimized conditions 

using a separate dedicated C18 column. The basic extracts were gradient eluted from the column 

using methanol and water, amended with 6.5mM ammonium bicarbonate at pH 8. The fourth 

aliquot was analyzed via negative ionization following elution from a HILIC column (Waters UPLC 

BEH Amide 2.1 × 150 mm, 1.7 μm) using a gradient consisting of water and acetonitrile with 

10mM ammonium formate, pH 10.8. Compounds were identified by comparison to library entries 

based upon retention time/index, mass to charge ratio (m/z) and chromatographic data, and 

peaks were quantified using area-under-the curve. 

 

Purine and pyrimidine metabolite quantitation 

Targeted purine/pyrimidine mass spectrometry data were collected at The Metabolomics 

Innovation Centre (Victoria, Canada). An internal standard (IS) solution containing 13C- and/or 

15N-labeled AMP, ATP, GMP, GTP, UMP, UTP, xanthine, guanine and adenine, hypothanxine, 
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guanosine and adenosine was prepared in 80% methanol (for cecal samples) or 10% methanol 

(for plasma samples). Serially-diluted standard solutions containing standard substances of the 

targeted nucleotides, nucleosides and nucleobases were prepared in a concentration range of 

0.00001 to 50 nmol/ml in 80% methanol (for cecal samples) or 0.00001 to 10 nmol/ml in 10% 

methanol (for plasma samples). The cecal samples were lyophilized to dryness. The powder of 

each sample was weighted into an Eppendorf tube and 80% methanol at 20 μl per mg of powder 

was added. The samples were homogenized on a mill mixer at 30 Hz for 2 min, three times, with 

the aid of 2 metal beads, followed by sonication in an ice-water bath for 5 min. The tubes were 

centrifuged at 21,000 × g and 5°C for 20 min. 100 μl of the clear supernatant of each sample or 

100 μl of each standard solution was in turn mixed with an equal volume of the IS solution, 100 

μl of water and 120 μl of dichloromethane. The mixtures were vortex-mixed at 3,000 rpm for 2 

min and subsequently centrifuged at 21,000 × g for 5 min. 120 μl of the clear supernatant was 

collected and then dried at 30°C under a nitrogen gas flow. For plasma samples, 20 μl was mixed 

with 200 μl of the IS solution and 780 μl of methanol. After vortex mixing at 3000 rpm for 1 min 

and sonication in an ice-water bath for 2 min, the sample was centrifuged at 21,000 × g and 5°C 

for 15 min. 500 μl of the clear supernatant of each sample was transferred to another tube, 100 

μl of water and 400 μl of dichloromethane then added. The mixture was vortex mixed at 3000 rpm 

for 1 min and then centrifuged. The upper aqueous phase of each sample was transferred to a 

LC microvial and dried under a nitrogen gas flow. For both cecal and plasma samples, the 

residues were reconstituted in 100 μl of 10% methanol. 10 μl aliquots of the sample solutions and 

the standard solutions were injected into a C18 LC column (2.1 × 100 mm, 1.8 μm) to run UPLC-

MRM/MS on a Waters Acquity UPLC system coupled to a Sciex QTRAP 6500 Plus mass 

spectrometer operated in the negative-ion mode for detection of nucleotides. The mobile phase 

was a tributylamine acetate buffer and acetonitrile for binary gradient elution (5% to 35% 

acetonitrile over 25 min), at 0.25 ml/min and 40°C. For quantitation of nucleosides and 

nucleobases, 10 μl aliquots of the sample solutions and the standard solutions were injected into 
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a polar C18 UPLC column (2.1 × 100 mm, 1.6 μm) to run UPLC-MRM/MS on the same LC-MS 

instrument operated in the positive-ion mode. The mobile phase was a 0.1% HFBA solution and 

acetonitrile for binary-solvent gradient elution (0% to 28% acetonitrile in 14 min), at 0.30 ml/min 

and 40°C. 

 

Genes encoding for purine degradation 

The quantification of genes encoding purine-degradation functions in bacterial genomes 

were predicted by BLASTP of the NCBI RefSeq Genome Database (refseq_genomes) using five 

Enterocloster bolteae genes found in multiple purine-utilizing organisms as queries (ygeY, 

encoding a Se-dependent hydrolase; ygeX/dpaL, encoding a diamino-propionate ammonia-lyase; 

ssnA, encoding an amino-hydrolase; hydA/hyuA, encoding a dihydro-pyrimidinase; xdhD, 

encoding a Se-dependent Xanthine DH). Purine-degrading bacteria were defined as bearing the 

five “probe” genes listed above with identity > 25% to the E. bolteae genes. We removed 

redundancy if two bacteria genomes had identical proteins encoded by all five purine degradation 

genes. To quantify the abundance of these genes in gut microbiomes of transplanted mice, we 

mapped metagenomic reads to genes for purine utilization functions using RSEM (ver. 1.3.1) (B. 

Li & Dewey, 2011). Relative abundance of microbial gene counts per million (CPM) were 

calculated using microbial gene expected counts divided by gene effective length then normalized 

by the total sum. 

 

Human study 

UA and coronary artery calcification (CAC) data were obtained from a pre-diabetes 

Swedish cohort participating in a study examining the link between the gut microbiota and type 2 

diabetes (Wu et al., 2020). The cohort comprised men and women aged 50-64 years from the 

Gothenburg area, Sweden, who were recruited at random from the census register (n=988). 

Exclusion criteria were: known diabetes; inflammatory diseases, such as Crohn’s disease, 
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ulcerative colitis, and rheumatic diseases; treatments with steroids or immunomodulatory drugs; 

cancer (unless relapse-free for the preceding 5 years); cognitive dysfunction; and treatment for 

infectious diseases and with antibiotics in the past three months. UA was measured using a 

photometric technique on a Roche Cobas analyzer. Coronary artery calcifications (CAC) were 

assessed by computed tomography (CT) scanning using a dual-source CT scanner equipped with 

a Stellar Detector (Siemens). CAC images were obtained using electrocardiogram-gated non-

contrast cardiac CT imaging at 120 kV. All non-contrast image sets were reconstructed (B35f 

HeartView medium CaScore) and CAC were identified and scored using the syngo.via calcium 

scoring software (Volume Wizard; Siemens) to obtain a CAC score according to Agatston. 

Previously reported microbiome data34 was mapped against Unified Human Gastrointestinal 

Genome (UHGG) v1.0 catalogue using Kraken2 v.2.1.2 to examine association between UA 

levels and bacterial taxa. Xgboost and caret packages in R version 4.0.3 were used to select 

microbes associated with the serum urate levels based on regression analysis. These 

associations were further assessed for significance after adjustment for covariates (CACS, BMI, 

gender, triglycerides and HbA1c) in a mixed linear regression model. 

 

Data analysis and statistical analysis 

Data integration and statistical analysis were performed in R (ver. 3.6.3) or Prism 9. The 

data were expressed as box-and-whisker plots with individual data points, where the boxes 

indicate the median values and the interquartile ranges and the whiskers represent the minimum 

and maximum values. Significance was calculated by unpaired two-tailed Student’s t test or one-

way ANOVA with the Tukey post-tests. Details of these analyses (n, p values) are presented in 

figure legends. The correlation analysis was performed using Spearman’s correlation by R 

function “cor.test()”. For multiple testing, Benjamini-Hochberg FDR procedure was used to adjust 

p-values. Heatmap plots were performed using R package pheatmap (ver. 1.0.12). Purine 

metabolites include ones from class “purine nucleotides”, “purine nucleosides”, 



 

 

193 

“imidazopyrimidines”, and “azoles”. Pyrimidine metabolites include ones from class “pyrimidine 

nucleotides”, “pyrimidine nucleosides”, “diazines”, and “pyrazolopyrimidines”. A partial least 

squares discriminant analysis (PLS-DA) model was constructed using the function PLSR.Anal() 

in the MetanoAnalystR package and the nonlinear iterative partial least squares (NIPALS) 

algorithm to obtain the variable importance for the projection (VIP) of purine and pyrimidine 

metabolites (Pang et al., 2022). We performed the Leave-One-Out Cross-Validation (LOOCV) 

method for cross validation. 

 

Data and code availability 

The mouse metagenomics data, bacterial RNA-Seq data, Copro-Seq data, human 

metagenomics data were deposited in NCBI Sequence Read Archive under Bioproject: 

PRJNA904303, Bioproject: PRJNA911264, Bioproject: PRJNA903666, and European Genome-

Phenome Archive under EGA: EGAS00001004480. Microscopy data reported in this paper will 

be shared by the lead contact upon request. 

All original code is available here: https://github.com/qijunz/Purine_paper 

Any additional information required to reanalyze the data reported in this paper including 

the custom Python scripts employed in the processing of metagenomic data is available from the 

lead contact upon request. 
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Figure A.1 Plasma levels of purines are associated with atherosclerosis burden in 

transplanted gnotobiotic ApoE KO mice 

(A) Experimental design. 

(B–G) Representative sections and quantitative analysis of oil red O staining (B and C), MOMA-

2 staining (D and E), and Masson’s trichrome staining (F and G) in the aortic sinus (n = 11 for 

AXB10, n = 12 for BXD5, n = 12 for BTBR, n = 11 for BXA8). The data are expressed as box-

and-whisker plots with individual data points, where the boxes indicate the median values and the 

interquartile ranges, and the whiskers represent the minimum and maximum values. Significance 

calculated by one-way ANOVA with the Tukey post-tests is indicated as follows: ∗p value < 0.05; 

∗∗p value < 0.01; ∗∗∗p value <0.001; ∗∗∗∗p value < 0.0001. 

(H) Principal component analysis of gut microbial functions from transplanted mice as determined 

by metagenomic analysis. 

(I) Plasma metabolites positively or negatively associated with atherosclerotic lesion size, 

according to Spearman correlation analysis. 

(J) Scatterplots showing associations between purines (relative mass spectrometry scaled 

intensities) and atherosclerosis lesion size (×104 μm2). GF; germ-free, ApoE; Apolipoprotein E, 

Chol; cholesterol, MOMA; monocytes and macrophage. 
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Figure A.2 Plasma UA levels are positively associated with coronary artery calcium (CAC) 

score in a human cohort 

(A) Distribution of uric acid levels in serum from individuals with CAC score = 0 and CAC score > 

0. 

(B) Spearman correlation analysis between serum uric acid levels and CAC score. 

(C) Top 10 taxa associated with serum UA levels. Blue and red bars show positive and negative 

associations, respectively. 
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Figure A.3 Gut microbiome modulates purines in cecum and circulation 

(A) Heatmap of purines and related metabolites in cecal contents from Conv (n = 9) and GF (n = 

8) mice. 

(B and C) (B) Values for adenine, xanthine, xanthosine, inosine, hypoxanthine, uric acid, and 

allantoin in cecal contents measured by LC-MS/MS, and (C) plasma uric acid levels analyzed by 

an enzymatic assay are shown using box-and-whisker plots with individual data points, where the 

boxes indicate the median values and the interquartile ranges and the whiskers represent the 

minimum and maximum values. Significance was calculated by unpaired two-tailed Student’s t 

test and is designated as follows: ∗∗p value < 0.01; ∗∗∗∗p value < 0.0001. Conv, conventionally 

raised; GF; germ-free. 
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Figure A.4 Gut bacterial isolates use purines as carbon and energy sources 

Anaerobic growth of bacterial strains on plates containing soluble (glucose and allantoin), and 

insoluble (uric acid and adenine) substrates. As detailed in Methods, plates were inoculated with 

4 μL of dense overnight cultures grown in rich medium then incubated for 2 days (no fermentable 

substrate, glucose, allantoin or uric acid conditions) or 7 days (adenine). Growth is indicated by 

the appearance of cell patches and a zone of clearing for the overlay plates. Details about strains 

are specified in the key resources table, and a summary of all tested strains is presented in 

Supplementary Figure A.4. Strains indicated in red were used for colonization of gnotobiotic mice. 
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Figure A.5 Purine-degrading bacteria (PDB) modulate abundance of purines in cecum and 

circulation 

(A) Experimental design. Anaerobic uric acid degradation by fecal samples from different groups 

is indicated using uric acid overlay plates as detailed in Methods. 

(B) Community profiling by sequencing (COPRO-seq) analysis of fecal samples from gnotobiotic 

B6 mice colonized with the core community (n = 4) or the core plus PDB community (n = 3). The 

bar charts show the abundance of each species in each community. 

(C) Heatmap of purines and related metabolites in cecal contents from GF (n = 5), core (n = 3) 

and core plus PDB (n = 5) mice analyzed by LC-MS/MS. 

(D and E) (D) Values for adenine, xanthine, xanthosine, inosine, hypoxanthine, uric acid, and 

allantoin in cecal contents of the three mouse cohorts analyzed by targeted metabolomics and (E) 

plasma uric acid levels analyzed by enzymatic assay were expressed as box-and-whisker plots 

with individual data points, where the boxes indicate the median values and the interquartile 

ranges and the whiskers represent the minimum and maximum values. Significance was 

calculated by one-way ANOVA test with the Tukey post-tests and is designated as follows: ∗∗ p 

value < 0.01; ∗∗∗p value < 0.001; ∗∗∗∗p value < 0.0001. 
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Figure A.6 Identification of a gene cluster necessary for anaerobic bacterial growth on 

purines 

(A) Comparison of transcriptional profiles for Enterocloster bolteae showing differentially 

expressed genes (FDR < 0.01) and reads per million (RPM)/gene size (kb) for cultures grown on 

xylose + NH4Cl (xylose, upregulated genes to the left) or uric acid (upregulated genes to the right), 

highlighting genes encoding two adjacent predicted operons encoding functions likely necessary 

for uric acid metabolism (blue and red circles). Descriptions of additional upregulated genes 

including those encoding micronutrient transport, one glycine-cleavage system and a probable 

bifurcating hydrogenase system as well as genes upregulated during growth on xylose are 

described in Supplementary Figure A.7. 

(B) Diagram of the adjacent upregulated predicted operons, including genes CGC65_RS20560-

RS20625, color-matched with the filled circles in (A). 

(C) Representative alignments of chromosomal regions from multiple organisms that 

anaerobically catabolize uric acid. The genetic regions from E. bolteae shown in (B) are compared 

with those from Clostridioides difficile CD196 (CD196_RS16070–RS16115), Fusobacterium 

varium (C4N18_RS01955–RS01995) and (C4N18_RS03270–RS03290), Edwardsiella tarda 

(ETATCC_RS03320–RS03390) and E. coli MS 200-1 (HMPREF9553_RS03160–RS03225). 

Matched genes are color-coded, and the percent similarities of the encoded proteins are indicated. 

Although selected genes appear to be conserved, their organization differs in different organisms, 

and in the case of F. varium do not occur in a contiguous chromosomal region. 

(D) Growth of E. coli MS 200-1 wild-type and deletion variants (FER039 [ΔallB::tetA-sacB], 

FER041 [Δ(ygeW-arcC)::tetA-sacB], and FER063 [ΔygeV::tetA-sacB]) on plates lacking a carbon 

source, supplemented with glucose or allantoin, or prepared with overlays containing saturating 

amounts of uric acid, adenine, or hypoxanthine. 

(E) In vivo experimental design. Mice were colonized with the core community as in Figure 5 and 

with either E. coli MS 200-1 wild-type or the deletion variant FER041 (Δ(ygeW-arcC)::tetA-sacB). 
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Anaerobic uric acid degradation by fecal samples from different groups is indicated using uric acid 

overlay plates. 

(F and G) (F) The levels of fecal E. coli in the bacterial communities were assessed by qPCR and 

(G) plasma uric acid levels measured by HPLC were expressed as box-and-whisker plots with 

individual data points, where the boxes indicate the median values and the interquartile ranges 

and the whiskers represent the minimum and maximum values. Significance was calculated by 

one-way ANOVA test with the Tukey post-tests and is designated as follows: ∗p value < 0.05; ∗∗p 

value < 0.01; ∗∗∗p value < 0.001. 
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Figure A.7 Correlation between cecal purines and gut bacterial genes encoding uric acid 

degradation in transplanted ApoE KO mice 

(A) Abundance of genes encoding anaerobic purine degradation in gut metagenomes from 

gnotobiotic mice transplanted with cecal contents from strains with disparate atherosclerosis 

phenotypes (see Figure A.1). Data are shown as box-and-whisker plots with individual data points, 

where the boxes indicate the median values and the interquartile ranges and the whiskers 

represent the minimum and maximum values. Differences between groups were evaluated using 

unpaired two-tailed Welch’s t test. ∗ p value < 0.05; ∗∗ p value < 0.01; ∗∗∗p value < 0.001; ∗∗∗∗p 

value < 0.0001. 

(B) Correlation between abundance of nucleosides and their derivatives and bacterial functions 

was performed using Spearman correlation. 
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Supplementary Figure A.1 Body weight, lipid profile, and microbial metabolites from 

transplanted mice, related to Figure A.1 

A) Body weight and epididymal fat weight collected at the end of the experiment.  

B) Total cholesterol, triglyceride, and HDL-cholesterol in plasma.  

C) Plasma lipopolysaccharide (LPS) levels.  

D) Plasma TMAO and choline levels.  
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E) Cecal acetate, propionate, and butyrate levels. Data are shown as box-and-whisker plots with 

individual data points, where the boxes indicate the median values and the interquartile ranges 

and the whiskers represent the minimum and maximum values. Significance was calculated by 

one-way ANOVA with the Tukey post-tests and is reported as follows: *, p-value of <0.05; **, p-

value of <0.01. 
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Supplementary Figure A.2 Metagenomic analysis of transplanted ApoE knockout mice, 

related to Figure A.1 



 

 

225 

A) Relative abundance of molecular functions (KEGG Orthology, KO) involved in purine 

metabolism in transplanted ApoE knockout mice. Data are shown as box and-whisker plots with 

individual data points, where the boxes indicate the median values and the interquartile ranges 

and the whiskers represent the minimum and maximum values. 

B) Spearman correlation between bacterial KO involved in purine and atherosclerosis lesion size. 
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Supplementary Figure A.3 Targeted purine metabolite quantitation in plasma samples 

from Conv and GF mice, related to Figure A.3 

A) Heatmap of purines and related metabolites in plasma samples from Conv (n=8) and GF (n=8) 

mice analyzed by LC-MS/MS.  

B) PLS-DA plot based on the data derived from purine metabolites in plasma samples from Conv 

and GF mice.  

C) VIP plot indicating the most discriminating metabolites in descending order of importance. The 

colored boxes on the right indicate the relative concentrations of the corresponding metabolite in 
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each group. Conv; Conventionally-raised, GF; germ-free, PLSDA; Partial Least Squares 

Discriminant Analysis, VIP; variable importance of projection. 
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Supplementary Figure A.4 Screen of gut bacterial isolates for growth on purines, related 

to Figure A.4 
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Overnight bacterial cultures were spotted (4 µl) onto medium 26B agar plates, and plates 

containing soluble additions (NH4 = 10 mM NH4Cl, Glucose = 25 mM glucose, Allantoin = 25 mM 

Allantoin) or overlays containing saturating levels of uric acid (UA), Adenine, UA plus formate (25 

mM) or UA plus glucose (25 mM), as detailed in Methods. Plates were incubated anaerobically at 

37°C for 2 (all except with adenine overlay) or 7 days (adenine overlay). * indicates no test 

performed. 
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Supplementary Figure A.5 Environmental factors influence purine utilization, related to 

Figure A.4 

A) Formate. Several Firmicutes and Proteobacteria species were spotted onto purine (Uric Acid, 

Adenine, Hypoxanthine) overlay plates and otherwise identical media supplemented with filter-

sterilized formate (pH 7, 25 mM in both the base and overlay layers). As previously reported for 

cell suspensions of Escherichia coli K12, UA utilization was enhanced in the presence of formate. 

Similar results are evident for E. coli MS 200-1 and the purine-utilizing allB variant (FER039) as 

well as for Edwardsiela tarda. The enhanced UA utilization is less pronounced with the two tested 

Firmicutes (Enterocloster bolteae and Clostridiodes difficile), and is not evident for any strain for 

adenine and hypoxanthine, which are more reduced than UA. The slight utilization of UA in the 

presence of formate by the variants FER041 and FER063 suggests the presence of a second, 

perhaps adventitious, UA utilization system.  

B) Trace minerals and sugars. Trace minerals: Plates containing 20 mM glucose + 10 mM NH4Cl, 

or bilayer uric acid overlay plates were prepared with different trace mineral compositions: i) 

containing all trace element additions (see Methods with 2.5 µM Fe, 5 µM Mo and 0.5 µM Se) or 

ii) lacking the addition of the indicated trace element. No attempt was made to rigorously remove 

the “missing” minerals, and plates were prepared with otherwise standard cysteine·HCl-reduced, 

phosphate-buffered medium 26B containing 0.1% yeast extract and Difco Bacto agar. Sugars: 

Standard bilayer uric acid plates were prepared (see Methods) or supplemented with filter-

sterilized stocks of NH4Cl (to 10 mM), fructose and NH4Cl (to 40 and 10 mM, respectively), or 

glucose + NH4Cl (to 40 and 10 mM, respectively). Plates were spotted with 4 µl of cultures freshly-

grown in rich medium and incubated anaerobically for 2 days at 37°C. 

 



 

 

232 

 

 

Supplementary Figure A.6 Targeted purine metabolite quantitation in plasma samples from 

GF and gnotobiotic mice, related to Figure A.5 

A) Heatmap of purines and related metabolites in plasma samples from GF (n=5), ‘core’ (n=3) 

and ‘core plus PDB’ (n=5) mice analyzed by LC-MS/MS.  

B) PLS-DA plot based on the data derived from purine metabolites in plasma samples from GF, 

‘core’ and ‘core plus PDB’ mice.  

C) Variable Importance Projection plot indicating the most discriminating metabolites in 

descending order of importance. The colored boxes on the right indicate the relative 

concentrations of the corresponding metabolite in each group. GF; germ-free, PDB; purine-
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degrading bacteria, PLS-DA; Partial Least Squares Discriminant Analysis, VIP; variable 

importance of projection. 
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Supplementary Figure A.7 Comparison of transcriptional profiles for Enterocloster bolteae 

grown on xylose vs. uric acid, related to Figure A.6 

Plot showing differentially-expressed genes (FDR < 0.01) and reads per million (RPM)/ gene size 

(kb) for Enterocloster bolteae grown on xylose + NH4Cl (upregulated genes to the left) or uric acid 

(upregulated genes to the right). Genes encoding 30S and 50S RNA Polymerase (RNAP) 

subunits are indicated near the center of the figure (yellow and red “x” symbols, respectively) with 

a slight bias (1.6-fold) towards the xylose substrate side (left) in good agreement with the faster 

growth rate observed on this substrate and growth rate-limiting nature of RNAP subunit 

expression. Growth on xylose + NH4Cl elicited high expression of genes for sugar transport 

functions, an operon encoding xylose-utilization proteins, and alcohol dehydrogenases, the latter 

consistent with the accumulation of ethanol in these cultures (not shown). In addition to the two 

operons described in the manuscript, growth on uric acid also induced high expression of 

micronutrient transport functions, one of three glycine cleavage systems, and a bifurcating 

hydrogenase system. Relevant genes are indicated in the right-hand panels, color-coded 

according to the expression plots shown on the left. 
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B.1 Abstract 

Dietary fiber consumption has been linked with improved cardiometabolic health, however, 

human studies have reported large interindividual variations in the observed benefits. We tested 

whether the effects of dietary fiber on atherosclerosis are influenced by the gut microbiome. We 

colonized germ-free ApoE−/− mice with fecal samples from three human donors (DonA, DonB, and 

DonC) and fed them diets supplemented with either a mix of 5 fermentable fibers (FF) or non-

fermentable cellulose control (CC) diet. We found that DonA-colonized mice had reduced 

atherosclerosis burden with FF feeding compared to their CC-fed counterparts, whereas the type 

of fiber did not affect atherosclerosis in mice colonized with microbiota from the other donors. 

Microbial shifts associated with FF feeding in DonA mice were characterized by higher relative 

abundances of butyrate-producing taxa, higher butyrate levels, and enrichment of genes involved 

in synthesis of B vitamins. Our results suggest that atheroprotection in response to FF is not 

universal and is influenced by the gut microbiome. 
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B.2 Introduction 

Individual responses to the same diet or therapeutic drugs are often inconsistent and not 

universal. This notion is a fundamental principle of precision medicine and nutrition (Denson et 

al., 2019; Ordovas & Berciano, 2020). Many factors influence how a subject responds to a given 

treatment including genetics, diet, and sex. Recently, it has become apparent that the gut 

microbiome is a major contributor to the observed interpersonal variation in responsiveness 

(Deehan et al., 2020; Hughes et al., 2019; Leshem et al., 2020; Zeevi et al., 2015). It is now widely 

recognized that the gut microbiome plays a significant role in health and its composition is highly 

variable among individuals (Turnbaugh et al., 2007). Dietary components, from foodstuffs to orally 

administered drugs, come in close contact with resident microbes along the gastrointestinal tract. 

The gut microbiome collectively encodes >100-fold more genes than the human genome, 

including a rich array of enzymes with the potential to metabolize these ingested compounds and 

modulate their bioavailability, activity, and ultimately their effects on the host (Javdan et al., 2020; 

Zimmermann et al., 2019a, 2019b). Indeed, gut microbes have received considerable attention in 

recent years for their capacity to modulate responses to bioactive compounds (Kolodziejczyk et 

al., 2019) ranging from antihypertensive drugs to immunosuppressants for organ transplants 

(Koppel et al., 2018; Lee et al., 2015). Gaining a better understanding of which interventions are 

most sensitive to microbiome variation is critical for the effective implementation of precision 

medicine. 

Cardiovascular disease (CVD) is the leading cause of death in the United States and 

accounts for over a third of all deaths globally (Ahmad et al., 2021). Atherosclerosis is the most 

common manifestation of CVD and is driven by inflammatory processes that result in the 

formation of macrophage-dense, fatty plaques within the arterial wall (Russell, 1999). There is 

increasing evidence that the gut microbiome plays an important role in modulating atherosclerosis 

development. Epidemiological studies have identified differences in the microbiomes of 

individuals with coronary artery disease compared to healthy individuals (Jie et al., 2017; Kelly et 
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al., 2016; Tang & Hazen, 2017). Furthermore, several microbial metabolites arising from specific 

dietary components have been shown to modulate atherosclerosis progression in humans and 

animal models through a variety of mechanisms. For example, trimethylamine N-oxide, a 

microbial derivative of choline, is associated with increased risk of major cardiovascular events in 

humans (Wang et al., 2011); the microbial metabolite indole-3-propionic acid, which is derived 

from tryptophan, protects against atherosclerosis progression by promoting cholesterol efflux 

(Xue et al., 2022); and short-chain fatty acids (SCFAs), which are produced via fermentation of 

dietary fiber, have been shown to ameliorate atherosclerosis by limiting dietary cholesterol 

absorption (propionate) and reducing inflammation and gut permeability (butyrate) (Aguilar et al., 

2014; Haghikia et al., 2022; Kasahara et al., 2018). Indeed, diet has long been known to play a 

major role in both the promotion and prevention of atherosclerosis (Kritchevsky, 1978; Torres et 

al., 2015). For example, it is well-established that foods such as whole-grain cereals and legumes 

which are rich in dietary fiber, are protective against CVD (Higginson & Pepler, 1954; Threapleton 

et al., 2013). However, inconsistent responses to a number of dietary and pharmacological 

interventions for CVD have been observed between individuals (Healey et al., 2017; Weeke & 

Roden, 2013). Most studies linking dietary fiber to improved cardiovascular health are assessed 

using population averages (Kirk et al., 2021) and do not account for individual characteristics. 

Therefore, the causes behind these inconsistencies are understudied. 

Dietary fibers are oligo- or polysaccharides that resist degradation by host enzymes and 

are available to be metabolized by microbes in the distal gut. Dietary fibers vary widely in structure 

and composition and are often subdivided according to their biochemical properties. One such 

division is drawn by whether they can be fermented by gut microbes. Thus, fermentable fibers are 

dietary fibers that can be metabolized by intestinal microbes, while non-fermentable fibers resist 

intestinal fermentation (Cummings, 1984). By this definition, fermentability is not a static or 

inherent property of any given fiber since it is context-dependent and is contingent on the 

presence of specific microbes that can degrade the fiber in question and the host environment 
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(e.g., transit time, rumination). Fermentation of dietary fiber in the gastrointestinal tract results in 

the production of SCFAs, the most abundant of which are acetate, propionate, and butyrate. 

SCFAs have been linked to improved cardiometabolic health (Haghikia et al., 2022; Kasahara et 

al., 2018) and are hypothesized to mediate some of the atheroprotective effects associated with 

dietary fiber consumption (Ohira et al., 2017). However, multiple studies have shown that SCFA 

production is dependent on microbiome structure and is highly variable among individuals. For 

example, McOrist et al. found individualized responses in butyrate production to a resistant starch 

(RS) dietary supplement (McOrist et al., 2011). Additionally, we recently found that various 

fermentable fibers (pectin, inulin, fructo-oligosaccharide (FOS), RS-2, and RS-4) elicited 

disparate responses in SCFA production when fed to mice colonized with different microbial 

communities (Murga-Garrido et al., 2021). 

Given the personalized nature of the gut microbiome and the fact that gut microbes are 

necessary for metabolizing dietary fiber, we hypothesized that the atheroprotective effects 

attained in response to a given dietary fiber are modulated by the gut microbiome composition of 

the consumer. To test this, we colonized groups of germ-free (GF) apolipoprotein E deficient 

(ApoE−/−) mice with fecal microbial communities from one of three human donors, each of which 

exhibited divergent microbial compositions and SCFA-producing capacities. Colonized mice were 

fed a diet containing either a mixture of fermentable fibers (FF) or a non-fermentable cellulose 

control diet (CC). We found that protection from atherosclerosis by FF consumption was not 

universal, but was instead modulated by the resident microbiome. We also observed that 

atheroprotection was associated with increased butyrate production and enrichment for bacterial 

genes involved in pathways for carbohydrate metabolism and vitamin synthesis. 

 

 

 

 



 

 

241 

B.3 Results 

Engraftment of donor communities prior to dietary treatment 

Germ-free (GF) female ApoE−/− mice were colonized with fecal samples from one of three 

human donors (Supplementary Figure B.1). These samples were selected from a repository of 

fecal specimens previously collected from adults in their mid-seventies (Herd et al., 2014) and 

were chosen based on (i) their divergent community structure as assessed by unweighted 

UniFrac distances of 16S rRNA profiles and (ii) their capacity to generate differing levels of SCFAs 

when engrafted in GF mice consuming a semi-purified diet containing an assortment of fibers 

(Murga-Garrido et al., 2021). After colonization, mice were maintained on the FF diet for two 

weeks to allow for stabilization of engrafted communities before the dietary treatment phase 

(Supplementary Figure B.1). Fecal samples were collected at this point to assess bacterial 

engraftment via 16S rRNA V4 amplicon sequencing. The engraftment efficiency (genus level) was 

64% in DonA-, 65% DonB-, and 72% DonC-colonized mice, respectively (Supplementary Figure 

B.2f). When calculated as the percentage of donor genera detected in at least one of the recipient 

mice, efficiencies were 90, 88, and 87% in DonA-, DonB-, and DonC-colonized mice, respectively 

(Supplementary Figure B.2c–e). These engraftment efficiencies are in line with previous studies 

(Goodman et al., 2011; Turnbaugh, Ridaura, et al., 2009). Physiological, anatomical, and 

behavioral differences between human donors and recipient mice along with differences in diet 

likely explain why only a fraction of the donor bacteria engrafted. 

A few genera were only detected in the recipient mice but were unique to each of the three 

donor groups, suggesting that these taxa may have been present in low abundance in the human 

donor samples rather than the result of contamination. Principal coordinate analysis (PCoA) of 

weighted UniFrac distances of fecal samples collected prior to dietary treatment showed uniform 

engraftment between mice bound for the two diets (FF-bound and CC-bound) within all treatment 

groups (all pairwise PERMANOVA adjusted P > 0.1, Supplementary Figure B.2a). However, 

comparisons using unweighted UniFrac distances (sensitive to presence/absence of taxa) 
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showed a significant difference in community structure in DonA-colonized mice between FF-

bound and CC-bound communities (adjusted P = 0.0012, Supplementary Figure B.2b). This was 

driven by 9 genera that were detected in one diet-bound group but not the other (Supplementary 

Figure B.2c). Eleven weeks after dietary treatment, cecal samples were collected and used to 

assess terminal microbial communities. By the end of the experiment, 5 of the 9 missing genera 

were no longer detected in cecal contents of mice on either diet, while 4 genera 

(Clostridium, Faecalibacterium, Gemmiger, and an undetermined Ruminococcus genus) were 

found only in FF-fed mice (Supplementary Figure B.2c). This introduces the possibility that the 

differences observed in the assembled communities between dietary groups for DonA mice are 

the result of inconsistent engraftment rather than an effect of diet. Alternatively, since microbial 

communities undergo considerable fluctuations in the period after colonization (Chung et al., 

2012), it is possible that these missing taxa were present in the CC-bound mice, but below 

detectable levels. The latter scenario is supported by the fact that (i) all of the missing taxa were 

detected in the human donor sample used to inoculate all DonA mice, and (ii) similar FF-diet-

driven patterns were observed with Faecalibacterium and Gemmiger abundances in a previous 

study (Murga-Garrido et al., 2021) that used the same donor feces and the same diets. These 

findings highlight the importance of reporting pre-treatment engraftment data in mouse transplant 

studies such that the conclusions can be appropriately contextualized. 

 

Diet-induced shifts in microbiota composition are largely community-specific 

Two weeks after colonization, mice were placed into their dietary treatment groups and 

were maintained on their respective diets for 11 weeks. PCoA analysis of weighted and 

unweighted UniFrac distances (Figure B.1a,b) of cecal bacterial communities assessed at the 

completion of the study shows that mice were highly distinguishable by dietary treatment within 

each donor group. When using unweighted UniFrac distances, ordination shows that donor group 

had a stronger effect on community composition than diet (Figure B.1a). PCoA of weighted 
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UniFrac distances, which factors in the abundance of each taxon, shows clear distinctions by diet, 

but more overlap between donor groups (Figure B.1b), suggesting that FF consumption elicits 

distinct changes of some low-abundance, phylogenetically-related taxa across the three 

communities. Alpha diversity (Shannon) was higher in mice colonized with DonA consuming FF 

relative to CC consumption but was not significantly impacted by diet in DonB- or DonC-colonized 

mice (Figure B.1f). Similarly, observed amplicon sequence variant (ASV) richness was 

significantly increased with the FF diet in DonA mice but was reduced by FF feeding in DonB mice 

(Figure B.1g). FF-consumption resulted in increased DNA concentration in cecal content, a proxy 

for microbial biomass (Contijoch et al., 2019), compared to CC-fed mice (Supplementary Figure 

B.3). This effect was observed in all three donor groups and suggests that a diet rich in 

fermentable fiber generally increases microbial biomass. 

Bacterial communities were dominated by Firmicutes and Bacteroidetes and had 

detectable levels of Proteobacteria, and Verrucomicorbia in all treatment groups (Figure B.1d). 

Actinobacteria were detected in FF-fed DonA-colonized mice, CC-fed DonB-colonized mice, and 

both diets for DonC-colonized mice. FF feeding lowered the Bacteroidetes to Firmicutes ratio for 

all donor groups (Figure B.1e), but the only significant reduction was observed in DonA-colonized 

mice. There was generally little consistency in the diet-associated enrichment patterns observed 

across donor groups, even when considering phylum level changes, suggesting a lack of a 

universal response to dietary treatment (Figure B.1c–g). 

We used the Microbiome Multivariable Association with Linear Models (MaAsLin 2) 

(Mallick et al., 2021) to analyze enrichment patterns at the genus level caused by diet for each 

donor group. Most genera that were significantly different (adjusted P < 0.1) were unique to each 

donor group: Blautia was the only genus that was significantly enriched by FF-consumption 

across all donor groups, while Eggerthella, Butyricimonas, and Parabacteroides were the only 

genera to exhibit universal enrichment in response to the CC diet (Figure B.1c). One obvious 

explanation for the lack of universality is the fact that each donor group possess different 
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collections of microbes. However, even in the cases of genera that were present across multiple 

donors, the directionality in response to diet tended to vary by community 

([Lachn] Clostridium, Bacteroides, Akkermansia, [Lachn] Undetermined, 

[Rumin] Clostridium, Oscillospira, [Erysi] Clostridium, [Lachn] Ruminococcus). For example, 

the Bacteroides genus was significantly enriched by CC feeding in DonC-colonized mice, by FF 

feeding in DonB-colonized mice and unaffected by diet in DonA-colonized animals (Figure B.1c). 

Interestingly, the relative abundance of Akkermansia was significantly increased by CC feeding 

in DonB mice, by the FF diet in DonC mice, and was not affected by diet in DonA-colonized 

mice. Akkermansia muciniphila, the most prevalent species in this genus, feeds on host mucins 

which can be glycosylated by fiber-degrading bacteria thereby influencing Akkermansia levels 

(Earley et al., 2019; Zhang et al., 2022). Although Akkermansia has been reported to thrive on 

diets poor in fermentable fiber (Kim et al., 2020), our data indicate that microbiota composition 

can influence Akkermansia response to specific fiber sources. It is also possible that the different 

donor groups possess distinct strains of Akkermansia muciniphilia that are themselves 

differentially affected by diet. Together, these results suggest that microbial responses to dietary 

fiber are context-dependent and are likely impacted by the composition and metabolic capabilities 

of the broader community. 

 

Fermentable fiber impacts atherosclerosis progression in a donor-dependent manner 

FF-fed mice colonized with DonA had significantly reduced lipid deposition in 

atherosclerotic plaques and a trend towards reduced plaque area (P = 0.070) compared to their 

CC-fed counterparts, while there were no differences observed between diets in either DonB- or 

DonC-colonized mice (Figure B.2a–c). To further characterize atherosclerosis disease status, 

lesions were assessed for macrophage infiltration by immunohistology with MOMA-2 antibodies. 

There were no statistically significant differences observed between diets in lesion MOMA-2 

density in any of the donor groups (Figure B.2a,d), but there was a trend of reduced density with 



 

 

245 

FF feeding in DonA mice (P = 0.11). Previous studies report inconsistent results regarding of the 

effect of inulin (a component fiber in the FF diet) on atherosclerosis in mice (Rault-Nania et al., 

2006). Rault-Nania et al. found that inulin ameliorated atherosclerosis in ApoE−/− mice, whereas 

Hoving and colleagues found that inulin exacerbated atherosclerosis in APOE*3-Leiden mice. 

While this discrepancy could be due to the different diets and/or mouse models used in these 

studies, our results support the notion that the gut microbiome modulates the atheroprotective 

effect of fermentable dietary fiber, providing a possible explanation for these conflicting findings. 

 

The atheroprotective effect of the FF diet is not associated with changes in plasma lipids 

or alterations in the expression of aortic immune markers 

To test whether fermentable fiber consumption altered lipid composition in circulation, we 

measured lipid levels in the plasma of the mice described above. No statistical differences were 

observed between diets for any of the donor groups in plasma levels of total cholesterol, HDL 

cholesterol, or triglycerides (Figure B.2e–g). We also assessed aortic expression levels 

of Abca1 and Abcg1 mRNA by RT-qPCR as markers of reverse cholesterol transport but did not 

observe any statistically significant differences between diets within any of the donor groups 

(Supplementary Figure B.4d,e). These results suggest that the atheroprotective effect of FF 

consumption observed in DonA mice was not mediated by major alterations in plasma lipids or 

cholesterol homeostasis. To test whether atheroprotection was associated with changes in 

vascular inflammation status, we measured aortic expression of the inflammatory markers Tnf-

α, Il1-β, and Vcam-1, which are commonly associated with atherosclerosis progression 

(Kasahara et al., 2018; Libby, 2012). There were no significant differences observed in expression 

of these markers between diets in any of the donor groups (Supplementary Figure B.4a–c). These 

data suggest that the atheroprotective effect of FF-feeding in DonA mice may be independent of 

these immune processes and reverse cholesterol transport, although further analyses are needed 

to fully rule out these factors. 
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Cecal SCFA profiles are altered by diet in a donor-dependent manner 

Given the variability in microbiome composition between diets, we next tested whether 

there were differences in fiber fermentation capacities between donor groups. In line with the 

microbiome composition patterns above, diet-induced shifts in SCFA profiles were highly 

dependent on donor group (Figure B.3a–d). Acetate, the most abundant SCFA, was increased in 

FF-fed mice colonized with both DonA and DonB communities (Figure B.3a). Propionate was 

increased by FF-feeding only in DonA mice, whereas diet did not affect propionate levels in the 

other two donor groups (Figure B.3b). FF-feeding resulted in substantially elevated cecal butyrate 

levels in DonA mice, but reduced butyrate levels in DonB-colonized mice compared to CC-fed 

counterparts (Figure B.3c). Cecal butyrate concentrations were not different between diets in 

DonC-colonized mice. The branched-chain fatty acids isobutyrate and isovalerate, which are 

primarily produced via protein fermentation, were not affected by diet within any of the donor 

groups (Figure B.3e,f). A lack of differences in branched-chain fatty acids is consistent with the 

fact that the FF and CC diets are isoproteic. Total SCFA concentrations (i.e., the sum of acetate, 

propionate, and butyrate) within donor groups were increased by FF-feeding in DonA and DonB, 

but not DonC (Figure B.3d). These results reflect the shifts observed in SCFA-producing 

microbiota. Among the genera that were increased by FF feeding in DonA mice only 

were Clostridium, Oscillospira, Ruminococcus, Gemmiger, and Faecalibacterium, (Figure B.1c) 

all of which contain butyrate-producing species (Vital et al., 2014). Notably, most of these genera 

were also present in the other donor groups but were not enriched by FF-feeding. This could be 

due to complex, community-level interactions (e.g., competition) influencing responses of 

individual genera to dietary fiber, or strain-level differences in response to diet, or both. 

Our data are consistent with previously reported studies suggesting that butyrate-induced 

protection against atherosclerosis in mice occurs in the absence of major changes in plasma lipid 

levels (Aguilar et al., 2014; Kasahara et al., 2018). Similar to our results, Kasahara et al. reported 
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that the introduction of a butyrate-producing microbe in mice colonized with a simplified bacterial 

community led to reductions in plaque burden and macrophage infiltration in ApoE−/− mice without 

significant changes in cholesterol homeostasis. However, Kasahara et al. also detected butyrate-

induced reductions in aortic expression of inflammatory markers Tnf-α, Il1-β, and Vcam-1, which 

we did not observe in our study. Additionally, a recent study found that propionate consumption 

protected against atherosclerosis by inhibiting cholesterol uptake in the intestine (Haghikia et al., 

2022). Although we observed increased cecal propionate levels in DonA-colonized mice 

consuming the FF diet, we did not detect differences in plasma cholesterol levels. The 

concentration and site within the gastrointestinal tract where propionate accumulates (i.e., greater 

concentration in the small intestine when consumed orally vs. greater concentration in the large 

intestine when produced via fiber fermentation) may influence its effect on cholesterol absorption. 

Together, these findings suggest that SCFA-production capacity is dependent on both accessible 

dietary fiber and microbial community composition. These results also validate the notion that the 

abundance of butyrate-producing microbes is associated with cecal levels of butyrate. 

 

Bacterial functional profiles were modulated by dietary fiber in a donor-specific manner 

We next sought to identify links between the functional potential of the microbiome and 

atheroprotection by examining changes in microbial metagenomic profiles. We performed 

shotgun sequencing of DNA isolated from cecal contents (average of 29.4 ± 7.7 million paired-

end reads/sample; n = 5/diet-donor group). Sequence data were analyzed with HUMAnN3 to 

generate metagenomic functional profiles that included KEGG orthology (KO) abundances for 

each mouse. Hierarchical clustering of KO profiles using Bray–Curtis dissimilarity shows that the 

treatment groups are different from one another, but the effect of diet on clustering patterns varied 

by donor (Figure B.4a). Mice colonized with DonA and DonC communities clustered closer by diet 

than by donor group, suggesting a significant level of FF-influenced overlap in KO profiles 

between these two donor groups. DonB mice, on the other hand, clustered separately from all 
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other mice but sub-clustered by diet (Figure B.4a). Differential abundances of individual KOs 

between FF- and CC-fed mice within each donor group were calculated with MaAsLin 2. This 

analysis revealed that 2676 KOs were significantly different (adjusted P < 0.05) between diets in 

at least one donor group (DonA = 971; DonB = 1964; DonC = 1419). Of these, only 67 (2.5%) were 

enriched by FF-feeding across all donor groups, whereas 79 (3%) were enriched by CC-feeding 

across all donor groups, suggesting that most of the diet-induced changes in functional profiles 

were donor-specific. DonA- and DonC-colonized mice shared the most FF-enriched KOs with 326, 

while DonA- and DonB-colonized mice shared 99, and animals colonized with DonB- and DonC-

colonized mice shared 81 KOs. 

We next aimed to gain further insight into how dietary treatment affected the metabolic 

pathways of the cecal microbial communities in each donor group. We were specifically interested 

in identifying pathways that might help explain the atheroprotection associated with FF-feeding in 

DonA. We used the MicrobiomeAnalyst KEGG pathway tool (Chong et al., 2020) to conduct 

pathway enrichment analysis in the KOs that were overrepresented by FF-feeding relative to their 

counterparts consuming the CC diet. Similar to the taxonomy results discussed above, we 

observed a lack of universality among the metagenomic changes in response to diet. Of the 38 

KEGG pathways that were detected as significantly overrepresented (adjusted P < 0.1) by FF-

feeding in at least one donor group, only three (Pyruvate metabolism, Amino sugar and nucleotide 

sugar metabolism, and Biosynthesis of amino acids) were observed across all three donor groups 

(Figure B.4b). In DonA-colonized mice, 27 pathways were significantly overrepresented in the FF 

diet relative to CC diet. These included pathways involved in vitamin synthesis (Thiamine 

biosynthesis; Folate biosynthesis; Porphyrin metabolism [vitamin B12]), SCFA synthesis 

(Butanoate metabolism; Propionate metabolism), and amino acid metabolism (Lysine 

biosynthesis; Cysteine and methionine metabolism; Histidine metabolism; Phenylalanine, 

tyrosine and tryptophan biosynthesis; Valine, leucine and isoleucine biosynthesis; Glycine, serine 

and threonine metabolism; Biosynthesis of amino acids) (Figure B.4b). Interestingly, the dietary 
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effects on the enrichment of pathways involved the synthesis of acetate (Carbon metabolism, 

Glyoxylate and dicarboxylate metabolism, and Pyruvate metabolism), propionate (Propionate 

metabolism), and butyrate (Butanoate metabolism) corresponded very closely with the cecal 

SCFA levels described above (Figure B.4b and Figure B.3a–c). 

Both folate and vitamin B12 are involved in the detoxification of homocysteine, a 

metabolite of methionine metabolism that has been linked to cardiovascular disease. A study 

involving ApoE−/− mice with hyperhomocysteinemia found that supplementation with a mixture of 

folate, vitamin B12, and vitamin B6 protected against atherosclerosis (Hofmann et al., 2001). 

Moreover, a recent metagenomic study in humans showed that patients with CVD (n = 218) had 

decreased abundance of genes encoding for components of the folate biosynthesis pathway than 

healthy patients (n = 187) (Jie et al., 2017). Interestingly, the authors of that study also found that 

CVD was associated with lower abundances of propionate and butyrate synthesis genes. To gain 

a more detailed picture of the metagenomic dynamics of these pathways, we compared the 

differential abundances of the individual KOs involved in folate biosynthesis (KEGG map00790) 

and anaerobic cobalamin (vitamin B12) biosynthesis (KEGG M00924). In agreement with our 

enrichment analysis, most of the differentially abundant KOs in both pathways were significantly 

upregulated by FF feeding in DonA-colonized mice, but not in the other groups (Figure B.4c). 

Folate and vitamin B12 were supplied in the FF and CC diets at the same inclusion rate (AIN-93 

vitamin mix, Supplementary Table 1), but it is possible that some amount of additional vitamin 

availability via microbial biosynthesis may have a physiological effect in host homocysteine 

metabolism. These results suggest that microbial production of vitamins B12 and folate may act 

as a potential mediator of the atheroprotection associated with FF diet in mice colonized with this 

community. 

To uncover associations between atheroprotection and fiber metabolism, we determined 

the level and type of carbohydrate-active enzyme (CAZyme) families between dietary treatments 

within each donor group using cecal metagenomic data. We detected a number of CAZyme 
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families that were highly abundant in all donor groups and largely unaffected by diet (Figure B.5a,b, 

Supplementary Figure B.5). Differential abundance analysis revealed that the CAZyme families 

which were most significantly affected by diet were about 100-fold lower than the highest 

abundance CAZymes (Figure B.5c). Given the differences in cecal SCFA levels between 

treatment groups, this suggests that these highly-differential, low-abundance CAZymes have an 

outsized impact on the dynamics of SCFA metabolism. To highlight the most differentially 

abundant CAZyme families, we compared the abundances of the CAZyme families that were 

most affected by diet (top 10% by MaAsLin 2 effect size within each donor group, Figure B.5c). 

The vast majority of FF-enriched CAZymes in DonA-colonized mice were significantly correlated 

(Spearman, P < 0.05) with cecal butyrate levels, potentially linking them to butyrate production 

(Figure B.5c). One such CAZyme family, GH59, encompasses β-galactosidases which free 

terminal β-D-galactose monomers from galactan side chains of pectin (Cankar et al., 2014). 

Interestingly, many commonly cited CAZyme families involved in inulin, pectin, RS-2/4, and 

scFOS were not found among the most highly differentially abundant CAZymes in our dataset. It 

is possible that the inclusion of multiple fermentable fibers creates competition among microbes 

that are specialized for each fiber type, reducing the magnitude of changes detected in fiber-

specific CAZymes. 
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B.4 Discussion 

In summary, we showed that the gut microbiome regulates the effect of dietary fiber on 

atherosclerosis development in gnotobiotic ApoE−/−mice colonized with different human fecal 

communities. We found that diet-induced shifts in microbial composition, metabolic potential, and 

metabolic output (SCFAs) varied among the different donor groups. Our results showed that 

atheroprotection was associated with increased cecal butyrate levels and abundances of 

butyrate-producing organisms. Additionally, shotgun metagenomic sequencing revealed donor-

dependent shifts in genes involved in carbohydrate metabolism, SCFA production, and vitamin 

synthesis. These data support the notion that diet-associated shifts in the gut microbiota are not 

solely a function of diet but are instead the result of complex interactions between diet and the 

larger gut microbial community structure and functional network. These results are also in line 

with previous work showing that butyrate is atheroprotective without modifying cholesterol 

metabolism (Aguilar et al., 2014; Kasahara et al., 2018). 

The current study has some limitations that should be addressed. First, we observed an 

imperfect engraftment efficiency from human donor to mouse recipient. As discussed above, we 

detected differences in the pre-treatment engraftment patterns of DonA mice. Our data suggest 

that this difference in detection was likely a consequence of the stochasticity of microbial 

communities shortly (two weeks) after colonization and not a result of differences in inoculation 

or contamination. Nonetheless, this discrepancy introduces the possibility that the differences 

observed in atherosclerosis within DonA mice were due to inconsistent engraftment rather than 

response to diet. Another limitation is that our study only used three human donors. A much larger 

and more diverse cohort of donors would be needed to fully appreciate the breadth of 

cardiometabolic responses to these diets, but the limited group used here is sufficient to 

demonstrate that the athero-modulatory effect of dietary fiber is microbiota-dependent. This study 

is additionally limited by the use of only female mice, precluding us from testing the effect of sex. 
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Finally, the CC and FF diets used in this study differed slightly in their starch content, which may 

contribute to the differences described above. 

Despite these limitations, the work presented here suggests that microbiome variation 

modulates responses to dietary fiber consumption, which can differentially impact the 

development of atherosclerosis. Together, these results support the notion that dietary 

interventions are not universally efficacious and should be tailored to individuals. More research 

is needed to understand the relevant mechanisms and the metabolic and ecological dynamics 

that govern the microbiome-dependent individual responses to diet. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

253 

B.5 Methods 

Germ-free animals 

All animals in the current study were handled and maintained in accordance with the 

University of Wisconsin–Madison, standards for animal welfare and all protocols were approved 

by the university’s Animal Care and Use Committee. Germ-free (GF) ApoE−/− mice (derived GF 

from B6.129P2-Apoetm1Unc/J; Jax 002052) were housed in a controlled environment within 

gnotobiotic isolators under a 12-h light/dark cycle and received autoclaved water and chow 

(LabDiet 5021; LabDiet, St. Louis, MO) ad libitum. Mice were housed with Alpha-dri® (Shepherd 

Specialty Papers, Kalamazoo, MI) bedding and were enriched with paper huts (Bio-Huts, Bio-

Serv, Flemington, NJ) and ALPHA-twistTM (Shepherd Specialty Papers). The GF status of the 

isolators was evaluated monthly via PCR using universal 16S rRNA primers with fecal DNA as 

well as a growth test of feces in rich media incubated at 37 °C aerobically and anaerobically for 7 

days. 

 

Selection of human donors 

Human fecal samples used in this study were collected from participants as part of the 

Wisconsin Longitudinal Study (WLS) (Herd et al., 2014, 2018) and stored −80 °C. WLS data and 

specimen collection were approved by the UW-Madison Internal Review Board (2014-1066, 2015-

0955) and written informed consent was obtained in the original study (Herd et al., 2018). In a 

previous publication from our group (Murga-Garrido et al., 2021), a subset of candidate WLS 

specimens were selected based on their distinct bacterial community structures and then 

subsequently transplanted into GF mice to measure cecal SCFA profiles. In the current study, we 

used this information to select three human donor samples: microbiota from donor WLS-sample-

8 (referred to here as DonA); donor WLS-sample-1 (referred to here as DonB) and donor WLS-

sample-5 (referred to here as DonC). In our previous study (Murga-Garrido et al., 2021), we found 

that gnotobiotic mice consuming a semi-purified diet containing an assortment of fibers that 
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included resistant starch type 2 and 4, short-chain fructo-oligosaccharides, inulin, and pectin 

colonized with DonA, DonB or DonC accumulated different levels of SCFA. Mice colonized with 

DonA accumulated the highest levels of cecal butyrate (~1.5 mM) among all of the donors tested, 

whereas DonB-colonized mice accumulated significantly lower levels of cecal butyrate (~ 0.6 mM), 

and mice colonized with DonC showed the highest cecal propionate levels (~10 mM) and 

intermediate butyrate levels (~1.0 mM) (Murga-Garrido et al., 2021). All of the WLS specimens 

used in the current study were obtained from subjects that self-reported consuming a western-

style diet, were overweight (BMI > 25), and were not diagnosed with diabetes, cancer, or heart 

disease (Herd et al., 2014; Murga-Garrido et al., 2021). Identifiable information of WLS 

participants was blinded to the researchers in the current study. 

 

Colonization of gnotobiotic mice with human feces and dietary treatment 

At 6 weeks of age, mice were transferred to ventilated cages on an Allentown Sentry SPP 

IVC rack system (Allentown Inc., Allentown, NJ) and placed on irradiated FF diet which contained 

10% total fiber (wt/wt) composed of 5 fermentable fibers (inulin, pectin, short-chain FOS, RS-2 

and RS-4; Supplementary Figure B.1, Supplementary Table 1). Inclusion rates of each 

fermentable fiber source were individually adjusted based on purity and ash content to achieve 

an effective inclusion rate of 2% of dietary fiber from each fiber source. One week later, GF mice 

were colonized with microbiota from one of the WLS fecal specimens (DonA, DonB, or DonC) by 

a single oral gavage of a fecal slurry or by cohousing. Slurries were prepared anaerobically by 

homogenizing ~200 mg of frozen human feces in 5 mL of pre-reduced Mega Media (Murga-

Garrido et al., 2021) in an anaerobic chamber, and then were immediately used to gavage 

recipient mice using syringes flushed with anaerobic atmosphere. A subset of GF mice was 

colonized by cohousing together with mice that had been gavage-colonized with human feces 4 

weeks prior. Cohousing is an effective strategy for colonizing germ-free mice and is similar to 

gavage in terms of microbiota colonization and phenotype transfer (Bokoliya et al., 2021; Hansen 
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et al., 2012). We were unable to detect differences in cecal microbial profiles, nor did we observe 

significant differences in phenotypes between cohoused mice and their gavage-colonized 

counterparts (Supplementary Figure B.2a,b, Supplementary Table 2). Therefore, we considered 

all mice within the same treatment group as biological replicates regardless of colonization 

method. Operating under the rationale that a diet with a greater diversity of fiber sources would 

promote colonization of more microbes, mice were maintained on the FF diet for an additional 

two weeks to allow colonization to stabilize before the dietary treatment phase. Upon dietary 

treatment, mice either continued the FF diet or were switched to the CC diet containing 10% 

cellulose (Supplementary Table 1), a non-fermentable fiber control. All experimental diets in this 

study were vacuum packed and irradiation-sterilized by the manufacturer. The FF diet and CC 

diet differed only in their fiber sources. Our experimental design (Supplementary Figure B.1) 

resulted in six treatment groups (three donors and two diets; n = 7–10 mice per treatment group), 

each of which were conducted in two separately-caged cohorts to account for cage effects. After 

11 weeks of dietary treatment, mice were sacrificed at 20 weeks of age after 4 h of fasting. 

 

Atherosclerotic lesion analysis 

Upon sacrifice, the heart was perfused with PBS buffer before being cut laterally at the 

mid heart and the ascending aorta to capture the aortic sinus. This tissue was embedded in OCT 

compound, frozen on dry ice, and stored at −80 °C until further processing. To characterize 

atherosclerotic plaques in the aortic sinus, the embedded tissue was sectioned on a cryostat 

(CM1950, Leica, Deer Park, IL) and collected on slides in 100 µm intervals, moving proximally 

from the base of the aortic root toward the ascending aorta. This resulted in slides containing 

eight equidistant sections (10 µm thickness) spanning 700 µm of the aortic sinus (0, 100, 200, 

300, 400, 500, 600, 700 µm from the base of the aortic root). Formalin-fixed slides from each 

mouse were rinsed with 60% isopropanol for 1 min, stained for lipids using Oil Red O for 15 min, 

and counter-stained with hematoxylin for 1 min. Macrophage infiltration assessment of 
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atherosclerotic plaques was conducted by incubating formalin-fixed slides (same sectioning 

pattern as above) overnight with macrophage antibodies (MOMA-2, 1:50; ab33451, Abcam, 

Cambridge, UK) followed by incubation with secondary antibodies (1:400; ab6733, Abcam) for 

1 h and streptavidin horseradish peroxidase (1:500; P0397, Agilent, Santa Clara, CA) for 15 min. 

Sections were then washed with PBS and counterstained with DAB for 15 s and hematoxylin for 

5 s. Images of all stained sections were digitally captured and then analyzed on ImageJ (National 

Institutes of Health, Bethesda, MD) to measure lipid-positive area, total plaque area, and MOMA-

2 positive area. Plaque areas and lipid-positive areas for each mouse are expressed as averages 

across all eight sections. To calculate macrophage infiltration, the three sections with the largest 

visible lesions were selected from each mouse and their MOMA-2 positive area densities were 

averaged. One sample was lost during processing, so sample sizes for atherosclerosis 

characterization ranged from 7–10 samples per treatment group. 

 

Cecal short-chain fatty acids 

SCFA levels in cecal contents were measured using headspace gas chromatography. 

Samples were prepared by adding 20–150 mg of frozen cecal contents to vials (Restek, Bellefonte, 

PA) containing N µL of water (where N equals 300 minus the mg of cecal content) along with 2 g 

of NaH2SO4 and 1 mL of chilled 60 µM 2-butanol as an internal standard. The preparations were 

immediately sealed in a GC sampling vial then allowed to sit overnight at RT. Standards for 

acetate, propionate, isobutyrate, butyrate, isovalerate, valerate and were combined at known 

concentrations (pH 7.0) and serially diluted to generate a standard curve. Vials were loaded into 

a HS-20 headspace sampler (Shimadzu, Columbia, OH), shaken for 20 min at 80 °C and injected 

onto an SH-Stabilwax 30 m column (227-36246-01, Shimadzu) connected to a flame ionization 

detector on a CG-2010 Plus GC (Shimadzu). Running conditions were as follows: the sample vial 

was equilibrated at 80 kPa for 3 min before injection; injection was performed using a 2 mL 

injection loop, a 12 s loading period with the transfer line at 150 °C, 1:15 split ratio, and a 
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N2 column flow of 1.2 mL/min; the column temperature was maintained at 40 °C for 2 min and then 

increased to 200 °C at a rate of 20 °C/min, held for 2 min, and then reduced to 120 °C (−20 °C/min), 

reduced to 40 °C (−40 °C/min) and held at 40 °C for 1 min. Areas under the curve for each target 

compound were calculated with Shimadzu Lab Solution software (version 5.92) and normalized 

by the sample mass and the dilution factor and converted to μmol·g−1 using a standard curve. 

 

Plasma triglyceride and cholesterol measurements 

Blood was collected from mice while under isoflurane-induced anesthesia by cardiac 

puncture using an EDTA-rinsed syringe. Blood cells were separated by centrifugation then plasma 

was collected and stored at −80 °C. Plasma levels of triglycerides, total cholesterol, and high-

density lipoprotein (HDL) cholesterol, were measured using commercially available colorimetric 

assay kits from Waco Diagnostics (Cat. No. 994-02891, 99902601, 997-01301, respectively; 

Fujifilm, Tokyo, Japan) in accordance with manufacturer’s instructions. 

 

Quantitative real-time PCR 

Total RNA was extracted from frozen aorta using TRIzol reagent (Invitrogen/Thermo 

Fisher Scientific, Waltham, MA) with 2-min of bead-beating (BioSpec Products, Barlesville, OK) 

at RT in tubes containing 1.0 g of 1 mm diameter zirconium beads (BioSpec Products) and 

cleaned with the Qiagen RNeasy mini kit (Qiagen, Hilden, Germany). Template cDNA was 

synthesized using 125 ng of purified RNA in 20 µL reaction volumes. cDNA was diluted 1:1 with 

water then 1 µL was mixed with SYBR qPCR Mastermix (Bio-Rad, Hercules, CA) and combined 

with the appropriate primers (400 nM) and water for a total reaction volume of 10 µL. A list of 

primers is shown in Supplementary Table 3. The cycling protocol was performed using 

Mastercycler® nexus (Eppendorf, Hamburg, Germany) as follows: 30 s at 95 ˚C, followed by 35 

cycles of 10 s at 95 ˚C, 30 s at 60 ˚C. A melt curve was conducted from 65 ˚C to 95 ˚C at 
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increments of 0.5 ˚C at 5 sec/step. All reactions were run in duplicate and delta-delta-Ct values 

were calculated relative to the endogenous control (Gapdh). 

 

16S rRNA gene sequencing 

DNA was extracted from all mouse cecal content and feces as well as human fecal slurries 

using a phenol-chloroform extraction method that included a bead-beating step (Turnbaugh, 

Hamady, et al., 2009). 16S rRNA gene (V4) amplification was done by PCR involving unique 

barcodes (8-bp) both on the forward and reverse primers what are fused to Illumina adapters 

(Kozich et al., 2013). The V4 amplicons from each sample were combined and submitted for 

sequencing on an Illumina MiSeq run (2 × 250 bp, Illumina, San Diego, CA) at the University of 

Wisconsin, Madison Biotechnology Center’s DNA Sequencing Facility. Samples with less than 

20% of the average sample read count were excluded, resulting in the removal of four samples 

from further analysis. The remaining samples ranged from 33,869 to 133,538 paired-end reads 

with an average of 77,704 paired-end reads per sample. Qiime2 (version 2019.10) was used to 

generate amplicon sequence variant (ASV) tables and taxonomy tables from the 16S rRNA reads. 

Demultiplexed reads were trimmed and filtered for quality with the Qiime2 DADA2 plug-in 

(Callahan et al., 2016). ASVs were annotated to the genus level with SILVA reference database 

(Quast et al., 2012) (version 132) using Naïve Bayes classifier in Qiime2. All subsequent analysis 

were conducted in R. ASV-level feature counts normalized by converting to relative abundance. 

ASVs were filtered to include only those with at least 0.0001 average relative abundance across 

all cecal samples. For genus-level analysis, a cutoff was set at 0.0005 average relative 

abundance across all samples. These cutoffs were also applied to the fecal sample ASV and 

genera profiles (human inoculum fecal slurries and pre-dietary treatment mouse feces). 

Engraftment efficiency was calculated as the number of features that were detected in the pre-

treatment mouse feces of at least one animal per donor- or donor/diet-group divided by the 

number of features detected in the donor fecal slurry. Positive detection was defined as any 
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feature (ASV or genus) that was found to be greater than 0.0001 relative abundance in a given 

sample. 

 

Shotgun sequencing 

Genomic DNA isolated from the cecal contents of 5 mice per treatment group was used 

for metagenomic analysis. Libraries were prepared using the Illumina TruSeq PCR-free kit 

following vendor protocols and sequenced at the University of Wisconsin Biotechnology Center’s 

DNA Sequencing Facility. All samples were run on a single NovaSeq6000 2 × 150 S4-Flowcell 

lane. The resulting sequences were trimmed for quality using Trimmomatic (version 0–39) and 

then aligned against reference host genomes (Mus musculus GRCm38_Rel98) with bowtie2 

(version 2.3.4) to remove host reads (average host alignment rate was 5.3%) leaving only high-

quality, non-host reads. Cleaning ultimately resulted in an average of 29.4 million paired-end 

reads per sample. 

 

Functional annotation 

Reads remaining after trimming and removal of host sequences were concatenated into 

a single fastq file and fed into HUMAnN3 (version 3.0.0.alpha.4) for functional annotation. This 

resulted in a UniRef90 (Suzek et al., 2015) gene family abundance table in reads per kilobase, 

and a relative abundance table of microbial taxa for each mouse. The UniRef90 gene family 

abundance tables were converted to KO counts-per-million (CPM) abundance tables with the 

human_regroup_table and human_renorm_table functions. Differential abundance analysis was 

conducted on KOs that were present in at least 25% of samples. 

 

CAZyme annotation 

CAZyme profiles of each sample were predicted using run_dbcan (version 2.0.11). We 

assembled cleaned (trimmed, host-free) reads into contigs with metaSPAdes (version 3.14.0) with 
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multiple k-mer sizes (metaspades.py -k 21, 33, 55, 77). Contigs shorter than 500 bp were 

discarded from further processing. Open reading frames (ORFs; i.e., microbial metagenes), were 

predicted from assembled contigs via Prodigal (version 2.6.3) using Hidden Markov Model (HMM) 

with default parameters. All predicted genes shorter than 100 bp were discarded from further 

processing. Nucleotide ORF sequences were converted amino acid sequences and were used 

as input for run_dbcan (version 2.0.11) to predict CAZyme profiles. CAZyme annotation was 

accepted if an ORF was annotated by >= 2 tools (DIAMOND, HMMER, Hotpep). This resulted in 

a table indicating the presence or absence of each CAZyme family in the CAZyme database. To 

estimate CAZyme abundance, each CAZyme family was assigned a count-per-million (CPM) 

value of its associated ORF as predicted by Prodigal. If multiple CAZymes were predicted from 

the same ORF, they were all assigned the ORF’s CPM value. 

 

Microbiome analysis 

PCoA plots and diversity measures were generated using 16S rRNA ASV profiles with the 

phyloseq (version 1.40.0) package in R. All pairwise PERMANOVA tests were conducted 

between dietary groups within each donor group using the pairwiseAdonis (version 0.4) R 

package with 9999 permutations. Feature-level differential abundance analysis of 16S rRNA 

amplicon taxonomy, shotgun metagenomic KO abundances and shotgun metagenomic CAZyme 

abundances were conducted using the MaAsLin 2 function within the MaAsLin 2 (version 1.10.0) 

R package with default settings. To assess KO pathway enrichment, sets of KOs that were 

significantly upregulated by FF feeding (MaAsLin 2 differential abundance, adjusted P < 0.1) were 

generated for each donor group and used as input for the PerformKOEnrichAnalysis_KO01100 

function within the MicrobiomeAnalyistR (version 0.0.0.9000) package in R with default 

parameters. This resulted in a list of KEGG pathways that were significantly (P < 0.05) 

overrepresented in FF-fed mice within each donor group. CAZymes families were considered to 
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be highly differential if they belonged to the top 10% of CAZymes ordered by MaAsLin 2 effect 

size within each donor group, regardless of direction (absolute value of effect size). 

 

Statistical analysis 

Unless otherwise noted, comparisons of means were conducted using a two-sided 

Wilcoxon rank-sum test between dietary groups within each donor group. Equal variance was 

determined for all means tests (Levene’s test, P > 0.05) except comparisons of atherosclerotic 

plaques (size, lipid content, macrophage infiltration) and cecal SCFA levels which were found to 

have significantly different variances between diets (Levene’s test, P < 0.05). Correlations 

between CAZymes and cecal SCFA levels were conducted using all mice to calculate Spearman’s 

rank correlation coefficient. P-value adjustment for PERMANOVA was done using the Bonferroni 

method, while all other adjusted P-values were calculated using the Benjamini–Hochberg method. 

 

Data availability 

Sequencing data reported in this study is available at the European Nucleotide Archive 

(ENA) under the study accession number PRJEB58699. 
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B.9 Figures 

 

 

Figure B.1 Effects of dietary fiber on microbial community structure in gnotobiotic mice 

colonized with different human communities. a, b Principal Coordinate Analysis of 

unweighted and weighted UniFrac distances of 16S rRNA V4 ASVs. Animals colonized with fecal 

samples from three different donors: DonA, DonB, and DonC. c Relative abundances of genus-
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level taxa for the two diets (bottom x-axis, colored bars) along with between-diet differential 

abundance (MaAsLin 2) effect sizes (top x-axis, dots). Significant differences in abundance for 

taxa within each donor group are denoted by a solid dot (adjusted P < 0.1) and open circles denote 

no significant change (adjusted P > 0.1). The dot’s orientation relative to the origin represents the 

effect of diet on the abundance of each taxa (negative values correspond to CC abundances, 

positive values correspond to FF abundances). The first 5 letters of the family encompassing each 

taxon is shown in brackets; if the family is undetermined the taxon phylum is listed instead and 

noted with a “P-”. d Relative abundance of Phylum-level taxa as a function of diet and donor 

group. e Bacteroidetes to Firmicutes ratio. f, g Shannon diversity index and observed richness. 

Box and whisker plots denote the interquartile range, median, and spread of points within 1.5 

times the interquartile range along with individual data points; magenta = Fermentable Fiber (FF), 

blue = Cellulose Control (CC). Comparisons of means (n = 7–10/diet/donor group) conducted with 

Wilcoxon test, *P < 0.05, **P < 0.01, ***P < 0.001. 
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Figure B.2 Atherosclerosis response to dietary fiber in mice colonized with different 

human communities. Atherosclerosis was measured in GF ApoE−/− mice colonized with human 
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fecal communities DonA, DonB, and DonC and fed either fermentable fiber diet, or a cellulose 

control diet. a Representative Oil Red O staining and MOMA-2 antibody staining of aortic sinus 

cross-sections content. Quantification of plaque average area (b), lipid positive area (c) or MOMA-

2 positive area (d). Plasma levels of total cholesterol (e), HDL-cholesterol (f) and triglycerides (g). 

Box and whisker plots denote the interquartile range, median, and spread of points within 1.5 

times the interquartile range along with individual data points; magenta = Fermentable Fiber (FF), 

blue = Cellulose Control (CC). Comparisons of means between diets within each donor group 

(n = 7–10/diet/donor group) were conducted using a Wilcoxon test with appropriate correction for 

equal variance assumption (Levenes’ test), *P < 0.05, **P < 0.01. 
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Figure B.3 Effect of dietary fiber on cecal levels of SCFAs and branched-chain fatty acids. 

Cecal levels of acetate (a), propionate (b), butyrate (c), total SCFAs (sum of acetate, propionate, 

and butyrate) (d), isobutyrate (e) and isovalerate (f). Concentrations are expressed per gram of 

cecal content wet weight. Box and whisker plots denote the interquartile range, median, and 

spread of points within 1.5 times the interquartile range along with individual data points. 

Comparisons of means between diets within each donor group (n = 7–10/diet/donor group) were 

conducted using a Wilcoxon test, *P < 0.05, **P < 0.01, ***P < 0.001. 
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Figure B.4 Effect of dietary fiber on KEGG orthology profiles and metagenomic pathway 

enrichment across donor groups. a Heatmap of KO profiles expressed in CPM for each mouse. 

Individual profiles were clustered using the spearman hierarchical clustering 

method. b Overrepresented KEGG pathways and their significance (represented as the log10 of 

the enrichment P-value) identified by pathway enrichment analysis using lists of KOs from each 

donor group that were significantly upregulated (MaAsLin 2 differential abundance, 

adjusted P < 0.1). c MaAsLin 2 differential abundance (bottom axis, colored bars) and effect size 

(top axis, solid dot = adjusted P < 0.1, open dot = adjusted P > 0.1) of KOs involved in folate 

biosynthesis and cobalamin (vitamin B12) biosynthesis. Negative values reflect KO abundance 

(CPM) in CC-fed mice and effect sizes (MaAsLin 2 coefficient) favoring the CC condition, while 
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positive values indicate KOs abundances and effect sizes in the FF condition (n = 5/diet/donor 

group). 
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Figure B.5 Effect of dietary fermentable fiber on microbial Carbohydrate Active EnZyme 

(CAZyme) profiles. a Heatmap of CAZyme family profiles arranged by category (Glycoside 

hydrolase = GH; glycosyltransferases = GT; carbohydrate binding modules = CBM; carbohydrate 

esters = CE; and polysaccharide lyases = PL) along with the mean counts for each CAZyme 

family expressed in counts-per-million (CPM). Mice profiles were clustered using the Spearman 

hierarchical clustering method. b Comparison of CAZyme family richness between diets (total 

number of CAZyme families detected within each CAZyme category) by donor group. Barplots 

denote the mean with individual data points; comparisons of means between dietary groups were 

conducted using the Wilcoxon test; *P < 0.05, **P < 0.01. c MaAsLin 2 differential abundance 

(bottom axis, colored bars) and effect size (top axis, solid dot = adjusted P < 0.1, open 

dot = adjusted P > 0.1) of the top 10% most differentially abundant CAZymes (n = 5/diet/donor 
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group). The right panel depicts a heatmap of Spearman correlation coefficients between each 

corresponding CAZyme family and cecal SCFA levels across all mice, *P < 0.05. 
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Supplementary Figure B.1 Schematic of the experimental design used in this study. 
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Supplementary Fig. 1 Schematic of the experimental design used in this study. 
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Supplementary Figure B.2 Engraftment of genera from each donor fecal sample into 

recipient mice prior to dietary treatment. Principal coordinate analysis (PCoA) of pre-treatment 

fecal samples using weighted (a) and unweighted (b) UniFrac distances. Colonization method is 

denoted by the inner color of each point (black = gavage, orange = cohouse) and assigned diet 

group is denoted by the outer color (FF- bound = magenta, CC-bound = blue). c-e Venn diagrams 

of the genera detected in the donor fecal sample and in at least one mouse belonging to the CC-

bound group or the FF-bound group of mice two weeks after colonization and prior to beginning 

the dietary treatment phase. The genera listed below the Venn diagrams are denoted by their 

2 
 

 
 
Supplementary Fig. 2 Engraftment of genera from each donor fecal sample into recipient mice prior to 
dietary treatment. Principal coordinate analysis (PCoA) of pre-treatment fecal samples using weighted 
(a) and unweighted (b) UniFrac distances. Colonization method is denoted by the inner color of each 
point (black = gavage, orange = cohouse) and assigned diet group is denoted by the outer color (FF-
bound = magenta, CC-bound = blue). c-e Venn diagrams of the genera detected in the donor fecal 
sample and in at least one mouse belonging to the CC-bound group or the FF-bound group of mice two 
weeks after colonization and prior to beginning the dietary treatment phase. The genera listed below 
the Venn diagrams are denoted by their family (in brackets) and their group-average abundance in the 
cecal content of mice belong to the CC-fed group (blue text) or the FF-fed group (magenta text) at the 
end of the study after dietary treatment. Undet. = undetermined. f Engraftment efficiency for each 
mouse is expressed at the of genus level (teal) or at the ASVs level (salmon) two weeks after inoculation, 
but prior to dietary treatment. 
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family (in brackets) and their group-average abundance in the cecal content of mice belong to the 

CC-fed group (blue text) or the FF-fed group (magenta text) at the end of the study after dietary 

treatment. Undet. = undetermined. f Engraftment efficiency for each mouse is expressed at the 

of genus level (teal) or at the ASVs level (salmon) two weeks after inoculation, but prior to dietary 

treatment.  
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Supplementary Figure B.3 Fecal DNA yields per gram of cecal content obtained from mice 

colonized with human fecal communities DonA, DonB, and DonC and fed either fermentable fiber 

diet (FF, magenta), or a cellulose control diet (CC, blue). Box and whisker plots denote the 

interquartile range, median, and spread of points within 1.5 times the interquartile range along 

with individual data points. Comparisons of means between diets within each donor group (n = 7-

10/diet/donor group) were conducted using a Wilcoxon test, * P <0.05, *** P <0.001.  
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Supplementary Fig. 3 Fecal DNA yields per gram of cecal content obtained from mice colonized with 
human fecal communities DonA, DonB, and DonC and fed either fermentable fiber diet (FF, magenta), or 
a cellulose control diet (CC, blue). Box and whisker plots denote the interquartile range, median, and 
spread of points within 1.5 times the interquartile range along with individual data points. Comparisons 
of means between diets within each donor group (n = 7-10/diet/donor group) were conducted using a 
Wilcoxon test, * P <0.05, *** P <0.001. 
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Supplementary Figure B.4 Quantitative RT-PCR measurements of inflammatory markers and 

cholesterol efflux genes in aortic samples. a-c Log2 fold-changes of mRNA abundance for 

inflammatory markers, and d,e genes encoding subunits of key cholesterol transporters between 

mice consuming FF and CC diets. All fold-changes are expressed relative to the donor-matched 

CC-fed group and were calculated using Gapdh as a reference gene. Box and whisker plots 

denote the interquartile range, median, and spread of points within 1.5 times the interquartile 

range along with individual data points. Comparisons of means between diets within each donor 

group were conducted using a Wilcoxon test.  
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Supplementary Fig. 4 Quantitative RT-PCR measurements of inflammatory markers and cholesterol 
efflux genes in aortic samples. a-c Log2 fold-changes of mRNA abundance for inflammatory markers, and 
d,e genes encoding subunits of key cholesterol transporters between mice consuming FF and CC diets. 
All fold-changes are expressed relative to the donor-matched CC-fed group and were calculated using 
Gapdh as a reference gene. Box and whisker plots denote the interquartile range, median, and spread of 
points within 1.5 times the interquartile range along with individual data points. Comparisons of means 
between diets within each donor group were conducted using a Wilcoxon test. 
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Supplementary Figure B.5 Average (mean) CPM of the top 10 most abundant CAZyme families 

within each diet-donor group (FF top, CC bottom). CAZyme classes are indicated by color 

(Glycoside hydrolase = GH; glycosyltransferases = GT; carbohydrate binding modules = CBM). 

Values are expressed in counts per million (CPM).  
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Supplementary Fig. 5 Average (mean) CPM of the top 10 most abundant CAZyme families within each 
diet-donor group (FF top, CC bottom). CAZyme classes are indicated by color (Glycoside hydrolase = GH; 
glycosyltransferases = GT; carbohydrate binding modules = CBM). Values are expressed in counts per 
million (CPM).  
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