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Abstract

The era of GPU-powered data analytics has arrived!
This dissertation argues that recent hardware advancements—such as larger GPU

memory, faster interconnects and I/O, and decreasing costs—have laid a strong
foundation for scalable and practical GPU-accelerated data analytics. Despite these
advancements, however, GPU databases have yet to see widespread adoption in
both academia and industry, primarily due to three key challenges: (1) supporting
larger-than-GPU memory workload, (2) difficulty supporting complex operators on
GPUs, and (3) high switching costs from CPU-based to GPU-based databases.

This dissertation addresses these challenges with the goal of driving mainstream
adoption of GPU databases. First, we improve performance for workloads that ex-
ceed GPU memory through three key system-level optimizations: data compression,
heterogeneous CPU–GPU execution, and multi-GPU databases. We introduce a GPU-
optimized framework for lightweight data decompression that achieves up to 2.2×
speedup over state-of-the-art methods. We then present Mordred, a heterogeneous
CPU–GPU database system with optimized data placement and query execution
strategies, outperforming existing systems by up to 11×. Finally, we extend Mordred
to a multi-GPU setting with Lancelot, demonstrating up to 12× performance gains
over other multi-GPU DBMSes.

Next, we address the challenge of supporting complex operators on GPUs, specif-
ically focusing on user-defined aggregate functions (UDAFs). Our framework accel-
erates UDAF execution by up to 8000× compared to existing approaches and as a
result, has been deployed into production as part of the NVIDIA cuDF v23.02.

Lastly, to reduce the engineering and migration costs of switching from CPU to
GPU databases, we introduce Sirius, an open-source GPU-native SQL engine that can
serve as a drop-in accelerator for a variety of existing data systems. By leveraging
composable data systems, Sirius can replace other CPU engines without migrating the



xi

data or changing the user-facing interface. Sirius achieves 8.2× speedup as a drop-in
accelerator for DuckDB (single-node) and up to 12.5× as a drop-in accelerator for
Apache Doris (distributed).
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Chapter 1

Introduction

The performance of a SQL engine is ultimately driven by the capabilities of the
underlying hardware—especially compute throughput and memory bandwidth.
Modern GPUs are rapidly outpacing CPUs on both fronts and have become the
default hardware choice for data- and compute-intensive applications such as machine
learning. Table 1 compares recent CPU and GPU architectures, highlighting the
contrast in core count and memory bandwidth. Given the inherently parallel nature
of relational data analytics, GPUs are a perfect fit for future analytical databases.

Table 1.1: Comparison of CPU and GPU Instances
Amazon c6a.metal
(AMD EPYC CPU)

GH200
(NVIDIA GPU)

Core Count 192 (vCPUs) 14,000+ (CUDA cores)
Memory BW ∼400 GB/s 3,000 GB/s (HBM)
Memory Size 384 GB 96 GB (HBM)
Rental Cost $7.344/h (AWS) $3.2/h (Lambda Labs)

In this thesis, we argue that the hardware foundations are finally in place today
to enable scalable GPU data analytics. For example, GPU memory capacity doubles
almost every generation, starting from Volta (32 GB), to Ampere (80 GB), Hopper
(192 GB), and most recently Blackwell (288 GB). Better interconnects such as PCIe
Gen6, NVLink-C2C [22], and GPUDirect [14] significantly reduce the data movement
overhead between GPUs and other system components. This allows a GPU to process
data beyond on-device memory, enabling TBs of analytics even on a single GPU and
more with distribution. Meanwhile, GPUs are increasingly affordable and accessible,
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(a) GPU Memory Bandwidth (b) GPU Peak Performance (c) GPU Memory Capacity

(d) Interconnect Bandwidth (e) Storage Bandwidth (f) Network Bandwidth

Figure 1.1: Recent hardware trends

especially for older generations which are already sufficient for data analytics work-
loads. In the next section, we will explore in greater detail the catalysts behind the
GPU era in data analytics.

1.1 GPU for Data Analytics: Why Now?
We argue that the GPU era for data analytics is finally here. In this section, we discuss
the key drivers behind the rise of GPU-accelerated data analytics by examining the
recent GPU hardware trends.

Higher Throughput and Computational Power. GPU memory bandwidth is an
order of magnitude higher than that of CPUs. Modern GPUs can reach up to 8 TB/s
and is doubling every two years, as shown in Figure 1.1a. This is especially important
for data analytics, where workloads are throughput-heavy and often memory-bound.
In addition, the highly parallel nature of data analytics makes it well-suited to fully
leverage GPU’s massive computational power. While CPU performance has stagnated
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in recent years due to the slowing of Moore’s Law, GPU performance continues to
scale, as shown in Figure 1.1b.

Bigger Memory at Faster Speed. The capacity of GPU device memory has tripled in
the past 3 years, as shown in Figure 1.1c. While the largest GPU memory was merely
16 GB ten years ago, a modern NVIDIA B300 Ultra or AMD MI350X has 288 GB
device memory, which is sufficient for small to medium-sized analytics workloads.

PCIe, the interconnect between GPU and CPU, has traditionally been a severe
performance bottleneck due to its relatively low bandwidth. However, PCIe band-
width has been doubling every two years with PCIe Gen6 offering 128 GB/s, which
is comparable to CPU memory bandwidth. The NVLink-C2C [22] technology takes
this even further, enabling 900 GB/s unidirectional bandwidth between CPU and
GPU – see Figure 1.1d for more details. In a GH200 superchip, the Hopper GPU
can access main memory at more than 400 GB/s, which is more than the maximum
bandwidth between the CPU and main memory. These faster interconnects allow a
GPU analytics engine to support data larger than the GPU device memory, enabling
high-speed access to terabytes of main memory and beyond.

Faster Network and Storage. Besides faster memory speed, modern GPUs also
have increasingly better support for network and storage, allowing a GPU engine
to go beyond in-memory data processing. Technologies like GPUDirectStorage and
GPUDirectRDMA allow GPUs to access data directly from storage or network with
minimal CPU involvement at very high speed. Similar to interconnect technology,
storage and network bandwidth have also grown rapidly in recent years and are
expected to continue improving – see Figure 1.1e and Figure 1.1f. Moreover, the
recent S3 over RDMA technique further enables high-speed object store for GPUs,
which can achieve storage access speed at 200 GB/s [7]. With significantly higher
computational power, GPUs are better positioned than CPUs to fully utilize these
high-bandwidth resources.

Declining GPU Cost. While GPUs of the latest generation remain in high demand
with high cost, older generations are becoming increasingly accessible in the cloud at
substantially lower cost. For instance, the GH200 instance shown in Table 1.1 has an
on-demand price of only $3.2/hour in Lambda Labs, which is significantly cheaper
than many high-end CPU instances. The on-demand H100 prices in many GPU cloud
providers has seen significant price drop from $8/hour in March 2023 to around
$3/hour in 2025 [20, 34]. Even in major cloud provider such as AWS, in 2025 alone,
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the A100, H100, and H200 on-demand price have dropped by 33%, 44%, and 25%
respectively [5].

1.2 Barrier in Adopting GPUs for Data Analytics
Despite their great potential, however, GPU-based SQL engines have not yet seen
mainstream adoption. Prior efforts, both academic and commercial, have been con-
strained by the following three key challenges and thereby remain niche solutions.

1.2.1 Challenge I – Supporting Data Larger-than GPU Memory

Modern GPUs offer impressive computational throughput, but their memory capacity
remains limited compared to CPU-based systems. Even the most advanced GPU,
such as NVIDIA’s Blackwell, supports up to 288 GB of device memory—far less than
the multiple terabytes available in high-end CPU servers.

To address this limitation, existing GPU databases[15, 16, 9, 11, 39] stream data to
the GPU on demand via the CPU-GPU interconnect when input data does not fit in the
GPU memory. The bandwidth of these interconnects, however, is significantly lower
than that of on-device memory. For example, PCIe Gen6 offers a peak bidirectional
bandwidth of 128GB/s, whereas the NVIDIA B200 GPU provides up to 8TB/s of high
memory bandwidth—a gap of nearly two orders of magnitude. Although newer
interconnects such as NVLink C2C (900 GB/s) mitigate some of these limitations,
the cost of offloading data between host and device memory remains substantially
higher than accessing data from the on-device memory. As a result, GPU database
performance degrades significantly when the working set exceeds available device
memory [133, 90, 15, 11], making it difficult to scale analytics workloads beyond a
certain point.

1.2.2 Challenge II – Supporting Complex Operators on GPUs

While GPUs excel at executing simple, data-parallel operations at massive scale, they
often struggle with more complex or irregular computations. Some key examples
are user-defined functions (UDFs) and user-defined aggregate functions (UDAFs),
which pose significant challenges for GPU acceleration. First, their logic is typically
defined at runtime, making it difficult to implement efficient GPU kernels ahead of
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time. Second, UDFs and UDAFs often introduce control-flow divergence and irregu-
lar memory access patterns, which are fundamentally at odds with the SIMT-style
execution model of GPUs. As a result, existing GPU SQL engines often either (1) fall-
back to CPU execution, which results in no performance benefit, or (2) attempt to run
these operators on GPUs inefficiently. For instance, executing a UDAF in cuDF—the
NVIDIA GPU-accelerated data processing library—can be up to 2.5× slower than
executing the same UDAF using single-threaded CPU execution in Pandas [129].

1.2.3 Challenge III – High Switching Cost from CPU to GPU
DBMS

Even when hardware limitations and performance concerns are addressed, the prac-
tical adoption of GPU DBMSes remains hindered by high switching costs. First,
there is substantial engineering cost required to build a SQL engine optimized for
GPU architectures. This includes implementing core relational operators, managing
memory hierarchies, and designing query execution engine that fully exploit the
GPU’s massive parallelism. These challenges are compounded by the fundamental
architectural differences between CPUs and GPUs, and the limited availability of
engineers with deep GPU programming expertise.

Second, transitioning from mature CPU-based systems to GPU-native engines
introduces significant migration and compatibility hurdles. Many organizations rely
on complex infrastructure, interface, tooling, and workflows tightly coupled with their
existing DBMS. Differences in user interfaces or query APIs often require rewriting
client applications, while data migration between CPU and GPU DBMSes may involve
converting storage formats or moving large datasets. These friction points create
resistance to adoption and have slowed the broader shift toward GPU-accelerated
analytics.

1.3 Large-Scale and Practical Data Analytics on GPUs
This dissertation aims to address the three key challenges outlined in Section 1.2 to
drive the adoption of GPU-accelerated data analytics. The first part of this thesis
(Part I) addresses the GPU memory capacity limitation (Challenge I) by introduc-
ing key system-level optimizations that significantly improve performance when
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Figure 1.2: Towards Large-Scale Data Analytics on GPUs

workloads exceed available GPU memory. The second part of this thesis (Part II)
tackles the remaining challenges: implementing complex operators efficiently on
GPUs (Challenge II) and reducing the switching cost from CPU-based to GPU-based
DBMSes (Challenge III), both of which are essential for practical adoption of GPU
databases.

1.3.1 Towards Large-Scale Data Analytics on GPUs

To enable large-scale data analytics on GPUs, this thesis contributes three key ideas
to address Challenge I: data compression, heterogeneous CPU-GPU DBMSes, and
multi-GPU DBMSes, with their impact illustrated in Figure 1.2.

Data Compression. By compressing data, we can alleviate the GPU memory limita-
tion by (1) fitting in a larger working set within the limited device memory and (2)
reducing data transfer overhead across the CPU-GPU interconnect by transmitting
compressed data instead. Step 1 in Figure 1.2 illustrates the benefit of compres-
sion. Despite these advantages, the existing GPU data compression solutions often
suffer from poor decompression performance - sometimes requiring more time to
decompress data than to execute the query itself [68]. To address this, we develop
the tile-based decompression framework [109] that enables efficient decompression of
cascaded compression schemes in a single pass. Furthermore, we introduce a set of
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massively parallel, GPU-optimized bit unpacking formats—GPU-FOR, GPU-DFOR, and
GPU-RFOR— [109] designed for high-throughput decompression on modern GPU
hardware. Our schemes can achieve similar compression rates to the best existing
scheme while being 2.2× faster in decompression speed and 2.6× faster in total query
runtime.

Heterogeneous CPU-GPU DBMS. The next step to enable even larger workload is
by leveraging both CPUs and GPUs during query execution. When data no longer
fits in GPU memory, heterogeneous CPU-GPU DBMSes allows us to avoid excessive
data transfer over the interconnect by executing portions of the query on the CPU.
Step 2 in Figure 1.2 illustrates the benefit of this approach. We improve existing
heterogeneous GPU and CPU databases by contributing in two aspects: (1) data
placement and (2) heterogeneous query execution strategy. We introduce semantic-
aware fine-grained caching policy [131] which takes into account query semantics, data
correlation, and query frequency when determining data placement between CPU
and GPU. We also introduce segment-level query execution, a heterogeneous query
execution strategy which can coordinate query execution in both devices at a fine
granularity [131]. We integrate both solutions in Mordred [131] – our heterogeneous
CPU-GPU analytical engine – which can outperform existing heterogeneous CPU-
GPU databases by 11×.

Scaling to Multiple GPUs. Finally, to scale the workload further, we can extend
to multi-GPU environment, gaining access to both greater aggregate memory and
computational power. Step 3 in Figure 1.2 illustrates the benefit of scaling to multiple
GPUs. To enable this, we enhance both the data placement and heterogeneous query
execution strategy in Mordred – our CPU-GPU analytical engine – to target multiple
GPUs. To improve data placement, we introduce the cache-aware replication policy [128]
which takes into account the cost of shuffle when replicating data across GPUs and
could coordinate both caching and replication decisions for the best performance. To
improve query execution, we extend the segment-level query execution strategy [131]
with distributed query processing techniques to support multiple GPUs [128]. We
integrate these optimizations into Lancelot [128] – our hybrid CPU and multi-GPU
analytics engine – which achieves 12× speedup over existing multi-GPU DBMSes.
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1.3.2 Towards Practical Data Analytics on GPUs

To enable practical data analytics on GPUs, this thesis contributes two key ideas:
addressing Challenge II by supporting user-defined aggregate functions (UDAFs)
on GPUs, and Challenge III by delivering a drop-in GPU-accelerated SQL engine.

Accelerating UDAF on GPUs. One of the most challenging operations to accelerate
in GPU databases is the user-defined aggregate function (UDAF), which allows
users to define custom aggregation logic beyond standard operations such as SUM(),
MAX(), or AVG(). We present the first framework to accelerate UDAF execution
on GPUs using a combination of a block-wide execution model and just-in-time (JIT)
compilation [129]. First, we optimize the UDAF execution by mapping each thread-
block to operate on each group using block-wide functions and pipeline the whole
UDAF execution in a single kernel. Second, we develop a Numba-based JIT compi-
lation framework to compile the UDAF kernel at runtime following the block-wide
execution model. Our framework can speedup the UDAF execution by 3600× against
Pandas and 8000× against the existing approach on GPUs. Our framework has also
been fully integrated and released in NVIDIA RAPIDS cuDFv23.02.

A Drop-In GPU-Native SQL Engine. To minimize the switching cost from legacy
systems to modern GPU databases, we introduce Sirius [130], an open-source GPU-
accelerated SQL engine that provides drop-in acceleration across diverse data systems.
Sirius integrates seamlessly with existing systems via the standard Substrait query
representation—allowing it to replace CPU-based execution engines without requir-
ing any changes to the data or the user-facing interface. Thanks to its modular design,
Sirius already supports GPU acceleration for two data systems—DuckDB[105] and
Apache Doris[3]—with more integrations planned in the future. Sirius can acceler-
ate DuckDB by 8.2× in a single node setting at the same hardware rental cost, and
accelerate Apache Doris by up to 12.5× in a distributed setting. Sirius has gained
substantial traction from the community and made it on the front page of Hacker
News [30].
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1.4 Organization
The rest of this thesis is organized as follows. Chapter 2 provides a relevant back-
ground and related work. The thesis is then divided into two parts.

Part I: Towards Large-Scale Data Analytics on GPUs. This part focuses scaling GPU-
accelerated query processing by solving existing limitations in data compression,
heterogeneous CPU-GPU execution, and multi-GPU DBMS.

1. Chapter 3 presents a GPU-efficient decompression framework combined with
GPU-optimized bit-packing schemes that achieve competitive compression
ratios with significantly lower performance overhead.

2. Chapter 4 introduces Mordred, a heterogeneous CPU–GPU DBMS with opti-
mized data placement and query execution strategies.

3. Chapter 5 scales out Mordred to multiple GPUs by introducing Lancelot, our
heterogeneous CPU and Multi-GPU DBMS.

Part II: Towards Practical Data Analytics on GPUs. This part focuses on enhancing
the practicality and ease-of-adoption of GPU databases.

1. Chapter 6 focuses on optimizing user-defined aggregate functions (UDAFs) on
GPUs, achieving over 8000× speedup compared to existing approaches.

2. Chapter 7 introduces Sirius, a GPU-native SQL engine designed as a drop-
in accelerator for existing CPU-based systems (e.g., DuckDB, Doris) without
requiring changes to the user facing interface.

Finally, we summarize and discuss future directions in Chapter 8.

The work in this dissertation is adapted from a range of publications (SIGMOD’22 [109],
VLDB’22 [131], DaMoN’23 [64], VLDB’24 [128], arXiv’25 [130]) and has inspired a
number of extensions in the literature [42, 121, 46, 98, 83].

Research in this dissertation has also made impact in the community and industry.
The decompression framework presented in Chapter 3 has been adopted by NVIDIA’s
nvCOMP library [19]. The techniques for accelerating user-defined aggregate functions
(UDAFs) on GPUs, described in Chapter 6, have been integrated and released into
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NVIDIA RAPIDS cuDF (v23.02) [9]. Our work on Sirius (Chapter 7) has also inspired
several optimizations in NVIDIA’s cuCollections [8] and libcudf [9] libraries.

Furthermore, prior to Sirius, there was no open-source GPU database for re-
searchers and practitioners to implement and test their ideas. Sirius removes this
barrier by providing an open-source platform on which the research community
can build, integrate, and validate their ideas, ultimately pushing the boundaries of
GPU-accelerated data analytics.
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Chapter 2

Background

To further understand the opportunities and challenges in GPU-accelerated databases,
and the contributions made by this thesis, it is essential to first review the fundamen-
tals of GPU architecture and how existing works leverage GPUs for query execution.
This chapter provides the necessary background for the rest of the thesis. We begin
with an overview of GPU memory hierarchy and execution model, which largely
determine the performance characteristics of database operators on GPUs. We then
survey prior work on query execution in GPU-accelerated databases, highlighting
the different system architectures and trade-offs for each design.

2.1 GPU Architecture
Performance of database operations on GPU is bound by the memory subsystem
(either shared or global memory) [133]. In order to characterize the performance
of different algorithms on the GPU, it is, thus, critical to properly understand its
memory hierarchy.

Figure 2.1 shows a simplified hierarchy of a modern GPU. The lowest and largest
memory in the hierarchy is the global memory. A modern GPU can have global memory
capacity of up to 288 GB with memory bandwidth of up to 8000 GBps. Each GPU
has a number of compute units called Streaming Multiprocessors (SMs). Each SM has
a number of cores and a fixed set of registers. Each SM also has a shared memory
(SMEM) which serves as a scratchpad that is controlled by the programmer and can
be accessed by all the cores in the SM. Accesses to global memory from a SM are
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Figure 2.1: GPU Architecture

cached in the L2 cache (L2 cache is shared across all SMs) and optionally also in the
L1 cache (L1 cache is local to each SM).

Processing on the GPU is done by a large number of threads organized into thread
blocks (each run by one SM). Thread block size can vary from 32 to 1024 threads.
Thread blocks are further divided into groups of threads called warps (usually
consisting of 32 threads). The threads of a warp execute in a Single Instruction Multiple
Threads (SIMT) model, where each thread executes the same instruction stream on
different data. The device groups global memory loads and stores from threads in a
single warp such that multiple loads/stores to the same cache line are combined into
a single request. Maximum bandwidth can be achieved when a warp’s accesses to
global memory target neighboring locations.

The programming model allows users to explicitly allocate global memory and
shared memory. Shared memory has an order of magnitude higher bandwidth than
global memory but has much smaller capacity (a few MB vs. multiple GB). Finally,
registers are the fastest layer of the memory hierarchy. If a thread block needs more
registers than available, register values spill over to global memory.

2.2 Query Execution on GPUs
A flurry of recent work [70, 92, 82, 133, 110] and a number of commercial systems
(e.g, HeavyDB [15], Kinetica [16], and BlazingSQL [6]) use GPU(s) to accelerate
query performance. These works can be broadly categorized into three categories.
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2.2.1 GPU as the Primary Execution Engine

The first category [15, 16, 110, 6] uses one or more GPUs to store all or significant
fraction of the working set directly in GPU memory and aim to deliver interactive
query response time; the main constraint is the limited GPU memory capacity. There
has been a number of research projects and commercial systems [110, 15, 16, 6, 28, 32]
that treat GPU as the primary execution engine. For example, Crystal [110] is a
library of CUDA device functions that can execute SPJA analytic queries fully on
GPUs. The NVIDIA RAPIDS cuDF [9] is a GPU-accelerated dataframe library that
serves as a drop-in replacement for pandas. These systems, however, will either
force query execution on the CPU or trigger an out of memory execution error when
the data does not fit in the GPU. To allow more data to fit in GPU memory, existing
works have also attempted to use multiple GPUs [32, 15, 16] for query execution.
The benefit of a multi-GPU DBMS is the increased total GPU memory capacity. These
GPUs are connected via NVLink, a modern interconnect with higher bandwidth to
mitigate the inter-GPU bottleneck.

2.2.2 GPU as a Coprocessor

A major constraint of treating GPU as the primary execution engine is the limited size
of GPU memory, which is often smaller than the size of the data set. One existing
solution is to treat GPU as an accelerator in a coprocessor model. In these systems, the
data mainly resides on CPU and will be transferred to GPU on demand during query
execution. Some previous works in this category focused on accelerating individual
database operations such as selection [112], join [101, 106, 79, 80, 86, 111, 107, 125],
and sorting [113, 75] in one or more GPUs. To accelerate a single database operation,
it is required to transfer the data from CPU to GPU and transfer the result back to
the CPU main memory.

Several full-fledged GPU-as-co-processor engines have also been developed in
the past [133, 90, 70, 123]. YDB [133] and HippogriffDB [90] stream the data from
CPU memory and execute one operator at a time. To reduce the overhead of data
transfer, they support compression over input data. Commercial systems such as
HeavyDB [15] adopt GPU as a primary execution engine and switch to coprocessor
model when the data no longer fits in GPU memory. Systems belonging to this
category do not suffer from limited GPU memory capacity since the data mainly
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resides in CPU. However, the main limitation is the amount of data moving over
PCIe, which can easily become a performance bottleneck since PCIe has very limited
bandwidth.

2.2.3 Heterogeneous CPU-GPU DBMS

To minimize data transfer while supporting datasets larger than GPU memory, exist-
ing works have attempted to use both CPU and GPU for query execution [78, 82, 50,
135, 62, 87, 94, 81, 96, 131, 136]. By partially executing the query on CPU, excessive
data transfer can be reduced. For example, CoGaDB [50] and Ocelot [82] cache hot
columns in the GPU memory and use a cost-based optimizer [57, 51, 58, 59] to assign
operators to either CPU or GPU. HetExchange [62, 63] introduced a query execution
framework to encapsulate heterogeneous parallelism in hybrid CPU/GPU system
through redesigning the classical Exchange operator.

Systems belonging to this category also do not suffer from limited GPU memory
capacity. However, it can still suffer from performance bottlenecks due to frequent
data transfers between CPUs and GPUs, as well as increased complexity in orches-
trating heterogeneous query execution across both processors.
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Chapter 3

Data Compression

One key constraint in enabling large-scale data analytics on GPUs is the GPU memory
capacity. Currently, GPUs have at most 288 GB of memory which is used both to
cache the working set and as scratch memory for query execution. Therefore, to
accommodate working set larger than GPU memory capacity, streaming data from
CPUs to GPUs is necessary [92, 132]. However, this approach will incur performance
penalty due to slower communication across PCIe or NVLink.

Data compression can play a critical role to address this constraint by achieving
two goals: (1) Fit in more working set in a single GPU memory and (2) Reduce the
data transfer time across interconnect by transferring the compressed data instead.
Furthermore, data compression is also applicable beyond the database field as link
bandwidth is often the bottleneck in many applications that use GPUs such as machine
learning and image processing.

The current GPU data compression solutions, however, suffers from two major
limitations:
1) Cascading Decompression
GPU-based systems [68, 90] have looked at frame-of-reference (FOR) [74, 139], delta
coding (DELTA) [89], dictionary compression (DICT) [40, 139], run-length en-
coding (RLE) [40], and null suppression (NS) [40]. To minimize the size of the
compressed data, existing systems cascade multiple compression schemes such that
the output of one scheme is the input to another scheme. The database engine de-
compresses one layer at a time. Such a cascading decompression strategy leads to
suboptimal performance as multiple GPU kernels are launched and each requires
reading from and writing data back to the global memory. This causes high memory
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traffic which may lead to much worse performance compared to a design that does
not use any compression. In this work, we improve decompression performance by
treating a thread block as the basic decompression unit, that decodes one block of
encoded entries. This way, we are able to cache a block of data in on-chip caches and
inline multiple decoding steps into a single kernel, resulting in a single pass over
the data. Moreover, we can even inline the decompression with query execution,
resulting in a single round-trip to the global memory for the whole decompression
step and query execution.

We call this tile-based decompression model which is inspired by Crystal [110]. Tile-
based decompression allows us to decode at close to memory bandwidth speed, resulting
in a very low decompression overhead over the previous compression work for GPU.
It also eliminates the need for sophisticated compression planners used by past
works [68, 90], since instead of balancing the trade-off between decompression time
and compression ratio, we can simply choose the scheme with the best compression
ratio — all schemes achieve similar performance.
2) Efficient Decompression of Bit-Packed Schemes
Besides the organization of different compression schemes, the decompression speed
of individual schemes is also limited in GPU today. Prior works on CPU compres-
sion [66] have shown that bit-aligned packing compression schemes manage to
achieve better compression ratio compared to byte- and word-aligned packing. Sup-
porting efficient bit-level packing in GPU is challenging due to the SIMT program-
ming model and the relatively limited instruction set to perform bit-level alignment,
which is not a problem in CPU compression schemes due to more powerful CPU
instructions.

In this work, we design optimized bit-packing based compression schemes and
their optimization techniques in the context of GPU. Specifically, we introduce three
new bit-packing based compression schemes: GPU-FOR does bit-packing in conjunc-
tion with Frame-Of-Reference (FOR) and work well with uniform data and can handle
skew; GPU-DFOR uses delta encoding with bit-packing and FOR, targeting sorted or
semi-sorted data; GPU-RFOR uses RLE encoding with bit-packing and FOR, targeting
data with high average run length. These schemes are designed to offer improved
compression ratios while still being able to decode data in parallel across thousands
of threads at close to memory bandwidth speeds. Overall, our compression schemes
can be decoded 2.2× faster than previous implementations.
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We integrate the tile-based decompression model and GPU-FOR, GPU-DFOR, and
GPU-RFOR into the Crystal framework [110], an open-source highly optimized GPU
data analytics engine. We encapsulate decompression into a device function that
enables programmers to change a kernel operating on an uncompressed array to
a compressed column with a single line of code. Our compression schemes target
integer, decimal, and dictionary-encoded strings and support all query operations
that run on these data types. In data analytics workloads, prior works [47, 95, 110]
and commercial systems [15] typically apply dictionary encoding on top of string
columns to encode them to integers.

Contributions. This work makes the following contributions:

• We introduce tile-based decompression, a decompression strategy that allows us
to decode the data in a single pass at close to memory bandwidth speed and
inline with query execution.

• We present three optimized bit-packing based compression schemes (GPU-FOR,
GPU-DFOR, and GPU-RFOR) that can be used to store data compactly on the GPU.

• We present an integration of the decompression routines into the Crystal
framework and demonstrate ease of use.

• We present an evaluation1 on multiple synthetic benchmarks and on the Star
Schema Benchmark (SSB). On SSB, our schemes can achieve similar com-
pression rates to the best state-of-the-art compression schemes in GPU (i.e.,
nvCOMP) while being 2.2× and 2.6× faster in decompression speed and query
running time.

Organization. The rest of the chapter is organized as follows: related work and
background are discussed in Section 3.1.1. We introduce the tile-based decompression
model in Section 3. We present the data format and the unpacking implementation on
the GPU for GPU-FOR, GPU-DFOR, and GPU-RFOR in Section 3.3, 3.4, and 3.5 respectively.
Section 3.6 discusses the integration into Crystal. Section 3.7 discusses the usage and
choice of compression scheme, parameter, and other relevant discussion Section 3.8
evaluates the performance and compression ratio of our approach against other
schemes on GPU. Finally, we conclude in Section 3.9.

1The source code is available at https://github.com/anilshanbhag/gpu-compression

https://github.com/anilshanbhag/gpu-compression
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3.1 Background

3.1.1 Compression Schemes

Lossless compression techniques have been heavily exploited in modern column-store
databases for efficient query processing and can be categorized into two buckets:
lightweight and heavyweight. Lightweight algorithms are mainly used in in-memory
column stores while heavyweight algorithms like Huffman [84] and Lempel Ziv [137]
(together with lightweight techniques) are used in disk-based column stores. In this
work we focus on lightweight techniques. We show later in Section 3.8 that most of
the compression gains can be achieved with just lightweight techniques.

There are five basic lightweight techniques to compress a sequence of values:
frame-of-reference (FOR) [74, 139], delta coding (DELTA) [89], dictionary compres-
sion (DICT) [40, 139], run-length encoding (RLE) [40], and null suppression (NS)
[40].
FOR represents each value in a sequence as a difference to a given reference value.
FOR is applied to a block of integers and the reference value chosen is usually the
minimum value to make all values positive. FOR is good when the block of integers
have similar values.
DELTA represents each value as a difference to its predecessor value. DELTA is good
when the array is sorted or semi-sorted.
DICT replaces each value by its unique key in the dictionary. DICT is effective for
columns with low cardinality.
RLE replaces uninterrupted sequences of occurrences of the same values (called
runs) by the value and length of the sequence. Hence a sequence of values is replaced
by a sequence of pairs (value, length).
NS removes leading zeros from an integer’s bit representation. NS is useful when a
column contains many small integers.

FOR, DELTA, DICT, and RLE work at the logical level where a sequence of values
is compressed into another sequence. NS addresses the physical level of bits with the
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basic idea of removing leading zeros in the bit representation of small integers. There
are many different NS techniques proposed which can broadly be categorized as
(i) bit-aligned, (ii) byte-aligned, and (iii) word-aligned. Bit-aligned NS algorithms
compress an integer to a minimal number of bits; byte-aligned NS compress an
integer with a minimal number of bytes; word-aligned NS encodes as many integers
as possible into 32/64-bit words. The NS algorithms also differ in their data layout.
We distinguish between horizontal layout [120, 91] and vertical layout [69, 91, 89].
In the horizontal layout, the compressed representation of subsequent values is
situated in subsequent memory locations. In the vertical layout, each subsequent
value is stored in a separate memory word in a striping fashion. Cascading multiple
compression schemes together has been done on both CPU and GPU to achieve a
better compression ratio [68, 90, 89, 19], where the input of one scheme is the output
of another scheme.
CPU-based compression. Wang et al. [118] presented a survey of bitmap and
inverted list compression in the area of database and information retrieval. Among
these schemes, VB [65, 67] is a variant of NS algorithm with variable byte-aligned
packing. PFOR and its variants [126, 138] encode a block of integers such that the
majority of the integers can be encoded into b-bits and store the rest of the integers
at the end. Simple-N and its variants [44, 43, 134] are word-aligned compression
methods with 4 status bits to represent N combinations of bitwidth and 28 data bits
used to store the data. All these schemes are typically a NS algorithm cascaded with
Delta/RLE since they run on sorted datasets. Li and Patel [91] proposed Bitweaving
which includes Horizontal Bit-Parallel (HBP) and Vertical Bit-Parallel (VBP) storage
layouts. HBP achieves better decompression performance but VBP achieves better
compression rates. ByteSlice [69] improves the performance of VBP by striping in
bytes instead of bits but at the cost of larger storage footprint.

Across various compression schemes, the best performing ones are SIMD-scan [120,
104] which uses bit-aligned packing with a horizontal data layout and SIMD-BP128 [89]
(and its variants) which use bit-aligned packing with a vertical data layout. SIMD-scan
stores column values in a tightly bit-packed horizontal layout, ignoring any byte
boundaries. SIMD-BP128 processes data in blocks of 128 integers at a time and stores
these integers in a vertical layout using the number of bits required for the largest of
them. Figure 3.1 illustrates the vertical layout where the first four integers Int1, Int2,
Int3, Int4 start out in four different 32-bit words. Int5 is immediately adjacent to Int1,
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Figure 3.1: Bit-packing with vertical data layout

Int6 is adjacent to Int2, etc.
GPU-based compression. Fang et al. [68] and HippogriffDB [90] support the
cascading of five basic lightweight techniques. They evaluated two byte-aligned
schemes: NSF and NSV. NSF encodes every element in the input array with a fixed
number of bytes whereas NSV allows each value to be encoded in a variable length
of bytes. To generate the compression schemes, these designs use a compression
planner to generate a plan for each column. Based on the column properties (i.e.,
sorted/unsorted, average run length, number of distinct values, etc.), the planner
will generate a plan with the best compression ratio. During decompression, these
designs treated each compression scheme as independent layers. Therefore, during
decompression of cascaded scheme, different kernels will be called in succession to
decode one compression layer at a time (see Figure 4 (left)). This leads to suboptimal
decompression performance.

Mallia et al. [93] introduced two new NS algorithms (GPU-BP and GPU-VByte).
GPU-BP encodes the data in a horizontal layout similar to SIMD-Scan. GPU-VByte
decodes the input array with a variable length of bytes similar to NSV in [68]. This
work, however, does not support cascading compression schemes which limits its
compression rate. nvCOMP [19] is a generalized CUDA-based compression library
that supports cascaded compression schemes consisting of the five basic lightweight
techniques. Their bit-packing scheme does not saturate memory bandwidth. Further,
nvCOMP does not support the end-to-end pipelining of multiple decompression
steps with query execution. This leads to suboptimal performance during query
execution. We will evaluate the performance of all the previous GPU compression
schemes in Section 3.8.4.

3.1.2 Tile-based Execution Model

A recent work, Crystal [110], presented a library of CUDA device functions that can
be composed together to execute analytic queries on GPUs. Crystal adopts the idea
of tile-based execution model, which instead of viewing each thread as an independent
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execution unit, views a thread block as the basic execution unit with each thread block
processing a tile of entries at a time. Compared to a single thread, a single thread
block can hold a significantly larger group of elements collectively in shared memory.
This group of elements is called a tile. The key advantage of this model is that after a
tile is loaded into shared memory, subsequent passes over the tile will be read directly
from shared memory, avoiding multiple round-trips to the global memory. As a
result, Crystal could execute analytic queries close to memory bandwidth speed.

3.2 Tile-based Decompression
Cascading compression schemes achieve better compression ratio than individual
compression schemes [68, 90]. However, decompressing a cascaded scheme can
degrade performance as intensive decompression overburdens the GPU. The reason
behind the bad performance was that past work decoded one layer of compression at
a time and thus required multiple passes to decode the compressed data and execute
the query. Figure 3.2 (left) illustrates this approach for decompression of table
data consisting of delta encoding, frame of reference, and fixed length byte-aligned
packing (Delta+FOR+NSF). To fully decode the column and execute the query, these
systems have to (1) do a first pass to unpack the byte-packed data (decompress NSF),
(2) do a second pass to add the data with the base reference (decompress FOR), (3)
do a third pass to delta decode the data (decompress Delta), and finally (4) launch
the query kernel on top of the the fully decoded data. Step (2) and (3) can potentially
be merged together into a single step — adding the reference while unpacking the
byte-packed data. Prior works [68, 90], however, separated the kernels to support
more flexible compression plans. If the query requires multiple encoded columns,
steps (1)–(3) will have to be repeated for each column. In this model, decompression
is expensive since the intermediate data is read and written to the global memory
after every kernel pass, incurring significant memory traffic. We will refer to this
model as the cascading decompression model.

In this work, we introduce the tile-based decompression model which is inspired by
tile-based execution model [110]. In the tile-based decompression model, each thread
block collectively loads a block of encoded data into shared memory, which is called a
tile. Next, multiple steps of decompression are applied on the tile directly in shared
memory, avoiding multiple passes to the global memory. Figure 3.2 (right) shows
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Figure 3.2: Decoding cascaded compression scheme (Delta+FOR+NSF) using cas-
caded decompression (left) and using tile-based decompression (right)

how to decompress the cascaded scheme Delta+FOR+NSF with tile-based decompression.
The three decompression steps can now be encapsulated into a single function which
can be called from inside the query kernel during execution. This would enable us to
decompress cascaded compression schemes in a single pass over the column. Further,
this decompression can be inlined with query execution. Compared to cascading
decompression, the intermediate data transfer of tile-based decompression is X times less,
where X is the depth of the compression layers.

Applying tile-based decompression requires each compression scheme in the cascade
to have the following two properties:

Property 1: Tile-granularity data format
In tile-based model, the data needs to be partitioned and encoded in the granularity
of tiles where each tile fits in shared memory. This allows us to decode each tile
independently.

Property 2: Tile-based decompression routine
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During decompression, we want to read the encoded data from global memory
only once. To achieve this for cascaded schemes, we should be able to express the
decompression routine as a function that takes a tile in shared memory as input and
outputs a tile to shared memory.

In the next three sections, we will show that FOR, Delta, RLE and bit-aligned
NS obey the above two properties. We will introduce three new bit-packing based
compression schemes (GPU-FOR, GPU-DFOR, and GPU-RFOR) and discuss how they
can be integrated with the tile-based decompression model. We will also discuss the
integration with Crystal system in Section 3.6.

3.3 Fast Bit Unpacking
While Section 3.2 has demonstrated that tile-based decompression could solve the cas-
cading decompression problem in GPU. However, individual compression schemes
such as bit-packing have not been sufficiently optimized on GPU. Addressing this
issue will be the main focus of the next three sections.

In this section, we describe the GPU-FOR2 compression format, which uses bit-
packing in conjunction with Frame-of-Reference (FOR) to store data compactly on
the GPU and the fast bit unpacking routine used to decompress it efficiently on the
GPU. GPU-FOR can be used to efficiently compress attributes of type integer, decimal,
or dictionary-encoded string (i.e. sequence of integers) in a column store. At runtime,
the executor decompresses data and runs the query on the decompressed data. Hence,
optimizing the performance of decompression is critical for analytic workloads. In
the rest of the section, we describe first the bit-packing representation we use and
then the kernel implementation on the GPU. We present a series of optimizations
that allow us to decode bit-packed data while saturating memory bandwidth.

3.3.1 Data Format

Bit-packing is a process of encoding small integers in [0, 2b) using b bits; b can be
arbitrary and not just 8, 16, 32, or 64. Each number is written using a string of length
b. Bit strings of fixed size b are concatenated together into a single bit string, which
can span several 32-bit words. If some integer is too small to use b bits, it is padded

2GPU-FOR was designed and implemented by Anil Shanbhag – a collaborator in the project
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with zeros. Compressing 32-bit integers to b bits achieves a compression ratio of
32/b, which can be significant.

Choosing a common bit size b for an entire array would mean that the occurrence
of a single large value would increase the number of bits needed to encode the values.
Hence, bit-packing is generally used in conjunction with FOR encoding. In GPU-FOR,
the array of values is partitioned into blocks of 128 integers, which is the tile that will
be processed by a thread block. The range of values in the block is first found and
then all the values are written in reference to the minimum value. For example, if the
values in a block are integers in the range [100,130], then using a reference of 100, we
can store them using 5 bits (log2(130 + 1 − 100)). Each block is further divided into
sequences of 32 integers called miniblocks. For each miniblock, we choose a bit-width
based on the maximum number of bits needed to encode the largest value.

The choice of block size and miniblock size is to ensure they align on a 32-bit
boundaries (shared memory access granularity). Having 32 integers in one miniblock
means that for any bitwidth, the miniblock always ends on 32-bit boundary. This
would allow us to use 32-bit arithmetic while decoding and make shared memory
accesses efficient. The bitwidth for a miniblock can then be stored in 1 byte. Since we
want to align along 32 bit boundaries, we group 4 miniblocks into a single block and
store the 4 bitwidths at the start of the block using a single integer. Hence, each block
now consists of 128 integers.

The bit-packed array needs to be decoded in parallel across a large number of
threads. For this, we store the start index of the blocks in a separate array called
block starts. Finally we store the metadata associated with the encoding: block size
(i.e., the number of integers within each block), miniblock count (i.e., number of
miniblocks per block), and the total count (i.e., total number of integers in the data
array) in the header. Figure 3.3 shows a schematic of the format we use to store data.

Figure 3.4 shows an example of encoding 16 integers into a block with 2 miniblocks.
The minimum value in the block (i.e., 99) is used as the reference. We calculate the
difference of the block values from the reference. Each miniblock contains 8 integers.
We see that the first miniblock needs 2-bits per block while the second miniblock
needs 4-bits per block. We encode each miniblock with their respective bitsizes and
store the reference and bitwidths at the start of the block.
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Figure 3.4: Example encoding with GPU-FOR

3.3.2 Implementation

In this section, we describe a number of optimizations at the implementation level that
we applied to achieve decompression at close to GPU memory bandwidth speed. To
give an impression of the importance of each optimization, we end every subsection
with the time taken to decode a compressed dataset of 500 million integer values
drawn from a uniform distribution U(0, 216). The details of the experimental setup
can be found in Section 3.8.1.

Base Algorithm: Algorithm 1 shows the pseudocode that would run in parallel on
each thread (n threads are allocated for n-element dataset). Each thread block (of
size 128 threads) is assigned to decode a block (of 128 elements) with each thread
decoding one element in the block based on its index. Each thread starts by reading
the block start pointer of the block to find where in the data array the block starts (line
1–2). Each thread then reads in the bitwidth_word, and uses it to compute the offset
of its miniblock in the data array (miniblock_offset) (lines 7–10). In computing the
miniblock offset, we use the fact that if entries in a miniblock are encoded with b bits,
then the miniblock occupies 4b bytes (since there are 32 entries per miniblock). Next,
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Algorithm 1: Fast Bit Unpacking on GPU — The following code runs on
each of the 128 threads within a thread block in parallel.

Input : int[] block_starts; int[] data; int block_id;
int thread_id

Output : int item
1 int block_start = block_starts[block_id];
2 uint * data_block = &data[block_start];
3 int reference = data_block[0];
4 uint miniblock_id = thread_id/32;
5 uint index_into_miniblock = thread_id & (32 - 1);
6 uint bitwidth_word = data_block[1];
7 uint miniblock_offset = 0;
8 for j = 0; j < miniblock_id; j++ do
9 miniblock_offset += (bitwidth_word & 255);

10 bitwidth_word ≫= 8;
11 uint bitwidth = bitwidth_word & 255;
12 uint start_bitindex = (bitwidth * index_into_miniblock);
13 uint header_offset = 2;
14 uint start_intindex = header_offset + miniblock_offset + start_bitindex/32;
15 uint64 element_block = data_block[start_intindex] | (((uint64)data_block[start_intindex +

1]) ≪ 32);
16 start_bitindex = start_bitindex & (32-1);
17 uint element = (element_block & (((1≪bitwidth) - 1) ≪ start_bitindex)) ≫ start_bitindex;
18 item = reference + element;

we compute the offset in bits within the miniblock (line 12). Since the entries are
bit-packed, they are not byte-aligned and can span byte boundaries. Using starting
bit index, we calculate the starting integer index (start_intindex) of the entry (lines
13-14). We then load an 8-byte block starting at start_intindex (element_block)
(line 15). This block contains the entire element, we use bitshift arithmetic to extract
the entry (lines 16–17). Finally, we add reference and return the result. The result
resides in a register and is used subsequently during query execution. In Section 3.6,
we describe in greater detail how the algorithm is used during query execution.

To optimize performance, the compressed block can be loaded entirely into shared
memory at the start of the operation. All subsequent requests are then directed to
shared memory, which offers an order of magnitude higher bandwidth than global
memory, thereby improving performance. Furthermore, to reduce irregular memory
access, each thread block can processD data blocks instead of just one. Our evaluation
shows that choosing D = 4 significantly increases the global memory coalescing and
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achieves the best performance. Hence, we use D = 4 for the rest of the chapter.

3.4 Fast Delta Decoding
Delta encoding (also called differential encoding) is a common approach used (typ-
ically in conjunction with other techniques) to compress sorted or partially-sorted
integer/decimal arrays. Instead of storing the original array of integers (x1, x2, x3...),
delta encoding keeps only the difference between successive integers together with
the initial integer (x1, δ2 = x1 − x1, δ3 = x3 − x2, ..). Since the differences are typically
much smaller than the original integers, delta encoding allows for more efficient
compression. In this section, we describe the GPU-DFOR3 coding scheme that uses
delta encoding in conjunction with bit-packing and frame of reference to achieve
good compression ratios and can be decoded efficiently.

The sequential form of delta encoding requires just one subtraction per value (δi =
xi−xi−1). During decoding, we require one addition per value (xi = δi+xi−1). For an
arrayA of k elements, the prefix sum pA is a k-element array where pA[j] =

∑j−1
i=0 Aj =

pA[j− 1] +Aj. Hence, the process of delta decoding is equivalent to computing the
prefix sum. Efficient parallel prefix sum routines have been proposed [77] that could
be used to decode delta encoded data on the GPU. A simple approach to delta encode
+ bit-pack the data would be to do it as two separate steps: first compute the deltas for
the entire array and then bit-pack the deltas. The decoding would then be a two-step
process: the first pass would use the bit unpacking routine described in Section 3.3.2
to decode the deltas and write it to global memory; the second pass would use the
prefix sum routine to decode the data. This is the approach used by past work [68, 90]
and is inefficient as it requires multiple passes over the data. Later in this section we
describe how we can combine the delta decoding step and the bit unpacking step
into a single pass.

3.4.1 Data Format

Delta encoding an entire array as x0, δ1, δ2... makes it hard to parallelize as decoding the
nth block requires the (n−1)th block to have been decoded already. To enable parallel
decoding, we build our data format on GPU-FOR encoding scheme (Section 3.3.1) by

3GPU-DFOR was designed and implemented by Anil Shanbhag – a collaborator in the project
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partitioning the array into sets of D blocks where each block contains 128 integers and
delta encoding each set of D blocks independently (where D is the number of blocks
processed per thread block), as shown in Figure 3.5. Encoding x integers generates
x− 1 deltas. During encoding, we pad the deltas with 0 to ensure every block has 128
entries. We store the first value separately before every Dth block, with start pointers
still pointing to the start of each block.

GPU-DFOR compresses better than GPU-FOR on sorted and semi-sorted arrays, e.g.,
sorted primary keys or posting lists in search workloads. Consider a dataset ofn = 500
million integers with entries from 1 to n sorted. This dataset when compressed using
GPU-DFOR uses 1.8 bits per integer vs 7.8 bits per integer used by GPU-FOR. Using it for
unsorted data could lead to worse compression ratios compared to simply bit-packing
the data. For example, for an array of integers drawn uniform randomly from [0, 32),
the deltas will be in the domain [−31, 31]. In this case, GPU-DFOR will likely require
more bits per integer than GPU-FOR.

3.4.2 Implementation

With the data format described above, each tile of D blocks can be decoded indepen-
dently. During decoding, we first start by loading the D block segments into shared
memory and use the fast bit unpacking routine (described in Section 3.3.2) to decode
the deltas.

After bit unpacking the deltas, we have D deltas per thread. The output data
entries can be calculated using prefix sum over the deltas of all threads within the
thread block. We can use block-wide prefix sum to compute the prefix sum over
the deltas based on the work-efficient prefix sum algorithm proposed by Blelloch et
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al. [45]. For an array of n integers, the algorithm is able to compute the prefix sum of
the array in parallel using Θ(logn) steps. Interested reader can refer to [45, 110] for
more details.

Although prefix sum has been used widely in libraries like Thrust [35], doing
prefix sum over an entire array is expensive and involves multiple passes over data.
A key observation we make is that since we do delta coding in each tile (set of D
blocks) separately, prefix sum can happen entirely within a thread block in shared
memory. This also allows us to fuse bit unpacking and delta decoding steps into a
single kernel which allows our implementation to perform decompression in a single
pass over the data blocks in global memory compared to multiple passes required
by previous works [68, 90]. The bit unpacking and delta decoding share the same
shared memory buffer. In our implementation, we reuse an existing block-wide prefix
sum implementation from Crystal. The total resource requirement of the kernel is D
4-byte entries in shared memory and D registers to store the output per thread.

3.5 Fast Run Length Decoding
Run length encoding (RLE) is a common approach used to compress a data sequence
with consecutive runs of values. For example, given an original array of integers
(x, x, x, x,y,y, z, z, z), run length encoding stores the original array as two separate
arrays: the values (x,y, z) and the run length of the values (4, 2, 3). For data set with
high average run length, RLE can greatly reduce the total memory footprint. In this
section, we describe the GPU-RFOR coding scheme that uses RLE in conjunction with
bit-packing and frame of reference to achieve good compression ratios and efficient
decompression time.

A simple approach to RLE + bit-pack the data contains two steps: first generate
the run length and values arrays and then bit-pack both arrays. To decode it, we
would use the bit unpacking routine described in Section 3.3.2 to decode the run
length and values array. After that, we decode RLE by using the decompression
routines as described in [68]. This includes making 4 passes two the global memory
in which the two are inclusive prefix sum. Interested readers can refer to [68] for a
more in-depth explanation. Later in this section we describe how we can combine
the decompression steps into a single pass.

To enable parallel decoding, we once again build our data format on the GPU-FOR
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encoding scheme (Section 3.3.1) by partitioning the array into blocks of 512 integers
and applying RLE to each block independently to create the value array and the
run length array. We then apply FOR on top of both arrays separately. In addition to
reference and bitwidths (see Section 3.3.1), we store extra metadata of the run length-
/values count at the beginning of each block. The two compressed representations of
run length and values arrays are stored separately.

With the data format described above, each block can be decoded independently.
During decoding, we first start by loading one block of compressed run length and
one block of compressed values into shared memory and use the fast bit unpacking
routine (described in Section 3.3.2) to obtain the uncompressed run length and values
array for the corresponding block. After bit unpacking both columns, the output
data block entries can be calculated using the four steps described in [68] for all
the threads within the thread block. These steps include 2 scatter and 2 inclusive
prefix sum operations. We use the same block-wide prefix sum as the one described
in Section 3.4.

Since each block can be decoded independently, the four decoding steps of RLE
can be served completely by the shared memory. This allows us to fuse bit unpacking
and run length decoding steps into a single kernel which allows our implementation
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to perform decompression in a single pass over the data blocks in global memory.
GPU-RFOR, however, requires twice more resources than GPU-DFOR since there are two
input columns (value and run length) resulting in twice more blocks to be loaded
into the shared memory.

3.6 Database Integration
Given the efficient massively parallel bit-unpacking implementations described in
the previous sections, we were naturally interested in its usability in a full system.
As a proof of concept, we implemented the decompression routines as CUDA device
functions4 and show how they can be used with an existing GPU analytical engine.
In particular, we chose Crystal [110], an open-source GPU analytics framework
developed recently.

Crystal is based on the idea of a tile-based execution model. Previous work [110]
has shown that SQL query operators and analytical queries implemented with Crys-
tal can saturate memory bandwidth and thereby deliver an-order-of-magnitude
speedup compared to CPU-based implementations. We have implemented the de-
compression routines for GPU-FOR, GPU-DFOR, and GPU-RFOR as CUDA device functions
LoadBitPack, LoadDBitPack, and LoadRBitPack respectively. These functions can be
used in queries implemented in Crystal easily and can be used more broadly in any
CUDA kernel as well. To integrate them into Crystal, the only required changes are
to replace the load routines (BlockLoad) in Crystal with LoadBitPack. Therefore, the
user can run the query on compressed data by just changing a single line of code.
Readers interested in Crystal can refer to [110].

One key drawback of bit-packed data is that it lacks random access. Accessing any
element requires loading the entire data block. As a result, when selections or joins
filter data entries, we still have to read the entire column. We will show in Section 3.7
why this would not lead to material impact on performance.

Since the routines LoadBitPack, LoadDBitPack, and LoadRBitPack are ordinary
device functions, they can be used directly in user’s CUDA code in conjunction with
other GPU frameworks like Thrust and Cub [35], and they can also be called directly
from NVVM (a compiler internal representation based on LLVM IR designed to
represent GPU compute kernels) [23].

4Device functions are functions that can be called from kernels on the GPU
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3.7 Discussion
In this section, we discuss certain key aspects that we haven’t covered with respect to
usage and choice of compression method.
Choice of Compression Scheme: The rule-of-thumb when choosing a compres-
sion scheme is to use the one that has the lowest storage footprint for each column.
Therefore, data distribution plays a very important role in such cases. In general,
GPU-DFOR is suitable for sorted or semi-sorted columns with high number of distinct
values. GPU-RFOR is suitable for columns which have a low number of distinct values
or columns with a high average run length. Other columns which do not have such
properties are typically suited for GPU-FOR. Since each column can be decoded with
different schemes, we will refer to this hybrid scheme as GPU-* for the remainder of
the dissertation. We will show how GPU-* performs when we measure the end-to-end
system performance in Section 3.8.
Hyperparameter Tuning: The number of blocks processed per thread block D is
the only hyperparameter in the schemes we propose. As discussed in 3.3.2, we will
choose D = 4 in our evaluation. As GPUs improve, it is likely they will have more
shared memory and registers per thread, thereby allowing us to use higher values of
D during query processing.
Compression Speed: In data analytics workload, data compression is generally a
one-time activity that happens on the CPU side. However, in the event of updates,
the data need to be recompressed and transferred again to the GPU memory to
replace the old data. We measure the time required to compress the data to simulate
such cases. Compressing 250 million entries of random dataset using GPU-FOR and
GPU-DFOR on a 6 cores CPU machine takes approximately 1.2s and 1.3s respectively.
GPU-RFOR is not suitable for this distribution and therefore takes longer to compress
(2.2s).
Out-of-core Dataset: In the event that the compressed dataset does not fit in the
GPU memory, the GPU as a co-processor model can be leveraged. In such case,
the compressed data will be transferred from CPU to GPU before running each
query. Compression still brings benefits since it reduces the total amount of data
being transferred through the limited PCIe interconnect. We show the benefit of
compression for out-of-core dataset in Section 3.8.5.
Random Access Performance: We measure and compare the performance of our
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compression schemes against uncompressed data under random access patterns. To
simulate random access behavior, we generate a predicate bitvector to filter random
250 million data entries and sweep the selectivity from 0 to 1. For our compressed
schemes (GPU-FOR, GPU-DFOR, and GPU-RFOR), we achieve good performance when
σ < 1/TILE_SIZE since we can skip loading the entire compressed tile. When
σ > 1/TILE_SIZE, however, we will have to load the entire compressed tile from the
global memory and decompress it before applying the bitvector. This result in the
constant performance of 2.1 ms for GPU-FOR and GPU-DFOR.

For uncompressed data, since the granularity of access in GPU global memory
is 128B, when the selectivity is above (σ > 1/32), we would have to read the entire
cache line for every random access which results in reading the whole dataset. This
results in the constant performance of 2.5 ms. Our performance is better since the
reduction in data size reduces the total data read which often compensates for the
loss of efficiency in the case of a selective filter. This shows that random access does
not have a material impact on performance in a compressed setting.

3.8 Evaluation
In this section, we evaluate the performance characteristics of the different com-
pression schemes (GPU-FOR, GPU-DFOR, and GPU-RFOR) to understand (1) impact of
applying tile-based decompression, (2) impact of data distribution, (3) performance
within SQL queries, and (4) performance of our encoding schemes compared to the
existing schemes from previous works.

The rest of the section is organized as follows: we discuss the experiment setup
in Section 3.8.1. In Section 3.8.2 we evaluate the performance of different encoding
schemes on synthetic dataset with varying bitwidths and illustrate the impact of
tile-based decompression on our encoding schemes. In Section 3.8.3, we evaluate
the impact of data distributions to different encoding schemes. In Section 3.8.4, we
evaluate the end to end systems performance against previous works using the Star
Schema Benchmark. Finally, in Section 3.8.5, we discuss the case when GPU is used
as a coprocessor.
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3.8.1 Setup

Hardware configuration: For the experiments, we use a virtual machine instance
that has an Nvidia V100 GPU which is connected to Intel Xeon Platinum 8167M CPU
via PCIe3. The Nvidia V100 GPU has 16 GB of HBM2 memory. The global memory
read/write bandwidth is 880 GBps. The Intel Xeon Platinum CPU has 6 virtual cores
and 180 GB DRAM. The bidirectional PCIe transfer bandwidth is 12.8 GBps. The
system is running on Ubuntu 18.04 and the GPU instance uses CUDA 11.2.
Measurement: In our evaluation except for Section 3.8.5, we ensure that data
is already loaded into the GPU memory before experiments start. We run each
experiment 3 times and report the average measured execution time.

3.8.2 Performance with Varying Bitwidths

In this section, we test the performance of our proposed compression algorithms
(GPU-FOR, GPU-DFOR, and GPU-RFOR) against existing encoding schemes on workloads
with varying bitwidths. We will compare the performance against the following
schemes:

• None: Data is stored as 4-byte integers uncompressed.

• NSF: Null suppression with fixed length encoding. The entire array is encoded
as 1, 2, or 4 byte entries depending on the maximum number of bits needed for
any integer in the column.

• FOR+BitPack: Using GPU-FOR encoding scheme but adopting cascading decom-
pression routine. Hence, it will decode the schemes in two kernel passes — the
first pass will decode bit-packing and the second pass will decode frame of
reference.

• Delta+FOR+BitPack: Using GPU-DFOR encoding scheme but adopting cascading
decompression routine. Hence, it will decode the schemes in three kernel passes
— the first two passes to decode FOR+BitPack followed by a prefix sum to decode
Delta.

• RLE+FOR+BitPack: Using GPU-RFOR encoding scheme but adopting cascading
decompression routine. It decodes the schemes in eight kernel passes — the first
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Figure 3.7: Performance with Varying Bitwidths

four passes to decode FOR+BitPack for both the run length and values columns
and the last four passes to decode RLE following the steps described in [68].

For this comparison, we use a synthetic dataset with varying bitwidth. We generate
15 unsorted datasets each with 250 million entries, such that all data elements in the
i-th dataset have exactly i effective bits, i.e., the value range is [0, 2i) for i = 2,4,..,30.
Within each range, the values are uniformly distributed.
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Figure 3.7a shows the decompression time of these eight schemes for varying
bitwidth. In this figure, we are (1) reading the compressed data from the global
memory, (2) decoding it, and (3) writing back the uncompressed data to the global
memory. Note that (3) is constant across bit widths while (1) will incur higher
global memory operation (read) as the bitwidth increases which would translate
directly to slightly increasing decompression time for all schemes. In all measure-
ments, GPU-FOR, GPU-DFOR, and GPU-RFOR perform significantly better compared to
their correspondence without tile-based decompression. GPU-FOR achieves 2.6× better
performance compared to FOR+BitPack. GPU-DFOR achieves 4× better performance
compared to Delta+FOR+BitPack. GPU-RFOR achieves 8× better performance com-
pared to RLE+FOR+BitPack. This shows the benefit of applying tile-based decompression
on our schemes.

The performance of NSF is a staircase pattern where the runtime is based on
whether the entry size is 1, 2, or 4 byte. Both None and NSF saturate memory band-
width. The performance of GPU-FOR is slightly worse than NSF with the worst case
gap of 15% achieved at bitwidth 7. The gap is due to slightly larger data size and
irregular access pattern associated with accessing the block_starts array used to
find the block offsets in the data array. The decompression performance of GPU-DFOR
is comparable but slightly worse to GPU-FOR as it has a slightly larger storage footprint.
The decompression performance of GPU-RFOR is worse than GPU-FOR and GPU-DFOR.
Apart from the fact that the random dataset is not suitable for this compression
scheme, decoding GPU-RFOR also requires twice as much resource in terms of GPU
registers and shared memory capacity and operations compared to GPU-DFOR.

Figure 3.7b shows the compression rate of five compression algorithms. The
bit-packing schemes achieve the finest possible granularity and thus can perfectly
adapt to any bitwidth. Consequently, the compression rate is a linear function of
the bitwidth. The overhead for GPU-FOR is 0.75 bit per int (1 block start word + 1
reference word + 1 bitwidth word per block of 128 integer entries). The overhead
for GPU-DFOR is 0.81 bit per int (0.75 + 1 first value word per D = 4 blocks). As
the data is not sorted, the deltas vary in the range [0, 2i) and require one additional
bit; our experiments in Section 3.8.3 show the benefit of GPU-DFOR on sorted data.
Since the dataset generates random values, GPU-RFOR is not suitable for this dataset.
Nevertheless, the compression rate is still a linear function of the bitwidth since the
bit-packing scheme is applied on top of the RLE columns. The overhead for GPU-RFOR
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Figure 3.8: Comparison of compression schemes on different data distributions

is slightly less than GPU-FOR since this scheme uses 512 integer entries per block,
resulting in less compression metadata (the block start word and the reference word
is stored every 512 entries).

Overall, this experiment shows that (1) tile-based decompression can significantly
improve the performance compared to cascaded decompression model, and (2) our
bit-packing schemes manage to achieve very good compression rates with almost no
overhead on decompression speed.

3.8.3 Performance Across Data Distributions

In this section, we test the robustness of various compression schemes by evaluating
their performance using various data distributions. In addition to the schemes we
compare against in the previous section, we also compare to the performance of two
more compression schemes:

• RLE: Represents runs of the same value as a pair: (value, run-length). Values
and run lengths are stored in two separate columns.

• NSV: Represents each value with a variable number of bytes (1,2,3 or 4). In a
separate array it maintains the number of bytes used using 2 bits per value. This
scheme is good for handling skew.



39

In this experiment, we generate synthetic workloads with the size of 250 million
entries with the following three different distributions.

• D1: a sorted array where we vary the number of unique values from 4 to
228. Typically a table is sorted based on one column, which D1 is designed to
resemble.

• D2: a normal distribution with a standard deviation of 20 and mean varying
from 64 to 230.

• D3: a Zipfian distribution with the exponent alpha characterizing the distribu-
tion varying from 1 to 5 (1 is least skewed, 5 is most skewed). D3 resembles
dictionary encodings of tweets or text corpora where distribution of words
follows Zipf’s law. For this distribution, we also compare against NSV.

We will not evaluate RLE/GPU-RFOR on D2, D3 as they are not suitable for these data
distributions.

The results for D1 can be found in Fig. 3.8 (a-b). The bit-aligned algorithms
GPU-FOR, GPU-DFOR, and GPU-RFOR achieve better compression ratios compared to
None and NSF due to use of FOR. As the number of unique values increases beyond
222, the block of 128 integers is likely to have different values. As the dataset is sorted,
GPU-DFOR can encode such cases with fewer bits compared to GPU-FOR and GPU-RFOR.
In the extreme case, when the number of unique values equals 228 i.e., each value is
unique and the array is sorted, GPU-DFOR encodes the data with just 1.8 bits per int vs
7.8 bits per int used by GPU-FOR and 8 bits per int used by GPU-RFOR. The performance
of GPU-DFOR (Fig. 3.8 (b)) is bounded by shared memory bandwidth which results
in a performance gap in comparison to GPU-FOR.

GPU-RFOR and RLE achieve a very good compression ratio when the number of
distinct values is less than 222. Beyond that, the compression ratio of these two
schemes worsened with GPU-RFOR still better than RLE due to the use of FOR. GPU-RFOR
is also 2.5× faster than RLE due to the use of tile-based decompression (Fig. 3.8(b)).
Decompressing RLE is a 4-step process as explained in Section 3.5, which even after
optimizations is similar to GPU-FOR making 4 passes over an array of size n. Across
the entire range, we can see that GPU-RFOR is a better choice when the number of
distinct values is low while GPU-DFOR is a better choice when the number of distinct
values is high in a sorted dataset.
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For D2 (Fig. 3.8 (c-d)), we can make the same general observations. When using
GPU-FOR/GPU-DFOR, each block’s entries generally lie within 3 standard deviations of
the mean and occasional occurrence of a value outside this range does not move the
compression rate significantly. For mean greater than 216, the bit-aligned schemes
achieve 3× reduction in storage footprint compared to the other schemes and show-
cases the use of FOR.

For D3 (Fig. 3.8 (e-f)), we see that the bit-aligned schemes can adapt to change in
skew and achieve both better compression rate and lower runtime compared to NSF
and NSV. NSV is better at adapting to skew compared to NSF, however its performance
is significantly worse compared to all the other schemes. Decoding NSF suffers from
the same issues that affect RLE, it requires multiple steps that lead to multiple reads
and writes, the decoding can’t be inline with query execution and it requires buffer
space for intermediates.

Overall, this experiment shows that compared to existing schemes, our bit-packing
schemes are robust under various data distributions.

3.8.4 Performance on SSB

For the full query evaluation, we use the Star Schema Benchmark (SSB) [97] which
has been widely used in various data analytics research studies [70, 90, 119, 133].
SSB is a simplified version of the more popular TPC-H benchmark. It has one fact
table lineorder and four dimension tables date, supplier, customer, and part which are
organized as a star schema. There are a total of 13 queries in the benchmark, divided
into 4 query flights. Query flight 1 (q1.1, q1.2, and q1.3) are selection queries whereas
query flights 2, 3, and 4 are join queries. In our experiments we run the benchmark
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with a scale factor of 20 which will generate a fact table with 120 million tuples. To
enable efficient query execution in GPU, we dictionary encode the string columns
into integers prior to data loading and the queries run directly on dictionary-encoded
values. The total dataset size is around 13GB.

In this experiment, we compare the performance of our compression schemes
with four existing systems:

• Planner: We use the compression planner from [68] to generate compression
plans for all the column. Note that this work does not support bit-packing-
based schemes. For decompression, this work uses cascading decompression as
explained in Section 3.2.

• GPU-BP: Mallia et al. [93] introduced two bit-packing schemes: GPU-BP and
GPU-VByte. We compare against GPU-BP in this work since it has superior com-
pression ratio and decompression performance. This scheme, however, only
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consists of a single compression layer without the use of FOR, Delta, or RLE. It
also lacks optimization techniques which we introduced in Section 3.3.2.

• nvCOMP: We compare against the cascaded compression scheme in nvCOMP.
Despite having various schemes such as bit-packing, delta, and RLE, nvCOMP
does not support end-to-end pipelining of multiple decompression steps with
query execution.

• HeavyDB: A commercial GPU database system. HeavyDB only uses dictionary
encoding to encode the string column and therefore has the same compression
scheme as None.

Figure 3.9 shows the column sizes after the compression for each system. GPU-*
is the hybrid scheme that chooses between GPU-FOR, GPU-DFOR, and GPU-RFOR as
explained in Section 3.7. Each column in SSB has different properties. For example,
lo_orderkey is a sorted column with high average run length (similar to D1 in Section
3.8.3); lo_orderdate, lo_ordtotalprice, and lo_custkey are unsorted but also has
high average run length. On average, GPU-* manages to reduce the total memory
footprint by 2.8× compared to no compression (None).

Comparing to GPU-BP, GPU-* achieves 50% better compression rates. This is be-
cause GPU-BP only supports a single bit-packing layer without frame-of-reference.
Therefore, GPU-BP has poor performance for columns with RLE pattern such as
lo_orderkey, lo_orderdate, lo_ordtotalprice, and lo_custkey. GPU-BP also per-
forms poorly on date columns such as lo_commitdate due to absence of frame-of-
reference in GPU-BP.

Comparing to Planner, GPU-* achieves 40% better compression rates and outper-
forms Planner across all columns. Planner has poor performance on columns with
large random integers such as lo_extendedprice, lo_revenue, and lo_supplycost.
These columns can only be compressed using bit-packing schemes which are not sup-
ported by Planner. For columns with certain distribution (lo_orderkey, lo_orderdate,
lo_ordtotalprice, and lo_custkey), Planner performs well as it is distribution-
aware. GPU-*, however, still outperforms Planner on every column.

nvCOMP and GPU-* achieves similar compression rates across all columns while
GPU-* is slightly superior by 2%. This is due to the fact that both of these schemes
support the same set of compression schemes. It utilizes RLE based scheme for
columns with consecutive runs of values and FOR based scheme for columns with
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large random integers. The 2% gain for GPU-* comes from our more compact data
format which requires less metadata and therefore could store the compressed data
more efficiently. Despite supporting the same compression schemes, we will show in
the next experiment how GPU-* is superior in decompression performance and query
running time compared to nvCOMP.

Figure 3.10a shows a detailed one-on-one decompression time comparison be-
tween different schemes in nvCOMP and GPU-*. It can be seen from this figure that
despite supporting the same set of compression schemes, GPU-* outperform nvCOMP
in each scheme. GPU-FOR outperform nvCOMP(FOR+BitPacking) by 2.4×, GPU-DFOR
outperform nvCOMP (Delta+FOR+BitPacking) by 3.5×, and GPU-RFOR outperform
nvCOMP(RLE +FOR+BitPacking) by 2×.

Figure 3.10b shows the geomean of decompression performance across all columns
for each system. For nvCOMP and GPU-*, we choose the scheme which results in the
best performance thereby resulting in a smaller performance gap compared to Figure
3.10a. Overall, GPU-* outperforms Planner, GPU-BP, and nvCOMP by 5.5×, 2×, and
2.2× respectively. The performance gap is due to the use of tile-based decompression
and our optimization techniques presented in Section 3.3.2.

Figure 3.11 shows the end-to-end query performance across all systems. For the
runtime comparison, we compare the performance of Crystal without any encoding
(None) against Crystal with the decompression routines of GPU-* and nvCOMP. We
also compare our system with Planner, GPU-BP, and HeavyDB.

Comparing GPU-* with None, None is 1.35× faster. This is to be expected since
there are overhead of decompressing the columns, especially the lo_orderdate and
lo_custkey columns which utilizes GPU-RFOR. These two columns are used in almost
every query in SSB. Comparing GPU-* with HeavyDB, GPU-* is 12× faster. This result
is consistent with result from prior works [110]. This is because the query execution
engine in HeavyDB does not support the tile-based execution model. Comparing GPU-*
with other compression schemes (Planner, GPU-BP, and nvCOMP), GPU-* outperform
these schemes by 4×, 2.4×, and 2.6× respectively. Not only decompressing individual
columns by GPU-* is faster, all these schemes cannot decompress the columns inline
with the query execution. Therefore, these schemes will have to decompress each
individual column one by one before executing each query, which results in a much
higher total query runtime.

Overall, our experiment shows that GPU-* can achieve similar or better compres-
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Figure 3.12: Benefit of data compression in GPU as coprocessor model

sion rates to the best state-of-the-art compression schemes in GPU (i.e., nvCOMP)
while being 2.2× and 2.6× faster in decompression speed and query running time.
For GPU-based DBMS systems, using GPU-* results in significantly lower storage
footprint with minimal performance degradation.

3.8.5 GPU as a Coprocessor

Many systems use GPU strictly as a coprocessor [70, 133, 82, 92]. These systems
move data from CPU to GPU across an interconnect like PCIe or NVLink when
processing every query. The compression ratio of each compression scheme would
play a big role as runtime is bound by the time taken to ship data over the interconnect
(transfer time). We have shown that GPU-FOR/GPU-DFOR/GPU-RFOR achieve the best
compression rate across a variety of data distributions and using them would reduce
the amount of data moving across the slow interconnect thereby reducing transfer
time. To evaluate this, we ran one SSB query from each flight (q1.1, q2.1, q3.1, q4.1)
with data initially stored on the CPU. The encoded data will then be shipped to GPU
over 12GB/s bidirectional PCIe. GPU will then decode the data and execute the
query. In this experiment, we will compare the query performance of GPU-* against
uncompressed data (None). Figure 3.12 shows that after applying compression, the
query runtime is 2.3× faster. This shows that our compression scheme is useful when
the working set is sharded across CPU-GPU or potentially multiple GPUs.

3.9 Conclusion
This work advances the state-of-the-art for GPU data compression by introducing (1)
tile-based decompression which allows a database to decompress a cascade of compres-
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sion schemes in a single pass and (2) GPU-FOR, GPU-DFOR, and GPU-RFOR bit-packing
based compression schemes and efficient massively parallel bit unpacking routines
for them. Our evaluation shows that our schemes can achieve similar compression
rates to the best state-of-the-art compression schemes in GPU while being 2.2× and
2.6× faster in decompression speed and query running time.
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Chapter 4

Heterogeneous CPU-GPU DBMS

Even with compressed data, GPU memory capacity may still be insufficient for
large-scale analytics workloads. Existing solutions address this limitation using two
different approaches. The first approach is to transfer data to GPU on demand through
PCIe when a query accesses data that is not in GPU. This solution is straightforward
and has been adopted in both commercial systems [15] and research projects [90, 123,
133]. However, the main downside is the potentially significant data traffic over PCIe,
which can become a new performance bottleneck [110]. Although the interconnect
bandwidth will increase through new hardware technologies like NVLink [21], it will
likely remain much lower than GPU memory bandwidth in the foreseeable future.

To mitigate the limited GPU memory capacity and PCIe bandwidth, a second
approach is to leverage both CPU and GPU for heterogeneous query processing [50, 62].
Such a design can fully exploit the computational power of both devices and avoid
excessive data transfer over PCIe by running certain sub-queries in CPU. In this work,
we aim to improve existing heterogeneous GPU and CPU databases by optimizing
both data placement policies and heterogeneous query execution. We develop a
heterogeneous analytical engine called Mordred, which innovates mainly in the
following two aspects:

Data Placement. Similar to prior work [50], Mordred models data placement
as a caching problem where a subset of data is cached in GPU memory and the
CPU maintains a copy of the entire database. Different from prior work, however,
Mordred manages caching at a fine granularity (i.e., sub-column) and uses a novel
semantic-aware cache replacement policy. The new policy considers various aspects
of the workload such as the query semantics, data correlation, query frequency, etc.
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Mordred uses a lightweight cost-based performance model to estimate the benefit
of caching, guiding the decision of replacement. For example, Mordred prioritizes
the caching of segments that are part of joins over filters. The optimized cache
replacement policy can lead to 3× speedup compared to the best prior baseline we
compared against.

Heterogeneous Query Execution. Caching data at a fine granularity in GPU
presents new challenges during query execution. Ideally, a heterogeneous query
executor should exploit data in both devices and coordinate query execution at a fine
granularity, which prior systems could not achieve. In Mordred, we support fine-
grained heterogeneous execution by introducing segment-level query plan — Mordred
allows different segments of a column to execute different query plans depending
on the segments’ location. To further improve performance, Mordred also adopts
various optimization techniques (including late materialization, operator pipelining,
segment skipping, and lightweight memory allocation) to reduce the traffic through
PCIe or device memory.

Contributions. This work makes the following contributions:

• We develop a semantic-aware fine-grained caching policy for heterogeneous
CPU and GPU databases. The policy takes into account query semantics, data
correlation, and query frequency to determine data placement.

• We develop a fine-grained heterogeneous CPU-GPU execution engine which
converts a query plan into a segment-level query plan to be executed in parallel
on both CPU and GPU.

• We build Mordred, a heterogeneous CPU-GPU analytics engine based on fine-
grained semantic-aware caching and heterogeneous query execution; Mordred
includes various performance optimizations. The source code will be made
publicly available.

• We conduct a detailed evaluation and demonstrate that semantic-aware caching
can outperform the best traditional caching policy by 3×. Mordred can outper-
form the best-prior GPU DBMSs by an order of magnitude.

Organization. The rest of the chapter is organized as follows: Section 4.1 describes
the fine-grained semantic-aware caching policy. Section 4.2 presents the heteroge-
neous CPU-GPU query execution engine and its optimizations. Section 4.3 describes
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Figure 4.1: Illustration of Cache-aware Replication Policy.

Mordred’s system architecture and some implementation details. Section 4.4 evalu-
ates the performance of Mordred. Section 4.5 discusses related work and Section 4.6
concludes the chapter.

4.1 Data Placement
Mordred treats data placement as a caching problem following previous work [50]
— the complete data set resides in CPU memory and a mirrored subset of data is
cached in GPU. Compared to the alternative design that partitions data into disjoint
sets across CPU and GPU, maintaining a copy of all the data in CPU allows for more
flexible query scheduling — the CPU can process a query if the GPU is occupied
with other tasks. It also allows the CPU to reconstruct results to reduce PCIe traffic,
as will be discussed in Section 4.2.

A key design decision with this model is to decide which data to cache in GPU
memory. Previous work [50, 82] explored caching at column granularity using least-
recently used (LRU) and least-frequently used (LFU) replacement policies. We
observe that such a design cannot optimally capture the benefit of GPU acceleration.
In Section 4.1.1, we argue (1) how a sub-column fine-grained policy can improve
caching efficiency and (2) how semantic-aware replacement leads to better perfor-
mance. Then in Section 4.1.2 we explain the proposed fine-grained semantic-aware
caching policy in detail.
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4.1.1 Motivation

4.1.1.1 A Case for Fine-Grained Caching

Caching data in column granularity has several problems. First, it is prone to fragmen-
tation where a portion of the cache is empty due to the lack of space to fit in another
column. This prevents us from making use of the full capacity of GPU memory.
Second, column granularity caching cannot capture access skewness within a column.
In real workloads, data accesses are often nonuniform, e.g., recent data is more fre-
quently accessed than older data. In such cases, hotter data within the same column
should be prioritized in caching, which cannot be captured in column-granularity
caching.

Figure 4.1(a) and 4.1(b) illustrate the difference between coarse-grained (i.e.,
column granularity) and fine-grained (i.e., sub-column granularity) caching. Each
column is split into segments with the same size and we assume a cache size of
seven segments. We use the term segment to refer to sub-column for the rest of the
dissertation. Column-granularity caching (Figure 4.1(a)) caches a single column of
table R and leaves the remaining two cache slots empty since no column can fit in. In
contrast, fine-grained caching can utilize all seven cache slots. Fine-grained caching
does introduce new complexity in query execution; we will describe Mordred’s
solution in Section 4.2.

4.1.1.2 A Case for Semantic-Aware Caching

One way to implement fine-grained caching is to use LRU or LFU on segments rather
than columns. However, such semantic-agnostic replacement policies may not be able
to accurately identify data that benefits the most from GPU acceleration. For example,
join operators are computationally complex and comprise significant execution time
of queries. Therefore, data that participates in joins should be cached with higher
priority. Such semantic-awareness is not exploited in conventional LRU and LFU.

Furthermore, semantic-aware caching should consider the correlation between
multiple columns when deciding what data to cache. In particular, some operators
can execute on GPU only if all the involved columns are cached simultaneously. One
example is a join operator, where both join keys should be cached. Other exam-
ples include columns that are involved in the same filtering predicate or the same
aggregation function.



50

Figure 4.1(b) and 4.1(c) illustrate the difference between naive fine-grained
caching and semantic-aware fine-grained caching. In this example, the DBMS identi-
fies that caching segments in the join columns leads to higher speedup over other
segments.

4.1.2 Semantic-Aware Fine-Grained Caching

This section describes the proposed semantic-aware fine-grained caching policy. We
extend conventional LFU with weighted frequency counters, where the weight reflects
the potential benefits of caching the segment and is derived using a cost model.
The cost model captures (1) the relative speedup of caching a segment and (2)
the correlation among segments from different columns. Section 4.1.2.1 describes
the general caching framework and Section 4.1.2.2 describes the cost model for the
weighted frequency counters.

4.1.2.1 Cache Replacement Policy

The cache replacement policy is based on conventional LFU where each data segment
is associated with a frequency counter, which is incremented when the segment is
accessed by a query. The cache stores segments with the largest frequency counters.
Different from the baseline LFU that increments the counter always by 1 for each ac-
cess, the replacement policy in Mordred increments it with a weight that is calculated
based on semantic information.

Algorithm 2 demonstrates the semantic-aware weight update algorithm in Mor-
dred. We call UpdateWeightedFreqCounter() after accessing each segment S to update
its weight. The algorithm first estimates the query runtime RTuncached if segment S is
not cached in GPU (line 2). The runtime estimation is based on the current content
in GPU (i.e., cached_segments) with S removed. The function estimateQueryRuntime()
uses a simple model to predict runtime with the assumption that the CPU/GPU mem-
ory and PCIe bandwidth are the performance bottleneck; we will describe details of
the cost model in Section 4.1.2.2. Then, the algorithm estimates the query runtime
RTcached if S and all segments correlated with S are cached in GPU (line 3), besides the
currently cached segments.

We use the difference between RTuncached and RTcached to represent the weight (line
4). The weight is added to the weighted frequency counter of S (line 5). Furthermore,
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Algorithm 2: Update the weighted frequency counter for segment S
1 UpdateWeightedFreqCounter(segment S)
2 # estimate query runtime when S is not cached.
3 RTuncached = estimateQueryRuntime(cached_segments \ S)
4 # estimate query runtime when S and segments correlated with S are cached.
5 RTcached = estimateQueryRuntime(cached_segments ∪ S ∪ correlated_segments)
6 weight = RTuncached − RTcached
7 S.weighted_freq_counter += weight
8 for C in correlated_segments do
9 # evenly distribute weight to all segments correlated with S

10 C.weighted_freq_counter += weight / |correlated_segments|

it is also evenly distributed to all the correlated segments of S (line 6–7) through
dividing the weight by |correlated_segments|. This means more correlated segments
leads to smaller weight assigned to each, which bounds the total weight incremented
by accessing a segment.

The precise definition of correlated segments for segment S depends on the operator
being performed. So far, Mordred considers three operators: selection, join, and
group-by aggregation.

For selection, we consider segments correlated if they are (1) involved in a predi-
cate where the attributes cannot be separated by logic “and” or “or” and (2) corre-
spond to the same set of rows. In such a case, all the segments in this correlation set
will be incremented by the same weight.

For hash join, we make a key observation that GPU acceleration is effective only if at
least one column (i.e., the build column) is completely cached. Therefore, we consider
the build and probe relations differently. Specifically, we perform Algorithm 2 on
every segment S in the probe column (i.e., typically the larger one) and consider all
segments in the build column as correlated.

For group-by aggregation, a correlation exists between the aggregation column
and the grouping key column. We consider two cases. First, if aggregation and
grouping columns are all in the same table, we perform Algorithm 2 on every
segment S in the aggregation column and consider segments in the same set of rows
as correlated. Second, if aggregation and grouping columns are in different tables
(i.e., they are joined together), we perform Algorithm 2 for every segment S in the
aggregation column and consider all segments in the grouping column as correlated.
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4.1.2.2 Cost Models

We now explain how the estimateQueryRuntime() function in Algorithm 2 works. In
particular, we use the cost model presented in Crystal [110] to estimate the execution
time of subqueries in both CPU and GPU. The cost model assumes that the queries
can saturate the memory bandwidth and derives the execution time from memory
traffic. The accuracy of the model has been verified in Crystal on simple operators.
We extend the model to support more complex queries and to support PCIe. While
the model may not be as precise in this more complex environment, we find the
accuracy to be acceptable for the purposes of cache replacement policy.

In particular, we model filtering cost as follows:

filter runtime = size(int)×N

Br
+

size(int)×N× σ

Bw

where N is the cardinality of input segments, σ is the predicate selectivity, Br and Bw

are read and write memory bandwidth, respectively. The first term of the equation
is the time taken to scan the input column and the second term is the time taken
to write the matched entries to the output array. This and the following equations
assume relations of integers.

For hash join, the probe runtime is modeled as follows:

probe runtime = size(int)×N

Br
+ (1 − π)

N× C

Br
+

size(int)×N× σ

Bw

where the extra parameter C is the cache line size, π is the probability the accessed
cache line is in the last level cache. The first term is the time taken to scan the probe
relation from memory, the second term is the time taken for probing the hash table,
and the third term is the time taken to write the matched entries to the output array.
Other database operations such as hash aggregation and sorting can be modeled in a
similar fashion.

In heterogeneous query execution, there is an extra cost for materialization, merg-
ing, and data transfer between CPU and GPU. We model the cost of data transfer as
follows:

data transfer time = size(int)×N

Bpci

where Bpci is the interconnect bandwidth. This equation represents the time taken



53

to transfer N integers over PCIe.
Materialization is the process of reconstructing tuples from intermediate results

expressed as row IDs (more details in Section 4.2.2.1). We model the materialization
cost as follows:

materialization time = size(int)×N

Br
+

N× C

Br

where the first term is the time taken to scan the row IDs from the intermediate results
and the second term is the time taken to reconstruct the tuples from the row IDs.

Finally, the following equation models the cost of merging the final results from
CPU and GPU:

merging time = 2 × size(int)×N

Br
+

size(int)×N

Bw

where the first term is the time taken to scan the two columns to be merged and the
second term is the time taken to write the results.

These equations are used as building blocks to estimate the query runtime in
the estimateQueryRuntime() function. The cost model is lightweight such that its
evaluation incurs negligible overhead.

4.1.2.3 Example of Semantic-Aware Caching

Qx: SELECT R.B, SUM(R.A) FROM R,S
WHERE R.C = S.D

Qy: SELECT R.A AND R.B FROM R

We present an example to illustrate how semantic-aware caching works. Consider
the schema in Figure 4.1 and performing replacement after executing Qx and Qy.
Assume a cache size of seven segments.

Coarse-grained LFU will cache either column R.A or R.B since both columns are
used by both queries and the cache has space for only one column, as illustrated in
Figure 4.1(a). In contrast, fine-grain LFU (Figure 4.1(b)) can fill in the two empty
cache slots with two segments from R.B. Different from both LFU policies, the
semantic-aware policy caches segments that maximize performance using the cost
model in Section 4.1.2.2. Therefore, even though R.C and S.D are used only by Qx,
our policy assigns higher weight for segments in both columns since the GPU offers
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higher speedup for join over filtering operations. The caching decision is shown in
Figure 4.1(c).

4.2 Query Execution
A new challenge introduced by the fine-grained caching policy is the extra complexity
of query execution. It is possible that only a subset of data required by an operator
exists in GPU memory so that the entire operator cannot directly run on GPU. Ideally,
a heterogeneous query executor should fully exploit the data in GPU and coordinate
query execution across the two devices at segment granularity instead of column
granularity. While some existing systems [15] have adopted fine-grain caching, they
still execute the entire query in GPU and transfer the uncached data to GPU during
query execution, leaving the available CPU cores unutilized.

In Mordred, we exploit both intra-device parallelism within CPU/GPU and inter-
device parallelism across CPU/GPU. Our heterogeneous query executor targets the
following three goals:
Goal 1: Minimize inter-device data transfer. Currently, the interconnect bandwidth
(i.e., PCIe) between CPU and GPU is very limited. Transferring too much data
through this interconnect could throttle system performance.
Goal 2: Minimize CPU/GPU memory traffic. Data analytics applications are
memory-bound. Reducing the data traffic to both CPU and GPU memory leads
to more efficient query execution.
Goal 3: Fully exploit parallelism in both CPU and GPU. Ideally, we want to utilize
all the available computational power in both multicore CPU and GPU during query
execution.

4.2.1 Segment-Level Query Execution

A line of previous research [57, 51, 58, 59, 52, 87] has studied the problem of hetero-
geneous query execution in column granularity. In this section, we discuss how we
address heterogeneous query execution in segment granularity in hybrid CPU and
GPU systems.
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4.2.1.1 Operator Placement

Previous works have discussed operator placement strategies for CPU-GPU sys-
tems. In particular, Breß et al. [52] proposed a data-driven operator placement heuristic,
where an operator is pushed to where the input columns reside. The operator is
executed in GPU only if all the input columns are cached in GPU, otherwise, the
operator is executed in CPU. This heuristic has been shown to outperform cost-based
optimizer while being more lightweight.

In Mordred, we adopt the data-driven operator placement heuristic but apply it at
segment granularity — instead of executing an operator in the device where the entire
input columns reside, Mordred executes portions of the operator in the device where
all the input segments reside. This means a single operator can be split to run in both
CPU and GPU depending on the location of input segments. We call the resulting
plan a segment-level query plan.

In Mordred, every operator can be split between CPU and GPU. For filter, each
partition can be filtered independently in either CPU or GPU. For hash join, we
require the build column to be entirely cached and split the probe operator across the
two devices. For group-by, if the corresponding grouping and aggregation segments
are cached, we perform group-by on them in GPU and send the results back to CPU.

4.2.1.2 Segment-Level Query Plan

Given a particular data placement determined by the caching policy, Mordred puts
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Figure 4.3: Example of Segment-level Query Plan.

input segments into groups and executes them in parallel. In particular, Mordred
applies the data-driven operator placement heuristic to determine the execution plan
for each segment and puts segments with the same plan into the same segment group.
The query optimizer and executor work in segment-granularity.

Figure 4.2 demonstrates one example of segment grouping where relation R is
partially cached and relation S is fully cached in GPU. One obvious grouping strategy
is to split relation R into three segment groups — Group 1 comprises the first two rows
of segments, Group 2 comprises 3rd to 5th rows of segments, and Group 3 comprises
the last row of segment. Note that the grouping strategy may differ depending on
the query plan. For example, if a query accesses only columns A and B in relation R,
then Groups 1 and 2 above can be merged into a single large group. This is because
both groups have identical execution plan for such a query.

After the grouping phase, each segment group is executed in parallel according
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to its execution plan. Finally, after all segment groups finish execution, all results
will be sent back to CPU and be merged. The merge operation is lightweight. It
simply combines the aggregation results from different segment groups together. In
Section 4.4.3, we show that merging contributes to < 2.5% of total query execution
time in our workload. When the query result is very large, however, merging could
potentially be a bottleneck. Such a case is partially captured in the cost model (Sec-
tion 4.1.2.2), which will choose not to cache the data and run the query in CPU. A
more general solution to the problem requires a full-fledged heterogeneous query
optimizer, which we defer to future work.

4.2.1.3 Example of Query Execution

Q0: SELECT S.D, SUM(R.C) FROM R,S
WHERE R.B = S.D AND R.A > 10 AND S.E > 20
GROUP BY S.E

We present an example to illustrate how segment-level query execution works using
the query Q0 shown above with the table schema and cache layout in Figure 4.2.
In this example, R is the probe relation and S is the build relation. Since the query
accesses all the three columns in relation R, we split R into three segment groups.

Figure 4.3 shows a physical query plan generated by Mordred. Activities in CPU
and GPU are shown in the left and right halves of the figure, respectively. The red
lines crossing the device boundary indicate the transfer of intermediate results across
PCIe. The sub-query plans for individual segment group are shaded with different
background colors. Below, we explain the sub-query plan for each segment group
individually.

Segment Group 1: All segments in this group are fully cached and thus the
entire sub-query is executed in GPU. After the group-by operator, the results are sent
back to CPU.

Segment Group 2: Segments in this group are partially cached. Specifically,
segments used for filter (A2, E1) and join (B2, D1) are in GPU but segments used for
group-by (C2) reside in CPU. The join can still be performed in GPU; in fact, the hash
table on relation S can be reused for segment group 2 and segment group 1.
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To minimize the data transfer across PCIe, the result of the join is expressed using
row ID pairs between the two tables, i.e., (RowIDR, RowIDS), to indicate the rows
that join. Using the row ID pairs, the CPU will materialize the join results by reading
the values from C2 and E1. The materialized results are sent to the group-by operator
and the output is merged with other sub-queries’ results.

Segment Group 3: In this group, no segment from relation R is cached in GPU.
Therefore, join cannot be performed in GPU. The entire sub-query is executed in CPU
with the final output merged with the other sub-queries’ results.

4.2.2 Other Performance Optimizations

Memory and PCIe traffic is typically the performance bottleneck in data analytics
applications [110]. In this section, we describe other optimization techniques in
Mordred to further reduce data traffic.

4.2.2.1 Late materialization

With heterogeneous query execution, there are often cases that require the transfer
of intermediate results of sub-queries from one device to another. Transferring the
whole intermediate relation across PCIe could be expensive. Previous CPU-based
columnar databases used the late materialization strategy to reduce data transfer [41],
where the intermediate relation can be expressed in the form of row IDs. The receiver
side can then reconstruct the tuples. We implement this technique in Mordred to
significantly reduce the amount of data transfer.

Another benefit of late materialization is that we can execute an operator in GPU
with the minimum number of input columns. For example, joining two relations in
GPU requires only the two join key columns to be present in GPU. The rest of the
attributes can be reconstructed in CPU using late materialization.

4.2.2.2 Operator Pipelining

Previous work [110, 62] has developed an optimization technique for GPU query
execution by pipelining operators into a single kernel. Operator pipelining can avoid
storing intermediate results in memory after each operator, and only materialize
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the results at the end of each pipeline. Crystal [110] has shown that pipelining
operators in GPU query execution can further improve the performance by storing
the intermediate result from each operator in the shared memory, which can reduce
the total round trips to the global memory. We apply this optimization to Mordred
by always pipelining consecutive operators on the same device whenever possible.

4.2.2.3 Segment Skipping

Many queries in OLAP workload only access a portion of the data after predicate
evaluation. For example, business intelligence queries often access only data in
a specific period of time. Minmax pruning is a well-known technique to reduce
the amount of data being scanned by the query [26]. The technique maintains per-
segment minimum and the maximum values in the segment. During query execution,
an entire segment can be skipped if the predicate cannot possibly be satisfied based
on the min and max values.

Typically, minmax pruning is applied only to predicate evaluation. In Mordred,
we extend it to filter during join operators as well in order to further reduce the
amount of data that needs to be cached in GPU.

Q1: SELECT R.y FROM R
WHERE R.datekey = S.datekey AND S.year > 1997

We demonstrate this using an example query Q1 above. R is the probe relation
and S is the build relation. In the build phase, Mordred maintains the min and max
values of all keys (S.datekey) in the hash table. After the build phase is finished,
we use these min-max values to skip segments in the probe relation. In particular,
segments from R can be skipped by looking at the min-max of the hash table and the
min-max of the segment in R.datekey. This optimization allows us to further reduce
memory and PCIe traffic and identify the truly hot segments when performing cache
replacement.

4.3 Systems Integration
This section describes the implementation of Mordred, a hybrid CPU-GPU DBMS
with fine-grained semantic-aware caching and segment-level query execution. Figure 4.4
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Figure 4.4: Mordred System Overview

shows the overview of Mordred, which consists of three main modules that will be
described in the following subsections.

4.3.1 Cache Manager

The Cache Manager performs periodic data replacement in GPU memory based on
the caching policy described in Section 4.1. The segment size is user defined and by
default 1,048,576 records (220).

Mordred divides GPU memory into the following two regions.
Data Caching Region: The data caching region handles the caching of raw data in
segment granularity. Data in this region is managed by the cache manager, using the
semantic-aware caching policy described in Section 4.1.2.
Data Processing Region: The data processing region stores intermediate data (e.g.,
hash table, intermediate query result, etc.) during execution. Since frequent memory
allocation in GPU is expensive, we develop a lightweight memory allocation strategy.
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Specifically, when the cache manager is initialized, the data processing region is
preallocated. The cache manager maintains a pointer to the starting address of the
data processing region. Whenever a memory allocation request arrives, the cache
manager returns the address of the pointer and advances it by the size of the allocated
region. After a query is executed, we reset the pointer to the starting address of the
data processing region. The same lightweight memory allocation strategy is also
applied in CPU.

The cache manager also handles metadata management. Metadata involves statis-
tics information of each segment (e.g., access timestamp and weighted frequency
counters) and the metadata required during query execution (e.g., min-max of each
segment, offset of cached segments, etc.). We use bitmap to mark if the segment
is cached in GPU. We use a hash table to track the offset and the statistics of each
segment (min-max, counter, etc). Finally, we use a free list to track available segments
in GPU. The whole metadata management in Mordred is handled by the CPU.

4.3.2 Query Optimizer

The query optimizer module converts a query plan into a segment-level query plan. Cur-
rently, we take the query plan from Crystal [110], which is already highly optimized
for GPU.

Taken the input query plan, Mordred performs segment grouping as described
in Section 4.2.1 based on the data-driven operator placement heuristic. Meanwhile,
Mordred also reorders the operators based on where they will be executed. For
example, operators that will be executed on GPU will be clustered together. We do
this to avoid ping-pong effect where the execution plan will go back and forth between
CPU and GPU, causing excessive data transfer. Segment skipping as described in
Section 4.2.2.3 is also partially performed in this stage by the query optimizer.

For simplicity, our optimization is currently heuristic-based and focuses on min-
imizing interconnect traffic. As interconnect bandwidth improves, a cost-based
optimizer that takes into account the interconnect bandwidth might outperform our
current design. We leave this to future work.
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4.3.3 Query Execution Engine

The query execution engine executes segment-level query plan generated by the query
optimizer. Specifically, the engine executes the sub-query plan for each segment group
in parallel and merges the final results. Finally, the execution engine notifies the cache
manager to update the weight of segments following Algorithm 2.

To launch operators in CPU, Mordred uses IntelTBB parallel programming library.
For GPU kernel implementation, we use Crystal [110], a CUDA-based library for
query execution. We add new functions to express late-materialization in Crystal.

During execution, each segment group is assigned to a dedicated CPU thread
which holds information about the execution plan. These CPU threads start the
execution of all segment groups in parallel. Each thread will launch either CPU
kernels or GPU kernels to execute operators according to its corresponding execution
plan. Since each CPU kernel will also be executed using multiple threads, Mordred
leaves the thread assignment to the thread scheduler of the parallel programming
framework (i.e., Intel TBB).

Currently, we implement a compound kernel for each pipeline to enable operator
pipelining (cf. Section 4.2.2.2). We leave automatic code generation of pipelined
kernels as part of our future work.

4.4 Evaluation
In this section, we report the performance of Mordred. The section will answer the
following key questions:

• How does fine-grain semantic-aware caching perform compared to traditional
caching policies?

• How does segment-level query execution improve the performance of hetero-
geneous query processing?

• How much performance improvement is achieved through various optimiza-
tions (i.e., segment skipping, operator pipelining, and late materialization)
implemented in Mordred?

• How does Mordred perform compared to existing heterogeneous CPU/GPU
DBMSs?



63

4.4.1 Experimental Setup

Hardware configuration: We use a virtual machine instance in Oracle Cloud with
NVIDIA V100 GPU connected to Intel Xeon Platinum 8167M CPU via PCIe3. The
Nvidia V100 GPU has 16 GB of HBM2 memory with read/write bandwidth of
880 GBps. The Intel Xeon Platinum CPU has 24 virtual cores and 180 GB DRAM. The
bidirectional PCIe bandwidth is 12.8 GBps. The system is running on Ubuntu 18.04
and the GPU instance runs CUDA 11.2.
Benchmark: For our experiments, we use the Star Schema Benchmark (SSB) [97] which
has been widely used in various data analytics research studies [70, 90, 119, 133]. We
use Scale Factor 40 (i.e., 25 GB data set) in all experiments unless otherwise stated. To
enable efficient query execution in GPU, we dictionary encode the string columns into
integers prior to data loading and manually rewrite the queries to directly reference
the dictionary-encoded value. Therefore, we ensure that all column entries are 4-byte
in value. We also sort the fact table by the orderdate column to enable the segment
skipping optimization. In our evaluation, the entire data set is loaded to CPU memory
before each experiment starts.
Measurement: Before each experiment, we first warm up the GPU memory by
running 100 random queries from the SSB benchmark and then perform a replacement
to populate the cache. We run 500 queries in each experiment unless otherwise stated
and perform replacement after every 50 queries. We found the replacement cost to
be negligible (< 1.5%) and thus do not include it in our measurement. For each
measurement, we repeat the experiment 3 times and report the average results.

4.4.2 Comparison with Other Caching Policies

This subsection evaluates the performance of fine-grained semantic-aware caching policy.
Specifically, we will compare the performance of seven different caching policies:

• LRU (Column): This policy maintains the access timestamp for each column
and caches columns with the latest timestamps. This policy is used by [82, 50].

• LFU (Column): This policy maintains a frequency counter for each column
and cache columns with the largest counters. This policy is used by [50].

• LRU-K (Column): This policy maintains the backward K- distance for each
column — the distance backward to the Kth most recent reference to the column.
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Figure 4.5: Execution Time of Various Caching Policies with Different Cache Size
(Uniform distribution with θ = 0)

Columns with the smallest backward K-distance will be cached. We use K = 2
in our experiments.

• LRU (Segment): Similar to LRU (Column) but timestamps are maintained
for segments instead of columns.

• LFU (Segment): Similar to LFU (Column) but frequency counters are main-
tained for segments instead of columns.

• LRU-K (Segment): Similar to LRU-K (Column) but the backward K-distance
are maintained for segments instead of columns.

• Semantic-aware: The segment-granularity semantic-aware caching policy
described in Section 4.1.

4.4.2.1 Performance on Standard SSB

In this experiment, we sweep the GPU cache size and measure the performance of
different caching policies when running SSB queries. We sweep the cache size from
400 MB to 8.8 GB; all columns that are accessed by queries fit in an 8.8 GB cache. The
query access distribution is uniform following the default configuration.
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Figure 4.6: Memory Traffic Breakdown for Each Caching Policy

Figure 4.5 shows the result of our experiment. Overall, LFU-based schemes
perform better than LRU-based schemes. LRU-2 performs similarly to LRU but
slightly better for small cache sizes. For each policy, the fine-grained version always
outperforms its coarse-grained counterpart. This is because the coarse-grained policy
often suffers from fragmentation, causing a portion of the cache unused.

The semantic-aware caching policy outperforms all the other policies in all cache
sizes, especially when the cache size is small (3–7× lower runtime). This is because
the new policy can more accurately identify hot segments to cache leading to higher
speedup.

Specifically, Figure 4.5 illustrates the limitation of conventional schemes. For
example, in LFU (Segment) from the cache size of 1.8 GB to 3.6 GB, there is little
performance improvement even though twice as much data has been cached. A closer
investigation reveals that the newly cached data comes from the lo_revenue column
which is used only for group-by. Since the join is performed in CPU, the heuristics
decides to execute group-by also on CPU to avoid excessive PCIe traffic, rendering
the cache ineffective. This results in performance stall from 1.8 GB to 3.6 GB. The
semantic-aware caching policy, in contrast, is aware of the query semantics and thus
does not suffer from this performance stall.

4.4.2.2 Memory Traffic Breakdown
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Figure 4.7: Execution Time of Various Caching Policies with Varying Query Access
Distribution

To gain deeper insight on each caching policy, we compare the data traffic going
through the CPU memory, GPU memory, and interconnect (PCIe) for each policy.
We use the same setup as Section 4.4.2.1 with a cache size of 1.6 GB (which can hold
20% of all accessed columns).

Figure 4.6 shows the traffic breakdown for different caching policies. The inter-
connect traffic remains low across all policies; this is partly because of the data-driven
operator placement heuristic (see Section 4.2.1) where an operator is executed on GPU
only if the input data is cached. Column-granularity caching shows a very low GPU
memory traffic and high CPU memory traffic. For these policies, only a single col-
umn from the fact table fits in the cache resulting in most of the queries completely
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being executed on the CPU. The fine-grain version of each policy always has higher
GPU memory traffic and lower CPU memory traffic.This shows that with segment
granularity caching, more work can be offloaded to the GPU.

Across all policies, semantic-aware caching has the highest GPU memory traf-
fic and lowest CPU memory traffic. This is because the policy caches only critical
segments which would greatly reduce the total CPU memory traffic. Since GPU has
a larger cache line (128B) compared to CPU (64B), the GPU memory traffic can be
much higher especially when random reads/writes are involved. However, since
GPU memory has the highest bandwidth (10× of CPU memory bandwidth), this still
results in better performance. Overall, our traffic breakdown from this experiment is
aligned with the query performance results from Section 4.4.2.1.

4.4.2.3 Varying Query Access Pattern

This experiment evaluates the performance of semantic-aware caching policy
under varying query access distribution. To simulate nonuniform query access
distribution, we incorporate skewness into the predicates of SSB queries. We pick
the values following a Zipfian [76] distribution with a tunable skewness that is
controlled by a parameter θ. Skewness is applied to the date predicate such that more
recent data has a higher probability to be accessed by the query. A larger θ indicates
higher skewness.

Figure 4.7 shows the execution time with three different cache sizes when we
sweep the skew factor. When the cache size is small (Figure 4.7a), fine-grained caching
is more sensitive to skewness than column-granularity caching. This is because for
nonuniform query accesses, fine-grain policies can cache only the hot portion of the
data. The higher the skew factor, the more accurate these policies can capture the hot
portion. We can also see that LFU (Segment) performs better than LRU (Segment)
and LRU-2 (Segment) in most cases. This shows that access frequency is better than
access timestamp for capturing skewness in query distribution.

Across experiments in Figure 4.7, semantic-aware caching outperforms traditional
caching policies. For large cache sizes (Figure 4.7c), the performance of LFU (Seg-
ment), LRU (Segment), and LRU-2 (Segment) are very close to semantic-aware
caching. This is because the cache size is enough to fit in almost all the hot portion of
the data. For smaller cache sizes (see Figure 4.7a), however, the performance gap is
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Figure 4.8: Execution Time of Various Caching Policies under Phase Changing Work-
load

bigger since not all the hot portion can fit in. In this case, semantic-aware caching can
more accurately identify critical segments that provide the most benefit from GPU
acceleration.

4.4.2.4 Performance on Phase-Changing Workload

This experiment evaluates different caching policies under a phase-changing
workload. We incorporate skewness into the date predicate of SSB queries. We use a
normal distribution with δ = 0.5 years and a tunable mean controlled by parameter
µ. After every 5 batches of queries (50 queries per batch), we shift the mean by 3
years. The results are shown in Figure 4.8.

For frequency-based policies (LFU and semantic-aware), we multiply the current
weight by an aging factor (default is 0.5) when a new epoch starts. This would
prioritize recent frequency information over history in the past. Our experiment
shows that LFU-based policy performs better than LRU and LRU-2. LRU and LRU-2
suffer from random performance spikes since the cache content depends on the
last query in the previous batch, which can be random. If the last query accessed
data from the cold data region, replacement can significantly degrade performance.
Overall, our experiment shows that our policy adapts quicker and outperforms other
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Figure 4.9: Cached Columns in Different Replacement Policies

schemes under a phase-changing workload.

4.4.2.5 Caching Statistics

In this experiment, we show the content of the cache for each caching policy. We
use a cache size of 1.6 GB (which can hold 20% of all accessed columns). Figure 4.9
shows the result of our experiment.

LFU (Column) policy can only cache a single column in the fact table (lo_orderdate)
and leaves 37% of the cache unused. Column lo_orderdate is a foreign key to the
d_datekey column from the DATE relation. Caching this column enables us to per-
form join against the DATE relation in GPU. However, the DATE table is not as selective
as the other dimension tables. This could result in suboptimal performance since
transferring the join result to CPU will be expensive.

LFU (Segment) policy caches a more diverse set of columns compared to the LFU
(Column). It does not suffer from fragmentation and tends to cache the hot portion
of the data. A large chunk of the cache, however, is still for lo_revenue which is only
used in GROUP BY expression. GROUP BY is often lightweight and therefore should not
be prioritized over caching columns used for JOIN.

Our semantic-aware caching prioritizes caching the foreign keys from the fact table
(lo_suppkey, lo_custkey, lo_partkey). This often enables us to perform join with
the SUPPLIER, CUSTOMER, and PART relations in GPU. Joins involving these relations
are very selective. Therefore, caching segments from these columns is very beneficial
since the join output transferred from GPU is usually small. This also leaves CPU
with a much more lightweight execution over a smaller relation in the later stage of
query execution.
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Figure 4.10: Impact of Segment Grouping in Mordred

4.4.3 Evaluating Segment-level Query Execution

One important optimization in segment-level query execution is the grouping phase
prior to query execution (see Section 4.2.1). In this section, we will evaluate the
performance difference when we enable vs. disable segment grouping. Figure 4.10
shows the results with different cache sizes.

Without segment grouping, the execution engine will launch kernels in the gran-
ularity of segments instead of segment groups. This leads to an excessive number of
kernels launched, which leads to performance degradation.

With segment grouping, all the segments with the same execution plan are
grouped and executed with only a single kernel launch. We see from Figure 4.10 that
segment grouping can speed up query execution by up to 3×. The gain increases as
the cache size gets larger as more work can be offloaded to the GPU. The segment
grouping optimization is novel in Mordred and has not been adopted by existing
approach (i.e., HetExchange [62]).

We also measure the breakdown of each phase in segment-level query execution
(grouping, execution, and merging). Our experiment shows that for a small cache
size (0.8 GB), Mordred spends only 0.3% of the time for grouping, 99.2% of the time
for execution, and 0.5% of the time for merging. For a large cache size (6.4 GB), the
execution is much faster, and therefore merging and grouping contribute to larger
portions of the runtime; Mordred spends 4% of the time for grouping, 93.6% of the
time for execution, and 2.4% of the time for merging. In either case, merging and
grouping are not performance bottlenecks.
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Figure 4.12: Memory Traffic after Each Optimization

4.4.4 Breakdown of Mordred Optimizations

4.4.4.1 Query Runtime Speedup

We now measure the speedup from each optimization applied to Mordred. We
evaluate the performance gain from four optimizations: (1) lightweight memory
allocation (Section 4.3.1), (2) late materialization (Section 4.2.2.1), (3) operator
pipelining (Section 4.2.2.2), and (4) segment skipping (Section 4.2.2.3). We perform
the measurement for 4 different cache sizes as shown in Figure 4.11. The query will
run completely in CPU when the cache size is 0 and will run completely in GPU when
the cache size is 8 GB. For 2GB and 4GB cache sizes, Mordred caches data following
the semantic-aware policy.

Across all cache sizes, lightweight memory allocation (Lite Malloc) consistently
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improves performance by around 3.3×, which is due to eliminating the expensive
memory allocation operations.

Late Materialization (Late Mat) provides performance speedup by up to 3×.
Without late materialization, operators are forced to be executed on the CPU since
we need to cache the whole relation to execute an operator on the GPU. With late ma-
terialization, however, we can offload some operators to GPU or divide the operators
between CPU and GPU which will provide significant speedup.

Operator pipelining (Op Pipelining) provides an extra speedup by up to 1.3×.
Operator pipelining reduces the memory traffic during query execution Since our
GPU implementation with Crystal is close to saturating the memory bandwidth, the
benefit from operator pipelining is more significant in GPU.

Finally, segment skipping (Seg Skipping) provides another 1.6–3× speedup.
Segment skipping reduces the amount of data being processed by the query. In the
original SSB queries, segment skipping manages to skip 48% of the data across all
the queries. The speedup is more significant when the data is partially cached in
GPU. This is because it can more accurately identify data that benefits the most from
GPU caching. Specifically, when segment skipping is not applied, a full column scan
is often required during query execution. This causes the weight of all segments in
the column to be incremented following Algorithm 2. When segment skipping is
applied, however, the skipped segment will not get its weight incremented. This
improves the accuracy of our semantic-aware caching and improves the overall the
query performance.

4.4.4.2 Memory Traffic Breakdown

To reveal deeper insight of the performance optimizations, we show the mem-
ory traffic breakdown after every optimization is applied. Figure 4.12 shows the
breakdown with 1.6 GB cache size (which can hold 20% of all accessed columns).

After lightweight memory allocation, the traffic does not really affected since
it just eliminates memory allocation operations. After late materialization, we can
offload more work to the GPU. This reduces the CPU memory traffic and increases
the interconnect and the GPU memory traffic. After operator pipelining, both CPU
traffic and GPU traffic are reduced even further since the intermediate results are not
materialized. The reduction in CPU traffic is more significant since the cache size
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Figure 4.13: SSB Query Performance of Different CPU/GPU DBMS (Data fits in GPU)
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Figure 4.14: SSB Query Performance of Different CPU/GPU DBMS (Data does not fit
in GPU)

is small and therefore most of the operators are executed in CPU. Finally, segment
skipping reduces the CPU traffic and GPU traffic by reducing the total amount of
data being processed by the queries.

To summarize, in this experiment we see how various optimizations in Mordred
could: (1) lower the CPU traffic by offloading more work to GPU and (2) lower the
total traffic by reducing the data being processed and pipelining operations.

4.4.5 Comparison with Other CPU/GPU DBMS

This subsection reports the end-to-end performance evaluation of four existing
CPU/GPU DBMSs:

• CoGaDB: CoGaDB [50] is a prototype of column-store CPU-GPU DBMS.
CoGaDB uses column-granularity LRU and LFU based replacement policy and
utilizes a learning-based optimizer called Hype [57].

• HeavyDB: HeavyDB [15] is a commercial GPU DBMS. HeavyDB treats GPU
as the primary execution engine. When the data does not fit in GPU, HeavyDB
will divide the query plan into multiple stages and execute each stage on GPU
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one step at a time. To reduce the amount of data transfer, HeavyDB caches the
data in GPU using the LRU policy.

• BlazingDB: BlazingDB [6] is a commercial GPU DBMS. BlazingDB uses the
RAPIDS library [28] as its execution engine.

• YDB: YDB [133] is a prototype of column-store GPU DBMS. When the data
does not fit, the input data will be transferred to GPU following the coprocessor
model.

• Mordred: Mordred is our prototype of Hybrid CPU-GPU DBMS which utilizes
fine-grain semantic-aware caching policy and segment-level query execution.

We run two sets of experiments: (1) when data fits in GPU and (2) when data
does not fit in GPU. For Mordred and CoGaDB, we use 8 GB cache size. For HeavyDB,
BlazingSQL, and YDB, we let the system control the GPU memory. When the data
does not fit in GPU, we enable the coprocessor mode in HeavyDB and YDB. We use a
scale factor of 40 for when the data fits in GPU and a scale factor 160 (4× the cache
size) for when the data does not fit in GPU.

4.4.5.1 Data Fits in GPU

Figure 4.13 shows the query performance when the data fits in GPU. For Q4.1-Q4.3,
BlazingDB suffers an out-of-memory exception error and not shown in the figure.
Compared to BlazingDB, YDB, CoGaDB, and HeavyDB, Mordred is around 400×,
175×, 48×, and 9× faster, respectively. These systems do not have the tile-based
execution model in Crystal and thus do not utilize the GPU memory bandwidth as
efficiently as Mordred. They also do not have all the performance optimizations we
implement in Mordred, such as operator pipelining, segment-grouping, and segment
skipping.

Across the 13 queries, Mordred’s performance is significantly better compared to
other systems especially in Q1.2, Q1.3, and Q3.4. These queries only access data in
the range of a week or a month and benefit significantly from the segment skipping
optimization.
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4.4.5.2 Data Does Not Fit in GPU

Figure 4.14 shows the query performance when the data does not fit in GPU. Since
BlazingDB requires the dataset to fit in the GPU, we do not include it in this experi-
ment.

Compared to CoGaDB, Mordred is around 48× faster. Apart from the lack of
optimizations described in Section 4.4.5.1, our semantic-aware caching policy will be
superior compared to the column-granularity LFU/LRU policy used by CoGaDB.

Compared to HeavyDB and YDB, Mordred is around 11× and 25× faster. This
is because when the data does not fit in GPU, HeavyDB and YDB will switch to
coprocessor mode and stream the data on demand from CPU memory during query
execution. This results in suboptimal performance due to excessive data transfer.

Across the 13 queries, Mordred’s performance gain in Q3.1-Q4.3 is more significant
than Q2.1-Q2.3. This is because our semantic-aware policy chooses to prioritize
caching more segments from Q3.1-Q4.3 which results in performance difference
between the query sets. This behavior would not be apparent in other systems which
do not adopt semantic-aware policy.

4.5 Related Work
There have been a few previous systems that attempted to leverage both CPU and
GPU for query execution [78, 82, 50, 135, 62, 87, 94, 81, 63].

GDB [78] was the earliest effort in this direction. GDB can execute an operator on
both CPU and GPU by partitioning the input data prior to execution (e.g. partitioned
hash join). OmniDB [136] improved GDB with kernel adapter design so that it could
target different hardware architectures efficiently. Unlike Mordred, these systems do
not handle data placement between CPU and GPU.

He et al. [81] discussed heterogeneous query execution that specifically targets an
integrated CPU-GPU architecture in a single chip (e.g AMD APU). In this architecture,
PCIe is no longer a bottleneck but the GPU is less powerful and has a much lower
memory bandwidth than the ones in a discrete architecture.

DB2 BLU [94] showed how to use GPU and CPU cores for faster processing in
IBM DB2 database. This work uses a heuristic to decide where to execute an operator
based on its runtime features (e.g. input size, number of groups, etc). This work,
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however, only supports limited number of operators (group-by, aggregation, and
sort) and does not address data placement between CPU and GPU.

Ocelot [82, 54] is a hardware-oblivious database engine which integrates GPU
backend to the in-memory column-store MonetDB [48, 47]. Ocelot uses OpenCL
[24] runtime to enable hardware-agnostic operator implementation. For its data
placement policy, Ocelot caches the most recently used columns in GPU memory.

CoGaDB [50] is a main-memory DBMS with built-in GPU accelerator. CoGaDB
utilizes a framework called Hype [57, 51, 58, 59, 49, 53, 60, 56], which uses a learning-
based cost model to assign operators on either CPU or GPU. The latest work of
CoGaDB [52] introduced data-driven operator placement heuristic as an alternative
to Hype (see Section 4.2.1.1). Experiments showed that this heuristic manages
to outperform the learning-based optimizer [52]. Mordred also adopts the same
heuristic as CoGaDB. Similar to Ocelot, CoGaDB uses column-granularity LRU or
LFU policy to cache data in GPU. We compared the performance of Mordred against
CoGaDB in Section 4.4.5.

HERO [87] investigated adaptive work placement in heterogeneous computing.
Operator placement decision typically depends on the processed and transferred data
in terms of data cardinalities. This work proposed a placement optimization strategy
that can be completely independent on cardinality estimation of the intermediate
result. However, unlike Mordred, this work only focuses on placement optimization
and does not address data placement and heterogeneous query execution. HERO
is developed as an extensible virtual layer on top of YDB [133]. We compared our
performance HERO’s core execution engine (YDB) in Section 4.4.5.

Lutz et al. [92] discussed query execution across CPU and multiple GPUs through
fast interconnect. This work, however, specifically targets CPU-GPU with NVLINK
interconnect instead of PCIe, which is available only for IBM Processor in the current
market. Most other processors (e.g., Intel and AMD) still use PCIe as the inter-device
interconnect. Moreover, this work only focuses on hash join and does not support
general queries like Mordred.

Finally, HetExchange [62, 63] introduced a query execution framework to encap-
sulate heterogeneous parallelism in hybrid CPU/GPU system through redesigning
the classical Exchange operator. This framework is also integrated with just-in-time
compilation engine to enable operator pipelining. HetExchange, however, does not
address the data placement between CPU and GPU and lacks an optimizer compo-
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nent to generate the heterogeneous query plan based on the data location. Mordred
addresses these issues through segment-level query plan which we described in Section
4.2. Moreover, HetExchange does not support segment-grouping which can provide
speedup as shown in Section 4.4.3.

4.6 Conclusion
This work advances the state-of-the-art for heterogeneous CPU-GPU DBMS by con-
tributing in two aspects: (1) data placement and (2) heterogeneous query execution.
We introduce semantic-aware fine-grained caching policy which takes into account
query semantics, data correlation, and query frequency when determining data
placement between CPU and GPU. We also introduce a heterogeneous query execu-
tor which can fully exploit data in both devices and coordinate query execution at
a fine granularity. We integrate both solutions in Mordred, our hybrid CPU-GPU
analytical engine. Evaluation on the Star Schema Benchmark shows that our semantic-
aware caching policy manages to outperform the best traditional caching policy by
3×. Mordred also manages to outperform existing GPU databases by an order of
magnitude.
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Chapter 5

Scaling to Multiple GPUs

In the previous chapter, we have discussed one effective strategy to address GPU
memory capacity limitation is by leveraging CPU memory to support larger data sets
and execute the query with both CPU and GPU (i.e., heterogeneous CPU-GPU query
processing) [131, 82, 50, 62]. Such a design can exploit the parallelism of both CPU
and GPU while minimizing the data transfer overhead between the two devices.

This solution, however, only applies to heterogeneous CPU-GPU DBMS with a
single GPU [131, 82, 50, 96]. In contrast, multi-GPU systems provide significantly
more aggregate GPU memory and computational power. They not only allow larger
datasets to fit in GPU memory but also enable greater parallelism and performance
gains when used effectively. In this work, we aim to address the unique challenge of
scaling heterogeneous CPU-GPU DBMS to multiple GPUs.

One key challenge in this design space arises from the dual requirements of
both heterogeneity (CPUs vs GPUs) and scalability (multiple GPUs). To address this
challenge, we propose the Unified Multi-GPU Abstraction. This abstraction aims to
simplify the design space by treating multiple GPUs as a single large monolithic GPU
(shown in Figure 5.1). By doing this, we can decouple the design into a two-step
process. The first step navigates the design space between CPUs and the Unified
Multi-GPU, and the second step navigates the design space across multiple GPUs.
Building on this abstraction, we develop Lancelot, a heterogeneous CPU and multi-
GPU DBMS. Lancelot aims to scale the following critical design aspects in CPU-GPU
DBMS to multiple GPUs:

Data placement. Leveraging both CPU and multi-GPU presents us with the
opportunity to (1) cache the data collectively across multiple GPUs and (2) replicate
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data across GPUs to reduce communication. Both caching and replication can lead
to better query performance since they can improve GPU utilization and minimize
data transfer between devices. One unique challenge for data placement in this
architecture is the coordination between caching and replication. These two goals
may be in conflict, e.g., more data replicated across GPUs means less data can be
cached in total in GPUs. To achieve the best overall performance, Lancelot introduces
the cache-aware replication policy, a cost-based replication strategy that selectively
replicates shuffle-intensive data to strike a balance between caching and replication.

Query execution. Another challenge in scaling a heterogeneous DBMS to multiple
GPUs is to transform the heterogeneous query plan to leverage multi-GPU hardware.
Previous work such as Mordred [131] introduces segment-level query execution, which
allows different segments of a column to execute different query plans depending
on whether the segments are cached in GPU. This approach, however, does not
scale to multiple GPUs, because the number of subquery plans will blow up due to
the fact that segments can be located across multiple GPUs. In Lancelot, we solve
this challenge by extending the segment-level query execution with distributed query
processing techniques to run efficiently on multiple GPUs.

Contributions. This work makes the following contributions:

• We develop the unified multi-GPU abstraction, which views multi-GPU devices
as a single large monolithic GPU to reduce the design complexity in hybrid
CPU and multi-GPU DBMS.

• We develop a cache-aware replication policy for heterogeneous CPU and multi-
GPU DBMS. The policy takes into account the cost of shuffling when replicating
data and could coordinate both caching and replication decisions for the best
performance.

• We extend segment-level query execution, a fine-grained hybrid execution strategy
to support query plans on multiple GPUs.

• We build Lancelot, a hybrid CPU and multi-GPU analytical engine that in-
corporates the proposed optimizations. Our detailed evaluation shows that
cache-aware replication can lead to 2.5× speedup and Lancelot can outperform
existing GPU DBMSes by at least 2× on SSB and 12× on TPC-H.
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Figure 5.1: Illustration of Unified Multi-GPU Abstraction

Organization. The rest of the chapter is organized as follows: Section 5.1 describes
the unified multi-GPU abstraction. Section 5.2 describes the cache-aware replication pol-
icy. Section 5.3 describes our hybrid CPU and multi-GPU query execution strategy
and its optimizations. Section 5.4 describes Lancelot’s implementation details. Sec-
tion 5.5 evaluates the performance of Lancelot. Section 5.6 discusses related work
and Section 5.7 concludes the chapter.

5.1 Unified Multi-GPU Abstraction
One key challenge in expanding a heterogeneous DBMS to multiple GPUs arises from
the need to address both heterogeneity and scalability. In Section 5.1.1, we describe the
challenges and discuss the limitations of previous work. Section 5.1.2 describes our
proposed solution, unified multi-GPU abstraction, which reduces the design complexity
by treating multiple GPUs as a single large GPU.

5.1.1 Challenge

In hybrid CPU and multi-GPU DBMS, one key challenge stems from the need to
navigate both heterogeneity (CPU vs GPU) and scalability (across multiple GPUs)
when making design decisions. Such requirements can significantly escalate the
design complexity. Prior solutions focus on only one aspect but have not thoroughly
explored the design space of data placement and query execution in hybrid CPU and
multi-GPU DBMS. For example, HetExchange [62] provides a framework to express
hybrid query plans but does not explore the design space of data placement and
query execution in CPU and multi-GPU DBMS. HERO [87] explores the design space
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for operator placement but does not address the challenges in other database aspects,
such as data placement and query execution.

5.1.2 Design Abstraction

To simplify the design space in hybrid CPU and Multi-GPU DBMS, we introduce
the Unified Multi-GPU Abstraction. The main idea behind this abstraction is to view
multiple GPUs as a unified, large monolithic GPU, rather than as individual discrete
GPUs. Figure 5.1 illustrates this abstraction. With the unified multi-GPU abstraction,
the system design is decomposed into two separate steps:
Step 1: Addressing heterogeneity. In this step, we treat multiple GPUs as a single
GPU with larger aggregated memory and more processing power. For the case of
data placement, the DBMS determines what data should be cached in the unified
Multi-GPU with respect to the CPU, but does not concern data placement across
the GPUs. By doing this, we can directly apply existing techniques that have been
developed for heterogeneous CPU-GPU DBMS.
Step 2: Addressing scalability. In the second step, we zoom inside the unified Multi-
GPU to address the challenges posed by multiple GPUs. In particular, the DBMS
will decide how the cached data should be partitioned and/or replicated across the
GPUs.

The unified multi-GPU abstraction is tailored for systems with homogeneous GPUs,
which is common in data centers and the cloud. Moreover, modern GPUs often use
fast interconnects like NVLink, capable of up to 900 GB/s [21], making inter-GPU
data transfer significantly faster than CPU-to-GPU transfer.

In Lancelot, we use the unified multi-GPU abstraction as a guideline to explore the
design space in hybrid CPU and multi-GPU DBMS. This abstraction is straightforward
and does not require additional formulation. In the next two sections, we will discuss
in detail the implementation of this abstraction for data placement (Section 5.2) and
query execution (Section 5.3).

5.2 Data Placement
Intelligent data placement can lead to better query performance and memory effi-
ciency in heterogeneous CPU-GPU DBMSes. Lancelot treats data placement as a
caching problem following previous works [50, 131] — the complete data set resides
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Figure 5.2: Illustration of Cache-aware Replication Policy – Assuming a Host System
with 2 GPUs.

in CPU memory and a mirrored subset of data is cached in GPUs. Lancelot borrows
the semantic-aware fine-grained caching policy [131], which is the state-of-the-art caching
policy in heterogeneous CPU-GPU DBMS.

To address data placement across multiple GPUs, Lancelot treats data placement
as a replication problem inspired by previous works in distributed databases [116]
— the data set can be either partitioned and distributed across multiple GPUs or
replicated across multiple GPUs. Whether a piece of data should be replicated is
determined by the benefit of replication (e.g., reduction of network transfer) and the
associated cost (e.g., extra disk/memory space consumption).

A unique challenge in hybrid CPU and multi-GPU is the correlation between
(1) the caching policy in the unified Multi-GPU and (2) the replication policy across
GPUs. More data replication across GPUs means less data can be cached in total. To
achieve the best overall performance, the caching and replication decisions must be
holistically considered to balance their effects on performance.

Lancelot addresses this challenge by developing a cache-aware replication policy.
The key insight behind the policy is to use a unified cost model to estimate the effects
of caching and replication. In Section 5.2.1, we demonstrate how replication can lead
to better performance. Then, we explain the proposed policy in Section 5.2.2.

5.2.1 Motivation

5.2.1.1 The benefit of shuffle-awareness
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In a multi-GPU system, despite being interconnected with high-speed interfaces
like NVLink, data transfer between GPUs can still be the bottleneck of query execution
since NVLink bandwidth is lower than that of the GPU device memory. Existing multi-
GPU DBMSes always partition the data across multi-GPUs (Figure 5.2a) which often
results in significant portions of query execution spent on shuffling data across mul-
tiple GPUs [101, 15, 11]. Our experiments show that when running a co-partitioned
join with 4 V100 GPUs connected by NVLink, around 50% of the total join runtime is
consumed by partitioning and transferring data across GPUs.

By strategically replicating data, we can reduce or even eliminate the data shuffling
overhead. Figures 5.2a and 5.2b illustrate the benefit of shuffle-aware data replication.
Without data replication (Figure 5.2a), joining relations R and S requires the DBMS
to either (1) broadcast column Z (which is a join key) or (2) co-partition R and S

on columns Y and Z, respectively. Figure 5.2b shows both GPUs’ cache content after
shuffle-aware data replication. By replicating Z0 and Z2, we now only need to broadcast
Z1 and Z3 to perform the join locally in each GPU. Compared to Figure 5.2a, the data
transfer overhead during join is now halved. Our experiment running join with 4
V100 GPUs shows that replication can lead to 2× speedup.

5.2.1.2 The benefit of cache-aware replication

As depicted in Figure 5.2b, data replication will consume the available cache
size in each GPU. As replication continues, we will reach the limit of GPU memory
capacity, bringing us to a decision point where we can either (1) stop replication or
(2) opt to continue replication at the cost of evicting some data back to the CPU.

Continuing replication at the expense of evicting cached data may result in worse
query performance since it may lead to certain query operations executed on CPUs.
Conversely, it may also lead to speedup, particularly if the evicted data are infre-
quently accessed (cold data) or involved in operations that can be executed efficiently
on CPUs. This underlines the importance of integrating cache-awareness into the
replication policy to effectively navigate the trade-off between caching and replication.
Such property has not been exploited by existing works.

Figure 5.2c illustrates the benefit of cache-aware data replication. In this example,
column X is only used for aggregation, which does not introduce much overhead
when executed on CPUs. Therefore, the policy chooses to replicate data from column
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Algorithm 3: Update the replication weight for Segment S
1 # estimate the cost of shuffling
2 Cost = estimateShuffleCost(shuffled_segments)
3 for S in shuffled_segments do
4 # increment replication weight of segment S
5 S.replication_weight += Cost / (|shuffled_segments| × |CARD|)

Algorithm 4: Decide between Caching and Replication
1 CacheOrReplicate(segment Sx, segment Sy):
2 if Sx.replication_weight > Sy.caching_weight then
3 for gpu in NUM_GPU do
4 Cache(Sx, gpu) # Replicate Sx

5 else
6 gpu = mapSegmentToGPU(Sy) # Hash function to select gpu
7 Cache(Sy, gpu)# Cache Sy in gpu

Z instead of caching data from column X. Doing this allows the join to be performed
locally in each GPU at the cost of running aggregation on the CPU.

5.2.2 Cache-Aware Replication Policy

The key challenge of a hybrid CPU and multi-GPU DBMS is to find a holistic solution
to handle both caching and replication decisions. Replication reduces data transfer
between GPUs but also results in caching less data, hence executing more operators
on the CPUs. In contrast, caching would ensure more operators to be executed on
the GPUs, but may result in excessive data transfer across multiple GPUs. As both
caching and replication would lead to performance speedup and space consumption
in the GPU memory, we need to resolve the conflict between the two policies to
achieve the best overall performance. The goal of our cache-aware replication policy is
to: (1) selectively replicate data to reduce data transfer overhead, and (2) navigate
the trade-off between caching and replication.

The key insight of our policy is to use a unified cost model to estimate the effect
of both caching and replication. Our policy splits each column into equal-sized
partitions, which we will refer to as segment for the rest of the dissertation. The
policy will cache and replicate data on segment granularity. Each data segment will
be assigned weights derived through cost models which will be used to navigate
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the trade-off between caching and replication. Section 5.2.2.1 describes the general
replication framework and Section 5.2.2.2 describes the cost model used by the policy.

5.2.2.1 Replication Policy

Our cache-aware replication policy is inspired by the semantic-aware caching policy
used in Mordred [131]. In Mordred, each segment will be assigned a weight that
reflects the benefit of caching the segment in GPU. The weight is derived using the
cost model from Crystal [110] and data will be cached starting from the segment with
the highest weight. Lancelot uses the same weight-based mechanism for caching data
in GPU. Furthermore, Lancelot generalizes the mechanism to support both caching
and replication.

Algorithm 3 shows the shuffle-aware weight update in our replacement pol-
icy. We execute Algorithm 3 each time we shuffle or broadcast data during query
execution. The algorithm first predicts the data shuffling cost using the function
estimateShuffleCost(), which utilizes a simple cost model that will be described in
detail in Section 5.2.2.2. Following this, for each segment that is involved in data
shuffling or broadcast, we will increment the replication weight by the data shuffling
cost divided by the total number of segments involved and normalized by the table
cardinality.

Since both caching and replication policies in Lancelot collect per segment weight,
each segment now possesses two weighted counters: (1) replication weight from the
cache-aware replication policy and (2) caching weight from the semantic-aware caching
policy. Both policies derive their weights from the same cost model [110], so that direct
comparison between the two weights becomes feasible. Function CacheOrReplicate()
outlined in Algorithm 4 can be used to determine whether to replicate Segment Sx or
cache Segment Sy in order to occupy the available GPU cache space: if the replication
weight of Sx is larger than the caching weight of Sy, we opt for replication of Sx;
conversely, if the caching weight of Sy surpasses the replication weight of Sx, we
cache Sy instead.

For example, in Figure 5.2, segments from column X have low caching weights
since they are only used for aggregation, which does not impose much overhead
when executed on CPUs. In contrast, segments from columns Y and Z have high
caching and replication weights since joins are expensive and may result in excessive
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data transfer across the GPUs. Given that the replication weight of column Z is higher
than the caching weight of column X, Algorithm 4 would decide to replicate Z rather
than caching X to occupy the available GPU memory space.

Since our policy requires prior knowledge of query statistics, Lancelot gathers
these statistics and calculates the weight after each run. Caching and replication are
performed periodically every n queries, with n being a user-defined parameter set to
100 by default.

5.2.2.2 Cost Model

This subsection explains how the estimateShuffleCost() in Algorithm 3 works. In
particular, we use the cost model presented in Crystal [110] and Mordred [131] to
estimate the cost of shuffling or broadcasting the data across GPUs. These models
operate under the assumption that queries can fully utilize memory bandwidth,
thereby deriving execution time from memory traffic. The accuracy of the model has
been verified in Crystal on simple operators. Mordred extends the model to support
hybrid CPU-GPU execution and PCIe, demonstrating acceptable accuracy for the
purposes of caching policy. In this work, we extend the model even further to support
operators used in multi-GPU query execution.

In particular, in distributed query execution with multiple GPUs, there is an extra
cost for data transfer and data partitioning. We model the cost of data transfer as
follows:

data_transfer = size(int)×N

BWgpu2gpu

Where N is the cardinality of input segments and BWgpu2gpu is the interconnect
bandwidth between GPUs. We model the cost of data partitioning as follows:

data_partitioning =
size(int)×N

Br
+

(1 − π)×N× C

Bw

Where Br and Bw are GPU read and write memory bandwidth, C is the cache line
size, and π is the probability the accessed cache line is in the last level cache. Using
these equations as building blocks, we can express various communication collectives
in estimateShuffleCost(). For example, broadcast and all-to-all can be expressed with a
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collection of data_transfer between GPUs as follow:

broadcast =
nGPUs∑

i=1

size(int)×N

BWgpu2gpu

all-to-all =
nGPUs∑

i=1

nPartition∑
j=1

size(int)×Nij

BWgpu2gpu

Similarly, data shuffling can be expressed as data_partitioning on each GPU followed
by an all-to-all communication.

Since our cost model takes into account the hardware properties (e.g. interconnect
bandwidth, GPU memory bandwidth, etc.), our policy can adapt to various hardware
and interconnect speeds.

5.3 Query Execution
Scaling heterogeneous query execution to multiple GPUs introduces new challenges
and opportunities. First of all, since caching and replication are performed in segment
granularity, we need to maintain fine-grain coordination during query execution
across the CPU and multiple GPUs. Previous work has attempted to address such
challenge with segment-level query execution — different segments of a column will
execute different subquery plans depending on the segments’ location — but does not
extend the solution for multiple GPUs. In Lancelot, we leverage the unified multi-GPU
abstraction to extend segment-level query execution to multiple GPUs.

Moreover, as discussed in Section 5.2.1.1, multi-GPU query execution can in-
troduce significant data transfer overhead. In Lancelot, we further minimize this
overhead by applying several optimizations from distributed query processing to
multi-GPU query execution. Section 5.3.1 describes the general query execution
framework in Lancelot and Section 5.3.2 describes various optimizations in Lancelot
to speedup the query performance.

5.3.1 Scaling Query Execution to Multiple GPUs

By leveraging the unified multi-GPU abstraction, we can decouple query execution
into two steps: (1) query execution between CPU and the Unified Multi-GPU, and (2)
query execution across multiple GPUs. We will discuss how Lancelot addresses each
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Figure 5.3: Example of Query Execution in Lancelot

step individually in Section 5.3.1.1 and Section 5.3.1.2. Then, we show an example of
query execution in Lancelot in Section 5.3.1.3.

5.3.1.1 Query Execution between CPU and the Unified Multi-GPU

One unique challenge in query execution involving both CPU and multiple GPUs
lies in the communication between the two device types. Lancelot covers 4 different
data transfer scenarios:
Transferring different partitions from CPU to GPUs: In this scenario, data is parti-
tioned on the CPU before each partition is sent to different GPUs. Lancelot will utilize
all available PCIe lanes to transfer the data from the CPU to each GPU efficiently.
Broadcasting data from CPU to GPUs: For NVLink-connected GPUs, Lancelot will
send the data to one GPU, which then broadcasts the data to all the other GPUs.
Broadcasting data from the GPU is typically faster due to the high-speed NVLink
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interconnect. For PCIe-connected GPUs, Lancelot will utilize all available PCIe lanes
to broadcast the data from the CPU to each GPU.
Transferring groupby/aggregation results from GPUs to CPU: Since merging results
in GPU is faster than CPU, Lancelot will first merge the groupby result in one GPU,
before sending it to the CPU.
Transferring join/filter results from GPUs to CPU: In this case, Lancelot will use all
the available PCIe lanes to directly transfer the different partitions from each GPU to
the CPU.

To coordinate fine-grain query execution across CPUs and GPUs, Lancelot adopts
the segment-level query plan [131]. Segment-level query plan allows different segments
of a column to execute different query plans depending on the segments’ location.
Lancelot uses a simple heuristic to push an operation to where the segments reside to
minimize the data transfer. Figure 5.3a shows an example of a segment-level query
plan. To support multi-GPU query execution, Lancelot will simply expand each GPU
subquery plan to a distributed query plan (Figure 5.3b). Doing this will prevent the
heuristic from generating an excessive number of subquery plans.

5.3.1.2 Query Execution across Multiple-GPUs

Lancelot executes a multi-GPU query plan similar to how a distributed query en-
gine works. For distributed join, Lancelot supports both broadcast and co-partitioning
join. For filtering, Lancelot executes the operator locally in each GPU. For group-by
and aggregation, Lancelot first executes the operator locally in each GPU, followed
by merging the results across all the GPUs.

Lancelot provides three multi-GPU communication routines to support distributed
query plans as follows:
Broadcast: This routine is used to send data from one GPU to all the other GPUs.
Common use cases include broadcast join and broadcasting intermediate results from
the CPU.
Gather: This routine is used to collect data from all the GPUs to one GPU. Mainly
used for merging group-by results across GPUs.
All-to-all: This routine is used in co-partitioned join to exchange data between every
pair of GPUs, allowing a GPU to send and receive its partition from every other GPU.
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Lancelot implements these routines by leveraging NCCL [17], a topology-aware
multi-GPU communication library that has been optimized to achieve high through-
put on multi-GPU platforms.

5.3.1.3 Example of Query Execution

Q0: SELECT S.D, SUM(R.A) FROM R,S
WHERE R.B = S.C AND R.A > 10 GROUP BY S.D

Figure 5.3 illustrates an example of multi-GPU query execution in Lancelot when
executing Q0. In this example, R is the probe relation and S is the build relation. In
Figure 5.3a, we can see how the query plan is divided into subquery plans following
the segment-level query plan based on where the data is originally located. Specifically,
the query is divided into 2 subqueries:
CPU Subquery: This subquery operates on uncached data (A2, B2) and executes
filter, join, and group-by on CPUs.
GPUs Subquery: This subquery operates on cached data (A0, B0, A1, B1) and
executes filter, join, and group-by on GPUs.
Lancelot will launch both subqueries in parallel to utilize all the available computation
power of CPUs and multiple GPUs.

Figure 5.3b shows the generated query plan after Lancelot expands the GPU
Subquery into a distributed query plan for 2 GPUs. For simplicity, we will use broadcast
join as our join strategy, although other approaches such as co-partitioning join can
also be applied. To perform the broadcast join, segments C0, C1, D0, and D1 will be
broadcasted such that each GPU has the complete copy of relation S. Doing this will
allow all remaining operations (filter, join, group-by, and aggregation) to be executed
locally on each GPU. Finally, after each GPU computes its final result, results from
GPU 0 and GPU 1 are merged in GPU 0 before being transmitted to the CPUs for the
final aggregation with the CPU subquery.

5.3.2 Reducing Data Transfer Overhead

In this section, we describe optimizations we adopt in Lancelot to further reduce
the data transfer overhead across GPUs. We will discuss three optimizations: late
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materialization (Section 5.3.2.1), adaptive join (Section 5.3.2.2), and join reordering
(Section 5.3.2.3).

5.3.2.1 Multi-GPU Late Materialization

During query execution, transferring intermediate relations can often be expensive.
For example, a co-partitioned join operation will partition either relation into multiple
smaller partitions, and transfer each partition to the corresponding GPUs. Previous
CPU-based columnar databases used the late materialization strategy to reduce data
transfer by expressing intermediate relations in the form of row IDs. Lancelot employs
a late materialization strategy specifically tailored for multi-GPU query execution.

During the partitioning phase in co-partitioning join, Lancelot will reconstruct
only the join key columns used by the query. The remaining columns in the relation
will be expressed in the form of row IDs. For subsequent query operations, Lancelot
reconstructs the accessed columns using row IDs lazily, by leveraging the Unified
Virtual Addressing (UVA). UVA is a GPU-specific technology that allows GPU ker-
nels to directly access peer GPUs’ memory in byte granularity through the device
interconnect (e.g. NVLink).

For queries with highly selective joins, this reconstruction cost can be negligible,
reducing the overall data transfer overhead. For queries with non-selective join,
however, reconstruction can introduce non-trivial overhead due to random accesses
to the peer GPUs’ memory. Hence, to decide whether to do late materialization,
Lancelot leverages a cost model to estimate the reconstruction overhead as follows:

reconstruction =
N× C

BWgpu2gpu

Where N is the number of tuples to reconstruct and C is the cache line size. Based
on this estimation, Lancelot will do late materialization if the reconstruction cost
is cheaper than the cost of broadcasting or shuffling the input data (obtained from
Section 5.2.2.2).

5.3.2.2 Adaptive Join Strategy
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Lancelot supports two types of distributed joins: broadcast join and co-partitioning
join. Since both joins have different costs, choosing the right join strategy could lead
to performance speedup. For example, when joining with small relations, broadcast
join is often more efficient compared to co-partitioning join, since the broadcasting
small relations incurs little overhead. To decide between the two strategies, Lancelot
once again leverages the cost model in Section 5.2.2.2 to estimate the cost of both joins
and choose the join strategy with a lower cost. While the model might not be precise,
we find the accuracy to be acceptable for this purpose.

5.3.2.3 Join reordering

We can further reduce the data transfer during query execution by reordering
the joins based on their join strategy. In particular, if we have an n-way joins with
a left-deep join tree query plan, Lancelot will reorder the co-partitioning joins to
the end of the join pipeline. Executing co-partitioning join at the start of the join
pipeline can be expensive since we would need to shuffle the full input relations that
are relatively large. By pushing the joins to the end of the pipeline, we can speed up
the co-partitioning joins as the sizes of the input probe relations would often have
been reduced by the selectivity of the prior joins in the pipeline.

5.4 Systems Integration
This section describes the implementation of Lancelot, our hybrid CPU and multi-
GPU DBMS. Figure 5.4 illustrates the architecture of Lancelot, which consists of three
main modules described in the following subsections: Buffer Manager (Section 5.4.1),
Query Optimizer (Section 5.4.2), and Query Execution Engine (Section 5.4.3).

5.4.1 Buffer Manager

The Buffer Manager is a CPU component that manages data placement on the CPU
and across multiple GPUs in Lancelot. It divides each GPU memory into two regions:
Data Caching: This is a region that stores the cached or replicated data in segment
granularity. It performs periodic data placement by leveraging semantic-aware caching
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Figure 5.4: Lancelot System Architecture

and cache-aware replication policy discussed in Section 5.2. The segment size is user
defined and set to 4MB by default.
Data Processing: This is a region which stores intermediate results during query
execution (i.e., hash tables, intermediate results, etc.).
Both the data caching and the processing region are pre-allocated with a fixed size
during system initialization to avoid frequent dynamic memory allocation in the
GPUs.

The Buffer Manager also handles the metadata management in Lancelot. The two
main data structures used by our buffer manager are an array of free lists (one free
list per GPU) and a 2-level hash table. We use the free list in each GPU to track the
available slots in their respective caches. We use the 2-level hash table to store the
location of each segment. The first level maps each segment to the corresponding
GPU, and the second level maps to an address in the GPU memory. Although using
a single-level hash table is also possible, we opt for 2-level hash table due to its
simplicity, especially since metadata management has a negligible impact on query
performance. The Buffer Manager also stores the segment statistics in Lancelot, such
as the replication weight, caching weight, and the min-max of each segment.
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The metadata of Lancelot resides in the CPU memory. When a GPU kernel
requires some metadata, the Buffer Manager will send the necessary metadata to the
GPUs prior to launching the kernel.

5.4.2 Query Optimizer

The query optimizer converts a query plan to the segment-level query plan shown in
Figure 5.3(b). Our original query plan is taken from Crystal [110] which is already
optimized for GPUs.

To decide which operator should be executed on GPUs, our optimizer leverages the
data-driven operator placement[52], where we execute operators on GPUs only when the
input data is cached in at least one of the GPUs. Subsequently, to construct the multi-
GPUs query plan, the optimizer will replace the join with either broadcast join or co-
partitioning join and apply the optimizations in Section 5.3.2.2 and Section 5.3.2.3. For
each group-by and aggregation, the optimizer will insert a merge operator following
the group-by.

5.4.3 Query Execution Engine

The Query Execution Engine in Lancelot executes the query plan generated by the
query optimizer across CPU and multiple GPUs. In particular, similar to Mordred, it
executes each subquery plan in parallel and merges the results at the end.

CPU execution in Lancelot is implemented with Intel TBB. GPU execution in
Lancelot is implemented with CUDA, using Crystal library [110]. Lancelot extends
Crystal to support multi-GPU query execution, such as distributed join and merge
operations. Communication across multiple GPUs is implemented using NCCL [17]
and the cudaMemcpy() primitives in CUDA. To launch a multi-GPU kernel, Lancelot
switches the device context to each GPU using cudaSetDevice() API and launch the
kernel asynchronously in each GPU by leveraging the cudaStream_t primitives.

5.5 Evaluation
In this section, we evaluate the performance of Lancelot. The section will answer the
following key questions:

• How does Lancelot scale as we increase the number of GPUs?
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• How does the cache-aware replication policy perform compared to other data
placement policies?

• How much performance improvement is achieved through various optimiza-
tions introduced in Section 5.3.2?

• How does Lancelot perform compared to other GPU DBMSs?

5.5.1 Experimental Setup

Hardware configuration: We ran our experiment with three different compute
instances:

• GPU3.8 instance (OCI): This instance features 8 NVIDIA V100 GPUs connected
through NVLink 2.0 with up to 300 GB/s bidirectional bandwidth per GPU.
Each V100 GPU has 16 GB of HBM2 memory with a read/write bandwidth of
880 GBps. These GPUs are connected to 52-Cores Intel® Xeon® E5-2698 via
PCIe3 with 12.8 GB/s bidirectional bandwidth.

• GPU4.8 instance (OCI): This instance features 8 NVIDIA A100 GPUs connected
through NVLink 3.0 with up to 600 GB/s bidirectional bandwidth per GPU.
Each A100 GPU has 40 GB of HBM3 memory with a read/write bandwidth of
1550 GB/s. These GPUs are connected to 64-Cores AMD EPYC 7542 (Rome)
CPUs via PCIe4 with 25.6 GB/s bidirectional bandwidth.

• g6.48xlarge (AWS): This GPU instance features 8 NVIDIA L4 GPUs paired
with 96-Cores AMD EPYC 7R13 (Milan) CPUs. Each L4 GPU has 24 GB of
GDDR5 memory with a read/write bandwidth of 320 GB/s. The GPUs and
CPUs are connected via PCIe4 with 25.6 GB/s bidirectional bandwidth. Since
there is no NVLink, GPU-to-GPU communication also occurs through PCIe.

Benchmark: Most of our experiments use the Star Schema Benchmark (SSB) [97]. The
SSB dataset has five tables with one fact table and four dimension tables. Since the
dimension tables in SSB are very small (< 0.5% of the fact table), we increase the size
of the dimension table to demonstrate more interesting scenarios when comparing
different data placement policies. The supplier, customer, and part tables are now 5%,
15%, and 25% of the lineorder table size respectively. In Section 5.5.5, we will also
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Figure 5.5: Performance Throughput of Lancelot with Different Scale Factors and
Number of GPUs

run the experiments with a subset of the TPC-H benchmark. We follow the method
described in [117] to select a representative subset of queries.

To enable efficient query execution in GPU, we store the data in columnar stores
and dictionary encode the string columns into integers prior to data loading. There-
fore, we ensure that all column entries are 4-byte in value. In our evaluation, the
entire data set is loaded to CPU memory before each experiment starts.
Measurement: Unless otherwise stated, we dedicate 50% of each GPU memory for
data caching, and the other half for data processing. Before each experiment, we first
warm up the GPU memory by running 100 random queries and then perform the
caching and replication to populate the GPU memory. For each experiment, we will
run 100 random queries and measure the query execution time.

5.5.2 Scalability Evaluation

This subsection evaluates how Lancelot can scale to multiple GPUs. In this experi-
ment, we use a GPU3.8 instance and sweep the scale factor from 40 to 400, measuring
throughput when running 100 random SSB queries. SF = 40 translates to a total of
7.5GB of data that are accessed by all the SSB queries (fits in a single GPU cache).
The data size of other scale factors (80–400) is a multiple of SF = 40. In this experi-
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ment, the throughput is calculated as the total amount of input data scanned by the
queries divided by the total query execution time. Figure 5.5 shows the result of the
experiment when running with 1, 2, 4, and 8 GPUs. The circles around the data points
indicate that the data still fits in the aggregated GPU memory.

Overall, as the data size increases on the x axis, the throughput decreases especially
when the data can no longer be replicated (more data transfer overhead) or no longer
fits in the aggregated GPU memory (queries are partially executed on the CPU). For
example, when running with 1, 2, and 4 GPUs, data exceeding SF = 40, SF = 80,
and SF = 160 respectively, no longer fits in the GPU memory, leading to diminished
performance. The degradation, however, can be kept minimum due to our intelligent
data placement policy.

Figure 5.5 also shows that increasing the number of GPUs does not always scale
throughput linearly. For example, the throughputs of 2, 4, and 8 GPUs for SF = 40 are
only 1.85×, 3×, and 3.85× higher than a single GPU. This is because when running
SF = 40 on 4 and 8 GPUs, each GPU only processes a small amount of the data, leading
to underutilization. In Section 5.5.5.1, we will show an experiment investigating the
scalability when each GPU is fully utilized.

For 8 GPUs, the throughput increases up to SF = 160 and then declines. At SF = 40
and SF = 80, using 8 GPUs for query execution results in GPU underutilization, which
limits the throughput. As the data size increases, throughput improves, peaking at
SF = 160 when each GPU is fully utilized. At SF = 240 and SF = 320, Lancelot can
no longer fully replicate the dimension tables, leading to increased data transfer and
reduced throughput. Finally, at SF = 400, the data no longer fits in GPU memory,
further lowering throughput as queries will be partially executed on the CPU.

5.5.3 Comparisons between Different Data Placement Policies

This subsection evaluates the performance of the cache-aware replication policy against
other data placement policies. In this experiment, all compared policies will use
the semantic-aware caching policy as their caching policy. We will then compare the
performance of three different replication policies:

• Replication-Only: This policy will replicate all the segments that are cached
across all the GPUs.
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Figure 5.6: Execution Time of Different Data Placement Policies with Uniform (a–c)
and Highly-Skewed (d–f) Distribution.

• Partitioning-Only: This policy will partition all the segments that are cached
across all the GPUs. Segments are assigned to different GPUs in a round-robin
fashion.

• Cache-Aware Replication: The cache-aware replication policy described in Sec-
tion 5.2.

5.5.3.1 Performance on Standard SSB

In this experiment, we sweep the number of GPUs and measure the query execu-
tion time of different data placement policies when running 100 random SSB queries.
We run each experiment on three different GPU instances: GPU3.8 (V100), GPU4.8
(A100), and g6.48xlarge (L4); For each configuration, we will use 8GB cache size
per GPU. We sweep the number of GPUs from 1 to 8 and run the experiment with
SF = 80, SF = 160, and SF = 320. Therefore, all columns that are accessed by queries
fit in 2 GPUs for SF = 80, 4 GPUs for SF = 160, and 8 GPUs for SF = 320. The query
access distribution is uniform following the default configuration.

Figures 5.6(a)–5.6(c) show the result of our experiment. For V100 GPUs (top)
and A100 GPUs (center), Partitioning-Only performs better than Replication-Only.
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On the other hand, for L4 GPUs (bottom), Replication-Only performs better than
Partitioning-Only. Cache-Aware outperforms the other policies in all the cases.

Replication-Only fails to efficiently leverage the combined GPU capacity due to the
necessity of replicating each segment across all GPUs. While this approach eliminates
the data transfer overhead between GPUs, it also minimizes data caching within the
GPU memory. Consequently, query execution primarily occurs on the CPU, leading
to performance degradation.

Partitioning-Only can cache the most data in GPUs since none of the data will be
replicated. As a result, it can execute a bigger portion of queries on GPUs compared
to the other two policies. However, the performance may be suboptimal since fully
partitioning data across the GPUs could incur significant data transfer overhead.
This has been particularly evident with L4 GPUs (bottom). Since these GPUs do not
feature NVLink, inter-GPU communication occurs through PCIe, causing significant
performance degradation. On V100 and A100 GPUs, this policy performs better as
transferring data is cheaper due to the fast NVLink interconnect.

Our Cache-Aware replication outperforms the other policies in all cases by up to
2.5×. Our policy will replicate segments that give the most replication benefit which
leads to speedup compared to Partitioning-Only, but stops replication if it starts to
hurt caching performance. Thus, it can better utilize the GPU memory capacity while
minimizing the data transfer overhead across GPU devices.

5.5.3.2 Performance on Skewed Workload

This experiment evaluates the performance of cache-aware replication policy under
highly skewed query access distribution. To simulate nonuniform distribution, we
incorporate skewness into the date predicates of SSB queries such that more recent
data has a higher probability of being accessed by the query. We pick the values
following a Zipfian [76] distribution, resulting in 90% of the queries accessing the
data from the last 3 years. Figures 5.6(d) - 5.6(f) show the results of the experiment.

Overall, Cache-Aware Replication outperforms the other policies across all scale
factors and hardware configurations by up to 3×. Replication-Only performs better
on the skewed workload than on the uniform workload. This is because caching only
the hot data can already give us a decent performance speedup for highly skewed
workloads, leaving more GPU memory capacity to benefit from replication. In fact,
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Figure 5.7: Memory Statistics of Various Data Placement Policies (SF = 160, 4 GPUs)

despite the faster NVLink interconnect on V100 (top) and A100 (center) GPUs,
Replication-Only can outperform Partitioning-Only at smaller scale factors (SF=80 and
SF=160).

We observe more speedup compared to the uniform distribution. This advan-
tage stems from the policy’s adept handling of skewed workloads, prioritizing the
replication of segments from dimension tables over caching colder data from the fact
table. This strategic decision yields more substantial speedup in the highly skewed
workload. To better understand the decision making in our policy, we will dive
deeper into the memory statistics in Section 5.5.3.3.

5.5.3.3 Memory Statistics

In this experiment, we show the memory statistics for each data placement policy.
We use 4 GPUs and SF = 160 on GPU3.8 instance and show the memory statistics for
both uniform and skewed query access patterns.e Figure 5.7 shows the result of our
experiment. The y-axis in the Figure indicates the percentage of data (from the entire
dataset) that are (1) cached, (2) cached and also replicated across all the GPUs, and
(3) not cached in the aggregated GPU memory.

For Replication-Only, the data is either cached+replicated or not cached. This
results in a total of only 25% of the GPU memory being used to cache data. Since
most of the data is not cached, a large portion of query execution will be executed on
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Figure 5.8: NVLink Traffic of Various Data Placement Policies

the CPU which results in significant performance overhead.
For Partitioning-Only, the data that are being accessed by the queries can be cached

but not replicated across the GPUs. For NVLink-connected GPUs, this results in
better performance compared to Replication-Only but can result in worse performance
in PCIe-connected GPUs.

For Cache-Aware Replication, there is more variation of data that are being cached,
being replicated, and not being cached. On uniform workload, a total of 84% of
the data is being cached, and among those 84%, 8% are replicated across all the
GPUs. Conversely, 16% of the data is not cached in the GPUs. Further investigation
reveals our policy decides to replicate the smaller dimension tables at the cost of not
caching less relevant columns. For example, segments from columns that are used in
filters (lo_discount) and aggregation (lo_extendedprice) are not cached since those
operations are not expensive on the CPUs (relatively to columns that participate in
joins). On skewed workload, our policy decides to cache less data in total (60%) but
replicate more data at the same time (17%). This is because, for skewed workload,
the cold data (data from earlier years) are less relevant since it will be pruned by
min-max filtering. Instead, the policy will prioritize replicating segments from the
dimension tables to reduce the data transfer across GPUs.

5.5.3.4 NVLink Traffic
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Figure 5.9: Speedup after Each Optimization in Lancelot

To gain deeper insight on each data placement policy, we compare the data traffic
going through the NVLink interconnects for each policy. To obtain this metric, we
simply aggregate the total bytes going across each NVLink channel in each GPU in
both directions. Since Replication-Only will not incur any data traffic across GPUs, we
do not include it in this experiment. We use the uniform data distribution used in
Section 5.5.3.1 for this experiment.

Figure 5.8 shows the NVLink traffic when running on GPU3.8 instance. For
SF = 80, Cache-Aware Replication incurs almost no NVLink traffic since it manages
to fully replicate the dimension tables. For SF = 160, Cache-Aware Replication has
higher traffic for 2 GPUs compared to 4 GPUs. Further investigation reveals that
with 2 GPUs, the policy replicates only 2 dimension tables (supplier and date), while
with 4 GPUs, it accommodates replication of 3 dimension tables (supplier, date, and
customer) by evicting less-performance-critical segments in the fact table (e.g., filter
and aggregation columns). A similar trend is observed for SF=320, which results in
less traffic for 8 GPUs compared to 4 GPUs.

Overall, across all experiments, Cache-Aware Replication reduces the NVLink traffic
compared to Partitioning-Only. This results in faster query runtime as shown in
Figure 5.6.

5.5.4 Breakdown of Optimizations in Lancelot

5.5.4.1 Speedup after Each Optimization
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Figure 5.10: NVLink Traffic after Each Optimization in Lancelot

We now measure the speedup from each optimization applied to Lancelot. We
evaluate the performance gain from three optimizations: (1) late materialization (Sec-
tion 5.3.2.1) (2) adaptive join strategy (Section 5.3.2.2), and (3) join reordering (Sec-
tion 5.3.2.3). We conduct the experiment on GPU3.8 instance and sweep the number
of GPUs alongside the scale factor as shown in Figure 5.9. To demonstrate the best
speedup, we choose a data size in which all the query processing will be done on
GPUs. For this experiment, we reduce each GPU cache size from 8GB to 4GB since
otherwise, NoOpt will suffer from insufficient memory.

When no optimization is applied (NoOpt), we default to always use the co-partitioned
join as our distributed join strategy. We will join in the order of selectivity starting
with the part, supplier, customer, and date table. Without late materialization, we
always materialize the relation after each partitioning phase.

Across all scale factors, adaptive join (Adaptive) gives around 1.2× speedup. With
this optimization, broadcast join will be used when joining with smaller tables,
whereas co-partitioned join will be used when joining with larger tables.

By incorporating the join reordering (Reorder), we will reorder the join such that
all the broadcast joins will occur first, followed by co-partitioning joins. Doing this
can significantly reduce the data transfer between GPUs during co-partitioned joins.
We observe up to 2× speedup after applying this optimization.

Finally, late materialization (Latemat) will give another 1.6× speedup. Our late
materialization strategy will reconstruct only the join key after each partitioning
phase, and utilize UVA to materialize the rest of the columns lazily during query
execution.
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5.5.4.2 NVLink Traffic

To reveal deeper insight, we will show the NVLink traffic after each optimization
is applied. Using the same setup as Section 5.5.4.1, Figure 5.10 shows the result of
this experiment.

After applying the adaptive distributed join strategy (Adaptive), we observe
higher NVLink traffic for 4 and 8 GPUs. This is because switching from co-partitioned
join to broadcast join can potentially increase the amount of data transferred across
the GPUs. However, this does not necessarily translate to slower query execution
time since the partitioning phase in co-partitioned join can also introduce non-trivial
overhead and is not reflected by the NVLink traffic.

Reordering joins (Reorder) significantly reduces the NVLink traffic by up to 2.5×.
Moreover, the late materialization (Latemat) can further reduce the NVLink traffic
by up to 20%. These traffic reductions will translate to the speedup we observe in
Section 5.5.4.1.

5.5.5 Comparison with Other GPU DBMSes

This subsection reports the end-to-end performance evaluation of four existing
CPU/GPU DBMSes:

• DuckDB: DuckDB [105] is an embedded CPU-based analytical database which
supports columnar engine and parallel execution.

• Dask-cuDF: Dask-cuDF [11] is a multi-GPU extension of cuDF [9], a GPU-
accelerated DataFrame library. Dask-cuDF caches the data in GPUs using the
LRU policy.

• HeavyDB: HeavyDB [15] is a commercial multi-GPU DBMS. HeavyDB caches
the data in GPUs using the LRU policy and simply partition the data across all
the GPUs.

• Mordred: Mordred [131] is a hybrid CPU-GPU DBMS which utilizes the
semantic-aware caching and the segment-level query execution. Mordred, however,
only supports a single GPU.
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Figure 5.11: Scalability Comparisons

• Lancelot: Lancelot is our prototype of Hybrid CPU and Multi-GPU DBMS
explained in Section 5.4.

In this Section, we will run four sets of experiments: (1) scalability compari-
son (Section 5.5.5.1), (2) query performance on SSB (Section 5.5.5.2), (3) query
performance on TPC-H (Section 5.5.5.2), and (4) query performance on various
hardware configurations (Section 5.5.5.3). Throughout the experiment, for Lancelot
and Mordred, we allocate half of the GPU memory as the cache size for each GPU.
For HeavyDB and Dask-cuDF we let the system control the GPU memory. For this ex-
periment, instead of scaling up the dimension table size as described in Section 5.5.1,
we conducted the experiment using the original dimension table sizes in SSB and
TPC-H.

5.5.5.1 Scalability Comparison

Figure 5.11 shows the scalability comparison between Lancelot and existing GPU
DBMSes when running SSB on GPU3.8 instance (V100 GPUs). To avoid GPU under-
utilization, we conducted a weak scaling experiment — we increase the number of
GPUs as the data size increases. Hence, we will use 1 GPU for SF = 40, 2 GPUs for
SF = 80, 4 GPUs for SF = 160, and 8 GPUs for SF = 320.

The result shows that Lancelot outperforms both HeavyDB and Dask-cuDF in
terms of throughput and scalability. The performance difference between Lancelot
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Figure 5.12: SSB Performance of Different GPU DBMS

Figure 5.13: TPC-H Performance of Different GPU DBMS

and other GPU DBMSes boils down to several factors: (1) Lancelot is built on top
of Crystal library which has shown to perform better compared to other GPU DBM-
Ses [61]. (2) Lancelot adopts an intelligent data placement strategy discussed in
Section 5.2 which is not employed by other GPU DBMSes. (3) Lancelot adopts vari-
ous GPU database optimizations listed in Section 5.3.2 which are not adopted by the
existing GPU DBMSes.

Figure 5.11 also shows that Lancelot throughput is not fully linear when increasing
the number of GPUs. This is because as the data size increases, the hash table sizes
also increase, reducing join throughput due to higher random access overhead. Since
SSB queries involve multiple joins, this will have a significant impact on the query
performance.
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5.5.5.2 End-to-end Performance Comparison on SSB and TPC-H

Figure 5.12 and Figure 5.13 shows the query performance when running SSB and
TPC-H respectively using 4 V100 GPUs on GPU3.8 instance. In this experiment, we
use SF=320 which translates to about 50% of the total input data cached in the GPU
memory.

Compared to DuckDB, Lancelot is 8× faster on SSB and 20× faster on TPC-H. This
is due to the performance gap between CPUs and GPUs. Compared to Mordred,
Lancelot is around 4× faster on SSB. This is because Lancelot can provide a larger
cache size compared to Mordred by utilizing 4 GPUs. We do not compare to Mordred
on TPC-H since it does not support TPC-H queries.

Compared to Dask-cuDF, Lancelot is 232× faster on SSB and 522× faster on TPC-
H. Dask-cuDF suffers from out of memory execution which forces the intermediate
result to spill to the CPU memory. This will result in back and forth data transfer
between CPU and GPUs which degrades performance. On TPC-H, Q17 and Q18
failed since these engines cannot allocate enough memory space for the intermediate
results.

Compared to HeavyDB, Lancelot is around 2× faster on SSB. HeavyDB is faster for
Q1.1 but significantly slower for the other queries. This is because Lancelot decides
to cache columns used in the other query sets (Q2.x, Q3.x, and Q4.x) since Q1.x are
mostly just scan queries, which are not expensive when executed on the CPUs. On
TPC-H, Lancelot is around 172× faster than HeavyDB. HeavyDB performance suffers
heavily due to large intermediate results on complex TPC-H queries, resulting in
excessive memory spilling and data transfer between CPUs and GPUs. HeavyDB also
failed to execute Q18 due to out of memory execution.

5.5.5.3 End-to-end Performance on Various Hardware Platforms

Figure 5.14 show the query performance when running both SSB and TPC-H
on three different instances: GPU3.8 (V100), GPU4.8 (A100), and g6.48xlarge (L4).
Across all the instances, we use 4 GPUs and ran the experiment with SF = 320.
This results in approximately 50% of the input data being cached in the V100 GPUs’
memory, 75% in the L4 GPUs’ memory, and 100% in the A100 GPUs’ memory. The
results for GPU3.8 instance are discussed in Section 5.5.5.2.
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Figure 5.14: Performance on Different Compute Instances

Running on the g6.48xlarge instance, we see performance improvement across all
systems compared to GPU3.8 instance. Even though L4 has lower memory bandwidth
than V100 (330 GB/s vs 1TB/s), the larger GPU memory capacity (24 GB vs 16 GB)
and significantly more CPU cores (192 cores vs 108 cores) made up for the difference.
Despite slightly larger GPU memory capacity, query failures still occur for HeavyDB
(Q18) and Dask-cuDF (Q17 and Q18). On this instance, Lancelot outperforms the
the existing systems by at least 3× on SSB and 12× on TPC-H.

Running on the GPU4.8 instance, we observe performance improvement across
all GPU DBMSes compared to g6.48xlarge and GPU3.8 instances since A100 has the
largest GPU memory capacity (40 GB) and the highest memory bandwidth (1.5TB/s).
Nevertheless, query failures still occur on Q18 for HeavyDB. DuckDB runs slower on
this instance compared to g6.48xlarge instance due to fewer CPU cores (128 cores vs
192 cores), Overall, Lancelot still outperforms the existing systems by at least 7× on
SSB and 115× on TPC-H.

5.6 Related Work
There have been several previous systems that attempted to leverage multiple GPUs
for query execution.

A subset of existing works focused on accelerating individual database operators
with multiple GPUs. Paul et al. [101] and Gao et al. [73] introduced a hash join
implementation on multiple GPUs. Rui et al. [106] proposed a nested loop, sort-
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merge and hybrid joins implementation for multi-GPU. Maltenberger and Ilic et al.
[114] showcased the advantage of multi-GPU sorting with fast interconnects. All
these operator implementations are orthogonal to our work and can be incorporated
to Lancelot.

There have also been commercial systems which support multiple GPUs. HeavyDB
is an open-source, commercial GPU-accelerated DBMS. HeavyDB caches the most
recently used data and partitions it across multiple GPUs. HeavyDB does not have a
heterogeneous query execution strategy. When executing data larger than aggregated
GPU memory, it will either (1) fallback to query execution on CPUs or (2) execute
the query in multiple stages on GPUs.

PG-Storm is a GPU-accelerated PostgreSQL extension. Its core feature is GPUDirect-
SQL, which enables reading data directly from NVMe to the GPUs. We do not com-
pare against PG-Storm since the multi-GPU feature is not open-sourced. PG-Storm
does not have data placement or hybrid query execution strategy.

cuDF is a GPU-accelerated DataFrame Library from NVIDIA. cuDF can sup-
port multiple-GPUs by leveraging Dask [11], hence the name Dask-cuDF. Similar to
PG-Storm, Dask-cuDF does not have data placement and a hybrid query execution
strategy.

BlazingSQL [6] is a GPU accelerated SQL engine built on top of the RAPIDS [28]
ecosystem. Both cuDF and BlazingSQL[6] use the same internal execution engine
but provide different API (pandas vs SQL). We compare against Dask-cuDF since it
remains actively developed, unlike BlazingSQL, which has been inactive since 2021.

HetExchange [62, 63] is a query execution framework which encapsulates hetero-
geneous parallelism in CPUs and GPUs through redesigning the classical Exchange
operator. It supports just-in-time code generation and hybrid CPU and multi-GPU
query execution. HetExchange, however, does not address the data placement be-
tween CPU and multi-GPU systems and lacks an optimizer component to generate
the physical query plan based on the data location.

Finally, HERO [87] proposed an operator placement strategy for CPU and multi-
GPU systems that can be completely independent on cardinality estimation of the
intermediate result. However, unlike Lancelot, this work only focuses on operator
placement and does not address the challenges in other aspects of database design
such as data placement and query execution.
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5.7 Conclusion
This work advances the state-of-the-art of GPU DBMS by showing how to leverage
both (1) hybrid CPU-GPU, and (2) multiple GPUs DBMS at the same time. To simplify
the design space, we introduce the unified multi-GPU abstraction which will treat multi-
GPU as a single large GPU. We then optimize hybrid CPU and multi-GPU DBMS in
two aspects: (1) data placement and (2) query execution. For data placement, we
introduce the cache-aware replication policy that takes into account the cost of shuffle
when replicating data and could coordinate both caching and replication decisions
for best performance. For query execution, we extend the existing CPU-GPU query
execution strategy with distributed query processing techniques to support multiple
GPUs. We then integrate both solutions in Lancelot, our hybrid CPU and multi-GPU
DBMS. Our evaluation shows that our cache-aware replication policy outperforms other
policies by up to 2.5× and Lancelot outperforms existing GPU DBMSes by at least
2× on SSB and 12× on TPC-H.



Part II

Towards Practical Data Analytics on
GPUs

111



112

Chapter 6

User-Defined Aggregate Functions (UDAF)
on GPUs

One of the most challenging operations to accelerate in GPU databases is the user-
defined aggregate function (UDAF) [36, 38, 37, 64]. A UDAF is a user-defined
routine that processes multiple input rows and returns a per-group aggregated
result. It extends the set of built-in aggregate functions (e.g., SUM(), AVG(), MAX(),
etc.), allowing users to define custom aggregation logic. Because the function is
user-defined and often opaque to the system, it is especially difficult to parallelize
efficiently on architectures like GPUs. In this chapter, we present a framework to
accelerate UDAFs on GPUs to make GPU databases more practical and expressive.
This work also lays the foundation for supporting general user-defined functions
(UDFs) on GPUs in the future.

Our work builds on RAPIDS cuDF [9], an open-source library developed by
NVIDIA to accelerate dataframe operation on GPUs. cuDF can serve as a drop-in
replacement for Pandas, making it easy for users to switch between the two libraries.
Previous results have shown that porting join and groupby from Pandas to cuDF can
lead to around 138× speedup [10]. cuDF popularity has increased massively over
the years and has reached more than 100k downloads per month in 2021 [88]. In
cuDF and Pandas, UDAF is exposed to the user via the groupby.apply() API (see
Listing 6.1).

In cuDF v22.12 and earlier, the UDAF execution suffers from a major performance
limitation. Specifically, the UDAF execution in cuDF is slow for workloads with large
group counts due to an implementation that iteratively launches a CUDA kernel for
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each group. We refer to this existing approach as cuDF(Iterative). Our experiment
shows that cuDF(Iterative) is slower than single-threaded CPU execution in Pandas
for inputs with > 10k groups.

In this work, we aim to tackle this issue by introducing a UDF execution framework
which innovates in the following aspects:

Block-wide execution model. The previous implementation in cuDF resulted in
suboptimal performance for a large number of groups due to an excessive number
of kernel launches. Block-wide execution model [110, 1] allows us to tackle this issue
by mapping each threadblock on a GPU to operate on a separate group and having
each threadblock collectively call the CUDA device block-wide function to execute
different operators in the UDAF. This approach will allow us to pipeline the whole
UDAF execution in a single kernel, parallelize the execution of multiple groups on a
GPU, and scale the performance for large number of groups.

JIT Compilation. Since UDAF execution is user-defined, the nature of the kernel
would not be known prior to execution. This raises a need for just-in-time compila-
tion [99] to generate the kernel at runtime. However, existing Python-based runtime
compilers [18, 27, 2] do not recognize dataframe-like objects on GPUs. Therefore,
in this work, we develop a Numba-based JIT compilation framework which can
take dataframe-like objects as inputs and map each threadblock to each group in
a dataframe following the block-wide execution model as it translates the UDF. Even
though this approach has a tradeoff in JIT compilation time, the overhead is amortized
by generating more efficient kernels. We also introduce a mechanism to reuse the
compiled kernel to reduce the overhead. We will refer to this approach as cuDF(JIT).

Both cuDF(Iterative) and cuDF(JIT) have their own advantages. In Section 6.3.2,
we will show how cuDF(Iterative) is typically good for small group counts and
cuDF(JIT) is good for large group counts. Therefore, to get the best performance
out of both approaches, we add logic in our framework to let cuDF automatically
dispatch between the two methods based on the group counts. We will refer to this
approach as cuDF(Auto). As of now, our framework has been fully integrated and released
in cuDF version 23.02.

Contributions.. This work makes the following contributions:

• We showed how to accelerate UDAF execution on GPUs using block-wide execu-
tion model, which enables us to pipeline the whole UDAF execution into a single
kernel.
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• We introduced a Numba-based JIT compilation framework (cuDF(JIT)), which
recognizes dataframe-like object and enable us to compile the UDAF kernel at
runtime.

• We introduced cuDF(Auto) engine which can automatically dispatch different
UDAF execution strategies based on the total number of groups.

• We conducted a detailed evaluation and showed how our framework can
speedup the UDAF execution by 3600× against Pandas and 8000× against
the existing approach in cuDF.

Organization. The rest of the chapter is organized as follows: We discuss the
background and related work in Section 6.1. Section 6.2 describes the optimizations
we introduced to accelerate the UDAF execution on GPUs. Section 6.3 evaluates the
performance of our approach and Section 6.4 concludes the chapter.

6.1 Background and Related Work

6.1.1 Just-in-time (JIT) Compilation on GPUs

Just-in-time (JIT) compilation [99] is a way of executing computer code that involves
compilation during execution of a program rather than before execution. Previous
works have attempted to use JIT compilation for query execution on GPUs. [124, 71,
72, 100, 62, 55].

KernelWeaver [124] and HorseQC [71] show how we can use JIT compilation to
generate the pipelined kernel by fusing multiple database operators. DogQC [72]
improves HorseQC for both string processing (expansion divergence) and selec-
tive operation (filter divergence). Hawk [55] introduces a framework which could
generate a device-aware code for both CPU and GPU. HetExchange [62] uses JIT
compilation in its framework to encapsulate heterogeneous parallelism in hybrid
CPU/GPU system. Finally, Pyper [100] further improves DogQC by introducing (1)
block-level shuffle operator to handle data divergence and (2) segment operator to
break the pipelined kernel into two smaller pipelines. However, none of these works
support JIT compilation for user-defined function (UDF) on GPUs which will be the
main focus of this work.
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def midrange ( df ) :
return ( df [ " val " ] . max() − df [ " val " ] . min() ) /2

out = df . groupby ([ " key " ]) . apply ( midrange )

Listing 6.1: Example of UDAF API in Python

6.1.2 RAPIDS cuDF Library

cuDF [9] is a GPU DataFrame library developed by NVIDIA for loading, processing,
and manipulating data. It provides a Pandas-like API such that data scientists can
accelerate their workflow without prior knowledge of CUDA programming. Previous
results have shown that porting join and groupby from Pandas to cuDF can lead to
around 138× speedup [10]. cuDF popularity has increased massively over the years
and has reached more than 100k downloads per month in 2021 [88]. In this work,
we will discuss how we can significantly accelerate one of the highly-used dataframe
operation in cuDF (UDAF execution) through a series of optimizations.

6.2 Accelerating UDAF on GPUs
In this section, we will talk about how we can accelerate UDAF execution on GPUs.
Specifically, we will talk about the default UDAF execution strategy in cuDF in
Section 6.2.1 (cuDF(Iterative)). Then we will introduce cuDF(JIT) engine which
further accelerates UDAF execution via block-wide execution model (Section 6.2.2) and
JIT compilation (Section 6.2.3). Finally, in Section 6.2.4, we introduce cuDF(Auto)
which automatically switch UDAF execution strategies between cuDF(Iterative)
and cuDF(JIT).

6.2.1 User-Defined Aggregate Function in cuDF

One of the frequently-used operation in dataframe manipulation is user-defined
aggregate functions (UDAF) [36, 38, 37, 64]. UDAFs are user-programmable routines
that act on multiple rows at once and return per-group aggregated value as a result.
UDAF works in a similar fashion as pre-defined aggregate function but with the
freedom for users to define the routines. Therefore, UDAF can contain arbitrary
logics such as conditional statements, loop, and complex mathematics operations (i.e.
sine, cosine).
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Figure 6.1: Comparison Between Different UDAF Execution Strategies

cuDF can accelerate user-defined aggregate function (UDAF) with GPUs. Similar
to Pandas, the usage of UDAF in cuDF is exposed via groupby.apply() API. Listing 6.1
shows how to calculate the midrange of each group via the groupby.apply() API in
Python.

Figure 6.1a shows the default approach in cuDF to accelerate the UDAF on GPUs.
First, we will perform a sort-based algorithm to group the data. After the data is
sorted by group, we will iteratively loop over each group and launch a separate CUDA
kernel for each operator in the UDAF to calculate the aggregation. In Figure 6.1a,
for each group, we will launch two kernels to find the maximum and the minimum
of the group. The two CUDA kernels will return a scalar value and the CPU will
subtract the two scalar values as a regular Python operation. The same process will
be repeated for each group, resulting in a total of six CUDA kernels to be launched
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sequentially. We refer to this approach as cuDF(Iterative).
The advantage of this approach is it provides the flexibility to express even the most

complicated UDAF and it performs well for a small number of groups. Nevertheless,
this approach does not scale well as the group count increases. Specifically, since
separate CUDA kernels will be launched for each operator in each group, an excessive
number of kernels will be launched for a large number of groups. This would hurt
the performance, making it slower than the single-threaded Pandas when the group
count exceeds several thousand. In the next two sections, we will show how we can
tackle this issue via the two optimizations we introduce in this chapter.

6.2.2 Block-wide Execution Model

Threadblock-level functions, or more commonly known as block-wide functions are
CUDA device functions in which threads in the same threadblock collectively perform
a certain operation (i.e. reduction, scan, sorting, etc.). A GPU execution model which
adopts a threadblock-level function is usually called the block-wide execution model,
where instead of viewing each thread as an independent execution unit, it views a
thread block as the basic execution unit.

Block-wide function primitives were originally introduced in CUB [1] to perform
block-level reduction, scan, sorting, etc. More recently, Crystal [110] presented a
library of CUDA device block-wide functions to perform data analytics operations
such as probe, filter, groupby, etc. The main idea of using block-wide execution model in
Crystal is to pipeline multiple operators in a single kernel by storing the intermediate
result in the shared memory to avoid multiple round-trips to the global memory.

In this work, we will borrow the idea of block-wide execution model from Crystal
and CUB to accelerate the UDAF on GPUs. Instead of launching separate kernels for
each operator in each group, we will now map each threadblock to each group and
encapsulate the whole UDAF execution in a single kernel. Each threadblock will then
collectively call the CUDA device block-wide function to execute different operators
in the UDAF. We believe mapping each threadblock into each group is a reasonable
approach since in most workloads, group sizes are comparable to the threadblock
size (see Section 6.3.5 for further studies on what happens if they are not).

Figure 6.1b shows an example of how we execute the midrange UDAF with block-
wide execution in cuDF. We will first sort the data based on the group. After each
group is sorted, we will launch a single kernel with 3 threadblocks to execute the
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def udf(x):
return(x + x)

def kernel(in, out): 
if tid < len(in): 

out[tid] = udf(in[tid]) 

Dataframe Object

single group per-threadblock model

def kernel(df, out): 
if block_id < len(out): 

out[block_id] = udf(df)

single data per-thread model

Scalar type (int, float, .etc)

Current Numba Support in cuDF Required Numba Support in cuDF

def udf(df):  
return df[‘x’].max()-df[‘x’].min()

Figure 6.2: The Gap Between the Current Numba Support and the Required Numba
Support in cuDF.

Functions Description
count Count the number of elements in the group
sum Calculate the sum the whole elements in the group
min Find the minimum elements in the group
max Find the maximum elements in the group
mean Calculate the average of the group
var Calculate the variance of the group
std Calculate the standard deviation of the group

idxmin Find the index of the smallest element in the group
idxmax Find the index of the largest element in the group

Table 6.1: Currently Supported Functions in cuDF(JIT)
entire UDAF. Each threadblock will run in parallel and collectively call the respective
block-wide function (i.e., BlockMax and BlockMin) to calculate the maximum and
the minimum of each group.

There are several advantages to this approach compared to the cuDF(Iterative)
approach (Section 6.2.1). First, we can pipeline the whole UDAF execution in a single
kernel and therefore it will not suffer from excessive kernel launches. Second, we
can parallelize the execution of multiple groups since each threadblock can run in
parallel on GPUs. Third, this approach scales well with a large number of groups.
Our experiment (Section 6.3.2) shows that cuDF(JIT) outperform cuDF(Iterative)
for groups > 8.
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6.2.3 Just-in-time Compilation with Numba

To accelerate UDAF with block-wide function, it is necessary to encapsulate the entire
UDAF operation in a single kernel. Since it is user-defined, the nature of the kernel
would not be known prior to execution. As it is not feasible to implement a custom
kernel for each UDAF, this raises the need for just-in-time (JIT) compilation [99] to
generate the kernel at runtime.

We use Numba [18] for our JIT compilation framework. Numba is a Python-
based compilation framework that supports both multicore CPU and CUDA GPUs.
Numba uses type information from the kernel arguments at runtime to analyze its
way through a chunk of Python code and replace statements with equivalent GPU
machine code. Numba exposes CUDA’s SIMT programming model directly where
kernels can be written to map data to threads in any fashion. In cuDF, Numba by
default generates kernels which adopts "single data per thread model", and therefore
each GPU thread will operate on a single element in the input array, execute the
UDAF, and write the results to the output array.

For our case, however, this model would not be sufficient for two major reasons.
First, the input to our UDAF will not be a primitive data type, but a data frame-like
object which would not be recognized by Numba. Second, instead of using the
"single data per thread model", our execution adopts a "single threadblock per group model"
where each threadblock on a GPU will operate on a single group via block-wide level
functions as shown in Figure 6.1b. This GPU execution model is by default not used
by cuDF. Figure 6.2 shows the difference between the current Numba support in
cuDF and the required support for our framework.

To address these issues, we implement Numba extensions to support (1) dataframe-
like objects to represent a group of data and (2) mapping operations on dataframe
objects to block-wide execution model where each threadblock will operate on each
group. This feature is built on existing Numba extensions in cuDF that leverage the
Numba APIs for adding new types and functions [12]. The properties of a dataframe
object are an array of data and a set of functions which can operate on this data
(max(), min(), mean(), etc.). The implementation of these functions will be linked to
an externally implemented C++ block-wide functions library but can also reuse any
existing block-wide functions library such as those in CUB [1]. Each device function
implements a single operation, and Numba can map the operation to each group as
it translates the UDAF to enable block-wide execution model.
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To further extend our framework with new functions/operators, we can simply
add new block-wide functions to this library and expose them to Numba. This would
allow our framework to support aggregation functions and binary operations that
are supported in Pandas as long as they can be expressed as block-wide functions.
Our initial development includes 9 functions which are shown in table 6.1. For our
future development, we plan on adding further sets of functions and operators to
support more expressive UDAF. We refer to this approach as cuDF(JIT).

cuDF(JIT) compilation overhead can be up to 0.3-0.4s depending on the complex-
ity of the UDAF (see Section 6.3.4). Kernel execution on GPUs, on the other hand, is
only in the range of ms. To eliminate this overhead, we add further optimization in
cuDF(JIT) to cache and reuse an already compiled kernel. We will reuse the previ-
ously generated kernel if (1) the same UDAF has been previously executed, and (2)
the input data types are the same as the input data types of the previously executed
UDAF. As a result, we can reuse the compiled kernel for the same UDAF even for
different input columns as long as they have the same input data types. Currently,
our framework has been fully integrated and released in cuDF v23.02.

6.2.4 Choice between Iterative vs JIT

Currently, users can choose between the two engines for UDAF, cuDF(Iterative) and
cuDF(JIT), by passing the "engine=cudf" or "engine=jit" as the second argument
to groupby.apply() API. Typically, cuDF(Iterative) is not suitable for large group
counts since it will launch a separate GPU kernel for each operator in each group
which could result in significant kernel launch overhead. On the other hand, the
single threadblock per group model in cuDF(JIT) is not suitable for small group
counts since launching a few threadblock could result in poor GPU utilization. Based
on this observation, we provide a third option to let cuDF dynamically choose the
engine based on the number of groups. By passing the "engine=auto" argument to
groupby.apply() API, we will now run cuDF(JIT) only when ngroups > N where
N is a tunable parameter. We perform tuning by running the t-test formula with 10M
rows of uint64_t data and find that setting N = 8 delivers the best performance
overall. We refer to this approach as cuDF(Auto).
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6.3 Evaluation
In this section, we evaluate the performance of our proposed approach to understand
(1) the impact of block-wide execution model and JIT Compilation, (2) the timing
breakdown of different approaches, (3) the impact of caching the generated code,
and (4) the impact of various group distributions.

The rest of the section is organized as follows: we discuss the experiment setup in
Section 6.3.1. In Section 6.3.2 we evaluate the performance of different approaches on
uniform group sizes. In Section 6.3.3, we evaluate the timing breakdown of different
schemes. In Section 6.3.4, we show the speedup of caching the generated kernel. In
Section 6.3.5 we evaluate the performance of different approaches on non-uniform
group sizes.

6.3.1 Setup

Hardware configuration: For the experiments, we use an instance that has an
NVIDIA V100 GPU which is connected to an Intel Xeon Platinum 8167M CPU via
PCIe3 with 12.8GBps bidirectional bandwidth. The NVIDIA V100 GPU has 16 GB of
HBM2 memory with 768 GBps read/write bandwidth. The Intel Xeon Platinum CPU
has 12 virtual cores and 88 GB DRAM. The system is running on Ubuntu 20.04 and
the GPU instance uses CUDA 11.5.
Benchmark: For our experiments, we generate a dataframe with random uint64_t
values with 10 million rows. We will apply user-defined aggregate functions to run
two widely-used statistics algorithms on each group:

Midrange = max(x) −min(x)

2 t− test formula =
µ1 − µ2√
δ2

1
N1

+
δ2

2
N2

Measurement: For each experiment, we ensure that data is already loaded into
the GPU memory before experiments start. This is because cuDF targets in-GPU
memory workload and intends for data to remain resident on the device. Therefore,
host-to-device data transfer will be excluded from the measurement. We run each
experiment 10 times and report the average execution time.
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Figure 6.3: Midrange formula (uniform)
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Figure 6.4: t-test formula (uniform)

6.3.2 Performance with Uniform Group Size

This subsection evaluates the performance of 6 different schemes with uniform group
sizes:

• Pandas: Single-threaded Python Data Analysis Library.

• Pandarallel: Python library to parallelize Pandas operation on multicore
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CPUs [25]. We can run this approach by running groupby.parallel_apply().

• cuDF(Iterative): Default approach for UDAF in cuDF explained in Section 6.2.1.

• cuDF(JIT): Our proposed approach to accelerate UDAF with JIT compilation
and block-wide execution model. The generated code is cached to eliminate compi-
lation overhead in subsequent execution. We can run this approach by passing
"engine = jit" as the second argument to groupby.apply()

• cuDF(Auto): Our proposed approach to automatically switch between cuDF(JIT)
and cuDF(Iterative) based on the number of groups. We can run this ap-
proach by passing "engine = auto" as the second argument to groupby.apply()

• cuDF(no-UDAF): Calculate the result through manual aggregation followed by
binary operation instead of using the UDAF API. This approach represents the
best performance we would reasonably expect to compare against. However,
this approach is not commonly used by the users as it is more natural and
readable to write functions as row-wise (i.e. UDFs) rather than chaining vector
ops.

For this comparison, we fixed the total dataset to 10M rows and sweep the total
number of groups from 1 group (10M elements per group) to 1M groups (10 elements
per group). Figure 6.3 and 6.4 show the speedup against Pandas for each approach.

Since Pandas is single-threaded, we also compare against the multi-core implemen-
tation of Pandas (Pandarallel [25]). Pandarallel could parallelize UDAF execution
by assigning different groups on different CPU cores. Our experiment shows that
Pandarallel starts performing better than Pandas when ngroups > 1k (up to 2.5×).
This is because when ngroups < 1k, Pandarallel does not have enough work to
schedule for each CPU core to offset the coordination and synchronization overhead.

The performance of cuDF(Iterative) degrades significantly as we increase the
total number of groups. For both formulas, this approach performs better than
Pandas and Pandarallel for small group count but slower when ngroups > 10k. The
reason behind this is this approach will launch an independent GPU kernel for each
operation and for each group. This results in multiple round-trips through the GPU
global memory and significant kernel launch overhead especially for a large number
of groups.
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cuDF(no-UDAF) has the best performance overall compared to the other approaches.
In this approach, we do not have to pay the overhead of sorting the data since aggre-
gation will be achieved through hash aggregation. This approach, however, requires
users to calculate the results via manual aggregation and binary operation. This
approach is not favoured by users since they would expect to execute the formula via
the UDAF approach (groupby.apply()). Nevertheless, we recommend advanced
users who are used to chaining vector ops to try this approach due to its overall
performance.

cuDF(JIT) speedup improves significantly over Pandas as we increase the total
number of groups. JIT compilation with block-wide execution enable us to execute
multiple groups with a single kernel by mapping each threadblock to each group. This
approach gets up to 1400× and 3600× speedup against Pandas and 1150× and 1440×
speedup against Pandarallel for midrange and t-test formula respectively. Comparing
against cuDF(Iterative), cuDF(JIT) gets up to 5000× and 8000× speedup for large
number of groups for both formulas respectively. For small number of groups (1
group and 10 groups), cuDF(JIT) does not perform as well since we only map a small
number of threadblocks to operate on the whole datasets. This will cause GPU to be
underutilized.

Comparing the results for midrange and t-test formula (Figure 6.3 and 6.4), cuDF(JIT)
gained more speedup for the t-test formula. This is because the gain from pipelining
operator into a single kernel would be more significant for more complicated UDAF.

Finally, cuDF(Auto) manages to get the best performance out of cuDF(Iterative)
and cuDF(JIT) by applying JIT compilation and block-wide execution only for a large
number of groups. Comparing against cuDF(no-UDAF), this approach is still slower
but with the ergonomic API that users expect from a Python UDAF.

6.3.3 Timing Breakdown

This subsection evaluates the timing breakdown between three designs: cuDF(Iterative),
cuDF(JIT), and cuDF(no-UDAF). We will use the same workload as Section 6.3.2 with
a fixed number of groups (1k groups with 10k elements per group). Figure 6.5 shows
the timing breakdown for both midrange and t-test formula respectively.

Comparing the three schemes, we can see that cuDF(Iterative) execution time is
dominated by UDAF execution on the grouped data (92%). For cuDF(JIT), the UDAF
execution is no longer the bottleneck (27%) and the execution is now dominated
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Figure 6.5: Breakdown of Different Schemes (nGroups = 1000)
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Figure 6.6: Performance Comparison Before and After Caching the Compiled Kernel.

by grouping and sorting the keys (73%). Our further experiment shows that for
workload with pre-sorted group keys, the cuDF(JIT) approach can be 4-10× faster.
This shows that the series of optimization that we introduced in this work manages
to reduce the UDAF execution significantly. For cuDF(no-UDAF), the execution time is
dominated by aggregation (88.5%) and the rest is spent on reconstructing the UDAF
via binary operation (11.5%). Unlike the other schemes, this approach does not
require the keys to be sorted since the aggregated results are obtained via hash-based
aggregation.
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Figure 6.7: Midrange formula (non-uniform)

6.3.4 Impact of Caching the Generated Kernels

This subsection evaluates the impact of caching the generated kernel on cuDF(JIT)
performance. We use the same workload as Section 6.3.2. Figure 6.6 shows the impact
of caching the generated kernel for the t-test formula. Our experiment shows that
caching the generated kernel could improve the performance by up to 22×. Caching
the kernel could eliminate the compilation overhead which is much more expensive
compared to the kernel execution on GPUs.

Figure 6.6 also shows the comparison between cuDF(Iterative) and cuDF(JIT)
if we take into account the JIT compilation overhead. We can see that cuDF(JIT)
still outperforms cuDF(Iterative) even when the kernel is uncached for group size
larger than hundreds. This shows that the JIT compilation overhead in cuDF(JIT) is
amortized by far more efficient kernel compared to cuDF(Iterative). Furthermore,
we would expect this overhead to be negligible during the execution of any production-
scale (i.e. large/long-running) data.

6.3.5 Performance with Non-uniform Group Size

This subsection evaluates the performance of 6 different schemes under non-uniform
group sizes. We will compare the same set of schemes as Section 6.3.2. For this
comparison, we fix the dataset size to 10M rows and vary the group size following a
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Figure 6.8: t-test formula (non-uniform)

normal distribution. We set the mean (µ) of the group size to 1000 and sweep the
standard deviation (δ) from 1 to 10M. As a result, when the standard deviation is
low, we will have a higher number of groups (around 10k) with fairly uniform sizes
and as the standard deviation increases, we will get a smaller number of groups
with imbalance sizes. Figure 6.7 and 6.8 show the speedup of each approach against
Pandas and Pandarallel for both midrange and t-test formula.

Pandarallel performs better than Pandas on low standard deviation but slower
on high standard deviation. The reason behind this is that our workload tends to
have a higher number of group count (around 10k) for low standard deviation which
results in better multi-core utilization.

cuDF(Iterative) performs worse on low standard deviation. This is because low
standard deviation leads to a higher number of groups which will cause performance
degradation for this approach (see Section 6.3.2 for more details). For high standard
deviation, this approach performs well since the group count will be less (only 3
groups for δ = 10M).

cuDF(no-UDAF) still has the best performance overall compared to other approaches.
The performance of cuDF(no-UDAF) slightly degrades as the standard deviation in-
creases since hash-based aggregation becomes less effective with highly diverse group
sizes.

cuDF(JIT) performs better for low standard deviation. For high standard de-
viation, we will have a small number of groups with highly diverse groups sizes.
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Since we map each threadblock to a different group, the load between each thread-
block will be imbalanced. For example, one threadblock might operate on group
with 1M elements but another threadblock might operate on group with 1 element.
This phenomenon would not apply for low standard deviation as the size will be
relatively constant all across the groups. As a result, cuDF(JIT) can get up to 53×
speedup over cuDF(Iterative) for low standard deviation but is 2.5× slower than
cuDF(Iterative) for high standard deviation.

Comparing the results between the midrange and t-test formula (Figure 6.7 and
6.8), cuDF(JIT) performance is slightly more sensitive to non-uniform group size for
the t-test formula. This is because t-test formula involves more data read and operation
which causes a more significant imbalance workload between threadblocks.

Finally, cuDF(Auto) manages to get the best performance out of cuDF(JIT) and
cuDF(Iterative). It performs well across standard deviation since it selectively
applies JIT compilation only when the standard deviation is low (large group count).

6.4 Conclusion
This work advances the state-of-the-art data analytics on GPUs by introducing (1)
block-wide execution model (Section 6.2.2) and (2) JIT compilation (Section 6.2.3) to
accelerate UDAF execution on GPUs. Block-wide execution model allows us to pipeline
the entire UDAF execution in a single kernel by mapping each threadblock to operate
on a separate group. JIT compilation allows us to generate the GPU machine code
at runtime based on the UDAF while adopting the block-wide execution model. Our
evaluation shows that our scheme manages to gain up to 3600× speedup against
UDAF execution in Pandas and 8000× speedup against the existing approach on
GPUs for a large number of groups. Our framework has been fully integrated and
released in NVIDIA RAPIDS cuDF version 23.02.
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Chapter 7

Sirius: A Drop-In GPU-Native SQL En-
gine

Another major challenge in adopting GPU databases lies in the migration cost from
legacy CPU-based systems to GPU databases as well as the engineering cost required
to build and optimized GPU SQL engine. These challenges have slowed the adoption
of GPU databases in practice. In this chapter, we introduce Sirius [31], an open-
source GPU SQL engine designed to address these challenges by delivering drop-in
acceleration across diverse data systems.

Sirius is enabled by the rise of composable data systems [103], where different system
components in a database are treated as modular building blocks and connected
through open standards such as Substrait [33], Apache Arrow, and Apache Parquet.
Rather than implementing a standalone database from scratch, Sirius embraces this
trend by reusing existing components—such as SQL parsers and optimizers from
host databases—while accelerating query execution on GPUs via the Substrait [33]
intermediate query plan representation. This design enables Sirius to operate as
an accelerator for a wide range of data systems. For instance, plugging Sirius into
DuckDB requires no modification to the DuckDB codebase or the user-facing interface:
instead of executing queries on the CPU, DuckDB simply hands off the Substrait plan
to Sirius for GPU-native execution.

Internally, Sirius is built on top of matured GPU libraries such as libcudf [9],
RMM [29], and NCCL [17], reusing optimized implementations of core relational op-
erators like joins, filters, aggregations, and data shuffle. This modular approach
minimizes engineering effort while allowing Sirius to deliver end-to-end GPU ac-
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celeration. Importantly, Sirius’s design allows developers to easily switch between
default implementations in libcudf and custom CUDA kernels, providing flexibility
for performance tuning and experimentation. Our detailed evaluation on TPC-H
benchmark shows that Sirius can deliver 8.2× speedup as a drop-in accelerator for
DuckDB [105] (single-node) and up to 12.5× speedup as a drop-in accelerator for
Apache Doris [3] (distributed).

Organizations. The rest of the chapter is organized as follows: We discuss the
recent hardware and software trend in Section 7.1. Section 7.2 describes Sirius’ design,
implementation, and future roadmap. Section 7.3 evaluates the performance of Sirius
and Section 7.4 concludes the chapter.

Acknowledgment. Sirius integration with Apache Doris and the exchange service
layer described in Section 7.2.2.4 were implemented by Yifei Yang, whose work I
gratefully acknowledge.

7.1 Motivation
As discussed in Section 1.1, GPU hardware is advancing rapidly along multiple
dimensions. On the memory capacity front, GPU capacity has nearly doubled with
each new generation—from 32 GB in Volta, to 80 GB in Ampere, 192 GB in Hopper,
and most recently, 288 GB in Blackwell. In addition, modern interconnects such
as PCIe Gen6, NVLink-C2C [22], and GPU Direct [14] have significantly reduced
data transfer overhead between the GPU and other system components. These
improvements enable GPUs to efficiently process data beyond on-device memory,
making it possible to run terabyte-scale analytics on a single GPU, and even larger
workloads in distributed settings. At the same time, GPUs are becoming increasingly
affordable and accessible—particularly older-generation models, which are already
well-suited for many data analytics workloads.

Despite the positive hardware trajectory, adopting GPU-accelerated database
systems remains challenging due to the high engineering cost of developing a GPU-
optimized software stack from scratch, as well as the switching cost associated with
migrating from the legacy database systems. Fortunately, recent developments in
the software ecosystem have significantly lowered these barriers, driven by two key
trends.

Composable Data Systems. Modern open-source data systems are embracing com-
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posability [103] (e.g. Velox [102]), where different system components can be inde-
pendently developed and interoperate in a data system. A new database can reuse
existing components such as the language frontend, query optimizer, or execution
engine instead of reinventing the wheel. A crucial component in these systems is
Substrait [33], a unified IR for physical and logical representations of query plans.
The trend of composable data systems significantly lowers the barrier to adopt a
GPU database—only the execution engine needs to be developed from the ground
up tailored for GPU but other system components could be reused.

Maturing GPU Libraries. Open-source GPU libraries optimized for data process-
ing have emerged and are rapidly reaching maturity in recent years. For example,
libcudf [9] provides GPU-efficient implementation for relational operators such as
joins, aggregations, and sorting. RMM [29] complements this by offering a high-
performance GPU memory allocator, serving as a foundation for GPU-centric buffer
managers. On the distributed side, the NCCL [17] provides high-speed communi-
cation between GPU devices over various interconnect, such as PCIe, NVLink, and
Ethernet/RDMA.

Motivated by the hardware and software trends discussed above, we designed
Sirius to be both GPU-native and composable. Sirius builds on open-source GPU
data processing libraries such as libcudf and RMM, and adopts universal query plan
formats like Substrait to integrate seamlessly with existing database systems.

7.2 Sirius Design and Architecture
Motivated by the hardware and software trends discussed above, we have designed
Sirius, the first open-source GPU-native SQL engine that provides drop-in acceleration
across a variety of existing data systems. In this section, we will discuss the design
overview, system architecture, and the future roadmap of Sirius.

7.2.1 Design Overview

Sirius was designed with the following two key design principles:

GPU-Native Execution. Recent hardware trends show that the overhead of data
movement between GPUs and other system components—especially CPUs—is di-
minishing. As the GPU memory barrier is breaking down and GPU performance
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Figure 7.1: Sirius Architecture

continues improving, GPU-only query execution is becoming increasingly competi-
tive with hybrid CPU–GPU query execution.

Taking this into account, we design Sirius as a GPU-native engine: it treats GPUs
as the primary execution engine, aiming to run the entire query plan—from scan to
result—on the GPU. Sirius differs from systems that retrofit GPU acceleration onto
traditional CPU-optimized engines while maintaining backward compatibility [32,
13], or hybrid systems that split execution between CPU and GPU [131, 85, 128, 62].
Instead, it builds its execution model, buffer management, and exchange mechanisms
entirely around full GPU residency. The CPU serves only as a fallback path when
certain features are not supported on GPUs. This architecture can reduce the design
complexity compared to a retrofitted or heterogeneous design, thereby improving
portability and performance.

We believe GPU-native design is a promising direction. History shows that when a
major infrastructure shift occurs—such as the rise of the cloud—systems built natively
for the new paradigm (e.g., Snowflake) ultimately surpass retrofits of prior-generation
architectures. Similarly, as GPUs emerge as a central computational platform for data
analytics, GPU-native systems like Sirius have the potential to outperform hybrid or
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retrofitted approaches.

Drop-In Acceleration. Modern software stacks are gradually moving toward com-
posable architectures [103], where components such as query optimizers, storage
format, and query execution engine are decoupled. Sirius embraces this modular
design to significantly reduce the development cost and the barrier of adoption.

By consuming a universal query plan format (e.g., Substrait) and connects it
with existing GPU-accelerated libraries (e.g., libcudf), Sirius can serve as a drop-in
accelerator across a variety of data systems with minimal or no modification to the
host systems. When using Sirius, the users can benefit from GPU acceleration without
having to modify their user interface or migrate to a different DBMS, thereby lowering
the barrier of adoption.

7.2.2 System Architecture

In this Section, we will discuss the system architecture of Sirius as shown in Figure 7.1:

7.2.2.1 Host Database Layer

This layer includes the query parser and optimizer of external data systems that
Sirius accelerates. These host systems generate either query plans in a standard-
ized format such as Substrait which Sirius can consume. Currently, Sirius supports
DuckDB and Apache Doris as external hosts, and more will be supported in the
future.

For distributed query execution, Sirius leverages the host database’s coordinator
to manage the control plane. This includes identifying active nodes via heartbeat,
scheduling plan fragments across nodes, determining partitioning schemes, and
maintaining global metadata. For data exchange, however, it is handled by Sirius
built-in exchange service layer explained in Section 7.2.2.4.

DuckDB supports Substrait and has an extension framework, allowing us to imple-
ment Sirius as an extension with zero modification to DuckDB’s codebase. In contrast,
Apache Doris does not have extension framework and cannot export Substrait plans.
To accelerate Doris, we introduce minimal modifications to Doris codebase to convert
its internal query plans into the Substrait format.
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7.2.2.2 Query Execution Engine

The query execution engine in Sirius executes the Substrait plan generated by
the optimizer. Sirius adopts a pipeline execution model, in which the query plan
is divided into pipelines. Each task—at the granularity of a pipeline—is enqueued
into a global task queue. Idle CPU threads pull tasks from this queue and execute
the pipelines by invoking each operator. This model is widely-used in modern data
systems such as DuckDB, Hyper, and Velox.

Within each pipeline, Sirius adopts the push-based execution model. The query
executor acts as a coordinator, maintaining the state of query execution (e.g., opera-
tor’s input and output). Instead of having operators pull data from their predecessors
–as done in systems like Velox– the executor pushes data into operators. This de-
sign keeps the operators stateless, simplifying their implementation. This model is
adopted by modern systems such as DuckDB.

Most physical operators in Sirius are implemented using the libcudf library,
with a few exceptions for specialized functions such as predicate pushdown, and
materialization. Thanks to its modular design, Sirius allows developers to easily
switch the operator implementation between libcudf and custom CUDA kernels.
Sirius also includes a graceful fallback mechanism to the host database systems in
the case of an error or missing features in Sirius.

7.2.2.3 Buffer Manager

The buffer manager is responsible for managing device and host memory in Sirius.
It divides the memory into two separate regions:

Data Caching. This region is used to store cached data in Sirius either in device
memory or pinned host memory. To minimize the overhead of dynamic memory
allocation during query execution, the caching region is pre-allocated in advance.

Data Processing. This region is in device memory which stores intermediate results
during query execution (e.g., hash tables, intermediate results, etc.). Sirius uses
the RMM [29] (RAPIDS Memory Manager) pool allocator to manage this region
efficiently.
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Moreover, the buffer manager is responsible for converting between different
columnar formats used throughout the system: the internal Sirius columnar format,
the libcudf columnar format, and the columnar format used by the host database.
Both Sirius and libcudf derive their columnar format from Apache Arrow, which
allows for zero-copy conversion via pointer passing. The only exception is when
converting join results from libcudf to Sirius, as libcudf represents the row IDs
using int32_t, while Sirius uses uint64_t. Conversion between Sirius and the host
database format also requires deep copies, but this occurs only during the cold run
(initial data load) and when returning results to the user.

Currently, Sirius relies on the host database to read data from disk. Once data is
read, the buffer manager automatically caches it into the pre-allocated caching region
for future reuse. More discussion on disk support and spilling will be discussed in
Section 7.2.4.

7.2.2.4 Exchange Service Layer1

The exchange service layer orchestrates distributed query execution across multi-
ple nodes. In single-node deployments, this layer can be bypassed entirely. However,
in multi-node settings, it plays a critical role in coordinating data exchange between
nodes. In Sirius, exchange is modeled as dedicated physical operators. Sirius sup-
ports common exchange patterns—broadcast, shuffle, merge, and multi-cast—all
implemented using NCCL primitives.

In distributed execution, the query plan is divided into multiple fragments, each of
which is executed locally on a participating node. Data exchange occurs between frag-
ments—after one fragment completes, its output is transmitted across the compute
nodes and consumed as input by the subsequent fragments. Sirius internally main-
tains a runtime registry of exchanged intermediate data as temporary tables. These
temporary tables are automatically deregistered once the corresponding fragments
finish execution.

1The exchange service layer was implemented by Yifei Yang – a collaborator in the project
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(a) Vanilla Doris (b) Sirius-Accelerated Doris

Figure 7.2: Distributed Query Lifecycle in Doris vs Sirius.

7.2.3 Query Lifecycle in Sirius

In this section, we will describe the end-to-end query lifecycle when Sirius is used as
a drop-in replacement for DuckDB (in single-node settings) and Apache Doris (in
distributed environments).

Single-Node. Users begin by issuing SQL queries through the DuckDB CLI or Python
API. DuckDB then parses and optimizes the query, producing a DuckDB-specific
logical plan. In the vanilla DuckDB workflow, DuckDB-native execution engine
will execute this plan and return the result to the user. When accelerated by Sirius,
however, DuckDB delegates the execution to Sirius by passing the query plan to
its GPU-accelerated execution engine (Section 7.2.2.2). Once completes, the buffer
manager converts the result back to DuckDB’s internal format and returns it to the
user.

Distributed. Figure 7.2 illustrates the query lifecycle for vanilla Apache Doris (Fig-
ure 7.2(a)) and GPU-accelerated Doris powered by Sirius (Figure 7.2(b))2. In both
cases, users submit SQL queries via the Doris SQL interface. The Doris coordinator
generates a distributed query plan and dispatches plan fragments to Doris compute
nodes. In standard Doris workflow, the compute nodes will execute the fragments

2The integration with Apache Doris was implemented by Yifei Yang – a collaborator in the project
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locally, exchange intermediate data via Doris’ native exchange service, and return
the results to the coordinator.

When accelerated by Sirius, instead of executing the plan fragments directly, each
compute node translates its assigned fragment into Substrait and forwards it to the
local Sirius execution engine (Section 7.2.2.2). To exchange intermediate results
across nodes, Sirius uses its exchange service layer described in Section 7.2.2.4. Once
execution completes, Sirius returns the results to Doris compute node, which then
forward the results to the coordinator.

7.2.4 Future Extensions

While our initial prototype targets the in-memory setting with limited feature sets,
we plan to extend Sirius into a more complete and production-ready system.

Out-of-Core Execution. Currently, Sirius operates under the assumption that the
input data fits in the caching region and the intermediate results fit in the processing
region. To support larger-than-memory workloads, we plan to extend the buffer
manager to support spilling to pinned memory and disk. We will also enhance the
execution engine to support batch execution by partitioning input data into batches
and pipelining them into the GPU [132, 62].

Full Distributed and Multi-GPU Support. The current distributed mode offers
limited SQL coverage compared to its single-node counterpart. For instance, it does
not support functions such as avg. Going forward, we plan to expand the SQL
coverage for the distributed execution and introduce other key features such as
fault tolerance. Additionally, we will extend Sirius to support multiple GPUs per
node [128], enabling it to handle larger workload.

Expanding SQL Coverage. Sirius already supports most of the basic SQL operators
and data types. We plan to broaden the coverage by adding support for more complex
data types, such as LIST, and nested types. Additionally, we aim to implement
advanced SQL operators, including ASOF joins, vector search, and UDFs.

Expanding Host Database Coverage. Sirius currently serves as a drop-in accelerator
for both DuckDB and Apache Doris. Going forward, we plan to support other
substrait-compatible systems, such as DataFusion, Ibis, and Gluten [4].

Performance Optimizations. Sirius is still in its early stages, and we see significant
opportunities for performance improvement. Future optimizations include predicate
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transfer [127], efficient distributed shuffling, operator-specific enhancements [122],
and lightweight compression techniques [109, 42] to mitigate GPU memory capacity
limitations—particularly during batch/pipeline execution [46]. Additionally, we aim
to optimize I/O paths for reading data from disk [115] and across the network using
GPUDirect [14].

7.3 Evaluation
In this section, we will evaluate the performance of Sirius as a drop-in accelerator for
DuckDB (single-node) and Doris (distributed).

7.3.1 Experiment Setup

Hardware configuration. We ran Sirius with two different setups:

• NVIDIA GH200: This machine features NVIDIA Grace CPU and Hopper GPU
connected through NVLink C2C with 900 GB/s bidirectional bandwidth. The
Hopper GPU has a 92 GB of HBM3 memory with a read/write bandwidth of
3 TB/s. The Grace CPU has 72 Neoverse Armv9 cores with 480 GB of LPDDR5X
memory.

• 4 × NVIDIA A100: This cluster consists of 4 identical nodes, where each
node has one NVIDIA A100 GPU and 64-cores Intel Xeon Gold 6526Y CPUs.
The A100 GPU has 40 GB of HBM3 memory with a read/write bandwidth of
1550 GB/s. The GPU and CPU are connected via PCIe4 with 25.6 GB/s bidirec-
tional bandwidth. Every node support InfiniBand 4x NDR (Next-Generation
Rate), providing network bandwidth of up to 400 Gbps.

Benchmark. We use the TPC-H benchmark in our experiment, which has been widely
used both in academia and industry.

Measurement. We dedicate 50% of each GPU memory for data caching, and the
other half for data processing. The numbers reported are the hot runs when the data is
already cached in the GPU memory. Throughout the experiment, we will evaluate
the performance of the following query engines:
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Figure 7.3: TPC-H End-to-end Query Performance on a Single Node.

• DuckDB: DuckDB [105] is a single node open-source embedded CPU-based
analytical database.

• ClickHouse: ClickHouse [108] is a distributed open-source CPU-based online
analytical database.

• Apache Doris: Doris [3] is an open source high-performance and real-time
distributed CPU-based data warehouse.

• Sirius: Our GPU-native SQL engine that serves as drop-in accelerator for
DuckDB (single node) and Apache Doris (distributed).

7.3.2 Single-Node Performance

In this Section, we evaluate Sirius performance running on a single node as a drop-in
accelerator for DuckDB. We ran 22 TPC-H queries with a scale factor of 100 and
compare the performance against DuckDB and ClickHouse. To ensure cost-normality,
we ran DuckDB and ClickHouse on a CPU instance (m7i.16xlarge@AWS) that has
the same hourly rental cost ($3.2/h) as the GPU instance (GH200@LambdaLabs)
used to run Sirius.

End-to-end Performance Comparison. Figure 7.3 shows the end-to-end performance
of various query engines on the TPC-H benchmark. Compared to DuckDB, Sir-
ius achieves a 8.2× speedup with the same hardware rental cost. Sirius leverages
DuckDB’s optimized logical plans but replaces its backend with GPUs, demonstrating
the significant performance advantage of GPU acceleration.
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Figure 7.4: Performance Breakdown in Sirius

Since ClickHouse does not support correlated subqueries [108], we rewrite queries
containing subquery correlation for compatibility. Compared to ClickHouse, Sirius is
60× faster with the same hardware rental cost. Q9 does not finish in ClickHouse and
Q21 is not supported. We observed that ClickHouse is not optimized for join-heavy
workloads, leading to suboptimal performance in many TPC-H queries (e.g., Q2, Q5,
Q10, etc).

Performance Breakdown. Figure 7.4 presents a performance breakdown across
different TPC-H queries in Sirius. The results indicate that join operations dominate
query execution time in most cases, particularly in join-heavy queries (Q2–Q5, Q7–Q8,
Q20–Q22).

Group-by also account for a substantial portion in several queries, notably for Q1,
Q10, Q16, and Q18. This overhead is especially visible in queries involving group-by
on string keys (Q10, Q18) or with a small number of distinct groups (Q1). For string
keys, libcudf defaults to a sort-based group-by strategy, which is less performant
than hash-based group-by. For group-by operations with a small number of groups,
GPU suffers from memory contention.

Filter operation contributes to a majority of the query execution time in filter-
heavy queries such as Q6 and Q19. They also contribute significantly in Q13, where
a complex string-matching expression with very low selectivity is used. In contrast,
aggregation and order-by operations do not dominate the end-to-end execution time
for any of the TPC-H queries. This is because the input size for these operations is
typically very small.
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7.3.3 Distributed Performance

In this section, we ran a subset of TPC-H queries (i.e., Q1, Q3, and Q6) that are
currently supported by the distributed mode of Sirius and compare the performance
of Sirius against Doris and ClickHouse using a cluster of 4 × A100 GPUs.

Table 7.1: TPC-H End-to-End Query Performance in the Distributed Setting.

Doris ClickHouse Sirius
Breakdown in Sirius

Compute Exchange Other

Q1 1193 393 97 33 3 61
Q3 838 12785 341 43 233 75
Q6 199 294 84 36 1 47

End-to-end Performance Comparison. Table 7.1 presents the performance compar-
ison of different query engines in a distributed environment. Compared to Doris,
Sirius achieves a speedup of 12.5×, 2.5×, and 2.4× in Q1, Q3, and Q6, respectively.
Sirius leverages the exact same distributed query plan from Doris, but replaces its
execution engine with GPUs, demonstrating the performance advantage of GPUs in
distributed query execution.

Sirius outperforms ClickHouse by 4×, 37.5×, and 3.5× in Q1, Q3, and Q6, respec-
tively. When joins are not involved (Q1, Q6), ClickHouse is able to outperform Doris.
However, its performance degrades significantly when distributed joins are involved
(i.e., Q3), resulting in substantial slowdown compared to Doris and Sirius.

Performance Breakdown. We further present a breakdown of Sirius’ performance in
Table 7.1, specifically, into the categories of local GPU computation, data exchange,
and the rest portion during execution (e.g., query optimization, plan dispatching,
etc.).

We noticed that GPU execution is not the primary performance bottleneck in
the current implementation of distributed Sirius, indicating ample opportunities for
further optimizations. For example, in Q1 and Q6, a significant portion of query
execution time is spent in Doris’ query optimizer and coordinator, which run on
the CPU. This overhead does not scale with the data size and is expected to be less
significant for larger dataset. In Q3, data exchange is the main bottleneck as the
Doris’ distributed query plan shuffles both the orders and lineitem tables. We have
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identified several opportunities to further improve the shuffle performance in Sirius
but leave a deeper exploration to future work.

7.4 Conclusion
This work introduces Sirius, an open-source GPU-native SQL engine that provides
drop-in acceleration across a variety of existing data systems. Sirius treats GPU as the
primary engine and leverages libraries like libcudf for high-performance relational
operators. It provides drop-in acceleration for existing databases by leveraging the
standard Substrait query representation, replacing the CPU engine without changing
the user-facing interface. Our evaluation on TPC-H benchmark shows that Sirius
achieves 8.2× and up to 12.5× speedup when integrated with DuckDB (single-node)
and Doris (distributed), respectively.
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Chapter 8

Summary and Future Directions

The era of GPU-powered data analytics has arrived!
Over the past decade, the trajectory of GPU hardware has been nothing short of

revolutionary. Increases in GPU peak performance, memory capacity, and memory
bandwidth have far outpaced the CPU hardware advancement, which has stagnated
due to the constraints of Moore’s Law and Dennard scaling. At the same time,
improvements in interconnect technologies are beginning to erode the fundamental
bottleneck in data analytics: data movement. As these trends converge, the database
landscape is shifting. In the foreseeable future, the bottleneck may no longer be I/O,
but computation itself—an area where GPUs excel, with the throughput to saturate
even the highest bandwidth.

Despite this potential, GPU databases still faced significant barriers to adop-
tion. This thesis has identified three of the most critical: supporting data exceeding
GPU memory capacity (Challenge I), supporting complex SQL operators on GPUs
(Challenge II), and migrating from CPU to GPU-based DBMSes (Challenge III).

This dissertation has taken concrete steps toward addressing these challenges. To
address Challenge I, we improved existing approaches to data compression (Chapter
3), CPU–GPU query execution (Chapter 4), and multi-GPU DBMS (Chapter 5) to
enable large-scale data analytics on GPUs. To address Challenge II, we introduced a
framework for executing UDAFs on GPUs which can laid a foundation for general
UDF execution in the future (Chapter 6). To address Challenge III, we introduced Sir-
ius, the first open-source GPU-native SQL engine designed to be a drop-in accelerator
for existing databases (Chapter 7).

Looking ahead, we will explore future directions beyond this thesis to push even
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wider adoption of GPU databases.

8.1 Future Directions
Supporting Storage and S3. To fully overcome GPU memory capacity limitations,
GPU databases must deliver speedups not only for in-memory data, but also for data
residing on SSDs and S3. Technologies such as GPUDirectStorage and GPUDirectRDMA
will be essential in this context. Achieving this requires more than simply scanning
data from storage; it highlights the need for a GPU-native buffer management strategy
to efficiently coordinate spilling, caching, and data movement to-and-from the GPU.
Distributed Query Execution on GPUs. We have demonstrated that Sirius can
operate in distributed settings, but broader challenges—such as scalability, fault
tolerance, and metadata management—remain open. There are also significant
opportunities to optimize performance in distributed execution, for example by
designing a GPU-native distributed runtime or by fully overlapping network transfers
with GPU computation. Overcoming these challenges could enable GPU databases
to efficiently power analytics at petabyte scale and beyond.
Complex Operators and Data Types. While we have demonstrated GPU execution of
UDAFs, the broader challenge of supporting general UDFs remains unsolved. Several
other operators are also still underexplored on GPUs, including RECURSIVE SQL, ASOF
JOIN, WINDOW FUNCTION, and the integration between SQL and VECTOR SEARCH. More-
over, variable-length and nested data types—such as large strings, LISTs, ARRAYs, and
JSON—can easily suffer from load-balancing issues on GPUs, presenting significant
opportunities for further performance optimizations.

Until now, the absence of an open-source GPU database has made it difficult
for researchers to build, validate, and compare new ideas. With the introduction
of Sirius, that barrier has been removed. It is our hope that our work can serve as
a catalyst—inviting researchers and practitioners alike to drive adoption, push the
boundaries, and together kickstart the GPU era for data analytics!
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