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ABSTRACT 

 

Researchers often assess causal effects of educational programs or policies using 

educational assessment data. This dissertation explores novel methods of estimating causal 

effects in educational assessment data and is broken into three parts. The first part proposes a 

regression discontinuity design with an ordinal running variable to assess the effects of extended 

time accommodations for the National Assessment of Educational Progress. The second part 

investigates how to enhance the performance of machine learning methods to estimate causal 

effects in multilevel observational data. The third part discusses how to estimate effect 

heterogeneity that arises from unobservable, latent characteristics by using machine-learning -

based methods for causal inference. Overall, the methods from each part provide investigators 

with modern tools to estimate causal effects in increasingly large and complex educational 

assessment data. 
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INTRODUCTION 

 

Researchers who analyze educational assessment data often evaluate causal effects of 

educational programs or policies (Singer, Braun, & Chudowsky, 2018). In the social sciences, 

there are rich sets of educational assessment data that have been collected nationally and 

internationally. For example, national surveys in the United States include the Early Childhood 

Longitudinal Study (ECLS) and the National Assessment of Educational Progress (NAEP), and 

cross-national surveys include the Programme for International Student Assessment (PISA) from 

the Organization for Economic Cooperation and Development (OECD), and the Trends in 

International Mathematics and Science Study (TIMSS) from the International Association for the 

Evaluation of Educational Achievement (IEA). These educational assessment data can enable 

researchers to conduct evidenced-based education research for various purposes for estimating 

treatment effects, particularly in a setting where a randomized control trial is not feasible for 

ethical and/or practical reasons. 

Despite a large and growing number of datasets publicly available, estimating treatment 

effects is more challenging in observational studies due to confounding bias, i.e., bias from 

covariates that affect the treatment assignment and the outcome. Therefore, it is necessary to use 

appropriate quasi-experimental or non-experimental designs in order to estimate unbiased or 

consistent treatment effects. In addition to confounding bias, the complexity of the sampling 

designs (e.g., clustered sampling designs) and the sources of treatment effect heterogeneity (e.g., 

latent or manifest) can be additional barriers to estimating treatment effects unbiasedly or 

consistently (Kaplan, 2016). Though there are numerous issues related to causal inference in 

educational assessment data, the appropriate use of causal inference methods and their 
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extensions has not been thoroughly discussed in causal inference literature. To fill this gap, this 

dissertation is a collection of three papers, each of which focuses on the specific context of 

causal inference in educational assessment data. Among quasi-experimental or non-experimental 

designs, particularly, this dissertation focuses on (i) regression discontinuity designs and (ii) 

matching and propensity score designs. Three studies in this dissertation address different 

methodological challenges and use distinct empirical examples from educational assessment 

data.   

The first study proposes a regression discontinuity design with an ordinal running 

variable in order to assess the effects of extended time accommodations for the NAEP. This 

study discusses the causal identification and causal estimation of the average treatment effect and 

the local average treatment effect at the cutoff of the ordinal running variable and provides a 

series of sensitivity analyses associated with the scaling function, the cutoff point, and an 

unmeasured confounder. 

The second study investigates how to enhance the performance of machine learning (ML) 

methods for causal inference to estimate the average treatment effect in multilevel observational 

data. This study provides different modifications to fine-tune Causal Forests, an ML method 

based on random forests (Wager & Athey, 2018), to consistently estimate treatment effects in 

different types of multilevel observational data: two-level data, three-level data, and cross-

classified data. The proposed modifications were demonstrated for estimating the effects of 

private math lessons on students' math achievement scores in the TIMSS data.  

The third study discusses how to reveal treatment effect heterogeneity that arises from 

unobservable, latent characteristics. This study defines the conditional average treatment effects 

given latent classes, and it proposes a two-step procedure which combines finite mixture models 



 

 

3 

and ML methods to estimate treatment effects within latent classes. This study's proposed 

method was applied to estimating the effects of private science lessons on students' science 

achievement scores in the TIMSS data. Overall, these three studies clarify and provide specific 

guidance on how researchers should use a regression discontinuity design (with an ordinal 

running variable) or ML-based causal inference method in educational assessment data. We hope 

that the methods from each study provide researchers with modern tools to estimate causal 

effects in increasingly large and complex educational assessment data.  
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STUDY 1 : REGRESSION DISCONTINUITY DESIGNS WITH AN ORDINAL 

RUNNING VARIABLE: EVALUATING THE EFFECTS OF EXTENDED TIME 

ACCOMMODATIONS FOR ENGLISH LANGUAGE LEARNERS 

 

Abstract 

Regression discontinuity designs are commonly used for program evaluation with continuous 

treatment assignment variables. But in practice, treatment assignment is frequently based on 

discrete or ordinal variables. In this study, we propose a regression discontinuity design with an 

ordinal running variable to assess the effects of extended time accommodations (ETA) for 

English language learners (ELL). ETA eligibility is determined by ordinal ELL English 

proficiency categories of National Assessment of Educational Progress data. We discuss the 

identification and estimation of the average treatment effect, intent-to-treat effect, and the local 

average treatment effect at the cutoff. We also propose a series of sensitivity analyses to probe 

the effect estimates' robustness to the choices of scaling functions and cutoff scores, and 

unmeasured confounding. 

 

This research was supported by a grant from the American Educational Research Association 

Division D.  

 

Suk, Y., Steiner, P. M., Kim, J.-S., & Kang, H. (2021) Regression discontinuity designs with 

an ordinal running variable: evaluating the effects of extended time accommodations for 

English language learners. PsyArXiv. Retrieved from psyarxiv.com/sgqjv 

doi:10.31234/osf.io/sgqjv 
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Introduction 

In educational assessment, there have been ongoing efforts to include English language 

learners (ELLs) and students with disabilities (SD) in the National Assessment of Educational 

Progress (NAEP) assessment by providing appropriate testing accommodations (National 

Research Council, 2002). Among various testing accommodations, the extended time 

accommodation (ETA) is the most frequently offered accommodation in the NAEP assessment 

and other testing programs (Gregg & Nelson, 2012); the recent 2017 NAEP assessment included 

about 90% of ELLs and SD students, and about 10% of these students received ETA (National 

Center for Education Statistics, 2017a, 2017b). Despite the common usage of ETA, there is little 

guidance on how to evaluate ETA and no systematic research studies assessing ETA’s 

effectiveness (Jonson, Trantham, & Usher-Tate, 2019). Given that it is unethical and impractical 

to conduct a randomized experiment in this setting, the goal of this paper is to propose a 

regression discontinuity (RD) design with an ordinal running variable for evaluating program 

effectiveness. 

RD designs have been used for policy and program evaluation where subjects’ treatment 

status is determined by whether their treatment assignment variable (also called running or 

forcing variable) exceeds a pre-defined cutoff. If the running variable is continuous, as required 

by standard RD designs, the average treatment effect (ATE) at the cutoff is non-parametrically 

identified and can be estimated by comparing the average outcomes of subjects "just below" and 

"just above" the cutoff (Hahn, Todd, & van der Klaauw, 2001; Imbens & Lemieux, 2008; Lee & 

Lemieux, 2010). However, in some settings, the running variable is discrete, reported in coarse 

intervals, or an ordinal variable with a few categories only. For instance, in NAEP assessments, 

student eligibility for ETA is determined by ELL English proficiency scores, an ordinal variable 
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with six categories: No Proficiency, ELL Beginning, ELL Intermediate, ELL Advanced, 

Formerly ELL, and Never ELL. Students with an ELL Advanced (here, the cutoff) or lower 

proficiency level are offered ETA. Due to the running variable’s discrete and ordinal scale, the 

ATE at the cutoff is no longer non-parametrically identified because in the close vicinity of the 

cutoff score only ETA eligible students are observed but no ineligible students (i.e., there is no 

overlap of eligible and ineligible students). Thus, the identification of the ATE at the cutoff 

requires an appropriate scaling of the ordinal categories together with a correctly specified 

parametric outcome model to correctly extrapolate the average control outcome of ineligible 

ETA students to the cutoff category of ELL Advanced students. 

In this paper, we extend the identification and estimation strategy proposed by Lee and 

Card (2008) for discrete running variables to ordinal variables. With ordinal running variables, 

RD designs face several challenges: First, the categories of the ordinal running variable need to 

be mapped onto a numeric scale by choosing an appropriate scaling function. For instance, using 

the ranks {1, ..., 6} is a possible but not necessarily optimal choice for the six ELL English 

proficiency categories above. Second, a meaningful cutoff value between ELL Advanced and 

Formerly ELL must be determined with respect to the chosen numeric scale. The choice of the 

cutoff score determines the target population (at the cutoff) but also the magnitude of the ATE 

(in the case of effect heterogeneity). Third, the parametric functional form to the left and the 

right of the cutoff score must be correctly specified with respect to the chosen numeric scale such 

that valid extrapolations to the cutoff score are guaranteed. Fourth, the statistical model 

uncertainty due to the discreteness of the scaled running variable should be accounted for when 

estimating standard errors (Lee & Card, 2008). Fifth, given the increased number of assumptions 

with ordinal running variables and the potential violations of said assumptions, we need to 
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conduct a set of sensitivity analyses to strengthen causal conclusions drawn from the analysis. 

These include probing the effect estimate’s sensitivity to (i) the choice of the scaling function, 

(ii) the choice of the scaled cutoff score, and (iii) unobserved confounding due to model mis-

specification. 

Throughout the paper, we use the ETA example based on the 2017 NAEP data to 

demonstrate our proposed approach. We discuss the choices of scaling functions and cutoff 

scores. We also analyze the intent-to-treat and the local average treatment effect where there 

exists non-compliance with the assigned ETA status. 

 

Setup 

Notation 

We use the Neyman-Rubin potential outcomes framework (Neyman, 1923; Rubin, 1974) 

and its extension to multilevel/clustered data by Hong and Raudenbush (2006) to define 

treatment effects in sharp and fuzzy RD designs. The NAEP sampling design involves a 

multilevel structure where students, the study units, are nested within schools. Let 𝐴𝑖𝑗 ∈ {0, 1} be 

a binary treatment variable where 𝐴𝑖𝑗 = 1 indicates that student 𝑖 in school 𝑗 was assigned to the 

ETA treatment and 𝐴𝑖𝑗 = 0 indicates the control condition. In a classic RD design, treatment 

assignment is based on a continuous running variable 𝑋𝑖𝑗 and a cutoff score 𝑥𝑐 such that 𝐴𝑖𝑗 = 1 

if 𝑋𝑖𝑗 ≤ 𝑥𝑐 and 𝐴𝑖𝑗 = 0 if 𝑋𝑖𝑗 >  𝑥𝑐. Let 𝑍𝑖𝑗 ∈ {0, 1}  denote the treatment received where 𝑍𝑖𝑗 =

1 if student 𝑖 in school 𝑗 actually received ETA and 𝑍𝑖𝑗 = 0 if the student did not receive ETA. 

Note, for a sharp RD design (without non-compliance), assignment status and treatment receipt 

are identical, i.e., 𝐴𝑖𝑗 = 𝑍𝑖𝑗. 
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𝑌𝑖𝑗(1) denotes the potential treatment outcome if student i in school j were to be eligible 

for ETA, and 𝑌𝑖𝑗(0) denotes the potential control outcome for the same student but under the 

control condition. For every student, the observed outcome is linked to the potential outcomes as 

follows: 𝑌𝑖𝑗 = 𝑍𝑖𝑗𝑌𝑖𝑗(1) + (1 − 𝑍𝑖𝑗)𝑌𝑖𝑗(0). The equality implies the stable unit treatment value 

assumption (SUTVA; Rubin, 1986), that is, (1) a student’s potential outcomes are independent of 

other students’ treatment assignment and (2) there are no different versions of the treatment. 

Since ETA eligibility is unlikely to have spillover effects to other students and every school uses 

the same ETA (e.g., fixed amount of extra time), SUTVA is plausible in our study. SUTVA 

would be violated (i) if some students are aware of other students’ ETA eligibility status and this 

awareness creates negative (or positive) externalities on students’ performance and (ii) if the 

overall fraction of ETA eligible students affect performance of students in a school. Finally, let 

𝐖𝑖𝑗 be a set of observed pre-treatment covariates and 𝐔𝑖𝑗 be unobserved confounders. 

 

Review: Sharp RD Design with a Continuous Running Variable 

We first review the standard sharp RD design with a continuous running variable. 

Suppose our running variable, ELL English proficiency, is continuous where students scoring 

below or at the cutoff, 𝑋𝑖𝑗 ≤  𝑥𝑐  are eligible for ETA and students scoring above the cutoff are 

ineligible for ETA. Given full compliance with the assigned ETA status, this design is called a 

sharp RD design because the probability of receiving treatment jumps from one to zero when the 

running variable 𝑋𝑖𝑗 crosses the cutoff 𝑥𝑐. 

Because 𝐴𝑖𝑗 is a known deterministic function of 𝑋𝑖𝑗, the conditional unconfoundedness 

assumption automatically holds, that is, 𝑌𝑖𝑗(1), 𝑌𝑖𝑗(0) ⊥ 𝐴𝑖𝑗|𝑋𝑖𝑗. Nonetheless, the treatment 

effect for the entire population is non-parametrically not identified because of a violation of the 



 

 

9 

positivity assumption (0 < 𝑃𝑟(𝐴𝑖𝑗 = 1|𝑋𝑖𝑗) < 1). In fact, in a sharp RD design, treatment and 

control units do not share any common support on 𝑋𝑖𝑗 such that 𝑃𝑟(𝐴𝑖𝑗 = 1|𝑋𝑖𝑗 ≤ 𝑥𝑐) = 1 for 

every individual scoring below or at the cutoff and 𝑃𝑟(𝐴𝑖𝑗 = 1|𝑋𝑖𝑗 > 𝑥𝑐) = 0 for every 

individual scoring above the cutoff. But the treatment effect for the population at or in the close 

vicinity of the cutoff score can be identified by a mild, local smoothness assumption at the 

limiting cutoff 

 

(A1) Local Continuity of Potential Outcomes: 

lim
𝑥↑𝑥𝑐

𝐸(𝑌𝑖𝑗(1)|𝑋𝑖𝑗 = 𝑥) = lim
𝑥↓𝑥𝑐

𝐸(𝑌𝑖𝑗(1)|𝑋𝑖𝑗 = 𝑥), 

lim
𝑥↑𝑥𝑐

𝐸(𝑌𝑖𝑗(0)|𝑋𝑖𝑗 = 𝑥) = lim
𝑥↓𝑥𝑐

𝐸(𝑌𝑖𝑗(0)|𝑋𝑖𝑗 = 𝑥). 

 

This assumption states that the mean potential treatment and control outcomes right below the 

cutoff are equal to the corresponding mean potential outcomes right above the cutoff. The 

assumption allows us to think of an RD design as a local randomized experiment where students 

near the cutoff are randomly assigned to treatment and control conditions (Lee & Lemieux, 

2010). Under (A1), the ATE at the cutoff, τ(𝑥𝑐), is identified as follows: 

 

𝜏(𝑥𝑐) = 𝐸[𝑌𝑖𝑗(1) − 𝑌𝑖𝑗(0)|𝑋𝑖𝑗 = 𝑥𝑐] 

= lim
𝑥↑𝑥𝑐

𝐸(𝑌𝑖𝑗|𝑋𝑖𝑗 = 𝑥) − lim
𝑥↓𝑥𝑐

𝐸(𝑌𝑖𝑗|𝑋𝑖𝑗 = 𝑥) 

 

In our setting, the ATE at the cutoff represents the average effect of ETA for students scoring 

right at the eligibility cutoff. We can estimate 𝜏(𝑥𝑐) by comparing the average outcomes for 

students scoring “just below” and “just above” the cutoff using non-parametric, local polynomial 

regression with an optimal bandwidth parameter. We can also include baseline covariates 𝐖𝑖𝑗 to 
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improve the efficiency of the estimated effect. For more details on sharp RD designs and the 

non-parametric estimation of treatment effects at the cutoff, see Imbens and Lemieux (2008) and 

Lee and Lemieux (2010). 

 

Review: Fuzzy RD Design with a Continuous Running Variable 

In practice, study administrators frequently do not adhere to assignment rules or 

participants do not comply with the assigned treatment or control status. For instance, students 

eligible for ETA according to their English proficiency scores may not receive ETA and 

ineligible students might actually receive ETA due to school- or administrator-specific rules or 

exemptions. In the presence of noncompliance, we have a fuzzy RD design that can identify the 

intent-to-treat (ITT) and local average treatment effect (LATE) at the cutoff score. Using the 

ETA eligibility status, 𝐴𝑖𝑗, as the “treatment” indicator, the ITT at the cutoff is identifiable and 

estimable in the same way as the ATE in the sharp RD design. To define and formalize the 

identification of the LATE, we now use potential outcomes notations for treatment receipt. Let 

𝑍𝑖𝑗(1) be a student’s ETA receipt status if she were eligible for ETA (𝐴𝑖𝑗 = 1) and 𝑍𝑖𝑗(0) be the 

ETA receipt status if she were not eligible for ETA (𝐴𝑖𝑗 = 0). We also assume 𝑍𝑖𝑗 =

𝐴𝑖𝑗𝑍𝑖𝑗(1) + (1 − 𝐴𝑖𝑗)𝑍𝑖𝑗(0). Compared to the sharp RD design, the fuzzy RD design is 

characterized by a discontinuity in the treatment receipt probability of less than one but still 

requires a discontinuity greater than zero, i.e., 0 < lim
𝑥↑𝑥𝑐

𝑃𝑟(𝑍𝑖𝑗 = 1|𝑋𝑖𝑗 = 𝑥) − lim
𝑥↓𝑥𝑐

𝑃𝑟(𝑍𝑖𝑗 =

1|𝑋𝑖𝑗 = 𝑥) < 1. Additionally, the fuzzy RD design needs the following two assumptions. 

 

(A2) Local Monotonicity: 

lim
𝑥↑𝑥𝑐

𝑃𝑟(𝑍𝑖𝑗(1) < 𝑍𝑖𝑗(0)|𝑋𝑖𝑗 = 𝑥) = lim
𝑥↓𝑥𝑐

𝑃𝑟(𝑍𝑖𝑗(1) < 𝑍𝑖𝑗(0)|𝑋𝑖𝑗 = 𝑥) = 0 
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(A3) Local Exclusion Restriction: 

lim
𝑥↑𝑥𝑐

𝑃𝑟(𝑌𝑖𝑗(1, 𝑧) = 𝑌𝑖𝑗(0, 𝑧)|𝑋𝑖𝑗 = 𝑥) = lim
𝑥↓𝑥𝑐

𝑃𝑟(𝑌𝑖𝑗(1, 𝑧) = 𝑌𝑖𝑗(0, 𝑧)|𝑋𝑖𝑗 = 𝑥) 

for each 𝑧 = 0,1, and where the potential outcomes 𝑌𝑖𝑗(𝑎, 𝑧) are now functions of both the 

assigned treatment status (𝑎) and the received treatment status (𝑧). 

 

The local monotonicity assumption rules out the presence of defiers at the cutoff, that is, students 

who would receive ETA if not eligible for ETA but would not receive ETA if eligible. This 

assumption allows us to identify the ATE for the latent subpopulation of compliers at the cutoff, 

that is, students who would receive ETA if they were eligible for ETA and who would not 

receive ETA if ineligible (𝑍𝑖𝑗(1) = 1 and 𝑍𝑖𝑗(0) = 0). The treatment effect for the “local” 

complier subpopulation is referred to as the LATE. The local exclusion restriction states that the 

potential outcomes depend only on treatment receipt (𝑍𝑖𝑗), but are unaffected by treatment 

assignment 𝐴𝑖𝑗 at the limiting cutoff. With assumptions (A1)-(A3), the LATE at the cutoff is 

identified as follows. 

 

𝜏𝐿𝐴𝑇𝐸(𝑥𝑐) = 𝐸[𝑌𝑖𝑗(1) − 𝑌𝑖𝑗(0)|𝑋𝑖𝑗 = 𝑥𝑐, 𝑍𝑖𝑗(1) = 1, 𝑍𝑖𝑗(0) = 0] 

=
lim
𝑥↑𝑥𝑐

𝐸(𝑌𝑖𝑗|𝑋𝑖𝑗 = 𝑥) − lim
𝑥↓𝑥𝑐

𝐸(𝑌𝑖𝑗|𝑋𝑖𝑗 = 𝑥)

lim
𝑥↑𝑥𝑐

𝐸(𝑍𝑖𝑗|𝑋𝑖𝑗 = 𝑥) − lim
𝑥↓𝑥𝑐

𝐸(𝑍𝑖𝑗|𝑋𝑖𝑗 = 𝑥)
 

 

In our study, 𝜏𝐿𝐴𝑇𝐸(𝑥𝑐) is the average effect of receiving ETA among complier students at the 

cutoff. We can estimate 𝜏𝐿𝐴𝑇𝐸(𝑥𝑐) by taking the ratio between the difference in the expected 

outcomes and the difference in the expected treatment receipt probabilities of students “just 

above” and “just below” the cutoff. Local polynomial regression is frequently used to estimate 

the numerator and denominator of the ratio. Also, similar to 𝜏(𝑥𝑐), we can improve the 
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efficiency of the estimator by using covariates 𝐖𝑖𝑗. Again, for more details, see Imbens and 

Lemieux (2008) and Lee and Lemieux (2010). 

 

Review: A Graphical Perspective 

The data generating process underlying RD designs can be formalized by a causal 

diagram—a directed acyclic graph (DAG) (Elwert, 2013; Morgan & Winship, 2014; Pearl, 1988, 

2009; Steiner, Kim, Hall, & Su, 2017). The DAG for the ETA evaluation is shown in Figure 1.1. 

The graph highlights that the ELL eligibility status (𝐴) is solely determined by a student’s ELL 

English proficiency score (𝑋), while the ETA receipt status (𝑍) depends on the eligibility status 

(𝐴) and on observed and unobserved covariate sets (𝐖,𝐔). That is, school administrators might 

offer ETA to ineligible students or withhold ETA from eligible students based on variables 

captured by 𝐖 and 𝐔. The set of measured covariates 𝐖 may include student background 

variables like the number of years exposed to English education or race/ethnicity. The set of 

unmeasured covariates 𝐔 may include students’ academic abilities/skills or the number of 

English-language books read per month. Since the covariate sets 𝐖 and 𝐔 also affect students’ 

outcome (𝑌), they confound the causal relation between ETA eligibility (𝐴) and the outcome (𝑌) 

and the causal relation between ETA receipt (𝑍) and the outcome (𝑌). Thus, without statistical 

adjustments, the causal effects of ETA eligibility and receipt on student outcome are not 

identified. 
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Figure 1.1. Causal directed acyclic graph for evaluating the effects of ETA. ETA Eligible (A) 

represents students’ ETA eligibility status. ELL EP (X) represents ELL English proficiency. ETA Received (Z) 

represents whether students received ETA or not, and Outcome represents students’ math proficiency outcome. 

W represents measured covariates, and U represents unmeasured covariates. 

 

Though the graph suggests that conditioning on ELL English proficiency (𝑋) blocks the 

confounding backdoor paths between ELL eligibility (𝐴) and students’ outcome (𝑌), the causal 

effect of 𝐴 on 𝑌 is nonetheless not identified because the positivity assumption is not met 

because there is no variation in 𝐴 conditional on 𝑋. That is, for each value of the running 

variable 𝑋, we only observe either eligible or ineligible students, but never both (complete lack 

of overlap). The causal effect of ETA receipt (𝑍) on the outcome (𝑌) would be identified 

conditional on 𝐖 and 𝐔 but only if all variable in 𝐔 were observed and positivity conditional on 

𝐖 and 𝐔 would hold. But given the lack of overlap and the presence of unobserved 𝐔, we 

exploit the discontinuity at the cutoff rather than matching methods to identify the causal effect 

of ETA on the math proficiency outcome. 

Figure 1.2 shows the causal graph for the RD design at the limiting cutoff score, 𝑋 → 𝑥𝑐 

(Steiner et al., 2017). In the limit, the running variable (𝑋) still determines ETA eligibility (𝐴) 

but neither directly affects the outcome (𝑌) nor is determined by variables 𝐖 and 𝐔. Thus, in the 

close vicinity of the cutoff score, ETA eligibility is independent of 𝐖 and 𝐔 (local 
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Figure 1.2. Causal graphical identification for evaluating the effects of ETA. ETA Eligible (A) 

represents students’ ETA eligibility status. ELL EP (X) represents ELL English proficiency. ETA Received (Z) 

represents whether students received ETA or not, and Outcome represents students’ math proficiency outcome. 

W represents measured covariates, and U represents unmeasured covariates. 

 

randomization), and thus, the ITT at the cutoff (i.e., the effect transmitted along 𝐴 → 𝑍 → 𝑌) is 

identified without any covariate adjustments for 𝐖 and 𝐔. Using 𝐴 as an instrument for ETA 

receipt (𝑍) identifies the 𝜏𝐿𝐴𝑇𝐸(𝑥𝑐) at the cutoff (i.e., the effect 𝑍 → 𝑌). 

 

RD Design with an Ordinal Running variable 

So far we have assumed that the running variable X is continuous. However, in practice 

many RD designs rely on a discrete metric running variable such that the causal effects at the 

limiting cutoff are no longer non-parametrically identified. The identification of causal effects 

then requires parametric functional form assumptions to bridge the gap between the neighboring 

discrete values at the cutoff (Lee & Card, 2008). With ordinal running variables, as for our ETA 

study, causal identification is even more challenging because the ordinal categories first need to 

be mapped onto an appropriate numerical scale. In this section, we discuss the identification and 

estimation of causal effects from RD designs with an ordinal running variable. Drawing valid 

and reliable causal conclusions from such RD designs requires three main steps. First, 

researchers need to decide on a reasonable scaling function for the ordinal running variable. 
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Second, they need to correctly specify the outcome regression with respect to the chosen scaling 

function and estimate standard errors that reflect specification errors due to the running 

variable’s discreteness. Third, given uncertainties about the appropriate scaling and correct 

model specification, researchers should always conduct a set of sensitivity analyses to probe the 

conclusions’ robustness to (i) the choice of the scaling function, (ii) the choice of the scaled 

cutoff score, and (iii) unobserved confounding due to model mis-specification. The following 

subsections describe these steps in detail and state the causal identifying assumptions. 

 

Scaling Function 

The scaling function 𝑆(𝜔𝑘) maps the 𝐾 categories 𝜔1, . . . , 𝜔𝐾 ∈ Ω of the ordinal running 

variable onto the real numbers ℝ. In classical measurement and test theory, 𝑆(𝜔𝑘) can be 

interpreted as a scaling rule/function. More specifically, each category 𝜔1, . . . , 𝜔𝐾 is assigned to 

a numerical score 𝑆(𝜔𝑘) = 𝑥𝑘 (𝑘 = 1, . . . , 𝐾), and we refer 𝑥1, . . . , 𝑥𝐾 as scale values. 

Importantly, the scaling function 𝑆 preserves the rank order from the ordinal running variable 

(Crocker & Algina, 2006). 

There is a variety of scaling functions that map ordinal categories onto real numbers. 

First, ordinal categories can be arranged in ascending order, and their ranks are used as scale 

values (Crocker & Algina, 2006). For instance, in our ETA study, ELL English proficiency has 

six categories ranging from No Proficiency to Never ELL. Thus, No Proficiency translates into a 

scale value of 𝑆(𝜔1) = 1, ELL Beginning to 𝑆(𝜔2) = 2, and up to Never ELL with a scale value 

of 𝑆(𝜔6) = 6. The rank-based scaling function presumes that there are equal distances between 

adjacent categorical levels, and the scale values have a meaningful metric interpretation. 
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Since rank-based scale values might be a poor choice when equal distances between consecutive 

categories are not suitable for the ordinal running variable, researchers should consider optimal 

scaling techniques based on observed variables that are directly related to the categories of the 

ordinal running variable (Bradley, Katti, & Coons, 1962). Such a variable could be the 

underlying continuous variable that measures the same proficiency/skill or a close proxy thereof 

(e.g., a continuous composite English proficiency score, domain scores like reading and writing, 

or English proficiency scores from previous grades). Then, the optimal scale values can be 

determined using optimal scaling methods for categorical data like categorical regression or 

categorical principal components analysis. Here, optimality is often defined by maximization of 

variance, maximization of pairwise linear relationships, and maximization of homogeneity 

among variables, to name a few. If multiple categories receive similar scale values, we can 

collapse these categories into one category (Bradley et al., 1962; IBM, 2019; Meulman, 1998; 

Meulman, van der Kooij, & Duisters, 2019). 

In the absence of related continuous variables that could be used for optimal scaling 

techniques, it is sometimes possible to infer scale values from external sources like published cut 

scores used to form the categories. More specifically, if there were clearly defined cut scores on 

the ELL English proficiency variable for creating the ordinal categories, then the midpoints of 

the cut scores could be used as scale values. However, the midpoints of the lowest and highest 

category might not be meaningfully defined if the minimum and maximum of the ELL 

proficiency score are not known or are very extreme values that are rarely observed. If cut scores 

for the ordinal running variable are not known, we can use other related classifications based on 

the same or similar underlying continuous variable. For example, the Wisconsin Department of 

Instruction defines English language proficiency classifications with 7 ordinal levels (ELL 
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Beginning preproduction, ELL Beginning production, ELL Intermediate, ELL Advanced 

intermediate, ELL Advanced, Formerly ELL, and Never ELL) that are very similar to the 

observed ordinal categories of English proficiency in NAEP. After mapping the different ordinal 

categories, we could use their cut scores and corresponding midpoints to obtain scale values. 

 

Sharp RD Design with an Ordinal Running Variable  

As mentioned before, with an ordinal running variable, non-parametric causal 

identification breaks down because in the close vicinity of the cutoff score (i.e., the ELL 

Advanced category) only students eligible for ETA are observed but no ineligible control 

students. Given the identification failure at the limiting cutoff, the limiting graph in Figure 1.2 no 

longer applies either. Thus, we are back to the graph in Figure 1.1 which indicates that the 

observed and unobserved sets of covariates 𝐖 and 𝐔 confound the causal relations of interest. 

But the confounding bias can be successfully removed if the functional relation between the 

ordinal running variable 𝑋 and the outcome 𝑌 is correctly specified such that a valid 

extrapolation of the average control outcome from the ETA ineligible to the eligible students at 

the ELL Advanced cutoff category becomes possible. 

To estimate the ATE at the cutoff in the sharp RD design, we extend the approach 

suggested by Lee and Card (2008) for discrete running variables to ordinal running variables. 

Instead of the local continuity assumption (A1), we now assume a correctly specified outcome 

regression such that the expected control outcome can be correctly inferred by extrapolating the 

outcome regression for control units to the cutoff category. 
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(A4) Outcome Regression Function: 

𝐸[𝑌𝑖𝑗|𝑋𝑖𝑗 = 𝑥𝑘] = 𝐴𝑖𝑗𝜏(𝑥𝑐) + ℎ𝑆(𝑥𝑘)   𝑤𝑖𝑡ℎ  ℎ𝑆(𝑥𝑐) = 𝐸[𝑌𝑖𝑗(0)|𝑋𝑖𝑗 = 𝑥𝑐] 

 

Here, ℎ𝑆(𝑥𝑘) is a continuous parametric function with respect to the chosen scaling function 

𝑆(𝜔𝑘) = 𝑥𝑘. The requirement ℎ𝑆(𝑥𝑐) = 𝐸[𝑌𝑖𝑗(0)|𝑋𝑖𝑗 = 𝑥𝑐] guarantees that the expected 

potential control outcome at the cutoff score is correctly predicted by ℎ𝑆(𝑥𝑐). The parameter 

𝜏(𝑥𝑐) is the ATE at the cutoff 𝑥𝑐. Due to the discreteness of 𝑋𝑖𝑗, ℎ𝑆(∙) must be parametrized by 

less than 𝐾 parameters; if ℎ𝑆(∙) uses 𝐾 or more parameters, 𝜏(𝑥𝑐) is not identifiable because of 

multicollinearity. 

In estimating and conducting inference for 𝜏(𝑥𝑐), we follow Lee and Card (2008) and add 

a random specification error with a common variance component for all the observations at any 

given values of the discrete running variable. This specification error reflects the potential 

deviation between the expected value of the true outcome at the cutoff and the predicted value 

based on ℎ𝑆. The specification error can also be re-interpreted as adding a random effects term in 

a mixed effects model and hence, makes it easy to implement in practice. 

 

Fuzzy RD Design with an Ordinal Running Variable  

For fuzzy RD designs with an ordinal running variable, the ITT at the cutoff category is 

identified and estimated just like the ATE in the sharp RD design where the treatment 

assignment status 𝐴𝑖𝑗 is used as a treatment indicator. Also, the LATE is identifiable and 

estimable at the cutoff if a functional form assumption analogous to (A4) is met for the 

expectation of 𝑍𝑖𝑗. 
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(A5) Treatment Regression Function: 

𝐸[𝑍𝑖𝑗|𝑋𝑖𝑗 = 𝑥𝑘] = 𝐴𝑖𝑗𝛼 + 𝑔𝑆(𝑥𝑘)   𝑤𝑖𝑡ℎ 𝑔𝑆(𝑥𝑐) = 𝐸[𝑍𝑖𝑗(0)|𝑋𝑖𝑗 = 𝑥𝑐] 

 

As before, 𝑔𝑆(𝑥𝑘) is a continuous parametric function with respect to the scaling function 

𝑆(𝜔𝑘) = 𝑥𝑘. The term 𝛼 represents the discontinuity in treatment probabilities at the cutoff and 

is used to obtain the LATE at the cutoff by dividing the ITT by 𝛼. As for Assumption (A4), 

identifiability demands less than K parameters for 𝑔𝑆(∙). Also, in estimating standard errors for 

the LATE, we take random specification errors in the treatment regression function into account. 

 

Sensitivity Analyses 

The discussions of the assumptions for the sharp and fuzzy RD design revealed that the 

causal effects at the cutoff are identified only if the scaling function and outcome (or treatment) 

regressions are correctly specified. Given that the correct specification of the functions is 

uncertain in practice, researchers should always conduct sensitivity analyses to check the 

conclusions’ robustness to (i) the choice of scaling functions, (ii) the choice of cutoff values, and 

(iii) the presence of unobserved confounding resulting from a mis-specified outcome or 

treatment regression (that lead to biased extrapolations of the control outcomes to the cutoff 

value). 

First, in choosing different scaling functions 𝑆(𝜔𝑘) for the ordinal running variable, 

researchers can probe the robustness of effect estimates (ATE, ITT, and LATE at the cutoff) to 

alternative plausible choices of 𝑆(𝜔𝑘). As mentioned before, the scaling function for the ordinal 

running variable can be determined by relevant external criteria or by optimal scaling methods 

with respect to the underlying continuous variable or a proxy measure thereof. If the effect 
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estimates are rather insensitive to the choice of scaling functions, researchers can be more 

confident in their conclusions about the presence or absence of a treatment effect. 

Second, for the preferred choice of the scaling function, one may evaluate the effect estimates at 

different cutoff value 𝑥𝑐 between the scale value of the cutoff category 𝑆(𝜔𝑐) and the value of 

the neighboring category 𝑆(𝜔𝑐+1). Such a sensitivity analysis reflects the fuzziness of the cutoff 

point due to the use of the ordinal running variable and provides further evidence for the 

robustness of the effect estimates. Note that differences in the effect estimates can be expected 

because different cutoff values refer to different local populations. 

Finally, it is advisable to probe whether the conclusions drawn are sensitive to unblocked 

confounding due to model mis-specification of ℎ𝑆 (and 𝑔𝑆 for the LATE). The effect estimates at 

the cutoff are unbiased only if the extrapolations are based on a correctly specified functional 

form ℎ𝑆 (and 𝑔𝑆) with respect to the chosen scaling function 𝑆. With a mis-specified functional 

form, the extrapolation to the cutoff score may become invalid and fail to completely remove 

confounding bias between the outcomes of treatment subjects in the cutoff category and the 

outcomes of control subjects in the neighboring category. For example, suppose that we simply 

compare the mean outcomes of the neighboring categories “Advanced ELL” (treated subjects) 

and “Formerly ELL” (control subjects) in our empirical example. That is, we make no attempt to 

remove any confounding between the treatment and control groups. Thus, the resulting 

unadjusted effect estimate likely suffers from confounding bias due to group differences in ELL 

English proficiency categories and in any other student characteristics like ability or the number 

of English-language books read per month. The RD design with an ordinal running variable tries 

to overcome differences between the neighboring treatment and control groups by a correct 

specification of ℎ𝑆 (and 𝑔𝑆). Since mis-specified functional forms may remove a part but not all 
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the confounding bias, researchers should conduct sensitivity analyses and report how large the 

remaining confounding would need to be to overturn the conclusions of the study. We 

demonstrate all these sensitivity analyses with our empirical example in the next section. 

 

Empirical Example: Testing Accommodations in NAEP 

Data and Variables 

NAEP is the largest nationally representative and continuing assessment of what students 

in the US know and can do in various disciplines. The data has been collected by National Center 

for Education Statistics (NCES) within the Institute of Education Sciences. The 2017 NAEP 

assessments were conducted for grades 4 and 8 in mathematics, reading, and writing. The NAEP 

sampling procedures ensure that the students and schools selected in NAEP are representative of 

the target population. The NAEP assessment strives to minimize participant burden by giving 

students a subset of items from the total item pool (Johnson, 1992; Oranje & Kolstad, 2019). For 

more details of the NAEP methods and procedures, see the NAEP page of the NCES website 

(https://nces.ed.gov/nationsreportcard/tdw/).  

In our study, we used the NAEP Grade-4 2017 restricted-use data for mathematics. For 

the data analysis, we excluded (i) schools with only one student, (ii) students with disabilities, 

and (iii) ELL students whose prior performance was below the grade level of performance of 

NAEP; here, ELL students’ prior performance was evaluated by their teachers or school staff 

members through an ELL questionnaire. After sample exclusion, our final analysis sample 

consisted of 116,910 students from 7,450 schools (78.2% of the original reporting sample). Note 

that numbers are rounded to nearest tens. 

https://nces.ed.gov/nationsreportcard/tdw/
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In the 2017 NAEP data, we used the math proficiency as the outcome 𝑌𝑖𝑗. As mentioned 

earlier, ETA eligibility 𝐴𝑖𝑗 is binary with 𝐴𝑖𝑗 = 1 denoting that a student is eligible for ETA and 

𝐴𝑖𝑗 = 0 denoting that a student is ineligible for ETA. The eligibility status is determined by ELL 

English proficiency, derived from students’ prior ELL status and ELL English proficiency in 

reading. Specifically, ELL English proficiency was reported with six ordinal levels: No 

Proficiency, ELL Beginning, ELL Intermediate, ELL Advanced, Formerly ELL, and Never ELL; 

see survey questionnaires from the NAEP website 

(https://nces.ed.gov/nationsreportcard/experience/survey_questionnaires.aspx). However, in 

following school-specific rules and resources, school staff decided which students actually 

received ETA. The data indicate two-sided non-compliance; some students eligible for ETA did 

not receive ETA (𝐴𝑖𝑗 = 1 but 𝑍𝑖𝑗 = 0), while some ineligible students received ETA (𝐴𝑖𝑗 = 0 

but 𝑍𝑖𝑗 = 1). For the outcome and treatment regressions, we used a set of pre-treatment 

covariates 𝐖𝑖𝑗, including gender, race/ethnicity, free lunch status, English instruction period, US 

school period, and primary language; these variables partially explain why some eligible students 

did not receive ETA. For a full list of pre-treatment covariates and their distributions, see 

Appendix A.  

In demonstrating our proposed approach, we use only a single plausible value of math 

proficiency as the outcome 𝑌𝑖𝑗 (mean=244.05, SD=28.25) and do not incorporate multiple 

plausible values; in the 2017 NAEP data, each student obtained 20 plausible values in math 

proficiency because they received only a randomly selected subset of items from the total item 

pool. We also ignore sampling weights and the corresponding jackknife replicate weights 

provided by the 2017 NAEP data. This allows us to discuss the analyses without getting 

https://nces.ed.gov/nationsreportcard/experience/survey_questionnaires.aspx
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distracted by the more complex measurement and sampling design. But our results do not 

generalize to the target population of NAEP. 

 

Choice of Scaling Function and Cutoff Score 

To assess the effects of ETA with an RD design, we first chose the scaling function for 

the ordinal ELL English categories based on their ranks, 𝑆(𝜔𝑘) = 𝑘, assuming that the 

performance differences between consecutive categories are approximately equidistant. The 

equidistance assumption might be justified because we found the differences in the reading 

proficiency scores across consecutive categories were similar except for the two extreme levels 

(No Proficiency and Never ELL) from the 2017 NAEP data (see Figure 1.3). Thus, we assigned 

1 to No Proficiency, 2 to ELL Beginning, 3 to ELL Intermediate, 4 to ELL Advanced, 5 to 

Formerly ELL, and 6 to Never ELL. The cutoff score is 𝑥𝑐 = 4 which corresponds to the “ELL 

Advanced” category. 

 

 

Figure 1.3. Observed means in reading by ELL English proficiency 
NOTE: Numbers in parentheses represent sample sizes and are rounded to nearest tens. 

SOURCE: U.S. Department of Education, National Center for Education Statistics, National Assessment of 

Educational Progress (NAEP) 2017. 
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Parametric Model Specifications 

Given two-sided noncompliance, we estimate the ITT and the LATE at the cutoff. 

Following Lee and Card (2008), we model the categories of the ordinal running variable as 

random effects in a hierarchical linear model that also accounts for the clustered data structure of 

students nested within schools. The reading proficiency 𝑌𝑖𝑗𝑘 for a student 𝑖, school 𝑗, and ELL 

category 𝑘 is modeled as follows: 

 

𝑌𝑖𝑗𝑘 = 𝛽0 + 𝛽1𝐴𝑖𝑗𝑘 + 𝛽2(𝑋𝑖𝑗𝑘 − 𝑥𝑐) + 𝛽3𝐴𝑖𝑗𝑘(𝑋𝑖𝑗𝑘 − 𝑥𝑐) +∑𝛽𝑤𝑊𝑖𝑗𝑘 + 𝑠𝑗 + 𝑢𝑘

+ 𝜖𝑖𝑗𝑘 

𝐴𝑖𝑗𝑘 = {
1, 𝑋𝑖𝑗𝑘 ≤ 𝑥𝑐
0, 𝑋𝑖𝑗𝑘 > 𝑥𝑐

,    𝑥𝑐 = 4 

(1.1) 

 

In the model equation, the ITT at the cutoff is given by 𝛽1 = 𝜏(𝑥𝑐) where the cutoff is set to the 

“ELL Advanced” category, that is, the average effect of ETA eligibility for the students with the 

“ELL Advanced” level. The term 𝛽0 represents the estimated average control outcome at the 

cutoff. The term 𝛽2 represents the slope coefficient between scale values above the cutoff value 

and the outcome, and the term 𝛽3 represents the difference in the slope between scale values 

below the cutoff value and those above the cutoff value. Due to limited number of ELL 

categories, we did not consider a polynomial term that could lead to overfitting. The model also 

includes a set of measured pre-treatment covariates 𝐖𝑖𝑗, the school random effects term 𝑠𝑗, and 

the random specification error 𝑢𝑘. We used the package lme4 (Bates, Mächler, Bolker, & 

Walker, 2015) in R (R Core Team, 2020) to estimate the parameters and their standard errors. 

For estimating the LATE effect at the cutoff, we use the following model for 𝑍𝑖𝑗𝑘: 
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𝑍𝑖𝑗𝑘 = 𝛼0 + 𝛼1𝐴𝑖𝑗𝑘 + 𝛼2(𝑋𝑖𝑗𝑘 − 𝑥𝑐) + 𝛼3𝐴𝑖𝑗𝑘(𝑋𝑖𝑗𝑘 − 𝑥𝑐) +∑𝛼𝑤𝑊𝑖𝑗𝑘 

              +𝑠𝑗 + 𝑢𝑘 + 𝜖𝑖𝑗𝑘 

(1.2) 

The term 𝛼1 represents the discontinuity in the treatment receipt probabilities between eligible 

students and non-eligible students at the cutoff, and the term 𝛼0 represents the estimated average 

probability of receiving ETA for non-eligible students at the cutoff. The term 𝛼2 represents the 

slope coefficient between scale values above the cutoff value and the treatment, and the term 𝛼3 

represents the difference in the slope between scale values below the cutoff value and those 

above the cutoff value. Similar to the outcome model, we also add measured covariates 𝐖𝑖𝑗, the 

school random effect term 𝑠𝑗, and the random specification error 𝑢𝑘, and we used package lme4 

(Bates et al., 2015) in R (R Core Team, 2020) to estimate the parameters of model (2). 

Afterwards, we run an instrumental variables regression as laid out in Appendix B to estimate the 

LATE. Specifically, we treat the model for 𝑍𝑖𝑗𝑘 as the first-stage regression and the model for 

𝑌𝑖𝑗𝑘 as the second-stage regression and utilize two-stage least squares with random effect terms 

to estimate the LATE. We used cluster bootstrap sampling with 2000 replicates to estimate the 

standard errors1. 

 

Results 

Table 1.1 summarizes students’ ETA eligibility, as defined by ELL status, and whether 

they actually received the ETA. Overall, about 4.2% of the students (4,940 students) in our study 

sample were eligible for ETA; these are denoted as ELL students in the table. Among those who 

 
1 Our implementation of cluster bootstrap sampling does not account for the uncertainty associated with the random 

specification error. But in our empirical example, we found that the cluster bootstrap standard error (SE) for ITT at 

the cutoff was larger than that from a mixed effect model, and we’re confident that at least the cluster bootstrap SE 

for LATE at the cutoff was not underestimated. For more information on variance estimation of the LATE estimate, 

refer to Appendix B in Lee and Card (2008). 
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were eligible for ETA, about 32.5% of the ETA-eligible students (i.e., ELL) actually received 

ETA. Also, we saw that few students received ETA even though they were not eligible for ETA 

(i.e., non-ELL), likely due to test irregularities; see more details on the compliance rate by ELL 

English proficiency categories in Appendix C. 

 

Table 1.1  

Compliance 

 ETA Total 

Eligibility Non-Received Received  

Non-ELL 111,940 30 111,970 

ELL 3,340 1,610 4,940 

Total 115,270 1,640 116,910 
NOTE: Numbers are rounded to nearest tens. Details may not sum to a total due to rounding.  

SOURCE: U.S. Department of Education, National Center for Education Statistics, National Assessment of 

Educational Progress (NAEP) 2017. 

 

 

Figure 1.4 provides a visual representation of the RD design where the x-axis represents 

the rank-based scale values of English proficiency categories with the cutoff point defined at 

ELL Advanced and the y-axis represents math proficiency scores. We see that the mean math 

proficiency score of Never ELL was similar to that of Formerly ELL, and the mean math 

proficiency score increased when ELL English proficiency increased from No Proficiency to 

ELL Advanced. We can also visually see that the effect of ITT at the cutoff is likely going to be 

small. 
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Figure 1.4. Regression discontinuity design for evaluating the effects of ETA in mathematics. 
The solid black lines represent the estimated regression function, and the red dotted line represents the 

extrapolated line from the regression function. Gray points indicate students’ math scores. 

SOURCE: U.S. Department of Education, National Center for Education Statistics, National Assessment of 

Educational Progress (NAEP) 2017. 

 

Indeed, Table 1.2 shows that the ITT estimate was small and not significant. In contrast, 

the effect estimate of LATE was larger than that of ITT, and it was significantly positive. To 

summarize, there is no evidence of the effect of ETA eligibility on math proficiency scores at the 

cutoff, while there is strong evidence to suggest the effect of receiving ETA on math proficiency 

scores among complier students at the cutoff. 

 

Table 1.2  

ITT and LATE estimates at the cutoff 

Estimand Estimate Std. Error 

ITT 2.66 2.18 

LATE 12.99 3.14 
NOTE: ITT represents intent-to-treatment effects, and LATE represents local average treatment effects. 

SOURCE: U.S. Department of Education, National Center for Education Statistics, National Assessment of 

Educational Progress (NAEP) 2017. 
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Sensitivity Analyses 

Methods We assess the sensitivity of our conclusions against (i) the choice of scaling 

functions, (ii) the choice of the cutoff values, and (iii) unmeasured confounding. To probe the 

results’ sensitivity to different choices of scaling functions, we used a different set of scale 

values based on the cut scores of the proficiency categories from the ACCESS for ELLs exam in 

World-Class Instructional Design and Assessment (WIDA)2. WIDA’s English proficiency levels 

consist of Entering, Emerging, Developing, Expanding, Bridging, and Reaching for ELL 

students and former ELL students (WIDA, 2013; WIDA, 2019). From the description of 

WIDA’s proficiency levels, we considered Entering, Emerging, Developing, Bridging, and 

Reaching as No proficiency, ELL Beginning, ELL Intermediate, ELL Advanced, and Formerly 

ELL, respectively, and we used the cut scores from grade 4 reading proficiency categorical levels 

(WIDA, 2013) to determine the scale values. Specifically, based on the cut scores of the WIDA’s 

proficiency levels, we computed the mean scores (i.e., midpoints) of the first four proficiency 

levels and used the relative differences between consecutive proficiency levels as scale values. 

For non-eligible students, we assigned the same scale value to the last two categories because 

Formerly ELL and Never ELL’s reading performance was similar from Figure 1.3. Ultimately, a 

set of (-5.6, -2.2, -1, 0, 1, 1) was used as new scale values that were centered at the cutoff of 

“ELL Advanced.” Also, we varied the cutoff value by re-defining the cutoff value as the mean 

between the scale values of “ELL Advanced” and “Formerly ELL”; we call the new cutoff point 

“Between.” 

Regarding the sensitivity analysis against unmeasured confounding, we used the general 

bias formula from VanderWeele and Arah (2011), where the potential bias 𝑑 arising from 

 
2 ACCESS stands for Assessing Comprehension and Communication in English State-to-State for English Language 

Learners, and it is a large-scale English language proficiency test for K–12 students (WIDA, 2019). 
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unmeasured confounders can be represented by the product 𝛿𝛾. 𝛿 characterizes a constant 

prevalence difference of a binary hypothetical confounder between the treatment groups and 𝛾 

characterizes a constant outcome difference between the levels of the hypothetical confounder. 

Results Figure 1.5 visualizes the sensitivity analysis for ITT estimates by changing the 

choice of the cutoff value and the choice of the scaling function. Table 1.3 provides the 

corresponding numerical results. 

 

 
Figure 1.5. Sensitivity analysis against scaling. The solid black lines represent the estimated regression 

function, and the red dotted lines represent the extrapolated line from the regression function. Gray points indicate 

students’ math scores. 

SOURCE: U.S. Department of Education, National Center for Education Statistics, National Assessment of 

Educational Progress (NAEP) 2017. 

 

Table 1.3  

Sensitivity analysis: scaling 

 Scaling-Cutoff Estimate SE 

ITT Rank-Between   8.32 2.05 

 WIDA-ELL Advanced   1.26 8.31 

 WIDA-Between   2.78 8.75 

LATE Rank-Between 12.99 3.14 

 WIDA-ELL Advanced 13.37 3.13 

 WIDA-Between 13.37 3.13 
NOTE: ITT represents intent-to-treatment effects, and LATE represents local average treatment effects. 

SOURCE: U.S. Department of Education, National Center for Education Statistics, National Assessment of 

Educational Progress (NAEP) 2017. 
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From Figure 1.5 and Table 1.3, we observed that the ITT estimates at the cutoff varied 

depending on the choice of the scaling function and the cutoff value. Specifically, when we used 

rank-based scale values, the ITT at the cutoff is sensitive to the choice of the cutoff value. In 

contrast, the ITT based on WIDA-scale values is less sensitive to the choice of the cutoff value. 

On the other hand, the estimated LATEs were similar across different choices of the scaling 

function and the cutoff. In other words, our original conclusion about the effectiveness of 

receiving ETA on math proficiency scores among compliers is insensitive to different 

specifications of the scaling function and the cutoff value. 

Next, we tested the sensitivity of our results against unmeasured confounding. We 

evaluated (i) whether our conclusion about the non-significance of the ITT would change to a 

significant positive effect if an important unmeasured binary confounder 𝑈, that introduced 

negative confounding bias, were present and (ii) whether our conclusion about the significant, 

positive LATE would change to insignificance if an unmeasured binary confounder 𝑈, that 

introduced positive confounding, were present. 

We estimated a new adjusted treatment effects 𝜏† for the ITT and LATE based on the 

formula from VanderWeele and Arah (2011): 𝑑 = 𝛿𝛾 = 𝜏 − 𝜏†. Consider the causal graph in 

Figure 1.1, where 𝐔 is a set of unobserved confounders. Here, we use a single independent and 

binary confounder 𝑈 to represent the 𝐔-induced confounding bias after conditioning on the 

observed covariates 𝐖. Then, 𝛿 represents the magnitude of the causally reverse effect of 𝐴 on U 

(i.e., 𝐴 → 𝑈), and 𝛾 represents the causal effect of the confounder U on Y (𝑈 → 𝑌). Thus, the 

bias induced by this hypothetical confounder is 𝑑 = 𝛿𝛾. Consequently, the bias-adjusted effect is 

𝜏† = 𝜏 − 𝑑 = 𝜏 − 𝛿𝛾. To implement the sensitivity analysis, we first need to find reasonable 

values for 𝛿 and 𝛾. We determined 𝛿 by looking at the absolute mean differences in the 
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measured covariates 𝐖 between the neighboring “ELL Advanced” and “Formerly ELL” groups. 

The largest difference we observed was 𝛿 = 0.07. For 𝛾, we used the absolute value of the largest 

estimated coefficient of the measured covariates in the outcome model and set 𝛾 = 17.16. 

For the ITT estimate, we used a negative bias of 𝑑 = −0.07 × 17.16 = −1.20 and computed the 

new adjusted effect 𝜏† = 2.66 + 1.20 = 3.86 with its corresponding 95% confidence interval (-

0.40, 8.13), using the estimated standard error of 2.18. Since the confidence interval contains 0, 

we reach the same conclusion as before: there is no significant ITT effect. Thus, the ITT estimate 

is insensitive to unmeasured confounding (at least with regard to the magnitude of observed 

confounding effects). For the LATE estimate, we used a positive bias and obtained a bias-

adjusted effect of 𝜏† = 12.99 − 1.20 = 11.79 and an adjusted 95% confidence interval of (5.64, 

17.94), using the estimated standard error of 3.14. Since the confidence interval does not cover 0, 

our conclusion about a positive LATE does not change and is robust to unmeasured 

confounding. 

 

Conclusions 

In this paper, we proposed to use an RD design with an ordinal discrete running variable. 

We used a scale function 𝑆 to convert the ordinal levels of the running variable to numeric scale 

values and modified Lee and Card (2008)’s framework to accommodate the ordinal running 

variable. We assessed the sensitivity of our results with respect to the choice of the scaling 

function and the cutoff value. We also assessed the sensitivity of our results to unmeasured 

confounding arising from an incorrect scaling function or an imperfect functional form. We 

demonstrated the proposed approach by investigating the effects of ETA on students’ math 

performance based on the 2017 NAEP data. Overall, we found no evidence concerning the effect 
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of being eligible for ETA at the cutoff (i.e., ITT at the cutoff), but evidence for the effect of 

receiving ETA among compliers at the cutoff (i.e., LATE at the cutoff). Our ITT estimate is 

sensitive to the choice of the cutoff value. In contrast, the LATE estimate is robust to the choice 

of the scaling function, the choice of the cutoff value, and unmeasured confounding. 

Based on our findings, we provide some suggestions for future research concerning 

evaluation of testing accommodations based on an RD framework. First, we didn’t incorporate 

multiple plausible values, sampling weight, and jackknife replicate weights in the NAEP data, 

and future research would thoroughly consider the NAEP sampling design to generalize the 

results from an RD Design to the target population. Second, if the NAEP assessment provides 

continuous ELL English proficiency that was used to determine ETA eligibility, it will enable 

researchers to estimate the ITT and LATE at the cutoff with less concerns about biases arising 

from the choice of the scaling function or the functional form of the outcome model. Third, if an 

ordinal running variable is present and relevant underlying variable, such as pre-test English 

scores in our setting, are included in the observed data, researchers could use optimal scaling 

techniques to choose appropriate scale values. Lastly, we did not consider whether students made 

use of ETA in our study. That is, even if the student received ETA, students may have not 

needed the extra allotted time. Based on prior works on accommodations, about 40% of the 

students who received ETA made use of the extra time in the NAEP assessment (Kim & Circi, 

2018, 2019). Students’ actual use of ETA can be determined by process data, which are data 

provided by examinees’ responses to the testing devices while taking the test (Bergner & von 

Davier, 2018). If such data is available, we may have to use sequential compliance models and it 

would be interesting to incorporate them into RD designs in order to assess the effect of making 

use of ETA.  
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STUDY 2 : RANDOM FORESTS APPROACH FOR CAUSAL INFERENCE WITH 

CLUSTERED OBSERVATIONAL DATA 

 

Abstract 

There is a growing interest in using machine learning (ML) methods for causal inference due to 

their (nearly) automatic and flexible ability to model key quantities such as the propensity score 

or the outcome model. Unfortunately, most ML methods for causal inference have been studied 

under single-level settings where all individuals are independent of each other and there is little 

work in using these methods with clustered or nested data, a common setting in education 

studies. This paper investigates using one particular ML method based on random forests known 

as Causal Forests to estimate treatment effects in multilevel observational data. We conduct 

simulation studies under different types of multilevel data, including two-level, three-level, and 

cross-classified data. Our simulation study shows that when the ML method is supplemented 

with estimated propensity scores from multilevel models that account for clustered/hierarchical 

structure, the modified ML method outperforms pre-existing methods in a wide variety of 

settings. We conclude by estimating the effect of private math lessons in the Trends in 

International Mathematics and Science Study data, a large-scale educational assessment where 

students are nested within schools. 

 

Suk, Y., Kang, H., & Kim, J.-S. (2020). Random forests approach for causal inference with  

clustered observational data, Multivariate Behavioral Research.  

doi:10.1080/00273171.2020.1808437. 

 

 

 



 

 

34 

Introduction 

In the social sciences, when studying treatment effects with observational data, study 

units are naturally clustered together. For example, in the Trends in International Mathematics 

and Science Study (TIMSS) and the Programme for International Student Assessment (PISA), 

students, the study unit, are clustered/nested at the school level, and schools are clustered/nested 

at the country level; this type of data is known as three-level data or, more broadly, 

multilevel/hierarchical data. In cross-classified data, students belong to two clusters 

simultaneously, say student’s cluster membership is defined by school and neighborhood 

(Raudenbush & Bryk, 2002). The goal of this paper is to estimate the average treatment effect 

(ATE) in multilevel observational data where the treatment is assigned at the unit level (e.g., 

students instead of schools or neighborhoods). 

Traditionally, the most popular way to estimate the ATE in clustered observational data is 

by multilevel propensity score methods (Hong & Raudenbush, 2006; Kim & Seltzer, 2007; 

Steiner, Kim, & Thoemmes, 2012; Thoemmes & West, 2011). Briefly, a propensity score is a 

study unit’s conditional probability of receiving treatment given observed pre-treatment 

covariates (Rosenbaum & Rubin, 1983) and each study unit has a propensity score ranging from 

0 to 1. Propensity score methods utilize propensity scores to balance covariates between treated 

and control groups by using matching, stratification, or weighting. Multilevel propensity score 

methods use propensity scores, but also account for the underlying clustered/hierarchical 

structure in multilevel data, typically by fitting a multilevel propensity score model; see Section 

10 of Leite (2016) for details. If selection is strongly ignorable, i.e., the treatment assignment is 

as-if random conditional on observed pre-treatment covariates, and the propensity score model is 

correctly specified, these aforementioned methods can consistently estimate the ATE. Also, 
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propensity score methods can be combined with models for the outcome to form doubly robust 

estimators; these estimators are consistent for the ATE as long as either the propensity score 

model or the outcome model is correctly specified. 

Recently, using machine learning (ML) algorithms has become a popular way to estimate 

the ATE (Athey & Imbens, 2016; Chernozhukov et al., 2018; Hill, 2011; Keller, Kim, & Steiner, 

2015; McCaffrey, Ridgeway, & Morral, 2004; van der Laan, Polley, & Hubbard, 2007; van der 

Laan & Rose, 2011; Westreich, Lessler, & Funk, 2010). An attractive feature of ML-based 

methods is that they flexibly and, in some cases, automatically estimate the propensity score 

model or the outcome regression model. However, many of these works focus on what we call 

single-level data settings where all study units are (i) independent of each other and (ii) come 

from the same population; in short, the study units are assumed to be independent and identically 

distributed (i.i.d.). If the i.i.d. assumption is satisfied, many ML-based methods are consistent for 

the ATE. In contrast, if study units are clustered or nested, such as the students in the TIMSS 

data, the i.i.d. assumption no longer holds and there is no guarantee that these ML-based 

methods produce a consistent estimate for the ATE. Indeed, as highlighted by Carvalho, Feller, 

Murray, Woody, and Yeager (2019), existing ML methods should be modified, say by using 

different tuning parameters or re-designing sampling splits, to respect the underlying clustering 

or hierarchical structure and to produce a more precise and consistent estimate of the treatment 

effect in multilevel data. However, it remains an open question as to how to exactly make such 

modifications for different kinds of ML methods. 

The goal of this paper is to study how to modify ML-based methods in order to estimate 

the ATE in multilevel observational data. We focus on one ML method based on random forests 

called Causal Forests (Athey, Tibshirani, & Wager, 2019; Wager & Athey, 2018) which is a 
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popular ML-based method in causal inference. We consider three types of multilevel data: two-

level, three-level, and cross-classified data. These settings, in general, violate the underlying 

assumptions that validate Causal Forests as a consistent and asymptotically Normal estimator of 

the ATE because of dependencies between subjects. 

We study three simple ways to modify Causal Forests in order to account for the 

underlying hierarchical structure. The first modification injects Causal Forests with propensity 

scores from a multilevel logistic regression. The second modification uses cluster labels that 

denote each level of the hierarchy and changes how sample splitting is done inside Causal 

Forests. The third modification combines the two modifications. We compare how well these 

modified ML methods perform compared to ML methods without any modifications, traditional 

multilevel propensity score methods, and doubly robust methods where the latter two use 

parametric multilevel models by measuring the absolute relative bias, standard deviation, and 

mean-squared error. Lastly, we demonstrate our findings by studying the effect of private math 

lessons on students’ math achievement scores from the 2015 Korea TIMSS data. 

Overall, we found that in a wide range of scenarios, the modified Causal Forests using an 

estimated propensity score from a multilevel logistic regression was competitive to doubly robust 

estimators with correctly specified propensity score and outcome regression models. Also, the 

modified Causal Forests had smaller mean-squared error than traditional multilevel propensity 

score methods or the original Causal Forests without any modifications. This phenomenon 

generally held true even when the multilevel propensity score model in the modified Causal 

Forest was moderately mis-specified. More broadly, we believe that our modifications of Causal 

Forests based on the multilevel propensity score can serve as a template to modify other ML-
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based methods in causal inference when they are used in observational studies with 

hierarchical/clustered structures. 

 

Causal Inference with Clustered Observational Data 

We use the Neyman-Rubin potential outcomes notation (Neyman, 1923; Rubin, 1974) 

and its extension to multilevel/clustered settings by Hong and Raudenbush (2006) to formalize 

causal effects. Suppose that there are 𝑁 total individuals, indexed by 𝑖𝑗 where 𝑖 indexes study 

units within a cluster and 𝑗 indexes clusters. Let 𝑍𝑖𝑗 denote the treatment assignment of 

individual 𝑖 in cluster 𝑗, with 𝑍𝑖𝑗 = 1 representing a treated individual and 𝑍𝑖𝑗 = 0 representing 

an untreated individual; as noted earlier, this paper focuses on studies where the treatment is 

assigned at the individual level, not at the cluster level. Let 𝑌𝑖𝑗(1) be the potential outcome if 

individual 𝑖 in cluster 𝑗 were to be treated (𝑍𝑖𝑗 = 1) and let 𝑌𝑖𝑗(0) be the potential outcome if 

individual 𝑖 within cluster 𝑗 were to be untreated (𝑍𝑖𝑗 = 0). The observed outcome is 𝑌𝑖𝑗 =

𝑍𝑖𝑗𝑌𝑖𝑗(1) + (1 − 𝑍𝑖𝑗)𝑌𝑖𝑗(0). We remark that the notation assumes Stable Unit Treatment Value 

Assumption (SUTVA; Rubin, 1986); for more information on SUTVA in multilevel settings, see 

Hong and Raudenbush (2006, 2013). Finally, let 𝐗𝑖𝑗 and 𝐖𝑗 denote individual-level and cluster-

level pre-treatment covariates, respectively. Individual-level covariates 𝐗𝑖𝑗 are covariates whose 

values vary across individuals, say gender, age, and socioeconomic status, and cluster-level 

covariates 𝐖𝑗 are covariates whose values are the same among individuals in the same cluster, 

say school type and school climate. Typically, cluster-level covariates define the underlying 

clustering or hierarchical structure in multilevel data. 

The target estimand of interest is the ATE and is defined as the average linear contrast 

between two potential outcomes, i.e., 𝜏 = 𝐸[𝑌𝑖𝑗(1) − 𝑌𝑖𝑗(0)]. In a completely randomized 
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experiment, the ATE can be estimated by taking the difference between the outcomes of treated 

and untreated groups. However, in observational studies, this approach may lead to bias because 

the treated and untreated groups are no longer similar with respect to their observed and 

unobserved covariates. 

The typical set of working assumptions for estimating the ATE in observational studies is 

as follows: 

 

Assumption 1 (Unconfoundness): 𝑌𝑖𝑗(1), 𝑌𝑖𝑗(0) ⊥ 𝑍𝑖𝑗|𝐗𝑖𝑗 ,𝐖𝑗 

Assumption 2 (Positivity): 0 < 𝑒(𝐗𝑖𝑗 ,𝐖𝑗) = 𝑃𝑟(𝑍𝑖𝑗 = 1|𝐗𝑖𝑗 ,𝐖𝑗) < 1 

 

Here, ⊥ represents independence between two random variables. In a nutshell, 

Assumptions 1 and 2 state that conditional on the observed individual-level and cluster-level 

covariates 𝐗𝑖𝑗  and 𝐖𝑗, the treatment is as-if randomly assigned to each individual with non-zero 

probability. Assumptions 1 and 2 combined are often referred to as strong ignorability 

(Rosenbaum & Rubin, 1983). An important idea arising from Assumptions 1 and 2 is that the 

propensity score 𝑒(𝐗𝑖𝑗 ,𝐖𝑗) is the coarsest balancing score (Rosenbaum & Rubin, 1983). 

Specifically, conditional on the propensity score, the distribution of pre-treatment covariates is 

independent of treatment assignment, i.e., 𝑌𝑖𝑗(1), 𝑌𝑖𝑗(0) ⊥ 𝑍𝑖𝑗|𝑒(𝐗𝑖𝑗 ,𝐖𝑗), and the distribution of 

covariates is identical or “balanced” between the treated and untreated groups. This latter idea 

serves as the basis for propensity score methods where treated and untreated units are matched, 

weighed, or stratified based on their propensity scores. The next section reviews some of these 

propensity score methods for multilevel data. 
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Methods of Estimating the Average Treatment Effect in Multilevel Data 

Multilevel Propensity Score Methods via Weighting 

Among various propensity score methods in multilevel data, weighting methods are one 

of the most frequently used in practice. Briefly, weighting methods use propensity scores as 

sampling weights to weigh the outcomes between treated and untreated groups in order to 

unbiasedly estimate the ATE (Lunceford & Davidian, 2004; Schafer & Kang, 2008; Stuart, 

2010). The most well-known weighting method is the inverse-propensity weighting (IPW) 

estimator, which is the weighted difference in the outcomes 𝑌𝑖𝑗 of treated and untreated groups 

where the weights are the inverse of the estimated propensity scores: 

 

 
𝜔𝑧,𝑖𝑗
𝐼𝑃𝑊 =

𝑧

𝑒(𝐗𝑖𝑗 ,𝐖𝑗)
+

1 − 𝑧

1 − 𝑒(𝐗𝑖𝑗 ,𝐖𝑗)
 

𝜏̂𝐼𝑃𝑊 =
1

𝑁
∑𝑌𝑖𝑗𝑍𝑖𝑗
𝑖𝑗

𝜔1,𝑖𝑗
𝐼𝑃𝑊 −

1

𝑁
∑𝑌𝑖𝑗(1 − 𝑍𝑖𝑗)

𝑖𝑗

𝜔0,𝑖𝑗
𝐼𝑃𝑊 

(2.1) 

 

Hong and Hong (2009) proposed another weighting estimator called the marginal mean 

weighting through stratification (MMW-S). MMW-S estimator, like the IPW estimator, takes the 

weighted difference in outcome between treated and untreated groups. But MMW-S stratifies the 

propensity score into percentiles and uses sample frequencies within each stratum as weights. A 

bit more formally, consider the observed frequencies 𝑂𝑧𝑠  for each treatment status 𝑧 ∈ {0,1} in 

stratum 𝑠 ∈ {1,2, . . . , 𝑆} defined by percentiles of 𝑒(𝐗𝑖𝑗 ,𝐖𝑗) on the logit scale (or probability 

scale). Define the expected frequencies 𝐸𝑧𝑠  for each treatment status 𝑧 in stratum 𝑠 to be 𝐸𝑧𝑠 =

𝑂(𝑧∙) × 𝑂(∙𝑆)/𝑂(∙∙); the dots in the subscript (·) denote sums over 𝑧 or 𝑠. Then, MMW-S weights 

are computed by dividing the expected frequencies by the observed frequencies, 𝐸𝑧𝑠/𝑂𝑧𝑠, and the 

MMW-S estimator of the ATE is: 
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𝜔𝑧,𝑖𝑗
𝑀𝑀𝑊−𝑆 =

{
 
 

 
 
𝐸𝑧1
𝑂𝑧1

    if 𝑒(𝐗𝑖𝑗 ,𝐖𝑗) in stratum 1

⋮                                                   
𝐸𝑧𝑆
𝑂𝑧𝑆

   if 𝑒(𝐗𝑖𝑗 ,𝐖𝑗) in stratum 𝑆

 

𝜏̂𝑀𝑀𝑊−𝑆 =
1

𝑁
∑𝑌𝑖𝑗𝑍𝑖𝑗
𝑖𝑗

𝜔1,𝑖𝑗
MMW−S −

1

𝑁
∑𝑌𝑖𝑗(1 − 𝑍𝑖𝑗)

𝑖𝑗

𝜔0,𝑖𝑗
MMW−S 

(2.2) 

 

The use of MMW-S requires researchers to choose the number of strata S. Hong (2010) 

suggested choosing S to be the minimal number of strata that achieves within-stratum covariate 

balance in at least 95% of the observed covariates. We follow this advice in our simulation and 

real data studies and use covariates’ standardized mean and variance within strata as our measure 

of within-stratum balance. 

A key consideration in using weighting estimators in multilevel data is a model for the 

propensity score 𝑒(𝐗𝑖𝑗 ,𝐖𝑗). Broadly speaking, in two-level data, there are two main strategies 

for modeling the propensity score and estimating the ATE: a within-cluster strategy and an 

across-cluster strategy (Leite, 2016; Steiner et al., 2012). A within-cluster strategy estimates a 

propensity score model for each cluster with only individual-level covariates. Each propensity 

score model is trained using only study units within the cluster and is usually a logistic 

regression commonly found in single-level i.i.d. settings. Then, using one of the weighting 

estimators above, cluster-level treatment effects are computed and then aggregated to estimate 

the ATE. In contrast, an across-cluster strategy estimates a single joint propensity score model 

across all clusters. The joint propensity score model is typically a multilevel logistic regression 

with either random-effects or fixed-effects; random-effects models usually have both individual-

level and cluster-level covariates, whereas fixed-effects models have individual-level covariates 

and cluster-level dummy variables (Leite, 2016; Steiner et al., 2012). 
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Generally speaking, weighting estimators based on a propensity score model from a 

within-cluster strategy is more robust to biases from unmeasured cluster-level covariates than 

those from an across-cluster strategy; one can make a joint propensity score more robust to 

unobserved cluster-level covariates by adding interaction terms between cluster labels and 

covariates. However, when there are strong selection processes at work or cluster sizes are small, 

overlap is hard to achieve with propensity score estimates based on a within-cluster strategy, and 

in such settings, an across-cluster strategy is preferred (Kim & Seltzer, 2007; Steiner et al., 2012; 

Thoemmes & West, 2011). Given that the size of clusters in our real data is not large and a 

within-cluster strategy is often not feasible in these settings (Arpino & Mealli, 2011; Steiner et 

al., 2012), this paper uses an across-cluster strategy where a single joint propensity score model 

is estimated using a multilevel logistic regression model with random effects. 

Finally, we remark that there are other types of multilevel propensity score methods, such 

as two-stage matching (Rickles & Seltzer, 2014), preferential matching (Arpino & Cannas, 

2016), and within-class matching (Kim & Steiner, 2015), and most multilevel propensity score 

methods are tailored for two-level data. 

 

Doubly Robust Methods 

Doubly robust (DR) methods are estimators that provide consistent estimates of the ATE 

as long as the propensity score or the outcome model is correctly specified, but not necessarily 

both (Schafer & Kang, 2008; Scharfstein, Rotnitzky, & Robins, 1999). Here, we present a DR 

estimator based on fitting weighted outcome regression models for treated and untreated units, 

i.e., 𝐸[𝑌𝑖𝑗|𝐗𝑖𝑗 ,𝐖𝑗 , 𝑍𝑖𝑗 = 𝑧] = 𝑚𝑧(𝐗𝑖𝑗 ,𝐖𝑗 , 𝜷𝑧) where 𝜷𝑧 is the parameter of the outcome 

regression function 𝑚𝑧  for treatment group 𝑧 ∈ {0,1}, where the weights in the regression are 
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from the IPW estimator or MMW-S estimator (Leite, 2016; Schafer & Kang, 2008). Specifically, 

the DR estimator based on weights from the IPW estimator is: 

 

 

𝜷̂𝑧
𝐼𝑃𝑊 = 𝑎𝑟𝑔𝑚𝑖𝑛𝜷𝑧 ∑ 𝜔𝑧,𝑖𝑗

𝐼𝑃𝑊[𝑌𝑖𝑗 −𝑚𝑧(𝐗𝑖𝑗 ,𝐖𝑗 , 𝜷𝑧)]
2

𝑖𝑗,𝑍𝑖𝑗=𝑧

 

𝜏̂𝐷𝑅 𝐼𝑃𝑊 =
1

𝑁
∑𝑚1(𝐗𝑖𝑗 ,𝐖𝑗 , 𝜷̂1

𝐼𝑃𝑊)

𝑖𝑗

−
1

𝑁
∑𝑚0(𝐗𝑖𝑗 ,𝐖𝑗 , 𝜷̂0

𝐼𝑃𝑊)

𝑖𝑗

 

(2.3) 

 

and the DR estimator based on weights from the MMW-S estimator is: 

 

 

𝜷̂𝑧
𝑀𝑀𝑊−𝑆 = 𝑎𝑟𝑔𝑚𝑖𝑛𝜷𝑧 ∑ 𝜔𝑧,𝑖𝑗

𝑀𝑀𝑊−𝑆[𝑌𝑖𝑗 −𝑚𝑧(𝐗𝑖𝑗 ,𝐖𝑗 , 𝜷𝑧)]
2

𝑖𝑗,𝑍𝑖𝑗=𝑧

 

𝜏̂𝐷𝑅 𝑀𝑀𝑊−𝑆 =
1

𝑁
∑𝑚1(𝐗𝑖𝑗 ,𝐖𝑗 , 𝜷̂1

𝑀𝑀𝑊−𝑆)

𝑖𝑗

−
1

𝑁
∑𝑚0(𝐗𝑖𝑗 ,𝐖𝑗 , 𝜷̂0

𝑀𝑀𝑊−𝑆)

𝑖𝑗

 

(2.4) 

 

In multilevel settings, typical models for 𝑚𝑧  are random-effects or fixed-effects linear regression 

models. In this paper, we will use random-effects linear regression models for 𝑚𝑧. 

 

Causal Forests and Modifications for Multilevel Data 

Recently, there is a growing trend in using flexible, non-parametric ML algorithms to 

estimate 𝑒 or 𝑚𝑧  without having to specify the functional form of these models. For example, 

targeted maximum likelihood estimators of the ATE (van der Laan & Rose, 2011) often utilize 

an ensemble learner called SuperLearner (van der Laan et al., 2007), which combines different 

ML algorithms such as the Lasso, K-nearest matching, generalized additive models (GAMs), 

generalized linear models (GLMs), random forests, and multivariate adaptive regression splines 

(MARS), to flexibly estimate the propensity score and the outcome model. Causal Forests is 

another popular ML method for estimating the ATE as well as the conditional average treatment 

effect (CATE); we remark that averaging across unbiased estimates of the CATE leads to an 
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unbiased estimator for the ATE. In this paper, we focus on Causal Forests and see how it 

performs in multilevel observational data. 

We briefly sketch out the details of the Causal Forest algorithm; see Wager and Athey 

(2018), Athey et al. (2019), and Athey and Wager (2019) for details. Let 𝑚(𝐱,𝐰) =

𝐸[𝑌𝑖𝑗|𝐗𝑖𝑗 = 𝐱,𝐖𝑗 = 𝐰] be the conditional mean of the outcome given a specific value of 

covariates 𝐱,𝐰. Let 𝑚̂−𝑖𝑗(𝐱,𝐰) be an estimate of this conditional mean at x and w where the 

estimate does not use study unit 𝑖𝑗’s data. Similarly, let 𝑒̂−𝑖𝑗(𝐱,𝐰) be an estimate of the 

propensity score where the estimate does not use study unit 𝑖𝑗’s data; these type of estimates are 

also known as out-of-bag leave-one-out estimates in machine learning. In the Causal Forests 

algorithm, the default estimates of 𝑚̂−𝑖𝑗(𝐱, 𝐰) and 𝑒̂−𝑖𝑗(𝐱,𝐰) are computed by an honest random 

forest algorithm (see Procedure 1 in Wager and Athey (2018) for one example), although a 

consistent estimator with certain statistical properties will suffice; see Section 6.1.1 of Athey et 

al. (2019) for the exact conditions. For example, if the propensity score is known as in a 

completely randomized experiment, we can plug in the probability of treatment from the 

experimental design as 𝑒̂−𝑖𝑗(𝐱,𝐰) and this satisfies the aforementioned statistical properties. A 

Causal Forest estimator of the CATE at covariates 𝐱,𝐰, denoted as 𝜏̂(𝐱, 𝐰), is essentially a 

weighted linear regression of residualized outcome 𝑌̃𝑖𝑗 = 𝑌𝑖𝑗 − 𝑚̂
−𝑖𝑗(𝐱,𝐰) and a single 

residualized regressor 𝑍𝑖𝑗 = 𝑍𝑖𝑗 − 𝑒̂
−𝑖𝑗(𝐱,𝐰) and can be written as follows: 

 

 𝜏̂(𝐱,𝐰) =
∑ α𝑖𝑗(𝐱,𝐰) (𝑌𝑖𝑗 − 𝑚̂

−𝑖𝑗(𝐗𝑖𝑗 ,𝐖𝑗))(𝑍𝑖𝑗 − 𝑒̂
−𝑖𝑗(𝐗𝑖𝑗 ,𝐖𝑗))𝑖𝑗

∑ α𝑖𝑗(𝐱,𝐰)(𝑍𝑖𝑗 − 𝑒̂−𝑖𝑗(𝐗𝑖𝑗 ,𝐖𝑗))
2

𝑖𝑗

 (2.4) 

 

 

Here, 0 ≤ α𝑖𝑗(𝐱,𝐰) ≤ 1 weighs each data point 𝑖𝑗’s contribution to 𝜏̂(𝐱, 𝐰) based on how far 𝑖𝑗’s 

covariates, i.e., 𝐗𝑖𝑗 ,𝐖𝑗, are away from 𝐱,𝐰. Roughly speaking, a high α𝑖𝑗(𝐱,𝐰) generally 
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indicates that data point 𝑖𝑗 contributes a large portion to 𝜏̂(𝐱, 𝐰), whereas a small α𝑖𝑗(𝐱,𝐰) 

generally indicates that data point 𝑖𝑗 contributes a small portion to 𝜏̂(𝐱, 𝐰). 

Computing the weights α𝑖𝑗(𝐱,𝐰) is based on a modified recursive partitioning algorithm 

with  𝑌̃𝑖𝑗 , 𝑍𝑖𝑗 , 𝐗𝑖𝑗 ,𝐖𝑗. Specifically, suppose we obtain B bootstrap replicates and let 𝑏 = 1, . . . , 𝐵 

be one of those replicates. For each 𝑏th replicate, take a random subsample without replacement 

of size s from n total samples in the 𝑏th replicate. The algorithm randomly partitions the s 

subsampled data into two equally-sized data, say subsets 𝒥1 and 𝒥2. Using 𝒥1, the algorithm 

initializes a “parent” node 𝒫, which represents all the data in 𝒥1, and computes pseudo-outcomes 

𝜌𝑖𝑗  for data in 𝒫 

 

𝜌𝑖𝑗 = 𝐷𝒫
−1(𝑍𝑖𝑗 − 𝑍𝒫)(𝑌̃𝑖𝑗 − 𝑌̃𝒫 − (𝑍𝑖𝑗 − 𝑍𝒫)𝛽̂𝒫), 𝐷𝒫

−1 =
1

𝐼(𝑖𝑗 ∈ 𝒫)
∑(𝑍𝑖𝑗 − 𝑍𝒫)

2

𝑖𝑗∈𝒫

 

 

Here, 𝑌̃𝒫  and 𝑍𝒫 represent averages of 𝑌̃𝑖𝑗  and 𝑍𝑖𝑗, respectively, among data in the parent node 𝒫 

and 𝛽̂𝒫 represents a linear regression between 𝑌̃𝑖𝑗 and 𝑍𝑖𝑗 among data points in 𝒫. It then uses 

standard Classification and Regression Trees (CART) (Breiman, Friedman, Olshen, & Stone, 

1984) with the psuedo-outcomes 𝜌𝑖𝑗  and covariates 𝐗𝑖𝑗 ,𝐖𝑗 to find a partition of the parent node 

𝒫 into two non-overlapping children nodes 𝒞1 and 𝒞2 such that the following argument is 

maximized 

 

𝑎𝑟𝑔𝑚𝑎𝑥𝒞1,𝒞2
∑ 𝜌𝑖𝑗

2
𝑖𝑗∈𝒞1

∑ 𝐼(𝑖𝑗 ∈ 𝒞1)𝑖𝑗∈𝒫
+

∑ 𝜌𝑖𝑗
2

𝑖𝑗∈𝒞2

∑ 𝐼(𝑖𝑗 ∈ 𝒞2)𝑖𝑗∈𝒫
 

 

Roughly speaking, the argmax above finds partitions 𝒞1 and 𝒞2 of 𝒫 such that the variance of the 

pseudo-outcomes within each partition is maximized. For example, if one of the covariates is sex 
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(male or female), 𝒞1 may be study units who are female and 𝒞2 may be study units who are male. 

It may choose these partitions based on sex if it maximizes the equation above. Once it finds a 

partition 𝒞1, 𝒞2, it relabels 𝒞1 as the parent 𝒫 and repeats the procedure; it also does the same for 

the other child node 𝒞2. The procedure stops after it reaches a stopping criterion and the final 

output is a partition of the covariate space that is represented as a binary tree. It then uses the 

other subset 𝒥2 to count the proportion of data in 𝒥2 that fall inside each of the terminal leaf 

nodes in the binary tree. This process is repeated across 𝑏 = 1, . . . , 𝐵 bootstrap replicates, 

constructing B trees. Given a set of covariates 𝐱,𝐰, the algorithm evaluates α𝑖𝑗,𝑏(𝐱,𝐰), which is 

equal to one of aforementioned proportions if 𝐱,𝐰 belongs to the same leaf node as data point 𝑖𝑗 

and 0 otherwise, for each bootstrap replicate. Finally, it computes the weights α𝑖𝑗(𝐱,𝐰) as 

α𝑖𝑗(𝐱,𝐰) = ∑ α𝑖𝑗,𝑏(𝐱,𝐰)/𝐵
𝐵
𝑏=1 . We remark that we can use the above recursive partitioning 

algorithm with bootstrap replicates to estimate the leave-one-out estimates 𝑒̂−𝑖𝑗(𝒙,𝒘) and 

𝑚̂−𝑖𝑗(𝒙,𝒘). For the interested reader, the entire procedure is implemented in the grf package in 

R (R Core Team, 2020); see Tibshirani et al. (2019) for a detailed vignette. 

Compared to parametric approaches in “Doubly Robust Methods”, Causal Forests is a 

nonparametric estimator that, under some assumptions, achieves consistency and asymptotic 

convergence to a pivotal Gaussian distribution. The latter is crucial as it allows for construction 

of p-values and confidence intervals. Unfortunately, these statistical properties only hold if the 

data is generated in an i.i.d. fashion. However, Causal Forests can be fine-tuned by changing 

various parameters such as cluster labels, the minimum node size of each tree, and a penalty for 

imbalanced splits, and we will modify these parameters to improve its performance in clustered 

data. Specifically, we study three modifications to Causal Forests: 
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1. The first modification forces Causal Forests to use multilevel propensity scores 

discussed in “Multilevel Propensity Score Methods via Weighting” by the tuning 

parameter W.hat in the grf package. In other words, the estimator 𝑒̂−𝑖𝑗(𝒙,𝒘) in (5) is based 

on a multilevel logistic regression model with random effect terms instead of the default 

regression forests estimator based on the aforementioned recursive partitioning algorithm. 

This modification allows Causal Forests to recognize clustering/hierarchical structure 

through the multilevel propensity score and adjusts its estimate of 𝜏̂(𝒙, 𝒘) accordingly. 

The modification of this type is denoted as (Est.PS) in subsequent sections. 

2. The second modification follows a suggestion from Athey and Wager (2019) where we 

add cluster label information to define clusters and let Causal Forests “figure out” the rest 

of the clustering structure from the raw cluster labels; in software, this is achieved by using 

the parameter clusters in the grf package. The modification forces Causal Forests to draw 

random subsample of clusters (instead of individuals) and then run the algorithm above 

within the subsampled clusters. With this modification, the out-of-bag samples are defined 

as samples that are not in the random subsample of clusters drawn to train the tree. The 

modification of this type is denoted as (ID) in subsequent sections. 

3. The third modification combines the above two modifications and is denoted as 

(Est.PS+ID) in subsequent sections. 

The next sections evaluate these modifications to Causal Forests through an extensive simulation 

study and a real data analysis. 
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Simulation Study 

We conducted a large-scale simulation study to assess the performance of methods in 

“Methods of Estimating the Average Treatment Effect in Multilevel Data.” Our simulation study 

can be broadly categorized into two designs and is summarized in Table 2.1. Design 1 assumes a 

constant treatment effect and generates data from three types of multilevel structures: two-level, 

three-level, and cross-classified. Design 2 is limited to two-level structures, but has varying 

treatment effects across clusters and mis-specifies the outcome and selection models to test the 

robustness of methods to model mis-specification. For both designs, we compare the 

performance between the default Causal Forests without any modifications, the modified Causal 

Forests discussed above, and traditional multilevel propensity score and DR methods discussed 

in “Multilevel Propensity Score Methods via Weighting” and “Doubly Robust Methods.”  

In particular, under Design 1, the IPW estimator, MMW-S estimator, and two DR 

estimators use correctly specified propensity score and outcome models and represent an ideal 

scenario whereby a careful investigator was nearly or completely successful in modeling. Based 

on asymptotic theory, the DR estimators should perform best under Design 1. However, under 

Design 2, these four estimators use mis-specified propensity score and outcome models with 

varying degrees of the model mis-specification and represent a more realistic scenario whereby a 

careful investigator, despite his/her best efforts, was partially successful in modeling. Under 

Design 2, nonparametric methods like Causal Forests have the potential to show more promise in 

achieving better performance than traditional methods since ML methods flexibly and (nearly) 

automatically capture local structure and model a wider array of functional forms, including 

those that are used in traditional DR and non-DR methods. 
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Table 2.1  

A summary of simulation designs 1 and 2 

 Design 1 Design 2 

Clustering structure two-level  

three-level  

cross-classified 

two-level 

Treatment effects constant cluster-specific 

Model complexity main effects main effects and interactions 

Model specification correct incorrect 
 

For all simulation designs, we repeated the simulation 1000 times. We evaluated the 

performance of each estimator by measuring the absolute relative bias (%), standard deviation 

(SD), and mean squared error (MSE) defined as follows. 

 

Bias(%) = 100 × |
1

1000
∑

𝜏̂𝑚 − τ

τ

1000

𝑚=1

| 

SD = √
1

1000 − 1
∑(𝜏̂𝑚 − τ̅̂)

2
1000

𝑚=1

 

𝑀𝑆𝐸 =
1

1000
∑(𝜏̂𝑚 − τ)

2

1000

𝑚=1

 

 

 

Here, 𝜏̂𝑚, 𝑚=1,…,1000 is the 𝑚-th estimate of the ATE from 1000 simulations. Computer code 

for the simulation study is available in the supplemental materials and can also be found at the 

first author’s github repository3. 

 

 
3 https://github.com/youmisuk/multilevelCF 
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Design 1 with Two-level Data 

The data generating model for two-level clustered data is stated below. The specific 

parameter values in the model were based on our empirical data from TIMSS. 

1.  For each cluster 𝑗 = 1, . . . , 𝐽, generate the total number of individuals in each cluster 𝑛𝑗 

by drawing a number from a normal distribution with mean 𝐼 and standard deviation 𝑠𝑑 

and rounding it to the nearest integer. 

2.   For each individual 𝑖 = 1,… , 𝑛𝑗 in cluster 𝑗, generate cluster-level and individual-level 

covariates 𝐖𝑗 = (𝑊1𝑗 ,𝑊2𝑗) and 𝐗𝑖𝑗 = (𝑋1𝑖𝑗 , 𝑋2𝑖𝑗) as follows. 

(
𝑊1𝑗

𝑊2𝑗
)~𝑁 [(

0
0
) , (

2 . 2
. 2 2

)] 

(
𝑋1𝑖𝑗
𝑋2𝑖𝑗

)~𝑁 [(
0.1𝑊1𝑗 + 0.05𝑊2𝑗 + 𝜅1𝑗
0.08𝑊1𝑗 + 0.1𝑊2𝑗 + 𝜅2𝑗

) , (
10 2
2 15

)] 

(
𝜅1𝑗
𝜅2𝑗
)~𝑁 [(

0
0
) , (

1 . 1
. 1 1

)] 

Individual-level covariates are functions of cluster-level covariates 𝑊1𝑗 ,𝑊2𝑗 and random 

errors 𝜅1𝑗, 𝜅2𝑗. This type of model for the covariates reflects studies where cluster-level 

school characteristics impact students’ malleable characteristics. For example, it is 

plausible that students’ classroom behavior, motivation, grit, and/or goal orientations (i.e., 

individual-level covariates 𝐗𝑖𝑗) are affected by location of the school, school funding, 

schools’ vision or climate/culture (i.e., cluster-level covariates 𝐖𝑗). We remark that 

depending on the study at hand, 𝐗𝑖𝑗  and 𝐖𝑗 can have different relationships, such as 𝐗𝑖𝑗  

and 𝐖𝑗 being independent of each other or 𝐖𝑗 being affected by 𝐗𝑖𝑗. 

3.  Generate individual treatment status 𝑍𝑖𝑗  from the following random-effects logistic 

propensity score model. 
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𝑙𝑜𝑔𝑖𝑡(𝑒𝑖𝑗) = 0 + 0.1𝑋1𝑖𝑗 + 0.03𝑋2𝑖𝑗 + 0.16𝑊1𝑗 + 0.08𝑊2𝑗 + 𝑅𝑗 ,    𝑅𝑗~𝑁(0,1) 

𝑍𝑖𝑗 ∼ 𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖(𝑒𝑖𝑗) 

where 𝑒𝑖𝑗 is the propensity score for individual 𝑖 in cluster 𝑗, and 𝑅𝑗  is the random effect for 

cluster j with mean of 0 and variance of 1. The intra-class correlation (ICC) is around 0.23. 

4.  Generate the potential outcomes 𝑌𝑖𝑗(1), 𝑌𝑖𝑗(0) and observed outcome 𝑌𝑖𝑗 from a 

random-effects linear regression model. 

𝑌𝑖𝑗(𝑧) = 100 + τ ∙ 𝑧 + 2𝑋1𝑖𝑗 + 1𝑋2𝑖𝑗 + 2𝑊1𝑗 + 1.5𝑊2𝑗 + 𝑈𝑗 + 𝜖𝑖𝑗  

𝑌𝑖𝑗 = 𝑍𝑖𝑗𝑌𝑖𝑗(1) + (1 − 𝑍𝑖𝑗)𝑌𝑖𝑗(0) 

𝑈𝑗~𝑁(0,10), 𝜖𝑖𝑗 ∼ 𝑁(0,100) 

Here, 𝑈𝑗  is the random effect for cluster 𝑗 with mean of 0 and variance of 10, and 𝜖𝑖𝑗  is the 

random error for individual i in cluster j with mean of 0 and variance of 100. Also, the 

treatment effect is constant and set to τ = 2. The ICC is 0.1. 

 

Figure 2.1 summarizes the results. Each row category, denoted by ( 𝐽, 𝐼(𝑠𝑑)), represents 

three sub-types of two-level data defined by the number of clusters 𝐽 and the mean size of each 

cluster 𝐼 along with its standard deviation 𝑠𝑑. For example, the first row category is a two-level 

dataset with 𝐽 = 150 clusters and each cluster has, on average, 30 individuals with standard 

deviation of 2. In this condition, we observed that the two DR estimators had the smallest bias 

and MSE, and the MMW-S estimator had the largest bias and MSE. The performance of the 

MMW-S estimator was surprising given that it is the de-facto estimator for the ATE in multilevel 

data. Between Causal Forests and traditional methods, the performance of modified Causal 

Forests with multilevel propensity scores (CF+Est.PS) generally lied somewhere in between DR 

estimators and non-DR estimators in terms of bias and MSE. But we observed the modified 
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Causal Forests using multilevel propensity scores had the smallest MSE across all estimators 

when the mean size of clusters was greater than the number of clusters. Among Causal Forests 

with modifications, the modified Causal Forests using multilevel propensity scores had 

 

 

Figure 2.1. Performance of ATE estimates in two-level data under Design 1. ( 𝐽, 𝐼(𝑠𝑑)) represent the 

number of clusters and the mean size of clusters and its standard deviation, respectively. The dashed black line 

indicates the true average treatment effect value of 2. IPW = inverse-propensity weighting; MMW-S = 

marginal mean weighting through stratification; DR IPW = doubly robust estimators with IPW weights; DR 
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MMW-S = doubly robust estimators with MMW-S weights; CF = Causal Forests without modification; 

CF+Est.PS = CF with propensity scores from a multilevel logistic regression; CF+ID = CF with cluster labels. 

CF+Est.PS+ID = CF with propensity scores from a multilevel logistic regression and cluster labels.  

 

the smallest bias and variance. Also, providing explicit cluster labels (CF+ID) did not improve 

the performance of Causal Forests. For instance, when the mean cluster size was larger than the 

number of clusters, Causal Forests with only cluster labels showed the worst performance across 

all estimators. However, Causal Forests using both multilevel propensity scores and cluster 

labels performed similarly to Causal Forests using multilevel propensity scores. 

Intrigued by the poor performance of the modified Causal Forests based only on cluster 

labels, Figure 2.2 explores the properties of Causal Forests when we increase the sample size 

beyond what is typical in most education studies. For better visualization, Figure 2 trims the top 

and bottom 10% of estimates from modified Causal Forests using only cluster labels in the (J, 

I(sd)) = (10, 5000(4)) setting. But the absolute relative bias, SD, and MSE are computed using all 

1000 estimates from the simulation. Interestingly, when the number of clusters was 5000 and the 

size of each cluster was around 10, the default Causal Forests and modified Causal Forests with 

cluster labels performed best in terms of MSE among all Causal Forests methods. On the other 

hand, when the number of clusters was 10 and the size of each cluster was around 5000, Causal 

Forests with estimated propensity scores performed best in terms of bias and MSE among all 

Causal Forests methods; in fact, Causal Forests with cluster labels performed worse than the 

default Causal Forests. 

The result of Figure 2.2 agrees with some prior theoretical results concerning clustered 

data and the underlying sampling splitting procedure behind Causal Forests. For example, prior 

works in econometrics have shown that estimators for cluster-robust standard errors are generally 

consistent if the number of clusters goes to infinity and the size of the cluster is relatively small 
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in comparison (Wooldridge, 2010). Additionally, in clustered randomized trials where the 

treatment is assigned at the cluster level, many methods typically require the number of clusters  

               

Figure 2.2. Performance of ATE estimates in two-level data: asymptotic properties. ( 𝐽, 𝐼(𝑠𝑑)) 
represent the number of clusters and the mean size of clusters and its standard deviation, respectively. The 

dashed black line indicates the true average treatment effect value of 2. IPW = inverse-propensity weighting; 

MMW-S = marginal mean weighting through stratification; DR IPW = doubly robust estimators with IPW 

weights; DR MMW-S = doubly robust estimators with MMW-S weights; CF = Causal Forests without 

modification; CF+Est.PS = CF with propensity scores from a multilevel logistic regression; CF+ID = CF with 

cluster labels. CF+Est.PS+ID = CF with propensity scores from a multilevel logistic regression and cluster 

labels.  

to be much larger than the size of the clusters to achieve consistent and asymptotically Normal 

estimates of the ATE; see Donner and Klar (2010), Hayes and Moulton (2009), Kang and Keele 

(2018) and references therein. Finally, as mentioned in “Causal Forests and Modifications for 

Multilevel Data”, when Causal Forests is provided with cluster labels, the underlying sample 

splitting procedure is done at the cluster level. This means that for a small number of clusters, 

there will be fewer clusters to train the tree, potentially leading to large biases. In contrast, for a 

large number of clusters, there will be many clusters to train the tree, leading to smaller biases. 
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Combining these insights with Figure 2.2, in two-level data, we believe that providing cluster 

labels to Causal Forests is only useful in a setting where the number of clusters is much larger 

than the size of clusters. 

 

Design 1 with Three-level Data 

Three-level data were generated in a similar way as two-level data, but with an additional 

set of two-dimensional continuous covariates at the highest hierarchy. Specifically, we varied the 

number of highest-level clusters 𝐾 and the number of intermediate-level clusters where the latter 

was determined by drawing a number from a normal distribution with mean 𝐽 and standard 

deviation 𝑠𝑑 and rounding it to the nearest integer. Also, the propensity score and outcome 

models for three-level data were: 

 

𝑙𝑜𝑔𝑖𝑡(𝑒𝑖𝑗𝑘) = −0.2 + 0.1𝑋1𝑖𝑗𝑘 + 0.03𝑋2𝑖𝑗𝑘 + 0.1𝑊1𝑗𝑘 + 0.08𝑊2𝑗𝑘 + 0.1𝑄1𝑘 + 0.05𝑄2𝑘
+ 𝑅𝑗𝑘

𝑊 + 𝑅𝑘
𝑄 , 𝑅𝑗𝑘

𝑊 ∼ 𝑁(0, 1), 𝑅𝑘
𝑄 ∼ 𝑁(0, 1) 

𝑌𝑖𝑗𝑘(𝑧) = 100 + 2 ∙ 𝑧 + 2𝑋1𝑖𝑗𝑘 + 1𝑋2𝑖𝑗𝑘 + 2𝑊1𝑗𝑘 + 1.5𝑊2𝑗𝑘 + 1𝑄1𝑘 + 0.5𝑄2𝑘 +𝑈𝑗𝑘
𝑊

+ 𝑈𝑘
𝑄 + 𝜖𝑖𝑗𝑘 , 𝑈𝑗𝑘

𝑊~𝑁(0, 10), 𝑈𝑘
𝑄~𝑁(0, 7), 𝜖𝑖𝑗𝑘 ∼ 𝑁(0, 100) 

 
 

We highlight three additional differences between the three-level simulation design and the two-

level simulation design. First, there are two more continuous covariates, 𝑄1𝑘, 𝑄2𝑘, at the highest 

level of the hierarchy. Second, there are two random effect terms in the propensity score model 

(i.e., 𝑅𝑗𝑘
𝑊 and 𝑅𝑘

𝑄
) and in the outcome model (i.e., 𝑈𝑗𝑘

𝑊 and 𝑈𝑘
𝑄

). Random effect terms follow a 

Normal distribution with mean zero and variance 𝜎2. The additional random effect term in each 

model corresponds to the additional clustering effect at the highest level of the hierarchy. The 

ICCs for 𝑅𝑗𝑘
𝑊 and 𝑅𝑘

𝑄
 in the propensity score model are around 0.19 and 0.19, respectively, and 

the ICCs for 𝑈𝑗𝑘
𝑊 and 𝑈𝑘

𝑄
 in the outcome model are 0.1 and 0.07, respectively. Third, we provide 
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either intermediate-level or highest-level cluster labels when we modify Causal Forests. 

Additional details on generating three-level data are in Appendix D. 

 

 

Figure 2.3. Performance of ATE estimates in three-level data. ( K, 𝐽(𝑠𝑑), 𝐼(𝑠𝑑)) represent the number of 

clusters and the mean size of clusters and its standard deviation, respectively. The dashed black line indicates 

the true average treatment effect value of 2. IPW = inverse-propensity weighting; MMW-S = marginal mean 

weighting through stratification; DR IPW = doubly robust estimators with IPW weights; DR MMW-S = 

doubly robust estimators with MMW-S weights; CF = Causal Forests without modification; CF+Est.PS = CF 

with propensity scores from a multilevel logistic regression; CF+ID2 = CF with level-2 cluster labels; CF+ID3 

= CF with level-3 cluster labels;  CF+Est.PS+ID2 = CF with propensity scores from a multilevel logistic 

regression and level-2 cluster labels;  CF+Est.PS+ID3 = CF with propensity scores from a multilevel logistic 

regression and level-3 cluster labels. 



 

 

56 

Figure 2.3 shows the simulation results for three-level data. Similar to the result from 

two-level data, the two DR estimators had the smallest bias. However, unlike the results from 

two-level data, modified Causal Forests with multilevel propensity scores was able to achieve the 

smallest MSE among all estimators; their MSEs were equal to or slightly lower than the MSEs of 

the DR estimators. The bias of modified Causal Forests with multilevel propensity scores was in 

between the bias of the non-DR estimators and the DR estimators; the notable exception is the 

MMW-S estimator with 15 three-level clusters where its bias was lower than modified Causal 

Forests with multilevel propensity scores. 

Also, similar to the result from two-level data, among different modifications to Causal 

Forests, we found that including the multilevel propensity scores had the largest improvement in 

terms of bias and variance compared to including only cluster labels into Causal Forests or using 

the default Causal Forests. Among Causal Forests estimators with only cluster labels, including 

the intermediate-level cluster labels (CF+ID2) provided more bias and variance reduction than 

including the highest-level cluster labels (CF+ID3). However, as seen from the two-level setting, 

using only cluster labels did not provide significant benefits compared to only using multilevel 

propensity scores, and there were no additional gains in performance from including the cluster 

labels into modified Causal Forests already using multilevel propensity scores. 

 

Design 1 with Cross-classified Data 

Our data generating model for cross-classified data follows closely to Meyers and 

Beretvas (2006) where we assume that cross-factor residuals are uncorrelated and there are three 

feeders from one factor to the other factor. The two factors’ numbers, denoted as F1 and F2, 
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varied simultaneously. The exact propensity score and outcome models in cross-classified data 

were: 

 

𝑙𝑜𝑔𝑖𝑡(𝑒𝑖(𝑗𝑘)) = −0.2 + 0.1𝑋1𝑖(𝑗𝑘) + 0.03𝑋2𝑖(𝑗𝑘) + 0.1𝑊1𝑗 + 0.08𝑊2𝑗 + 0.1𝑄1𝑘
+ 0.05𝑄2𝑘 + 𝑅𝑗

𝑊 + 𝑅𝑘
𝑄 , 𝑅𝑗

𝑊 ∼ 𝑁(0, 1), 𝑅𝑘
𝑄 ∼ 𝑁(0, 0.5) 

𝑌𝑖(𝑗𝑘)(𝑧) = 100 + 2 ∙ 𝑧 + 2𝑋1𝑖(𝑗𝑘) + 1𝑋2𝑖(𝑗𝑘) + 2𝑊1𝑗 + 1.5𝑊2𝑗 + 1𝑄1𝑘 + 0.5𝑄2𝑘 +𝑈𝑗
𝑊

+ 𝑈𝑘
𝑄 + 𝜖𝑖(𝑗𝑘), 𝑈𝑗

𝑊~𝑁(0, 10),      𝑈𝑘
𝑄~𝑁(0, 7),     𝜖𝑖(𝑗𝑘) ∼ 𝑁(0, 100) 

 
 

Compared to two-level data, in cross-classified data, there are two more continuous covariates to 

indicate an additional cluster level, 𝑄1𝑘, 𝑄2𝑘. Also, both the propensity score and the outcome 

models have two random effect terms for the two factors (i.e., 𝑅𝑗
𝑊, 𝑅𝑘

𝑄
 and 𝑈𝑗

𝑊, 𝑈𝑘
𝑄

). Random 

effect terms follow a Normal distribution with mean zero and variance 𝜎2. The ICCs for 𝑅𝑗
𝑊 and 

𝑅𝑘
𝑄

 in the propensity score model are around 0.21 and 0.10, respectively, and the ICCs for 𝑈𝑗
𝑊 

and 𝑈𝑘
𝑄

 in the outcome model are 0.1 and 0.07, respectively. Finally, for modified Causal Forests 

based on cluster labels, we use either the first, second, or combined factor labels. Additional 

details on generating cross-classified data are in Appendix E. 

Figure 2.4 provides the results under cross-classified data setting. While the two DR 

estimators had the smallest bias in most scenarios, the modified Causal Forests with multilevel 

propensity scores had the smallest bias and MSE when the cluster size (here, factor 1 clusters) 

was larger than the number of the clusters. In the opposite setting where the size of the clusters 

was smaller than the number of clusters, the bias and MSE of modified Causal Forests with 

multilevel propensity scores was somewhere in between those from DR and non-DR estimators. 

The bias of modified Causal Forests with only cluster labels was comparable to or sometimes 

worse than that of the IPW estimator or MMW-S estimator. Among modified Causal Forests 

using cluster labels, Causal Forests using combined cluster identifiers (CF+F12ID) had the 
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smallest MSE than those using only one factor identifier (CF+F1ID or CF+F2ID). Similar to 

two-level and three-level settings, having both estimated propensity scores and cluster IDs in 

Causal Forests provided no additional benefits compared to having only multilevel propensity 

scores. 

 

Figure 2.4. Performance of ATE estimates in cross-classified data. ( F1, F2, 𝐼(𝑠𝑑)) represent the 

number of clusters and the mean size of clusters and its standard deviation, respectively. The dashed black line 

indicates the true average treatment effect value of 2. IPW = inverse-propensity weighting; MMW-S = 

marginal mean weighting through stratification; DR IPW = doubly robust estimators with IPW weights; DR 

MMW-S = doubly robust estimators with MMW-S weights; CF = Causal Forests without modification; 

CF+Est.PS = CF with propensity scores from a multilevel logistic regression; CF+F1ID, CF+F2ID, CF+F12ID 

= CF with the first factor labels, the second factor labels, or the two factors’ combined labels;  

CF+Est.PS+F1ID, CF+Est.PS+F2ID, CF+Est.PS +F12ID = CF with propensity scores from a multilevel 

logistic regression and the first factor labels, the second factor labels, or the two factors’ combined labels.   



 

 

59 

Design 2 with Two-level Data 

In Design 2, we generated two-level data similar to Design 1, except we changed the 

propensity score and the outcome model as follows: 

𝑙𝑜𝑔𝑖𝑡(𝑒𝑖𝑗) = 0 + 0.1𝑋1𝑖𝑗 + 0.03𝑋2𝑖𝑗 + 0.16𝑊1𝑗 + 0.08𝑊2𝑗 + 𝛽1𝑋1𝑖𝑗𝑊2𝑗 + 𝑅𝑗 ,    𝑅𝑗~𝑁(0,1) 

𝑌𝑖𝑗(𝑧) = 100 + 𝑧 (τ + 0.5𝑊1𝑗) + 2𝑋1𝑖𝑗 + 1𝑋2𝑖𝑗 + 2𝑊1𝑗 + 1.5𝑊2𝑗 + 𝛽2𝑋1𝑖𝑗𝑊2𝑗 + 𝑈𝑗 + 𝜖𝑖𝑗 

𝑈𝑗~𝑁(0,10), 𝜖𝑖𝑗 ∼ 𝑁(0,100), 𝜷 = (𝛽1, 𝛽2)  ∈ {(0.02, 0.3), (0.04, 0.6), (0.06, 1)} 

 

There are two major differences between the previous two-level simulation design and the new 

two-level simulation design. First, there is now an interaction term between the individual-level 

covariate 𝑋1𝑖𝑗 and the cluster-level covariate 𝑊2𝑗 in both the propensity score and outcome 

models. The interaction term’s magnitude is controlled by parameter 𝜷. We use this extra 

interaction term to intentionally mis-specify the propensity score and the outcome model by only 

fitting the main effects; note that this type of mis-specification can also be seen as a form of 

omitted variable bias where we “omitted” the interaction terms. Second, in the outcome model, 

there is an interaction term between the treatment z and the cluster-level covariate 𝑊1𝑗. This 

interaction term creates heterogeneous cluster-specific treatment effects where the cluster-

specific CATE is  τ + 0.5𝑊1𝑗. However, the mean of 𝑊1𝑗 is zero and hence, the overall ATE 

remains the same as before, τ = 2. 

Figure 2.5 summarizes the results with different values of 𝜷. As the propensity score and 

outcome models became more mis-specified, the DR estimators behaved similarly to non-DR 

estimators and both were equally biased. When the model mis-specification was moderate to 

large, Causal Forests methods almost always performed better in terms of bias and MSE than any 

of the traditional methods (IPW, MMW-S, and DR estimators) across different conditions on the 
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number of clusters and the mean size of clusters. Even the default Causal Forests that did not 

incorporate any clustering information did better than traditional methods that incorporated  

 

Figure 2.5. Performance of ATE estimates in two-level data under Design 2. β1 and β2 are 

coefficients of the omitted interaction terms in parametric selection and outcome models, respectively. (J, I(sd)) 

represent the number of clusters and the mean size of clusters and its standard deviation, respectively. IPW 

represents inverse-propensity weighting and MMW-S represents marginal mean weighting through stratification. 

DR IPW and DR MMW-S represent doubly robust estimators with IPW and MMW-S weights, respectively. CF 

represents Causal Forests without modification. CF+Est.PS represents CF with propensity scores from a multilevel 

logistic regression. CF+ID represents CF with cluster labels. CF+Est.PS+ID represents CF with propensity scores 

from a multilevel logistic regression and cluster labels. The dashed black line indicates the true average treatment 

effect value of 2. 
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clustering. This suggests that when parametric models are mis-specified, nonparametric methods 

like Causal Forests perform better than traditional parametric methods, even if the ML methods 

were not initially designed for clustered data, because they can automatically capture the omitted 

interaction terms that potentially lead to more significant bias compared to bias arising from 

ignoring clustering structure inside ML methods. Also, the modified Causal Forests with 

multilevel propensity scores outperformed the default Causal Forests in terms of variance across 

all settings, and they did better than the default Causal Forests in terms of MSE when the model 

mis-specification was small to moderate. Finally, Causal Forests using only cluster labels 

generally performed worse than Causal Forests using multilevel propensity scores. 

 

Takeaways from Simulation Studies 

Overall, the simulation studies above suggest some guidelines on how to modify ML 

methods for clustered/hierarchical data. While these are not meant to encompass every ML 

method in causal inference or every possible type of clustered data in practice, we hope that the 

suggestions provided below based our simulation study with Causal Forests can serve as useful 

guidelines for empirical or theoretical analyses of clustered data with ML methods. 

1.  For Causal Forests, incorporating multilevel, hierarchical structure through multilevel 

propensity score models typically had the largest improvement in terms of bias and MSE 

compared to Causal Forests that directly used cluster labels. In particular, Causal Forests 

using cluster labels should only be reserved to settings when the number of clusters is 

much larger than the size of clusters. 
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2.  In general, there was no significant benefit in terms of bias and MSE when using both 

multilevel propensity scores and cluster labels inside Causal Forests compared to just using 

multilevel propensity scores. 

3.  Causal Forests with multilevel propensity scores almost always performed better in 

terms of bias and MSE than multilevel propensity score estimators (IPW and MMW-S) 

with correctly specified parametric propensity scores, but generally performed worse than 

DR methods with correctly specified parametric propensity score and outcome models, 

with some notable exceptions. In particular, Causal Forests with multilevel propensity 

scores had similar or slightly lower MSE than those from DR methods with correctly 

specified propensity score and outcome models whenever the size of the clusters is larger 

than the number of clusters. 

4.  If DR or non-DR estimators were using parametric propensity score or outcome models 

that were moderately mis-specified, Causal Forests with multilevel propensity scores 

outperformed them in terms of bias and MSE. 

5.  Causal Forests with multilevel propensity scores performed better in terms of MSE than 

the default Causal Forests without any modifications, even if the multilevel propensity 

score model inside modified Causal Forests was moderately mis-specified. 

 

Real Data Study 

Data and Variables 

TIMSS is an international educational study about students’ achievement progresses in 

mathematics and science and is sponsored by the International Association for the Evaluation of 

Educational Achievement (IEA). Since 1995, TIMSS has collected data among students in 
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Grades 4 and 8 every four years. To do this, TIMSS uses a two-stage stratified cluster sampling 

design where in the first stage, each country selects schools based on important demographic 

variables (e.g., school location and/or school gender type), and in the second stage, each school 

randomly selects one or more intact classrooms (Martin, Mullis, & Hooper, 2016). The most 

recent completed wave of TIMSS was in 2015 and conducted across 60 countries. 

We used the 2015 Korea TIMSS Grade-8 data to investigate the effect of private math 

lessons. The data contained 5309 students from 150 middle schools where the school sizes 

ranged from 6 to 75 students; the mean size of schools was about 30. While the original data 

resembled a three-level structure based on a student-class-school hierarchy, we found that most 

of the schools selected one classroom; 130 schools selected one classroom, and 20 schools 

selected two classrooms. Since there was a near one-to-one correspondence between school and 

class levels, we analyzed the data as a two-level data where students are nested within schools. 

The treatment was whether students received private math lessons, with 1 indicating that 

the student did and 0 otherwise; the treatment was assigned at the student level. The outcome 

was the first plausible value of students’ math achievement scores; in the 2015 TIMSS data, each 

student obtained five plausible values because they took a subset of items from a full battery of 

assessment items. In addition, we used 12 covariates that were thought to influence the treatment 

and outcome variables. Six of 12 covariates were student-level covariates and the other six 

covariates were school-level covariates. Student-level covariates included 1) gender (sexM, male 

and female), 2) fathers’ highest education level (dad.edu, with three levels including no college, 

college dad_cll, and don’t know dad_q), 3) the number of books at home (books25, with two 

levels defined as more than 25 books or less than or equal to 25 books), 4) the number of home 

study supports (hspprt, with three levels including neither own room nor Internet connection, one 
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of them hspprt_1, and both hspprt_2), 5) students’ confidence in math (M.stuconf, continuous), 

and 6) value in math (M.value, continuous). School-level covariates included 1) whether the 

school is gendered (gender.type, with three levels of all-boys, all-girls girlsch, and co-education 

coedu), 2) the percentage of economically disadvantaged students (pct.disad, with four levels of 

0 to 10%, 11 to 25% disad_11, 26 to 50% disad_26, and more than 50% disad_M50), 3) school 

location (city.size, with four levels of urban city_U, suburban city_Sub, medium size city city_M, 

and small town), 4) emphasis on academic success (acad.emph, continuous), 5) math instruction 

affected by resource shortage (M.resshort, continuous), and 6) discipline problems (dscpn, 

continuous). 

We excluded students whose responses were inconsistent with the following two 

questions regarding their participation in private math lessons: (Q1) whether students received 

private math lessons and (Q2) for how many months they received these lessons. In particular, 

we excluded students who answered “Yes” to (Q1) and “did not attend” to (Q2) and students 

who answered “No” to (Q1) and answered something other than “did not attend” to (Q2). 

Additionally, we excluded students who were missing 7 out of 12 covariates. The final sample 

consisted of 4943 students (93.1% of the original sample) from 149 schools. In the final sample, 

the outcome’s mean was 606.08 and its standard deviation was 84.19; its minimum and 

maximum were 306.66 and 859.86, respectively. Data analyzed in this study is included in the 

supplementary materials and can also be found at the first author’s github repository. 

 

Methods 

We followed our simulation study and estimated a joint propensity score model based on 

random-effects logistic regression with main effect terms. The outcome model (for DR methods) 
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was based on random-effects linear regression model with main effect terms. We also 

implemented Causal Forests as mentioned in “Design 1 with Two-level Data.” We used grf 

package to run Causal Forests. For the IPW, MMW-S, DR IPW, and DR MMW-S estimators, we 

used lme4 package (Bates, Mächler, Bolker, & Walker, 2015) to estimate propensity scores and 

outcome regression models. Standard errors were estimated using cluster bootstrap sampling 

with 5000 replicates. All analyses were conducted in R. We evaluated covariate balance between 

treated and untreated units before estimating the ATE. As a rule of thumb, a good balance for a 

covariate is when its absolute standardized mean difference is smaller than 0.1 and its variance 

ratio is in between 4/5 and 5/4 (Rubin, 2001; Shadish, Clark, & Steiner, 2008; Steiner, Cook, 

Shadish, & Clark, 2010). For simplicity, we ignored sampling weights that weighed each 

individual in the data. Since we did not incorporate sampling weights and multiple plausible 

values, our proposed analysis plan does not generalize to the study population outside of TIMSS. 

 

Results 

Figure 2.6 provides covariate balance plots before and after propensity score adjustments. 

Before adjustment, there were imbalances in most of the 12 covariates: dad.edu, books25, hspprt, 

M.stuconf, M.value, pct.disad, city.size, and acad.emph. After IPW or MMW-S adjustment, we 

improved balance between private-lessons takers (the treated) and non-takers (the untreated). 

Weights from MMW-S with 3 strata achieved more successful balance than weights from the 

IPW estimator; weights from MMW-S achieved almost perfect mean and variance balance, 

whereas weights from the IPW estimator still left two covariates slightly imbalanced. 
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Figure 2.6. Covariate balance plots before and after propensity score adjustment. 

 

Figure 2.7 summarizes the estimates, standard errors (in parentheses), and 95% 

confidence intervals of the ATE using different estimators. The prima facie effect is the 

unadjusted mean difference in students’ math achievement scores between private-lessons takers 

and non-takers. The unadjusted estimate was 66.88 points and the effect was reduced to 27.67 

points and 33.88 points using the IPW estimator and MMW-S estimator, respectively. The DR 

IPW and DR MMW-S estimators produced estimates of 32.96 and 29.58 points, respectively. 

The ATE estimates obtained with Causal Forests ranged from 25.54 (CF+Est.PS) to 30.30 

(CF+ID). Between Causal Forests, the IPW estimator, and MMW-S estimator, we found that the 

point estimates of the ATE from Causal Forests using multilevel propensity scores (CF+Est.PS 

or CF+Est.PS+ID) were slightly smaller compared to the IPW estimator and MMW-S. 

Regarding the 95% confidence intervals of the ATE estimates, we found that all the confidence 

intervals were overlapping. The IPW estimator yielded the widest confidence interval (i.e., the 

most conservative standard error), while Causal Forests using multilevel propensity scores 

(CF+Est.PS) produced the narrowest confidence interval (i.e., the most liberal standard error). 
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Overall, all estimates reached similar conclusions about the treatment effect, that private math 

lessons had a positive effect on math achievement scores. 

 

 

Figure 2.7. The estimates, standard errors (in parentheses), and 95% confidence intervals of the 

ATE of taking private math lessons. 

 

Discussion and Conclusions 

The goal of this paper was to study how to properly modify ML methods originally 

designed for i.i.d. data to estimate treatment effects in clustered/multilevel data settings. In 

particular, we explored how to account for cluster or hierarchical structures in Causal Forests by 

including propensity scores from multilevel logistic regression or cluster labels. As stated in 

“Takeaways from Simulation Studies”, our simulation studies showed that among all 

modifications to Causal Forests, using Causal Forests with multilevel propensity scores had the 

best performance in terms of bias and MSE, and providing cluster labels was only useful in 

settings where the number of clusters is far larger than the size of the clusters. Also, modified 

Causal Forests with multilevel propensity scores performed somewhere in between DR and non-
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DR estimators that had correctly specified propensity score and outcome regression models. 

However, if these parametric models were mis-specified, modified Causal Forests with 

multilevel propensity scores performed better than the DR and non-DR estimators in our 

simulation. 

We also conducted a real data study to examine the effects of private math lessons from 

the 2015 TIMSS data. All methods generally revealed that private math lessons improved math 

scores, though each estimator exhibited slightly different point estimates. Since each method 

carries different underlying assumptions about the data generating model, differences in these 

assumptions likely affected the specific estimated values of the treatment effect. Nevertheless, 

comparing their results allowed us to assess the plausibility of the underlying assumptions and 

reinforce our evidence for a causal effect. As such, while Causal Forests with multilevel 

propensity scores is generally recommended when researchers suspect more complex data 

generating processes or when there is insufficient subject-matter knowledge to justify parametric 

models, we recommend using both Causal Forests and traditional DR and non-DR approaches to 

strengthen the causal conclusion from the study. 

There are some limitations of the paper. First, we assumed SUTVA in a clustered setting 

where the treatment, assigned at the individual level, is hypothesized to not have spillover effects 

through interference. Second, our simulation study is limited to three types of clustered data 

structures and we did not analyze more complex clustering structures, such as clustering through 

spatiotemporal processes. Third, though we explored the consequence of omitting an interaction 

term when all the confounders were measured in Design 2, we did not consider omitted variable 

bias arising from unmeasured pre-treatment covariates. Fourth, we primarily used estimated 

propensity scores from random-effects logistic regression models as part of our modification 
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strategy for Causal Forests. However, it has been shown that fixed effects models with cluster 

dummies are robust against unmeasured cluster-level variables (Arpino & Mealli, 2011; 

Wooldridge, 2010) and it would be interesting to examine whether using multilevel propensity 

scores with fixed effects inside ML methods can provide additional benefits in estimating the 

ATE. Fifth, since treatments are often multi-valued rather than binary, future work may extend 

the applicability of our results to multi-valued treatment settings by utilizing the results in 

Imbens (2000) and Imai and Van Dyk (2004). Sixth, this paper primarily focuses on estimating 

the ATE, but we believe that the insights from this work can be used to address challenges in 

optimal treatment assignment (Dimakopoulou, Zhou, Athey, & Imbens, 2017; Kosorok & 

Moodie, 2015; Li, Lu, & Zhou, 2017). 

Despite these limitations, this paper provides a simple set of ways to modify pre-existing 

ML methods in causal inference in order to estimate the ATE in multilevel settings. Our 

proposed modification of Causal Forests by using propensity scores from multilevel regression 

models helped minimize bias and MSE compared to directly providing cluster labels or using 

Causal Forests without any modifications. More broadly, this type of modification via the 

propensity score can serve as a template to modify a wide variety of ML methods when used in 

multilevel observational studies. 
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STUDY 3 : HYBRIDIZING MACHINE LEARNING METHODS AND FINITE 

MIXTURE MODELS FOR ESTIMATING HETEROGENEOUS TREATMENT 

EFFECTS IN LATENT CLASSES 

 

Abstract 

There has been increasing interest in exploring heterogeneous treatment effects using machine 

learning (ML) methods such as Causal Forests, Bayesian Additive Regression Trees (BART), 

and Targeted Maximum Likelihood Estimation (TMLE). However, there is little work on 

applying these methods to estimate treatment effects in latent classes defined by well-established 

finite mixture/latent class models. This paper proposes a hybrid method, a combination of finite 

mixture modeling and ML methods from causal inference to discover effect heterogeneity in 

latent classes. Our simulation study reveals that hybrid ML methods produced more precise and 

accurate estimates of treatment effects in latent classes. We also use hybrid ML methods to 

estimate the differential effects of private lessons across latent classes from the Trends in 

International Mathematics and Science Study (TIMSS) data. 

 

Suk, Y., Kim, J.-S., & Kang, H. (2020). Hybridizing machine learning methods and finite 

mixture models for estimating heterogeneous treatment effects in latent classes 

Journal of Educational and Behavioral Statistics. doi:10.3102/1076998620951983 
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Introduction 

Motivation 

There has been a growing interest in causal inference to estimate conditional average 

treatment effects (CATEs) using machine learning (ML) methods (Athey & Imbens, 2016; Hill, 

2011; Imai & Ratkovic, 2013; Künzel, Sekhon, Bickel, & Yu, 2019; Su, Tsai, Wang, Nickerson, 

& Li, 2009; Wager & Athey, 2018). These methods show great promise in understanding 

treatment effect heterogeneity based on observable characteristics of the study population. 

However, in some settings, observable characteristics are thought to emerge from meaningful 

latent processes. For example, many studies in education and psychology posit the existence of 

latent classes defined by parameters in latent class/finite mixture models in order to better 

understand observed student behaviors such as internet and smartphone addiction or teen 

smoking (Clogg, 1995; McLachlan & Peel, 2000; Mok et al., 2014; Sutfin, Reboussin, McCoy, 

& Wolfson, 2009). Differences in observed behaviors are hypothesized to arise due to 

differences in latent classes, and, as such, there is a strong emphasis on understanding the 

differences between latent classes by examining the parameters of latent class/profile models or 

latent class regression models; see Magidson and Vermunt (2004) for details. In such cases 

where latent classes play a vital role in the scientific understanding of observed phenomena, 

understanding how the effects of a new treatment, program, or policy vary across these latent 

classes is of great interest. 

To provide a concrete example that motivated this work, consider an observational study 

estimating the effect of taking private science lessons (i.e., treatment) on science test scores (i.e., 

outcome) among middle school students. Each student’s choice to have private tutors is based on 

a number of observable characteristics, such as their previous grades and the location of their 
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schools, as well as unobservable, latent characteristics, such as students’ motivations, academic 

resilience4, or science self-efficacy5. For example, some students who are academically resilient 

may seek private tutors to supplement classroom instruction compared to those who are less 

resilient. Some students may opt for a private tutor because they are self-motivated, while others 

may not seek a tutor because they are less motivated. Or, the driving factor for private lessons 

may be similar for all students in the same school because of deficiencies (or lack thereof) in 

school resources. Regardless, these characteristics may not be directly observable, but rich latent 

class models exist in psychology to help us better understand them; see McLachlan and Peel 

(2000), Kaplan, Kim, and Kim (2009), and Masyn (2013) for examples. More importantly, 

variation in these latent classes may lead to differential effects of having a private tutor. For 

instance, a private tutor may be more helpful in raising test scores among students who are 

academically resilient or self-motivated compared to students who are less resilient or less 

motivated. 

If an investigator uses one of the aforementioned ML-based estimator to study effect 

heterogeneity of private tutoring, these methods will only reveal variations in treatment effects 

among observable characteristics of the student; they would not be able to reveal variations in 

treatment effects among latent classes representing resilience and self-motivation. To better 

illustrate this point, consider Figure 3.1, where we constructed a hypothetical two-class latent 

structure and students belong to either one of the two latent classes; say one class represents 

strong academic resilience, while another class represents weak academic resilience. The average 

 
4 Academic resilience is defined as “the heightened likelihood of success in school and inother life 

accomplishments, despite environmental adversities brought about by early traits, conditions, and experiences” 

(Wang & Gordon, 2012). 
5 Self-efficacy is defined as “people’s beliefs in their ability to influence events that affecttheir lives” (Bandura, 

2010). 



 

 

73 

treatment effect of having private tutors in the first latent class (in yellow) is two, whereas the 

average treatment effect in the second latent class (in green) is zero. When we use Causal Forests 

(Athey, Tibshirani, & Wager, 2019), an ML-based causal inference method based on random 

forests, to estimate treatment effects, the Causal Forests masks these two latent classes’ treatment 

effects. In contrast, our hybrid methods, which we explain below, are able to reveal the two 

latent classes and their respective treatment effects. Specifically, Figure 3.1 uses our hybrid 

methods based on Causal Forests, which we refer to as Hybrid Causal Forests. 

 

 

Figure 3.1. Distributions of individual CATE estimates. The left plot shows our method, Hybrid 

Causal Forests, while the right plot shows Causal Forests. Dashed lines represent class-specific treatment 

effect estimates. 

 

Prior Work and Our Contribution 

Prior works on treatment effect estimation in latent classes are diverse. Kang and Schafer 

(2010) and Schuler, Leoutsakos, and Stuart (2014) used latent class models to identify latent 

treatment classes based on manifest/observed items. Butera, Lanza, and Coffman (2014) and 

Lanza, Coffman, and Xu (2013) discussed estimating treatment effects when the outcome 
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variables are latent classes. Specifically, the underlying construct of the outcomes was measured 

using observed items and the goal was to estimate treatment effects on latent class membership 

of the outcomes. Jo, Wang, and Ialongo (2009) discussed latent trajectory structures in three 

outcome measures of attention deficit among children and revealed heterogeneity in longitudinal 

outcomes across latent classes. The work most related to ours is by Kim and Steiner (2015) who 

used a latent class regression model to model different latent representations of students’ 

selection into treatment (or control) and used multilevel propensity score matching to estimate 

the treatment effect within each latent class. 

The goal of this paper is to complement these prior works and provide a general “hybrid” 

framework to study treatment effect variation within latent classes by combining latent class 

modeling with ML-based methods in causal inference. Specifically, in a two-level setting 

common in education, we propose a two-step hybrid procedure that first uses latent class/finite 

mixture modeling to identify latent class structures and second, uses modern ML methods in 

causal inference to estimate treatment effects within each latent class. Our rationale for using ML 

methods in the second step is to leverage ML’s flexibility in modeling potentially complex 

propensity score and outcome regression models in each latent class. More broadly, our approach 

to this problem follows a growing trend of combining ML methods with well-established models 

in psychology to capitalize on the advantages of each approach (Ma, 2018; Suk, Kang, & Kim, 

2020). The paper focuses on three popular ML methods in causal inference—Causal Forests 

(Athey et al., 2019; Wager & Athey, 2018), Bayesian additive regression trees (BART) (Hill, 

2011), and Targeted Maximum Likelihood Estimation (TMLE) (Van Der Laan & Rubin, 

2006)— but our framework can be extended to other ML methods. We validate our proposed 

methods through a simulation study and a large-scale educational assessment study concerning 
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the effect of private science lessons on science achievement scores. We show that our ML-based 

hybrid methods have more precise and accurate estimates of the variations in treatment effects 

associated with latent classes than other parametric methods used in this research. 

 

Review: Notation, Causal Assumptions, and the Propensity Score 

We use the Neyman-Rubin causal model (Neyman, 1923; Rubin, 1974) and its extension 

to multilevel data to define causal effects (Hong & Raudenbush, 2006). Let 𝑌𝑖𝑗(1) be the 

potential outcome if individual 𝑖 at cluster 𝑗 were to be treated (𝑍𝑖𝑗 = 1). Let 𝑌𝑖𝑗(0) be the 

potential outcome if individual 𝑖 at cluster 𝑗 were to be untreated (𝑍𝑖𝑗 = 0). The notation 

assumes the stable unit treatment value assumption (SUTVA; Rubin, 1986) where the potential 

outcomes of each individual are not affected by others’ treatment assignments and there is only a 

single version of treatment. This allows us to write the observed outcome 𝑌𝑖𝑗  as 𝑌𝑖𝑗 = 𝑍𝑖𝑗𝑌𝑖𝑗(1) +

(1 − 𝑍𝑖𝑗)𝑌𝑖𝑗(0). Let 𝐗𝑖𝑗  and 𝐖𝑗 denote pre-treatment covariates for individual i in cluster j, 

where 𝐗𝑖𝑗  are individual-specific covariates and 𝐖𝑗 are cluster-specific covariates. 

Under the potential outcomes framework, we assume strong ignorability: 

 

𝑌𝑖𝑗(1), 𝑌𝑖𝑗(0) ⊥ 𝑍𝑖𝑗|𝐗𝑖𝑗 ,𝐖𝑗 and 0 < 𝑒(𝐗𝑖𝑗 ,𝐖𝑗) = 𝑃𝑟(𝑍𝑖𝑗 = 1|𝐗𝑖𝑗 ,𝐖𝑗) < 1 

 

where ⊥ denotes independence between two random variables and 𝑒(𝐗𝑖𝑗 ,𝐖𝑗) is the propensity 

score (Rosenbaum & Rubin, 1983). In single-level data, propensity scores are typically estimated 

with logistic regression. In multilevel data, propensity scores are typically estimated with random 

or fixed effects logistic regression (Leite, 2016). Propensity scores are often used in matching 

methods to match treated and control units or to weigh individuals’ outcomes via inverse 

probability weighing. 
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We conclude the section by defining the causal estimand of interest. Let 𝐾𝑖𝑗 ∈

{1,2, . . . , 𝐶} denote the latent class membership of individual i in cluster j from a latent class 

model. The goal in this paper is to estimate the CATE for individuals who belong to latent class 

𝐾𝑖𝑗 = 𝑘 and is formalized as follows: 

 

𝜏(𝑘) = 𝐸[𝑌𝑖𝑗(1) − 𝑌𝑖𝑗(0)|𝐾𝑖𝑗 = 𝑘] 

 

The estimand 𝜏(𝑘) cannot be directly estimated with observed data since latent class 

membership 𝐾𝑖𝑗  is unobserved. More precisely, the function that relates the observable 

characteristics 𝐗𝑖𝑗 ,𝐖𝑗 to their latent counterparts 𝐾𝑖𝑗  is unknown and must be modeled based on 

context-specific finite mixture/latent class models. In contrast, the usual CATE formalized below 

 

𝜏(𝐱,𝐰) = 𝐸[𝑌𝑖𝑗(1) − 𝑌𝑖𝑗(0)|𝐗𝑖𝑗 = 𝐱,𝐖𝑗 = 𝐰] 

 

can be directly estimated from the observed data under strong ignorability and SUTVA; see 

Imbens and Rubin (2015) for more details about identification of CATE. Modern ML methods in 

causal inference (e.g., Causal Forests) provide consistent and asymptotically Normal estimates of 

𝜏(𝐱,𝐰). However, 𝜏(𝐱,𝐰) only reveals treatment heterogeneity among observable 

characteristics and masks treatment variability in latent classes. The next section discusses our 

proposed approach, hybrid ML methods, which sequentially integrate latent class modeling and 

ML methods to estimate τ(k). 
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Hybridizing Latent Class Modeling and ML for Causal Inference 

Our hybrid approach has two steps. The first step estimates latent classes via context-

specific latent class/finite mixture modeling, and the second part uses ML-based methods to 

estimate treatment effects within each latent class. Subsequent sections elaborate on each step. 

 

Step 1: Latent Class/Finite Mixture Modeling 

Latent class or finite mixture models have been frequently used to group individuals or 

data into unobserved latent classes that can be inferred from the observed data (McLachlan & 

Peel, 2000; Vermunt & Magidson, 2003). In a standard latent class model, latent classes are 

identified using categorical latent class indicators e.g., dichotomous survey items, and 

parameters defining latent classes are response probabilities (Muthén & Muthén, 2017; Wang & 

Wang, 2012). More generally, there are many types of latent class/finite mixture models based 

on regression analysis, path analysis, and factor analysis; see Magidson and Vermunt (2004), 

McLachlan and Peel (2000), Kaplan et al. (2009), and Masyn (2013) for more details. The choice 

of which latent model to use is context-specific and so long as researchers choose an identifiable 

finite mixture model to estimate latent classes and each class meets the aforementioned casual 

assumptions, our methodology will work. 

In our real data study of private science tutoring and school achievement scores, we focus 

on a type of latent class models that describe how students in each school select themselves into 

treatment (i.e., private science tutoring), also referred to as latent selection/propensity score 

models, and latent class membership applies at the cluster level (i.e., at the school level) so that 

𝐾𝑖𝑗 = 𝑘 for everyone in the same cluster. In particular, each cluster belongs to one of 𝑘 =

1, . . . , 𝐶 propensity score models that govern how students within each school select themselves 
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into treatment, and the parameters of each propensity score define the latent classes; in other 

words, students’ selection behaviors in private tutoring are homogeneous within each cluster, but 

there are hidden heterogeneous structures across schools that can be inferred from the data. As an 

illustration of the chosen latent class model, suppose that school principals emphasize academic 

achievements. In such schools, students may seek private lessons to receive higher achievement 

scores. Additionally, although a school principal’s emphasis on academic achievement can play a 

role in students seeking private tutors, its importance may differ depending on the location of the 

school; private education services are more readily available in urban areas than in rural areas. 

We remark that this model is also called a restricted multiple group latent class model (Vermunt, 

2003) and Kim and Steiner (2015) provides additional interpretations as well as some limitations 

of the model. 

The overall goal of the latent class selection model in our real data example is to 

understand which of the 𝐶 selection models govern students’ choices to select private tutors. 

Formally, let 𝜋𝑘 = 𝑃(𝐾𝑗 = 𝑘), 𝑘 = 1, . . . , 𝐶 be the marginal probability of being in latent class k. 

For this latent class model, we drop the subscript 𝑖 in 𝐾𝑖𝑗  for clarity, but we can define 𝐾𝑖𝑗 = 𝐾𝑗  

to fit it into the general notation and we use the two notations interchangeably. Consider a latent 

class random effects logistic regression model where each student’s choice to seek treatment 

(e.g., private tutors) is a mixture of 𝐶 different selection models. Specifically, each latent class k 

has its own selection model 𝑒𝑘(𝐗𝑖𝑗 ,𝐖𝑗 , 𝜃𝑘) = 𝑃(𝑍𝑖𝑗 = 1|𝐗𝑖𝑗 ,𝐖𝑗 , 𝜃𝑘) where 𝜃𝑘  parameterizes the 

model; for two-level data, the selection model for each latent class 𝑘 is a random effects logistic 

model. Then, a latent class selection model assumes that 𝑃(𝑍𝑖𝑗 = 1|𝐗𝑖𝑗 ,𝐖𝑗) is 𝐶 mixtures of 

selection models with mixing probabilities 𝜋𝑘, 𝑘 = 1, . . . , 𝐶: 
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𝑃(𝑍𝑖𝑗 = 1|𝐗𝑖𝑗 ,𝐖𝑗) = ∑π𝑘𝑒𝑘(𝐗𝑖𝑗 ,𝐖𝑗 , 𝜃𝑘)

𝐶

𝑘=1

, 0 ≤ π𝑘 ≤ 1, ∑π𝑘

𝐶

𝑘=1

= 1 

 

(3.1) 

where 

 
π𝑘 = 𝑃(𝐾𝑗 = 𝑘) =

𝑒𝑥𝑝(γ𝑘)

∑ 𝑒𝑥𝑝(γ𝑘)
𝐶
𝑘=1

 
(3.2) 

 

That is, π𝑘  is modeled by a multinomial logistic model with γ𝑘  representing a class-specific 

multinomial intercept. The parameters in the models (i.e., 𝜃𝑘, π𝑘, 𝑘 = 1, . . . , 𝐶) are estimated by 

an expectation-maximization (EM) algorithm (Dempster, Laird, & Rubin, 1977; Leisch, 2004; 

McLachlan & Peel, 2000). Using Bayes rule, we can compute the posterior probability that each 

cluster belongs to latent class 𝑘. Specifically, individual 𝑖𝑗 is assigned to one of 𝐶 latent classes 

with the highest posterior probability, also known as modal assignment. Some alternatives to 

modal assignment are proportional assignment and random assignment (Goodman, 2007; 

Vermunt, 2010). Here, we use modal assignment due to its simplicity and optimality under 

certain assumptions about Bayes classification error rates (Bakk, Tekle, & Vermunt, 2013). 

Regardless, let 𝐾𝑗  (or 𝐾𝑖𝑗 = 𝐾𝑗) denote the estimated latent class membership for each cluster. 

We will use the estimated membership in the second step of our proposed algorithm. 

There are some important implementation details in estimating latent class models and 

we briefly summarize four issues that are most relevant to our setting; see Everitt and Hand 

(1981), Titterington, Smith, and Makov (1985), and McLachlan and Peel (2000) for detailed 

discussions. First, typically, the number of latent classes 𝐶 is initially specified based on subject-

matter theories about latent class structure, but later verified by a data-driven approach based on 

various measures of model fit, such as the likelihood ratio statistic, Pearson’s Chi-square, the 

Akaike information criterion (AIC) or the Bayesian information criterion (BIC) (Kaplan et al., 
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2009). While there is always a risk of incorrectly specifying the number of latent classes, either 

through over-extraction (i.e., more latent classes were specified than the true number of latent 

classes) or under-extraction (i.e., fewer latent classes were specified than the true number of 

latent classes), it is generally preferable to have more latent classes than fewer latent classes for 

estimating treatment effects, as the former would be able to identify diverse structures of latent 

classes. Second, latent class models are only identifiable up to labeling permutations of latent 

classes because estimated class labels are arbitrary. For example, if there are three latent classes, 

the estimated parameters for Class 1 can equally be labeled as Class 2 or Class 3 and the data 

will be observationally equivalent. This issue primarily affects label assignment, but not 

estimation of model parameters (Leisch, 2004). Also, many algorithms have been developed to 

detect label switching issues and to relabel latent classes using ordering constraints and 

Stephens’ methods (e.g., Stephens, 2000; Tueller, Drotar, & Lubke, 2011). Third, in general, 

mixtures of univariate Normal, gamma, exponential, Cauchy, and Poisson distributions are 

identifiable, whereas mixtures of uniform distributions are not identifiable. Mixtures of binomial 

and multinomial distributions can be identified under some assumptions on the number of latent 

classes and the size of the support of 𝑍𝑖𝑗 , 𝐗𝑖𝑗 , and 𝐖𝑗 (Allman, Matias, Rhodes, et al., 2009; 

Everitt & Hand, 1981; Grün & Leisch, 2008; Titterington et al., 1985). Finally, to prevent over-

fitting the latent selection model, we can set the prior class probabilities to be far away from zero 

and set 𝜃𝑘  to be sufficiently different (Leisch, 2004). Adding random effects in 𝑒𝑘  can also help 

avoid overfitting (Lenk & DeSarbo, 2000). 

For software to implement step 1, we used the software Mplus8 (Muthén & Muthén, 

2017) and the MplusAutomation package (Hallquist & Wiley, 2017) in R (R Core Team, 2019) 
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to estimate the latent class 𝐾𝑖𝑗. We also applied a “class assignment based algorithm” to resolve 

potential label switching issues (Tueller et al., 2011). 

 

Step 2: Machine Learning Methods for Causal Inference 

This section describes some methods in causal inference that utilize ML to estimate 

heterogeneous treatment effects. We remind readers that the specific choice of the ML method is 

not critical so long as they provide consistent point estimators and valid confidence intervals. 

Also, for one of the ML methods, Causal Forests, we follow a suggestion from recent work (Suk 

et al., 2020) to improve its performance in two-level data. 

General Approach. At a high level, almost all ML-based methods for causal inference 

require estimating either the outcome model, the propensity score model, or both. Briefly, the 

outcome model is the conditional expectation of the outcome given the observed covariates and 

treatment assignment, say 𝑚(𝐱,𝐰, 𝑧) = 𝐸[𝑌𝑖𝑗|𝐗𝑖𝑗 = 𝐱,𝐖𝑗 = 𝐰, 𝑍𝑖𝑗 = 𝑧]; some methods also 

estimate the conditional expectation of the outcome given only the covariates, say 𝑚(𝐱,𝐰) =

𝐸[𝑌𝑖𝑗|𝐗𝑖𝑗 = 𝐱,𝐖𝑗 = 𝐰]. As mentioned above, the propensity score model is the probability of 

being assigned to treatment given observed covariates, i.e., 𝑒(𝐱,𝐰) = 𝑃(𝑍𝑖𝑗 = 1|𝐗𝑖𝑗 = 𝐱,𝐖𝑗 =

𝐰). Each ML-based method in causal inference estimates the outcome model or the propensity 

score model using different supervised ML algorithms. For example, BART uses Bayesian 

regression trees to estimate m(·). TMLE, combined with SuperLearner (van der Laan, Polley, & 

Hubbard, 2007), uses an ensemble of supervised learning algorithms to estimate 𝑚(⋅) and 𝑒(⋅). 

Causal Forests uses a modified random forest to estimate 𝑚(⋅) and 𝑒(⋅). Also, each ML-based 

method aggregates estimates of 𝑚(⋅) and 𝑒(⋅) differently to arrive at the final estimate of CATE. 

For example, typical BART only uses 𝑚(⋅) to estimate CATE. Causal Forests, which we 
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describe below in “Vanilla Causal Forests and Modified Causal Forests”, uses 𝑚(⋅) and 𝑒(⋅) 

through a weighted linear regression approach. TMLE uses both 𝑚(⋅) and 𝑒(⋅) through a “clever 

covariate” to estimate the CATE. If the underlying supervised ML algorithm can consistently 

estimate 𝑚(⋅) and 𝑒(⋅), these methods not only provide a consistent estimate of the CATE but 

also, under additional assumptions, provide valid p-values and confidence intervals. 

To incorporate ML-based methods into latent class estimation in two-level settings, we 

outline the following approach. First, for each estimated latent class 𝑘, use any of the 

aforementioned ML-based CATE estimators to estimate the CATE within each 𝑘 by only using 

the data from the latent class and denote this as τ(𝐱,𝐰, 𝑘); note that if the encompassing ML 

method requires estimation of 𝑒(⋅), one can use a random effects logistic regression model 

instead of the associated superivsed learning algorithm to improve performance in 

clustered/multilevel data. Second, average τ(𝐱,𝐰, 𝑘) among individuals with the same 𝑘 to 

arrive at the final estimator for τ(𝑘). We show an example of this general recipe based on Causal 

Forests below. 

Vanilla Causal Forests and Modified Causal Forests. Causal Forests (Athey et al., 2019; 

Wager & Athey, 2018) is a type of random forests (Breiman, 2001) that is used to estimate the 

CATE as well as the average treatment effect. Specifically, a Causal Forest estimator of the 

CATE is a weighted linear regression of residualized outcome 𝑌̃𝑖𝑗 = 𝑌𝑖𝑗 − 𝑚̂
−𝑖𝑗(𝐱,𝐰) and a 

single residualized regressor 𝑍𝑖𝑗 = 𝑍𝑖𝑗 − 𝑒̂
−𝑖𝑗(𝐱,𝐰). 

 

 𝜏̂(𝐱,𝐰) =
∑ α𝑖𝑗(𝐱,𝐰) (𝑌𝑖𝑗 − 𝑚̂

−𝑖𝑗(𝐗𝑖𝑗 ,𝐖𝑗))(𝑍𝑖𝑗 − 𝑒̂
−𝑖𝑗(𝐗𝑖𝑗 ,𝐖𝑗))𝑖𝑗

∑ α𝑖𝑗(𝐱,𝐰)(𝑍𝑖𝑗 − 𝑒̂−𝑖𝑗(𝐗𝑖𝑗 ,𝐖𝑗))
2

𝑖𝑗

 
(3.3) 
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Here, 0 ≤ α𝑖𝑗(𝐱,𝐰) ≤ 1 weighs how much each unit 𝑖𝑗 contributes to the estimate of CATE, 

τ(𝐱,𝐰). The −ij-superscript represents out-of-bag leave-one-out estimates in machine learning, 

i.e., the estimates of functions when unit 𝑖𝑗’s data is not used. In Causal Forests, the estimates of 

𝑚̂−𝑖𝑗(𝐱,𝐰) and 𝑒̂−𝑖𝑗(𝐱,𝐰) are obtained by an honest random forest algorithm in Procedure 1 of 

Wager and Athey (2018). Wager and Athey (2018) and Athey et al. (2019) showed that the 

Causal Forests estimator is consistent for the CATE and has an asymptotic pivotal Gaussian 

distribution under some assumptions; the latter property allows researchers to construct valid p-

values and confidence intervals for the CATE. 

To estimate class-specific treatment effects in two-level data using Causal Forests, we do 

the following. First, instead of using a random forest to estimate the propensity score, we use a 

multilevel logistic regression in step 1 to account for clustering structures inside Causal Forests 

(Suk et al., 2020). Second, we run Causal Forests among units that are in the same latent class k. 

Combined, the modified CATE estimator using Causal Forests can be formalized as: 

 

 𝜏̂(𝐱, 𝐰, 𝑘) =
∑ α𝑖𝑗(𝐱,𝐰) (𝑌𝑖𝑗 − 𝑚̂𝑘

−𝑖𝑗
(𝐗𝑖𝑗 ,𝐖𝑗))(𝑍𝑖𝑗 − 𝑒̂𝑘(𝐗𝑖𝑗 ,𝐖𝑗))𝑖𝑗:𝐾𝑖𝑗=𝑘

∑ α𝑖𝑗(𝐱,𝐰)(𝑍𝑖𝑗 − 𝑒̂𝑘(𝐗𝑖𝑗 ,𝐖𝑗))
2

𝑖𝑗:𝐾𝑖𝑗=𝑘

  

 

Note that 𝑚̂𝑘
−𝑖𝑗  bears a subscript 𝑘 to denote that it has been estimated using data from 

individuals who belong to latent class 𝑘. Also, 𝑒̂𝑘  no longer has the −ij-superscript to denote that 

it has been estimated using a multilevel logistic regression instead of the default regression 

forests. Averaging 𝜏̂(𝐱, 𝐰, 𝑘) across all individuals in the same latent class k is our estimate of 

the average treatment effect within latent class 𝑘, i.e., 

 

𝜏̂(𝑘) =
1

𝑁𝑘
∑ 𝜏̂(𝐱,𝐰, 𝑘)

𝑖𝑗:𝐾𝑖𝑗=𝑘
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where 𝑁𝑘  denotes the sample size in each latent class, 𝑘. 

Finally, we briefly remark that instead of the proposed approach, an alternative approach 

to combine latent class estimates with ML methods is to use the estimated latent class as a 

“covariate” in ML methods; see Appendix F. We show in the Appendix that our approach has 

better finite sample performance than the alternative approach in terms of bias and mean squared 

error (MSE). 

Simulation Study 

Simulation Design and Evaluation 

We conducted a simulation study to investigate the performance of hybrid ML methods. 

Our data generating models follow Kim and Steiner (2015), Kim, Steiner, and Lim (2016), and 

our motivating data, which had a two-level structure with one continuous outcome and one 

binary treatment. We consider four continuous covariates, two of which are individual-level 

covariates and the other two are cluster-level covariates. We also assume two latent classes 

defined by the latent selection model discussed before and each latent class has its own unique 

treatment effect. The details of our data generating procedure are stated below. 

 

1.  Let nC1 and nC2 represent the number of clusters in latent class 𝑘 = 1 and latent class 

𝑘 = 2. For each cluster in each latent class, we generate the number of individuals 𝑛𝑗 based 

on drawing samples from a Normal distribution with mean nS set to either 30 or 50, 

variance v set to either 4 or 16, and round them to the nearest 

2.   For each individual 𝑖 in cluster 𝑗, randomly sample two cluster-level covariates, 

𝐖𝑗 = (𝑊1𝑗 ,𝑊2𝑗) and two individual-level covariates, 𝐗𝑖𝑗 = (𝑋1𝑖𝑗 , 𝑋2𝑖𝑗), from the 

following distributions 
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(
𝑊1𝑗

𝑊2𝑗
)~ [(

0
0
) , (

2 . 2
. 2 2

)] 

(
𝑋1𝑖𝑗
𝑋2𝑖𝑗

)~ [(
0.1𝑊1𝑗 + 0.05𝑊2𝑗 + 𝜅1𝑗
0.08𝑊1𝑗 + 0.1𝑊2𝑗 + 𝜅2𝑗

) , (
10 2
2 15

)] 

(
𝜅1𝑗
𝜅2𝑗
)~ [(

0
0
) , (

1 . 1
. 1 1

)] 

We remark that the individual-level covariates’ means µj are a function of the cluster-level 

covariates 𝐖𝑗 and random errors 𝜿𝑗. We set larger variances for individual-level covariates 

than cluster-level covariates to reflect typically higher variations in individual-level 

covariates than cluster-level covariates. 

3.  For each latent class 𝑘 = 1, 2, define the propensity score model 𝑒𝑘(⋅) based on a 

random effects logistic selection model. 

 

𝑙𝑜𝑔𝑖𝑡 (𝑒1(𝐗𝑖𝑗 ,𝐖𝑗)) = 0 + 0.15𝑋1𝑖𝑗 + 0.1𝑋2𝑖𝑗 + 0.1𝑊1𝑗 + 0.2𝑊2𝑗 + 0.2𝑋1𝑖𝑗𝑊2𝑗 + 𝑅𝑗1  

   𝑙𝑜𝑔𝑖𝑡 (𝑒2(𝐗𝑖𝑗 ,𝐖𝑗)) = −0.05 + 0.05𝑋1𝑖𝑗 − 0.05𝑋2𝑖𝑗 + 0.2𝑊1𝑗 + 0.05𝑊2𝑗 + 𝑅𝑗2  

   𝑅𝑗1~𝑁(0,0.5), 𝑅𝑗2~𝑁(0,0.2) 

 

Here, 𝑒𝑘(⋅) is the propensity score for individual 𝑖 in cluster 𝑗 which belongs to latent class 

𝑘. 𝑅𝑗𝑘  is the random effect for cluster 𝑗 in class 𝑘. The slope coefficients for Class 1 and 

Class 2 differ where Class 1 has a stronger selection than Class 2. The intra-class 

correlations for Class 1 and Class 2 are around 0.13 and 0.06, respectively. 

4.  For each individual 𝑖 in cluster 𝑗 which belongs to latent class 𝑘, generate individual 

treatment status, 𝑍𝑖𝑗  (0 = untreated; 1=treated) from a Bernoulli distribution with the 

propensity score specified above. 

 

𝑍𝑖𝑗 ∼ {
𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖 (𝑒1(𝐗𝑖𝑗 ,𝐖𝑗)) ,    if 𝑖 belongs to latent class 𝑘 = 1

𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖 (𝑒2(𝐗𝑖𝑗 ,𝐖𝑗)) ,    if 𝑖 belongs to latent class 𝑘 = 2
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5.  For each individual 𝑖 in cluster 𝑗 which belongs to latent class 𝑘, generate potential 

outcomes and observed outcomes based on random effects linear regression models. 

𝑌𝑖𝑗1(𝑧) = 100 + 2.5𝑧 + 2𝑋1𝑖𝑗 + 1𝑋2𝑖𝑗 + 2𝑊1𝑗 + 1.5𝑊2𝑗 + 0.5𝑋2𝑖𝑗𝑊1𝑗 + 0.3𝑋2𝑖𝑗
2 + 𝑈𝑗1 + 𝜖𝑖𝑗1 

𝑌𝑖𝑗2(𝑧) = 80 + 0𝑧 + 1𝑋1𝑖𝑗 + 0.5𝑋2𝑖𝑗 + 1𝑊1𝑗 + 0.5𝑊2𝑗 + 0.2𝑋2𝑖𝑗𝑊1𝑗 + 0.2𝑊1𝑗𝑊2𝑗 +𝑈𝑗2
+ 𝜖𝑖𝑗2 

𝑌𝑖𝑗 = 𝑍𝑖𝑗𝑌𝑖𝑗𝑘(1) + (1 − 𝑍𝑖𝑗)𝑌𝑖𝑗𝑘(0), 𝑈𝑗1~𝑁(0,10), 𝑈𝑗2~𝑁(0,7), 𝜖𝑖𝑗𝑘 ∼ 𝑁(0,100) 

 

The term 𝑈𝑗𝑘  is the random effect for cluster 𝑗 in latent class 𝑘, and 𝜖𝑖𝑗𝑘  is the random error 

for individual 𝑖 in cluster 𝑗 which belongs to latent class 𝑘. The treatment effect is positive 

for Class 1, but zero for Class 2 so that each latent class has distinct treatment effects. The 

intra-class correlations are 0.10 and 0.07 for Classes 1 and 2, respectively. Additionally, 

there are non-linear and/or interaction terms in the outcome model. 

 

In our simulation study, we varied the following simulation parameters: the size of each 

latent class, nC1 and nC2, and the mean size of each cluster nS. We examined the performance 

of hybrid ML methods—Hybrid Causal Forests, Hybrid BART, and Hybrid TMLE—in 

estimating latent class average treatment effects τ(k). In Appendix I, we examined the 

performance of the estimated individual CATE. As for software, we use the grf package 

(Tibshirani et al., 2019) for Causal Forests, bartCause package (Dorie & Hill, 2019) for BART, 

and tmle package (Gruber & van der Laan, 2012) for TMLE, all implemented in R (R Core 

Team, 2019). As a comparison, we ran within-class matching (Kim & Steiner, 2015; Kim et al., 

2016) as an alternative to hybrid ML methods which estimate average treatment effects within 

each latent class via propensity score within-class matching. In brief, within-class matching is a 

type of multilevel matching that matches treated and control units across clusters, but within the 

same latent classes defined by latent selection models. Within-class matching uses the same 

latent selection model as above to identify latent classes and requires specifying a weighing 
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function that depends on the estimated propensity score to obtain estimates of the treatment 

effect within each latent class. For our simulation, the propensity score for within-class matching 

was estimated using random effects logistic regression. For weighing, we used inverse 

probability weighting (IPW) and marginal mean weighing through stratification (MMW-S) 

(Hong & Hong, 2009). Specifically, the IPW estimator for latent class 𝑘 using within-class 

matching is  

 𝜏̂𝐼𝑃𝑊(𝑘) =
1

𝑁𝑘
∑

𝑌𝑖𝑗𝑍𝑖𝑗

𝑒𝑘(𝐗𝑖𝑗 ,𝐖𝑗)𝑖𝑗:𝐾𝑖𝑗=𝑘

−
1

𝑁𝑘
∑

𝑌𝑖𝑗(1 − 𝑍𝑖𝑗)

1 − 𝑒𝑘(𝐗𝑖𝑗,𝐖𝑗)𝑖𝑗:𝐾𝑖𝑗=𝑘

  

 

and the MMW-S estimator for latent class k using within-class matching is 

 

 
𝜔𝑧,𝑖𝑗(𝑘) =

{
 
 

 
 
𝐸𝑧1(𝑘)
𝑂𝑧1(𝑘)

    if 𝑒(𝐗𝑖𝑗 ,𝐖𝑗) in stratum 1 of latent class 𝑘

⋮                                                                                  
𝐸𝑧𝑆(𝑘)
𝑂𝑧𝑆(𝑘)

   if 𝑒(𝐗𝑖𝑗 ,𝐖𝑗) in stratum 𝑆 of latent class 𝑘

 

𝜏̂𝑀𝑀𝑊−𝑆(𝑘) =
1

𝑁
∑ 𝑌𝑖𝑗𝑍𝑖𝑗

𝑖𝑗:𝐾𝑖𝑗=𝑘

𝜔1,𝑖𝑗(𝑘) −
1

𝑁
∑ 𝑌𝑖𝑗(1 − 𝑍𝑖𝑗)

𝑖𝑗:𝐾𝑖𝑗=𝑘

𝜔0,𝑖𝑗(𝑘) 

 

 

where 𝑂𝑧𝑠(𝑘) is the observed frequency of individuals in treatment status 𝑧 ∈ {0, 1} and stratum 

𝑠 ∈ {1,2, . . . , 𝑆} of the distribution of the propensity score in latent class 𝑘, and 𝐸𝑧𝑠(𝑘) is the 

expected frequency assuming the distributions between treated and untreated units are the same 

across strata. We created 10 strata of propensity scores for MMW-S. 

We also computed the doubly robust (DR) estimator as follows: 

 

𝜏̂𝐷𝑅(𝑘) =
1

𝑁𝑘
∑ [

𝑌𝑖𝑗𝑍𝑖𝑗

𝑒𝑘(𝐗𝑖𝑗 ,𝐖𝑗)
−
𝑍𝑖𝑗 − 𝑒𝑘(𝐗𝑖𝑗 ,𝐖𝑗)

𝑒𝑘(𝐗𝑖𝑗 ,𝐖𝑗)
𝑚𝑘(𝐗𝑖𝑗 ,𝐖𝑗 , 1)] 

𝑖𝑗:𝐾𝑖𝑗=𝑘
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              −
1

𝑁𝑘
∑ [

𝑌𝑖𝑗(1 − 𝑍𝑖𝑗)

1 − 𝑒𝑘(𝐗𝑖𝑗,𝐖𝑗)
+
𝑍𝑖𝑗 − 𝑒𝑘(𝐗𝑖𝑗 ,𝐖𝑗)

1 − 𝑒𝑘(𝐗𝑖𝑗 ,𝐖𝑗)
𝑚𝑘(𝐗𝑖𝑗 ,𝐖𝑗 , 0)]

𝑖𝑗:𝐾𝑖𝑗=𝑘

 

 

Here, 𝑒𝑘(𝐗𝑖𝑗 ,𝐖𝑗) is the propensity score estimated by random-effects logistic regression models 

within each latent class 𝑘. 𝑚𝑘(𝐗𝑖𝑗 ,𝐖𝑗 , 0) and 𝑚𝑘(𝐗𝑖𝑗 ,𝐖𝑗 , 1) are outcome models based on 

random-effects linear regression models within each latent class k. Both models are specified to 

be the same as those from the data generating models. For more details on other propensity score 

techniques, see Schafer and Kang (2008), Austin (2011), and Steiner and Cook (2013). 

Each method was evaluated based on the absolute bias and MSE of class-specific average 

treatment effect estimates. Specifically, given 𝑚 = 1, . . . ,400 simulation replications and their 

corresponding estimates 𝜏̂𝑚(𝑘) (𝑚 = 1, . . . ,400), the absolute bias and MSE within each class 

are defined as: 

|Bias(𝑘)| = |
1

400
∑(𝜏̂𝑚(𝑘) − τ(𝑘))

400

𝑚=1

| ,    𝑀𝑆𝐸 =
1

400
∑(𝜏̂𝑚(𝑘) − τ(𝑘))

2

400

𝑚=1

 

 

We also evaluate the overall performance across latent classes by computing the overall bias and 

MSE as follows: 

 

|Bias| = |
1

400
∑∑

𝑁𝑘
∗

𝑁𝑚

2

𝑘=1

400

𝑚=1

(𝜏̂𝑚(𝑘) − 𝜏(𝑘))| , 𝑀𝑆𝐸 =
1

400
∑ ∑

𝑁𝑘
∗

𝑁𝑚

2

𝑘=1

400

𝑚=1

(𝜏̂𝑚(𝑘) − τ(𝑘))
2 

 

The term 𝑁𝑘
∗  denotes the true sample size in each latent class 𝑘 and 𝑁𝑚  denotes the total sample 

size in each simulation replication. 
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Simulation Results 

Table 3.1 summarizes the mean percentage of correctly identifying latent class 

membership. Mean percentages for modal assignment were calculated by comparing the true 

class membership of each individual with the estimated class membership from the mixture 

model, while for proportional assignment, the mean percentages were computed by using a 

weighted average of the latent class posterior probabilities in each true class. We found that 

modal assignment classified the latent classes more accurately than proportional assignment. 

Also, classification rates were affected by cluster sizes and the number of clusters. In particular, 

we found that increasing the size of the clusters had a larger impact on classification rates than 

increasing the number of clusters. 

 

Table 3.1  

Classification rate (%) in class membership 

(nC1, nC2, nS) Modal Assignment Proportional Assignment 

(25, 25, 30) 73.42 71.04 

(25, 25, 50) 84.04 81.22 

(50, 50, 30) 78.81 74.92 
Note: nC1, nC2, and nS represent the number of clusters for the first latent class, the number of clusters for the 

second latent class, and average cluster sizes, respectively. 

 

Figure 3.2 displays results of class-specific average treatment effect estimates; see Table 

G1 in Appendix G for numerical results. Across simulation conditions, hybrid ML methods 

generally performed better than DR and non-DR methods in terms of overall bias and MSE. 

MSE. Indeed, it is not surprising that with the misclassification of the latent classes, the outcome 

model and/or the propensity scores are inherently incorrect inside the DR and non-DR estimators 

and thus, traditional parametric methods—IPW, MMW-S, and DR estimators—are directly 

affected by misclassified units in latent classes. In contrast, ML methods are often “local” non-

parametric methods which are more robust to model mis-specifications. Of course, if the 
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misclassification rate is fairly high, then it is unlikely that any method will work properly. Also, 

as seen from Figure 3.2, when the sample sizes increased from (25, 25, 30) to (25, 25, 50) or (50, 

50, 30), we saw that overall bias and overall MSE decreased across different estimators, but the 

magnitudes varied depending on the exact sample proportions within each latent class. 

 

 

Figure 3.2. Performance of class-specific treatment effect estimates with classification rates and 

sample sizes. The three values in parentheses represent the number of clusters for the first latent class, the 

number of clusters for the second latent class, and the average cluster sizes, respectively. IPW represents 

inverse-propensity weighting, and MMW-S represents marginal mean weighting through stratification. DR 

represents the doubly robust estimator. BART represents Bayesian additive regression trees, and TMLE 

represents targeted maximum likelihood estimation. The true treatment effects are 2.5 and 0 for the first and 

second latent classes, respectively. 

 

We remark that the bias of the IPW estimator in latent class 1 was surprisingly small, but 

the overall bias was still larger than other methods. This suggests that the IPW estimator traded 
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off a large bias reduction in latent class 1 at the expense of an increase in bias in latent class 2. 

But this trade-off was not “balanced” and led to a large overall bias. In contrast, hybrid methods 

like BART had a large bias in latent class 1 and a small bias in latent class 2 but achieved the 

smallest overall bias. In Appendix H, we further examined the bias trade-off between latent 

classes and found that the IPW estimator exhibited this phenomenon in other settings. Overall, 

our results demonstrate that hybrid ML methods provides accurate and precise estimates of the 

treatment effect and are an attractive alternative to those based on parametric propensity score 

techniques, IPW and MMW-S, or parametric DR methods. 

 

TIMSS Data Study: The Effects of Private Science Lessons 

Data and Variables 

We revisit the question in the introduction and study the heterogeneous effects of private 

science lessons on students’ science achievement scores where we suspected distinct latent 

selection processes across clusters of students. The data comes from the 2015 Trends in 

International Mathematics and Science Study (TIMSS) data. TIMSS is an international 

educational assessment that examines the progression of students’ performance in mathematics 

and science and it was first conducted in 1995 by the International Association for the Evaluation 

of Educational Achievement (IEA). Since 1995, TIMSS has been conducted for 4-th and 8-th 

graders every four years in more than 40 countries. The recent data collection, which took place 

in 2015, was conducted in 60 countries and a new data collection was planned in 2019. The data 

are based on a two-stage stratified cluster sampling; schools are chosen first according to each 

country’s important demographic variables (e.g., in Korea, school location, and/or whether 

schools are gendered), and then at least one intact classroom is randomly chosen from each 
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school (Martin, Mullis, & Hooper, 2016). We used the Korea TIMSS 2015 data of 8th graders 

for our analysis. 

The original data included 5,309 students from 150 middle schools with varying school 

sizes (a range of 6 to 75; mean of 35.4 students per school; median of 32 students per school). 

We removed students with 1) inconsistent responses about their attendance of private science 

lessons and 2) missing information in 7 out of 12 covariates (see below for a list of covariates). 

Our final sample was 4,874 students (91.81% of the original data) from 149 schools. For 

simplicity and to demonstrate the new methodology, we did not consider multiple plausible 

values of student achievements in the sciences and ignored sampling weights. However, to 

rigorously evaluate the effects of private lessons and generalize these results, it is necessary to 

consider five different plausible values and sampling weights; see Rutkowski, Gonzalez, Joncas, 

and von Davier (2010) and Foy, Arora, and Stanco (2017) for 

details. 

The treatment variable was whether a student received private science lessons (𝑍𝑖𝑗 = 1) 

or not (𝑍𝑖𝑗 = 0). The outcome 𝑌𝑖𝑗  was the first plausible value of achievement in the sciences. 

We included 12 covariates that affected the selection and outcome processes, including six 

student-level covariates 𝐗𝑖𝑗  and six school-level covariates 𝐖𝑗. The student-level covariates were 

student’s gender (male), fathers’ highest education levels (dad.edu, with three levels; no college, 

college graduates dad.cll, and don’t know dad.q), the number of books at home (books25, with 

two levels; more than 25, and less than or equal to 25), the number of home study supports 

(hspprt, with three levels; neither own room nor Internet connection, one of them hspprt.1, and 

both hspprt.2), student’s confidence in science (sci.conf), and student’s perceived value of 

science (sci.value). The school-level covariates were school’s gender type (gender.type, with 
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three levels; all-boys, all-girls girl.sch, and co-education coedu), the percentage of economically 

disadvantaged students (pct.disad, with four levels; 0 to 10%, 11 to 25% disad.11, 26 to 50% 

disad.26, and more than 50% disad.M50), school location (city.size, with four levels; urban 

city.U, suburban city.Sub, medium size city city.M, and small town), science instruction affected 

by resource shortage (res.short), school’s emphasis on academic success (aca.emph), and school 

discipline problems (dscpn). 

 

Results 

In the first step of our hybrid ML methods, we determined the optimal number of latent 

classes by comparing the AIC measures under different numbers of latent classes. The two-class 

model had the lowest AIC and Latent Class 1 had 1,556 students from 44 schools, and Latent 

Class 2 had 3,318 students from 105 schools. Latent Class 1 was about 60% smaller than Latent 

Class 2; Latent Class 1 had 31.9% of the total students from 29.5% of the schools, and Latent 

Class 2 had 68.1% of the total students from 70.5% of the schools. 

Figure 3.3 plots the estimated selection models 𝑒̂𝑘 from each latent class as a function of 

two observed covariates, value in science and resource shortages. The figure contains the line of 

best fit to guide visualization. For Latent Class 2, the propensity of taking private lessons was 

linearly increasing with how much value students placed in the sciences (sci.value). However, 

for Latent Class 1, the propensity remained flat and there was no discernable relationship 

between sci.value and selection probabilities. We also observed that a cluster-level covariate 

res.short increased the selection probabilities in Class 1, but there was no increasing pattern in 

Class 2. 
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Figure 3.3. Class-specific selection models with respect to individual-level and cluster-level 

covariates. Each dot indicates a students’ estimated logit propensity score, logit(𝑒̂𝑘). Line of best fit is plotted 

to guide visualization. 

 

We also summarize the student-level and school-level variables in Table 3.2. For most 

covariates, the two latent classes showed similar descriptive statistics. However, we found 

statistically significant differences in the propensity of taking private science lessons and father’s 

educational level. Students in Class 1 were more likely to have a higher probability of taking 

private lessons and come from families whose father did not hold a college degree than those in 

Class 2. Looking at both Table 3.2 and Figure 3.3, students in Class 1 likely sought private 

lessons because they may receive inadequate lessons at schools, whereas those in Class 2 likely 

sought private lessons because their families had stronger education backgrounds and may had 

placed a high value in science. Overall, as suspected from our subject-matter expertise, the latent 

class selection model revealed different latent structures where students in each latent class had 

different propensities to seek private tutors. 

Figure 3.4 shows the distributions of individual CATE estimates from Hybrid Causal 

Forests. The figure also shows vanilla Causal Forests that did not consider latent class 

membership. Using Hybrid Causal Forests, we see two different distributions centering around 



 

 

95 

one and ten, respectively, to reflect variation in treatment effects between latent classes. In 

contrast, the vanilla Causal Forests only shows variation in treatment effects in the observed 

covariates and centers around four. Appendix J shows the distributions of CATE based on other 

ML methods. 

 

Table 3.2  

Descriptive statistics of the two latent classes 

 Class 1 Class 2 

 Mean or 

Percent 

Std. Dev Mean or 

Percent 

Std. Dev 

Student-level Variables (N=1,556 students) (N=3,318 students) 

science.score 557.84 75.94 555.97 76.25 

math.score 608.24 82.74 605.13 84.63 

propensity.score 0.42  0.28  

sci.conf 8.68 2.09 8.61 2.11 

sci.value 8.98 1.64 8.92 1.64 

male 51.6%  48.6%  

dad.cll 34.4%  37.5%  

dad.q 28.2%  28.1%  

books25 86.1%  86.0%  

hssprt.2 70.2%  71.9%  

School-level Variables (J=44 schools) (J=105 schools) 

res.short 11.71 2.04 11.79 2.00 

aca.demph 11.14 1.84 11.10 1.87 

dscpn 10.74 2.07 11.16 1.99 

girl.sch 15.9%  21.9%  

coedu 65.9%  58.1%  

disad.11 29.5%  37.1%  

disad.26 27.3%  23.8%  

disad.M50 11.4%  10.5%  

city.U 40.9%  35.2%  

city.Sub 6.8%  9.5%  

city.M 31.8%  27.6%  
Note: Values in bold are significant differences between classes at α=0.05. 
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Figure 3.4. Distributions of individual CATE estimates from Causal Forests. The left shows Hybrid 

Causal Forests discovering two latent classes, while the right shows vanilla Causal Forests without 

consideration for latent classes. Dashed lines represent class-specific treatment effect estimates. 

 

Table 3.3 summarizes average treatment effect estimates of private science lessons within 

each latent class. As a comparison, we used within-class IPW estimator, MMW-S, and DR 

estimator with parametric propensity score or outcome models to estimate class-specific average 

treatment effects; we remark that hybrid ML methods do not require a priori specification of the 

propensity score or the outcome model. We included covariate balance plots in Appendix K. 

After estimating the average treatment effect within latent classes, we found that the prima facie 

effects amounted to 16.99 and 20.24 for Class 1 and Class 2, respectively. The prima facie effect 

is the unadjusted mean difference in science achievement scores between the treated and 

untreated groups. The treatment effects with IPW, MMW-S, and DR estimators varied 

depending on the latent class; there were significantly positive effects in Class 1, while no 

significant effects existed in Class 2. When we implemented hybrid ML methods, we observed 

that the average treatment effect estimates in both classes were similar to parametric methods 

except that the estimates for Class 2 were generally smaller than parametric methods. 
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For the one class model (far right column) where we assumed no latent class structure, 

the prima facie effect amounted to 18.96 points. After applying MMW-S, the effect decreased to 

1.73 points, which was not statistically significant. However, one-class IPW and DR methods 

produced positive, significant, but reduced effects. Also, the average treatment effects with 

hybrid ML methods were positive, but slightly smaller than IPW and DR estimators. However, 

as mentioned before, none of these effects uncovered the potential effect heterogeneity within 

latent classes. 

 

Table 3.3  

Comparisons of the class-specific average treatment effect estimates 

 Two Classes One Class 

 Class 1 Class 2   

 Estimate (SE) Estimate (SE) Estimate (SE) 

Prima facie 
(unadjusted) 

16.99 (3.88) 20.24 (2.93) 18.96 (2.32) 

IPW 11.62 (2.58)   2.93 (2.94)   5.36 (2.06) 

MMW-S 12.28 (2.69)   2.33 (2.78)   1.73 (2.08) 

DR 11.78 (2.64)   3.02 (2.89)   5.39 (1.99) 

Hybrid Causal Forests 10.79 (2.11)   1.24 (2.14)   4.28 (1.58) 

Hybrid BART 12.24 (3.26)   0.73 (2.43)   4.36 (1.90) 

Hybrid TMLE 12.19 (3.13)   1.40 (2.39)   4.54 (1.87) 
Note: Standard errors (SE) were estimated using bootstrap sampling with 5,000 repetitions. Estimates in bold 

are significant at α=0.05. IPW represents inverse-propensity weighting, and MMW-S represents marginal 

mean weighting through stratification. DR represents the doubly robust estimator. BART represents Bayesian 

additive regression trees, and TMLE represents targeted maximum likelihood estimation. 

 

 

Discussion and Conclusions 

We propose hybrid ML methods to estimate heterogeneous treatment effects between 

latent classes. Our proposed hybrid approach uses context-specific finite mixture models to 

identify different latent classes and ML-based causal inference methods to estimate treatment 

effects within each class. Broadly speaking, hybrid ML methods extend the capacities of ML 
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methods to capture treatment effect heterogeneity defined by latent class mixture models. Our 

simulation study revealed that hybrid ML methods are an attractive alternative to existing 

propensity score methods. Finally, in our data analysis, we demonstrated that hybrid ML 

methods were able to capture heterogeneous effects and the average treatment effect for each 

latent class. 

We make three concluding remarks about hybrid ML methods. First, ensuring sufficient 

sample sizes is important when using multilevel latent class mixture models. We observed that 

increasing cluster sizes affected the proportions of correctly identifying class membership and 

we generally recommend using hybrid ML methods when the number of clusters is more than 50 

and the mean cluster size is more than 30 so that the total sample size is at least 1500, the 

minimum sample size in our simulation design. Hybrid ML methods did perform well in our 

simulation study even when the maximum misclassification rate was about 27%. However, in 

general, if there are insufficient samples, there is an increased likelihood of misclassifying units 

and consequently, an increased risk of biasing the average treatment effect. Second, though ML 

methods can flexibly fit the outcome model and the propensity score model, this does not give a 

free pass for mis-classification in latent class models, and it would be an interesting topic of 

future research to design ML methods to be robust to biases arising from mis-classification in 

latent class models. Third, we believe that our work here provides a more systematic approach of 

applying ML methods for causal inference to education and psychology. In particular, we hope 

that the work provides a template for researchers to combine other types of latent class modeling 

with any ML-based causal inference methods to better understand the nature of treatment effect 

heterogeneity and the underlying latent structures in the data.  
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CONCLUSIONS 

 

The three studies of this dissertation discussed different methodological challenges 

associated with estimating treatment effects in educational assessment data. Each study proposed 

appropriate methods and demonstrated the proposed methods in large-scale educational 

assessment data such as NAEP and TIMSS data. Specifically, in the first study, the proposed 

regression discontinuity design with an ordinal running variable was used to assess the effects of 

extended time accommodations on students’ math proficiency from the 2017 NAEP data. The 

second study investigated optimal modifications for Causal Forests to enhance its performance in 

multilevel/clustered observational data, and the proposed modifications including injecting 

multilevel propensity scores (the most effective strategy) were applied to TIMSS data for 

estimating the effects of private math lessons on students' math achievement scores. The third 

study proposed a two-step hybrid procedure for ML-based causal inference methods to estimate 

heterogeneous treatment effects between latent classes; the first step uses context-specific finite 

mixture models to identify different latent classes, and the second step uses ML-based causal 

inference methods to estimate treatment effects within each class. The proposed approach was 

performed to assess the effects of private science lessons on students’ science achievement 

scores. Overall, these three studies provide useful guidelines and suggestions for applied 

researchers who wish to use regression discontinuity designs or ML-based causal inference 

methods in educational assessment data. 

There are some limitations to this study that may impact the interpretation of the results 

from empirical examples. First, we did not incorporate multiple plausible values of students’ 

proficiency and ignored sampling weights (and jackknife replicate weights). Thus, our empirical 
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results did not generalize to the target population of NAEP or TIMSS. Second, the second and 

third studies assume that there are no unmeasured confounders. But the real data examples in the 

two studies are based on the 2015 TIMSS data that were cross-sectional data and lacked the 

variable of the pre-test score. Since the pre-test score is the most important predictor of the post-

test score, our effect estimates may still have the remaining bias from unmeasured confounders. 

Therefore, it would be better to conduct a sensitivity analysis to check the robustness of our 

effect estimates against unmeasured confounding or to use longitudinal datasets like ECLS-K 

that contain pre-test scores. Despite these limitations, this dissertation provides researchers with 

modern tools to estimate causal effects in increasingly large and complex educational assessment 

data. 
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APPENDICES 

Appendix A 

Table A1 provides a list of the variables used for this study from the NAEP 2017 data. 

Table A1 

Description of variables to evaluate the effects of ETA 

Variable Dataset Description 

ETA Eligible LEP Whether this student is ELL or not 

ETA Received  Whether this student receives ETA or not; constructed 

by two variables: 

 ACCOM2 Whether this student receives any types of 

accommodations 

 ACCEXT Whether this student receives ETA 

ELL EP  Discrete ELL English proficiency with 6 levels: No 

Proficiency, ELL Beginning, ELL Intermediate, ELL 

Advanced, Formerly ELL, and Never ELL; constructed 

by two variables: 

 ELL Student has limited English proficiency 

 XL04303 Student’s English proficiency: Reading English 

Proficiency MTHCM1-20 20 plausible values of math proficiency 

 RRPCM1-20 20 plausible values of reading proficiency 

SD SD3 Whether this student has disabilities or not 

Gender DSEX Whether this student is male or female 

Race/Ethnicity SDRACEM Student’ race/ethnicity: White, Black, Hispanic, 

Asian/Pacific Islander, American Indian/Alaska Native, 

and Unclassified 

Free Lunch SLUNCH1 Student’s eligibility for National School Lunch 

Program: eligible, not eligible, and info not available 

ELL Grade Level XL04202 ELL’s grade level of performance in NAEP subject: 

at/above, 1 year below, 2 or more years below, no 

instruction, and I don’t know 

English 

Instruction 

XL04101 How long this student has been receiving instruction in 

English: No instruction in English, less than 1 year, 1-2 

years, 2-3 years, 3 years or more, and I don’t know 

US School XL04801 How long this student has been in US schools: 1 year or 

more and less than 1 year 

Primary Language XL04601 Student’s primary language: Spanish and Other 

SOURCE: U.S. Department of Education, National Center for Education Statistics, National Assessment of 

Educational Progress (NAEP) 2017. 
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Table A2 summarizes the covariate distributions depending on students’ eligible status and the 

receipt status of ETA in mathematics. The responses of English instruction, US school, and 

primary language were measured from the ELL contextual questionnaire. 

 

Table A2 

Descriptive statistics 

 Eligible status Treatment receipt status 

 ELL Non-ELL Treated Untreated 

Variable N N N N 

Total 4,940 111,970 1,640 115,270  

Gender: Male 2,620 54,310 860 56,070 

Race: White 290 60,000 80 60,200  

Race: Black 190 21,220 50 21,360  

Race: Hispanic 3,720 19,010 1,320 21,410  

Race: Asian/PI 640 5,080 160 5,560 

Race: AI/AN 80 1,990 10 2,050 

Free Lunch: Eligible 4,130 57,540 1,420 60,260  

Eng. Instr: No 320 — 110 220  

Eng. Instr.: < 1 yr 220 — 120 100  

Eng. Instr.: 1-2 yrs 460 — 210 250 

Eng. Instr.: 2-3 yrs 450 — 200 260 

Eng. Instr.: > 3 yrs 3,410 — 960 2,450 

Eng. Instr.: don’t know 80 — 20 60 

US School : < 1 yr 60 — 30 30 

US School : ≥ 1 yr 4,890 — 1,580 3,310 

Primary language: Spanish 3,520 — 1,260 2,260 

Primary language: Other 1,420 — 340 1,070 

— Not available. 

NOTE: English Instruction, US School, and Primary languages are from an ELL questionnaire. Numbers N are 

rounded to nearest tens, and details may not sum to a total due to rounding. The percentages in parentheses are 

calculated based on unrounded numbers. 

SOURCE: U.S. Department of Education, National Center for Education Statistics, National Assessment of 

Educational Progress (NAEP) 2017. 
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Appendix B 

We use an instrumental variable regression or two-stage least squares (TSLS) regression to 

estimate LATE. We run the model for 𝑍𝑖𝑗𝑘  (the endogenous regressor) as the first-stage 

regression that regresses 𝑍𝑖𝑗𝑘  on instrument 𝐴𝑖𝑗𝑘  and all the other covariates. Then, we run the 

following model as the second-stage regression: 

 

𝑌𝑖𝑗𝑘 = 𝛾0 + 𝛾1𝑍𝑖𝑗𝑘 + 𝛾2(𝑋𝑖𝑗𝑘 − 𝑥𝑐) + 𝛾3𝐴𝑖𝑗𝑘(𝑋𝑖𝑗𝑘 − 𝑥𝑐) +∑𝛾𝑤𝑊𝑖𝑗𝑘 + 𝑠𝑗 + 𝑢𝑘

+ 𝜖𝑖𝑗𝑘 

(1.3) 

 

We extract predicted values of 𝑍𝑖𝑗𝑘  from model (2) and substitute them into model (3) as is 

standard in the TSLS procedure. Then, we can estimate 𝛾1 = 𝜏𝐿𝐴𝑇𝐸(𝑥𝑐) that represents the 

LATE at the cutoff of “ELL Advanced”, that is, the effect of receiving ETA among the complier 

students in the “ELL Advanced” category. 
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Appendix C 

 

Table C1 provides the compliance rate by ELL English proficiency categories. 

 

Table C1 

Compliance by ELL English Proficiency Categories 

Eligibility Non-Received Received 

No Proficiency 10 # 

ELL Beginning 200 120 

ELL Intermediate 1,040 570 

ELL Advanced 2,090 920 

Formerly ELL 1,980 # 

Never ELL 109,950 30 
NOTE: Numbers are rounded to nearest tens. #s are rounds to zero. Details may not sum to a total due to 

rounding. 

SOURCE: U.S. Department of Education, National Center for Education Statistics, National Assessment of 

Educational Progress (NAEP) 2017. 
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Appendix D 

The data generating model for three-level data is stated below.  

1.  For each level-2 cluster 𝑗 = 1, . . . , 𝐽𝑘  (e.g., classes) of level-3 cluster 𝑘 = 1, . . . , 𝐾 (e.g., 

schools), generate number of individuals per cluster 𝑛𝑗𝑘  by drawing a number from a normal 

distribution with mean 𝐼 and standard deviation 𝑠𝑑 and rounding it to the nearest integer. 

2.   For each individual 𝑖 = 1,… , 𝑛𝑗𝑘  in level-2 cluster 𝑗 and level-3 cluster 𝑘, generate level-3, 

level-2, and level-1 covariates 𝐐𝑘 = (𝑄1𝑘 , 𝑄2𝑘), 𝐖𝑗𝑘 = (𝑊1𝑗𝑘 ,𝑊2𝑗𝑘) and 𝐗𝑖𝑗𝑘 = (𝑋1𝑖𝑗𝑘 , 𝑋2𝑖𝑗𝑘) 

as follows.  

                                    𝑄1𝑘~𝑈[0, 1], 𝑄2𝑘~𝑈[0, 1]  

(
𝑊1𝑗𝑘

𝑊2𝑗𝑘
)~𝑁 [(

0.1𝑄1𝑘 + 0.05𝑄2𝑘 + 𝜅1𝑘
0.08𝑄1𝑘 + 0.1𝑄2𝑘 + 𝜅2𝑘

) , (
2 . 2
. 2 2

)] 

(
𝑋1𝑖𝑗𝑘
𝑋2𝑖𝑗𝑘

)~𝑁 [(
0.1𝑊1𝑗𝑘 + 0.05𝑊2𝑗𝑘 + 0.1𝑄1𝑘 + 0.02𝑄2𝑘 + 𝜅1𝑗𝑘
0.08𝑊1𝑗𝑘 + 0.1𝑊2𝑗𝑘 + 0.05𝑄1𝑘 + 0.01𝑄2𝑘 + 𝜅2𝑗𝑘

) , (
10 2
2 15

)] 

(
𝜅1𝑘
𝜅2𝑘

)~𝑁 [(
0
0
) , (

0.5 0
0 0.5

)] , (
𝜅1𝑗𝑘
𝜅2𝑗𝑘

)~𝑁 [(
0
0
) , (

1 . 1
. 1 1

)] 

Note that level-2 covariates form a hierarchical model with level-3 covariates 𝑄1𝑘 , 𝑄2𝑘, random 

errors 𝜅1𝑘, 𝜅2𝑘, and random variances. Similarly, the means of level-1 covariates are a function 

of upper-level covariates 𝑊1𝑗𝑘,𝑊2𝑗𝑘 ,𝑄1𝑘 , 𝑄2𝑘 . 

3.  Generate individual treatment status 𝑍𝑖𝑗𝑘  from the following random-effects logistic 

propensity score model. 

𝑙𝑜𝑔𝑖𝑡(𝑒𝑖𝑗𝑘) = −0.2 + 0.1𝑋1𝑖𝑗𝑘 + 0.03𝑋2𝑖𝑗𝑘 + 0.1𝑊1𝑗𝑘 + 0.08𝑊2𝑗𝑘 + 0.1𝑄1𝑘 + 0.05𝑄2𝑘
+ 𝑅𝑗𝑘

𝑊 + 𝑅𝑘
𝑄 , 𝑅𝑗𝑘

𝑊 ∼ 𝑁(0, 1), 𝑅𝑘
𝑄 ∼ 𝑁(0, 1) 

 

𝑍𝑖𝑗𝑘 ∼ 𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖(𝑒𝑖𝑗𝑘) 
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where 𝑒𝑖𝑗𝑘  is the propensity score for individual 𝑖 in level-2 cluster 𝑗 and level-3 cluster 𝑘, and 

𝑅𝑗𝑘
𝑊 and 𝑅𝑘

𝑄  are normally distributed random effects for level-2 clusters and level-3 clusters, 

respectively. 

4.  Generate the potential outcomes 𝑌𝑖𝑗𝑘(1), 𝑌𝑖𝑗𝑘(0) and observed outcome 𝑌𝑖𝑗𝑘 from a random-

effects linear regression model. 

𝑌𝑖𝑗𝑘(𝑧) = 100 + 2 ∙ 𝑧 + 2𝑋1𝑖𝑗𝑘 + 1𝑋2𝑖𝑗𝑘 + 2𝑊1𝑗𝑘 + 1.5𝑊2𝑗𝑘 + 1𝑄1𝑘 + 0.5𝑄2𝑘 + 𝑈𝑗𝑘
𝑊

+ 𝑈𝑘
𝑄 + 𝜖𝑖𝑗𝑘 , 𝑈𝑗𝑘

𝑊~𝑁(0, 10), 𝑈𝑘
𝑄~𝑁(0, 7), 𝜖𝑖𝑗 ∼ 𝑁(0, 100) 

 

𝑌𝑖𝑗𝑘 = 𝑍𝑖𝑗𝑘𝑌𝑖𝑗𝑘(1) + (1 − 𝑍𝑖𝑗𝑘)𝑌𝑖𝑗𝑘(0) 

where 𝑈𝑗𝑘
𝑊  and 𝑈𝑘

𝑄 are normally distributed random effects for level-2 cluster 𝑗 of level-3 cluster 

𝑘, respectively. 𝜖𝑖𝑗𝑘 is the random error for individual 𝑖 in level-2 cluster 𝑗 of level-3 cluster 𝑘. 
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Appendix E 

The data generating model for cross-classified data is stated below.  

1.  For each factor-1 cluster 𝑗 = 1, . . . , 𝐽, generate number of individuals (e.g., students) per 

cluster 𝑛𝑗 (e.g., schools) by drawing a number from a normal distribution with mean 𝑛𝐼 and 

standard deviation sd and rounding it to the nearest integer. 

2. Create factor-2 Cluster labels 𝑘 = 1, . . . , 𝐾, (e.g., neighborhoods) according to Meyers and 

Beretvas (2006). Here, suppose there is no correlation between residuals and there are three 

feeders from one factor to the other factor. Each factor-1 cluster sends 70% of its individuals to 

the most adjacent factor-2 cluster, 15% of its individuals to the next closest factor-2 cluster, and 

15% of its individuals to the third closest. The first factor-1 cluster sends 80% of its individuals 

to the most adjacent factor-2 cluster, and the rest of 20% to the next closest. Individuals of the 

last factor-1 cluster are distributed in the same way as the first factor-1 cluster. 

3.   For each individual 𝑖 = 1,… , 𝑛(𝑗𝑘) in factor-1 cluster 𝑗 and level-3 cluster 𝑘, generate level-3, 

level-2, and level-1 covariates 𝐖𝑗 = (𝑊1𝑗 ,𝑊2𝑗), 𝐐𝑘 = (𝑄1𝑘 , 𝑄2𝑘), and 𝐗𝑖(𝑗𝑘) =

(𝑋1𝑖(𝑗𝑘), 𝑋2𝑖(𝑗𝑘)) as follows.  

    (
𝑊1𝑗

𝑊2𝑗
)~ 𝑁 [(

0
0
) , (

2 . 2
. 2 2

)],   (
𝑄1𝑗
𝑄2𝑗

)~𝑁 [(
0
0
) , (

1 . 1
. 1 1

)] 

(
𝑋1𝑖(𝑗𝑘)
𝑋2𝑖(𝑗𝑘)

)~ 𝑁 [(
0.1𝑊1𝑗 + 0.05𝑊2𝑗 + 𝜅1𝑗
0.08𝑊1𝑗 + 0.1𝑊2𝑗 + 𝜅2𝑗

) , (
10 2
2 15

)] 

    (
𝜅1𝑗
𝜅2𝑗
)~ 𝑁 [(

0
0
) , (

1 . 1
. 1 1

)] 

Note that individual-level covariates form a hierarchical model with factor-1 covariates 

𝑊1𝑗 ,𝑊2𝑗, random errors 𝜅1𝑗, 𝜅2𝑗, and random variances. 
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4.  Generate individual treatment status 𝑍𝑖(𝑗𝑘) from the following cross-classified random-effects 

logistic propensity score model. 

𝑙𝑜𝑔𝑖𝑡(𝑒𝑖(𝑗𝑘)) = −0.2 + 0.1𝑋1𝑖(𝑗𝑘) + 0.03𝑋2𝑖(𝑗𝑘) + 0.1𝑊1𝑗 + 0.08𝑊2𝑗 + 0.1𝑄1𝑘
+ 0.05𝑄2𝑘 + 𝑅𝑗

𝑊 + 𝑅𝑘
𝑄 , 𝑅𝑗

𝑊 ∼ 𝑁(0, 1), 𝑅𝑘
𝑄 ∼ 𝑁(0, 0.5) 

 

𝑍𝑖(𝑗𝑘) ∼ 𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖(𝑒𝑖(𝑗𝑘)) 

where 𝑒𝑖(𝑗𝑘)is the propensity score for individual 𝑖 in cluster 𝑗. 𝑅𝑗
𝑊 and 𝑅𝑘

𝑄  are normally 

distributed random effects for Factor-1 cluster 𝑗 and Factor-2 cluster 𝑘, respectively. 

5.  Generate the potential outcomes 𝑌𝑖(𝑗𝑘)(1), 𝑌𝑖(𝑗𝑘)(0) and observed outcome 𝑌𝑖(𝑗𝑘) from a cross-

classified random-effects linear regression model. 

𝑌𝑖(𝑗𝑘)(𝑧) = 100 + 2 ∙ 𝑧 + 2𝑋1𝑖(𝑗𝑘) + 1𝑋2𝑖(𝑗𝑘) + 2𝑊1𝑗 + 1.5𝑊2𝑗 + 1𝑄1𝑘 + 0.5𝑄2𝑘 + 𝑈𝑗
𝑊 + 𝑈𝑘

𝑄

+ 𝜖𝑖(𝑗𝑘), 𝑈𝑗
𝑊~𝑁(0, 10), 𝑈𝑘

𝑄
~𝑁(0, 7), 𝜖𝑖(𝑗𝑘) ∼ 𝑁(0, 100) 

𝑌𝑖(𝑗𝑘) = 𝑍𝑖(𝑗𝑘)𝑌𝑖(𝑗𝑘)(1) + (1 − 𝑍𝑖(𝑗𝑘))𝑌𝑖(𝑗𝑘)(0) 

where 𝑈𝑗
𝑊  and 𝑈𝑘

𝑄 are normally distributed random effects for factor-1 cluster 𝑗 and factor-2 

cluster 𝑘, respectively. 𝜖𝑖(𝑗𝑘)  is the random error for individual 𝑖 in factor-1 cluster 𝑗 and factor-2 

cluster k. 
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Appendix F 

We compared the performance between our proposed sequential/two-step approach and an 

alternative “covariate” approach where the estimated class membership is used as an additional 

covariate. Specifically, the proposed approach implements ML methods within each latent class 

and estimates the ATE within each class, while the covariate approach includes the estimated 

class membership variable as another covariate in ML methods and estimates the conditional 

ATE defined by this covariate. We suspect that under some assumptions, both are asymptotically 

equivalent, but they may have different finite-sample properties and we investigate them through 

a small simulation study below. 

Table F1 provides the performance of class-specific ATE estimates between the two 

approaches using the data generating model from the main text. We saw that biases from our 

two-step approach were generally smaller than those from the covariate approach. But as the 

cluster size increased, biases became smaller for both approaches and the differences between 

the two were generally negligible. Also, the MSEs were consistently smaller under our approach 

across different cluster sizes. While the simulation study is small, the result gives some 

confidence that our approach outperforms the covariate approach in terms of finite-sample bias 

and MSE. 
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Table F1 

Comparison between the proposed sequential approach and the covariate approach 

 Latent Class 1  Latent Class 2  

(nC1, nC2, nS) |Bias| MSE |Bias| MSE 

Our Approach 

(25, 25, 50) 0.141 0.538 0.088 0.403 

(25, 25, 100) 0.039 0.259 0.073 0.186 

(25, 25, 200) 0.001 0.111 0.018 0.101 

(25, 25, 400) 0.014 0.062 0.013 0.051 

Covariate Approach 

(25, 25, 50) 0.669 0.844 0.711 0.828 

(25, 25, 100) 0.562 0.560 0.525 0.470 

(25, 25, 200) 0.309 0.247 0.210 0.179 

(25, 25, 400) 0.111 0.092 0.075 0.067 
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Appendix G 

Table G1 

Performance of class-specific treatment effect estimates: estimated class membership 

 Latent Class 1 Latent Class 2 Overall  

(nC1, nC2, nS) |Bias| MSE |Bias| MSE |Bias| MSE 

(25, 25, 30) 

IPW 0.009 1.825 0.802 1.762 0.405 1.790 

MMW-S 0.228 1.920 0.788 1.840 0.280 1.876 

DR 0.271 1.393 0.832 1.896 0.280 1.640 

Hybrid Causal Forests 0.373 1.302 0.762 1.746 0.194 1.521 

Hybrid BART 0.482 1.274 0.751 1.660 0.134 1.464 

Hybrid TMLE 0.272 1.150 0.757 1.756 0.242 1.449 

(25, 25, 50) 

IPW 0.004 1.039 0.469 0.944 0.236 0.988 

MMW-S 0.186 0.914 0.441 0.849 0.127 0.879 

DR 0.174 0.803 0.472 0.967 0.148 0.882 

Hybrid Causal Forests 0.233 0.719 0.399 0.739 0.082 0.727 

Hybrid BART 0.297 0.660 0.411 0.762 0.057 0.710 

Hybrid TMLE 0.179 0.638 0.427 0.802 0.123 0.718 

(50, 50, 30) 

IPW 0.043 0.818 0.559 0.797 0.258 0.806 

MMW-S 0.416 1.074 0.541 0.790 0.063 0.931 

DR 0.343 0.645 0.594 1.014 0.126 0.830 

Hybrid Causal Forests 0.387 0.696 0.533 0.762 0.073 0.728 

Hybrid BART 0.455 0.689 0.519 0.697 0.032 0.692 

Hybrid TMLE 0.337 0.592 0.525 0.743 0.095 0.667 

Note: nC1, nC2, and nS represent the number of clusters for the first latent class, the number of 

clusters for the second latent class, and average cluster sizes, respectively. IPW represents inverse-

propensity weighting, and MMW-S represents marginal mean weighting through stratification. DR 

represents a doubly robust estimator. BART represents Bayesian additive regression trees, and TMLE 

represents targeted maximum likelihood estimation. The true treatment effect values are 2.5 and 0 for 

the first and second latent classes, respectively. 
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Appendix H 

We replicated the simulation study from the main text and measured the performance of class-

specific treatment effect estimates when we use the true class labels. In this setting, all the 

parametric methods have correctly specified outcome and propensity score models and should 

perform well. Specifically, we expect the DR estimator to perform the best followed by the non-

DR estimators (IPW and MMW-S). Finally, we expect the performance of ML methods to be 

somewhere in between the performance of the DR and non-DR estimators, but the performance 

of ML methods will become similar to the performance of the DR estimator as the sample size 

increases. 

Table H1 shows the results. As expected, the DR estimators performed best in terms of 

bias and MSE. The non-DR estimators—IPW and MMW-S—performed worse than the DR 

estimator and ML methods with one exception: absolute bias of the MMW-S in the sample size 

condition (25, 25, 50). Also, similar to what we observed in the main text, we saw that the non-

DR estimators, especially the IPW estimator, achieved more bias reduction in one latent class 

over another latent class in the current data generating model, but ended up having a relatively 

large amount of overall bias. In contrast, DR and hybrid methods achieved bias reduction in both 

latent classes and had overall bias reductions. Finally, when the sample size increased, the 

performance of ML methods was competitive to the performance of the DR estimator. 
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Table H1 

Performance of class-specific treatment effect estimates: true class membership 

 Latent Class 1 Latent Class 2 Overall 

(nC1, nC2, nS) |Bias| MSE |Bias| MSE |Bias| MSE 

(25, 25, 30) 

IPW 0.371 1.521 0.008 0.586 0.182 1.054 

MMW-S 0.138 1.455 0.064 0.625 0.101 1.040 

DR 0.032 0.732 0.018 0.595 0.007 0.663 

Hybrid Causal Forests 0.065 0.848 0.010 0.634 0.028 0.741 

Hybrid BART 0.048 0.736 0.023 0.595 0.036 0.665 

Hybrid TMLE 0.114 0.741 0.007 0.609 0.054 0.675 

(25, 25, 50) 

IPW 0.227 0.964 0.003 0.342 0.115 0.652 

MMW-S 0.005 0.787 0.025 0.349 0.016 0.568 

DR 0.037 0.601 0.000 0.344 0.018 0.473 

Hybrid Causal Forests 0.063 0.553 0.003 0.353 0.030 0.453 

Hybrid BART 0.001 0.524 0.008 0.343 0.005 0.434 

Hybrid TMLE 0.086 0.533 0.007 0.347 0.046 0.440 

(50, 50, 30) 

IPW 0.313 0.747 0.025 0.281 0.144 0.514 

MMW-S 0.222 0.737 0.083 0.297 0.153 0.517 

DR 0.019 0.374 0.034 0.269 0.027 0.322 

Hybrid Causal Forests 0.072 0.417 0.038 0.289 0.017 0.353 

Hybrid BART 0.034 0.384 0.042 0.282 0.038 0.333 

Hybrid TMLE 0.046 0.362 0.034 0.279 0.006 0.320 

Note: nC1, nC2, and nS represent the number of clusters for the first latent class, the number of 

clusters for the second latent class, and average cluster sizes, respectively. IPW represents inverse-

propensity weighting, and MMW-S represents marginal mean weighting through stratification. DR 

represents a doubly robust estimator. BART represents Bayesian additive regression trees, and TMLE 

represents targeted maximum likelihood estimation. The true treatment effect values are 2.5 and 0 for 

the first and second latent classes, respectively. 
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Appendix I 

We also assessed the performance of ML methods based on the root mean squared error (RMSE) 

of estimating individual CATE estimates in simulation replication m, denoted as 𝜏̂𝑖𝑗,𝑚(𝑘). 

Specifically, let 𝑁𝑚  denote the sample size of each simulation replication. We evaluated the 

following quantity: 

𝑅𝑀𝑆𝐸𝑚(𝑘) = √
1

𝑁𝑚
∑(𝜏̂𝑖𝑗,𝑚(𝑘) − τ𝑖𝑗(𝑘))2

𝑖𝑗

 

and took averages of 𝑅𝑀𝑆𝐸𝑚(𝑘) across simulation replicates. 

Figure I1 summarizes the performance of individual CATE estimates within each latent 

class across different ML methods. Though TMLE tends to have slightly large RMSEs, the 

performance across methods was comparable and our simulation results in the main manuscript 

are generally not sensitive to the choice of ML methods. 

 

 

Figure I1. Performance of individual CATE estimates: root mean squared error. 
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Appendix J 

Figure J1 displays the distributions of individual CATE estimates when BART and TMLE are 

used. Our hybrid approach with different ML methods produced similar estimates of τ(𝑘); the 

dotted lines across methods align closely with each other. However, there were some differences 

in the distributions of the individual CATE estimates, with BART producing “spiky” 

distributions, whereas TMLE producing smoother distributions. This suggests that different ML 

methods make different assumptions about how to locally smooth across the observed covariates. 

 

 

Figure E1. Distributions of individual CATE estimates with BART and TMLE. The left shows 

hybrid ML methods discovering two latent classes, while the right shows the usual ML methods without latent 

classes. Dashed lines represent class-specific treatment effect estimates. 
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Appendix K 

 
Figure K1. Covariate balance plots before and after propensity score adjustment 

(Standardized mean differences on the x-axis and variance ratios on the y-axis) 

 

We checked covariate balance in within-class matching by computing the absolute standardized 

mean differences and variance ratios between treated units and control units. As a rule of thumb, 

if the mean difference of each covariate is less than 0.1 standard deviation and the variance ratio 

is more than 4/5 and less than 5/4, we can provide evidence for good balance of the covariates. 

Figure F1 displays covariate balance plots before and after propensity score adjustment for two 

classes as well as for one homogeneous class. One homogeneous class assumed no 

subpopulations or multiple latent classes, and its propensity scores were estimated via random 

effects logistic regression. There was less initial imbalance in covariates for one homogeneous 

class, and we achieved good covariate balance between the treated and untreated groups after 

applying IPW and MMW-S. For the two-class approach, the covariates imbalanced differed in 
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each class. However, after applying IPW and MMW-S, we achieved acceptable covariate 

balance within each class. 
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