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Abstract

The performance of direct CAD-based Monte Carlo Radiation Transport
(MCRT) relies heavily on its ability to return geometric queries robustly
via ray tracing methods. Current applications of ray tracing for MCRT are
robust given that certain requirements are met [48], but cause simulations
to run much longer than native code geometry representations. This work
explores alternate geometry query methods aimed at reducing the com-
plexity of these operations as well as algorithmic optimization by adapting
recent developments in CPU ray tracing for use in engineering analysis.
A preconditioning scheme is presented aimed at avoiding unnecessary
ray queries for volumes with high collision densities. A model is also
developed to inform the application of the preconditioning data structure
based on a post facto analysis. Next, a specialized ray tracing kernel for
MCRT is presented. As new ray tracing kernels are developed for real-time,
photo-realistic rendering, algorithmic approaches have appeared which
are demonstrated to be advantageous when applied in radiation transport.
In particular, the application of data parallelism in ray tracing for Monte
Carlo is demonstrated - resulting in significant performance improvements.
Finally, model features resulting in systematic performance degradation
commonly found in CAD models for MCRT are studied. Methods are
proposed and demonstrated to improve performance of ray tracing kernels
in models with these features. The combination of this work is shown to
provide improvement factors ranging from 1.1 to 9.54 in simulation run
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time without loss of robustness for several production analysis models.
The final impact of this work is the alleviation of concern for additional
computational time in using CAD geometries for MCRT while maintaining
the benefit of reduced human time and effort in model preparation and
design.
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Chapter 1

Introduction

This work focuses on methods for modeling radiation transport to deter-
mine particle flux, or derived quantities, across the dimensions of space,
angle, energy and time known as phase space. The behavior of these par-
ticles is described by the linear Boltzmann transport equation [37]. De-
terministic codes solve this transport equation by discretizing the phase
space of the problem domain, but time and memory constraints often limit
the resolution of phase space in practical problems.

Monte Carlo Radiation transport (MCRT) simulates the interaction of
individual particles across phase space [33]. This method was developed
at Los Alamos National Laboratory (LANL) during World War II by Fermi,
von Neumann, Ulam, Metropolis, and Richtmyer [53]. It uses a random
walk process to solve the transport equation. Pseudo-random numbers are
used to sample probability distribution functions representing properties
of the virtual medium and in turn determine the particle interaction out-
comes. This stochastic approach requires the simulation of many particles
to reduce the statistical uncertainty of the solution, where the uncertainty
is inversely proportional to the square root of the number of particles sim-
ulated. As the number of simulated particles approaches infinity, tallied
quantities in the simulation approach the value of the continuous solution.



2

The pros and cons of the deterministic and Monte Carlo approaches
complement each other. While deterministic approaches inherently calcu-
late a solution over the entire problem domain, they take on additional
error by discretizing phase space. In contrast, Monte Carlo methods only
incur error associated with input parameters such as cross sections or
geometry specifications, but it is challenging to achieve a global solu-
tion with uniform statistical error using this approach. Computationally,
deterministic methods typically suffer memory and run time costs that
scale with the resolution of the discretized phase space whereas Monte
Carlo methods are typically limited by the run time needed to achieve
satisfactory uncertainty in a region of interest.

1.1 Monte Carlo Geometry

Historically, Monte Carlo codes use Constructive Solid Geometry (CSG) as
their native geometry representation. CSG represents 3D regions of virtual
space using Boolean combinations of half spaces defined by quadratic
surfaces. To define the geometry, the surface and volume definitions are
typically entered into a text file. This format for geometry is robust once
defined properly, but it is difficult to manage for large models and limited
in representation compared to more modern geometric modeling tools
available in Computer-Aided Design (CAD).

In contrast to CSG, CAD allows for increased accuracy in model rep-
resentation and better human efficiency. CAD engines are capable of
representing higher-order surfaces and provide access to models used for
analysis in other engineering domains. These shared models allow for
a common problem domain in coupled simulations. CAD systems also
provide a rich set of tools for model generation, topological representation,
and design iteration. For highly complex, well-developed models, these
tools are more intuitive and efficient for human use over alteration of native
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codes’ text-based formats. Several tools exist for converting native CSG
models to and from CAD systems. A few have the capability to perform
simulations directly on CAD geometries as well [32].

The Direct Accelerated Geometry Monte Carlo (DAGMC) [52] toolkit
is one of several software packages which enables Monte Carlo Radia-
tion Transport on tessellated surfaces (MCRT-t) originating from CAD
geometries. DAGMC’s design allows it to serve as a particle tracking and
geometry kernel for all Monte Carlo codes listed in Table 1.1.

Monte Carlo Code DAGMC Implementation
MCNP5[64] DAG-MCNP5
MCNP6[21] DAG-MCNP6

Fluka[11] FluDAG
Tripoli4[35] DAG-Tripoli4
Geant4[6] DagSolid
Shift[40] DAG-Shift

Table 1.1: A list of Monte Carlo codes and the names of their corresponding
DAGMC implementations.

1.2 Statement of Problem

While the use of CAD geometries brings the benefits outlined above, it
also adds complexity to particle tracking during Monte Carlo simulations.
Particle crossings with higher-order surfaces are difficult and sometimes
impossible to compute analytically. One method of addressing this prob-
lem is to discretize the analytic CAD surfaces into a triangle surface mesh.
This generalizes intersections with surfaces to intersections with a set
of planar surfaces. However, a large number of triangles are needed to
maintain an accurate representation of surfaces throughout the model.
As a result, the costly search for surface crossings and other fundamental
geometry queries cause simulations on CAD-based tessellations to take
much longer than native CSG models.
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The intersection of a particle and trajectory with a triangulated surface
is a well-researched problem in the area of ray tracing. In this field, ge-
ometries are also triangulated for visualization and rendering purposes.
DAGMC currently employs techniques from this field to accelerate geo-
metric queries, but it is still slower than native geometry implementations
in CSG. DAGMC’s simulations are anywhere from 2.5 to 10 times longer
than those of their native counterparts.

Table 1.2 represents a comparison for several representative MCNP
problems between the native geometry representations and DAGMC cou-
pled with MCNP, or DAG-MCNP. For smaller problems with simple ge-
ometries and relatively low numbers of histories required to reach a low
level of statistical uncertainty, this might not pose as much of a problem to
users. As problem geometries become more complicated and the number
of histories becomes larger, however, the difference in computing time
becomes important when run times extend to days or weeks longer than
they would using the native MCNP CSG geometry representation. These
models include the Frascati Neutron Generator (FNG), the Advanced Test
Reactor (ATR), the University of Wisconsin Nuclear Reactor (UWNR), and
the neutron Time of Flight (nTOF) device at the Institute for Science and
International Security. It should be noted that only time spent simulating
particle histories is reported in Table 1.2, not including setup operations
for simulation such as nuclear cross section loading and acceleration data
structure construction.
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Model Native run time (min) DAG-MCNP run time (min) Timing
Ratio

FNG 5871.92 22769.33 3.9
ATR 901.68 8627.80 9.6
UWNR 8767.29 69429.60 7.9
Nerf 167.52 295.13 1.8

Table 1.2: Table comparing the performance of DAG-MCNP to native
MCNP for the same models after translation to a CAD-based tessellated
surface mesh.

As a part of this study, these runs were repeated using the profiling
tool, Callgrind [41], to determine where computing time is being spent
in both the DAG-MCNP and native MCNP runs. Because the geometry
representation and query system is the only difference between the two
models, it is expected that the time is being spent there, but it is practical
to confirm this and useful to know more specifically where in the query
system this is occurring. All callgraphs are displayed with the MCNP
history_ subroutine at the top. It is inside this subroutine that MCNP calls
DAGMC methods to fulfill geometric queries as particles move through
the model.

In Figure 1.1 a callgraph for a profiling run of FNG for 1× 107 histories
is provided. In this callgraph it is shown that the time spent in transport
is dominated by calls in DAGMC used to track particles as they move
through the geometry. About 60% of the run time is spent in DAGMC’s
ray_fire while in native MCNP the relative time spent on this process is
reduced to 5% with the majority of the time spent in calculating cross
sections under the acetot_ subroutine.
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Figure 1.1: Callgraph of DAG-MCNP FNG run for 1× 107 histories. Pro-
cesses taking <10% of the run time are filtered out in order to simplify the
graph.
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Figure 1.2: Callgraph of native MCNP FNG run for 1× 107 histories. Pro-
cesses taking <10% of the run time are filtered out in order to simplify the
graph.

The combination of the profiling results indicating how much time
is spent in tracking particles in DAGMC along with the difference in
absolute simulation times confirms that the performance bottleneck of
DAGMC lies in its ability to quickly satisfy the geometric queries of the
underlying Monte Carlo code it is coupled to. Looking more closely at the
underlying calls in DAGMC, one can see that this time is collectively spent
in the DAGMC ray_fire method, indicating that a significant amount of
additional time is spent in MCRT-t geometry queries.

1.3 Statement of Thesis

The purpose of this dissertation is to discover new pathways toward im-
proving the performance of Monte Carlo radiation transport in CAD-based
tessellations in a manner that is widely accessible to analysts. Toward this
end, this work aims to improve performance of spatial queries for general
purpose mesh data structures through adaptation of rendering techniques
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to suit the purposes of engineering analysis and robust particle transport
methods. The effect of these adaptations is demonstrated in the DAGMC
toolkit for the purpose of radiation transport to significantly reduce simu-
lation run times in this engineering domain.

A background and literature review of CAD-based transport methods
and associated acceleration techniques is provided in Chapter 2. First, it
outlines required capabilities for particle tracking in MCRT. Next it de-
scribes commonly used geometry representations in MCRT codes followed
by a description of the MCRT-t particle tracking systems of interest for this
work. Lastly, associated acceleration data structures and techniques which
enable highly performant computation of transport on CAD models are
discussed.

Chapter 3 presents a novel acceleration method for CAD-Based MCRT
and its application for each of the relevant geometry query types outlined
in Chapter 2. An analytic model is then described to guide the application
of this technique based on simple parameters of the problem geometry
and physics. Finally, results of this method’s application in both contrived
and production models are discussed along with limitations of the method
and aforementioned analytic model.

Chapter 4 demonstrates the integration of nuclear engineering simu-
lation with state-of-the-art computer graphics tools. Significant improve-
ments in performance are demonstrated in both test and production mod-
els by adapting data structures discussed in Chapter 2 for optimal efficiency
on modern CPU architectures. Robustness limitations of the computer
graphics tools as applied to engineering analysis are discussed, and ex-
tensions of these tools are presented to address those limitations. Critical
implementation details and algorithmic adjustments of these extensions
are outlined, and performance comparisons are drawn in terms of the raw
query speed between all particle tracking implementations. Finally results,
of the extended system are presented for several production models, in-
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cluding several of the models used in benchmark comparison found in
Chapter 1.

Chapter 5 addresses a long-standing issue in CAD-based MCRT-t. Per-
formance degradation caused by problematic features of the CAD-based
tessellation are characterized using a contrived model for all ray tracing
implementations in Chapter 4. A solution using on-the-fly detection of
and adaptation to of this feature during construction of particle tracking
acceleration data structures is presented. Characterization of the perfor-
mance both with and without the adaptive construction technique are
presented and discussed. Finally, results of this technique as applied to
the same set of production models shown in Chapter 4 are presented and
discussed.

The conclusion statements in Chapter 6 discuss the contributions of
this work to MCRT for CAD geometries, its broader impacts, and possible
future directions for various aspects of the work.
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Chapter 2

Background

2.1 Monte Carlo Geometry Queries

A Monte Carlo geometry kernel must provide robust support for the
geometry queries shown in Figures 2.1 - 2.6.

?

?

?

?

?

Figure 2.1: Point Containment: Given a set of volumes and particle loca-
tion, x, determine if the point is inside, outside, or on the boundary of a
volume.
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S

Figure 2.2: Next Surface: Given a volume, V, particle location, x, and
particle trajectory,Ω, determine the next surface, S, of the volume that the
particle intersects with alongΩ and the distance, d to that intersection.

S

Figure 2.3: Closest Surface: Given a volume, V, and particle location, x,
determine the distance, d, to to the nearest surface, S, of the volume in
any direction.
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V1

V2

S

Figure 2.4: Next Volume: Given a particle in volume, V1, and crossing a
surface, S, determine the correct adjacent volume, V2.

n

S

Figure 2.5: Surface Normal: Given a surface, S and particle location, x
determine the normal vector, ~n, of the surface where the particle crossing
occurs.
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V?

S?

Figure 2.6: Measure: Given a volume, V, or surface, S in the geometry,
determine properties of that entity such as the volume or area.

Failure to accurately satisfy geometry queries or calculate geometric
values can result in biased simulation results. Once such failure mode is
lost particles during simulation. Lost particles occur when the geometry
kernel cannot determine the particle’s logical position, or which cell/vol-
ume contains the particle, based on it’s numerical position. Lost particles
remove statistical information from the simulation, and may influence
results if particles are not uniformly lost throughout phase space. Inaccu-
rate measurement of volume or surface area can result in incorrect values
derived from simulation results, such as surface current density tallies or
k-effective values in criticality simulations.

2.2 Analytic Geometry Representations

This section contains a discussion of common analytic geometry repre-
sentations which are often used as native representations of Monte Carlo
geometry.
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2.2.1 Implicit Surfaces

An implicit surface is a multivariate function defined over an R3 domain
onto the one-dimensional space, R:

Ω(R3)→ R (2.1)

These geometric representations are a rich and versatile representation
of closed manifolds used for modeling, simulation, and rendering. Implicit
surfaces are defined using the isocontour of a scalar function defined over
all space - unlike an explicit representation of a surface which defines
the subset of space which the boundary occupies. Intuitively it might
seem wasteful for a definition to be true for all space considering the
relatively small amount of space the object will occupy, however a number
of powerful tools for geometric modeling using these representations will
be discussed in this section.

An isocontour of this function with the value, v, can be described as:

Ω(~x) − v = 0 (2.2)

For simplicity, the boundary of an implicit surface is conventionally
defined as the isocontour for which v = 0. As a result, any point inside
of the surface will have a negative value while any point outside of the
surface will have a positive value.

Unlike their explicit counterparts, implicit representations allow com-
plex topologies of surfaces to be integrated into a single representation.
This is in part because the function is defined for all space, allowing them
to naturally represent the merging and separation of disparate volumes.
These properties allow for straightforward representation of dynamic
surfaces such as fluids, though this is not yet of concern in the area of radi-
ation transport. In practice, implicit surfaces are often used to re-sample
the model into some other proxy for the geometry or render models via



15

ray tracing. Additionally, implicit surfaces can be used to generate tri-
angle meshes for rasterization or rendering on GPUs [45] and can also
be constructed from arbitrary triangle meshes or point clouds [46]. Im-
plicit surfaces are well-suited to these applications due to the integrated
geometric properties that can be quickly recovered from their analytic
forms.

Geometric information needed for visualization and simulation can
be readily recovered from implicit surface representations. For example,
a common operation in particle transport is the determination of its con-
tainment by a volume in the model. A quick evaluation of the implicit
function for this point will indicate its containment by the sign of the func-
tion. Additionally, the distance to nearest intersection with the surface
from any point in space can quickly be determined via the definition of a
signed distance function which is formally defined as:

d(~x) = min(|~x− ~xI|) (2.3)

Ω(~x) s.t. |Ω(~x)| = d(~x) (2.4)

d − distance function (2.5)

~xI − surface interface (2.6)

These forms of implicit surface functions can be modified or selected
such that the following conditions are met:†

†The sign convention shown here is opposed to the sign convention commonly used
for interior and exterior points in space. This sign convention is arbitrary and has been
reversed for clarity in radiation transport where physical phenomena are simulated in
the interior of objects rather than the space between them in rendering applications.
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• Ω(~x) = d(~x) = 0 for all x on the surface boundary

• Ω(~x) = d(~x) for all x inside the surface boundary

• Ω(~x) = −d(~x) for all x outside the surface boundary

Implicit surfaces are often used in time-dependent simulations due
to their natural extension into a fourth dimension (Ω(~x, t) − v = 0) and
in turn their support for moving boundaries and changing topologies.
Dynamic geometries are not yet of concern for CAD-based Monte Carlo
work, but specialized forms of implicit surfaces are used as native geometry
representations in most Monte Carlo simulation codes.

2.2.2 Constructive Solid Geometry

Native Monte Carlo geometries are commonly formed from a standard set
of well-behaved implicit surfaces known as general quadratics. Construc-
tive Solid Geometry (CSG) representations combine these surfaces using
Boolean operations to form more complex objects as shown in Figure 2.7.

It is possible to construct complex geometries using CSG, but, as men-
tioned in Chapter 1, the interface for this work is typically text-based. This
format makes defining complex volumes a tedious and time-consuming
task. Detecting problems with the geometry definition is straightforward
for the same reason that particles can be robustly tracked through the ana-
lytic description of the surfaces. Fixing undefined regions of the geometry
or detecting invalid volume definitions is more difficult however.

The detection of intersections and particle containment queries in CSG
geometries is computationally inexpensive for volume definitions con-
structed from a small number of surfaces, but, due to the logical combi-
nations of surfaces used to create volumes, the number of evaluations
necessary to satisfy these queries is linear with the number of surfaces in
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Figure 2.7: An example of how CSG volumes are created using Boolean
combinations of objects. The union of the three orthogonal cylinders is
subtracted from the intersection of the box and sphere on the left to form
the final volume at the top of the figure.

the definition. For sufficiently large and complex models, it is not uncom-
mon for volumes with many surfaces to be artificially separated by planes
to create multiple volumes with fewer surfaces in their definition.

Visualization of CSG models is also somewhat limited. Because native
formats for CSG differ greatly between each Monte Carlo code, each typi-
cally provides its own geometry visualization tools. These tools are com-
monly restricted to 2D images of the model representing a user-specified
slice through the geometry.

2.3 CAD Geometry

Computer-Aided Design (CAD) systems allow for efficient and accurate
representation of geometrically complex domains. An example such a
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model is shown in Figure 2.8. Models can be created using interactive
visualization tools represented in 3D space with a rich tool set for volume
and surface creation. These creation and modification tools along with
the immediate visual verification of a user’s work reduces human error in
model generation and design iteration.

Figure 2.8: The Fusion Neutron Science Facility (FNSF)[29] model dis-
played in the CUBIT geometry and mesh generation toolkit [10].

In addition to reducing human error and effort, CAD models provide
a common domain for analysis in other engineering domains such as
fluid dynamics, heat transfer, and structural engineering. This shared
domain enables ease of parametric studies and iterative design in coupled
physics simulations. CAD engines also provide the ability to represent
free-form or higher-order surfaces. The use of representations like splines,
Bezier curves, and subdivision surfaces allow for accurate representation
of these arbitrarily complex forms which would be impossible to accurately
represent using CSG.
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2.4 CAD-Based Monte Carlo Radiation
Transport

2.4.1 Translation-Based Methods

One approach to CAD-Based MCRT is to leverage the native geometry
capabilities of Monte Carlo codes by translating CAD geometries into CSG
representations. In this approach, the fidelity of the geometric represen-
tation is limited to the geometric primitives available in the supported
Monte Carlo code. Most codes support only first and second order sur-
faces, so higher-order surfaces of the CAD model must be approximated
to accommodate the limited representation of the native code. As a result,
many of these methods will simplify single volumes into smaller, less
complex volumes able to be represented in CSG. This can be problematic
when tally information related to CAD entities is desired - surface or volu-
metric fluxes for a single entity in the CAD model must now be mapped
to several entities in the CSG representation. The lack of one-to-one corre-
lation between CAD and CSG entities makes model manipulation difficult
in that a change to the CAD model may result more or fewer CSG enti-
ties after translation, adding difficulty to tracking tally mapping. Several
translation approaches have been developed oriented toward the Monte
Carlo N-Particle (MCNP) input format developed at Los Alamos National
Laboratory [64]. A few of these tools are described below:

MCAM: CAD support for the Super Monte Carlo (SuperMC) code,
developed at the Chinese Academy of Sciences, is provided by the
Monte Carlo Automatic Modeling (MCAM) tool [63, 65]. It supports
both CAD-to-CSG and CSG-to-CAD conversion, relying on the ACIS [5]
geometry engine. It is capable of fixing gaps and overlaps in models and
supports geometry creation. Volumes are decomposed into simplified,
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convex volumes during CAD-to-CSG translation.

McCad: McCad was developed at the Karlsruhe Institute of Technology
in Germany and supports both CAD-to-CSG and CSG-to-CAD model
conversion, relying on the Open CASCADE modeling engine to do so
[13, 23]. Void spaces in the model are automatically filled in McCad.
McCad also decomposes single volumes into multiple volumes with
simplified CAD definitions.

Though other translation-based methods exist, these tools were se-
lected for discussion based on usage in analysis and development efforts
at the time of this work.

2.4.2 Direct Transport Methods

In the direct approach to CAD-Based MCRT, geometric queries are per-
formed directly on the CAD geometry. Unlike translation-based approaches,
physics codes must be modified to direct geometric operations to the CAD-
Based interfaces. Some direct methods perform queries on analytic CAD
representations while others use discretized forms, but in either case no
simplification of the geometry is involved. Direct computation on CAD
geometries tends to be slower than using native geometry because particle
tracking is more computationally expensive on complicated surface repre-
sentations. Several recent implementations of direct methods are listed
below:

SERPENT: Serpent [32] provides CAD-based transport using a geome-
try represented by individual stereo-lithography (STL) files or a ABAQUS
mesh [4] generated using CUBIT [10]. It is expected that the volumes
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in these files do not occupy the same space and that each file contains
a single, closed volume of triangles. Geometries can also be defined
using both CSG and STL representations in this format [50]. The use of
separate files to represent volumes independently in this system makes
interchanging parts in a geometry straightforward, but ensuring that
these parts do not have gaps or overlaps can be a difficult task for users.

MCNP6: MCNP6 [21], developed at Los Alamos National Laboratory,
has added a native capability for transport on a volumetric mesh of
unstructured tetrehedra. Thus a conformal mesh can be generated
using a CAD model for transport in this mode to achieve good geometry
fidelity. Generating a geometrically constrained volumetric mesh is
difficult (and sometimes impossible) for arbitrary geometries, however.
Non-conformal meshes can also be used where tetrahedra overlapping
volume boundaries will contain a homogenized mixture of the materials
in the mesh element, but the effects of this approximation are difficult
to quantify and depend greatly on the importance of the materials
homogenized and mesh element characteristics.

DAGMC: The Direct Accelerated Geometry Monte Carlo (DAGMC)
software toolkit enables MCRT directly on CAD geometries [51] using
surface tessellations to represent volume boundaries. DAGMC was de-
veloped at the University of Wisconsin - Madison and has been coupled
with many Monte Carlo codes including MCNP (see Table 1.1). DAGMC
relies on CUBIT (and its commercial counterpart, Trelis[1]) for model
importing, cleaning, and tessellation. Surface meshses are stored in
the Mesh Oriented dAtaBase (MOAB) [52], developed at Argonne Na-
tional Laboratory. CUBIT and Trelis features are used to ensure volumes
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do not overlap before discretization, and preprocessing steps ensure
models are topologically watertight before transport[47].

Though each of the above methods has its merits, the work of this
thesis has been implemented in DAGMC. DAGMC has demonstrated ro-
bust transport capability on models of varying geometric complexity for
a number of physics applications. As mentioned above, it accomplishes
this by discretizing CAD surfaces into sets of triangles representing sur-
face boundaries. Volumes are then defined by all sets of triangles which
represent bounding surfaces of a given volume. This surface mesh and
the geometric relationships between sets of mesh elements, also known as
Meshsets, are stored in MOAB. These relationships, which preserve the
geometric topology, are stored in a hierarchical structure within MOAB,
relating volumes to their surfaces, surfaces to curves, and curves to ge-
ometric vertices. For the purposes of this work, only the relationship
between volumes and surfaces are of concern. A depiction of the rela-
tionship between Meshsets in DAGMC geometries can be seen in Figure
2.9.

It is important that topological relationships of the geometry-based
Meshsets are maintained to accelerate certain geometric queries on the
surface mesh. For example, Next Volume (see Figure 2.4) queries are accel-
erated by using these relationships to directly determine which volume a
particle is passing into upon crossing a surface. In CSG, a surface crossing
can require a series of point containment checks for each volume to update
the logical position of a particle in another volume. Other queries become
more complicated, however, due to the sheer number of triangles needed
to properly define volumes with detailed features.

Next Surface and Closest Surface (see Figures 2.2 and 2.3) geometry
queries, for example, can be computationally expensive for volumes often
composed of hundreds of thousands or even millions of triangles. A con-



23

S
u
rf

a
ce

 A

S
u
rf

a
ce

 B
S

u
rf

a
ce

 C

V
o
lu

m
e
 A

V
o
lu

m
e
 B

D
is

cr
e
ti

ze
d

 G
e
o
m

e
tr

y

Fi
gu

re
2.

9:
Le

ft:
Pa

rt
ia

lr
ep

re
se

nt
at

io
n

of
a

di
sc

re
tiz

ed
DA

G
M

C
ge

om
et

ry
.R

ig
ht

:A
re

pr
es

en
ta

tio
n

of
th

e
m

es
h-

ba
se

d
hi

er
ar

ch
y

us
ed

to
m

ai
nt

ai
n

to
po

lo
gi

ca
li

nf
or

m
at

io
n

ab
ou

tt
he

C
A

D
ge

om
et

ry
in

M
O

A
B.



24

venient way to conceptualize geometric queries on triangulated surfaces
or volumes is to consider an equivalent CSG representation constructed
using a planar surface in place of each triangle in the DAGMC model.
The structure imposed by the Boolean combinations used to define such
volumes require that each surface be checked for an intersection with the
particle trajectory, resulting in a somewhat naive search for the nearest
intersection. This intersection can then be used to determine the location
of surface crossings.

The problem of finding a surface intersection for a given particle loca-
tion and trajectory for a set of geometric primitives is a well-researched
problem in the field of ray tracing. In this field, data structures designed
to accelerate the location of the nearest ray intersection are used to render
animations and images in real time.

2.5 Ray Tracing Acceleration Data Structures

Acceleration data structures for ray tracing are designed to rapidly narrow
the search for an intersection in 3D virtual space given a starting position
and trajectory used to construct a ray. This is accomplished by partitioning
the space and associating geometric primitives, usually triangles, with that
bounding partition. A search is performed by checking for an intersection
with this bounding partition. If the ray does not intersect with the partition,
then the set of primitives contained within that partition can be removed
from the search. If the ray does intersect with the partition, then the set of
associated primitives must be checked for intersection. Because a single
separation into two spatial partitions is often insufficient to increase search
efficiency, this partitioning process is performed recursively. The result is a
tree, or hierarchy, in which partitions at the top of tree are associated other
partitions, known as child nodes, rather than primitives. Partitions at the
bottom of the tree are known as leaf nodes and are directly associated
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with geometric primitives representing the geometric boundary.
The search for a ray intersection then becomes a traversal of the tree

in which the children of the root node are checked for intersection. If an
intersection is found with one or both of the nodes, then the corresponding
child nodes are checked for intersection as well. This process is repeated
until leaf nodes are reached at which point primitives are checked for in-
tersection. A simplified version of this method can be found in Algorithm
2.1.

Any primitives underneath a node with which the ray does not intersect
can immediately be rejected as a possibility for a hit. This allows many
primitives to rapidly be removed from the search, limiting the number of
primitive intersection checks to a small number compared to checking each
primitive individually. This technique reduces the algorithmic complexity
of the search from a brute force, or linear O(Nprimitives) , search to a
logarithmic O( log(Nprimitives)) search.
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def i n t e r s e c t _ r a y ( t r e e _ r o o t , ray ) :

s tack . append ( t r e e _ r o o t )

while not s tack . empty ( ) :

node = s tack . pop ( )

i f i s _ l e a f ( node ) :
p r i m i t i v e s = get_node_primit ives ( node )

for p r i m i t i v e in p r i m i t i v e s :
d = p r i m i t i v e _ i n t e r s e c t ( pr imit ive , ray )
i f d < d i s t : d i s t = d

continue

i f n o d e _ i n t e r s e c t ( node , ray ) :
ch i ldren = get_node_chi ldren ( node )

s tack . append ( ch i ldren )

return d i s t

Algorithm 2.1: General algorithm for spatial hierarchy traversal to return
the nearest intersection along a ray.

The remainder of this section reviews heuristics, bounding constructs,
and data structure relationships used in rendering and scientific simulation
today. Next, two splitting heuristics used to build these data structures,
the Entity Ratio Heuristic (ERH) and Surface Area Heuristic (SAH) are
discussed. After that, several common spatial hierarchies are described
including the KD-Tree, Bounding Volume Hierarchy (BVH), and the octree.
The remainder of this chapter describes CPU architecture characteristics
which allow adaptations of these hierarchical data structures to achieve
improved performance. This description includes a commentary on the
relevance of specific design elements in these accelerations to MCRT.
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2.5.1 Splitting Heuristics

There are two critical components that go into the creation of spatial
partitions in ray tracing hierarchies. The first is the selection of a candidate
splitting plane which is used to separate entities into one partition or
another. The second is the evaluation of the “cost” of that split. This cost
is a purely relative measure used to compare candidate splits for selection
of a best split curing construction. Because there is no way to know exactly
how expensive or inexpensive the cost of a split will be for the particular
simulation at hand, heuristics are used to estimate this cost and determine
the optimal splitting plane using limited information about the local nodes
in the tree. More specifically, this information is typically limited to the
number of primitives being split, bounds of the parent partition, and
bounds of the candidate child partitions. Split costs are compared to the
relative cost of forming a leaf node as well. If the cost of all splits is larger
than that of the current node, then it is declared a leaf node and the build
process continues in other areas of the hierarchy.

A virtually infinite number of planes could be tested to find the optimal
plane for dividing the entities between the child bounding volumes, but
even if one were to encounter such a splitting plane, it can be difficult to
identify the plane as such without more knowledge about the final tree
structure. As a result, a limited set of planes is tested for the best split
based on a set of assumptions about the problem at hand and the heuristics
being used to evaluate split costs. The most common method for split
plane candidates is median plane splitting in which the current partition
is split in half along each axes of the current bounding volume. Splitting
plane costs are then evaluated and the split with the lowest cost is selected.
Other methods for plane selection exist, but will not be discussed here as
this work is more focused on traversal performance.

Two heuristics will now be discussed - the Entity Ratio Heuristic (ERH)
and the Surface Area Heuristic (SAH). The ERH uses the resulting number
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of primitives in each child node to determine the cost of a split. The philos-
ophy behind this heuristic is to maintain the expectedO(log(Nprimitives))
cost of a ray traversal by ensuring that the number of primitives are split
as evenly as possible from parent to child node. A form of this heuristic
is presented in Equation (2.7). The ERH cost is unit-less and bounded by
zero and one. This heuristic provides a finite limit on the expected cost,
and makes it possible to set both an upper and lower bound as both an
unacceptably high and a “good enough” cost, respectively.

C =
|PR − PL|

(PR + PL)
(2.7)

C− final cost evaluation

PL−primitives containedby the left child

PR−primitives containedby the right child

Figure 2.10: An example of the ERH calculation for a binary hierarchy.

The SAH applies spatial information as well as division of primitives
to the cost evaluation. Its full form is found in Equation (2.8). The SAH
uses the surface area of candidate child partitions relative to the parent
partition’s surface area as an approximation for the probability that the
children will be visited after the parent volume. This evaluation relies on
the assumption that rays in the problem are globally isotropic. The explicit
form of the surface area heuristic was introduced in 1987 by Goldsmith
and Salmon [20] and later formalized by MacDonald and Booth in 1990
[34].
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C = Ct +
SAL

SAP
PLCi +

SAR

SAP
PRCi (2.8)

Ct− cost of traversal to childnodes

Ci− cost of primitive intersection check

SAL− surfaceareaof left child

PL−primitives containedby the left child

SAR− surfaceareaof right child

PR−primitives containedby the right child

SAP−parentnode
′s surfacearea

Figure 2.11: A form of the surface area heuristic for a binary tree.

For the general case, ERH has not proved to be as effective as the SAH
[9], but as seen in Chapter 5 it is a useful tool in correcting the surface area
heuristic for triangle mesh features of a specific type. This scenario will be
discussed further in Chapter 5.

2.5.2 KD-Trees

The KD-Tree or multidimensional binary search tree was originally devel-
oped as an acceleration data structure for querying records in databases
and has since found use in other applications including speech recognition,
global information systems, and ray tracing [8]. KD-Trees operate by using
single values to represent divisions in a dimension of the problem space.
A different dimension is split in each level of the tree, and the process is
recursively repeated until a sufficiently small number of records or entities
exist within the resulting partitions of a split, resulting in leaf nodes of the
tree.

This data structure is also commonly applied to virtual 3D space for
ray intersection queries. A different dimension of space is split in each
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level of the tree just as is done in the context of an arbitrary database with
different indices of data. The values used for separation of entities in the
tree now represent a coordinate of a plane in that dimension; entities are
sorted to either side of that plane to perform a split. First, the problem
space is divided evenly in the x dimension. The two child partitions are
divided along the y axis and the resulting children of this division are
subdivided along the z axis. Divisions are typically selected in such a way
that the largest extent of the current candidate is bisected.

It is possible that by doing this primitive entities are divided by the
plane as well. There are a couple of ways in which this problem is ad-
dressed. The first is to simply reference any intersected primitives in both
of the children. This means that some primitives may be checked for inter-
section more than once, but requires no changes to the original model. The
other solution is to divide the primitive entities using the partition plane.
This solution requires alterations to the model which may be undesirable
under certain conditions and violates the description of the KD-Tree as a
pure querying structure by altering the model.

Figure 2.12: Depiction of a two dimensional KD-Tree. Left: Graph repre-
sentation of the KD-Tree with boxes representing leaf nodes. Right: Two
dimensional space partitioned in the graph. Boxes represent the range of
their respective sub-tree nodes. (Adapted from Bently et. al. [8])
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KD-Trees are able to perform highly efficient spatial searches due to
traversal schemes developed based on the inherent characteristic of KD-
Trees’ non-overlapping sibling nodes. As a KD-Tree is being constructed,
an ever-shrinking bounding box is being defined as one moves deeper
into the tree. At the leaves of a KD-Tree, a well-resolved bounding box
can be conceptualized using the coordinates of the last six splitting planes
visited and possibly the domain boundary. The conceptual construction
of this box is one way to move from node to node in a more efficient way
than a more standard depth-first approach shown in Algorithm 2.1. The
partitions whose planes are used to construct this conceptual box can be
linked to the current partition in order to maintain a spatially localized
search within the hierarchy. These links are referred to as neighbor links
and, as shown by Samet et. al.[44], can be used to significantly reduce
traversal costs in the KD-Tree. After a leaf is visited, neighbor links can
be used to direct the traversal to either the next adjacent leaf or a nearby
interior node in the tree, thus avoiding a depth-first style traversal in
which the next step upon visiting a leaf node is to return to the root node
of the tree and continue. By using these links to move directly to nearby
leaf nodes, unnecessary shallow and mid-level tree traversal steps can be
avoided.

KD-Trees are frequently cited as being able to provide the best ray
tracing performance to date for certain geometries [16, 24, 27]. In particular,
KD-Trees are noted as being better equipped to handle models with highly
varying triangle sizes/densities. In practice, KD-Trees also tend to be
very deep, taking a long time to construct, and can consume relatively
high amounts of memory compared to other acceleration data structures,
however.
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2.5.3 Bounding Volume Hierarchies

A bounding volume hierarchy (BVH) uses a series of linked bounding
volumes to enclose sets of geometric primitives. The uppermost node
of the hierarchy, or the root, is a bounding volume which contains all
primitives in the tree. These primitives are then recursively split into
subsets which are bounded by their own volumes deeper in the tree until
leaf conditions are met.

The initial concept of using the bounding volume construct as a pre-
check for ray-intersection with CSG objects was introduced by Weghorst
in 1984 [61]. Weghorst explored the possibility of using bounding spheres
and bounding boxes to contain geometric objects. This work also went
so far as to create a hierarchy out of the object-based bounding volumes,
noting the importance of hierarchically joining bounding volumes near
to each other in space so as not to have parent volumes containing large
amounts of empty space.

Figure 2.13: Depiction of a two dimensional BVH example adapted from
Gottschalk 1996 [22]

In Weghorst’s exploration of sphere and box bounding volumes it was
found that while spherical bounding volumes are not as computationally
expensive to check for ray intersections compared to bounding boxes,
the latter generally provide a tighter fit to the objects they contain. This
decreases the chance of wasted ray-volume intersection checks for rays
which intersect the bounding volume but not the object it contains. When



33

considering the application of bounding volumes to a discretized analytic
surface represented by a triangle mesh, this becomes more important
as BVHs become deeper and more ray-volume intersection checks are
performed to reach leaf nodes. Even applied to analytic objects, this effect
was reflected in the results of Weghorts’s work strongly enough to show
that bounding boxes provided better performance in accelerating the ray
intersection process than bounding spheres.

Two forms of BVHs are commonly applied in ray tracing problems:
Axis-Aligned Bounding Boxes (AABBs) and Oriented Bounding Boxes
(OBBs). AABBs are boxes whose orientation is restricted such that their
faces are parallel to the problem’s global coordinate axes. Given a set of
points to contain, aligned boxes are straightforward to construct. Their
simple representation results in a relatively low memory footprint and
computationally inexpensive ray-intersection tests. Unlike AABBs, the
axes of OBBs are allowed take any orientation relative to the global axes in
order to enclose their set of primitives as tightly as possible. Due to the
freedom in orientation, OBBs are able to bound sets of primitives at least
as tightly as AABBs, resulting in fewer unnecessary intersection checks
during the hierarchy traversal. Several robust methods for determining the
orientation of a box for best fit to a set of primitives have been developed
[22, 38]. OBBs are better for avoiding superfluous ray-box intersections
that might otherwise occur for an AABB. They also more quickly conform
to the full set of enclosed primitives as the boxes are recursively divided.
By orienting their axes with the local set of primitives they are bounding,
candidate splitting planes, usually selected in the reference frame of the
parent node’s oriented axes, are more effective at separating primitive
entities and reaching leaf conditions quickly. This leads to more shallow
hierarchies making the worst-case number of intersection tests lower than
for an AABB hierarchy on average. While a shallow hierarchy might
indicate a smaller memory footprint, OBBs require one to store some extra



34

information about their orientation relative to the global axes making this
assumption difficult to prove consistently.

One disadvantage of using OBBs is that the ray-box intersection check
requires an extra step in transformation of the ray to the oriented axes of the
box in question at each level of the hierarchy traversal. The information
needed for transformation of the ray basis must be applied to the ray
before the box intersection can continue as it would for an axis aligned box.
Thus, for a given ray query, an OBB hierarchy may have fewer intersection
checks to perform than an AABB hierarchy, but the intersection checks are
inherently more expensive than in the case of OBBs. In practice, AABBs are
commonly used in BVHs for their simplicity of implementation and well-
researched ray intersection algorithms. Other reasons for this preference
will be discussed later in Section 2.5.5.

There are multiple approaches to constructing a BVH around a set of
geometric primitives, but only “top-down” approaches will be discussed
here. A top-down approach begins with the construction of a single
bounding volume enclosing all primitives which will be part of the tree.
At this point, child boxes of this root node are created by selecting a
splitting plane for the box which divides the primitives contained by the
current bounding volume into two subsets. This process is then repeated
until leaf conditions are met. The selection of candidate splitting planes
and the selection of a final plane for splitting based on its estimated worth
can greatly affect the performance of the data structure.

One difficulty that BVHs face is that of overlapping sibling bounding
volumes. Overlapping sibling volumes can cause additional box intersec-
tion checks in a similar manner to loosely fitting bounding volumes. If a
ray passes through a region of overlapping sibling volumes, this causes
the children of both boxes to be checked despite the fact that the desired
nearest intersection will be found in only one of those boxes. Overlaps are
difficult to avoid, however, due to the reality that volumes are required to
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contain discrete elements, not just a section of the virtual space. Simply
put, if the splitting plane of a bounding volume goes through one of the
geometric primitives, there will be an overlap in the resulting child bound-
ing volumes. Overlaps of sibling AABBs are typically limited to the size of
perhaps one or two geometric primitives whereas overlaps between sibling
OBBs are more difficult to characterize as they may overlap regardless
of the splitting plane used. This inefficient characteristic of BVHs can be
exacerbated by the structure of triangulated objects the BVHs are being
formed around. One such feature which will be addressed in Chapter 5.

The spatial BVH variant (SBVH) was introduced by Stich et. al. in
2009 [49] with an additional complexity to the node splitting step. As
candidate split planes are considered, triangles (or geometric primitives)
are duplicated and contained in both resulting nodes. As a result, box
boundaries do not need to be re-calculated. They can be created directly by
dividing the parent bounding volume using the selected splitting plane. If
a ray incident on one of the duplicated primitives misses one of the boxes,
the sibling box will be intersected and the correct primitive intersection
location will still be found. This method grants much more freedom
when considering how a node should be partitioned. The relatively simple
application of this method is performed by considering both splits in which
triangle duplication is prohibited and splits in which it is allowed. In the
scenario for which triangle duplication is prohibited, the set of candidate
planes is equivalent to that of a standard BVH building algorithm. In
the case where reference duplication is allowed, the search for a splitting
plane is much more open - as previously mentioned. In fact, the search
becomes closely aligned with the search for a spatial split as might be
found in KD-Tree construction. The optimal splitting plane is then selected
via a comparison of the cost for all candidate split planes - spatial or
“traditional”. Secondary heuristics are used to limit reference splitting in
an effort to manage the data structure’s memory footprint. The result of
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the SBVH is a hierarchy which can be traversed just like any other BVH
but with significantly reduced sibling volume overlaps. The SBVH results
consistently show significant improvement over other methods [49].

In summary, bounding volume hierarchies are favored in the field of
ray tracing for their relatively low memory footprints and well-developed
parallel building schemes while providing high performance ray tracing
capabilities. These features are of great import for systems with limited
memory, such as GPUs, and applications with intent for real-time view-
ing or interaction. These data structures are particularly performant for
Next Surface intersections and are currently the most commonly employed
acceleration data structure for ray tracing. They are relatively simple to
implement for the performance they provide and have smaller memory
footprints relative to other ray tracing acceleration data structures, making
them attractive to memory-limited environments such as GPUs.

2.5.4 Octrees

Octrees are a partitioning scheme in which cuboid bounding boxes, also
known as voxels, are used to partition the 3D problem space into eight
octants defined by the global axes and extents of the parent voxel. These
eight voxels are then linked as children of the parent voxel. This process
is repeated recursively until leaf conditions are met in which a sufficiently
small number of primitives is contained within the current voxel. This
spatial subdivision technique is commonly used to efficiently index data in
3-D space [19]. Octrees are somewhat like KD-trees in that their divisions
are purely spatial, their partitions contain no overlaps, and the placement
of entities in nodes occurs in a similar manner to that of KD-trees, but
each node is represented by a closed bounding volume as in a BVH.

Octrees can consume a large amount of memory relative to the data
structures previously discussed in this chapter. It is often possible that
voxels may be completely devoid of underlying entities. There are typically
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many voxels containing no primitive references but may be required to
exist as part of the data structure, depending on its design. This results in
many voxels being stored in memory which aren’t useful other than to ver-
ify that the space they contain is empty. Additionally, geometric primitives
may be referenced multiple times if they intersect multiple nodes thus
increasing the required memory storage with the same consequence as
seen in KD-Tree traversal with the possibility of a primitive being checked
more than once upon traversal. The memory footprint is mostly of concern
in applications for visualization on GPUs - though specialized methods
for octree applications on these architectures do exist.

Figure 2.14: Depiction of a two dimensional octree example of a top-down
ray fire traversal for a simple geometric object.

One advantage of octrees is the regular nature of the partitions. The
value of a node in hierarchies such as these (or in the BVH for that matter)
lies in its ability to remove candidate space from the query, yet a voxel
can only accomplish this if rays strike the voxel. The result is that one
measure of a voxel’s value can be described by the ratio of its probability
of an intersection check to the space it will exclude from the query search,
represented by its volume. In a problem with a uniform ray distribution,
the probability of a ray to intersect a given voxel can be related to a voxel’s
surface area as seen in the SAH. Thus cubic voxels have the most favorable
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ratio possible based on their geometry. The uniformity of voxel properties
provide a predictable nature of the octree which is advantageous when
traversing the data structure as well.

The predictable size and location of any given node in the tree deter-
mined from the root node properties also provides a fast look-up of the
deepest node in the tree containing a point in space. This is helpful in
providing a starting point for ray traversal which is deeper than the root
node, allowing one to potentially avoid some traversal steps in the shal-
low levels of the tree. Additionally, octrees have non-overlapping nodes
which allows for efficient traversal schemes similar to the neighbor linked
traversal done in KD-trees. These traversals are conceptually similar to
that of the KD-tree’s but typically employ some form of Morton encod-
ing to determine which node in the octree the ray should visit next [43].
Other traversal techniques allow the octree to avoid creating and traversing
nodes containing empty space which can significantly reduce its memory
footprint in cases where internal nodes of the tree aren’t required to define
some spatial dataset as mentioned above [44]. These methods are often
applied in GPU environments due to the limited memory available there.
Octrees are often used to store spatial data fields as well and naturally
provide a higher resolution of the field near boundaries of volume as the
voxels become smaller in that region which can be seen in Figure 2.14.

As mentioned above, octrees are known for having large memory
footprints compared to other acceleration data structures, but they can also
be used advantageously for a combined purpose if a problem requires the
storage of one or more well-resolved data fields near volume boundaries
as well as the capability for ray tracing.

2.5.5 Architecture-Based Acceleration

This section focuses on the impact of CPU architecture evolution on ray
tracing data structure design and implementation. More specifically, it
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emphasizes the advantages of using vectorization-oriented implementa-
tions or Single Instruction Multiple Data (SIMD) programming in the field
of ray tracing.

When considering the problem of parallelism in computing, program-
mers focus on one of two areas: functional parallelism or data parallelism.
Functional parallelism describes the method of performing multiple op-
erations in parallel on many processors while data parallelism describes
operation on multiple data sets at the same time on a single processor.
SIMD is a form of data parallelism in which, as the name indicates, the
same set of numerical operations are performed on multiple sets of data
in parallel under a single CPU process. Chip-sets with support for SIMD
instructions became very popular in the mid-1990s as home PCs became
more common and demand for multimedia-related performance increased.
In response, many CPU manufacturers at the time such as Intel, IBM, and
Motorola began to release products with SIMD instruction sets, the most
powerful of which was Intel’s Streaming SIMD Extensions (SSE). Over
time, CPU clock speed became the larger focus of many manufacturers
as dramatic gains in processor speed took precedence in the field. As
processor speed increases began to wane, pushing the limit of current
cooling technology in the early 2000’s, a new shift toward multi-core de-
signs occurred. Currently, as CPU clock speeds remain somewhat steady
in multi-core systems, a focus on single-thread performance via SIMD
has reemerged. Newer SIMD instruction sets such as Intel’s Advanced
Vector Extensions (AVX or AVX2) have doubled the width of operable
data, allowing for a theoretical doubling of performance in codes relying
on SIMD instructions [26].

SIMD execution has found use in many different areas including medi-
cal imaging, financial analysis, database management, computer visual-
ization, and physical simulation. As is the case in any problem well-suited
to parallel programming, all of these applications perform the same set
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Figure 2.15: Concept of data parallelism using SIMD. Adapted from Intel’s
documentation on the advanced vector extensions (AVX) instruction set.
[30]

of computations many times on similarly structured sets of data. This
situation arises quite often in applications related to modeling or and
visualization of virtual space. One indicator of a problem which would
benefit from parallel programming is the presence of a few common sets
of operations done many times or in a recursive manner. Thus, traversal
of ray tracing data structures is well suited for SIMD operations as it relies
heavily on the performance of a few key operations: ray-node intersec-
tions and ray-primitive intersections. The ability to perform intersection
checks of many nodes at once or many triangles at once has clear benefit
when satisfying geometric queries in simulations or renderings which
may require several billion such operations. Several demonstrations of
ray-tracing data structures adapted to take advantage of SIMD-enabled
optimization on modern CPUs have already been developed.

An early implementation of SIMD used to intersect a ray with many
triangles at the leaf nodes of a KD-Tree was performed by Hurley in 2002
[27]. This implementation demonstrated a significant improvement in
ray-primitive intersection performance and established many significant
observations about the utilization of SIMD commands within ray tracing
applications. Despite the fact that the cost of primitive intersection checks
was reduced, most of the time spent satisfying the ray query was spent in
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traversal of the hierarchy to the leaf nodes. This is true of a well-formed
BVH and is verified for DAGMC in Figure 1.1. Noting that the number of
triangles in the KD-Tree’s leaf nodes were small in comparison to the SIMD
registry width, Hurley described two ways in which to further exploit
data parallelism of SIMD in ray tracing.

One method is to traverse and intersect multiple rays at the same time.
This is refereed to as the N:1 approach. The other is to intersect many nodes
with a single ray which is referred to as the 1:N approach. An important
characteristic for success of the former method is that the group of rays
being intersected has very similar traversal paths through the hierarchy
so they may be grouped together in a packet for a narrow traversal path.
This property is known as often described as ray coherence. Branching off
of Hurley’s work, Wald demonstrated that rays can be effectively grouped
into packets and traversed in a binary space partitioning tree (a modified
KD-Tree) to achieve CPU performance equal to that the high-end graphics
hardware of the time [58].

As more realistic physical effects are being applied in rendering ap-
plications today (such as light-scattering surfaces, smoke effects, or fog),
rendering ray paths become less coherent. This means that the same pri-
mary rays will not necessarily follow similar paths through the model or
its underlying acceleration hierarchies. Due to this lack of ray coherency,
the 1:N approach to data parallelism in which one ray is intersected with
many hierarchy elements in a single step has been revisited. Wald wisely
observed that taking advantage of SIMD operations in traversal of a KD-
Tree is difficult due to the nature of the partition. He goes on to state that
the KD-Tree’s superior serial performance in comparison to that of serial
BVH implementations drove reluctance to move away from the KD-Tree
and resulted in the establishment of ray packets, or the 1:N approach [57].
Both Wald and Dammertz [14], concurrently presented implementations
of SIMD enabled traversal and primitive intersection on multi-branching
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BVHs in 2008 with N:1 approaches. Both implementations showed im-
pressive performance enhancements, ranging anywhere from 3-10 times
faster than the baseline ray tracing kernels used for comparison.

Both Wald and Dammertz approached the construction of multi-branching
BVHs in the same manner. Each built a standard binary BVH using the
adjusted SAH cost analysis in Figure 2.17 with median plane splitting.
They then collapsed the tree by directing child nodes to their ancestors
to achieve the desired branching ratio. Wald opted to use a more exotic,
graphics-oriented, architecture with Intel’s Larrabee and was able to apply
a branching ratio of 16 to their BVH while Dammertz used a branching
ratio of 4 using Intel’s Streaming SIMD Extensions (SSE). A higher branch-
ing ratio provides higher SIMD utilization and more shallow hierarchies,
but Wald conceded that for common CPU-architectures branching ratios
between 4 and 8 would be optimal for most common architectures.

AABBs were used in both Wald and Dammertz’s implementations.
While OBBs have been shown to conform more quickly to the underlying
geometry and can generate more shallow trees as seen in Figure 2.16 ,
AABBs are generally more favorable in SIMD implementations. First,
OBBs require more information to be stored. This extra information can
limit how many nodes will fit into a single SIMD step and it is often more
beneficial to check more AABBs than fewer OBBs despite the tighter fitting
to geometric primitives. This is in part because AABBs boxes have faster
ray intersection tests without the re-orientation of the ray information
to the box coordinates, but also because more nodes can be fit into the
SIMD register to be visited at once. Secondly, though OBB hierarchies
are more shallow than their axis aligned counterparts’, tree depth is of
less concern due to the higher n-ary structure of the trees used in these
implementations.
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Figure 2.16: A figure replicated from Gottschalk’s paper on OBBs exempli-
fying OBB’s rapid conformity to a torus volume (right) in comparison to
AABBS (left).
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C = Ct +

K∑
k=0

SA(Bk)

SA(B)

|Pk|

T
Ci (2.9)

K−number of desired childrenper interiornode

T−number of triangles in SIMDregister

Figure 2.17: An adjusted form of the surface area heuristic for an n-ary
BVH branching ratio as presented by Wald in [57]. †

For completeness of all ray tracing data structures discussed in this
chapter, SIMD implementations of octrees were sought out in literature,
but none were found. This is likely due to the fact that SIMD registers
on common architectures wide enough to accommodate 8 nodes are not
yet common. It is also worth noting that while the KD-Tree is restricted
to a binary hierarchy, another variation, the bounding interval hierarchy,
might be compatible with higher branching ratios and thus SIMD traversal
of the hierarchy [56].

2.5.5.1 Application in Embree

Many of these concepts have been applied in a ray tracing kernel called Em-
bree. Embree is the result of an effort to produce a performant CPU-based
ray tracer as a demonstration of the expanding capabilities of modern
CPU architectures [60]. In both construction and traversal of its BVHs, Em-
bree takes advantage of many of the latest developments in BVH research
and using modern chipset architecture capabilities via vectorization at
an implementation level. The combination of these effects leads to a very
powerful ray tracing tool in terms of performance, as demonstrated by
the many projects which have incorporated Embree as their production
ray tracing kernel such as Corona, FluidRay, and Brighter3D [3, 12, 17].

†Some notation has been modified to agree with notation used in Figure 2.11
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As a result of its success in other areas, Embree was selected for applica-
tion in DAGMC to satisfy geometric queries for attached physics kernels.
Several critial design features of Embree will be reviewed here and their
importance to efficient BVH traversal discussed.

2.5.5.1.1 Memory Alignment For the CPU architectures used in this
work, Embree’s quad-tree implementation was applied. In order to use this
design in a SIMD context, the code constructs must be carefully designed
for interpretation by the CPU. Embree defines BVH-related structures
such that they occupy aligned memory spaces, meaning that they are
both compact in memory usage and can be read into CPU registers in a
predictible manner. All bounding volumes and the underlying Cartesian
vector types used to define them are specified as structures aligned to 16
bytes in memory. This is important for encoding of node types and leaf
sizes, discussed in Section 2.5.5.1.2, as well as the ability for these types to
be operated on as either arrays of floats during BVH construction or as
native SIMD types during BVH traversal.

2.5.5.1.2 Node Type Encoding Nodes in Embree’s BVH are stored com-
pactly using an encoding scheme which contains the memory address of
box information as an integer value. Because nodes are byte-aligned, mem-
ory addresses will be offset by the same amount as the node alignment. For
example, if nodes are memory aligned to 16 bytes, the four least significant
bits in the integer representations will be unused. These bits are used to
encode information about both leaf nodes and empty nodes. Empty nodes
required as part of the data structure but don’t contain primitive entities.
Figure 2.18 depicts the bits of a leaf node for reference.
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Leaf Node:

Interior Node:

Figure 2.18: Visual representation of leaf encoding using integer-based
pointer values. Yellow digits represent bits used to store the address of
the first primitive reference in the tree. The red digit indicates the fourth
least significant digit which is used to indicate that the stored memory
address points to a primitive reference rather than another node reference.
The final three green digits indicate the number of primitive references in
the leaf node.

This representation reduces memory storage of leaf nodes, which can
be considerable given that the number of leaf nodes in a n-ary tree is

L = nh (2.10)

L−number of leaf nodes in the tree

n−n-ary of the tree (branching ratio)

h−height of the tree (zero-indexed)
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meaning a quad tree with a height of ten will contain over one million
leaf nodes. Avoiding storage of the memory address and leaf node size
separately reduces memory consumption of the tree and allows the use of
fast bit-wise operations to differentiate node types when traversing the
tree.

2.5.5.1.3 Memory Prefetching While CPU clock speeds are getting faster
each generation, memory latency is often the limiting factor in the perfor-
mance of many algorithms (see Figure 2.19). To account for this latency,
modern CPUs allow compilers and code writers to initiate asynchronous
requests for memory access before it’s needed for computation. This
technique, known as memory prefetching, avoids memory latency by pop-
ulating low level memory caches with data before it is required by the
CPU.

Figure 2.19: Trends in CPU vs. memory performance over time. The
processor line shows the increase in memory requests per second on
average. The memory line shows the increase in memory accesses per
second. [25]

Memory prefetching is applied automatically by compilers in situations
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where the compiler can clearly determine the next blocks of memory
needed by the CPU. Several common patterns are used by compilers to
predict memory access including Next-Line and Next-N-Line prefetching.
These patterns are often applied when looping over large arrays of data.
Next-Line prefetching gathers information for the next iteration of the
loop during the current iteration. Next-N-Line prefetching groups the
loop iterations together to improve the timing between prefetching and
computation for the CPU. Proper timing prefetch operations is critical.
Memory fetched too early may bump information out of the CPU cache still
needed by the current iteration’s computational block, causing additional
memory latency to re-gather that data. Memory fetched too late defeats the
purpose of applying prefetching and can interfere with automatic memory
access requests from the CPU. Examples of both Next-Line and Next-N-
Line prefetching can be seen in 2.20. Modern compilers are becoming
increasingly adept at predicting memory access for these cases and will
apply prefetching as part of resulting instruction sets.

(a) Next-Line Prefetching (b) Next-N-Line Prefetching.

Figure 2.20: Example of manually implemented memory prefetching for a
standard loop performing a vector operation. This type of pattern is often
automatically implemented by modern compilers.

Memory prefetching can also be applied manually in situations where
the user is aware of the next memory block to be used by the CPU as well.
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One example of a user-informed prefetching method is Pointer-Based
prefetching. In this method, memory locations pointed to by locally ac-
cessed data structures are known to be operated on soon by the CPU
are prefetched. This method is commonly applied when traversing hi-
erarchical data structures or linked lists. An example of Pointer-Based
prefetching can be found in 2.21. The traversal of the BVH in Embree
takes advantage of this particular prefetching pattern to reduce memory
latency. Because of the indirection involved in traversal of data structures
by pointer and the result-based operations at each node in the structure, it
is very difficult for compilers to predict memory access patterns and apply
prefetching automatically. Application of these Pointer-Based methods
are nearly always applied manually.

Figure 2.21: Example of a prefetch pattern using pointers to follow a data
structure traversal.

Embree applies Pointer-Based prefetching while traversing its BVH.
As nodes intersected by the ray are added to the stack, the bounding box
information for the node at the top of the stack is prefetched for intersection
in the next step of the BVH traversal.
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2.5.5.1.4 Ray-Box Intersection Tests In order to take advantage of com-
piler optimization and SIMD instructions, ray-box tests in Embree contain
a no branching (no if-else statements) version of Kay’s slab box intersec-
tion test [28]. Removing branching avoids additional memory fetching or
re-organizing of CPU registers so that SIMD operations can be efficiently
performed in sequence to determine intersection locations with the box
along each dimension. Underlying SIMD computation calculates the in-
tersection of a ray with several boxes at once without memory disruption.
The distances to intersection along the ray for each box coordinate are
then compared to find the near and far intersections with axis-aligned
bounding box planes. If the largest of the near-side intersections is smaller
than the smallest of the far-side intersections, then the ray strikes the box.

To perform this computation efficiently, some information is pre-computed
and added to the ray structure including the inverse of the ray direction.
These values are also duplicated into memory-aligned vector types with
sizes equal to the n-ary of the BVH, again so that memory doesn’t need to
be allocated on-the-fly during traversal of the data structure. A bit-mask
is used to indicate which boxes are hit and which are not, and the distance
to each box intersection is returned so that the closest boxes can be added
at the top of the traversal stack.

def r ay _ n od e _ in t e rs e c t i o n ( ray , node ) :
# r e s u l t − mask (0 − miss , 1 − h i t )
# i n v e r s e d i r e c t i o n − ray . i n v d i r
# i n v e r s e d i r e c t i o n t i m e s t h e ray o r i g i n − ray . o r g _ i n v d i r
# tNear / t F a r − p a r a m e t e r v a l u e o f i n t e r s e c t i o n s a l o n g ray d i r e c t i o n

# compute tNear f o r N nodes
tNearX = vecN(&node + ray . nearX ) ∗ ray . invdir . x − ray . org . x ∗ ray . invdir . x
tNearY = vecN(&node + ray . nearY ) ∗ ray . invdir . y − ray . org . y ∗ ray . invdir . y
tNearZ = vecN(&node + ray . nearZ ) ∗ ray . invdir . z − ray . org . z ∗ ray . invdir . z

# compute t F a r f o r N nodes
tFarX = vecN(&node + ray . farX ) ∗ ray . invdir . x − ray . org . x ∗ ray . invdir . x
tFarY = vecN(&node + ray . farY ) ∗ ray . invdir . y − ray . org . y ∗ ray . invdir . y
tFarZ = vecN(&node + ray . farZ ) ∗ ray . invdir . z − ray . org . z ∗ ray . invdir . z
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# compute maximum t n e a r f o r a l l b o x e s
tNear = max ( tNearX , tNearY , tNearZ , ray . tNear )
tFar = min ( tFarX , tFarY , tFarZ , ray . tFar )

# compute a mask i n d i c a t i n g which b o x e s a r e h i t
mask = tNear <= tFar

# s e t d i s t a n c e s t o i n t e r s e c t i o n t o o p t i m i z e t r a v e r s a l ( n e a r e s t nodes f i r s t )
d i s t = tNear

return mask , d i s t

Algorithm 2.2: A non-branching ray-node intersection test for a quad tree
implementation with pre-computed near and far box coordinate values.

Further optimization is accomplished by pre-computing the near and
far side coordinates based on the signs of the ray’s unit direction. In this
way, the near and far coordinates of the box are already known. Thus the
near and far intersections do not require sorting along each box axis and
cand be directly computed. To avoid branching and structure indexing
in the ray-box intersection computation, byte offsets values are pre-set on
the ray. These offset values are used during intersection tests to gather
the correct coordinate values for the child boxes of a node in the hierarchy
rather checking Boolean values and adding branches to the test. After
computing the near and far side intersections, the maximum near-side
and minimum far-side hit distances still need to be found, but skipping
the comparison of values for each axis removes a considerable portion of
computation from the test. An example of this method is shown in Figure
2.2. It is worth noting that this optimization is not applicable when using
OBBs. The unknown orientation of the box axes makes any prediction
about which side of the box will be intersected first by the ray impossible.
In this case the ray-box intersection must include an additional step to sort
the near and far side hits before checking for intersection.
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2.5.6 Signed Distance Fields

Signed Distance Fields (SDFs) are commonly derived from implicit surface
functions and variations on these functions are known as level-set func-
tions [39]. Both offer a rich and versatile representation of closed manifolds
used for modeling, simulation, and rendering. As discussed in Section
2.2.1, Constructive Solid Geometry (CSG) representations seen in native
Monte Carlo codes are formed from Boolean combinations of predefined
implicit surfaces at their core. While these predefined surfaces do not give
the freedom of model creation and manipulation found in many CAD
systems, important geometric information required for visualization and
simulation can be readily recovered from implicit surfaces.

                                                         Volume Boundary

Signed Distance Field

h

Figure 2.22: 2D visualization of a signed distance field surrounding an
arbitrary volume boundary.

Signed distance field generation from implicit surfaces is a particularly
valuable property of this geometric representation. A signed distance
field, meets the following requirements for any vertex, v, in the total set of
locations, V , in the field:
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• |SDF(v)| = min(|~x− ~xI|) ∀ v ∈ V

• SDF(v) = 0∀ v on the surface boundary

• SDF(v) > 0∀ v inside the surface boundary, and

• SDF(v) < 0∀ v outside the surface boundary

Implicit surfaces can be naturally extended to represent dynamic ge-
ometries by including a time dependence in the function, making them
powerful tools for populating signed distance fields in simulation and
rendering of fluids, smoke, fire, etc. To simulate these phenomenon, the
data structure is populated with signed distance values for a given time in
the rendering (see Figure 2.22). The signed distance field can then be used
to determine point containment queries and approximate nearest surfaces
values. It can also trace rays at any time via a method in which the ray
length is repeatedly clipped using signed distance values to approach a
surface in a process called ray marching [54].

2.6 Monte Carlo Memory Considerations

The bulk of Monte Carlo memory consumption in native calculations is
attributed to nuclear cross-section data and tally data structures with the
analytic CSG geometry representation taking up a small portion of the
overall program memory.

2.6.1 Cross-Section Data

Cross-section data is necessary to represent the physical processes govern-
ing particle transport through the virtual geometry. Various formats of
this data exist with both continuous and discrete representation of cross
section information.
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Continuous representations of this data can occupy a considerable
amount of space and are more computationally expensive to evaluate than
discrete representations, but are also more accurate. Discrete representa-
tions of this data consume more memory in simulation, but require less
computation when extracting data. The amount of memory occupied by
nuclear data is dependent on the number of unique materials used in
the problem as well as the material composition in terms of the unique
isotopes in the problem. This data can occupy the majority of simulation
memory for large problems with many materials.

2.6.2 Tally Data Structures

Results of the Monte Carlo calculation are kept as tallies of particle contri-
butions to physical quantities at various locations in the physical model.
Tallies on surfaces or in cells change the memory usage of the simulation
insignificantly, unless additional data is needed to calculate derived quan-
tities. Mesh-based tallies on the other hand can dominate the memory
usage. In MCNP and many other Monte Carlo codes, mesh tallies are
defined by the user as structured grids in either Cartesian, cylindrical,
or spherical coordinates. These tallies are often used for better spatial
resolution of physical data in the simulation and for coupling to analysis
in other engineering domains. Tetrahedral mesh tallies are also supported
by several Monte Carlo codes DAGMC interacts with, including MCNP
[64]. The size of these tallies vary based on the needs of the user and the
trade-offs associated with spatial resolution of solutions and statistical
convergence related to mesh element sizes.

2.6.3 Impact on CAD-Based Tessellations

For the Monte Carlo code used in this work, MCNP, the parallelism method
applied is a master/slave scheme standard for many applications using the
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Message Passing Interface (MPI) [18]. The master process is responsible
for initializing the problem, determining the load balance for the number
of parallel processes requested by the user, and collecting/accumulating
information at the end of the simulation. In MCNP, particle histories are
divided into equal segments among the slave processes for evaluation.
More information on the method for particle history division and random
number sequence assignment was detailed by Deng and Xie [15]. For each
slave process, a corresponding set of the nuclear data, tally data structures,
and geometry representation are created. Duplication of the geometry
representation has a significant implications for the use of CAD-based
tessellations.

The tessellations resulting from CAD geometries consume much more
memory than corresponding CSG representations. This must be taken
into consideration when planning parallel simulations on clusters where
the limitation for the number of processes per CPU is often the memory
used per process. Because DAGMC’s CAD-based particle tracking is an
addition to MCNP, it has no influence on the parallelism data model.
Given that geometry representations are required to exist in each process
of the parallel simulation, memory usage in DAGMC is closely monitored.
Some of this memory usage is largely uncontrollable due to the reliance
on CUBIT or Trelis’ underlying tessellation algorithms, but additional
data used to maintain geometric relationships and build acceleration data
structures are kept to a minimum if possible.
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Model Tessellation (MB) Tessellation
and MOAB BVH (MB) Simulation (MB)

FNG 92 213 262
ATR 294 765 865
UWNR 213 446 1250
nTOF 56 88 416
ITER 2592 5547 6679

Table 2.1: A summary of the memory usage for the performance bench-
mark models shown in Table 1.2 both with and without acceleration data
structures.

Table 2.1 shows the memory usage for all of the benchmark models used
to assess DAG-MCNP’s performance relative to native MCNP geometry
representations in Section 1.2. All of the models consume relatively low
amounts of memory compared to the storage found on many CPUs in
High Performance Computing (HPC) environments, but the addition of
acceleration data structures, in this instance MOAB’s BVH of OBBs, can
more than double the memory occupied for the geometry representation.
This effect becomes even more pronounced in larger production models
seen in Chapters 4 and 5, though shared memory implementations for
higher per-node memory efficiency are on DAGMC’s development path.

In addition to the benchmark models from Table 1.2, Table 2.1 includes
a model of a demonstration nuclear fusion device currently under con-
struction in southern France. An analysis of ITER using DAGMC was
performed at the University of Wisconsin - Madison to calculate a spa-
tial mapping of the dose rate induced by irradiated components of the
machine for various cooling times or times after shutdown of the device.
This shutdown dose rate calculation was broken into seven spatial source
meshes to avoid exceeding the memory limits of the HPC cluster used
for this analysis. The values displayed in the table represent the memory
usage for one of the seven simulations required to complete the analy-
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sis. This model was included as a current representation of the analysis
work being performed in DAGMC. It was not included in the comparative
benchmark analysis of DAGMC because no native MCNP counterpart of
this model exists. This model contains components created in CAD with
no analogous MCNP representation, another reason CAD-based tessel-
lations are desirable for MCRT. The simulation memory footprint of the
ITER model is much larger in simulation, so much so that the number of
processes allocated to a node was memory-limited rather than core-limited
during analysis.

2.7 Summary

This discussion of the CAD-based MCRT-t via the DAGMC toolkit, hierar-
chical spatial data structures, SDF generation, and context for memory use
in parallel simulations with MCNP in this chapter provides a basis for the
work performed in the remainder of this document. Chapter 3 discusses
the implementation and application of SDFs in DAGMC’s framework.
Next, Chapter 4 presents work on BVHs optimized for use in DAGMC and
extensions of those methods to provide robust transport in production
simulations. Chapter 5 discusses the effects of splitting heuristics and
hierarchy construction surrounding problematic geometric features on
the performance of DAGMC simulations.



58

Chapter 3

Signed Distance Field
Preconditioning

This chapter describes the adaptation of a rendering data structure, the
Signed Distance Field (SDF), as a tool for accelerating MCRT-t in DAGMC.
A model for predicting the data structure’s utilization in simulation is also
introduced. Finally, demonstrations of its effectiveness for a number of
simple problems and production models are shown and discussed.

Signed distance fields are typically represented using a mesh-based
structure such as a Cartesian grid as depicted in Figure 2.22 or an octree.
Associated with each vertex in the mesh is a signed value whose sign
indicates its containment by the surface and whose magnitude represents
the distance to the nearest surface of the geometry from its associated
location. Signed distance values can be constructed for arbitrary locations
within the mesh by interpolating the stored values of the vertices for the
mesh element containing the point. These interpolated signed distance
values can then be used to quickly provide local geometric information
for Monte Carlo queries in simulation.
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3.1 Preconditioning Theory

Of the geometric queries that DAGMC supports, Next Surface, Point Con-
tainment, and Closest Surface are most commonly called in simulations.
At least one ray is fired to satisfy any of these queries in DAGMC with
O(logNtriangles) complexity using MOAB’s BVH, but it is hypothesized
that these queries can be accelerated in many cases. For each of the funda-
mental Monte Carlo geometries outlined below, signed distance values
are recovered from the signed distance field via interpolation of the field
values and used to avoid more computationally expensive ray fire calls in
DAGMC.

3.1.1 Point Containment

Point Containment queries can be preconditioning by examining the
interpolated signed distance value for the current particle location. If
the point’s value is negative (or outside of the SDF), then the point is
considered to be outside of the volume. If the point’s value is positive,
then the point is determined to be inside the volume. Given that there
is error associated with each of these interpolated values, the result of
this method should only be trusted if the absolute value of the signed
distance is greater than the expected error associated with the value.
If this is not the case, then a ray must be fired to determine the par-
ticle’s containment with respect to the volume in question. In effect,
this verifies that the location is far enough from the boundary of the
volume to make a definitive statement about whether it is inside or out-
side of the volume based on the sign of the interpolated value. Figure
3.1 graphically describes the outcome of these different cases in two
dimensions.
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Current Particle Position

Figure 3.1: Examples of scenarios for point containment preconditioning
using signed distance values. For locations far from the surface boundary,
the sign of interpolated signed distance value can be used to determine
point containment. Locations close to the surface with interpolated values
less than the interpolation error, ε, cannot be used to determine point
containment.

3.1.2 Next Surface

Next Surface intersection queries are the most common geometry
query in Monte Carlo simulations as demonstrated by data in Table 3.2.
These queries are initiated by native Monte Carlo codes to determine if
a particle will cross a surface before reaching its next physics event loca-
tion. Normally in DAGMC at least one ray fired each time this query is
called. This can be avoided by using the signed distance field to exclude
the possibility of a surface crossing without explicitly determining the
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Current Particle Position

Physics Event Location

Figure 3.2: Examples of scenarios for next surface intersection precon-
ditioning using signed distance values. Various scenarios are shown in
which the signed distance values can be used to avoid a ray fire query by
confirming the absence of a surface crossing between the particle’s current
location and physics event location.

next surface intersection. If the sum of the signed distance values for
both the current particle position and the next physics event location
is greater than the distance between the two locations, then it can be
guaranteed that there is no surface crossing along the path between
those two points. The interpolated signed distance value represents
the minimum distance to any surface for a given location. The signed
distance value of the current location ensures that some portion of the
particle’s track from the current location to the physics event location
is open space. The signed distance value of the physics event location
also ensures that a portion of the particle’s track is empty space. If the
entire track length can be accounted for, then no surface crossing exists
between the two locations. Thus the particle can safely advance to the
next physics event location without firing a ray to determine the exact
distance to the next surface. Figure 3.2 depicts these different cases in
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2D space.
For robustness, the error for each interpolation, ε should be sub-

tracted from the sum of the signed distance values as a protective mea-
sure against invalid surface crossings. If the expanse between the par-
ticle’s current location and its next physics event location cannot be
accounted for by the signed distance values of the two points, then the
exact next surface intersection will be found using a ray fire call. It is
acknowledged that not all Monte Carlo codes provide the next physics
event location along with the particle’s current location to their geome-
try kernels. In this case, preconditioning of these queries in this manner
will not be possible.

3.1.3 Closest Surface

Closest Surface queries can be performed in a similar manner to Point
Containment queries, but they are more dependent on the native code’s
intent for their use. Some Monte Carlo codes always query for the closest
surface intersection in order to determine whether or not the particle
will exit the volume before reaching its next physics event location. This
information can be interpolated from a signed distance field to the same
effect.

In similar fashion to the point containment case, the signed distance
value should only be trusted if it is greater than the error associated
with the value. Additionally, the error should be subtracted from the
value, returning to the code a conservative value for the nearest inter-
section. If the signed distance value’s magnitude is not greater than its
error evaluation or if the value is negative, then a ray should be fired
to determine the exact location of the nearest boundary crossing for
the particle’s location. Figure 3.3 depicts these different cases in a 2D
example.
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Current Particle Position

Figure 3.3: Examples of scenarios for closest surface preconditioning using
signed distance values. Signed distance values interpolated from the SDF
can be used to quickly return an approximate nearest surface location.

Using these methods, signed distance fields can act as a precondition-
ing tool for the relatively expensive ray fire process to accelerate CAD-
based MCRT-t by using anO(1) process to establish that the conditions of a
geometric query are such that a more computationally expensive ray fire is
necessary before performing the ray tracing operation. It is hypothesized
that for some Monte Carlo problems this process can be used to avoid
O(logNtriangles) ray fire calls to significantly reduce the runtime of the
simulation.
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3.2 Implementation

3.2.1 Construction

As an initial implementation, one signed distance field is generated for
each volume in DAGMC with extents matching the axis-aligned bounding
box of the volume. The signed distance field is represented as a uniform
structured mesh with a signed distance value at each vertex in the mesh
as indicated in Figure 3.4.

MOAB provides an interface for construction of structured meshes
which stores explicit vertex coordinates and hex elements. As with any
entity stored in MOAB, data can be applied to these vertex elements. These
vertex coordinates and hex elements can be accessed using < i, j,k > in-
dexing, where the coordinate < 0, 0, 0 > and < Nx,Ny,Nz > represent
the lowest and highest corner of the structured mesh in parameter space
for a mesh containing Nx,Ny,Nz elements in the x, y, and z directions
respectively. This representation provides a fast path for verification, visu-
alization, and proof of concept in transport test cases for demonstration,
but is relatively memory intensive due to the dense nature of the data
structure and explicit mesh element information stored in the database. To
reduce memory consumption, an implicit version of the structured mesh
has been implemented which takes advantage of the uniform step size in
each dimension to store only: the number of elements in the mesh, the
location of the lowest corner in that mesh, and a flat array of the signed
distance values associated with the elements of the mesh. This avoids the
storage of vertex coordinates, mesh element connectivity, and all associ-
ated handles to those entities. There is an added cost in re-computing
vertex coordinates when a signed distance value is interpolated, but this
added cost is negligible in comparison to a ray traversal and memory is of
greater concern for this spatially dense data structure. This data structure
can still interact with MOAB’s structured mesh interface to generate an
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Figure 3.4: A visual of a signed distance field with step size 0.5 cm sur-
rounding the spherical volume of test case with a radius of 10 cm.

explicit mesh for visualization and verification if required.
Signed distance values can be retrieved from the structured mesh by

determining which mesh voxel the point lies within. The point’s element
is accessed by determining an < i, j,k > index using the point’s x, y, and z
values divided by the structured mesh step size. A tri-linear interpolation
of the mesh element’s 8 vertex coordinates and their signed distance values
are then used to provide the signed distance value for the location of
interest.

3.2.2 Population

Signed distance fields are typically generated using an implicit, analytic
representation, but a suitable data structure for populating the struc-
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tured mesh with signed distance values is already in place in the form of
DAGMC’s bounding volume hierarchy. It is a more straightforward pro-
cess to simply use DAGMC’s current Closest Surface algorithm to generate
signed distance values than to create an implicit surface approximation of
the triangle mesh. This method also maintains a consistency between the
intersections found by the ray tracing kernel and the values stored in the
signed distance field.

DAGMC’s Closest Surface algorithm returns, among other pieces of
information, the nearest intersection location and the triangle on which
this intersection exists. For each point in the signed distance field mesh,
this algorithm is used to determine the magnitude of the distance value. To
accomplish this, a ray is constructed from query location to the intersection
location. The dot product of this ray vector with the triangle’s outward
normal vector is used to determine the sign of the distance value. DAGMC
maintains enough information to consistently orient triangle normals such
that they point outward from the volume they represent. In the rare cases
for which the dot product of these vectors is ambiguous, or zero, DAGMC’s
point containment algorithm is used to disambiguate the value’s sign.

3.3 Preconditioning Utilization

In effect, the preconditioner is attempting to check whether or not the
particle will actually cross a surface before explicitly searching for the
particle’s intersection with a surface along its current trajectory. If the
result of this preconditioning check is always false and a ray is always
fired, then these checks only add to the computational cost of the problem.
This will always occur in volumes filled with void, for example, as particles
immediately travel from one side of a volume to another. To avoid low-
utilization scenarios, the signed distance field should be applied selectively
depending on each volume’s geometric and material properties for optimal
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performance and high utilization of the preconditioning methods. Ideally,
this method will only be applied to volumes in which the preconditioning
method is able to avoid ray fire calls often or with high utilization. The
signed distance field is expected to have the biggest impact in performance
when preconditioning Next Surface intersection queries, as they are most
commonly called in Monte Carlo codes when tracking particles through
the geometry (see Table 3.2). As such, this type of query is the focus of
utilization measurement for the remainder of this section.

U =
Rays Avoided w/ SDF

Number of Geometry Queries
(3.1)

The utilization of the SDF preconditioning method, conceptually de-
fined in Equation (3.1), can be described as the number of ray fire calls
related to Next Surface intersection queries that are avoided divided by the
total number of next surface intersection queries made by the Monte Carlo
code. This value can be quantified using this definition using debugging
tools, such as Valgrind [41], to determine the number of queries made
in DAGMC and the number of rays fired inside of the subroutine. It is
expected that, as the utilization of preconditioning methods goes up, the
performance of the simulation will also improve.

To understand this utilization more deeply with respect to material
parameters, a simple problem was create to demonstrate the performance
benefits of this method. The density of a hydrogen-filled sphere of radius
10cm and centered on the origin was varied from 0 to 1 g

cm3 with a 5
MeV neutron point source at the origin. For each density, one simulation
was performed without the signed distance field and another with the
signed distance field and preconditioning enabled. Figure 3.5 shows the
utilization results of this study.

Utilization of the preconditioning method in this study remains high
until the hydrogen density falls to 0.1 g

cm3 at which point a distinct knee
appears and the utilization falls off quickly. Even at the lowest density
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Figure 3.5: Utilization results for a 5 MeV neutron source at the origin of a
10 cm radius sphere. Hydrogen density was varied from 0 to 1 g

cm3 .

reached in the study of 0.01 g
cm3 , the utilization preconditioning method

is 0.54.
Figure 3.6 provides some insight into the impact of the preconditioning

method on the simulation. The run times of three implementations con-
verge as the density of the hydrogen is varied. As the hydrogen density
approaches 1.0 g

cm3 , a factor of 3.5 improvement in runtime is seen in the
simulation where the SDF is applied as a preconditioner. The application
of the signed distance field allows for significantly improved performance
until the density drops below 0.1 g

cm3 in agreement with utilization plot.
As the material density decreases, particles quickly leave the geometry
after very few collisions. It is difficult to judge the impact on the perfor-
mance of this simulation for these low density values due to the limited
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Figure 3.6: Performance results for a 5 MeV neutron source at the origin
of a 10 cm radius sphere. Hydrogen density was varied from 0.0 to 1.0
g
cm3 . Simulations of 100M histories at each density were performed using
native MCNP5, DAG-MCNP5 without the signed distance field, and DAG-
MCNP5 with the signed distance field.

size of the geometry and the short lived histories. In order to have more
control over a simulation’s physical parameters, subsequent experiments
were performed using a pseudo Monte Carlo simulation tool.

3.3.1 Utilization Modeling

In order to characterize utilization of a signed distance field as a precondi-
tioner for Next Surface intersection queries in DAGMC, a pseudo Monte
Carlo simulation tool was developed using DAGMC. This tool was used
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to simulate different transport scenarios within a spherical geometry of
radius 100 cm. Particles were sourced uniformly inside the volume and
scatter isotropically. Particle histories are terminated based on a maximum
number of collisions or departure from the problem geometry. Particle
distance traveled, d, can be represented by either a fixed distance or by
sampling for the standard probability of interaction in a medium with
mean free path, λ. The tool allows the value of λ to be set directly, enabling
a relation between the signed distance field and this value to be developed
with intent for use as a means to characterize appropriate conditions for
application of the signed distance field.
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Figure 3.7: Results of the model for the theoretical utilization limit with
the results of the simulation for a fixed distance traveled case.

To begin, simulations were performed for particles with a fixed dis-
tance traveled for varying distances and signed distance field step sizes.
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Run times of the simulation are not shown here as the data structure’s
utilization is the main focus of this study. The results of the study are
shown in Figure 3.7. As the signed distance field mesh step size increases,
utilization of the preconditioning method structure decreases due to the
increasing error associated with the interpolation of signed distance values.
Additionally, utilization is expected to decrease with increasing distance
traveled. This decreased utilization is caused by not only the increased
distance between the two particles, but also by the increased probability
that both locations will be closer to surfaces of the sphere and have smaller
signed distance values. A theoretical limit developed by the author for
the preconditioning method utilization is also shown in Figure 3.7. The
development of this analytic limit will now be discussed.
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Figure 3.8: Depiction of utilization model variables.

3.3.2 Analytic Model Development

The utilization of the signed distance field as a preconditioner for ray
tracing operations can be modeled as an evaluation of the combined prob-
ability space for particles with a current position, ~p, and a next physics
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event location, ~n, some distance, d, apart. The fraction of this probability
space in which signed distance values can be used to rule out surface
crossings for next surface intersections is considered to be the theoretical
utilization of the signed distance field. An general form for this probability
space can found in Equation (3.2).∫

Vsphere

∫
Vtrack

pp(r)pn(d)dVspheredVtrack (3.2)

In this model, the starting location of particles, ~pp(r,φ, θ), is uniformly
distributed, pp(r) = 1, throughout a sphere of radius, R, centered at the
origin. The location of the next event, ~pn(d,α,β), where d is the distance
traveled by the particle, α is the interior angle between the particle’s posi-
tion vector and the particle’s sampled direction vector, and β represents an
azimuthal angle for directions traveled with angle of departure, α. Figure
3.8 depicts these variables, r, d, and α graphically.

In order to represent particles traveling a fixed distance, the relationship
in Equation (3.3) is applied.

pn(d) =
δ(d− λ)

d2 (3.3)

The evaluation of this integral provides a representation of all the query
space available to the problem

A = 8π2
∫R

0

∫∞
0

∫π
0
δ(d− λ) r2 sinαdαdddr (3.4)

and represents all geometric query space, labeled A, for a sphere of
radius, R and a fixed distance traveled, λ.

In order to understand what fraction of this query space is able to be
preconditioned, the condition for avoiding an explicit nearest intersection
search along a particle direction in Equation (3.5) will now be applied.

SDV(~p) + SDV(~n) > |~p− ~n| (3.5)
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SDV − SignedDistanceValue function

~p− particle ′s current position

~n− particle ′snext event location

h− mesh step size

This condition establishes that the nearest location to intersection for
both points must be greater than the distance between the two points
plus any error associated with their signed distance values as previously
described in Section 3.1. This condition is true for some fraction of the
next surface queries in a Monte Carlo simulation, but not all. The signed
distance function of a sphere, shown in Equation (3.6), can be applied in
Equation (3.5), to obtain a lower limit, αmin for the integral over dα in
Equation (3.2).

SDV(~x) = R− |~x| (3.6)

Making these substitutions into the inequality gives

αmin > arccos
(
(2R− r− d)2 − d2 − r2

2dr

)
(3.7)

This condition on alpha can be interpreted as a minimum interior angle
that the particle’s trajectory must take relative to the particle’s position
vector, ~p, for a distance traveled, d, for a ray fire to be avoided and the
preconditioner to be utilized. The examination of this condition as a
function of the distance traveled for various values of r results in some
conclusions about how signed distance values are being utilized.

The inequality in Equation (3.7) is undefined until the distance reaches
a value d = R−r. This is because the angular limit only needs to be applied
to areas of the query space in which the distance traveled is large enough
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Signed Distance Radius

Origin

Particle Position Next Event Location

Case: r < R-λ Case: r > R-λ utilized Case: r >R-λ unutiilized

Figure 3.9: Depiction of utilization modeling scenarios. Left: an example
of a track for which d < R − r. Middle: an example of a track for which
R− r < d < R and can be preconditioned. Right: an example of a track for
which R− r < d < R and cannot be preconditioned.

to violate the above condition as depicted in Figure 3.9. A violation of
this limit may only occur when a particle travels far enough to reach the
geometric sphere boundary along the current position vector as if it were
moving directly toward the boundary of the sphere.

A plot of the αmin limit for various radial starting positions and dis-
tances traveled can be found in 3.10. An interesting feature of this figure
is the convergence of all the curves on π as d approaches R. The conver-
gence on π indicates that as the distance traveled approaches R the only
direction that the particle can move is back toward the origin along the
position vector. It also defines a maximum distance a particle can travel
in the sphere and still be preconditioned using signed distance values.
Intuitively this makes sense as the maximum chord length of a sphere is
2R, and once a particle travels a distance R the sum of the signed distance
values can then be no larger than R. Thus the condition for utilization
in Equation (3.5) is always violated for distances traveled greater than R.
Hence all curves go to zero at λ = 100cm in Figure 3.7. Substitution of the
αmin condition gives
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US = 8π2
∫R

0

∫∞
0

∫π
αmin

δ(d− λ) r2 d2 sinαdαdddr (3.8)

Evaluating this integral and dividing by all query space gives the
following form for the theoretical limit of signed distance field utilization
as a preconditioner for ray firing

Ufixed =
US

A
=

(1 −H(λ− R))(2R− λ)(R− λ)

2R2 (3.9)

It can be seen in Figure 3.7 that this utilization limit works well as an
upper limit for the simulation results for various signed distance field mesh
resolutions. Equation (3.9) is an idealized model and does not account
for interpolation error of the signed distance values used in the pseudo
simulation. As the step size of the mesh approaches zero, so does the
evaluation of the error and the utilization values approach the idealized
analytic model for the preconditioner utilization.
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Figure 3.10: Plot of minimum angle of departure restriction for particles
with various radial positions between 0 cm and 100 cm and various dis-
tanced traveled.



76

The fixed distance traveled scenario provides a baseline for agreement
between the computational results and the model, but a more realistic
scenario is required before attempting to apply the model as a predictive
utility for application of the SDF in true Monte Carlo codes. The next iter-
ation of the analytic model applies a sampled next physics event distance
based on the probability for distance to interaction in a medium with a
total cross section, Σ.

p =
e−Σd

d2 =
e−

d
λ

d2 (3.10)

where in this case now λ represents the mean free path of the particle
in the medium

In simulation, distances are now sampled as

d = −λln(c) (3.11)

where c is randomly sampled with a uniform distribution between 0
and 1. To find the portion of utilized space for a givenR and λ one can apply
the same methods from the fixed distance case. Appendix A provides a
more detailed description of the model development for sampled distances.
The result of the updated distribution for sampled distances is found in
Equation (3.13). Applying this distribution to Equation (3.2) gives

8π2
∫R

0

∫∞
0

∫π
αmin

−r2 sinφλcln(c)2 sinαdαdddr (3.12)

Usampled =
1
2λ(R− 2λ)e−R

λ + λ2 − 3
2Rλ+ R

2

R2
(3.13)

As seen in Figure 3.11, the updated predictive model describes the
idealized utilization of the preconditioning method very well when the
SDF step size is small. As the SDF step size is increased, the predictive
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Figure 3.11: Results of the model for the theoretical utilization limit with
the results of the simulation for a sampled distance traveled case over
many different mesh step sizes.

model becomes increasingly worse at evaluating the correct utilization. For
the predictive model to be useful in a production scenario, the relationship
of the preconditioning method’s utilization to the SDF step size must
be understood as well. This relationship can be drawn through the SDF
interpolation error, ε, which is a function of the mesh step size, h.

3.3.3 Applying Error Evaluation

Thus far, the error associated with the tri-linear interpolation used to
recover signed distance values from the signed distance field has been
ignored. In order to optimize step size of the uniform mesh making up
the signed distance field, it is important to take this error into account
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when predicting the utilization of the data structure. The error associated
with any linear interpolation is, to first order, dependent on the second
order partial derivatives of the function being approximated and the sam-
pling frequency of the points used for interpolation. This relationship is
described in two dimensions via the Taylor expansion of the formula for
a bi-linear interpolation in Figure 3.3.3. For the case of a signed distance
field sampled from a surface boundary, the error can be estimated by using
the maximum local curvature of the surface as a conservative estimate
of the partial derivative. However, in the case of a discretized mesh, this
would be prohibitively computationally expensive to evaluate. Instead, a
conservative estimate of the error based on the mesh size is used to ensure
invalid geometric information is not returned from signed distance value
recovery in the SDF.

ε =
1
2∆x(h− ∆x)

∂2u

∂x2 +
1
2∆y(h− ∆y)

∂2u

∂y2 (3.14)

h−mesh interval size

∆x− xdistance to interpolationpoint fromdatapoint

∆y−ydistance to interpolationpoint fromdatapoint

u(x,y)− sampled functiononmesh

ε− error

The error estimate used in this work is equal to the largest diagonal of
the mesh elements in the uniform SDF grid,

√
3h, and ensures that signed

distance values cannot be used improperly to determine that a ray query
can be avoided during simulation.

As seen in Figure 3.11, the step size of the mesh can significantly impact
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the utilization of the data structure and in turn the overall performance of
the simulation. It is important to use a step size which will not limit the
effect of the data structure, but the signed distance field is a dense data
structure and uses a considerable amount of memory. The memory usage
of the signed distance field is inversely proportional to the cube of the
mesh step size (α 1

h3 ). Therefore it is important to consider the impact that
this error will have on the utilization of the data structure.

SDV(~p) + SDV(~n) > |~p− ~n|+ 2ε(h) (3.15)

SDV − signeddistance value function

~p− particle ′s current position

~n− particle ′snext event location

h− mesh step size

ε(h) − error evaluation for signeddistance values

The expansion of Equation (3.5) with the error term can be seen in
(3.15) and results in a new condition for the minimum angle of departure
(αmin) shown in Equation (3.16)

αmin = arccos
(
(2R− r− d− 2ε)2 − d2 − r2

2dr

)
(3.16)

This formulation of αmin can be used directly in the integration de-
scribed in Equation (3.8). The final form of the model after the integration
is described in Equation (3.17). Again, a more detailed development of
this model is provided in Appendix A.
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Usampled =
(R− ε)( 1

2λ(R− 2λ− ε)e−R+ε
λ + λ2 − 3

2λ(R− ε) + (R− ε)2)

R3
(3.17)

This model in Equation (3.17) was compared to pseudo-simulations
using sampled distances for the next physics event location. The result of
this study can be seen in Figure 3.12. The dimensionless parameters n and
c as formulated by normalizing the mean free path, λ and the mesh step
size, h using the average chord length of the sphere, Rav. These dimen-
sionless parameters are useful for describing the utilization in generalized
terms of the geometry. This is discussed in more detail in Section 3.3.4.
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Figure 3.12: Theoretical limits for SDF utilization accounting for error
evaluation plotted with simulation results for varying mesh step sizes.

The model presented in Equation (3.17) agrees very well with the
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simulated results for small values of n. As the value of n increases, the
model begins to over-predict the utilization of the preconditioning method
slightly for low relative mean free path values. The utilization values in
this regime are so low that they are not concern, however. Knowing
that the SDF will also be applied to non-spherical geometries in practice,
it is necessary to understand the predictive model’s behavior for other
geometries as well.

3.3.4 Extension to other geometries

To apply this model to other geometries, the mean free path and mesh
step size were normalized using a measure of the free space in a volume
compared to its surface area, the average chord length, Rav [7]. This value
can be defined as seen in Equation (3.18).

Rav =
4V
S

(3.18)

V − Volume

S − SurfaceArea

Normalizing the mean free path to the average chord length is a way
of describing the probability that a particle will reach the surface of the
volume that is independent of the distance traveled by the particles and
the explicit geometry [36]. This in turn allows studies of the utilization
to be performed in a [n=(0,1),c=(0,1)] domain for an arbitrary geometry,
mean free path, and mesh step size.

This common domain of n and c provides a pathway for comparison of
the model in Equation (3.17) to other geometries, which will be important
in assessing the utilization of the SDF in arbitrary DAGMC models. In
order to test the extension of this analytic model to other geometries,
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pseudo simulations were performed for cylinder and cone geometries.
The results of the utilization model and simulation results can be found
in Figures 3.13 and 3.14.
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Figure 3.13: Application of the analytic model for preconditioner utiliza-
tion in a cylinder volume for various mean mean free paths, λ, and mesh
step sizes, h.
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Figure 3.14: Application of the analytic model for preconditioner utiliza-
tion in a cone volume for various mean mean free paths, λ, and mesh step
sizes, h.

For small values of n, the utilization model is much closer to the simu-
lated result. As the value of n increases, however, the model becomes less
accurate in predicting the utilization just as in the spherical geometry. The
analytic model breaks down for values of nwhich are outside of the limits
set by the αmin condition. This is most clearly seen for the n = 0.5 trace in
Figure 3.14. In the spherical case this occurs when the error evaluation
exceeds R, meaning that zero utilization of the data structure is expected.
For this condition, any evaluation of the error will exceed the maximum
distance a particle can travel and still be utilized.

ε(h) > R (3.19)
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√
3h = R (3.20)

h =
R√
3

(3.21)

To extend this limitation to other geometries, the average chord length
will again be used as a surrogate for the sphere radius in representing the
upper limit of utilization for an arbitrary geometry. For the spherical case,
the average chord length is shown in Equation (3.22).

Rav =
4
3R (3.22)

Equation (3.22) can be substituted into Equation (3.21) to obtain rela-
tionship of the mesh step size to the geometry for an upper limit of hwhen
applying this model in simulation. This equation can then be normalized
to place an upper limit on n for a valid use of the utilization model.

h < hmax =
3

4
√

3
Rav (3.23)

n < nmax =

√
3

4 ≈ 0.433 (3.24)

Equation (3.24) provides a value for the maximum allowed normalized
step size for which the utilization model from Equation (3.17) can be
applied in an arbitrary geometry. While unlikely that a step size this large
would be applied in practice, it is important to understand the limitations
of this model if it is to be used in an automated process for application of
the data structure either on-the-fly or as a preprocessing before simulation.
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3.4 Application in DAGMC Simulations

3.4.1 Performance Improvements

The geometry-agnostic version of the utilization model was used to create
a post facto analysis script for predicting the SDF’s utilization in production
DAG-MCNP models. This analysis uses information about the average
particle track length for each volume as the input mean free path for
the utilization model. This information is gathered from Table 126 pro-
vided in MCNP output files from previous DAGMC simulations of the
geometry[64]. The input for the average chord length of each cell was
calculated using DAGMC methods measure_volume and measure_area for
each cell in question. The mesh step size was treated as a variable used to
optimize either the memory usage of the data structure or the utilization
of the data structure depending on options passed into the script. The
output of the script then describes inputs to the utilization model, the pre-
dicted utilization of the data structure, and an estimate of data structure’s
memory usage.

This analysis script was used to examine several models to search for
volumes with a significant impact on the simulation. Most of the models
used as benchmarks for timing comparisons in Table 1.2 did not contain
volumes appropriate for application of the SDF. As a result, other problems
were sought out - several of which simulate charged particles just as the
in the nTOF problem.

In general, the addition of the data structure has a measurable but
limited effect on the performance of the simulations in the production
models listed below. One additional factor that the script takes into account
is the number of collisions in the volumes it is examining. Despite the
fact that the collision density of the transport in a given volume may
be high relative to its average chord length, if a small percentage of the
transport occurs in that volume, then the benefits of applying the SDF are
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diminished. As an estimate of this, the ratio of collisions a given volume to
the total number of collisions in the simulation was used as an estimate for
the proportion of geometric queries occurring in the volume. Additionally,
it has been found through profiling of various simulations that as the
collision density increases, the proportion of the runtime spent querying
the geometry is small relative to the time spent calling physics subroutines.
The SDF preconditioning method was applied in the following models:

ITER
ITER is a demonstration nuclear fusion device currently under con-
struction in southern France. An analysis of DAGMC was performed
at the University of Wisconsin - Madison to determine the nuclear
heating to shield materials used as primary shielding for fusion
neutrons.

NTOF
The neutron Time Of Flight (nTOF) model is a project underway
at the Institute for Science and International Security (ISIS) in the
United Kingdom. The aim of this project is to determine neutron
energies by measuring the time it takes neutrons to travel from one
detector to another.

SHINE
The SHINE facility is a device which uses a beam fusion device
to produce 14.1-MeV neutrons and irradiate an aqueous uranium
solution to produce molybdenum-99 for use in medical imaging.
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SNS
The Spallation Neutron Source (SNS), located at Oak Ridge National
Laboratory, in which protons are accelerated to high energies (~1
GeV) and directed into a mercury target to produce thermal neutrons
for various research applications.

Table 3.1 displays the results of simulations in which the SDF was
applied. More detailed information on the parameters of the SDFs and the
volumes they were applied to can be found in Appendix A. Improvements
in the simulation run times varied from 0-35%. While differences in the
run times are significant, they are small in comparison to those demon-
strated in Section 3.3 for the hydrogen-filled sphere tests. The results in
all simulations were identical regardless of SDF application, however, in-
dicating that the methodology and error evaluation are robust for at least
these production scenarios.

Model Particle Types Next Surface Closest Surface Point Containment
SNS α,p,γ,β,3H,n... 99.1% < 0.1% 0.8%
nTOF p,γ,n 99.4% 0.5% 0.1%
ITER n 9.4 % 88.3% 2.3%
SHINE n 99.9% 0% < 0.1%
FNG n 54.8% 0% 45.2%
ATR n 96.8 0% 3.1%
UWNR n 99.9% 0% < 0.1%

Table 3.2: A summary of the relative number of calls to the various Monte
Carlo geometric queries for several DAGMC production models. ‡

Despite apparent limitations of the data structure, application in the
medical isotope production model from SHINE (shown in Figure 3.15) is

†This entry represents a secondary simulation of the SHINE model with modified
physics cross-sections.

‡The proportion of query calls is dependent on the native physics kernel’s tracking
code. This is particularly true in the case of charged particle transport.
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Figure 3.15: A cutaway view of the SHINE model used for demonstration
of the SDF data structure.

a somewhat successful demonstration of the preconditioning method’s
ability to reduce simulation run times. A signed distance field with a 0.1
cm step size was applied to volumes near the bottom of the model which
contain both an aqueous solution of uranium sulfate and a surrounding
light water moderator. As outlined in Table 3.1, the resulting improvement
in performance for a simulation of 500,000 particles was approximately
35% of the total runtime.

For the majority of the production test cases, the preconditioner uti-
lization model is relatively accurate for the widely varying geometries
of the DAGMC production models. There are cases in which the model
struggles to accurately predict preconditioner usage and ray fire query
avoidance, however. This an other observations about the limited effects
of the preconditioning method will now be addressed.
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3.4.2 Memory Usage

As discussed in Section 3.2, the uniform structured mesh used to store SDFs
in DAGMC can be highly memory intensive. Given the memory constraints
placed on DAGMC by the context of its application in parallel Monte Carlo
simulations (see Section 2.6), additional memory consumption by DAGMC
acceleration data structures must be weighed carefully against the benefits
in run time reduction. The main concern being that per-process memory
usage may prevent additional processes from being added to a node in
parallel simulations. Despite the fact that the SDF has been shown to
decrease the run time of several production simulations, it is unlikely to
be more beneficial than additional processes in parallel simulations.

Model Without SDF (MB) With SDF (MB)
ITER 5971 7003
nTOF 598.3 619.2

SHINE 219.3 627.12
SNS 1804 3419

Table 3.3: Memory usage of the SDF for the various production applica-
tions.

The memory usage of the SDF varies greatly between the different
production models in Table 3.3. For the nTOF model, the absolute memory
consumption is very small and the SDF structure adds very little to the
simulations overall memory footprint. In other simulations, the memory
footprint is greatly affected, increasing usage by up to 1.2 GB. SDF memory
usage is largely influenced by the size of the volume it is bounding and the
mesh step size needed for high utilization of the preconditioning method.
An estimate of the memory used by the SDF is presented as part of the
analysis script used to apply the SDF. This estimate should be considered
by analysts when creating DAGMC problem input, particularly if the
simulation is going to be run in parallel.
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3.5 Other Distance Limit Optimizations

DAGMC supports a mode in which the distance to the next physics event
is used to limit the length of a ray and optimize the BVH traversal process.
Nodes which the ray does not reach are not visited, reducing the average
traversal time of rays in the BVH. If the ray does not intersect a surface,
DAGMC returns a next surface distance greater than that of the distance to
the next physics event. The physics kernel is agnostic to this change, and
comparisons of these distances are used as they are normally to determine
a particle’s next event.

This distance limit optimization is only guaranteed to be robust for
fully sealed DAGMC geometries. Because rays are not required to return
a surface intersection in this mode, ray queries moving into gaps of the
unsealed model will update the particle’s position to the next physics
event. If the next physics event is outside of the volume, particles will
exit the volume without error in the particle tracking algorithm. In this
scenario, particles can numerically leave the volume without updating the
material in which the particle is interacting in the physics kernel, resulting
in inaccurate physics events. This will continue until the particle is killed
due to its low statistical contribution to the simulation solution. Occasional
point_containment checks in the particle tracking algorithm can detect these
particles and label them as lost, but this is not guaranteed to happen and
the simulation may run without reporting any particle tracking errors.
Creating a fully sealed DAGMC model from a general CAD representation
is a difficult task for many complex production models, requiring that the
model is created in a friendly way such that all volumes can be imprinted
and merged successfully without overlaps. Corner cases also exist in
which the make_watertight algorithm fails to fully seal tessellations of the
CAD model [48].

In fully sealed models, however, this optimization is robust and can
significantly decrease simulation times without consequence. This opti-
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mization has been applied to the same set of production models in Table
3.1 to compare the improvement in performance seen when using the
distance limit optimization without SDF preconditioning in comparison
to DAG-MCNP simulations with infinite ray lengths.

It is worth nothing that the errant particle pathology associated with
the physics distance limit is not present when using SDF precondition-
ing to accelerate DAGMC simulations. SDF values are generated using
known surface locations relative to points in the uniform mesh. As such,
information gathered from the SDF during preconditioning of particle
queries will not allow particles to cross surfaces so long as the model is
well-formed. This pathology is avoided by accounting for the interpolation
error associated with signed distance value calculation to avoid incorrectly
preconditioned ray queries. Rays fired in simulations where SDF precon-
ditioning is applied still have an effectively infinite length and thus do
not invalidate the robust particle tracking process in DAGMC. Particles
moving through gaps in unsealed volumes will always be reported by
DAGMC.

Model

Performance
Ratio

(Distance Optimization /
Unmodified)

Fully Sealed
Model

Matching
Results

No Lost
Particles

ITER 0.23 × × ×
nTOF 0.46 × X X

SHINE 0.86 X X X
SHINE* 0.51 X X X

SNS 0.95 × X X

Table 3.4: Results from limiting ray lengths in DAGMC using the distance
to the next physics event. Performance ratios are measured as simulations
using finite ray lengths over those using infinite ray lengths. Matching
numerical results, topological watertightness, and lost particle incidence
are also reported for each model.
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Table 3.4 shows the results of this study. For all simulations, the run
time was substantially reduced using this optimization. And for nearly all
simulations the results of the two simulations matched exactly with the
exception of the ITER simulation. In this case, particles were lost in the
unsealed model, causing a change in the results between the two simu-
lations. As stated above, it is also possible that particles were incorrectly
tracked in other unsealed models (nTOF and SNS), but had no effect on
the final solution of the simulation.

The improvement in performance using the physics event distance
to limit ray lengths is substantial for all models except SNS. The reason
for this limitation in both this mode of operation for DAGMC and when
applying SDF preconditioning to SNS is discussed in Section 3.6.2. For
fully sealed (or topologically watertight) models, the physics event mode
provides a performance enhancement equal to or better than that of the
SDF preconditioning method. For models which are unable to be sealed
fully, application of SDF preconditioning may be useful, particularly if a
majority of particle interactions are occurring in an unsealed region of the
model.

3.6 Performance Mitigating Factors

In the majority of the production models to which SDF geometry query
preconditioning was applied, the effect on the overall performance of the
simulation is smaller than what was seen in the simple test cases. This is
due to a variety of factors, each of which is demonstrated by one of the
models in Table 3.1.

3.6.1 Physics Dominant Simulations

The nTOF model was selected as a charged particle transport demonstra-
tion. The SDF was expected to be extremely beneficial in this scenario due
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to the high collision density of charged particle transport relative to the
size of certain volumes in the problem. The computational time spent on
the detailed charged particles physics tends to dominate the runtime of the
simulation, leaving little room for improvement in the overall simulation
runtime by reducing geometric query costs.

A neutral particle example of this occurs in SHINE as well. In order to
reduce the amount of time spend in the MCNP kernel for this calculation,
group-wise cross-sections were specified for all materials in the problem.
This allowed the SDF to have a more significant impact on the simulation
runtime, but may not be desirable if continuous energy cross sections are
necessary for a higher fidelity result. A separate entry for this simulation
is found in Table 3.1.

3.6.2 Utilization Model Assumptions

There are some cases in which the SDF utilization model is inaccurate.
The calculation of the average chord length and average track length are
assumed to be true over the entirety of the volume in question. In reality,
the localized average chord length will vary throughout the volume’s
domain. In cases where the local value of the average chord length is
smaller than predicted, the utilization model will overestimate the SDF
utilization. An example of this was found in the SNS test model.

A volume representing the mercury manifold in the SNS model was
identified as a good candidate for SDF application. The SDF analysis model
estimates the utilization of the SDF data structure under the assumption
that the distribution of particle interactions in the volume is uniform. In
this case, particle interactions occur mostly in regions of the volume where
the local average chord length is smaller than the average chord length
of the entire volume. This reduces the effectiveness of the SDF for the
step size suggested by the input script. Additionally, an SDF which would
provide better utilization would require a prohibitively small mesh step
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size in terms of the memory usage of the data structure. The combination
of these effects result in low utilization of the applied SDF and in turn the
simulation runtime is reduced only marginally.

3.6.3 Surface Mesh Complexity

In Section 3.6.1 limitations of the SDF impact on the nTOF simulations
were cited as related to the time spent in physics subroutines, but the
faceting of the particular volume which the SDF was applied to may play
a role as well. The volume’s faceting contained a relatively small number
of triangles. This in turn means that the generated BVH for this volume
was relatively shallow. The relative improvement in performance when
avoiding a ray traversal is directly related to this tree depth. While the
complexity of a BVH search is O(logNtri), the cost relative to the O(1)
look-up of a signed distance value in the SDF becomes small as N becomes
small, limiting the effectiveness of the SDF regardless of the utilization.

3.7 Summary

This chapter presented a novel approach to accelerating CAD-based MCRT-
t through use of signed distance fields to precondition relatively expensive
ray fire calls in the DAGMC geometry kernel. An analytic model was de-
veloped to predict the utilization of this method based on dimensionless
geometric and problem-dependent parameters. The model was shown
to be accurate in several production demonstrations. Though the effec-
tiveness of the preconditioning method overall was limited by a variety of
factors described in Section 3.6, the improvements in simulation runtime
with the same final result were observed. Enhancement of SDF storage
and further model development in could increase it’s impact on these
simulations and allow it to be more broadly applied in future studies.
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Use of the physics distance limit in DAGMC models which can be
made topologically watertight is recommended based on its ability to en-
hance query performance throughout the model as seen in Section 3.5. For
models which cannot be made fully watertight, the SDF preconditioning
method provides an alternative use of the physics distance limit to enhance
simulation performance under the conditions described in in Section 3.3.
In practice it is recommended that well-formed geometries are used in
DAGMC, or those with can be made fully watertight, to ensure simula-
tion robustness and high fidelity results. Thus, the SDF preconditioning
method is likely to have a small application space in production DAGMC
analysis, finding use only in problems where unsealed volumes have high
particle collision densities relative to the volume size.
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Chapter 4

A Mixed Precision Bounding
Volume Hierarchy

4.1 Introduction

As established in Section 1.2, the dominant source of additional runtime
in DAGMC is spent in the ray tracing process used to satisfy the set of
Monte Carlo geometry queries outlined in Section 2.1. The focus of the
work in this chapter is improvements on the performance of the ray tracing
process through the application of SIMD-oriented programming for the
bounding volume hierarchies in DAGMC. Some preliminary work was
performed in this area by replacing the ray tracing kernel used in DAGMC
(MOAB’s oriented bounding box tree) with a kernel produced by Intel,
called Embree. This work is outlined in Section 4.2. All of the simulation
and ray fire results presented in this chapter and Chapter 5 were performed
using a 3.4 GHz Intel Core i7 processor on a Haswell desktop with AVX2
vectorization instruction sets.
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4.2 Linking DAGMC with Intel’s Embree

Embree is the result of an effort to produce a performant CPU-based ray
tracer as a demonstration of the expanding capabilities of modern CPU
architectures [60]. In both construction and traversal of its BVHs, Embree
takes advantage of many of the latest developments in BVH research
by using modern chipset architecture capabilities via vectorization at an
implementation level. Such work was alluded to in Section 2.5.5 of this
work. The combination of these effects leads to a very powerful ray tracing
tool in terms of performance, as demonstrated by the many projects which
have incorporated Embree as their production ray tracing kernel such as
Corona, Autodesk, FluidRay, and Brighter3D. As a result of its success
in other areas, Embree was selected for application in DAGMC to satisfy
geometric queries for MCNP. The resulting combination of Embree and
DAGMC will be referred to as EmDAG.

4.2.1 Implementation and Model Transfer

The process of employing Embree as DAGMC’s ray tracer begins by es-
tablishing an equivalent representation of the MOAB mesh in Embree. In
comparison to MOAB, Embree is limited in its ability to represent the un-
derlying topological structure of a model. This topology is necessary and
used advantageously during particle tracking in DAGMC by reducing the
set of triangles queried to those of the particle’s current volume. However,
a method was discovered to represent enough of the topology to meet the
requirements of DAGMC transport. The highest level representation in
Embree is referred to as a scene. Each scene may contain many geometries
or triangle surface meshes. Fortunately, this system is enough to create a
functional representation of DAGMC geometries in which MOAB volumes
are the equivalent of Embree scenes and MOAB surfaces are represented
in their respective scenes as surfaces. This mapping is more clearly il-
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lustrated in Figure 4.1 This method provides a one-to-one mapping of
MOAB volumes and surfaces to their corresponding entities in Embree
(geometries and scenes, respectively). The mapping allows all topology-
based operations to proceed inside of DAGMC in their usual manner. In
this way, the requirement for topological information in DAGMC at the
surface and volume level is met. Next, transfer of the primitive mesh data
is considered.

Scenes do not share mesh data in the same way volume sets are able to
in MOAB, so the triangle connectivity of each surface is reproduced for
each scene they belong to. Fortunately, Embree does allow the sharing
of vertices between scenes. In order to take advantage of this feature, all
of the vertices in the MOAB mesh are provided to the Embree instance
as a global vertex buffer. Surface triangles from all scenes can then be
defined by a connectivity of vertices from this global pool of points. This
method guarantees that each surface can be represented by the same set
of stored vertices regardless of scene ownership, giving the exact same
representation in each scene. It greatly simplifies particle tracking by
guaranteeing that the same surfaces will not numerically overlap as a
result of the conversion from double to single precision. Additionally,
this method will maintain topological watertightness at the boundaries
between surfaces ensuring the same model fidelity as the representation
in MOAB.

The computation of triangle normals is critical to the DAGMC particle
tracking algorithm established by Smith et. al. in 2011 [48]. In DAGMC,
particles on or just outside the surface of a volume are handled by ignoring
the near-surface intersection upon being placed in a new volume. This
is done to maintain tracking of particles based on their logical position
in the model rather than solely their numerical position which can cause
ambiguities regarding point containment and cause lost particles or trap
particles between surfaces, resulting in infinite or near-infinite histories.
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Figure 4.1: Representation of MOAB’s topological connections mapped to
Embree.

Logical particle tracking is implemented using the convention that triangle
normals will always point outward from the center of the volume they
belong to. Triangles hit by the ray are ignored if the normal of the triangle
opposes the ray direction via a dot product calculation to ensure only
exiting ray intersections are considered.

While this has historically been handled inside of DAGMC, this is
accomplished in EmDAG via the use of Embree’s filter functions. Filter
functions allow for a user-defined callback method which allows users to
validate a ray hit inside of Embree before returning a final result. Embree
will return its most recent intersection with the scene to the filter function
(the triangle’s unnormalized normal vector included) and allow a method
to either accept the hit or instruct Embree to continue tracing the ray path
based on the outcome of the filter function. In MOAB, triangle normals
are set in a global manner and adjusted using stored information within
MOAB based on what volume is being queried at the moment. This is
referred to as the surface’s sense with respect to that volume. Because
surface triangle connectivity is duplicated when transferring mesh entities
to Embree, triangle normals are pre-oriented depending its sense with
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respect to the volume is being transferred to Embree at load time. This
saves steps in gathering this information upon traversal. By matching
DAGMC’s data model in the areas of topology, watertight representation,
and hit acceptance/rejection based on triangle normals, the customized
Embree instance can provide DAGMC with all the information needed to
perform geometric operations needed for Monte Carlo simulations.

4.2.2 Ray Fire Performance

Using a DAGMC-based ray fire test program, the performance of DAGMC’s
ray fire ability was compared to that of EmDAG’s for three representative
models. These models include a simple sphere, a notched sphere, and
a high aspect ratio (HAR) cylinder. In each of these tests, the models
are tessellated with an increasingly smaller faceting tolerance to vary the
number of triangles generated when discretizing the models. The faceting
tolerance is defined as the maximum distance between the faceted curve
or surface and the geometric curve or surface which it resolves. 600k rays
are then fired from the center of the volume isotropically using the same
random number seed so that the same set of rays is fired in each ray tracing
system.

Figure 4.2: CAD representations of the sphere, slotted sphere, and high
aspect ratio cylinder (left to right) test models used for ray fire timings of
DAGMC and EmDAG.

Each geometry used in these tests presents its own challenges with
increasing faceting tolerance. The sphere is a good control case for an in-
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creasing number of triangles with a well-behaved tessellation. The number
of triangles generated in the spherical case will tend toward a maximum
value with decreasing faceting tolerance, but the general nature of the
triangulated surface (triangle density, structure, etc.) will remain the same.
This is not true of geometries with planar surfaces which may be able to be
resolved exactly using some finite number of triangles making the sphere
a valuable test model in that regard. In the case of the notched sphere,
high-valence regions are generated by the faceting engine as a result of its
underlying algorithms for planar surfaces meeting curves surfaces. The
high triangle density of high valence regions causes overlaps in bounding
volumes which become larger as the faceting tolerance decreases. This
results in inefficient hierarchy traversal. Additionally, and perhaps more
importantly than the presence of high valence regions, rays being fired
with a point of origin at the center of the model causes them to travel either
exactly along or very near to the surfaces of the planar slots in the sphere.
Such a ray query will visit many internal nodes of the hierarchy during
traversal, creating what is referred to as a very wide traversal through the
BVH as opposed to a narrow traversal in which fewer branches and fewer
nodes of the tree are visited. In this way, the slotted sphere provides a good
measure for the performance of a wide traversal through the hierarchy in
a situation for which many of the internal nodes are required to be visited.
The two sets of timing results can be found in Figure 4.3.

Both MOAB and EmDAG scale relatively well for the HAR cylinder
model with decreasing faceting tolerance. Though MOAB is using OBBs
and Embree uses AABBs, this indicates that both systems are capable
of building efficient BVHs for a model with long, skinny triangles. For
both MOAB and Embree, the scaling of the spherical case with increasing
triangles is slightly worse than the HAR cylinder most likely because
the BVH tree is unavoidably going to become deeper as more and more
triangles exist in the model, requiring more traversal steps to reach leaf
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nodes. Finally, the slotted sphere contains many high valence regions and
as expected it scales the worst with decreasing faceting tolerance as the
valence of these regions increases. Due to the very similar scaling of each
test model, it can be stated that the majority of the discrepancy in the
ray fire timings between the two systems occurs in the traversal methods
employed by both systems and isn’t likely due to a significant difference
in the quality of the BVH being built by either system. Changes in the way
the BVH is built typically accounts for anywhere from 30-40% difference
in ray fire timings whereas the discrepancy seen here between MOAB and
Embree is on average an order of magnitude better when using Embree.
To some degree, this has to do with Embree’s freedom of design without
the restriction of a ray tracing implementation inside the context of another
application. The flexibility of MOAB’s core design allows for the robust
implementation of an oriented bounding box tree within this context, but
comes with the overhead of database calls to retrieve stored information
which can be undesirable for a high-performance system and doesn’t
allow MOAB to take advantage of some implementation optimization
available in Embree. The vectorization of Embree’s traversal through its
BVH contributes greatly to its speed. This can also be considered a part of
the design freedom allowed when designing an independent ray tracing
system that cannot not be afforded using only MOAB’s database interface.
MOAB’s interface for direct memory access allows for similar freedom in
BVH design, however. This will be discussed further in Section 4.3.1.1.

4.2.3 Transport Tests

As an extension of these pure ray fire tests, the effect of an improved ray
tracing system in particle transport was studied as well. These tests begin
with several simple models and end with the application of EmDAG to one
of the models used for DAGMC performance benchmarking in Chapter 1,
FNG.
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The first transport models to be tested were a single cube and single
sphere filled with a dense hydrogen material for high collisionality in
the problem resulting in a large number of ray queries in the transport
run. Each of these models’ principal dimension is 10 cm. The source
for these models is a 5 MeV neutron isotropic point source at the center
of the volume. One million particles were simulated in each test. All
of the test models were generated using a faceting tolerance of 10−4cm.
Moving upward in complexity, another set of tests were run using a set
of nested cubes and nested spheres. Each of the nested volume models
contained three cells: the inner volume, a shell volume, and the graveyard
volume. The purpose of these tests was to ensure that particles could
in fact be tracked through multiple volumes correctly. The nested cubes
model contains an extra volume which consists of the original single cube
subtracted from a cube 1cm larger in each dimension. The nested sphere
model contains an extra volume consisting of the original sphere from the
single volume model subtracted from a sphere 1cm larger in radius. As
the purpose of these tests was to test EmDAG’s particle tracking between
volumes, the dimensions of the offset between the nested volumes is largely
irrelevant so long as particles reach all of the volumes in the model.

Test Model MCNP DAG-MCNP EmDAG-MCNP
time (min)/ ratio to MCNP

Sphere 2.93 / 1.00 25.13 / 8.58 4.73 / 1.61
Cube 5.03 / 1.00 10.56 / 2.10 5.80 / 1.153
Nested Spheres 4.35 / 1.00 50.82 / 11.68 7.94 / 1.83
Nested Cubes 4.73 / 1.00 9.26 / 1.96 4.35 / 0.92

Table 4.1: Runtime comparison of native MCNP, DAG-MCNP, and EmDAG-
MCNP over four contrived transport test problems.

The native MCNP runs were generally the fastest among the test prob-
lems with the exception of the nested cubes case in which EmDAG-MCNP
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marginally outperformed the native code by 8% (see Figure 4.1). This
is likely due to the fact that very few triangles are needed to represent
the surfaces of parallel-piped volumes. Exactly two triangles are needed
to represent each face of the box. The resulting BVHs of these struc-
tures are very simple, often composed entirely of leaf nodes. The fact
that these volumes have multiple surfaces is also of importance. MCNP
searches linearly through a given volume’s surfaces to determine the in-
tersection of a particle with the nearest surface whereas both DAG-MCNP
and EmDAG-MCNP perform this search for all surfaces bounding the
volume simultaneously by joining surface BVHs into volume BVHs. This
process is discussed in detail in Section 4.3.1.4. In the nested cubes model,
it is likely that the number of surfaces relative to the number of triangles in
their representation is high enough to allow EmDAG-MCNP to overtake
MCNP’s CSG calculations. This is a good demonstration of how CSG
implementations suffer from the lack of a spatial search component when
creating volumes from Boolean combination of surfaces as mentioned in
Section 2.2.2.

The results of the single-volume test cases for native MCNP differ
slightly from the results from the DAGMC-based systems, which match
each other exactly. This is not surprising as DAG-MCNP is known to
report statistically similar, but not exactly the same, results as native MCNP.
Comparisons of DAG-MCNP to native codes are not the concern of this
study, only a comparison of the values returned by EmDAG-MCNP in
comparison to DAG-MCNP is considered. Differences in the tally results
between DAG-MCNP and EmDAG-MCNP are present only in the nested
spheres transport model. There is a small difference in the flux tally for
the outermost volume as can be seen in Table B.9 of Appendix B. By
examining the number of particle tracks in each cell, it was determined
via debugging values that this discrepancy is caused by a single particle
ending in EmDAG-MCNP near a surface of cell 2 while in DAG-MCNP
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the particle crosses into cell 3 before abruptly terminating though it still
contributing slightly to the tally in cell 3. This descrepancy is caused by
different ray-triangle intersection tests used in MOAB and Embree rather
than being result of the double to single floating point conversion of the
model that occurs when using EmDAG.

Finally, a production test of EmDAG was conducted on the FNG model
using the same volumetric source as in the performance benchmarking
tests described earlier. Initially this model failed quickly due to lost par-
ticles. This was surprising as the model is expected to have the same
watertight fidelity that it does when using DAGMC. In order to allow the
run to complete, the number of allowed lost particles was increased to
the number of the sources particles being run. The justification for this
allowance being that if the lost particle rate is small enough, overall per-
formance and results of the run would still provide a viable comparison
of the two systems. In the end, the model lost 255 particles in 100 million
histories. While this is concerning in terms of robustness, the lost particle
rate per history wasn’t considered high enough greatly impact the results
from a performance comparison standpoint. A timing comparison of the
FNG run using EmDAG-MCNP to the native MCNP model as well as
DAG-MCNP is found in Table 4.2.

Implementation ctme (min) wall time (min) ratio lost
MCNP5 209.92 205.99 1.00 0

DAG-MCNP5 1023.04 1023.05 4.99 0
EmDAG-MCNP5 303.49 303.63 1.44 255

Table 4.2: A comparison of transport on the FNG model using a 14.1 MeV
volumetric source over 100M histories for native MCNP, DAG-MCNP, and
EmDAG-MCNP.

Again, significant gains in performance are seen using EmDAG in
comparison to DAGMC and less than a factor of two is found in the ratio of
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Figure 4.4: Call-graph of the EmDAG run on the FNG model for 1× 107
histories. Processes taking <=6% of the runtime are filtered in order to
simplify the call-graph.
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the FNG runtime compared to native DAGMC. Several particles were lost
in the EmDAG simulation, however. The cause of these lost particles, which
make it impossible for DAGMC to rely on Embree’s existing constructs as
a robust ray tracing tool, is discussed further in Section 4.2.4.

4.2.4 Limitations

While the implementation of Embree in DAGMC showed a vast improve-
ment in performance relative to DAGMC’s current implementation, several
problems were encountered during the process. This is not surprising
when re-purposing a ray tracing kernel for an unintended application.

One of these problems is the presence of lost particles in a watertight
model. The FNG model EmDAG was tested on is a fully sealed model. A
fully sealed model is one in which every volume is topologically sealed
such that there are no gaps between surfaces or adjacent volumes. As a
result, DAGMC is able to robustly track particles through such a model
with no lost particles. While the lost particle rate for the EmDAG FNG
test relatively low, they in theory should not occur at all as was shown by
the DAGMC runs. After a considerable amount of investigation as to the
nature of these lost particles, their cause was determined to be a systematic
problem not encountered in the nested volume cases due to the simple
nature of their geometric topology.

In the DAGMC workflow, a required step for a watertight model is
to imprint and merge the surfaces in the geometry representation before
faceting the model. Imprinting (shown in in Figure 4.5) is the process
by which surfaces and curves that are coincident by proximity in space
are made the same. This process is accomplished by splitting entities
into their coincident and non-coincident parts. The merging process then
topologically combines these coincident parts into single entities such that
the single entities are topologically adjacent to all entities adjacent to both
of the originals. The result of these steps is non-manifold model with
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surfaces shared between neighboring volumes [48].
The imprinting and merging of surfaces allows only one representation

of each topological entity to be created upon faceting the model. By using
the faceted curves of the model as a reference for where surfaces meet in
space, the triangles of a surface are then forced to meet at those curves in
a topologically watertight manner via the make_watertight algorithm [48].
Topologically watertight in reference to triangle facets refers to shared
connectivity of mesh elements between surfaces. This is distinctly differ-
ent than watertight by proximity or by points of triangles being “close
enough” to one another. Topological watertightness of triangles refers to
surfaces meshes which share vertex connectivity at their boundary with
other surfaces. These triangles then share mesh vertices in MOAB whose
coordinates in virtual space are represented using the exact same float-
ing point representation in the database. In this way particles cannot be
lost through gaps in surfaces and firing a ray from any position inside
a topologically watertight volume should always result in a triangle in-
tersection. Despite the topological watertightness of the triangle meshes
used in EmDAG, particles were lost in the transport process.
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Figure 4.5: Example of two adjacent volumes being imprinted and merged.
a) Two volumes, a cube and cylinder are created. b) The cylinder end face
is moved such that it is coincident with one of the faces of the cube. c)
The imprint operation is performed and the cylinder curve is imprinted
onto the cube (cylinder was removed for visibility of imprinted curve).
Adapted from [62].

Some detailed debugging of this problem revealed that this occurs
in a systematic fashion within the FNG model at intersections of 3 or
more volumes. The scenario is that a particle moves onto a triangle edge
which is part of the boundary between two surfaces. When this occurs, an
intersection with either surface connected to that interface is valid. The
particle will then logically move into the volume on the other side of the
hit surface. EmDAG handles most of these cases well with the exclusion
of scenarios in which a particle will have a zero track length inside one of
the volumes. A zero track length in this case meaning that the particles’
trajectory is such that it will only glance a volume without having any track
length inside of it. An example of this particle tracking pathology can be
found in Figure 4.6. In this case, the EmDAG system may be unable to
find a hit whereas DAGMC’s tracking is robust enough to find the triangle
intersection on this volume and move on.

By isolating this particle’s history and producing the particle history
with locations precise enough to detect the discrepancies between EmDAG
and DAGMC, it was found that the position of the particle in EmDAG was
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Figure 4.6: A) The initial state of the lost particle. The particle’s trajectory
is such that it intersects with the boundary between surfaces A and B. The
correct continuation of the particle into volume C is depicted as a dashed
line. B) An intersection with surface A is found though either surface A or
B are equally valid. The particles position is then updated to its intersection
with the boundary of surfaces A and B. The particle then logically moves
into volume B. C) Upon placement of the particle in volume B the Monte
Carlo code requests the distance to next surface intersection. The particles
position and direction are converted from double to single precision. The
small change in the particle’s position places it outside of volume B and
the trajectory is such that an intersection is not found. At this point the
particle is considered lost.

numerically outside of the new volume after crossing the surface. The
particle’s position and direction were such the correct triangle hit could
not be found in either EmDAG or DAGMC’s ray fire systems. The cause of
this discrepancy is believed to have to do with the necessary conversion
between double and single floating point precision in the EmDAG system.

As previously mentioned, EmDAG uses single floating point repre-
sentation in its ray tracing kernel while DAGMC uses a double precision
representation of the geometry and particle information. In order to ac-
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commodate Embree’s representation, properties of the particle location
and direction are converted to single precision for ray tracing queries in
Embree and back to double precision when in DAGMC. When changing
the floating point representation, truncation rules based on the computing
environment are used to determine the new representation according to
IEEE standards for conversion between precision levels [2]. These changes
in the particle’s location and direction are small, but in the scenario de-
scribed above it seems that the particle location and/or direction are
altered enough throughout the course of its history to cause a failed ray
intersection - resulting in a lost particle.

In Brandon Smith’s thesis, “Robust Particle Tracking and Advanced
Geometry for Monte Carlo Radiation Transport” [48] there is a detailed
description of the different pathologies encountered in tracking particles
through a surface mesh representation of a geometric model. Briefly men-
tioned in this chapter is the possibility of a lost particle due to numerical
error in the particle’s position orthogonal to the particle’s trajectory. Lost
particles caused by this pathology are not covered however as the double
precision floating point representation does not allow the particle position
to change enough for this case to occur in practice. EmDAG is vulnerable
to this particular pathology due to the constant conversion from single
to double precision values between DAGMC and Embree. In order to
avoid this problem moving forward, any improvements to DAGMC’s ray
tracing kernel for particle tracking will need to maintain use of double
precision representations for mesh elements for robust coupling of numer-
ical and logical particle positions and directions along with unmodified
tally results in simulation.
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4.3 Mixed Precision Bounding Volume
Hierarchy

A SIMD-oriented version of DAGMC, EmDAG, was implemented and
tested in DAGMC. Unfortunately, this system was inherently limited by
conversion from single to double precision values. The use of double
precision intersections is required for DAGMC to robustly interface with
any of the Monte Carlo codes it supports. As a result, reduction of the
triangle primitives to single precision is not an option.

This section outlines an approach to using single precision bounding
volumes around double precision geometric primitives. Because the major-
ity of the computational work in ray tracing occurs in traversing the BVH
as opposed to testing triangles for intersection, it is hypothesized that the
majority of the performance benefits seen in the EmDAG implementation
can be preserved in the proposed mixed precision system, dubbed the
Mixed Precision Bounding Volume Hierarchy (MPBVH).

4.3.1 Implementation and Design

The MPBVH was created by the author as an independent project which
draws on design elements from Embree while interfacing with MOAB to
optimize CPU-based ray tracing for the application of CAD-based MCRT-t.
The details of these features can be found in Embree’s documentation [59].
Several such design elements found in both the Embree and the MPBVH
include:

• AABBs

• single-precision bounding entities

• bit-encoding of BVH node types

• type-agnostic vectors for support of SIMD instruction sets
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• memory pre-fetching of tree node memory during traversal

• pre-computation of near and far box boundaries

• vectorized node intersection

The kernel created by the author is a lightweight version of the Embree
kernel focused on static triangle meshes and access to an external mesh
database used in engineering analysis. The kernel was implemented
outside the context of MOAB allowing it to freely implement many of
the performance related concepts found in Embree, but it relies on unique
characteristics of MOAB that allow the kernel to access the database’s
memory directly without duplication of information in memory. The
remainder of this section will address some of these features and design
alterations.

4.3.1.1 MOAB Direct Access

MOAB provides a rich interface used to create, modify, and query both
structured and unstructured mesh representations. It supports many
meta-data types as well as the arbitrary grouping of mesh entities into sets
to represent boundary conditions, material types, etc. MOAB also allows
direct access to memory which is normally protected through its standard
interface. This allows for direct look-ups of mesh data and allows other
applications access to the memory as well. MOAB’s direct access capability
can be extremely useful in data transfer or query based operations, such
as ray tracing.

The MPBVH uses these methods to populate references to triangles in
the BVH without duplication of their coordinate values or connectivity.
Access to these locations in memory is handled by a direct access manager
object which protects the mesh information from modification during
the building and traversal of the BVH. All coordinate and connectivity
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information can be accessed through this manager, which protects against
accidental modification of values in MOAB’s memory space.

Mesh information is retrieved via offset values using indices for trian-
gle and vertex entities. This later allows coordinates values for triangle
intersections to be gathered optimally from the database during BVH
traversal. Bypassing the MOAB interface in this way requires that the set
of entity handles in the database is contiguous. Fortunately, files loaded
into MOAB have a contiguous entity handle space regardless of the con-
tiguity at the time the file was written to disk. This guarantees that the
set of entity handles representing DAGMC geometries will be contiguous
when loading a geometry for simulation. If the mesh data is modified, in
particular if entities are deleted, then this condition will be broken and
it may not be possible to use the direct access methods robustly without
accounting for gaps in the array space. Accounting for these holes will
have an unknown affect on the performance of ray tracing queries when
triangle coordinates are fetched from MOAB’s memory space and will vary
depending on the number of holes in the space. MOAB provides tools for
collapsing or modifying the entity handle space if this becomes necessary
in future applications of this design in DAGMC. Currently, DAGMC does
not modify mesh data once the file has been loaded for simulation, so the
effect of these gaps and the collapsing of the entity handle space is not
explored in this work.

4.3.1.2 Reduced-Precision Ray Tracing

In the SIMD BVH kernel, bounding boxes are calculated in single pre-
cision based on double precision triangle coordinates from the MOAB
direct access manager. As demonstrated by the limitations of the EmDAG
implementation, double precision intersections with triangle primitives
are necessary for robust radiation transport in CAD geometries.

Using double precision ray values to intersect with single precision
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boxes is possible due to IEEE standards used to truncate double precision
values to single precision values, but costly due to the conversion of the ray
origin and direction for each box intersection [2]. Instead, a method was
applied in which a traversal ray data structure is used represent the ray
origin and direction in single precision alongside the double precision ray.
This greatly accelerates the traversal process moving through the hierarchy
of bounding boxes. Once leaf nodes are reached in the tree, the original
double precision values of the origin, direction, and vertex coordinates
are used to calculate intersections and return more precise distances to
the surface. A visualization of this proposed ray traversal scheme can be
found in Figure 4.7.

Figure 4.7: The reduced precision scheme used to accelerate ray traversal
while returning double precision intersections.

This method removes the need for conversion of single precision inter-
section distances which caused lost particles in the EmDAG implementa-
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tion, but there are other robustness concerns which must be addressed. In
order to return the correct intersection distance, the leaf node containing
the triangle with the nearest intersection must be visited. Upon converting
ray origins and directions from double to single precision, small changes
in the ray origin and direction are introduced. This effect is illustrated in
Figure 4.8.

Δ

d

D

δ

Figure 4.8: A representation of the directional change due to conversion of
a ray’s origin and direction from double to single precision, where capital
letters indicate double precision values.

To ensure that node visits which would occur in double precision will
also occur in single precision, the bounding boxes are artificially enlarged
by a small amount to ensure that this is true. When determining how
much the boxes need to be enlarged, it is important to understand the
difference in the box intersection locations caused by this change.

Let the original, double precision, ray be ~R where its origin and direc-
tion are

~O =< Rx,Ry,Rz >
~D =< Ru,Rv,Rw >

(4.1)
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and the traversal ray, in single precision, be ~r where its origin and
direction are

~o =< rx, ry, rz >
~d =< ru, rv, rw >

(4.2)

where the distance between these two vectors at their unit length can
be described as

∆ =
√

(Rx − rx)2 + (Ry − ry)2 + (Rz − rz)2)+√
(Ru − ru)2 + (Rv − rv)2 + (Rw − rw)2

(4.3)

Because the difference between these vectors in each dimension is rep-
resentative of the truncation of double precision values to single precision,
they can be set equal to a value δ. By substituting this value, ∆ becomes

δ = Rx − rx = Ry − ry = Rz − rz =

Ru − ru = Rv − rv = Rw − rw
(4.4)

∆ = 2
√

3δ (4.5)

Extending this to a ray traveling a parametric distance, t, along the
respective single and double precision ray directions, the value of ∆

∆ =
√

(Rx − rx)2 + (Ry − ry)2 + (Rz − rz)2)+√
t2(Ru − ru)2 + t2(Rv − rv)2 + t2(Rw − rw)2

(4.6)

∆ = (1 + t)
√

3δ (4.7)
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Equation (4.7) indicates that boxes will need to be expanded an amount
∆ in order to ensure that~rwill intersect any box ~R does. One concern with
this expansion is that artificially extending the bounding boxes causes
more overlap and raises the average number of nodes visited per traversal
of the BVH. If the value of ∆ is a large value, then the performance of
tracing rays through the data structure may suffer. An examination of the
∆ value indicates that this is not the case, however.

As a worst-case consideration, t should be evaluated as the maximum
distance a particle might travel through the geometry. This can be evalu-
ated as the longest possible diagonal of the problem’s global bounding
box using it’s largest dimension, lmax.

tmax =
√

3lmax (4.8)

Given this value, the truncation will be in the seventh digit on modern
CPU systems. This value can be considered to be relative to the overall
geometric scale of the problem, represented by tmax. Using this analysis,
the value of ∆max can be written as

∆max = (
√

3 + 3lmax)δ (4.9)

Another method for working with mixed precision BVHs in double
precision geometries was put forth by Vaidyanathan in which the ray’s
origin is periodically updated during traversal so that the deviation from
the double precision intersection is limited [55]. This method is intended
for use with geometries in motion and requires additional computation
during ray traversal. DAGMC geometries, and MCRT geometries in gen-
eral, are static, so it is more efficient to account for the discrepancy caused
by the reduced precision ray direction during construction of the MPBVH.

To further understand this effect, the value of the box extension in the
kernel was varied from 1× 10−8 to 1× 102. For each box extension value,
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the same set of ray fire tests in Section 4.2.2 were run. The average of the
ray fire times over all faceting tolerances is used as a representative value in
Figure 4.9 to described the performance for each model. Performance of the
MPBVH kernel isn’t strongly effected below ∆ values of 1× 10−2. Above
this value, the performance degrades rapidly as box overlaps become
large and the false positive intersections of the ray with nodes in the tree
dominate the run time. When the extension of the boxes becomes large
enough, the run times plateau - indicating that every node in the tree is
being visited for each ray fire. Below a value of 1× 10−6, missed rays
begin to appear in the runs. The threshold for this region is accurately
predicted using the model in Equation (4.9). The longest dimension for
any of the models ranges from 10 to 50 cm in size. Inserting this into
Equation (4.9) indicates that missed rays will start occur at values of ∆ =
3× 10−6. The lower limit of the box extension value and upper limit, the
point at which performance begins to suffer, provide a window of several
orders of magnitude for this value. This window will shrink as models
become larger and the value of ∆max increases, but these are scales rarely
seen in radiation transport.
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Figure 4.9: A study of ray tracing performance and robustness for various
values of the box extension parameter, ∆. For varying faceting tolerances,
600,000 rays were fired at each model. Points in the graph represent the
average over all faceting tolerances used.

The biggest geometric problem examined in this work is the ITER
model. The largest side of the global bounding box in this model is 4 x 103

cm. Using this as a representative value of lmax results in a box expansion
value, ∆, of 1.2 x 10−3. This value is small enough to cause minimal overlap
in the bounding boxes and a negligible effect on the BVH performance,
as seen in Figure 4.9. For all results discussed in this work ∆ was set to
5 x 10−3.



124

4.3.1.3 Simplified Surface Area Heuristic

The MPBVH employs a modified version of the Surface Area Heuristic,
discussed in Chapter 2, which was developed by the author. This version
of the heuristic, dubbed the Simplified Surface Area Heuristic (SSAH),
removes estimation of the relative cost between a tree traversal step and a
primitive intersection.

This version of the heuristic considers the cost of traversal, Ct, to be
small compared to the cost of a triangle primitive intersection, Ci. This
assumption is presumably stronger in the MPBVH due to the mixed preci-
sion nature of the implementation than for systems in which the hierarchy
and primitives are both stored with the same precision. The cost evaluation
for a candidate node can be evaluated as seen in Equation (4.13).
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C =�
��Ct+
SAL

SAP
|PL|Ci +

SAR

SAP
|PR|Ci (4.10)

Cg =
SAL

SAP
|PL|+

SAR

SAP
|PR| (4.11)

C = CiCg (4.12)

CL = CiC
L
g

CR = CiC
R
g

CL < CR

CiC
L
g < CiC

R
g

Csimplified = Cg =
SAL

SAP
|PL|+

SAR

SAP
|PR| (4.13)

Ct− cost of traversal to childnodes

Ci− cost of primitive intersection check

SAL− surfaceareaof left child

PL−primitives containedby the left child

SAR− surfaceareaof right child

PR−primitives containedby the right child

SAP−parent bounding volume

CL,CR− left and right child costs, respectively, inabinary tree

Figure 4.10: A form of the simplified surface area heuristic for a binary
tree.

By neglecting the traversal cost, the cost of the node can be broken into
two components, the cost of the intersection, Ci and the geometric cost, Cg.
Because these values are used in a purely relative manner to compare the
costs of candidate splits, the constant factor of the primitive intersection can
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be ignored during evaluation of the cost. This form of the heuristic is purely
a weighted geometric evaluation without estimation of implementation-
based value which can vary based on machine architecture, build settings,
etc.

4.3.1.4 Surface Root Nodes

In DAGMC, trees exist for each volume and surface in the geometry. Rather
than duplicate surface trees for each volume they appear in, one tree is
created for each surface. For each volume, its surface trees are joined into
a single tree. This avoids duplication of tree information and minimizes
the memory footprint of DAGMC. It is critical to DAGMC that the sur-
face intersected is returned as part of the ray’s intersection information
so that particles can be passed from volume to volume correctly. This
information is maintained in the root nodes of surface trees and updated
during the BVH traversal process (see Figure 4.11). The same scheme was
implemented in the MPBVH, but within the framework of a BVH design
for SIMD traversals.

To address surface id tracking during traversal, a specialized BVH node
is used to mark the root of surface trees under volume trees. A BVH is
created for each set of triangles representing a surface. These surface trees
are then joined into a single tree that represents a volume as depicted in
Figure 4.11. This avoids duplication of surface trees for each volume. It also
allows the return of which surface is intersected, allowing for optimized
transport of a particle to the volume on the other side of that surface via
the topology represented by the mesh hierarchy described in Section 4.2.1.
Embree allows for a similar model in which surfaces are represented as
“geometries” rather than surfaces. Those geometries can be grouped into
“scenes” rather than surfaces. The creation of a special node to represent
the root of a surface tree was implemented to provide this information.
This node type is an extended node reference which contains additional
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Figure 4.12: Visual representation of set leaf encoding using integer-based
pointer values.

information about the surface the tree is constructed around. In particular,
this node stores the id of the surface and its sense information relative to
the volumes on either side of the surface. This sense information is used
to automatically adjust the returned triangle normals for any intersections
with that surface, and avoids the duplication of triangle connectivity that
was necessary in the EmDAG implementation.

In a similar manner to how leaf nodes are identified during traversal
(see Section 2.5.5.1.2), the surface root node reference is identified by
toggling the least significant bit in the reference’s integer value to recover
the location of the node’s location in memory. Because only this first
bit is altered, the node can be differentiated from leaf nodes containing
primitives. Information about the current surface being visited and the
sense information is updated on the traversal ray and used to set any hit
information on the ray. The node is then pushed onto the stack and the
traversal continues relatively uninterrupted. The depth-first traversal of
the hierarchy protects against any invalid surface information being set
on the ray as the all nodes underneath that surface will be visited before
moving on to another surface, at which point the traversal ray information
will be updated.

This node type also provides the ability to avoid duplication of triangle
connectivity to represent sense-adjusted triangle normals as was required
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in the EmDAG system. A MOAB look-up of this sense information after re-
turning ray hits is also a viable option, but it would be relatively expensive
in comparison to adjusting triangle normals on the fly.

4.3.2 Robustness Criterion

The the criterion for a robust ray tracing kernel as a replacement for
MOAB’s OBB tree are as follows:

• every ray query should return the same triangle id as MOAB’s BVH
implementation

• every ray query should return the same intersection distance as
MOAB’s BVH

Many unit tests are used to ensure watertight box intersection using
the slab method [28] in single precision, but the mixed precision scheme
is best tested using DAGMC models. In MOAB, the Plücker ray triangle
intersection method is used to provide watertight intersections with tri-
angle meshses [42]. The same algorithm was applied in the MPBVH to
ensure that simulation results using both the MPBVH and MOAB BVH
are consistent. Several tests in the kernel fire rays from the center of single-
volume DAGMC models with rays directed at the vertices, edges, and
center of each triangle in the model. These tests ensure that the same tri-
angle is hit and the same intersection distance is returned in either system.
Missed rays and lost particles are also monitored in testing the ray fire
performance and in particle transport, though none were found outside
of the controlled box extension study in Section 4.3.1.2.

4.3.3 Ray Fire Performance

The same set of ray fire performance tests were run as in Section 4.2.2.
As shown in Figure 4.3, the MPBVH shows a significant improvement
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compared to the current implementation in MOAB. In addition, the tim-
ings are comparable to EmDAG’s performance, despite returning double,
rather than single, precision intersections. This indicates that attempts at
providing accelerated ray tracing for engineering analysis by traversing
an expanded, reduced precision BVH were quite successful.

4.4 Simplified Particle Tracking

The MPBVH kernel has been coupled to DAGMC as a numerically based
particle tracking tool using a simple algorithm for determining Next Sur-
face queries and Point Containment queries. The current particle tracking
algorithm in DAGMC [48] applies additional logic related to previously
hit triangles to avoid lost particles and infinite loops in particle histories.
This tracking algorithm uses structures known as the MBRay (short for
MOAB Ray) and MBAccumulatorRay. Both of these structures (depicted
in Figure 4.13) are critical to the use of the MPBVH as a robust particle
tracking tool.

def next_sur face ( current_volume , point , d i r e c t i o n ) :

# c r e a t e a ray with i n f i n i t e l e n g t h
ray = MBRay( current_volume , point , d i r e c t i o n , )

# i f t h e ray o r i e n t a t i o n i s s e t , i g n o r e
# h i t s which o p p o s e d t h e t r i a n g l e ’ s
# s e n s e−a d j u s t e d normal
i f r a y _ o r i e n t a t i o n == 1 :

s e t _ f i l t e r ( b a c k f a c e _ c u l l )
# i f t h e o r i e n t a t i o n i s not s e t , remove t h e f i l t e r
e lse :

u n s e t _ f i l t e r ( )

# f i r e t h e ray
f i r e _ r a y ( ray )

# i f t h e ray m is s e d and o v e r l a p s a r e a l l o w e d in t h e model
# f i r e a ray in t h e o p p o s i t e d i r e c t i o n
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i f ray . surfID == −1 and over lap_th ickness != 0 . 0 : {
smal l_val = over lap_th ickness ∗ 0 . 0 1
ray . d i r e c t i o n ∗= −1
# a p p l y some s m a l l s p a c e a t t h e b e g i n n i n g o f t h e ray
# where h i t s a r e i g n o r e d
ray . tnear = smal l_val
# s e t t h e ray d i s t a n c e t o t h e o v e r l a p t h i c k n e s s
ray . t f a r = over lap_th ickness

# u n s e t t h e ray f i l t e r r e g a r d l e s s o f ray o r i e n t a t i o n
u n s e t _ f i l t e r ( )

# f i r e t h e ray
f i r e _ r a y ( ray )

# u pd a t e ray v a l u e t o z e r o f o r t h i s t y p e o f h i t
ray . t f a r = 0

# i f we have a h i t a t t h i s p o i n t , s e t t h e r e t u r n e d
# s u r f a c e ID and d i s t a n c e
i f ray . surfID != −1:

nex t_sur f = ray . surfID
n e x t _ s u r f _ d i s t a n c e = ray . t f a r

# o t h e r w i s e t h e p a r t i c l e i s l o s t ,
# s e t r e t u r n i n f o r m a t i o n a c c o r d i n g l y
e lse :

nex t_sur f = 0
n e x t _ s u r f _ d i s t a n c e = ray . t f a r

return next_surf , n e x t _ s u r f _ d i s t a n c e

def b a c k f a c e _ c u l l ( &mbray ) :

# i f t h e ray d i r e c t i o n o p p o s e s t h e h i t t r i a n g l e ’ s
# normal v e c t o r , r e j e c t t h e ray h i t
i f dot_product ( mbray . dir , mbray . norm ) < 0 . 0 :

ray . surfID = −1

return

Algorithm 4.1: Algorithm used in Next Surface queries.

The algorithm in Figure 4.1 avoids many logical checks and the classi-
fication of hit locations in the current DAGMC algorithm. It also avoids
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mesh database look-ups of adjacent triangles for edge and node hits. This
used to be necessary due to the ray history passed into the Next Surface
query, causing rays to sometimes become stuck in infinite or near-infinite
loops. The ray history is an optimization to avoid repeated intersections
with the same triangle. By abandoning this construct and relying more
on the performance of the underlying ray tracing kernel, the algorithm
can be simplified to always return the nearest intersection. Infinite loops
in which particles oscillate between volumes on a surface boundary are
addressed by returning exiting intersections only.

Figure 4.13: Ray structures used to communicate hit information between
the MPBVH and DAGMC. The MBAccumulatorRay adds additional at-
tributes to the MBRay for tracking of hit counts and orientations with
respect to triangle normals.

The conditions laid out for a robust tracking algorithm by B. Smith are
as follows [48]:

a) Particles cannot become lost

b) Infinite loops cannot occur

The algorithm presented here addresses a) by using the watertight
Plücker intersection test and extending ray boxes to ensure the correct tri-
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angle is checked for intersection. Part b) is addressed by firing a ray in the
opposite direction if the initial ray does not find an intersection. The sce-
nario of concern being that in which the particle is inside a self-intersecting
or overlapping volume. To avoid a zero-distance hit when firing in the
opposite direction, a small value is also set as the ray’s near-side parameter.
In traversal, any hits closer than this value will be ignored. The ray’s length
is also set to the allowed overlap thickness. Any intersections beyond this
distance are ignored as well. Thus an exiting intersection in the overlap
region can be found and a zero-distance intersection will be returned from
the Next Surface query.

The MPBVH provides the capability to set callback functions used to
filter and validate ray intersections, as demonstrated by the backface_cull
function above. These filter functions can also be used to accumulate ray
hits, which is critical to implementation of a robust point containment
algorithm based on the MPBVH, shown in Figure 4.2.

def point_contained ( volume , point , d i r e c t i o n ) :
# r e s u l t v a l u e s : 0 − o u t s i d e ; 1 − i n s i d e

# s t a r t wi th an o u t s i d e v a l u e
r e s u l t = 0

# c r e a t e a ray
ray = MBRay( volume , point , d i r e c t i o n )

# a c c e p t ray h i t s r e g a r d l e s s o f
# o r i e n t a t i o n w. r . t . t r i a n g l e normal
u n s e t _ f i l t e r ( )

# f i r e t h e ray
f i r e _ r a y ( ray )

# c a l c u l a t e t h e d o t p r o d u c t o f
# ray d i r e c t i o n and t r i a n g l e normal
dot_prod= dot_product ( ray . dir , ray . norm )

# i f a h i t i s found ,
i f not ray . missed and dot_prod not 0 . 0 :
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i f dot_prod < 0 . 0 :
return INSIDE

e lse :
return OUTSIDE

# i f t h e ray i s t angent , t h e o v e r l a p t h i c k n e s s i s
# non−ze ro , o r i t mi s s ed −

# count h i t s and sum o r i e n t a t i o n s
i f dot_prod i s 0 . 0 or over lap_th ickness i s not 0 . 0 :

aray = MBAccumulatorRay aray ( volume , point , d i r e c t i o n )

s e t _ f i l t e r ( count _h i t s )
f i r e _ r a y ( ray )

# i f no h i t s were found
# p o i n t i s o u t s i d e
i f aray . num_hit == 0 :

return OUTSIDE

# f i r e ray in n e g a t i v e d i r e c t i o n
# and r e s e t l e n g t h
aray . dir ∗= −1
aray . t f a r = i n f ;

f i r e _ r a y ( aray )

# i f no h i t s were found
# p o i n t i s o u t s i d e
i f aray . num_hit == 0 :

return OUTSIDE

# c h e c k t h e v a l u e o f t h e sum
i f 0 > aray . sum :

return INSIDE
e lse :

return OUTSIDE

def count_ h i t s ( &aray ) :
# i n c r e m e n t number o f h i t s
aray . num_hit++
# add v a l u e b a s e d on s i g n o f d o t p r o d u c t
aray . sum += sign ( dot_product ( aray . dir , aray . norm ) )

# a lways r e s e t ray h i t v a l u e s
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aray . continue = True

Algorithm 4.2: Algorithm for point containment within a volume.

In this method the ray is intersected with the volume and a hit is
evaluated as either entering or exiting based on the dot product calculation
with the triangle normal. If the first ray fire finds no intersection and any
of the following conditions are true:

• the ray misses the volume

• the ray direction is tangent to the intersected triangle normal

• the overlap tolerance is non-zero

then ray hits are accumulated by firing a MBAccumulatorRay in both
the positive and negative direction. All hits are registered on the ray as
exiting or entering based on the dot product calculation of the direction
and triangle normal (see the count_hits function). If no hits are found,
then the point is outside of the volume. If hits are found, the sign of the
summation value indicates whether more exiting or entering hits were
found. If more exiting than entering hits are found, then the particle
is considered to be inside the volume. Otherwise it is considered to be
outside of the volume. This algorithm was applied to all of the simulation
results presented in this chapter without lost particles or causing infinite
loops.

4.4.1 Simulation Results

4.4.1.1 Simple Test Cases

The MPBVH kernel was applied as the ray tracing kernel for the same set
of transport test cases as the EmDAG implementation. Table 4.3 shows
the results of tests. The MPBVH implementation performs comparably to
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EmDAG for the cube and nested cubes cases, but is significantly slower
in the sphere and nested spheres cases. This is expected based on the
difference in pure ray fire times from Section 4.3.3

Test Model MCNP DAG-MCNP EmDAG-MCNP DAG-MCNP
(w/ MPBVH)

run time (min)/ ratio to MCNP
Sphere 2.93 / 1.00 25.13 / 8.58 4.73 / 1.61 9.38 / 3.2
Cube 5.03 / 1.00 10.56 / 2.10 5.80 / 1.15 5.46 / 1.08
Nested Spheres 4.35 / 1.00 50.82 / 11.68 7.94 / 1.82 9.88 / 2.27
Nested Cubes 4.73 / 1.00 9.26 / 1.96 4.35 / 0.92 4.09 / 0.86

Table 4.3: Run time comparison of native MCNP, DAG-MCNP, and DAG-
MCNP using the MPBVH over four transport test problems. No lost
particles occurred in any of these runs and all results (see Appendix B)
match the standard DAGMC implementation exactly.

4.4.2 Production Test Cases

After verifying that no particles were lost in the contrived test cases, the
MPBVH implementation of DAGMC was applied to the same FNG model
as EmDAG. The results of this simulation can be seen in Table 4.4. In
contrast to the EmDAG system, no lost particles were found in the FNG
simulation with a volumetric source and all tally results matched the
standard DAGMC implementation with reduction in the runtime by nearly
a factor of two. Due to the success of the DAGMC MPBVH implementation
for the FNG model, this system was applied to several other production
models as well. No particles were lost in any of these geometries. The
results of the simulations between the unmodified and modified versions
of DAG-MCNP were the same for all production models presented in Table
4.4. It is worth noting, however, that the simplified algorithm presented
in Section 4.4 was unable to accurately track particles due to the presence
unmerged surfaces and unsealed volumes. An identical tracking algorithm
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to the one used in the unmodified version of DAGMC was used instead to
obtain the same numerical result.

Test Model MCNP DAG-MCNP DAG-MCNP MPBVH
run time (min)/ ratio to MCNP

FNG 2.49 / 1.00 9.83 / 3.95 6.48 / 2.60
ATR 3.18 / 1.00 36.16 / 11.37 8.54 / 2.68
UWNR 270 / 1.00 1452.14 / 5.38 505.83 / 1.48
ITER N/A / N/A 55.46 / N/A 12.64 / N/A

Table 4.4: Runtime comparison native MCNP, DAG-MCNP, and DAG-
MCNP using the MPBVH over four transport test problems. No lost
particles occurred in any of these runs and all results match the standard
DAGMC implementation exactly.

A simple analysis of memory usage for each of the production models
was also conducted. While not the focus of this work, it is expected that the
single precision values and compact node form of the MPBVH node result
in a lower memory footprint in DAGMC’s acceleration data structures.
The results of this study shown in Table 4.5 verify that this is the case.
One might expect that the memory savings is closer to a factor of two
for the conversion from double to single precision values, but there are
competing factors at play. The use of AABBs rather than OBBs results in
deeper trees for these models due to the AABBs limited ability to conform
to arbitrary shapes. While still preferable due to the fast computation
of ray-box intersections, the use of AABBs results in more total nodes in
the trees, and may account for the higher than initially expected memory
usage of the MPBVH. Regardless, the MPBVH consistently has a lower
memory footprint by 20-25%, resulting in a significant memory savings of
1.2 GB in simulations of the ITER model.
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MPBVH Memory Usage
Test Model Ratio to unmodified DAGMC
FNG 0.71
ATR 0.78
UWNR 0.84
ITER 0.69

Table 4.5: Memory usage of the BVH structures using both MOAB’s OBB
tree and the MPBVH.

4.5 Limitations and Future Work

As discussed in Section 4.3.1.2, the box extension value may need to be
varied depending on the size of the model. The value currently applied
in the kernel is suitable for the majority of the models used in DAGMC.
The study on this value indicates that it could be increased significantly to
retain robustness in models of a larger geometric scale without detriment
to the performance of the simulation.

In the future, this extension value could be set on a volume-by-volume
basis as intersection distances in DAGMC should never exceed the maxi-
mum chord length of a volume before being considered lost. This would
limit the performance degradation for models of a large global scale with
small, local volumes.

Though this work does not address such applications, time-dependent
simulations could update this extension value on-the-fly when updating
bounding boxes, though the additional cost of ensuring that all parent
bounding boxes are updated appropriately is unclear [55].
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4.6 Summary

The MPBVH implementation provides a means of exploiting the perfor-
mance capabilities of CPUs for single precision values while providing
the double precision intersection values required for robust engineering
analysis tools such as DAGMC. The demonstration of this capability is
enabled by the direct access methods available in MOAB, but the methods
described in this work could in theory be applied to other spatial databases
with contiguous memory designs.

For the purposes of CAD-based MCRT-t, the MPBVH kernel’s design,
inspired largely by Embree, allows for a simple yet robust tracking algo-
rithm in DAGMC. These methods have been demonstrated on production
models used in verification and analysis applications of DAGMC. The
combination of this algorithm and the SIMD-oriented traversal of the hi-
erarchy in single precision provides a reduction in DAGMC runtime by
factors of 2-5 depending on the model with no change in the final result.
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Chapter 5

High Valence Vertices

High valence (HV) vertices are a mesh feature which cause significant
degradation in DAGMC ray tracing performance. The valence of a vertex
in a mesh is defined as the number of edges connected to that vertex. High
valence vertices are defined as vertices connected to an unusually large
number of edges. This region, known as a HV region, will typically take
on a fan-like shape as seen in Figure 5.1. The geometric origins of HV
regions are typically a planar surface intersected with some form of curved
boundary condition.

Figure 5.1: Examples of HV vertices in production models.
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These regions are commonly generated in the faceting algorithms used
to produce DAGMC meshes. This faceting scheme (which comes from
ACIS libraries underlying the CUBIT/Trelis geometry engine) is designed
to produce the smallest number of triangles possible to represent the model
within the representation tolerance specified in DAGMC’s surface mesh
generation preprocessing. This restriction is favorable to the rasterization
process commonly used to display models interactively in CAD GUIs.
Fewer triangles are better for the purpose particle tracking in DAGMC
as well as long as the geometry is accurately represented. Even the ideal
ray tracing acceleration structure queries for a given triangle mesh scale
as O(log(N)), and the size of models being analyzed using the toolkit
provides motivation to keep memory footprints as low as possible. How-
ever, even with fewer triangles undesirable configurations can impede
performance as is shown by a set of tests conducted on models generated
by this faceting scheme.

5.1 Previous Work

A study conducted by Steve Jackson in 2010 on the performance of the
MOAB OBB tree revealed a steep degradation in performance with a
decreasing faceting tolerance or an increasing number of triangles [52].
Using a DAGMC-based ray fire test program, the performance of DAGMC’s
ray fire ability was evaluated for four models. These models include a
simple sphere, a notched or slotted sphere, and an outer volume of an
ITER model, shown in Figure 5.2.
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Figure 5.2: Images of the slotted sphere and ITER volume used to perform
DAGMC ray fire performance tests with increasing number of triangles or,
equivalently, decreasing faceting tolerance.

In each of these tests, the models are tessellated with an increasingly
smaller faceting tolerance with the faceting tolerance being defined as the
maximum distance between the faceted curve or surface and the geometric
curve or surface it resolves. By this definition, the number of triangles
needed to represent a model scales inversely with the value of the faceting
tolerance. An increase in the number of triangles leads to a more complex
nature of the surface mesh in terms of BVH construction and traversal.

The first three models are identical to the ones used to measure ray
fire times in Chapter 4. Finally, the faceting of a volume from an ITER
model is used as a production demonstration of the effect of HV regions
on DAGMC performance (see Figure 5.1).
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Figure 5.3: Results of MOAB ray tracing performance tests with decreasing
faceting tolerance performed by Steve Jackson in June of 2010. Data points
represent average time spent in firing a ray for random rays originating at
the center of each model[52]. The “deathstar” model is the same as the
slotted sphere model used in tests performed by the author.

While the sphere model scales well with a decreasing faceting tolerance,
the ITER volume and slotted sphere both have a pronounced increase in
average ray fire time with decreasing faceting tolerance. Knowing that
both of the latter models contain HV regions, it was postulated at the time
that these regions had a significant effect on the scaling.
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5.2 High Valence Characterization Test
Framework

In order to isolate a HV region, a test model was manually generated in
MOAB with an artificial HV region (shown in Figure 5.5). This mesh is
a modified cube mesh centered on the origin in which one of the two-
triangle surfaces has been replaced by a more complicated planar surface
of triangles including an interior HV region within the face. The HV region
was generated by inserting vertices along the diagonal of the interior box
and connecting them to the opposing corners of the box. This mesh is
generated using two input parameters: the valence of the corner vertices in
the interior region and the relative size of the interior region. A parametric
study was then performed by varying these two parameters in order to
characterize the performance impediment and determine its root cause.
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Figure 5.5: Side-on view of the modified cube mesh used to study the HV
vertex problem.

DAGMC’s ray fire test program was used to construct MOAB’s BVH
and perform ray queries on this model. This program was used to fire rays
with random direction from the origin of the HV test model while biasing
the ray directions such that they are always incident upon the modified
surface containing the HV region. A parameter sweep was performed by
varying the percentage of the surface covered by the HV region as well
as the valence of the region. Each test shown in this section varies the
valence of the corner vertices from 2 to 50,000 and the relative area of
the HV region from 0 to 1. Results of this study provided insights into
performance pathologies for various BVH implementations.
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5.3 MOAB’s BVH

From what is known about the construction of MOAB’s OBB-BVH, it was
expected that the average ray fire time would be most strongly correlated to
the relative area of the HV region, but would also increase with increasing
valence of the corner vertices. The initial results of this study, shown in
Figure 5.4, meet only one of the expectations however. The ray fire times
become far worse with increase in valence, but for a constant valence, the
smaller relative area models show a longer average ray fire time than the
models with larger relative areas. This suggests that the presence of a
HV region in a surface is detrimental to performance regardless of the
likelihood that a ray intersects with a triangle in that region, which is
counter intuitive. In order to investigate this matter further, a visualization
tool for MOAB’s BVH was developed to improve the author’s intuition
about this mesh pathology.

5.3.1 Visualization and Diagnosis

Using the same visitor pattern employed to traverse rays through the
hierarchy, each OBB in the HV model tree was converted into a hexahedral
element and saved in a VTK mesh format. Each hexahedron representing
an OBB was tagged with its depth in the tree as well as the triangle entities
it contains, if it is a leaf node. These mesh files can then be used to visualize
the hierarchy level-by-level and can be superimposed on the geometric
mesh. An example of this OBB visualization for the HV characterization
model is shown in Figure 5.6.
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Figure 5.6: View of an OBB containing many HV region triangles as well
as other surface triangles. Blue box and triangles: leaf node bounding box
and associated triangles. Several thousand triangles are represented in
the solid blue region shown here. Red boxes: Other representative OBBs
at the same depth in that tree.

Because there are more entities to partition in the HV region, it is
expected the deepest levels of the BVH will contain only OBB’s bounding
triangles in that region. It was expected that leaf nodes of the BVH might
contain many triangles of the HV region, causing performance degradation
of ray traversal in that many triangles must be checked for intersection.
These types of poorly formed leaf nodes shift the complexity of the BVH
traversal back toward a linear search - which is sub-optimal. This feature of
MOAB’s OBB tree were observed, but visualization of the BVH provided
the ability to observe another characteristic as well. Many leaf nodes
containing large numbers of triangles in the HV region also contained one
or two large triangles outside of that region. The inclusion of these large
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triangles significantly increases the probability that a hierarchy traversal
will visit that leaf node and thus all of the triangles contained by that
leaf node. This artificial increase in the HV regions cross-section greatly
exacerbates the already poorly created nodes in the tree.

Figure 5.7: A small scale version of the HV study in Figure 5.4 using
valences representative of those seen in DAGMC models using a linear
scale.

Due to the nature of the entity ratio heuristic used to divide nodes in
the tree, as the HV region becomes smaller more triangle centroids are
shifted onto one side of the median splitting planes used to divide the
nodes which contain portions of that region. If enough triangle centroids
are on this side of the plane, then the cost of the entity ratio evaluation
will exceed the preset upper limit of the cost (0.95 in MOAB) and the
construction process will declare that node a leaf node. The settings
governing this split process can be altered in MOAB, and changing the
worst split ratio to 1.0 significantly improves the average ray fire time in
the HV characterization study, as seen in Figure 5.4. While the values
used for this study are helpful in understanding the large-scale effects
on MOAB’s BVH algorithms, a small-scale version of this study was also
performed using a valence value more representative of those seen in
typically DAGMC models. The results of this study exhibit the same trends
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as the large scale and provide information on what the true performance
degradation might be in DAGMC simulations.

As expected, the use of this setting largely removes the degradation in
performance caused by the HV region by forcing the continued splitting
of entities in the tree where large leaf nodes would have been created
before. This demonstrates that altering this setting works well for this
mesh feature, but it would be detrimental to the memory footprint of the
overall hierarchy in the general case, causing portions of the OBB tree to
be deeper than necessary.

5.3.2 Adaptive BVH Construction

One of the benefits to having a BVH tool which is part of a mesh database
like MOAB is the ability to query for more information about the mesh
when constructing hierarchies like the BVH. This information has been
used to detect HV regions in the mesh and adapt BVH construction to
improve the hierarchy quality in these areas.

5.3.2.1 High Valence Detection

A simple algorithm is used to determine whether or not the entities inside
a leaf node are part of a HV region. Any vertex connected to more than
a user-defined proportion, α, of the entities in a given leaf node will be
considered a HV region, indicating that an alternate build method or build
settings should be applied.

def detect_hv_region ( t r i a n g l e s , alpha ) :
a s s e r t ( a <= 1 . 0 and a > 0 . 0 )
c o n n e c t i v i t y = g e t _ c o n n e c t i v i t y ( t r i a n g l e s )

for ver tex in c o n n e c t i v i t y :
# g e t a l l e n t i t i e s o f dim 2 a d j a c e n t t o t h e v e r t e x
a d j _ e n t i t i e s = g e t _ a d j a c e n c i e s ( vert , t o _ t r i a n g l e s )

# d e t e r m i n e t h e number o f non−a d j a c e n t e n t i t i e s
overlap = t r i a n g l e s − a d j _ e n t i t i e s
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i f s i z e ( overlap )/ s i z e ( t r i a n g l e s ) < 1 . 0 − alpha :
return t rue

return f a l s e

Algorithm 5.1: Algorithm for detecting HV regions.

5.3.2.2 Implementation

First, MOAB’s BVH constructor was modified to tag poorly formed leaf
nodes in the tree. This option will apply a tag to any leaf nodes which
contain more entities then specified in the settings for the tree. These
nodes are then revisited for further refinement later in the build process.

For handling of these poorly formed leaf nodes, a new class was created
in MOAB named the BVHRefiner. This class visits each leaf node tagged
by the build process to determine if further refinement is appropriate
based on the available set of mesh features it is capable of adapting to. For
each mesh feature added to the BVH Refine class, a detection method and
build method is required. This class applies these detection methods and
altered build methods to resolve these leaf nodes into improved regions
of the tree. The intent of this design was to support the detection and
adaptation to other pathological mesh features in the future.

In the HV case, the refiner class was instructed to search for any vertex
connected to more than 80% of the entities in that particular leaf node. If
this condition is met, the leaf node is declared part of a HV region and
an altered build method is applied. For the HV case, this build method
has been established by the characterization tests as the standard build
algorithm with the worst case splitting ratio set to the maximum value of
1.0.
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5.3.2.3 Application to the HV test model

This adaptive build method was applied to the HV test model as before.
The results of this test can be seen in Figure 5.4. Using the adaptive method,
the average ray fire time is consistent across both valence and relative area
of the HV region and shows none of the stochastic behavior seen when
manually altering the tree’s global build settings.

5.3.2.4 Application to Production Models

This method was applied to several DAGMC production models in order
to determine its effect on simulation run times during transport.

Model HV
regions

Run Time
reduction

Build time
increase

HV Leaf Visit
Relative Frequency

FNG 514 24.2% 18.5% 3.83 %
ATR 755 < 3% 22.9% 0.07 %

UWNR 496 < 2% < 5% 3.87 %
ITER 3522 29.4% 5.2% 7.34 %

Table 5.1: Results of run time reduction in several DAGMC production
models when applying the BVH refinement method.

As seen in Table 5.1, the ATR and UWNR problem run time is decreased
only marginally, but in the ITER and FNG models the run time is reduced
by ≈ 1

4 . Given the outcome of this study it might seem that the high
valence regions are visited more often in the ITER and FNG models, but
information gathered during simulation using MOAB’s mesh tagging
interface suggests otherwise. A sweep of the high valence parameter, α,
for these models is shown in Figure 5.8 which reflects the performance
impact shown in Table 5.1. It also describes the relationship between the
simulation run time and the high valence parameter value in the ITER and
FNG models. Even for a relatively high α parameter of 0.9, a significant
reduction in the run time is seen in these models. As the value decreases,
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the run time is futher reduced to nearly 30% of the maximum run time in
the study. The large change at a high value of α indicates that even coarse
detection of high valence regions has a measurable impact on performance.
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Figure 5.8: Variation in run time for different HV detection parameters on
a representative set of DAGMC models using the adaptive build method
in MOAB.

The information on the frequency of HV leaf visits in Table 5.1 was
collected on regions of the triangle mesh identified as high valence during
BVH construction as well as simulation. Leaf nodes in MOAB’s OBB Tree
determined to be part of high valence regions with an HV parameter, α,
equal to 0.5 were tagged. A counter was incremented each time one of these
tagged HV leaf nodes was visited in simulation, along with counters for
the number of total nodes visited and the total number of leaf nodes visited.
The adaptive building method was not applied to these simulations to
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avoid biasing the values for leaf node visits. This lends some insight
into the impact of HV regions on DAGMC simulation performance. It is
interesting to note that, in all of these models, HV leafs are visited rather
infrequently, yet they still have a significant impact on the performance
of the simulation. This isn’t surprising given the severity of the ray fire
performance degredation seen in Figure 5.4.

5.3.3 Embree’s Ray Tracing Kernel

For all of the tests and simulations performed in Chapter 4, EmDAG was
much faster than DAGMC. Using the same ray fire test program in EmDAG,
the HV characterization study was performed with somewhat surprising
results.

5.3.4 High Valence Characterization

The same test described in Section 5.3 was performed using the ray fire
test program compile with using EmDAG to fire rays. A different behavior
was expected when using Embree to construct the underlying hierarchies
due to its use of the SAH. Figure 5.9 contains the results of this test run.
Using the Embree kernel, the performance degrades in direct proportion
to both valence and the relative area of the HV region. This data presents
the behavior originally expected of MOAB’s BVH. Unlike MOAB however,
Embree’s use of the surface area heuristic prevents the artificial increase in
probability of visiting triangles in the HV region. Larger triangles adjacent
to this region are more readily separated from the leaf due to the additional
cost they add by increasing a bounding box’s surface area and in turn
its evaluated cost. Separation of triangles in the HV region itself is still
difficult when restricted to axis-aligned candidate split planes.

While this data provides evidence that HV regions are problematic for
production-level ray tracing kernels, it is difficult to employ any adaptive
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tree construction techniques. Without access to the underlying mesh
representation of the triangle surface, it is difficult to detect HV regions as
implemented in MOAB’s OBB tree. This is both a strength and weakness
of Embree’s design in that it can build highly efficient data structures using
only primitive point and connectivity data, but it has no infrastructure
in place to interrogate the mesh more deeply. Methods for detecting and
adapting to these HV regions are addressed using the MPBVH, a system
with similar characteristics but with more access to the mesh interface.
Due to the similarity in design and use of AABBs, the MPBVH will act as
something of a surrogate for the EMDAG in terms of its response to HV
regions.

5.4 Mixed Precision Bounding Volume
Hierarchy

5.4.1 High Valence Characterization

The MPBVH kernel created by the author has a similar trend to Embree’s
kernel where ray fire times increase proportionally to both the valence and
size of the HV region as seen in Figure 5.9. The author’s BVH applies a
modified form of the surface area heuristic as described in Section 4.3.1.3.
Near HV regions this heuristic is able to separate large triangles from the
HV region in the same way as the unmodified surface area heuristic from
Section 2.5.1, but it fails to create a well-structured tree for triangles that
are part of the HV area.

5.4.2 Visualization and Diagnosis

Both Embree and the MOAB SIMD BVH have the shared characteristic
of maximum leaf size of eight primitives due to the way the leaves are
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Figure 5.10: MPBVH Axis-Aligned leaf node for the HV test model with
area fraction 0.5 and a valence of 100.

encoded. This removes the possibility that large numbers of triangles in
leaf nodes as the cause of performance degradation, which was the case
for MOAB’s OBB Tree. For Embree and the MPBVH, the largest cause of
performance degradation is overlapping regions of the leaf nodes.

Because both of these implementations use AABBs, bounding of high
aspect ratio, off-axis triangles results in bounding boxes with a consider-
able amount of empty space in them. An example of such a leaf can be
seen in Figure 5.11. In HV regions, this results in the same space being
occupied by a high number of leaf bounding boxes. If a ray is fired into
these overlapping leaves, the end result is a large number of leaf nodes,
and in turn, triangles, visited.

To alleviate the effect of the overlapping AABBs in this region, OBBs
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Figure 5.11: Visualization of both axis-aligned and oriented boxes sur-
rounding low aspect ratio, off-axis triangles.

were implemented as part of the MPBVH. Figure 5.9 shows the results
of the HV characterization study using only OBBs. Because the simpli-
fied SAH heuristic is able to separate large triangles exterior to the HV
region into different leaf nodes and the maximum leaf node size is prede-
termined, scaling very similar to the MOAB OBB implementation after HV
refinement is applied can be seen, though the overall speed is somewhat
improved due to the single precision implementation.

5.4.3 Adaptive BVH Construction

5.4.3.1 OBB Implementation

The same co-variance method used in MOAB to construct OBBs was ap-
plied in the MPBVH [61], but the storage technique used differs in order to
accommodate the SIMD programming involved in the BVH traversal. OBB
nodes are stored as scaled, affine transformations of the global problem
space and the box’s lower left corner is stored as a scaled reference point
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in the oriented coordinate system. When a ray is intersected with a node it
is transformed and scaled at the same time, but separately, for each of the
four OBBs the node represents. A reciprocal direction is then calculated
with respect to the oriented axes of each box. After this transformation,
intersection values and distances are then returned in the same way they
are calculated for a node of AABBs [60].

As discussed in Chapter 2, OBB nodes contain additional information
in the form of the affine space transformation and are more computa-
tionally expensive when computing ray transformations. Some of this
computational cost is avoided by incorporating the spatial scaling of the
node into both the affine space and reference point to avoid the additional
computational cost of scaling the parametric values of the ray intersection
later in the calculation.

5.4.3.2 OBB Ray Fire Testing

Tests of the raw ray fire speed using only OBBs were performed using the
MPBVH, which can be seen in Figure 5.12. These tests were conducted
primarily as verification that the exclusive use of OBBs results in a slower
ray fire times.
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Figure 5.12: Ray fire tests on three representative DAGMC volumes. Each
data point represents the average ray fire time for 600k randomly directed
rays from the origin of each volume. Left: MPBVH with AABBs only.
Right: MPBVH with OBBs only.

On average, the ray fire times using OBBs only were about two times
slower than those using only AABBS. The combination of the MPBVH
leaf examination in HV areas with the slower ray fire times of OBBs in the
common case leads to the conclusion that OBBs can be beneficial to ray
fire times, but only if they are used in regions of the model where sibling
AABBs contain large overlaps for these pathological mesh features.

5.4.3.3 A Mixed AABB/OBB BVH

The solution to HV regions when using the SIMD BVH kernel proposed
by the author is to apply OBBs only in regions determined to be HV
using the same detection method described in Section 5.3.2.1. Large leaf
nodes being split into smaller nodes will apply oriented bounding boxes
to contain entities if the set of triangles is determined to be a HV region
using the same method discussed in Section 5.3.2.1 for MOAB’s OBB
tree. The results using the mixed tree with OBBs applied in HV regions
are shown in Figure 5.9. A small-scale of this study is also provided in
Figure 5.13 for valences more commonly seen in DAGMC models. The
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mixed tree implementation shows some slight degradation in speed with
both area fraction and valence, but overall timing is significantly better,
with the worst case timing still beating out the best case for the OBB-
only characterization test. This indicates that the AABBs are accelerating
intersections higher up in the tree while the OBBs resolve the HV region
with minimal overlap, resulting in an overall improvement in the run times
for these regions.

Figure 5.13: A small scale version of the HV study in Figure 5.9 using
valences representative of those seen in DAGMC models using a linear
scale.

To support a tree containing both AABBs and OBBs, additional encod-
ing of interior nodes is required so that the appropriate node intersection
methods are applied during traversal. Axis-Aligned and Oriented nodes
are identified using the two remaining bit configurations available for node
definitions by setting the appropriate bits in the node reference objects.
These node masks are stripped from the node reference’s integer value
to retrieve the pointer to the node objects themselves with little added
overhead in the traversal process.
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5.4.3.4 Application to Production Models

The Mixed MPBVH was applied to the same set of production transport
tests as the AABB MPBVH in Section 4.4.2. Timing results of these simula-
tions can be found in Figure 5.14.
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Figure 5.14: Variation in run time for different HV detection parameters
on a representative set of DAGMC models using the MPBVH.

The application of OBBs in HV regions makes little difference in the
simulation run times of ATR or UWNR, but in the FNG model and ITER
model the run times are reduced by up to 40% with little additional
build times in the BVH and minimal increase in the memory footprint by
replacing some of the AABBs with OBBs. This reflects the behavior seen
in results of Table 5.1 for simulations using MOAB’s OBB tree. A study
on the HV leaf visit frequency was not performed here due to a limited
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ability to mark HV leaf nodes in the MPBVH system.

5.4.3.5 Alternative Surface Meshing Methods

In addition to the faceting tolerance discussed in Section 2.4, other pa-
rameters can be applied to the tessellation process in CUBIT/Trelis. One
such parameter is the length tolerance. The length tolerance places an
upper limit on the edge length for any triangle in the resulting surface
mesh. Passing this parameter to the tessellation algorithm along with
a faceting tolerance tends to create more triangles with an aspect ratio
≈ 1. It also tends to generate more triangles, particularly when the length
tolerance specified is smaller than the characteristic length of surfaces in
the model. Limited edge lengths also have the effect of reducing the area
of HV regions as seen in Figure 5.15 where both the faceting tolerance
and length tolerance were applied to the FNG model. In most cases, the
valence of the HV regions are reduced as well. This is a by-product of the
tessellation algorithm’s avoidance of high-aspect ratio triangles. Given
that the performance degradation of ray fire times in the MPBVH scales
with both the valence and HV area, applying a length tolerance during
tessellation may be another pathway to improving performance in these
models.
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(a) Faceting Tolerance Only (b) Faceting and Length Tolerance

Figure 5.15: The effect of applying only the faceting tolerance (a) vs. the
application of both a faceting tolerance and length tolerance (b) in the
FNG model. HV regions are separated and made smaller when using both
tesellation parameters.

The same set of production test models from Table 5.1 were faceted
using both faceting and length tolerances. The corresponding simulations
were then performed using DAGMC with the MPBVH kernel with BVH
refinement disabled, meaning it will apply AABBs only during BVH con-
struction. There are competing factors at play in this analysis. Because
the models will contain many more triangles, the BVH will inherently
become deeper, resulting in a higher number of nodes visited per traversal.
Conversely, the overall number of HV regions will increase, but their area
and valence will be significantly reduced.

Table 5.2 shows the results of this study. A length tolerance of 10 was
applied to all production models with the exception of the ITER model
where 25 was used. For all models, results using facet tolerance only
tessellations were not numerically the same as those also applying the
edge length tolerance as well. The same numerical answer for different
tessellations is not expected and results for the models were statistically
similar in all corresponding simulations. In agreement with the BVH
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refinement study, the greatest effect on performance was seen in the FNG
and ITER simulations where the run times were reduced by ≈ 30%. In
contrast, the ATR simulation became almost 20% worse. This is likely
caused by the dramatic increase in the number of triangles for this model
which could be mitigated by increasing the specified length tolerance.
It is difficult to know a priori what faceting tolerance is optimal when
tessellating models, but this study shows that an alternative meshing
scheme may be another solution to mitigating the effect of HV regions on
simulation performance.

When using BVH refinement to address HV region performance, the
acceleration data structure is altered to better suit the tessellation. Whereas
application of the length tolerance alters the tessellation to better suit the
data structure by producing triangles more amenable to use of AABBs
and reducing HV region severity. Each approach has its merits. BVH
refinement requires no modification of the input tessellation, but it does
require a way to gather more information about the mesh structure. Al-
ternate tessellation schemes can produce more friendly to the BVH data
structure, but may require additional memory - a notable constraint in the
context of this work (see Section 2.6). In the future, local re-tessellation of
these regions, either as a preprocessing step or during BVH construction,
could provide reduced HV severity similar to the length tolerance faceting
without a dramatic increase in memory requirements for simulation.

5.5 Summary

This chapter introduced performance degradation caused by a tessellation
feature seen in engineering models for CAD-based MCRT-t. A test model
was then developed to characterize and study the underlying cause of
this degradation for several ray tracing systems. In MOAB’s OBB tree, the
main cause was leaf nodes containing large numbers of triangles. The
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cause of poor ray tracing performance in this system was a combination
of the tree’s design and default splitting heuristic. A simple HV detection
algorithm was presented and applied in a solution where build settings of
the splitting heuristic are adjusted for portions of the tree bounding HV
regions. This method was then verified to remove performance degrada-
tion of ray tracing performance in these regions. A similar process was
then repeated for both EmDAG and MPBVH.

In the MPBVH, and presumably in EmDAG, the exclusive use of AABB
nodes results in large overlaps between child boxes. Many negative triangle
intersections result from these overlaps, a similar effect to containing many
triangles in a single leaf node. The solution proposed and verified by the
author is the use of OBBs only in HV regions by applying the same HV
detection method as was used in the MOAB OBB tree. It is important to
note, that this was only possible in the MPBVH due to it’s application
alongside MOAB, a fully formed mesh database. The use of mesh-specific
concepts such as element adjacencies makes this detection method simple
and efficient. This work was not duplicated in Embree due to the difficulty
involved in obtaining the same set of information and application of a
mixed BVH for ray tracing on triangle elements.

Finally, a study of the adaptive build method to production models is
presented for understanding of the HV parameter’s effect on simulation
run times. Little impact was found for some models while a significant
reduction was seen in others. It was also was found that these run times
are significantly reduced despite the fact that a very small number of rays
are intersected with triangles in HV regions as shown in Table 5.1.

5.6 Future Work

For the models studied in this chapter, any HV detection parameter below
1.0 was shown to be effective in reducing simulation run times. This
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parameter could be studied and optimized using a broad range of test
cases to determine the best value for use in the general case.

Alternative methods to reducing the HV performance pathology could
be explored as well. Here, BVH data structures were modified to better suit
the HV mesh feature. Conversely, the HV regions could also be modified
to better suit the BVH. A re-meshing of the HV region to contain a more
uniform tessellation would allow a BVH of AABBs to maintain traversal
performance without modification to the BVH build, though this would
presumably come at the cost of more triangles in the model. Re-meshing
of HV regions was not explored in this work due to the concerns for the
additional memory cost outlined in Section 2.6.
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Chapter 6

Conclusion

6.1 Impact on CAD-Based MCRT

This work provides a set of methods and implementations which signifi-
cantly improves the performance of DAGMC’s particle tracking capability.
Performance improvements varied from factors of 1.1 to 9.54 for all tests
presented, without change in the results compared to the unmodified
DAG-MCNP code.

The SDF implementation in DAGMC showed promising results for con-
trived test cases, but at most provided a 30% improvement in performance
for production models. The opportunity space for this data structure is
limited, but the model used to inform it’s application is accurate for the
majority of cases, though some improvements could be made for locally
small average chord length values.

The Mixed Precision Bounding Volume Hierarchy (MPBVH) provides
a robust method for returning higher precision intersections suitable for
engineering analysis while exploiting CPU SIMD instructions for reduced
precision bounding entities. The implementation provided by the author
demonstrates performance comparable to entirely single precision systems
used for rendering with a significant demonstrated impact on transport
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performance.
The use of a mixed AABB/OBB tree to improve performance for models

containing severe high valence regions was demonstrated. This effort also
demonstrated the value using of an associated mesh database to inform
construction of spatial data structures for these performance-degrading
mesh features.

Model Ratio to unmodified DAG-MCNP
Signed Distance Field

ITER 1.16
nTOF 1.41
SHINE 1.56
SHINE* 1.35
SNS 1.00

Mixed Precision BVH
FNG 2.09
ATR 4.56
UWNR 3.13
ITER 9.54

Table 6.1: A summary of the best-case performance improvements for
modificed versions of DAG-MCNP in a series of production test cases.

The overall impact of this work on CAD-based MCRT-t is summarized
in Table 6.1. Coputational savings of 2x at a minimum when applying
the MPBVH were observed, with greater benefits of >4x seen in some test
cases. For access to all open source code, raw data, and results presented
here please refer to FigShare archive 10.6084/m9.figshare.6291026.

6.2 Broader Impacts

Broader impacts of this work include a performant CPU ray tracer suitable
for engineering analysis work. The MPBVH is coupled with MOAB, a mesh
database currently in use for engineering analysis purposes at Argonne

https://figshare.com/articles/_/6291026
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National Lab. This tool can be built using standard GNU compilers and is
relatively lightweight.

Work on adaptive BVH construction around HV regions demonstrates
the importance of spatial query capabilities which are closely linked to a
mesh framework in order to be able to detect problematic mesh features
and adjust build settings.

The use of a mixed AABB/OBB to improve performance for models
containing high valence regions suggests that for engineering analysis,
or at least for the surface meshses generated by Cubit/Trelis for use in
DAGMC, that AABBs can cause large amounts of overlap in certain regions
of the model, resulting in several orders of magnitude degradation in ray
query times.

6.3 Suggested Future Work

Some improvement of the SDF model is suggested in which additional
information about the geometric properties of the target volume is used to
inform decisions about SDF application. In particular, information on the
variation of the average chord length could be used to avoid application
of the data structure where its predicted utilization is over estimated.
Spatially varying information on the collision density of particles, could
also be used to better inform the predictive tool for analysis. Another
extension of the SDF predictive model could be its use to inform algorithms
for domain subdivision in codes where Woodcock delta tracking is applied
[31] [66].

There are several directions work on the MPBVH could take. Slightly
more exotic architectures used in high performance computing clusters
provide wider registers than the AVX2 instructions used in this work. This
creates the possibility of creating tree branching ratio of 8 or 16 for even
more shallow trees and lower memory footprints. Higher branching ratios
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also allow the MPBVH to extend naturally to other hierarchies like the
octree which has other benefits in particle tracking and data field storage.

As suggested in Chapter 4, box extension values could be applied on
a volume-by-volume basis for MCRT to avoid performance degradation
in models with a large global scale, but regions with small components.
This is application-specific, but could be integrated into the interface of
the MPBVH to be set according to different use-cases.

Mesh features similar to the high valence region could be sought out
using a variety of meshing schemes, geometries, and a program designed
to highlight regions of models in which ray fire times are much lower than
average to automatically highlight these areas for characterization and
analysis as was done for the high valence region. Local re-meshing of
high valence regions could also be explored to allow used of AABB-only
hierarchies without performance detriment and minimal modifications to
input mesh geometries.
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Appendix A

Signed Distance Field Model
Development and Data

A.1 Detailed Signed Distance Field Model
Formulation

A.1.1 Fixed Distance Model Development

The utilization of the signed distance field as a preconditioner for ray
tracing operations can be modeled as an evaluation of the combined prob-
ability space for particles with a current position, ~p, and a next physics
event location, ~n, after traveling a distance, d. The fraction of this probabil-
ity space in which signed distance values can be used to rule out surface
crossings for next surface intersections is then considered to be the the-
oretical utilization of the signed distance field. An initial form for this
probability space can found in Equation A.1.∫

Vsphere

∫
Vtrack

pp(r)pn(d)dVspheredVtrack (A.1)

In this model, the starting location of particles, ~pp(r,φ, θ), is uniformly
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distributed, pp(r) = 1, throughout a sphere of radius, R, centered at the
origin. The location of the next event, ~pn(d,α,β), where d is the distance
traveled by the particle,α is the interior angle between the particle’s position
vector and the particle’s sampled direction vector, and β represents an
azimuthal angle for directions traveled with angle of departure, α. Figure
3.8 depicts these variables, r, d, and αmore clearly.

The outer integral in Equation A.1 represents all possible particle posi-
tions within the geometric sphere and expands to∫R

0

∫ 2π

0

∫π
0

∫
Vtrack

r2 sinφdφdθdr pn(d)dVtrack (A.2)

The inner integral over Vtrack then expands to

∫R
0

∫ 2π

0

∫π
0

∫∞
0

∫ 2π

0

∫π
0
r2 sinφpn(d)d2 sinαdαdβdddφdθdr (A.3)

Integration of φ, θ, and β can now be performed with the knowledge
that they are symmetric with respect to the problem and integration of
pn(d) does not rely on them.

8π2
∫R

0

∫∞
0

∫π
0
pn(d) r

2 d2 sinαdαdddr (A.4)

In order to represent particles traveling a fixed distance, the relationship
in Equation A.5 is applied.

pn(d) =
δ(d− λ)

d2 (A.5)

The evaluation of this integral then gives a representation of all the
query space available to the problem

A = 8π2
∫R

0

∫∞
0

∫π
0
δ(d− λ) r2 sinαdαdddr (A.6)
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and represents all geometric query space, labeled A, for a sphere of
radius, R and a fixed distance traveled, λ. The condition for preconditioner
utilization without error consideration is as follows

SDV(~p) + SDV(~n) > |~p− ~n| (A.7)

SDV − signeddistance value function

~p− particle ′s current position

~n− particle ′snext event location

h− mesh step size

To apply this within the spherical geometry, the signed distance func-
tion of a sphere with radius, R, from Equation (3.6) is applied

R− |~p|+ R− |~n| > |~p− ~n| (A.8)

The right hand side of this inequality can be described as the distance
traveled, d, and the magnitude of ~p can be represented by the variable r.

R− r+ R− |~n(d,α,β)| > d (A.9)

Reducing the next event location, ~n(d,α,β), into an expression in terms
of r, d, and α requires further examination of the problem. Because the
coordinates of n depend on the current particle position, the magnitude
of n with respect to the geometry origin must be obtained to get a correct
form for the signed distance value. Again, Figure 3.8 depicts the value
of n graphically for reference. The magnitude of n can then be described
using the law of cosines as

|n(d,α,β)| =
√
r2 + d2 − 2rd cosπ− α (A.10)
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inserting this into the inequality gives

R− r+ R−
√
r2 + d2 + 2rd cosα > d (A.11)

The inequality has now been reduced to the three variables seen in
Equation A.6: r, d, and α. This can be applied to construct limits of
integration representing boundaries of space in which the SDF can be
utilized. As described in Chapter 3, αmin can be used as a limit on the
integral over dα. It is also mentioned thatαmin is undefined until d > R−r
as shown in Equations A.12 and A.13.

d < R− r : αmin = 0 (A.12)

αmin > arccos
(
(2R− r− d)2 − d2 − r2

2dr

)
(A.13)

Signed Distance Radius

Origin

Particle Position Next Event Location

Case: r < R-λ Case: r > R-λ utilized Case: r >R-λ unutiilized

Figure A.1: Depiction of modeling cases. Left: an example of a track for
which d < R−r. Middle: an example of a track for which R−r < d < R and
can be preconditioned. Right: an example of a track for whichR−r < d < R
and cannot be preconditioned.

In order to account for the fact that the form of αmin is undefined until
d = R − r, a Heaviside function is applied before applying it as a limit
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on the particle’s angle of departure from the position vector. Similarly,
because the αmin condition is undefined after d = R a Heaviside function
is used to limit the condition to π for any distances traveled larger than R.

αmin =(H(d− (R− r)) −H(d− R)) arccos
(
(2R− r− d)2 − d2 − r2

2dr

)
+ πH(d− R)

(A.14)

By inserting this condition as a lower limit of the dα integration, Equa-
tion A.15 will give all utilized space, US, in the query space of the simula-
tion.

US = 8π2
∫R

0

∫∞
0

∫π
αmin

δ(d− λ) r2 d2 sinαdαdddr (A.15)

Evaluating and simplifying this fully formed integral gives us the
model presented in Chapter 3.

Utheoretical =
US

A
=

(1 −H(λ− R))(2R− λ)(R− λ)

2R2 (A.16)

A.1.2 Sampled Distance Model Development

The sampled distance probability distribution presented in Chapter 3 is as
follows:

p =
e−Σd

d2 =
e−

d
λ

d2 (A.17)

with distances sampled using the function

d = −λln(c) (A.18)

where c is randomly sampled with a uniform distribution between 0
and 1
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An examination of the change of variables in the general form for the
utilized space from Equation (3.2) gives

dp

dd
= −

p

λ
(A.19)

d = 0→ c = 1 (A.20)

d = ∞→ c = 0 (A.21)

Resulting in an integral with the following form for the sampled dis-
tance model

∫R
0

∫ 2π

0

∫π
0

∫ 0

1

∫ 2π

0

∫π
0
−r2 sinφλcln(c)2 sinαdαdβdcdφdθdr (A.22)

As in the fixed distance case, the condition forαmin is a piece-wise func-
tion based on the distance traveled. The expression for d changes slightly
for this case however, given that the integral is now being performed over
the variable c.

d < R− r : αmin = 0 (A.23)

d > R− r : αmin = arccos
(
(2R− r− d)2 − d2 − r2

2dr

)
(A.24)

Now that the distance traveled is being used to construct these two
regions in the model, this integral must be separated into two pieces, one
with limits of 0 to R− r and another with limits R− r to R. Based on the
distance sampling distribution, these values become
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dmin = R− r→ cmax = e
(−

(R−r)
λ ) (A.25)

dmax = R→ cmin = e(−
R
λ ) (A.26)

and the resulting integral becomes

∫R
0

∫ 2π

0

∫π
0

∫cmax
1

∫ 2π

0

∫π
0
−r2sin(φ) λcln(c)2sin(α)dαdβdcdφdθdr+

(A.27)

∫R
0

∫ 2π

0

∫π
0

∫cmin
cmax

∫ 2π

0

∫π
alphamin

−r2 sinφλcln(c)2 sinαdαdβdcdφdθdr

(A.28)
The evaluation of this integral gives the final form of the analytic

preconditioner limit from Equation (3.13)

Usampled =
1
2λ(R− 2λ)e−R

λ + λ2 − 3
2Rλ+ R

2

R2
(A.29)

A.1.3 Inclusion of Error in Model Development

As provided in Chapter 3, the condition for avoiding a ray fire call when
including error associated with signed distance value interpolation is:

SDV(~p) + SDV(~n) > |~p− ~n|+ 2ε(h) (A.30)
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SDV − signeddistance value function

~p− particle ′s current position

~n− particle ′snext event location

h− mesh step size

ε(h) − error evaluation for signeddistance values

The limits of the αmin condition need to be adjusted yet again to ac-
count for the error that will be subtracted from the signed distance values.
This becomes a relatively straightforward process in which the error is
also subtracted from the arguments to the Heaviside functions in Equation
A.14. Accounting for interpolation error reduces the maximum possible
distance the particle can travel and still be preconditioned. It also reduces
the value of dmin where αmin becomes non-zero.

αmin = arccos
(
(2R− r− d− 2ε)2 − d2 − r2

2dr

)
[H(d− (R− r− ε)) −H(d− (R− ε))]

+ πH(d− (R− ε))

(A.31)

After these adjustments to the αmin condition, the integral can be
evaluated and simplified to give the form found in Equation (3.17):

USsampled =
(R− ε)( 1

2λ(R− 2λ− ε)e−R+ε
λ + λ2 − 3

2λ(R− ε) + (R− ε)2)

R3
(A.32)
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Appendix B

Modified DAGMC Simulation
Results

This appendix contains all results for simulations performed using modi-
fied versions of DAGMC. Because a numerical comparison, as opposed to
a statistical comparison, is being made between these different implemen-
tations, error values are not included in the tables of this appendix. The
results of native MCNP simulations have been provided when possible
for reference. MCNP results are expected to be statistically similar but
not the same as DAG-MCNP results. All implementations of DAG-MCNP
(EmDAG, SDF, unmodified DAGMC, etc.) are expected to report the same
numerical tally results. Additional CDF plots for differing mesh tally
results are included when necessary.

B.1 EmDAG-MCNP

The results in this section were generated using the EmDAG implemen-
taion presented in Section 4.2. These include several contrived test cases in
Section B.1.1 along with a production model test of FNG with the EmDAG
system in Section B.1.2.



182

B.1.1 Simple Test Cases

B.1.1.1 Single Cube

Value MCNP DAG-MCNP DAG-MCNP with MPBVH
Flux 5.61567E-03 5.61567E-03 5.61567E-03
Energy 2.98787E-03 2.98787E-03 2.98787E-03

Table B.1: Single hydrogen-filled cube tally results. Flux tally units are
cm−2. Energy tally units are MeV/g.

B.1.1.2 Nested Cubes

Value MCNP DAG-MCNP EmDAG-MCNP
Cell 1 Tallies
Flux 1.38556E-02 1.38556E-02 1.38556E-02
Energy 1.05974E-02 1.05974E-02 1.05974E-02
Cell 2 Tallies
Flux 1.41609E-03 1.41609E-03 1.91644E-04
Energy 4.81169E-04 4.81169E-04 4.81169E-04
Cell 3 Tallies
Flux 1.92847E-04 1.92847E-04 1.92847E-04
Energy 1.10361E-04 1.10361E-04 1.10361E-04

Table B.2: Nested hydrogen-filled cube tally results. Flux tally units are
cm−2. Energy tally units are MeV/g.
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B.1.1.3 Single Sphere

Value MCNP DAG-MCNP DAG-MCNP with MPBVH
Flux 4.98069E-03 4.98639E-03 4.98639E-03
Energy 3.17629E-03 3.18079E-03 3.18079E-03

Table B.3: Single hydrogen-filled sphere tally results. Flux tally units are
cm−2. Energy tally units are MeV/g.

B.1.1.4 Nested Spheres

Value MCNP DAG-MCNP EmDAG-MCNP
Cell 1 Tallies
Flux 5.25725E-03 5.25734E-03 5.25734E-03
Energy 3.17869E-03 3.17873E-03 3.17873E-03
Cell 2 Tallies
Flux 1.91645E-04 1.91644E-04 1.91644E-04
Energy 5.22131E-05 5.22137E-05 5.22137E-05
Cell 3 Tallies
Flux 1.18371E-05 1.18376E-05 1.18410E-05
Energy 4.96282E-06 4.96285E-06 4.96285E-06

Table B.4: Nested Spheres Tally Results. Flux tally units are cm−2. Energy
tally units are MeV/g.
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B.1.2 Production Test Cases

B.1.2.1 FNG

Value MCNP DAG-MCNP EmDAG-MCNP
Neutron Flux
Average 7.228758E-05 7.321188E-05 7.321169E-05
Maximum 1.457240E-04 1.485880E-04 1.485840E-04
Minimum 1.997170E-05 1.938440E-05 1.938450E-05

Table B.5: Summary of the flux tally results for a global volumetric source
in the FNG model for MCNP, DAG-MCNP, and Embree coupled with
DAGMC, or EmDAG-MCNP. Units of flux are in cm−2.
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Figure B.1: A cumulative distribution function for the differing tally val-
ues between DAG-MCNP and EmDAG-MCNP for the FNG model. Zero
entries for the unmodified DAG-MCNP simulation are set to zero here.
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B.2 MPBVH

The results in this section were generated using DAG-MCNP relying on
the MPBVH as its ray tracing kernel as presented in Section 4.3. These
include several contrived test cases in Section B.2.1 along with several
production model demonstrations in Section B.2.2.

B.2.1 Simple Test Cases

B.2.1.1 Single Cube

Value MCNP DAG-MCNP DAG-MCNP with MPBVH
Flux 5.61567E-03 5.61567E-03 5.61567E-03
Energy 2.98787E-03 2.98787E-03 2.98787E-03

Table B.6: Single hydrogen-filled cube tally results. Flux tally units are
cm−2. Energy tally units are MeV/g.

B.2.1.2 Nested Cubes

Value MCNP DAG-MCNP EmDAG-MCNP
Cell 1 Tallies
Flux 1.38556E-02 1.38556E-02 1.38556E-02
Energy 1.05974E-02 1.05974E-02 1.05974E-02
Cell 2 Tallies
Flux 1.41609E-03 1.41609E-03 1.91644E-04
Energy 4.81169E-04 4.81169E-04 4.81169E-04
Cell 3 Tallies
Flux 1.92847E-04 1.92847E-04 1.92847E-04
Energy 1.10361E-04 1.10361E-04 1.10361E-04

Table B.7: Nested hydrogen-filled cube tally results. Flux tally units are
cm−2. Energy tally units are MeV/g.
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B.2.1.3 Single Sphere

Value MCNP DAG-MCNP DAG-MCNP with MPBVH
Flux 4.98069E-03 4.98639E-03 4.98639E-03
Energy 3.17629E-03 3.18079E-03 3.18079E-03

Table B.8: Single hydrogen-filled sphere tally results. Flux tally units are
cm−2. Energy tally units are MeV/g.

B.2.1.4 Nested Spheres

Value MCNP DAG-MCNP DAG-MCNP with MPBVH
Cell 1 Tallies
Flux 5.25725E-03 5.25734E-03 5.25734E-03
Energy 3.17869E-03 3.17873E-03 3.17873E-03
Cell 2 Tallies
Flux 1.91645E-04 1.91644E-04 1.91644E-04
Energy 5.22131E-05 5.22137E-05 5.22137E-05
Cell 3 Tallies
Flux 1.18371E-05 1.18376E-05 1.18376E-05
Energy 4.96282E-06 4.96285E-06 4.96285E-06

Table B.9: Nested Spheres Tally Results. Flux tally units are cm−2. Energy
tally units are MeV/g.



187

B.2.2 Production Tests

B.2.2.1 FNG

Value MCNP DAG-MCNP DAG-MCNP-MPBVH
Average 7.227982E-05 7.230336E-05 7.230336E-05
Maximum 1.471770E-04 1.471210E-04 1.471210E-04
Minimum 1.918080E-05 1.877310E-05 1.877310E-05

Table B.10: Summary of the flux tally results for a global volumetric source
in the FNG model for MCNP, DAG-MCNP, and DAG-MCNP using the
MPBVH.

B.2.2.2 ATR

Value MCNP DAG-MCNP DAG-MCNP-MPBVH
kcoll 0.99218 0.98456 0.98456
kabs 0.98764 0.99448 0.99448
ktrack 0.98899 0.98283 0.98283

Table B.11: Results of an eigenvalue simulation for the Advanced Test
Reactor at Idaho National Laboratory over 100 cycles.

B.2.2.3 UWNR

Value MCNP DAG-MCNP DAG-MCNP-MPBVH
kcoll 1.02050 1.02084 1.02084
kabs 1.02044 1.02072 1.02072
ktrack 1.02041 1.02063 1.02063

Table B.12: Results of an eigenvalue simulation for the University of Wis-
consin Nuclear Reactor over 75 cycles.
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B.2.2.4 ITER

Value DAG-MCNP DAG-MCNP with MPBVH
Neutron Flux
Average 7.222176E+12 7.222176E+12
Maximum 1.410510E+14 1.410510E+14
Minimum 0.000000E+00 0.000000E+00

Table B.13: Result comparison for a mesh-based flux tally applied to the
ITER neutronics model for 1× 106 histories. Units are in cm−2

B.3 Signed Distance Field

The results in this section are the result of signed distance field application
in DAGMC production models, seen in Section 3.4.

B.3.1 Simple Test Case

B.3.1.1 Hydrogen-Filled Sphere

Tally Number DAG-MCNP DAG-MCNP with SDF
6 4.18872E+03 4.18872E+03
4 7.01007E+03 7.01007E+03
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B.3.2 Production Tests

B.3.2.1 ITER

Value DAG-MCNP DAG-MCNP with SDF
Neutron Flux Tally
Average 2.123795E-09 2.123795E-09
Maximum 3.170170E-06 3.170170E-06
Minimum 0.000000E+00 0.000000E+00

Table B.14: Result comparison for a mesh-based flux tally applied to the
ITER neutronics model for 1× 107 histories. Units are in cm−2.

B.3.2.2 nTOF

Value DAG-MCNP DAG-MCNP with SDF
Neutron Flux Tally
Average 7.730000E+00 7.730000E+00
Maximum 3.250500E+01 3.250500E+01
Minimum 1.704500E+01 1.704500E+01
Proton Flux Tally
Average 1.539597E-04 1.539597E-04
Maximum 1.045990E+00 1.045990E+00
Minimum 0.000000E+00 0.000000E+00
Photon Flux Tally
Average 3.255857E-03 3.255857E-03
Maximum 5.343100E-01 5.343100E-01
Minimum 0.000000E+00 0.000000E+00

Table B.15: A result comparison between DAG-MCNP with and without
the SDF field applied for 10K histories in the the neutron Time-Of-Flight
model. Units are in cm−2.
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B.3.2.3 SHINE

Value DAG-MCNP DAG-MCNP with SDF
Neutron Flux Tally
Average 2.486558E+10 2.486558E+10
Maximum 2.330400E+12 2.330400E+12
Minimum 0.000000E+00 0.000000E+00

Table B.16: A result comparison for the SHINE model with and without
SDF application for 10k particle histories. Units are in cm−2.
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B.3.2.4 SNS

Tally Number DAG-MCNP DAG-MCNP with SDF
6 1.5927E-01 1.5927E-01
24 1.8279E-01 1.8279E-01
46 1.1338E+00 1.1338E+00
76 4.3240E-01 4.3240E-01
106 6.7470E-02 6.7470E-02
126 1.4468E+00 1.4468E+00
146 6.5084E-02 6.5084E-02
166 1.6627E+00 1.6627E+00
206 1.1284E+01 1.1284E+01
114 4.0555E+00 4.0555E+00
174 4.0451E+00 4.0451E+00
14 3.7261E-02 3.7261E-02
26 4.2035E-01 4.2035E-01
56 1.7891E-01 1.7891E-01
86 1.7698E-01 1.7698E-01
116 2.6279E-01 2.6279E-01
136 9.6872E-02 9.6872E-02
156 2.5599E-01 2.5599E-01
176 1.0053E-01 1.0053E-01
216 8.3326E+00 8.3326E+00
134 1.9720E+00 1.9720E+00
214 6.0137E+02 6.0137E+02
16 1.0738E-01 1.0738E-01
36 4.1034E-01 4.1034E-01
66 5.4782E-01 5.4782E-01
104 2.9490E+03 2.9490E+03
124 8.8337E+02 8.8337E+02
144 6.8868E+02 6.8868E+02
164 7.3002E+02 7.3002E+02
204 7.9032E+01 7.9032E+01
226 3.1626E-01 3.1626E-01
154 3.4720E+00 3.4720E+00

Table B.17: Result comparison for a variety of atom displacement tallies
in the Spallation Neutron Source model in DAG-MCNP both with and
without the SDF for 10K histories.
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