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Abstract 

Additive manufacturing (AM) has brought about a new age of design and manufacturing 

where traditional constraints are eased or in some areas completely lifted. The integration of 

topology optimization (TO) and AM has the potential to revolutionize modern design and 

manufacturing. However, few instances of manufactured optimized designs are documented, and 

even fewer examples of experimentally tested designs are available. The lack of validation 

combined with the influence of AM process on material properties leaves a gap in our 

understanding of process-microstructure-property relationships that is essential for developing 

holistic design optimization frameworks. In the first chapter of this thesis, a functional design was 

topologically optimized and fabricated using both directed energy deposition (DED) and selective 

laser melting (SLM), also known as powder bed fusion (PBF), methods. This is the first direct 

comparison of these AM methods in the context of TO. Mechanical properties of SS316L and the 

optimized components in as-fabricated and heat-treated conditions were investigated under 

uniaxial displacement-controlled tensile loading and compared to finite element modeling (FEM) 

predictions. Optimized samples provided regions of both compressive and tensile loading in the 

test specimen. Experimental results showed the FEM predictions to be conservative. 

Microstructural analysis revealed that this difference is due to refined microstructures formed 

during the additive manufacturing process that strengthen the material in regions with high stress 

levels. Moreover, SLM samples showed higher yield strength compared to DED samples due to 

a more refined grain size and denser dislocation structures. TO results are sensitive to the AM 

method, post-processing conditions, and differences in mechanical properties. Thus, a TO for AM 

framework can be best optimized with the incorporation of microstructure features to account for 

localized microstructural variations in fabricated components.  

One of the main challenges facing SLM process is finding suitable process parameters to 

achieve maximum density (pore-free) parts. In chapter two, two newly discovered dimensionless 
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numbers are presented that correlate process parameters to a part’s density allowing for an initial 

estimation of suitable process parameters without the need for extensive modeling or 

experimentation. The prediction is achieved by utilizing the Buckingham-Π theorem and the 

implementation of Pawlowski’s matrix transformation method. The universality of the new 

dimensionless numbers is verified by applying them to selective laser melting data for eight 

different metals and alloy systems, obtained both experimentally and gathered from the literature. 

The dimensionless numbers allow for identification of process parameters that will result in a 

maximum density regime in the as-built part. Finally, a universal scaling law is introduced that can 

aid in quantitative prediction of process parameters that result in the highest as-built density. 

Multi-material additive manufacturing using PBF has the potential to revolutionize the 

manufacturing landscape by producing parts with improved thermophysical properties and 

enhanced functionality. However, the complex nature of the process requires a case-by-case 

approach to multi-material characterization. The aim of chapter three is to provide firsthand 

knowledge of 316L stainless steel (316L) and Hastelloy X (HX) multi-material processing via PBF. 

Specifically, microstructure of the interface is studied using SEM and EDS analysis. Surface 

metrology is performed to characterize the resulting surface roughness at the interface followed 

by tensile and flexural testing of multi-material samples to characterize the mechanical properties 

of the interfaces. Finally, a post-fracture study is carried out to further assess the bonding integrity 

between 316L and HX with different order of printing. Results showed that using the proper 

process parameters for each individual material led to formation of a compositional gradient at 

the interface that stretched for 240 µm (10-12 layers) with no evidence of cracking or porosity. 

The interface exhibited higher surface roughness compared to 316L or HX as measured by Sa 

and Sv parameters. During tensile testing, samples failed in the 316L region away from the 

interface, with similar yield strength, ultimate strength, and ductility as compared to 316L samples. 

Finally, it was concluded that the “naturally” formed interface created a compositional gradient 
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which was defect free due to similar values of coefficient of thermal expansion, energy density, 

dimensionless number Π2, and different Marangoni numbers of the materials. 

The aim of chapter four is to propose a methodology for rapidly predicting suitable process 

parameters for additive manufacturing of multi-material parts with a compositional gradient by 

using machine learning and 316L-Cu bi-metal system. Specifically, an algorithm based on a 

multivariate Gaussian process is developed to predict part density and surface roughness for a 

given set of laser power, velocity, and hatch spacing values. The training data for the algorithm is 

collected using a high-throughput experimentation method that allows for rapid measurement of 

part density, and surface roughness. After the model is validated using leave-one-out cross 

validation method, process parameter maps are generated for 316L-Cu parts manufactured using 

selective laser melting with premixed powder at mass fractions of 0.25, 0.50, and 0.75. A set of 

suitable process parameters are predicted using the process maps. It is shown that process 

parameters are a nonlinear function of gradient composition and neither process parameters of 

316L or Cu are suitable for the graded region of a 316L-Cu multi-material part. Generated process 

maps provide a firsthand knowledge of process-property relationships for regions of compositional 

grading in 316L-Cu parts.  
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Chapter 1: Topology Optimization for Additive Manufacturing 

1.1. Introduction 

Additive manufacturing (AM) can allow fabrication of designs that were previously 

impossible using conventional methods. AM technology has evolved as the manufacturing 

sector's adoption rate has grown by 80% since 2016 [1]. Benson et al. [2] investigated the 

improvement rate of AM technology based on the number of approved patents and determined 

that it is on an exponential growth rate, particularly with respect to manufacturing time and cost 

[3]. The increasing popularity of AM has also revitalized topology optimization (TO) [4]. TO is a 

mathematical technique in which material from a model of a structural component is selectively 

altered or removed to reduce weight while maintaining mechanical integrity or satisfying a 

geometrical constraint. Most geometrically complex designs generated by TO can only be 

manufactured through AM methods. As a result, TO is receiving growing attention among design 

engineers who are seeking to leverage the advantages of AM. Some of the recent attempts in 

design for AM (DfAM) include overhang-free designs which reduce or eliminate the need for 

support structures [5,6], diversified TO methods for porous metal structures [7], design with AM-

induced anisotropy considerations [8,9], and microstructure control with TO [4]. However, 

resulting models are seldom manufactured and tested; see [10–12] for exceptions. This lack of 

experimental validation leaves a gap in our understanding of AM process-structure-properties-

performance (PSPP) relationship and how it influences design optimization paradigms. More 

importantly, this knowledge gap prevents us from achieving a holistic design paradigm that 

couples design optimization with materials and process capabilities of AM [13].    

This chapter aims to bridge the gap between design optimization and AM communities by 

realizing the light-weighting capabilities of TO through experimental validation of optimal designs. 

For the first time, this work directly compares the mechanical performance of topology optimized 

functional parts, manufactured via selective laser melting (SLM), and directed energy deposition 
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(DED). We discuss the microstructure differences and similarities of both AM methods and their 

contribution to mechanical performance of TO parts. Furthermore, we provide insight into how 

novel AM microstructures influence the mechanical properties that are essential in TO and how 

this understanding should inform the decision-making in DfAM. Finally, a quantitative connection 

between AM method, microstructure, and mechanical properties is established to explain the 

discrepancies between the finite element modeling (FEM) and the experimental results. 

SLM and DED each provide advantages over conventional processes. SLM is used for 

the freedom in design offered due to its high precision and capability to create support structures 

for overhanging surfaces [14]. DED offers limited geometrical design freedom, since it cannot 

create overhanging features and the minimum feature size is up to ten times larger than that in 

SLM [14]. However, powder deposition in DED allows for instantaneous or gradual modification 

of the deposited composition, resulting in the ability to manufacture compositionally graded 

structures or high-throughput testing of new alloys in different designs [15–18]. Functional grading 

has the potential to allow for an additional layer of complexity in design optimization. For example, 

Mirzendehdel and Suresh [19] showed that multi-material TO can yield stiffer designs for a given 

volume fraction of material compared to single-material TO. Therefore, the ability to manufacture 

load-bearing, functional parts with DED allows us to take advantage of the unique mechanical, 

metallurgical and functionally graded properties of DED.  

Variability in AM machines and the dependence of mechanical properties on 

microstructure mean that mechanical performance of a part can largely vary depending on the 

type of AM unit as well as what set of parameters or post-processing methods are used [20–24]. 

The mechanical response, particularly the yield strength and stiffness, has been shown to vary 

as a function of build orientation, heat-treatment method, and process parameters [25–32]. For 

example, the documented mechanical properties of AM SS316L, shown in Table 1, differ from 

those of conventionally manufactured SS316L and vary significantly between different AM 
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methods. As a result, it is possible to compute different optimal topologies for the same design 

due to variations in the Young’s modulus and yield strength. 

Examples of optimal designs are shown in Table 2. These designs are obtained using 

mechanical properties reported in Table 1. For the design obtained from ASTM properties, the 

target volume fraction is not achieved due to significantly lower yield strength. For designs 

obtained from SLM and DED properties, the final topology depends on which mechanical 

properties are selected by the user. These designs signify the need for mechanical properties 

characterization prior to TO. Moreover, the variance in mechanical properties and its influence on 

TO indicates that design optimization solutions should encompass these variations to ensure 

accuracy and robustness. Until such design solutions are available, developing widely applicable 

predictions of mechanical performance for optimized designs fabricated via AM will remain a 

challenge [13].  

The rapid, directional solidification and complex thermal cycling in both SLM and DED 

processes modify microstructural development compared to conventionally-fabricated materials 

[32]. In SLM parts, the synthesis leads to a dense, cellular dislocation microstructure and the 

formation of small precipitates as well as typically high yield strength and ductility [33]. Less is 

known about the microstructure in DED parts, although they have also been shown to exhibit a 

high yield strength [32]. Although the influence of characteristics such as grain size, texture, and 

dislocation structure development on mechanical response have been phenomenologically 

investigated extensively in conventional materials, the physical relationships between the AM 

microstructures and the improved mechanical response are less defined. Several efforts have 

been made to predict the resulting mechanical properties of AM material by microstructure 

characterization [29,33–39]. Currently, these approaches are time consuming, cost prohibitive 

and impractical in an industrial setting. However, they highlight an untapped potential of AM to 

locally control material properties at voxel level whereby AM process, microstructure, and 

mechanical properties can be incorporated in design optimization [13]. Such optimization 
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schemes can produce designs that meet requirements with margins, but first, the gap in our 

understanding of PSPP relationship must be filled.   

1.2. Materials and methods 

1.2.1. Mechanical properties characterization 

SS316L is a commonly used material in AM and thus it was chosen for this study. The 

stainless-steel alloy does not experience any solid-state phase transformations during 

deformation, and the alloy is nominally single-phase after manufacture. To characterize the 

mechanical properties of the AM materials, tensile test specimens (Fig.  1) were mechanically 

ground on both sides with sandpaper to 600 grit, then additionally on one side with diamond, 

alumina, and finally 0.05 μm colloidal silica grits to minimize the effects of surface roughness and 

possible mechanical damage from electrical discharge machining (EDM) used to remove the 

samples from the build plate. Room temperature tensile tests were performed using an MTS® 

Sintech load frame with a 50 kN load cell and 2.20 mV/V sensitivity. Tests were carried out at 

constant crosshead separation rate of 1 mm/min (strain rate of 0.04 s-1) and data were collected 

at 10 Hz. Strain measurements were conducted by digital image correlation (DIC) system 

provided by Correlated Solutions®. Zero-normalized squared difference algorithm was used to 

calculate the displacement of speckles on each sample. Collected data were then translated to 

longitudinal principal strains. Results were used to calculate the mechanical properties of SS316L 

in the elastic regime, including the Young’s modulus and yield strength (calculated based on the 

0.2% offset method).  

In mechanical testing of topology-optimized parts, the same procedure was followed as for 

the tensile test specimens; however, to accurately capture part displacement and avoid adding 

the fixture strain to the data set, an MTS extensometer with gauge length of 25 mm and travel 

range of (+12.5, -2.5) mm was used. Force-displacement data was collected for further analysis.  
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Table 1. Comparison of SS316L tensile properties as reported by machine manufacturer with those given 
in the literature. 

Properties Values* 

Manufacturing technique 

SLM   DED 

Machine 
Manufacturer 

Literature 
[22] 

  
Machine 
Manufacturer 

Literature 
[40,41] 

Young’s modulus (E) GPa typ. 185 188 ± 29  - 193 

Ultimate tensile strength 
(UTS) MPa 

640 ± 50 592 ± 69  799 685 ± 66 

Yield strength (Y) MPa 530 ± 60 453 ± 54  500 465 ± 78 

Elongation (ε) % 40 ± 15 30 ± 6   50 35 ± 3 

Annealed bar ASTM SS316L: UTS = 485 MPa, Y = 170 MPa, ε = 40% [42]. 

* Values are obtained from as-built tensile samples, pulled perpendicular to build direction.  

 

Table 2. Examples of possible optimal topologies obtained from select mechanical properties reported in 
Table 1. Volume fraction is defined as the volume of the original design divided by the volume of the final 
design. 

  
  Mechanical Properties used in TO as reported by 

  ASTM   SLM   DED 

Desired 
% vol. 

fraction 

 50  50  50 

Topology  

 

 

 

 

 

% vol. 
fraction 

achieved 
  32   50   50 

Fig.  1. Tensile test specimen geometry and build direction. Dimensions in (mm). 
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1.2.2. Topology optimization 

 Three criteria were considered for selecting the suitable case study. First, the part 

geometry should allow the use of a simple test fixture without the need for assembly. Using 

intricate testing fixtures alters the load distribution path throughout the part and can cause 

premature failure in assembled joints [11]. Moreover, complex fixtures can hinder our ability to 

accurately measure force and displacement during testing. Second, the component should be a 

load-bearing part that represents real world scenarios where both compressive and tensile 

stresses are present.  Third, the final topology should be manufacturable via both SLM and DED 

methods. The clevis part that meets the above-mentioned criteria was chosen for optimization. 

Fig.  2 shows the model’s critical dimensions and the selected boundary conditions (BCs). 

The TO algorithm used in this work is Pareto, developed at UW-Madison [43], now 

commercially available (www.sciartsoft.com).  Pareto is a topological-sensitivity based method 

that can generate numerous Pareto-optimal topologies up to a desired volume fraction. Readers 

are referred to [43] and [44] for more details on the Pareto method. The TO problem is posed as 

below and solved with 100,000 hexahedral elements by taking advantage of symmetry.  

𝑀𝑖𝑛 𝐽                   (1) 

Ω ⊂ 𝐷 
𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 

Stress, volume and manufacturing constraints 
Where: 

𝐽: Compliance   

Ω: Geometry/topology to be computed 

𝐷: Design space 

In order to impose performance (stress) constraints, appropriate yield strengths for SLM and DED 

fabricated parts were determined using standard tensile testing described in section 2.1. In 

addition, an arbitrary volume fraction constraint of 50% was chosen for this case study. Here, the  
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Fig.  2. Clevis model with critical dimensions and BCs. 

 
volume fraction is defined as the original volume of the design divided by the final volume of the 

design after TO. 

The optimal topologies computed without explicit manufacturing constraints are not 

manufacturable via DED method due to the presence of hollow features. Although these designs 

can be fabricated via SLM, the hollow features prohibit the removal of required support structures, 

making them impractical for SLM as well (Fig. 3. (a)). Thus, it was critical to impose manufacturing 

constraints on the problem. A through-cut constraint was applied to ensure that the cross-section 

remained constant along the build direction, eliminating the need for support structures (Fig. 3. 

(b)). 

 

Fig.  3. An example of a topology optimized clevis part without imposing manufacturing constraints (a) 
and with through-cut constraint (b). The TO problem is posed as described in section 2.2.   
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1.2.3. Additive manufacturing 

 An EOS® M290 system was used to manufacture six clevis samples using recommended 

process parameters in Table 3 [45]. It is known that SLM parts exhibit anisotropic behavior based 

on build direction [25], i.e. ultimate tensile strength is lower along the build direction. Therefore, 

samples were fabricated in the orientation perpendicular to the direction of applied force shown 

in Fig. 2. to mitigate the effects of anisotropy in tensile testing. Furthermore, six tensile specimens 

were cut using wire electrical discharge machining (EDM), from rectangular bars manufactured 

using the same build direction relative to the loading direction and process parameter set as 

clevises. Fig. 1 shows the dimensions of these specimens. In both cases, three samples were 

used as-built as a control while the other three were subjected to a heat treatment of 1000°C for 

1 hour, followed by a water quench. Heat treatment process was in accordance with the procedure 

mentioned in [46]. Heat treatment is commonly used for AM parts to alleviate the effects of residual 

stresses on the mechanical properties [27,47].  

The material used in manufacturing was SS316L powder, particle size less than 60 μm, 

provided by EOS®. Nominal chemical composition of the powder (as supplied) and as-built 

samples are presented in Table 4. Actual chemical compositions were measured with combustion 

infrared detection (C and Si), inert gas fusion (O and N), and direct current plasma emission 

spectroscopy (all others).  

 An Optomec® laser engineered net shaping (LENS®) MR7 system was used to 

manufacture clevis and tensile testing specimens using the same approach used for the SLM 

parts. The main process parameters used during manufacturing are presented in Table 5. 

Process-induced anisotropy has also been reported for parts manufactured via DED, although it 

is typically not as pronounced as with SLM [28]. The same build orientations used in the SLM 

approach were used for DED parts. Parts were cut off the build plates using wire EDM and 

rounded ends and holes were later machined. Tensile testing specimens were fabricated using 

the same process parameters in Table 5, and the same dimensions as depicted in Fig.  1, except 
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for a thickness of 2.5 mm. The same sample size and heat-treatment process was repeated for 

the DED experiment. SS316L powder used for DED process was provided by Carpenter® with 

particle size range of 45 to 150 μm. The nominal composition of the DED powder and actual 

chemical composition of the samples are provided in Table 4. 

Table 3. EOS M290 main process parameters for SS316L. 

Parameter Values 

Contour 2 layers 

Laser power  

 Infill 195 W 

 Contour 110 W 

Laser speed  

 Infill 1083 mm/sec 

 Contour 800 mm/sec 

Hatch rotation angle 67° 

Hatch distance 0.09 mm 

Layer thickness 0.02 mm 

Platform temperature 80° C 

 
 

Table 4. Chemical composition of SS316L. Nominal values are reported by powder manufacturer while 
actual values are measured from as-built samples. All values are in wt%. 

Element 

 SLM   DED 

 Nominal 
Actual 

 Nominal 
Actual 

  Min Max   Min Max 

Fe  Balance Balance  Balance Balance 

Cr  17.000 19.000 18.390  16.000 18.000 18.060 

Ni  13.000 15.000 13.940  10.000 14.000 13.790 

Mo  2.250 3.000 2.860  2.000 3.000 2.860 

C  - 0.030 0.004  - 0.030 0.005 

Mn  - 2.000 1.470  - 2.000 1.580 

Cu  - 0.500 0.002  - - 0.010 

P  - 0.025 0.017  - 0.045 0.008 

S  - 0.010 0.004  - 0.030 0.004 

Si  - 0.750 0.300  - 1.000 0.320 

N  - 0.100 0.065  - - 0.072 

O  - - 0.043  - - 0.037 

H  - - 0.00008  - - - 

Co  - - 0.0036  - - 0.0054 

Al   - - 0.002   - - 0.001 
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Table 5. Optomec® LENS MR7 main process parameters for SS316L. 

Parameter Values 

Contour 2 layers 

Contour offset 0.38 mm 

Laser power  
 Infill 275 W 
 Contour 275 W 

Feed rate 508 mm/min 

Hatch rotation angle 67° 

Hatch distance 0.38 mm 

Layer thickness 0.254 mm 

 

1.2.4. Microstructural characterization 

The influences of processing method and heat treatments on the microstructure were analyzed 

across multiple length scales to include microstructural characteristics known to influence the 

mechanical properties. Grain size and grain morphology were analyzed using scanning electron 

microscopy (SEM) in a Zeiss LEO-1 microscope operated at 3-20 kV accelerating voltage, as well 

as with electron backscatter diffraction (EBSD) in a FEI Helios G4 PFIB CXe with an Elstar™ 

SEM column equipped with an Hikari EBSD camera and accelerating voltage of 230 kV. EBSD 

maps were approximately 1-2 mm x 2-3 mm with step sizes of 1-3 μm. Some specimens were 

sectioned in the undeformed state and mechanically ground, then 3 mm disks were punched out. 

Disks were polished to electron transparency with a Stuers Tenupol twin-jet electropolisher in A2 

electrolyte at -20°C and 17 V for approximately 15 minutes for TEM analysis. TEM samples were 

analyzed in a Tecnai TF-30 S/TEM operated at 300 kV for diffraction contrast imaging and 

diffraction analysis of dislocation structures and crystallography.  

1.3. Results and analysis 

1.3.1. Tensile test results 

The data in Table 6 presents the means and standard deviations of mechanical properties 

of SS316 tensile test specimens for SLM and DED. Stress-strain curves are presented in . Overall, 
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the effect of heat treatment on both SLM and DED samples were similar with the yield strength 

as the most affected property. After heat treatment, the yield strength dropped by 49% and 50% 

for SLM and DED samples, respectively. Standard deviations indicated that DED demonstrated 

better consistency in mechanical properties in the elastic regime compared to SLM. However, the 

same cannot be said for elongation at failure, where DED showed larger deviations compared to 

SLM. It should be noted that further experiments are needed to confirm this initial observation and 

provide a scientific basis for this conclusion. Nonetheless, all samples indicated at least 40% 

elongation to failure in tension, and this ductility was more than adequate for the scope of this 

work. 

Table 6. Mechanical properties of SS316L, obtained from tensile test specimens. 

    
Young’s 

modulus (E) 
GPa 

Ultimate 
tensile 

strength 
(UTS) MPa 

Yield 
strength 

(YS) MPa 

Elongation at 
UTS (%) 

Elongation at 
YS (%) 

SLM 
as-built 190 ± 45 671 ± 33 560 ± 25 24 ± 0.8 0.52 ± 0.07 

heat-treated 147 ±32 616 ± 13 377 ± 19 33 ± 0.4 0.48 ± 0.06 

DED 
as-built 198 ± 16 645 ± 10 489 ± 8 52 ± 2 0.47 ± 0.02 

heat-treated 188 ± 12 600 ± 8 325 ± 4 60 ± 6 0.39 ± 0.02 

Fig.  4. Engineering stress-strain curves obtained from tensile test specimens. (a) SLM and (b) DED. 
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1.3.2. Clevis TO and mechanical test results 

After mechanical properties characterization, TO was carried out using the reported 

Young’s modulus and yield strength of heat-treated samples in Table 6. The final optimal designs 

for SLM and DED clevises obtained are shown in Table 7. It should be noted that the measured 

difference in Young’s modulus and yield strength between SLM and DED resulted in a subtle 

difference in final designs. A comparison between (a) and (b) revealed that clevis design for SLM 

has 12 reinforcing struts distributed along its arch while clevis design for DED has 10. However, 

for a meaningful comparison, the design shown in (b) was chosen for fabrication using both AM 

methods. 

Table 7. Optimal topologies obtained from mechanical properties of heat-treated SS316L reported in 
Table 6. 

  
  Mechanical Properties used in TO 

  SLM   DED    

Desired % 
vol. fraction 

 50  50  

Topology  

 

 

 

 

% vol. 
fraction 

achieved 
  50   50   

 

Artifacts from the TO process were manifested as mesh irregularities, as shown in the 

inset in (b). These irregularities can cause stress concentration and premature failure during 

testing. As of today, fully automated feature-based geometry reconstruction for TO remains an 

unsolved problem [48–51]. Therefore, to alleviate the concerns regarding the mesh irregularities, 

the design shown in (b) was used as a reference to create the design shown in (c) using 

conventional CAD operations. It should be noted that this method of geometry reconstruction is 
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limited to standard CAD operations and the resulting features may not fully capture the complexity 

of the original design. However, in this case study, the through-cut constraint simplified the design 

to a level that conventional CAD operations were able to closely capture the features of the 

original design. More importantly, as shown in (d), the maximum von Mises stress occurred on 

the outer surface of the clevis’ arch, and this surface was unaffected during TO. As a result, this 

critical feature was perfectly preserved throughout the geometry reconstruction process. The final 

optimal designs were then manufactured using AM, as shown in Fig. 6. 

Although the optimized design achieved the target of 50% volume fraction, and the same 

model was used to manufacture the samples, the volume of manufactured clevises differed from 

the 50%. The average volume fraction of samples fabricated via SLM was measured at 45.6% 

while the average volume fraction of samples fabricated via DED was measured at 61.8%. The 

difference in the volume of the SLM samples is negligible and can be attributed to machining 

during support structure removal. The difference in the volume of the DED samples can be 

explained by considering the larger laser beam diameter of LENS system (≈ 600 µm) compared 

to EOS system (≈ 80 µm) which can result in oversized features in designs with intricate 

geometries. 

The resulting force-displacement graphs from clevis tensile tests are shown in Fig. 7. Tests 

were terminated once the extensometer reached its maximum displacement. Heat-treated SLM 

samples yielded at approximately 1500 N, compared to 1950 N for as-built samples. Similarly, 

heat-treated DED samples yielded at approximately 1710 N, compared to 2240 N for as-built 

samples. Results agree with the standard tensile test results wherein the heat-treatment process 

had a similar effect on the yield strength of both DED and SLM samples.  
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Fig.  5. TO designs based on the mechanical properties of (a) heat-treated DED, and (b) heat-treated 
SLM. (c) Design ‘b’ is reconstructed for AM using conventional CAD operations. (d) Different views of von 

Mises stress distribution. Area where maximum von Mises stress occurred is indicated by the arrow. 

Fig.  6. Clevises manufactured via (a) SLM, and (b) DED. Round ends and holes for DED clevises were 
later machined to net shape (c). 
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Fig.  7. Clevis tensile test results for (a) SLM and (b) DED fabricated samples, with and without heat 
treatment. 

Finally, the data in Table 8 shows averaged results from the tensile tests against FEM using 

the properties presented in Table 6. Initially, results for DED samples showed larger deviance 

from FEM calculated values compared to SLM. The larger deviation can be attributed to the extra 

volume of the DED samples which increased the experimental yield load. To compensate for the 

increase in volume, the experimental yield loads of the DED samples were scaled. Since the 

thickness of the DED samples (denoted by t in Fig. 2) was kept the same after machining, the 

increase in volume was solely due to a uniform increase in samples’ width (denoted by w in Fig. 

2). According to basic bending stress calculations, 11.8% increase in volume results in 25% 

decrease in bending stress, and consequently, the yield load. After applying this adjustment, yield 

loads for both SLM and DED samples showed similar deviations from FEM predictions. Scaled 

yield loads for DED samples are presented in Table 8. 

Table 8. Comparison of tensile test results with FEM for topology optimized clevises. 

    
FEM yield load 

(N) 
Experimental yield 

load (N) 

Scaled 
experimental 

yield load (a) (N) 
Error (b) (%) 

SLM 
as-built 1825 1950 - 6.4 

heat-treated 1227 1500 - 18.2 

DED 
as-built 1590 2240 1680 5.7 

heat-treated 1058 1710 1282 21.2 

(a) experimental yield load for DED is scaled to reflect the increased volume of DED clevises during 
manufacturing.  
(b) for DED, the error is based on the difference between the FEM and scaled yield loads.    
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1.3.3. Microstructural characterization 

 The microstructures were found to be spatially heterogeneous in 3D and exhibited 

directionality dependence on the laser scan path and AM method. These dependencies are 

illustrated in the simplified schematic shown in Fig. 8 for reference. The following sections will 

frequently refer to this schematic and discuss the microstructural features depicted therein.   

1.3.3.1. Grain structure in SLM   

The initial grain structures in the tensile test specimens indicated a strong dependence on 

laser scan direction, AM process, and thermal history, as shown in the EBSD maps in Fig. 9. 

These maps are colorized according to the crystallographic orientation aligned with the loading 

direction (vertical in Fig. 9) and the stereographic triangle color key (inset), with grain boundaries 

indicated in black. The as-built SLM structure consisted of grains that were columnar in the build 

direction, as indicated in Fig. 8, but exhibited a “mosaic” structure when viewed in the plane 

perpendicular to the build direction, as shown in Fig. 9. (a). The mosaic structure, previously 

reported in steels manufactured using an EOS M270 SLM unit [52], consists of large grains 

(diameter greater than approximately 50 µm) aligned in rows along the laser scanning direction 

surrounded by small grains. Although large grains appeared equiaxed in the scanning plane 

shown in Fig. 9. (a), many of the small grains were elongated along the laser scanning direction, 

yielding an average grain aspect ratio of 2.07 in the scanning plane. Grains were 20 μm in 

diameter on average in the scanning plane. Grains were elongated in the build direction, typically 

reaching 100-400 µm long, and extending across multiple layers. The grains appeared organized 

along the laser scanning direction, or 45° to the loading direction in the uniaxial tension 

specimens, as indicated parallel to the dashed lines in Fig. 9. (a). There was no strong preferred 

orientation along the loading direction in the SLM as-built material. A <011> texture developed in 

the build direction (out-of-plane in Fig. 9) in the SLM materials but this was not expected to 

strongly influence the tensile response, since there was no texture in the loading direction.  
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Heat treatment of the SLM material led to little change in grain size, with an apparent slight 

refinement from 20 µm to approximately 16 μm in diameter on average, Fig. 9. (b). No significant 

change in the aspect ratio was observed in the scanning plane, although the mosaic structure 

became less apparent, and the laser scanning path was no longer as evident in the final 

microstructure. The SLM microstructures have been shown to persist in annealing treatments up 

to 1200 °C for up to an hour [53–57], indicating high stability against heat treatment. The 

underlying mechanisms responsible this enhanced stability in AM SS316L dislocation structures 

are still not fully understood, and are outside the scope of the current work. The slight refinement 

in grain size was likely a result of recovery processes and the inhibition of grain growth. Recovery 

and reorganization of deformation/dislocation microstructures, which are present in the as-built 

SLM material, can lead to an increased appearance of grain boundaries, as discussed in section 

3.3.5. Despite the changes to the grain morphology, the original texture in the build direction was 

maintained after heat treatment in SLM material.  

1.3.3.2. Grain structure in DED 

The DED as-built structures consisted of elongated grains aligned approximately 20-30° to 

the laser scan direction, which was oriented approximately 45° to the loading axis, as indicated 

in Fig. 9. (c) by dashed lines. Within each laser scanning pass, grains were elongated within +/- 

10° of the scan path, as indicated between the dashed lines in Fig. 9. (c). The scan strategy of 

scanning 45° with respect to the sample loading axis, alternating 180° between passes and 

rotating 90° between layers, led to grains being elongated in various directions with respect to the 

loading axis dependent on the local laser scan direction. This directionality was also observed in 

the build direction, where grains were oriented either +45° or -45° with respect to the build 

direction depending on the layer, as shown schematically in Fig. 8. (b). Grains exhibited an 

average aspect ratio of 3.09 in the laser scanning plane. Grains were elongated at various angles 

with respect to the build direction as well, in directions that changed depending on the layer, as 
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indicated in Fig. 8. Although many grains were elongated, many regions between layers or 

between scan passes exhibited primarily equiaxed grains, as shown in the lower right corner of 

Fig. 9. (c). The average grain diameter for all grains, weighted by their respective areas, was 

approximately 80 μm. No significant texture was observed in the DED material. Heat treatment 

induced a significant increase in grain size, such that the average was approximately 140 μm, 

and a reduction in grain elongation, with an average aspect ratio of 2.14. 

 

Fig.  8. Schematic illustrating laser scanning path, grain structure, and microstructural characteristics for 
(a) SLM and (b) DED fabricated parts. 

Fig.  9. EBSD orientation maps in the tensile loading direction of initial structures in (a) SLM as-built, (b) 
SLM heat-treated, (c) DED as-built, and (d) DED heat-treated tensile specimens, with grain boundaries 

indicated in black. Tensile axis vertical, build direction is out-of-plane. Dashed lines in (c) outline the 
edges of one laser scan path. 

1.3.3.3. Comparison of response to heat treatment in SLM vs DED 

The increase in grain size observed in DED material compared to the reduction observed 

in SLM material for the same heat treatment is considered to be a reflection of the microstructural 
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differences. Differences between the initial dislocation structures likely influenced recovery and 

the formation of new grain boundaries, as discussed in section 3.3.5 and 3.3.6. However, 

differences in the microstructural evolution due to heat treatment are only relevant with respect to 

their influence on the mechanical response of heat-treated material; the mechanism responsible 

for any difference in the thermal stability of dislocation structures is outside the scope of this work. 

Together, these effects could have contributed to the difference in microstructural evolution 

between SLM and DED material subject to the same heat treatment. 

1.3.3.4. Effects of scan strategy on grain structure 

The influence of scan strategy on microstructure had an additional effect on the clevises 

due to the variations in relatively thinner and thicker sections of the design. EBSD maps of grain 

structures at the base of a strut in the clevis part are shown for SLM and DED as-built materials 

in Fig. 10. (a) and (b), respectively. These maps are colorized according to the vertical loading 

direction using the same color key shown in Fig. 9, with grain boundaries traced in black. The 

region from which maps were taken on the clevis parts are shown in the inset; large black regions 

near the top left and lower right corners of Fig. 10. (a) and (b) indicate empty space around the 

strut.  

 In the SLM material, grains were still organized along the laser-scanning path, as indicated 

parallel to the dashed lines in Fig. 10. (a). However, the orientation of these rows changed in 

some regions, for example where the upper dashed line curves in Fig. 10. (a). Another example 

is the orientation of rows in the thin strut compared to the bulk of the material, see dashed line in 

the lower section of Fig. 10. (a). These changes in grain elongation direction were observed most 

frequently near the edges of the specimen, where different printing parameters and different scan 

strategies were used for contours; see Table 3. The dependence of the grain structure and 

elongation on laser scan path indicates an additional factor that may be considered when 

choosing scanning strategies for parts with complex geometries. 
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Fig.  10. EBSD orientation maps of initial structures in (a) SLM as-built and (b) DED as-built clevis parts. 
Colorized according to orientations in the loading direction (vertical). 

This influence of scan path was even more apparent in the DED parts, where grain 

alignment with the laser scanning path changed within approximately 400 μm of edge of the part. 

Within 50-100 µm of the edges, grains became smaller, as highlighted by the dashed lines in Fig. 

10. (b). The scanning strategy also influenced the grain elongation direction in different sections 

of the part’s interior. For example, the grains at the leftmost side of Fig. 10. (b) are finer than 

those in the middle of the strut, as indicated by dashed lines. 

1.3.3.5. Dislocation microstructures in SLM 

At the sub-grain level, microstructures influenced by AM processes were observed. In the 

SLM as-built material, a dislocation structure consisting of elongated, dendritic dislocation cells 

was observed, as shown in the bright-field STEM image in Fig. 11. (a) and Fig. 8. Cell walls are 

indicated by dashed lines. The walls consisted of dense, tangled dislocations and tended to lie on 

{001}-type planes when viewed edge-on, as is typical for SLM 316L [33], with average spacing 

approximately 450 nm. The crystallographic directionality of the dislocation cells indicates that 

solidification was dendritic. Si, Mn, and Cr oxide precipitates were observed, typically ranging in 
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size from 5-20 nm in diameter, examples of which are indicated by arrows in Fig. 11. (a), as 

reported in [58]. In the as-built material, oxides were found to be primarily Si- and Mn-rich. The 

precipitates were observed both in cell interiors and within dislocation walls, although the density 

of precipitates was difficult to determine particularly inside walls due to the local density of 

dislocations. Precipitates frequently appeared to pin dislocations.  

Heat treatment of SLM material qualitatively reduced the dislocation density and caused 

a reorganization of dislocation structures. Dislocation walls were observed, but with spacings 

typically ranging from 400-600 nm, slightly larger than that observed for the as-built material, as 

shown in Fig. 11. (b). Higher-magnification imaging revealed that walls were qualitatively less 

dense than in the SLM as-built material, such that individual dislocations were more clearly 

defined and less tangled. Dislocation structures in the heat-treated specimens frequently 

corresponded to in-plane rotations of up to 10° between adjacent regions, which exceeds the 

threshold misorientation of 3° used to identify grain boundaries in EBSD mapping. 

An example of these dislocation boundaries is shown in Fig. 11. (b), where elongated 

boundaries can be seen aligned diagonally across the image. The diffraction pattern of this region, 

shown in the inset in Fig. 11. (b), indicates that over approximately ten of these low-angle 

boundaries, in-plane rotations were measured up to approximately 5.7°. Many of the low-angle 

boundaries appeared to result from incomplete recovery and reorganization of the preexisting 

dislocation structures, such that they remained aligned and elongated. This is consistent with 

observations of the stability of the SLM microstructure against heat treatments below 

approximately 1100 °C [53–57]. 

Dislocation structures within grains, in other words those that were unambiguously not 

part of a grain boundary, in SLM heat-treated material frequently consisted of aligned dislocations 

with fewer tangles than observed in SLM as-built dislocation cells. Example are indicated parallel 

to the dashed lines in Fig. 11. (b). Oxide precipitates were larger in the heat-treated material, with 

sizes on the order of 40-60 nm, indicated by the arrows in Fig. 11. (b). Precipitates in the heat-
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treated material were found via EDS analysis to be Cr- and Mn-rich oxides without Si- enrichment. 

Frequently, precipitates were surrounded by tangled, pinned dislocations in the heat-treated SLM 

structure.  

1.3.3.6. Dislocation microstructures in DED 

As-built DED microstructures were qualitatively less refined than as-built SLM structures, as 

shown in Fig. 12. The as-built DED microstructure consisted of large, dendritic dislocation cells 

1-2.5 µm in diameter, delineated by the large dashed line in Fig. 12. (a), superimposed on a 

background of smaller, equiaxed dislocation cells with an average diameter approximately 370 

nm in diameter. The large cell structures consisted of dislocations with Cr segregation and Fe 

depletion in the walls, indicating that they are dendritic, while the small cell structures exhibited 

uniform composition. Although the large, dendritic dislocation walls appeared equiaxed in 

electron-transparent foils, FIB machining and SEM analysis indicated that these walls were 

elongated similar to the SLM dislocation cells, but in the foil normal direction (which coincides with 

the build direction). The small dislocation cells with uniform composition were not found to be 

elongated. Both types of DED dislocation structures appeared qualitatively less dense than the 

cell walls in the SLM as-built structure, for example compare the wall indicated by the dashed line 

in Fig. 12. (a) with that in Fig. 11. (a). Additionally, a significant density of dislocation walls and 

tangles aligned on multiple {111}-type planes were observed, for example parallel to the small, 

straight dashed line in Fig. 11. (a). These structures were typically spaced 1-2 µm apart and 

extended across multiple large and small cells. Precipitates were observed throughout the 

microstructure, although more frequently in the walls of the large cells with segregation and 

ranged in size from 70-200 nm; examples are arrowed in Fig. 12. (a). Precipitates in as-built DED 

material were Si- and Mn-rich oxides. 

Heat treatment of the DED material induced a decrease in dislocation density, as shown 

in the image taken across a grain boundary in Fig. 12. (b). Dislocations accumulated in the 
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proximity of grain boundaries, such that structures were sparser in grain interiors than those 

shown in Fig. 12. (b). Dislocation pileups were found on {111}-type planes near grain boundaries, 

as indicated by the dashed lines in Fig. 12. (b). These pileups consisted primarily of aligned 

dislocations with few dislocation tangles, although dislocations became more tangled with 1-2 μm 

of grain boundaries. Occasionally, extended dislocations, dislocation dipoles, or nodes were 

observed. Precipitates were less frequently observed, and those that remained ranged from 150-

250 nm in size, for example as indicated by the arrow in Fig. 12. (b). These precipitates were 

found both in the matrix and along grain boundaries and were primarily Mn- and Cr-rich oxides 

without Si enrichment. 

Fig.  11. Bright-field diffraction-contrast STEM images of dislocation structures in (a) SLM as-built 
material, with dendritic dislocation cells (dashed lines) and precipitates (arrows), and (b) SLM heat-treated 
material, with grain boundaries extending diagonally from bottom left to upper right, aligned dislocations 
extending across grain boundaries indicated by the dashed lines, and precipitates (arrows). Diffraction 
pattern inset in (b) with spreading of diffraction peaks indicative of 5.7° misorientations between grains. 
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Fig.  12. Bright-field diffraction-contrast STEM images of dislocation structures in (a) DED as-built 
material, with extended dislocation walls (parallel to the small dashed line), precipitates (arrows), and 
dendritic dislocation walls (outlined by the large dashed line) surrounding small, equiaxed dislocation 

cells. (b) DED heat-treated material with precipitates (arrow), a grain boundary running from top to 
bottom, and dislocation pileups on {111} planes (parallel to the dashed line) near grain boundaries. Inset 

diffraction patterns in (b) shown for the two grains across the grain boundary. 

1.4. Discussion 

 The influence of AM processing on microstructures has important implications for 

mechanical properties, and consequently TO design. These implications are summarized in Fig. 

13 in the form of an influence diagram that can help guide the decision-making process in DfAM. 

The diagram depicts the TO for the AM process as a closed loop, where changes in one step can 

affect the entire process. The results from this study indicate that until a holistic optimization 

framework is developed which encompasses all the steps included in Fig. 13, TO for AM must be 

examined and experimentally validated on a case-by-case basis due to the variance in 

microstructure and overall mechanical response. The difficulties in estimating the mechanical 

response of TO parts from FEM and material response based on AM microstructures, and the 

subsequent need for experimental validation, are discussed in the following sections. 
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Fig.  13. DfAM decision-making diagram. Arrows indicate the influence of each step on the other. More 
items can be added to each step as our understanding of the process matures. 

1.4.1. Prediction of yield strength based on analysis of AM microstructures 

The yield strength in a material is an essential input to TO and FEM, but it can be greatly 

influenced by several microstructural features developed during AM, particularly the dislocation 

structures, grain structure, and precipitate distribution. A summary of the microstructural features 

in the different materials is shown in Table 9. Dislocation densities are reported from the literature 

as measured by x-ray diffraction techniques for similar materials and heat treatments [35,59,60]. 

In the SLM heat-treated case, the dislocation density is estimated to be similar to that measured 

by Bronkhorst et al. for heat-treated DED 316L [35]. Experimental line intercept methods in this 

study were consistent with these published values.   
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Table 9. Summary of averaged microstructural features that may influence the yield strength. 

  

Equiaxed 
dislocation 

cell size 
(nm) 

Dendritic 
dislocation 

wall spacing 
(nm) 

Dislocation density (m-2) 
Precipitate 
diameter 

(nm) 

Grain 
size 
(µm) 

SLM 
as-built - 450 3.8x1014 [60] 15 20 

heat-treated - - 9x1013 [35] 40 16 

DED 
as-built 370 1750 2.5x1014 [35,59,60] 120 80 

heat-treated - - 9x1013 [35] 200 140 

 

The potential influences of these different parameters on the yield strength are as follows. First, 

increasing dislocation content increases material yield strength, and the dislocation content in the 

AM materials was shown to be high. The dense, elongated dislocation cells that occur in as-built 

SLM material, as shown in Fig. 11, are well-documented [33,61–63], and the high yield strengths 

observed in SLM SS316L compared to conventional annealed material are frequently attributed 

to the presence of these structures. DED dislocation structures have received less attention in 

the literature but appear to be influential on mechanical response given the differences in 

mechanical response after heat treatment. Although the dislocation density remains high, 

structures are less organized than in SLM material, with less organization of dislocations into cell 

walls. Additionally, in the DED material, although segregation was observed, it did not overlap 

with all dislocation cells, leading to a dual cell structure with two types of walls, one dendritic with 

segregation and one equiaxed with uniform composition. Although outside the scope of this study, 

the additional solid-solution strengthening effect afforded by segregation to some of these walls 

would be expected to contribute to strengthening as well.  

Precipitates can also strengthen the material due to particle hardening effects by 

presenting barriers to dislocation motion [64]. Grain morphology can also impact the mechanical 

response, such that decreasing grain size increases the yield strength according to the well-

known Hall-Petch effect [64,65]. 
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In order to assess the relative contributions of different microstructural features on the 

yield strength, calculations of the strengthening afforded by each of these microstructural features 

were performed. The effect of dislocation strengthening based on dislocation densities reported 

for similar materials in the literature [35,59,60] was estimated using a forest-hardening model, the 

effect of grain size was calculated via the Hall-Petch effect, and precipitate strengthening due to 

Orowan hardening was calculated, as summarized in Table 10. For SLM as-built material, the 

Hall-Petch effect was calculated treating dislocation cells as the grain size, since the walls have 

been shown to be effective barriers to dislocation motion and such treatment has yielded good 

approximations for others in the literature [33]. For other materials, the combined effects of grain 

size and forest dislocation hardening were used. Particle hardening was estimated for SLM 

material, using estimates of the volume fraction of precipitates as reported in [58]. 

In all cases, this approach led to overestimation of the actual hardening. The differences 

between actual results and microstructurally-based estimates indicate a need to validate the 

mechanical properties of the AM material separately before use in TO models. Not only do the 

microstructures vary substantially between conventional materials and AM materials, but also the 

same heat treatment can have different effects, as observed with grain refinement in SLM material 

and grain growth in DED material subject to the same heat treatment. 

Dislocation density appeared to have the most significant effect on the strengthening, 

whether due to treating the cells as contributing to a Hall-Petch type effect or due to forest 

hardening. Particle hardening was not observed to be significant in the SLM material, due to the 

relatively low overall volume fraction of precipitates.  

Grain boundary strengthening similarly appeared to contribute little to the total 

strengthening. For SLM as-built material, the thin, columnar grains and dislocation cells contribute 

to an enhanced yield strength compared to many conventional recrystallized materials with grain 

sizes on the order of 50-100 μm [33], or for example the DED materials. Upon heat treatment, the 

particular rearrangement of the dislocation structures only slightly influenced the grain structure 
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in the SLM materials, although the heat-treated structures were significantly different than the 

preexisting dislocation cells. This suggests that the grain structure was not as influential a factor 

in determining the overall yield strength as the dislocation structures. 

Table 10. Calculated contributions to yield strength based on the Hall-Petch relationship and forest 
dislocation strengthening, and the difference between calculated estimates and measured values. All 
values are in (MPa).  

  
Hall-Petch 

contribution 
(cell size) 

Hall-Petch 
contribution  
(grain size) 

Dislocation 
density 

contribution 

Particle 
hardening 

Yield based 
on calculated 
contributions 

Actual 
yield 

Δ 

SLM 

as-built 429 - - 65 677 560 117 

heat-
treated 

- 63 180 [35] 36 462 377 85 

DED 

as-built - 28 
300 

[35,59,60] 
- 511 489 22 

heat-
treated 

- 21 180 [35] - 384 325 60 

 

In DED as-built material, the grain size alone fell within the range of about 20-120 μm in 

diameter and is not expected to have significantly influenced yield compared to conventional 

material. The heat treatment of DED material caused grain growth, but the yield strength after 

heat treatment was approximately 67% of the initial yield strength. This is an equivalent yield drop 

to that observed in SLM specimens with heat treatment, even though the grain sizes barely 

changed in the SLM specimens, indicating that grain size had less influence on yield in the AM 

materials than other factors like dislocation structure. Further, this indicates that the dislocation 

structures that developed near grain boundaries in the heat-treated DED material were more 

influential on the mechanical response than the grain boundaries themselves.  

1.4.2. Additional influence of TO design on strengthening 

The orientation of grain boundaries may influence elastic response in different 

orientations.   Since grains in the DED as-built material are elongated in the laser scanning 

direction, the distance between grain boundaries is smaller perpendicular to the scan path than 

parallel to it, leading to a different effective grain size in different directions. If the material is 

loaded perpendicular to the laser scan path, the shorter effective grain size could lead to a greater 
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Hall-Petch strengthening effect. This behavior was confirmed recently by Mukherjee [34], who 

showed that the yield strength in DED material loaded in different orientations increased with 

decreasing effective grain size based on the orientation of the scanning direction with respect to 

the loading direction. This result has important implications for TO. Since the laser scan path can 

affect the effective grain size in different regions, as was observed in Fig. 10, the yield strength 

may change locally within the part depending on the local stress state. Since TO parts typically 

exhibit complex, spatially-varying stress states due to their complex geometries, the interactions 

between processing parameters, microstructure, and properties is even more complex and 

difficult to predict, necessitating experimental testing prior to TO, as indicated in Fig. 13. This 

effect may also contribute to differences between FEM predictions and actual part performance.  

1.4.3. Influence of AM on accuracy of FEM predictions  

According to Table 8, clevis samples performed better than FEM predictions in all cases. 

This positive deviance can be explained by considering the effects of process parameters on 

microstructure and the fact that FEM does not account for material anisotropy due to local 

microstructural variations. As indicated in Fig. 10, grain orientation and size are different on 

sample’s periphery due to different scan strategies used to print the outline (shell) of the clevis, 

particularly in DED samples. It so happens that the maximum von Mises stress occurs on the 

sample’s periphery where this microstructure refinement takes place. As a result, samples 

exhibited higher yield loads than FEM predictions. This result was more pronounced for DED 

samples according to Fig. 10. Moreover, the DED clevises had 11.8% more volume than the 

model used in FEM, which if not accounted for, can result in larger deviations from FEM 

predictions. For more accurate results, machine manufacturers can implement scaling factors in 

their part-preparation software to correct for this manufacturing induced enlargement.  
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1.4.4. Potential benefits of AM for TO 

Understanding the PSPP relationship within the context of TO has the potential to become 

a powerful tool. Exploiting this relationship may allow manufacturers to: create parts that are better 

suited for tension or compression in different areas of the part (by manipulating texture or grain 

boundary orientation); change the mechanical response by changing laser scan strategy to have 

different grain orientations, elongations, or sizes; and to adjust the microstructure to have 

maximum strength in some areas and maximum ductility in others, all dependent on what is most 

beneficial within the complex stress fields that correspond to these complex geometries. In other 

words, there is opportunity to exceed the current practices of design optimization; to 

simultaneously optimize process parameters, microstructure features, and final topology to 

achieve properties that are locally tailored to specific applications at the voxel level [13,66]. 

1.5. Conclusions 

 In this chapter, topology optimized designs were manufactured using SLM and DED 

methods and their mechanical performance were experimentally compared with FEM. Effects of 

AM method and heat treatment on microstructure were studied and correlated to mechanical 

properties that are essential in TO. Discrepancies between the FEM and experimental results 

were investigated and correlated to process-induced microstructure features in clevis samples. 

The following conclusions can be drawn from the experimental results: 

• Topology optimized clevis samples outperformed the FEM predictions for both SLM and 

DED methods by 6% and 29% in as-built state, and 18% and 38% in heat-treated state, 

respectively. This difference is attributed to changes in the microstructure of the boundary 

(shell) layers that is caused by different scan strategies and process parameters used to 

fabricate those layers. In SLM, grain size and alignment between scan path direction were 

changed whereas in DED, grain size and grain elongation direction were changed. These 

microstructure alterations strengthened regions of the sample where the maximum von 
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Mises stress occurred, resulting in higher yield loads. Typical FEM does not consider such 

manufacturing-induced anisotropies, suggesting that more mesoscale-based models 

would help refine the conservative estimates.   

• SLM samples showed higher yield strength compared to DED, and they both showed 

higher yield strength compared to conventionally-made SS316L. The most influential 

microstructural feature in increasing the yield strength proved to be the dislocation 

structures in both AM methods, in as-built and heat-treated states, whereas grain size 

contribution was not as significant. The difference in yield strength between SLM and DED 

was partially responsible for the slight difference in the optimal topologies computed for 

both AM methods.   

In summary, the topology optimization approach was shown to be sensitive to AM method, 

process parameters and heat treatment. The main differences are attributed to the varied 

microstructural evolutions, illustrating a need for a comprehensive understanding of the PSPP 

relationships to provide holistic design optimization schemes.   
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Chapter 2: Dimensional Analysis of SLM Process 

2.1. Introduction 

SLM is the most widely adopted and studied metal additive manufacturing AM technique 

[67,68]. SLM owes its popularity to its ability to produce complex geometrical features, desirable 

mechanical properties, and versatility in processing a large variety of metals. Most SLM systems 

have numerous process parameters that are often material dependent. Consequently, the first 

challenge in fabrication is finding a suitable set of process parameters for pore-free processing of 

metals since it is shown that porosity adversely affects mechanical properties and can cause 

premature failure [32,69,70]. Experimental [71–73] and machine learning solutions [74–76], albeit 

proven effective on a case by case basis, are not universal or scalable.   

Another approach to try to consolidate the number of influential process parameters and 

provide universal scaling laws is dimensional analysis. There are four advantages in applying this 

technique to the SLM process [77]. First, it reduces the number of parameters that are required 

to draw a meaningful relationship between input and output. Second, a reliable scale-up of the 

suitable process conditions from research to full-scale plants can be achieved. Third, for 

processes with a high number of variables, full factorial design of experiments is cumbersome, 

time intensive, and potentially expensive. Finally, although major process parameters can be the 

same for any SLM system, local differences in implementation, design and components can result 

in different outputs for the same parameter values and materials. A dimensional analysis 

circumvents this issue because it allows for comparison of results across different SLM systems 

and metals.  

Researchers have introduced several well-known and newly derived dimensionless 

numbers for AM [78–83]. However, these numbers require melt pool characteristics data that is 

not readily available to most AM users and is generally not available a priori. In this chapter, a 

dimensional analysis was applied to the SLM process which led to the discovery of two 
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dimensionless numbers that correlate the major process parameters to a part’s density (porosity) 

for a wide range of metals and alloy systems. The predictive and descriptive power of the 

dimensionless numbers is validated experimentally by manufacturing bulk specimens from a 

variety of metals and alloys. The universality of the new dimensionless numbers was further 

verified by applying it to data from the literature produced by other researchers, where different 

SLM systems and different measurement methods were used. 

2.2. Materials and methods 

2.2.1. Dimensional analysis 

The dimensional analysis carried out in this work is based on Buckingham-Π theorem [84]. 

The theory is implemented through Pawlowski’s matrix transformation method to derive a 

complete set of dimensionless groups for the SLM process based on the chosen process 

variables [85]. Here, only the newly discovered dimensionless numbers are reported. Readers 

are referred to [78–80] for a more comprehensive list of other dimensionless numbers pertaining 

to the SLM process. The variables that appear in the newly discovered dimensionless numbers 

are listed in Table 11. The thermophysical properties of materials used by the authors and those 

which are later used in case studies are listed in Table 12. Thermal diffusivity (α) is included to 

highlight the wide range of materials that is covered in this study. Thermal diffusivity is more 

representative of the differences during a transient heat transfer process like SLM compared to 

thermal conductivity or specific heat. It is well known that thermophysical properties of materials 

are temperature dependent. Here, the thermophysical properties are chosen at room 

temperature. Effects of varying thermophysical properties on the results remain a topic for future 

work. 
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Table 11. Process variables appearing in the resulting dimensionless number. 

Process Variable Description Unit Dimension 

P laser power (W) ML2T-3 

v laser scan speed (mm/s) LT-1 

t nominal layer thickness (mm) L 

d laser beam diameter (mm) L 

h hatch spacing (mm) L 

Cp specific heat capacity (J/kgK) L2T-2θ-1 

k thermal conductivity (W/mmK) MLT-3θ-1 

Table 12. Thermophysical properties of metals at room temperature. 

 Specific Heat, Cp 

(J/kgK) 
Thermal Conductivity, k 

(W/mK) 
Thermal Diffusivity, α 

(mm2/s) 

316L stainless steel [86] 450 13.8 3.9 
Al10SiMg [87] 915 111 45.4 
Cu [86] 384 330 95.9 
Hastelloy X [88] 439 10.4 2.9 
IN718 [88] 435 12 3.4 
Ta [86] 151 70 28.3 
Ti6Al4V [89] 546 7.3 3.0 
W [86] 136 90 34.3 

 

2.2.2. Additive manufacturing 

Samples of 316L stainless steel, Hastelloy X, Cu, and IN718 were manufactured on a 

commercial SLM machine (EOS M290) equipped with a 400 W fiber laser and constant laser 

beam diameter of 100 μm. Gas atomized, spherical powder with average particle diameter of ≤ 

60 μm were used per manufacturer’s recommended specification. A set of 27 hexagonal shaped 

samples were manufactured per material with circumscribed circle diameter of 8 mm and height 

of 4 mm. Four process parameters were chosen as variables in this study: laser power (P), laser 

speed (v), laser hatch spacing (h), and nominal layer thickness (t). Samples were made using 

infill parameters only, meaning that other scanning strategies that are typically used for part’s top 

and bottom surfaces or contours were not applied to these samples. A stripe scanning strategy 

with 5 mm width was used at a rotation angle of 67 degrees. The build plate temperature was 

kept constant at 80°C.  
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2.2.3. Density measurement 

Archimedes method was used to measure the density of the samples [90]. After samples 

were removed from the build plate and before density measurement, they were ground to 

eliminate any remaining support structure from the bottom surface. Residual support structures 

could easily entrap air bubbles during submergence into the fluid and potentially contribute to 

measurement errors. Samples were weighed while dry, and then weighed while suspended in 

Fluorinert™ FC-40 (ρ = 1855 𝑘𝑔 𝑚3⁄ ) to collect the data required to calculate the density. 

2.3. Results 

2.3.1. Dimensionless number 

After implementing Pawlowski’s method and investigating the resulting 14 dimensionless 

groups, the newly discovered dimensionless number can be defined as: 

Π1 =
𝐶𝑝𝑃

𝑘𝑣2ℎ
 (2) 

where, Cp is specific heat, P is laser power, k is thermal conductivity, v is laser scan speed, and 

h is hatch spacing.  

To better understand the physical meaning of the discovered dimensionless number, two 

new parameters were introduced. First, the well-known volumetric energy density defined as: 

𝐸𝑖𝑛 =
𝑃

𝑣ℎ𝑡
 (𝐽 𝑚𝑚3⁄ ) (3) 

This term quantifies the input energy to the powder bed. The second parameter is the dwell time, 

τ, and it is defined as the ratio of laser beam diameter, d, to laser scan speed, v. 

𝜏 =
𝑑

𝑣
 (𝑠𝑒𝑐) (4) 

Dwell time quantifies the amount of time it takes for the laser beam to traverse a distance equal 

to its diameter. Guided by Π1 and considering eqns. (3) and (4), one can derive a new 

dimensionless number: 
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Π2 =
𝐶𝑝
𝑘
𝐸𝑖𝑛𝜏 (5) 

The Π2 term provides more flexibility than Π1 in translating volumetric energy density analyses 

between different SLM machines with different lasers because it accounts for laser beam diameter 

and nominal layer thickness. The term also clearly represents the dimensionless number as a 

product of a material’s thermophysical properties, the processing input energy, and laser dwell 

time. 

2.3.2. Predicting porosity modes 

The correlation between the dimensionless number Π1 and relative density of various 

metals is shown in Fig.  14. Here, relative density is defined as the ratio of the measured density 

to maximum achieved density, except for Cu where measured density is divided by the theoretical 

density of pure copper. There are several mechanisms that lead to porosity in SLM processes 

[32,91]. Most of the pores observed in SLM are due to lack of fusion that is caused by insufficient 

energy input [71] or keyhole phenomenon that is caused by excessive energy input [92]. Cross-

sectional microscopy of 316L samples revealed that Π1 can be used to provide a coarse-grained 

estimate of the porosity modes. As Π1 increases to 61, the relative density approaches 99.5% 

indicating a decrease in lack of fusion porosity. The relative density maintains its value until Π1 

reaches 146 after which it starts to decrease again, indicating the beginning of the keyhole regime. 

As a result, when 61 < Π1 < 146 there is a window where process parameters resulting in relative 

density of ≥ 99.5% can be defined, we designated this window the green zone. These values are 

determined based on the equation of the curve that is fitted to the entire data set. These equations 

are introduced in the following section.      
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Fig.  14. Relative density as a function of dimensionless number Π1for select materials and estimation of 
porosity modes. 

2.3.3. Universal scaling law 

To verify the universality of the relationship, the dimensionless numbers are applied to 

data for SLM of various materials available in the literature (Fig.  15). Pal et al. [93] investigated 

the pore morphology of Ti6Al4V processed by SLM. According to the reported data, parameters 

that resulted in maximum density fall within the range predicted by this study. Read et al. [94] 

investigated the influence of process parameters on mechanical response of AlSi10Mg and most 

of the recorded data fell within the lack of fusion zone. It should be noted that multi-phase alloys 

such as Ti6Al4V, AlSi10Mg, and IN718 can have two-phase microstructures. The overall density 

of these alloys is a function of the volume fraction of these phases, which in turn depends on the 

kinetics of phase transformation and process cooling rates. Although this data shows excellent 

agreement with the curve in Fig.  15, more rigor is required to quantify the density of such alloy 

systems. Finally, data from tantalum [95], and tungsten [96] were used to further verify the 

predictive capability of the dimensionless numbers for refractory metals. As shown in Fig.  15, the 
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dimensionless energy input can successfully predict porosity modes and levels for these 

materials. 

A two-part exponential function is introduced as a universal scaling law. The exponential 

nature of the law agrees with the energy coupling mechanisms discussed in [97]. For both 

dimensionless numbers, an adjusted R-square of 96% is achieved. Although the predictive 

capability of both dimensionless numbers are statistically the same, the additional process 

variables, laser beam diameter and layer thickness, that are embedded in the definition of Π2 offer 

more flexibility in capturing and translating the behavior of different SLM systems compared to 

Π1. If laser beam diameter or layer thickness are constant, or values are unavailable, the following 

universal scaling law can be used for predictions: 

𝜌𝑟𝑒𝑙 = 0.9985𝑒𝑥𝑝 (−2.391 × 10
−5 ×

𝐶𝑝𝑃

𝑘𝑣2ℎ
) − 0.1504𝑒𝑥𝑝 (−0.06688 ×

𝐶𝑝𝑃

𝑘𝑣2ℎ
) (6) 

If layer thickness and laser beam diameter are variables or of importance to the users, the 

following scaling law can be used: 

𝜌𝑟𝑒𝑙 = 0.9984𝑒𝑥𝑝 (−4.54 × 10
−6 ×

𝐶𝑝𝐸𝑖𝑛𝜏

𝑘
) − 0.1557𝑒𝑥𝑝 (−0.01735 ×

𝐶𝑝𝐸𝑖𝑛𝜏

𝑘
) (7) 

Considering the evidence provided in Fig.  15, for any metal and any SLM system, it appears that 

relative density can be expressed as a function of the following variables:  

𝜌𝑟𝑒𝑙 = 𝑓 (𝑃, 𝑣, ℎ, 𝑡, 𝑑, 𝐶𝑝, 𝑘) (8) 

2.4. Conclusions 

This chapter presents two dimensionless numbers for the SLM process that correlate 

process parameters to density (porosity). These dimensionless numbers provide a coarse-

grained estimation of pore typology for a wide range of materials. The proposed dimensionless 

numbers scale well with different metals and alloy systems that are produced with various SLM 

systems. Finally, universal scaling laws are derived from the experimental data that yield the 

relative density of any material processed by SLM using values that are readily available to all 
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users. Although density was the focus of this communication, the ability to adapt the 

dimensionless analyses to other properties and features may be possible. 

Fig.  15. Dimensionless numbers for predicting density in SLM. (a) Dimensionless number Π1. (b) 

Dimensionless number Π2. 
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Chapter 3: Characterization of Multi-material 316L-Hastelloy X 

3.1. Introduction 

Multi-material additive manufacturing (MMAM) holds the promise of multi functionality and 

tailored physical properties; hence, it has become an attractive subject of study within the AM 

community in the recent years [98,99]. Among the two most popular metal AM processes, DED 

and PBF, DED offers more flexibility for multi-material processing due to its deposition mechanism 

which allows for mixing of different materials at different ratios. Hence, the majority of MMAM 

research has been focused on DED process [100]. Newly developed deposition mechanisms for 

PBF, has captured attention for multi-material processing [101]. Within the PBF context, MMAM 

is defined as an AM process capable of creating complex geometries from multiple metals and 

alloys where the positioning of each material within the part is designed and controlled to serve a 

specific function or enhance a specific property [102]. Unlocking multi-material capability for PBF 

will have a transformative impact on the industry given that PBF offers superior surface 

roughness, dimensional accuracy, and geometrical complexity compared to DED processes. 

Parts with enhanced functionality and improved thermo-physical properties will find many 

applications within the aerospace, automotive, nuclear, and petrochemical industries. For 

example, high electrical and thermal conductivity can be achieved in tandem with high strength 

with steel-copper alloy systems [103–106], Ti6Al4V wear resistance can be improved by 

manufacturing a protective TiB2 layer [107], light-weight design and electrical conductivity can be 

achieved by AlSi10Mg-C18400 system [108], or high strength at high temperature together with 

good damage tolerance can be obtained from maraging steel-H13 bimetal system [109,110]. After 

steel-copper alloy systems, the most studied bimetal system is steel-nickel alloys. Steel-nickel 

alloy multi-material parts can be used in high temperature and corrosive environments such as 

light water reactors, power and chemical plants, and gas turbines [111,112].  
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IN718 is the most studied nickel alloy in the context of multi-material PBF. Mei et. al. [113] 

investigated SS316L-IN718 parts manufactured using PBF. They reported good metallurgical 

bonding supported by microscopy and tensile testing results. The interface was determined to be 

~100 µm with some cracks and porosity near the interface. In another study, Chen et. al. [114] 

used in-situ high speed x-ray imaging to monitor the printing of IN718 on SS316L substrate via 

PBF. They discovered the formation of the Laves phase due to non-equilibrium solidification and 

chemical inhomogeneity at the interface. It was also reported that the same chemical 

inhomogeneity may have improved mechanical properties by providing more interlocking at the 

interface. Finally, Yusuf et. al. [115] characterized the SS316L-IN718 diffusion zone with 

intermixed fused Fe and Ni with low porosity (~0.27%) and no cracks.  

Another nickel superalloy with exceptional combination of oxidation and corrosion 

resistance and high temperature strength is Hastelloy X (HX) [116–119]. This alloy is known to 

be susceptible to hot cracking, namely solidification and ductility dip cracking, due to rapid cooling 

rates (~106 K/s) associated with PBF process [120]. Early efforts to process HX using PBF 

revealed ultrafine primary dendrite arms of less than 1 µm grown across several layers with fine 

precipitates formed in between [121,122]. In another early work, Tomus et. al. [123] showed that 

nucleation and propagation of cracks most likely occurs at grain boundaries due to 

microsegregation of Mn and Si. Optimizing the process parameters such as laser power, scanning 

speed, and hatch spacing and post processing treatments such as hot isostatic pressing (HIP) 

have shown to reduce the occurrence of micro-cracks and internal pores while improving 

mechanical properties [124,125]. 

Use of HX at large scale can be costly due to the presence of expensive alloying elements 

such as Co, Mo, and W. A multi-material approach using SS316L as the pairing alloy can reduce 

the material costs given that mechanical and metallurgical properties of a multi-material 316L-HX 

remain desirable. 316L stainless steel is arguably the most studied material for PBF process 

[126–128]. A typical 316L fabricated via PBF is known to have a FCC austenite phase with a 



42 
 

cellular microstructure and elongated columnar grains along the temperature gradient (build 

direction) [126,129]. 316L has a similar chemical composition and lattice structure to HX making 

it a promising pairing candidate for multi-material PBF [130].   

To this aim, the present chapter provides first-hand knowledge of mechanical properties 

and interfacial characteristics of 316L-HX multi-material parts manufactured via PBF. Post-build 

examination of the interface is carried out using scanning electron microscopy (SEM) and energy 

dispersive spectroscopy (EDS). In depth study of mechanical properties using tensile and flexural 

testing is presented with a focus on plastic deformation and elongation followed by fractography 

of the fracture surfaces. It is shown that among various surface parameters, maximum valley 

depth (Sv) is inversely correlated to fatigue life [131–133]. Hence, surface metrology of the 

interface is performed to gain a better understanding of requirements for surface treatment 

procedures such as laser polishing to improve fatigue life and mechanical properties. Finally, the 

interface is revisited after tensile testing to investigate the presence of potential cracks and pores. 

3.2. Experimental methods 

3.2.1. Materials 

Gas atomized 316L and HX powders used in this study were provided by EOS (GmbH, 

Germany) with particle diameter range of 10-50 µm. The chemical composition of both materials 

is listed in Table 13. It is well known that melt pool anatomy and dynamics significantly affects 

solidification and defect formation in PBF process [134]. Melt pool characteristics depends on 

process parameters and thermophysical properties of the material. For comparison, common 

thermo-physical properties of 316L and HX materials is listed in Table 14.  

Table 13. Chemical composition (in wt %) of 316L and HX powders as provided by the supplier. 

Element Fe Ni Cr Mo Co Mn W C S 

316L Bal. 13-15 17-19 2.25-3 - <2 - <0.03 <0.004 

HX 17-20 Bal. 20.5-23 8-10 0.5-2.5 <1 0.2-1 <0.1 <0.03 
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Table 14. Thermophysical properties of 316L and HX [86,135–137]. 

Symbol Property 316L HX 

Tl Liquidus temperature (K) 1723 1628 
Ts Solidus temperature (K) 1658 1533 
Cp Specific heat (J.kg-1.K-1) at 298 K 450 439 
ks Thermal conductivity of solid (W.m-1.K-1) at Tl 13.8 10.4 
kl Thermal conductivity of liquid (W.m-1.K-1) at Tl 16.8 29.0 
α Thermal diffusivity (mm2.s-1) 3.9 2.9 
µ Viscosity (kg.m-1.s-1) at Tl 0.008 0.0075 
CTE Coefficient of thermal expansion (10-6.K-1) at 773 K* 18.17 14.55 
γ Surface tension (N/m) at Tl 1.55 1.88 
d γ/dT Temperature coefficient for surface tension (N.m-1.K-1)** -0.24×10-3 -0.40×10-3 

* For samples fabricated via PBF in z direction 
** Assumes negligible traces of sulfur and oxygen  

 

3.2.2. Manufacturing 

An EOS M290 (GmbH, Germany) system was used to manufacture 12 multi-material 

samples (three samples per group) as shown in Fig.  16. In this process, the first material was 

fully printed, then powder was swapped in the machine and the secondary material was printed 

directly over the already solidified first material. The system is equipped with a 400 W Yb/YAG 

fiber laser with a 1060 nm wavelength and beam diameter of 100 μm with Gaussian shape profile. 

The base plate was preheated to 80 °C, and an inert argon atmosphere was maintained during 

the fabrication process. Samples were made on 3 mm of support structure to avoid contamination 

by intermixing the base plate material during melting. As indicated in Fig.  16, 316L-HX refers to 

samples with 316L manufactured first followed by HX, and HX-316L refers to samples with HX 

manufactured first followed by 316L. This approach allows for a more comprehensive study of the 

interface since it accounts for gravity effects on melt pool formation, order of solidification, and 

material diffusion. Process parameters used to manufacture each material are adopted from the 

authors’ previous work and are listed in Table 15 [138]. These parameters have proven to yield 

the highest density (>99.5%) parts. It should be noted that samples were made with no contouring 

or modified parameters for top and bottom facing surfaces.  
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Fig.  16. Manufactured samples of 316L-HX and HX-316L. Critical dimensions are the same for both 
tensile and flexural specimens. Tensile test specimens gauge length is 30 mm. 

Table 15. PBF process parameters for manufacturing of multi-material samples (recommended by the 
manufacturer). 

Symbol Parameter 316L HX 

P Laser power (W) 195 195 
v Laser speed (mm/s) 1083 1150 
h Hatch spacing (mm) 0.09 0.09 
t Layer thickness (mm) 0.02 0.02 
- Scanning stripe width (mm) 5 5 
- Hatch reorientation (deg) 67 67 

 

3.2.3. Surface metrology 

A focus variant optical microscope (Alicona, InfiniteFocus G4, Austria) was used to 

measure the surface roughness across the interface of as-built multi-material samples and 

compare it with 316L and HX values. Surface profiles were acquired at 20x objective across a 1.4 

× 1 mm2 area with 2.5 µm and 100 nm of lateral and vertical resolution, respectively. The overall 

form of the scanned surface was removed by removing the least-square plane with a robust fitting 

algorithm. The roughness profile was separated from the primary profile using a Gaussian filter 

with a cut-off wavelength of 250 µm. The arithmetical mean height (Sa), and the maximum valley 

depth (Sv) of the surface were measured from an areal scan across a 1 mm2 area. Calculations 

were in accordance with ISO 4287 [139] and ISO 25178 [140] guidelines, respectively. 
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3.2.4. Interfacial characterization 

To characterize the microstructure at the interface, samples were cold mounted using 

epoxy resin. They were then polished using a diamond slurry in a series of steps with a reducing 

particle size of 9, 6, 3, and 1μm. Final polishing was accomplished with 50 nm colloidal silica. All 

samples were thoroughly cleaned with acetone and isopropanol followed by deionized (DI) water. 

To reveal the microstructure features such as melt pool geometry, grain boundaries, and 

dendrites, samples were electrochemically etched in 70% phosphoric acid (H3PO4) and 30% DI 

water at 6 V for up to 30 seconds. It should be noted that this solution is more effective in etching 

HX. High magnification SEM micrographs of the interface microstructure were captured using a 

ZEISS LEO 1530 equipped with a field emission gun (FEG) and an EDS detector. Large area 

EDS analysis was performed across 2 mm with sampling increment of 10 µm for Fe, Ni, Cr, and 

Mo. It should be noted that EDS analysis was performed on samples prior to electrochemical 

etching. Same procedure was carried out for samples after tensile testing for post-fracture 

analysis.   

3.2.5. Mechanical characterization 

Tensile and flexural testing were carried out at room temperature using an MTS Sintech load 

frame (MN, USA) with a 5 kN load cell and 2.20 mV/V sensitivity. Tensile tests were performed at 

constant crosshead displacement rate of 2 mm.min-1 (strain rate of 0.001 s-1) with data acquisition 

rate of 10 Hz. Strain measurements were conducted using digital image correlation (DIC) provided 

by Correlated Solutions (SC, USA). Zero-normalized squared difference algorithm was used to 

calculate longitudinal principal strains. It should be noted that true stress and true strain values 

were calculated from engineering stress and engineering strain data obtained from testing. 

Flexural testing (3-point bending) was carried out with crosshead displacement rate of 5 

mm/min with data collection frequency of 10 Hz. The downward force was exerted exactly on the 

interface while the support span was calculated to be 18 mm according to ASTM E290 [141]. 
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3.3. Results 

3.3.1. Surface roughness 

Resulting surfaces from PBF process are typically irregular, with steep sided and re-

entrant features [142]. One of the most commonly used surface parameters used to qualify 

surfaces is Sa, as defined previously. However, recent studies have shown that other surface 

parameters, specifically Sv, can better capture the relationship between surface roughness and 

mechanical properties of parts made via PBF [132]. Averaged Sa and Sv values with their 

standard deviations are presented in Fig.  17. According to Fig.  17. (b), both 316L-HX and HX-

316L interfaces have higher values of Sv, followed by HX and 316L, respectively. This indicates 

that formation of interface between 316L and HX, regardless of printing order, diminishes the 

surface quality of multi-material PBF samples. Higher Sv values are associated with lower fatigue 

life, particularly in low cycles [132]. This observation has important implications for the design of 

multi-material components for fatigue.   

A surface profile of each sample is shown in Fig.  17. (c). Samples exhibit a periodic peak 

and valley profile along the build direction which is indicative of the layer-wise manufacturing 

process of PBF. Both multi-material samples created large peaks in between two large valleys 

with the depth of approximately 40 μm spanning across several layer thicknesses. According to 

Fig.  17. (c), the effect of multi-material interface on Sa and Sv is estimated to be 200 μm, i.e. ~10 

layers. A more detailed look at the interface is presented in section 3.2. Overall, 316L exhibits the 

best surface quality, as represented by Sa and Sv values. Therefore, the surface quality of 316L 

should be considered as the base line for any surface improvement processes such as laser 

polishing for 316L and HX multi-material parts.  
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Fig.  17. Surface roughness results. (a) Showing the scan locations and directions on samples’ surfaces. 
(b) Sa and Sv values. (c) Surface profile of each scan. 

 

3.3.2. Interface microstructure 

3.3.2.1. SEM analysis 

The interfacial microstructure of HX-316L is shown in Fig.  18. Low magnification 

overviews of the interface in Fig.  18. (a) and Fig.  18. (d) reveal a sound graded interface with 

no visible pore or crack. Fig.  18. (b) and Fig.  18. (e) show the melt pool boundaries (white lines) 

formed in HX side and in the diffusion zone. Grain boundaries are shown in red, almost 

perpendicular to the melt pool boundary. These columnar grains are formed along the thermal 

gradient and in some instances continue across multiple melt pool boundaries indicating epitaxial 

growth. Formation of melt pool vortices are shown in Fig.  18. (b) using yellow arrows. Studies 

have shown that in PBF process, Marangoni force drives the flow from high temperature regions 

to low temperature regions thus creating two fluid vortices with opposite rotations in front and 

back of the laser beam path [134,143]. These vortices are also observed for other multi-material 

systems where the constituent materials possess different Marangoni numbers [104,105,110]. 

The typical cellular/dendritic solidification microstructure of HX is depicted in Fig.  18. (c) 

and Fig.  18. (e) with primary dendritic arm spacing (PDAS) of 0.4 ± 0.03 μm and melt pool depth 

and width of ~60 and ~100 μm, respectively (supplementary Fig. A1). Several defects were 
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identified on the grain boundary as shown by red arrows. According to the magnified inset in Fig.  

18. (c), these defects were sub-micron in size and appeared to be caused by intermetallic 

inclusions that were pulled out during sample preparation. Evidence for existence of these 

inclusions is provided in Supplementary Fig. A2. The same defects were previously observed for 

HX and characterized to be carbides formed as a result of thermal cycling during PBF process 

[144,145]. In addition to formation of intermetallics, some gas pores were observed on grain 

boundaries and within grains as shown by white arrows in Fig.  18. (e). These defects are common 

in PBF processing and are due to key-hole instability during laser melting [32]. There were no 

noteworthy defects observed in 316L side of the samples. Overall, there were no defects 

observed at the diffusion zone to suggest multi-material processing of HX-316L as the primary 

cause. 

Microstructural analysis of 316L-HX samples revealed similar features and defects as HX-

316L (Fig.  19).  Intermetallic defects on grain boundaries of HX, and melt pool vortices due to 

Marangoni convection in the diffusion zone are shown in Fig.  19. (b) and Fig.  19. (c), 

respectively. The cellular/dendritic microstructure with columnar grains in the diffusion zone is 

shown in Fig.  19. (e). The presence of the same intermetallic defects on grain boundaries and 

the same PDAS indicate that HX microstructure is dominant within the diffusion zone. No other 

visible defects were observed at the interface that suggest multi-material processing as the cause.   

The diffusion zone appears to be larger than that of HX-316L as indicated in Fig.  19. (a) 

and Fig.  19. (d). However, the electrochemical etching solution was more effective in revealing 

the HX microstructure than 316L. The diffusion zone for HX-316L is rich in Fe, as a result the 

etching did not fully reveal the melt pool boundaries. On the other hand, the diffusion zone in 

316L-HX is rich in Ni which resulted in a stronger reaction with the etchant revealing the melt pool 
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boundaries and microstructure of the entire diffusion zone. This is later confirmed by EDS analysis 

presented in section 3.3.2.2.   

Fig.  18. SEM image of HX-316L interface: (a,d) low magnification overview of the interface, (b) melt pool 
vortices in the diffusion zone, (c,e) microstructural defects in HX. 
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Fig.  19. SEM image of 316L-HX interface: (a,d) low magnification overview of the interface, (b) high 
magnification view of HX microstructure and defects, (c) melt pool vortices in the diffusion zone, and (e) 

HX dominant microstructure in the diffusion zone. 

3.3.2.2. EDS analysis 

To quantify the length of the diffusion zone between 316L and HX at the interface, EDS 

analysis of 316L-HX and HX-316L is shown in Fig.  20. (a) and Fig.  20. (b), respectively. The 

diffusion zone, highlighted in yellow, starts when the content of the main alloying element for each 

material, i.e. Fe for 316L and Ni for HX, deviates from their average value. The end of the diffusion 

zone is marked by the return of these elements to their average weight % for each alloy. According 

to Fig.  20, the diffusion zone for 316L-HX and HX-316L are both approximately 240 μm. This is 

in agreement with the estimates from surface metrology and SEM analysis. The similar diffusion 

zones indicate that gravity and buoyancy forces have little effect on melt pool dynamics. 
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According to the wight % of each element shown in Fig.  20, the diffusion zone for 316L-

HX is rich in Ni, while the diffusion zone in HX-316L is rich in Fe. In both cases Cr has the second 

largest weight % in the diffusion zone. This supports the argument made in section 3.2.1 regarding 

the etchant interaction with the elements within the diffusion zone. It can also be concluded that 

the secondary material, i.e. the material printed on top of the primary material, dominates the 

composition of the diffusion zone. It has been shown that the depth of melt pools formed in key 

hole mode covers multiple layer thicknesses for 316L and HX [125,146]. However, the melt pool 

depth greatly diminishes for the first few layers that are printed above a solid substrate [110,114], 

because the energy required to melt a solid substrate is much greater than the energy required 

to melt the same material in powder form [147]. Therefore, the remelted material from the primary 

material diffuses into the melt pool during the printing of the first few layers, and as the print 

progresses the melt pool no longer penetrates the primary material causing the diffusion to 

dissipate. Fluid vortices that are caused by Marangoni flow help stir the elements, creating a 

compositional gradient within the diffusion zone. In case of 316L and HX, the material diffusion 

dissipates after ~240 μm, or about 10-12 layers. Fig.  20. (a) also showed that Fe and Ni reached 

their respective inflection points almost in the middle of the diffusion zone, whereas Fig.  20. (b) 

showed that the inflection points were reached at the beginning of the diffusion zone. This 

indicates that 316L-HX experienced more intermixing than HX-316L. 

More rigorous work is required to understand the underlying mechanisms of elemental 

distribution across the interface which will be the subject of future studies. 

3.3.3. Tensile test 

Tensile tests were performed to evaluate the bond strength of 316L and HX interface. 

Stress-strain curves and mechanical properties are presented in Fig.  21. Three 316L, and three 

HX samples were tested to create a baseline for comparison. HX exhibits higher values of yield 
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and ultimate strength compared to 316L at 527 and 649 MPa, respectively. Both HX and 316L 

exhibit similar ductility with 62.1% and 62.7% rupture strain, respectively.  

 

Fig.  20. EDS line scans of (a) 316L-HX, and (b) HX-316L. The highlighted area indicates the diffusion 
zone for each multi-material system. 

The images of fractured samples in Fig.  21. (b) show that failure occurred in 316L side 

of the samples and about 7 mm away from the interface. Both HX-316L and 316L-HX performed 

similarly during testing. Fig.  22  shows the strain map of both multi-material samples at four 

critical points during the tensile test: onset, yield, ultimate, and fracture. It is evident that samples 

yielded at 316L side away from the interface while the HX side of the samples experienced very 

little to no strain. Maximum strain values on HX side at the moment of yield were 0.6% and 0.7% 

for 316L-HX and HX-316L, respectively. Necking occurred when samples reached their ultimate 

strength. At this moment, the HX side experienced almost zero strain and necking continued in 

the 316L side until failure. However, the interface showed 7.8% and 6.6% strain at ultimate 

strength for 316L-HX and HX-316L, respectively. At failure, the strain values for the interface 

reached 23.1% and 25.8% for 316L-HX and HX-316L, respectively.  

3.3.4. Flexural test 

To further evaluate the bond integrity at the interface, 3-point flexural bending test was 

carried out. The force was exerted directly on the middle of each sample resulting in maximum 

shear stress and bending moment at the interface. Flexural stress-flexural strain curves are 
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depicted in Fig. 23. Similar to the tensile test, both HX-316L and 316L-HX samples performed 

similarly with flexural yield strength of 273 MPa and 275 MPa, and flexural strength of 543 MPa 

and 558 MPa, respectively (Fig. 23. (c)). Multi-material samples exhibit higher flexural yield and 

flexural strength compared to 316L. Samples yielded at the 316L side during testing, resulting in 

an asymmetrical deflection as shown in Fig. 23. (b). Overall, there were no visible cracks at the 

interface after testing was terminated indicating a successful bonding between 316L and HX.    

Fig.  21. Tensile test results of 316L, HX, and multi-material samples. (a) stress-strain curves, (b) failed 
samples. The red dashed lines indicate the interface, (c) comparison of yield and ultimate strengths, and 

(d) comparison of strains.  

 

 



54 
 

Fig.  22. Strain map at four critical moments of the tensile test: (a) 316L-HX sample, (b) HX-316L sample. 
The color scale shows the strain distribution across the sample at every moment during the test.  

 

3.3.5. Post-fracture analysis 

To study the effects of tensile testing on the interface, post-fracture EDS analysis was 

carried out (Fig.  24). Results showed the diffusion zones extended to approximately 300 μm for 

316L-HX, and 400 μm for HX-316L as expected from the tensile test results. This translates to 

25% and 66% elongation at the interface, indicating the ductile nature of the interface. The 

integrity of the interface was further verified by post-fracture SEM analysis (Fig.  25). The 

characteristic features of the diffusion zone, including melt pool vortices, remained unchanged 

after tensile testing. Results confirmed that the interface remained free of cracks or pores even 

after experiencing strain during tensile testing.  
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Fig.  23. Flexural test results of 316L, HX, and multi-material samples. (a) stress-strain curves, (b) failed 
samples. The red dashed lines indicate the interface, (c) comparison of flexural yield and flexural 

strengths, (d) comparison of strains.  

Finally, the fracture surfaces of multi-material samples were observed using SEM (Fig.  

26). As expected, fracture surfaces of both 316L-HX and HX-316L samples showed similar 

features which were typical of 316L manufactured via PBF [148–150]. Distribution of 

inhomogeneous dimples with sizes ranging from a few hundred nano meters to a few microns 

were observed which indicate that the primary mode of fracture was ductile. The white arrows in 

Fig.  26. (c), and Fig.  26. (f) point to submicron inclusions that sit at the bottom of the dimples. 

These inclusions were likely formed as a result of remnant oxide layer on powder particles 

reacting with the alloying elements, triggering micro-crack nucleation and the eventual fracture 

[151]. It can be concluded that multi-material processing of 316L and HX did not affect the fracture 

mechanics of 316L.  
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Fig.  24. Post-fracture EDS line scans of (a) 316L-HX, and (b) HX-316L. The highlighted area indicates 
the diffusion zone for each multi-material system. 

Fig.  25. Post-fracture SEM analysis of multi-material samples at different magnifications: (a,b) 316L-HX, 
and (c,d) HX-316L. White dashed lines indicate melt pool boundaries at the interface.  

Fig.  26. SEM image of fracture surfaces from low to high magnification. (a-c) 316L-HX, and (d-f) HX-
316L. 
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3.4. Discussion 

3.4.1. The diffusion zone 

Studies have shown that a gradual change in materials composition at the interface 

improves the bond in multi-material PBF, compared to sharp transitions [99]. For materials with 

dissimilar thermophysical properties, such as Invar 36 and Cu10Sn, the compositional gradient 

at the interface must be engineered if detrimental defects are to be avoided [104]. In 316L and 

HX case, the “naturally” formed interface created a compositional gradient which was defect free 

thanks to similar thermophysical properties and processing parameters of materials. These 

similarities will be discussed in this section.  

Both 316L and HX share an austenitic FCC crystal structure. Additionally, the CTE for 

316L and HX are 18.2 and 14.5 (10-6.K-1), respectively (Table 14). The similar CTE values plays 

a role in reducing thermal stress concentration at the interface, thus preventing crack propagation 

and layer delamination during cooling [99]. Another factor in preventing embrittlement and 

cracking of the interface is satisfactory solubility levels of the main alloying elements, Fe, Ni, and 

Cr [152]. Proper diffusion of materials at the interface depends on melt pool depth, and speed 

and direction of melt flow. The melt pool depth determines the potential contribution of the primary 

material (already solidified material), the speed and direction of the flow determines proper 

intermixing of the elements driven by Marangoni force [114]. The melt pool depth of 316L was 

taken from a previous study to be ~68 μm [146], while the melt pool depth of HX was measured 

to be ~60 μm. The contribution of each material to the interface during melting can also be 

measured using the volumetric energy density: 

𝐸𝑑 =
𝑃

𝑣ℎ𝑡
                  (9) 

𝐸𝑑 determines the amount of input energy per volume of material. 𝐸𝑑 for 316L and HX based on 

process parameters listed in Table 15 is 100 and 95 J/mm3, respectively. A universal form of the 
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input energy was introduced by authors in a previous work which accounts for the contribution of 

specific heat and thermal conductivity of materials [138]: 

  Π2 =
𝐶𝑝

𝑘𝑠
𝐸𝑑𝜏                (10) 

where 𝜏 = 𝑑/𝑣 is laser dwell time, and d is laser beam diameter. Π2 values of 316L and HX for 

process parameters listed in Table 15 are 301 and 348, respectively. This indicates that the ratio 

of heat storage to heat dissipation at a unit time for a given input energy is similar for both 

materials.  

The direction of the melt pool flow is mostly determined by Marangoni force which drives 

the flow from high to low temperature region of the melt pool for materials with a negative 

temperature  coefficient of surface tension [143]. Effects of buoyance and gravity in PBF melt pool 

dynamics are often negligible owing to the small dimensions of the melt pool [78]. Effects of 

Marangoni force on the melt pool can be quantified by the Marangoni number:  

𝑀𝑎 = −
𝑑𝛾

𝑑𝑇

𝐿∆𝑇

𝜇𝛼
                           (11) 

where L is the characteristic melt pool length, and ΔT is the difference between maximum 

temperature of the melt pool and solidus temperature. Larger Marangoni number translates to 

stronger convective flow at the head of the melt pool which can trigger fluid vortex formation [143]. 

Melt pool vortices can help with materials mixing during multi-material melting [99]. Therefore, at 

least one material with a high Marangoni number may be required to achieve proper intermixing 

within the diffusion zone. To provide an estimate for the Marangoni number for 316L and HX, L is 

considered to be the melt pool width, estimated at ~120 μm for 316L according to [146], and ~100 

μm for HX according to Fig. A1. The maximum temperature in the melt pool is assumed to be the 

material’s liquidus temperature. With these assumptions, and the properties listed in Table 14, 

the Marangoni number for 316L and HX can be estimated at 60 and 175. Larger Marangoni 

number promotes more convective flow, and therefore more intermixing. The higher Marangoni 

number of HX can explain why 316L-HX experienced better intermixing in the diffusion zone.  
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A summary of influential thermophysical properties and quantitative tools that can aid in 

pairing of alloys for multi-material processing via PBF is presented in Table 16. Although the 

proposed list is not comprehensive, it can provide insight into whether a “natural” or an 

“engineered” interface would be needed for a chosen multi-material pair. 

Table 16. Summary of influential parameters and properties in multi-material processing of 316L and HX. 

Symbol Parameter 316L HX 

- Crystal structure Austenitic FCC Austenitic FCC 
CTE Coefficient of thermal expansion (10-6.K-1) 18.2 14.5 
Ed Energy density (J/mm3) 100 95 
Π2 Dimensionless number defined in [138] 301 348 
Ma Marangoni number 60 175 

 

3.4.2. Mechanical properties 

The ultimate and fracture strain of multi-material samples were significantly lower than 

316L. This seems to be contradictory to the fact that for the same material, a sample with shorter 

gauge length always provides a higher fracture strain than a sample with a longer gauge length. 

This behavior can be explained by considering that ductile materials elongate only within the 

necking region after they reach their tensile strength, and the spatial dimensions of the necking 

region are almost identical regardless of the length of the test specimen [153]. Since the 316L 

side of multi-material samples are almost half the gauge length of 316L samples, the necking 

strain accounts for a disproportionately high fraction of the total strain. Therefore, the multi-

material samples should have significantly higher fracture strains than 316L.  

The apparent contradiction can be explained by considering how strain was calculated. 

Strain values reported in Fig.  21 were averaged across the entire sample. However, in a 316L 

and HX multi-material case, this approach can be misleading because strain values on half of the 

sample (HX side) were close to zero and that significantly lowered the strain average across the 

entire sample. According to Fig.  22, the maximum strain at fracture for 316L-HX and HX-316L 

were 192% and 207%, respectively. Whereas the maximum strain at fracture for 316L was 147%, 
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significantly lower than multi-material samples. This agrees with the expected plastic behavior of 

samples with shorter gauge lengths. This observation can have important implications for 

mechanical design of multi-material components where elongation will no longer be uniformly 

distributed across the components.  

It should be noted that the experiments designed in this work require remelting of the 

primary material for diffusion and formation of the interface. Future work should focus on multi-

material processing of materials that are adjacent to one another, where both materials 

experience melting and solidification simultaneously.  

3.5. Conclusions 

This chapter studied the multi-material processing of 316L and HX via PBF and provided direct 

observations of multi-material interface, microstructure, and mechanical properties of 316L-HX 

and HX-316L systems. SEM and EDS analysis of the interface showed no evidence of cracking 

or porosity. Mechanical testing proved sound bonding with no evidence of embrittlement at the 

interface. The following conclusions can be drawn from the results presented in this work: 

• A ~240 µm (10-12 layers), defect free, compositional gradient was formed at the interface 

of 316L and HX using process parameters suitable for each individual material. The 

interface was rich with the major alloying element of the secondary material. i.e. Ni for 

316L-HX and Fe for HX-316L samples.  

• Evidence of melt pool vortices due to Marangoni convection was observed for both 316L-

HX and HX-316L samples indicating mixing of alloying elements within the melt pool. 

• Formation of the interface increased the surface roughness. Multi-material samples 

showed higher levels of Sv at their interface compared to 316L or HX surfaces. 

• During tensile testing, multi-material samples failed at 316L section some 7 mm away from 

the interface. Both multi-material samples performed similarly, indicating that solidification 

order did not affect the bond.   
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• At failure, the strain values for the interface reached 23.1% and 25.8% for 316L-HX and 

HX-316L, respectively, while HX experienced almost no strain. No evidence of cracking 

or voids were found within the interface region after tensile testing.  

• No evidence of defect was found at the interface after flexural test indicating the ductile 

nature of the interface.  

• The sound bonding, and mechanical performance of 316L and HX multi-material samples 

was attributed to similar thermophysical properties, and crystal structure of alloys. Use of 

a few quantitative tools were suggested to aid in choosing proper paring alloys for multi-

material PBF. 

• The following quantitative parameters (coefficient of thermal expansion, energy density, 

dimensionless number Π2, and Marangoni number) were proposed to provide insight into 

whether a “natural” or an “engineered” interface would be needed for a chosen multi-

material pair. 
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Chapter 4: Compositional Grading of 316L-Cu Using Machine 
Learning 

4.1.  Introduction 

The popularity of metal AM continues to grow as both a research topic and an industry 

solution [68]. Among the main metal AM techniques, SLM remains the most studied technique 

[68]. An extensive Delphi study on economic and societal implications of AM predicted that by 

2030 a significant amount of AM-produced products will consist of multiple materials and/or 

contain electronics, enabling a broad range of applications [67]. This prediction is supported by 

the growing number of publications on AM with multiple materials and functionally graded 

materials (FGMs) in recent years [154–156], and emerging industry trends [157]. In this work, the 

focus is on metal AM, and any mention of multi-material hereafter excludes polymers and 

ceramics. In the context of this work, multi-material AM is defined as an AM process capable of 

creating complex geometries from multiple metals or metal alloys where the positioning of each 

material (compositional grading) within the part is designed and controlled to serve a specific 

function or enhance a specific property. It should be noted that the requirement for complex 

geometries implies that DED techniques are not suitable for the category of applications 

envisioned for this definition. A multi-material AM process that fits this definition can have 

transformative impact on industry. For example, light-weighting using multi-material generative 

design [19,158] has shown to result in higher compliance per weight fraction than single-material 

generative design. Graded structures in FGMs reduce the interfacial residual stress levels, 

thereby enhancing thermophysical and mechanical properties [155]. Wear and corrosion 

resistance, as well as part-level heat and electrical conductivity management can be designed 

and incorporated in multi-material parts with compositional grading [159]. Moreover, the benefits 

can extend beyond individual parts and impact the AM value chain. For example, compositional 

grading in AM can replace other manufacturing processes such as coating technologies. Part 
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consolidation can be done across materials, thereby reducing the need for assemblies and failure 

prone permanent and nonpermanent joints. As a result, manufacturing costs, footprint, and lead 

time can be significantly reduced. 

Before the potential of multi-material AM can be realized, several technical challenges 

must be addressed. Early efforts have been made in the 1990s to incorporate multi-material 

capability in the SLM process at laboratory scale with a focus on developing novel powder delivery 

systems capable of handling multiple materials [160–166]. However, a successful integration of 

a multi-material powder delivery system and the SLM process was not reported until 2018 by Wei 

et al. [167] where 316L-Cu10Sn and 316L-In718 components were successfully manufactured. 

In another work Wei et al. [168] demonstrated the fabrication of 316L-Cu10Sn components with 

varying compositional gradient within and across layers. Similar work has been done on other 

hybrid materials such as glass-Cu using vibration assisted micro dosing of metal powder and in 

situ mixing [169]. It should be noted that these studies demonstrate a compositional gradation at 

the interface of two materials in 3D, an approach that fits the definition of multi-material AM within 

the context of this work. Other studies investigated the one dimensional interfacial bond between 

two dissimilar materials fabricated via SLM with a focus on characterization [105,170–172]. For 

example, Liu et al. [103] manufactured bi-metallic laminates of steel/Cu using SLM. They reported 

successful metallurgical bonding with highly refined microstructure due to rapid solidification. In 

another study, Sing et al. [108] carried out multi-metal processing of C18400 copper alloy and 

AlSi10Mg using SLM. They reported the formation of intermetallic compound Al2Cu during the 

process at the bonding interface between the two materials. These studies highlight the possibility 

of achieving multi-material parts with compositional gradients from the standpoint of hardware 

and material design. Currently, to the best of the authors’ knowledge, there is no systematic 

approach for determination of suitable process parameters for additive manufacture across 

compositional gradients in multi-material parts. 
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To develop a framework for determining suitable process parameters for multi-material 

parts, a better understanding of the SLM process is required. But researchers are faced with two 

major challenges: the complex physics of the process and more than 100 adjustable, material-

dependent process parameters. Many strides have been made to study the SLM process by 

developing multi-scale and multi-physics models [134,147,173–175]. These models have played 

a fundamental role in expanding our understanding of the SLM process, but their computational 

cost remain prohibitive. Effects of process parameters on part quality, microstructure, and 

mechanical properties have also been experimentally investigated [71,72,176–178]. Depending 

on the chosen metric, full factorial design of experiments can be costly and time consuming. 

Therefore, this approach, although proven useful, is not yet practical for creating overarching 

process-property relationship maps, not to mention the added complexity of multi-material AM 

process. 

High throughput experiments have shown to be an effective substitute for full factorial 

design in various research on characterization [146] and process-property relationship mapping 

[179]. Introduced to material sciences in 1990s [180–182], combinatorial and high throughput 

experiments are characterized by synthesis of a “library” sample that contains the materials 

variation of interest (e.g., composition, density, tensile strength), and rapid measurement 

schemes that result in large data sets at unprecedented speed and cost [183]. Although high 

throughput experimental methods have traditionally been used for materials discovery [184], 

today’s challenges in advanced manufacturing and materials science have brought upon new 

applications for this methodology. High throughput experimentation has been presented as an 

ideal experimental complement that can help bring the vision of the materials genome initiative 

[185] to fruition [186–188]. Moreover, it has proven to be an effective method to generate training 

data sets for various machine learning methods used in materials design and AM [189–191] to 

combat the high cost and long development times of large training data sets.         
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Machine learning, complemented by high throughput experiments, is an approach that 

can simplify the process of finding suitable SLM parameters and avoid high costs associated with 

experiments and testing. Machine learning algorithms are juxtaposed with physical models. These 

algorithms bypass the computational burden associated with running multi-physics and multi-

scale simulations and offer the ability to gain insightful knowledge and identify relationships in 

large AM data sets [192]. Models built with machine learning can be used for design, 

quality/process optimization [193], predicting part’s thermal history [194], in situ monitoring and 

defect detection [195], and security and cyberattack detection [196,197]. A wide range of machine 

learning techniques have been applied to predict process-property relationships for various 

mechanical and physical properties of single-material AM such as density, melt pool geometry, 

toughness, and wear strength [76,198–202]. Among these techniques, the Gaussian process has 

shown to be an attractive regression-based machine learning method for predicting process-

property relationships. Gaussian process surrogate modeling has been successfully used to 

predict porosity and melt pool depth levels with respect to laser power and speed for 316L and 

17-4 PH stainless steel [74,75,203]. Supervised learning problems in machine learning, which 

can be thought of as learning a function from examples, can be directly integrated into the 

Gaussian process framework. By doing so, one can take advantage of the relative simplification 

of computations required for inference and learning in Gaussian processes compared to artificial 

neural networks [204]. Currently, there are no implementations of machine learning in multi-

material AM. 

In this work, a machine learning algorithm is developed based on a multivariate Gaussian 

process to predict the suitable process parameters necessary for manufacturing the 

compositional gradient zone of a 316L-Cu multi-material part using SLM as demonstrated in [168]. 

The developed multivariate Gaussian process approach provides a framework that facilitates 

transfer of knowledge from 316L and Cu to 316L-Cu compositions in predicting its material 

properties under study. The training data is density and surface roughness, which is 
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experimentally mined from manufactured samples of 316L, Cu and compositions thereof. Density 

and surface roughness are chosen as metrics for part porosity and fit for service, respectively. In 

addition, these two figures of merit can be measured in a high throughput fashion. It is well 

documented that the main SLM process parameters, i.e., laser power (P), speed (v), layer 

thickness (t), and hatch spacing (h) are material-dependent and are directly correlated to porosity 

and surface characteristics in a part [71,72,146,205,206]. However, how these parameters should 

change as a function of a material’s composition is still unknown. This work provides first-hand 

knowledge of process-property relationship in a compositional gradient zone of 316L-Cu multi-

material part by leveraging a unique machine learning approach. 

This chapter is organized in four main sections plus conclusions and two appendices: 

Section 4.2 focuses on the high-throughput experimental procedures used in collecting the 

training data with complementary details added in Appendix B. Section 4.3 provides a first look at 

the collected data and discusses the effects of process parameters on part density and surface 

roughness. Development and validation of the multivariate Gaussian process model is the focus 

of Section 4.4. The structure and formulation of the algorithm is discussed followed by cross-

validation results. The details of the mathematical derivations are presented in the Appendix C.  

Section 4.5 presents the predictions for density, surface roughness, and the corresponding 

process parameters in form of process maps followed by statistical analysis to provide more 

insight into the differences observed in the maps. The process maps are then used to predict the 

suitable process parameters for grading a 316L-Cu multi-material part. Finally, concluding 

remarks and future research opportunities are presented in Section 4.6.          

4.2. Materials and Methods 

4.2.1. Overview 

The chosen approach to predict the process parameters of 316L-Cu compositions is 

inspired by the experimental work done by Wei et al. [168] on multi-metal AM of 316L-Cu10Sn 
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where the multi-material interface is compositionally graded to achieve sound metallurgical 

bonding during the SLM process. In [18], pre-mixed 316L-Cu10Sn powder at three different 

compositions are deposited to create a compositional gradient from 316L to Cu10Sn. In this work, 

316L and Cu are used and the continuous gradient zone that would form at their interface is 

discretized into three regions with prescribed compositions, similar to [18]. These compositions 

are determined by mass fractions as: 

𝑚𝑓𝐶𝑢
=

𝑚𝐶𝑢
𝑚𝐶𝑢 +𝑚316𝐿

 
(12) 

Where 𝑚𝐶𝑢 and 𝑚316𝐿 are mass of Cu and 316L powders, respectively. Samples are then made 

from 316L, Cu, and their compositions at pre-mixed 𝑚𝑓𝐶𝑢
= 0.25, 𝑚𝑓𝐶𝑢

= 0.50, and 𝑚𝑓𝐶𝑢
= 0.75. 

Part density (ρ) and average surface roughness (Sa) of the top surface are measured and used 

as training data. Fig.  27 depicts the schematic of the proposed work. The details of the data 

mining process are discussed in the following sections. 

 

Fig.  27. An overview of the proposed method. The hexagonal samples were manufactured using pre-
mixed compositions to represent an ideal continuous gradient zone. 
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4.2.2. Powder characteristics and mixing  

Gas atomized 316L powder used in this study were provided by EOS GmbH, Germany 

and the Cu powder was supplied by Carpenter Technology, USA. Powder granulometry was 

performed according to ASTM F1877 [207] where the equivalent circle diameter (ECD) was used 

as the measure of particle size. A Keyence VHX-5000 digital microscope was utilized to collect 

the geometrical data needed to calculate ECD. Fig.  28.(a) shows the particle size distribution of 

316L and Cu powders accompanied by a SEM image of the powders. It is evident from Fig.  28.(a) 

that both powders exhibit a normal distribution of particle size, however, Cu powder distribution 

is positively skewed indicating the existence of more fine powders with average ECD of 14 μm 

compared to 28 μm for 316L.  

Before samples can be processed, powders should be mixed at their prescribed mass 

fractions. Mixing of solids is not trivial, if powder granulometry, morphology, and homogeneity 

after mixing is of importance [208]. A detailed discussion of the mixing process can be found in 

Appendix B. Powder granulometry of the homogeneous mixtures is presented in Fig.  28 .(b). 

Average ECD of mixtures are 23, 23, and 18 μm for mass fractions of 0.25, 0.50, and 0.75, 

respectively. 

 

Fig.  28. (a) Particle size distribution of 316L and Cu powders. (b) Particle size distribution of 316L-Cu 
mixtures. (c) SEM image of 316L powder. (d) SEM image of Cu powder. 
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4.2.3. Additive manufacturing 

Samples were manufactured using an EOS M290. The machine is equipped with a 400 

W Ytterbium fiber laser and constant beam diameter of 100 μm. To rapidly manufacture and easily 

remove the samples from the build plate, hexagonal shaped samples with circumscribed circle 

diameter of 8 mm and height of 4 mm were chosen (Fig.  27). Samples were made on 2 mm 

support structures to prevent cross contamination with the 316L build plate. Three process 

parameters were chosen as variables in this study: laser power (P), laser speed (v), and laser 

hatch spacing (h). The combined effect of these variables can be captured in one term known as 

volumetric energy density (VED), which can be used to describe the amount of input energy per 

unit volume of the powder bed.  

𝑉𝐸𝐷 = 
𝑃

𝑣ℎ𝑡
 (13) 

Where t is the nominal layer thickness that was kept constant at 20 µm. Samples were made 

using infill parameters only, meaning that other scanning strategies that are typically used for a 

part’s top and bottom surfaces or contours were not applied to these samples. Stripe scanning 

strategy with 5 mm width was used at a rotation angle of 67°, and the build plate temperature was 

kept constant at 80° C. A high throughput design of experiment was used per mass fraction. Three 

levels were chosen for each process parameter at low, medium, and high based on the 

manufacturability of the samples which is dictated by EOS M290 machine limits. Table 17 lists 

the process parameters and their levels for each mass fraction. It can be observed that the levels 

which were chosen for 𝑚𝑓𝐶𝑢 = 0.75 result in lower VED values than those chosen for 𝑚𝑓𝐶𝑢 =

0.50. This was done to simulate a scenario where a machine user would randomly assign the 

parameters without considering what parameter set might yield better results for a given 

composition. As long as the samples are manufacturable, the proposed methodology should 

provide accurate predictions regardless of the initial guess by the user.  
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The high throughput approach allowed for manufacturing of 27 samples per mass fraction 

in less than 5 hours. Certain combinations of levels can result in very large VED values that 

correspond to large melt pools. This has been associated with elevated edges that can cause 

failure due to recoater-part collision [209,210].  Samples with very high VEDs that caused 

collisions with the recoater were removed from the data set. The parameter sets of removed 

samples for  𝑚𝑓𝐶𝑢
= 0.25 are [195 (W), 1300 (mm/s), 0.07 (mm)], and [280 (W), 1083 (mm/s), 

0.09 (mm)]. For 𝑚𝑓𝐶𝑢
= 0.50 the combinations of [370 (W), 800 (mm/s)], and [370 (W), 940 

(mm/s)] for every hatch spacing were removed. Finally, for 𝑚𝑓𝐶𝑢
= 0.75 the sample with the 

following parameter set was removed: [300 (W), 800 (mm/s), 0.07 (mm)].  

Table 17. EOS M290 process parameters for 316L, copper, and compositions thereof used in high 
throughput design of experiment. 

Material Power (W) Velocity (mm/s) Hatch (mm) 

316L 

120 600 0.07 

195 1083 0.09 

280 1700 0.11 

Cu 

200 400 0.07 

300 800 0.09 

370 1200 0.11 

316L-Cu 
(𝑚𝑓𝐶𝑢= 0.25) 

120 800 0.07 

195 1083 0.09 

280 1300 0.11 

316L-Cu 
(𝑚𝑓𝐶𝑢= 0.50) 

195 400 0.07 

280 800 0.09 

370 1200 0.11 

316L-Cu 
(𝑚𝑓𝐶𝑢= 0.75) 

195 800 0.07 

250 1083 0.09 

300 1200 0.11 
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4.2.4. Density measurements 

Archimedes method was used to measure the density of the samples because it is shown 

to exhibit the highest accuracy (± 0.08% for high densities) and repeatability (< ± 0.1%) on all 

density levels compared to other means of density measurement [90]. After samples were 

removed from the build plate and before density measurement, they were ground to eliminate any 

remaining support structure from the bottom surface. Residual support structure can easily entrap 

air bubbles during submergence into a fluid and cause measurement errors. Samples were 

weighed while dry, and then weighed while suspended in Fluorinert™ FC-40 (ρ = 1855 𝑘𝑔 𝑚3⁄ ) 

to collect the data required for calculating density. Measurement uncertainty levels remained 

below 0.3% on average at 95% confidence interval for the entire data set.  

4.2.5. Surface roughness 

A focus variation optical microscope (Alicona, InfiniteFocus G4, Austria) was used to 

measure the areal surface roughness (Sa) and waviness (SWa) of the as-built samples. The top 

surface of each sample was used for measurement as indicated by color in Fig.  27. Using a 10x 

objective, the acquisitions were carried out at 0.5 μm vertical and 5 μm lateral resolutions. The 

scanned area for 316L and Cu samples were 6 × 1.2 mm2 and 7 × 1.5 mm2, respectively. Although 

scanned areas are not equal, the number of data points collected per scan to carry out the 

calculations are well above the statistical requirements in both cases. Areal roughness and 

waviness profiles were separated using a Gaussian filter with a cut-off wavelength of 250 μm prior 

to calculations in accordance with ISO 25178 guidelines [140]. Sa is defined as the arithmetical 

mean height of the surface and SWa is arithmetic mean waviness for the waviness profile.  

4.3. Experimental Data Set 

4.3.1. Density measurements 

Effects of process parameters on part density of 316L and Cu are shown in Fig.  29 as a 

function of VED. For 316L, density increased with an increase in VED to a maximum value of 
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7895 kg/m3, indicating a transition from lack of fusion region to fully dense region. It then slowly 

decreased as VED further increased to 333 J/mm3, indicating a transition into keyhole region. 

This observation is in agreement with previous experimental data in [23,146].  

In the case of Cu, results followed three curves separated by the three levels of laser 

power with 200 W corresponding to the lowest set of data and 370 W to the highest. This indicates 

that laser power has a strong effect on density of Cu samples. This effect becomes less 

pronounced as higher VED values corresponding to higher laser powers are used and hatch 

spacing and layer thickness become more influential on part density [211,212]. High conductivity 

and reflectivity of pure copper makes it a challenging material for SLM process at low laser 

powers. It should be noted that high VED values do not have the same effect on density as 

moderate VED values with high laser powers [213]. These observations merit further study of the 

effects of individual process parameters on solidification and microstructure of pure copper 

processed via SLM. In this study, maximum relative density achieved for Cu samples was 97% 

at VED of 661 J/mm3 with corresponding laser power of 370 W. 

Density results for three compositions of 316L-Cu are shown in Fig.  29.(c). As expected, 

values were between 7000 and 8600 kg/m3, which is the range of values for the compositions’ 

constituents. As mass fraction increased, overall density values also increased. Indicating that 

there is a significant difference in suitable process parameters required for the compositions 

compared to their constituents, i.e., 316L and Cu. However, since the chosen process variables 

did not cover a wide range of VED, patterns were more difficult to detect with an exception of 

𝑚𝑓𝐶𝑢= 0.50 where density values remained relatively constant with an increase in VED. This 

observation highlights the need for a predictive tool, such as the machine learning algorithm 

proposed in this work, to estimate suitable process parameters without carrying out numerous 

experiments. 
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Fig.  29. Density as a function of volumetric energy density for (a) 316L, (b) Cu, and (c) 316L-Cu 
compositions. 

4.3.2. Surface roughness 

Effects of process parameters on surface roughness of samples are shown in Fig.  30. An 

interesting observation can be made by contrasting Sa against SWa. For both 316L and Cu, as 

VED increased, Sa decreased. In other words, surfaces became smoother with an increase in 
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input energy. This phenomenon is clearly depicted in supplementary figures Fig. A3 and Fig. A4 

for 316L and Cu, respectively. This can be explained by formation of larger melt pools at higher 

VEDs that can redistribute the molten material across the surface due to surface tension which 

usually leads to a reduction in surface roughness [210,214]. However, as surfaces became 

smoother, their waviness increased. This phenomenon is more pronounced for 316L than Cu, 

mostly because melt pool size did not grow in Cu samples as much as 316L due to high thermal 

diffusivity and reflectivity of copper combined with insufficient laser power [215]. Larger melt pools 

can propagate waves across the surface. Rapid solidification, an inherent trait of SLM, causes 

these waves to solidify before they attenuate, resulting in an increase in surface waviness. The 

most severe case is observed for 316L at VED = 333 J/mm3, where the lowest roughness (1.8 

μm) resulted in the highest waviness (172 μm). Edge effect is an additional contributing factor for 

this extreme case. As the large melt pool traveled close to the part’s edge, surface tension forces 

created a feature with a large radius as shown in Fig. A3. Large waviness not only reduces 

geometrical accuracy, it can also result in failure due to recoater-part collision.  

Similar behavior was observed for 316L-Cu compositions (Fig.  31). The same trend of 

decreasing Sa with increasing VED was observed for all compositions, with an accompanying 

increase in scatter of data. On the other hand, 316L appears to have influenced the waviness 

results more than Cu since a general increase in waviness with an increase in VED was observed. 

This implies that roughness as a metric of geometrical tolerance or printability should not be 

considered without waviness values. A tradeoff must be made when considering surface quality 

of AM parts. These initial observations warrant an in-depth investigation into the effects of process 

parameters on roughness and waviness of these samples which falls outside the scope of this 

work.  
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Fig.  30. Surface roughness and waviness as a function of VED for (a) 316L, and (b) Cu. 

 

Fig.  31. (a) Surface roughness, and (b) waviness as a function of VED for 316L-Cu compositions. 

4.4. Multi-variate Gaussian Process Framework 

This section focuses on developing a statistical framework for modeling the properties of 

316L, Cu, and their compositions, which facilitates transfer of knowledge among them. It should 

be noted that, hereafter, output means either of the material properties (i.e., surface roughness 
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and density) which is a function of process parameters (i.e., P, v, h). Modeling multiple outputs is 

a challenge since it requires computing cross-covariance among them. In this study, a convolution 

process is employed to build covariance functions between outputs. The premise is to build 

multiple Gaussian processes where all outputs 𝑓𝑖(𝒔) depend on some common latent process 

𝑋(𝒔). The proposed framework can provide each output with both shared and unique features 

and allow commonalities between different outputs to be automatically inferred. 

4.4.1. Modeling framework 

In this study, it is assumed that measurements of either density or surface roughness as 

a function of process parameters for 316L, Cu, and 316L-Cu compositions are available a priori. 

Let 𝐼 = { 316L, Cu, 316L − Cu}. For each of the 𝑖th materials (𝑖 ∈ 𝐼), suppose the observed property 

values are denoted as 𝒚𝑖 = {𝑦𝑖(𝒔𝑖1), … , 𝑦𝑖(𝒔𝑖𝑝𝑖)}
𝑇
where 𝑝𝑖 represents the number of observations 

for material 𝑖 and {𝒔𝑖𝑞 , 𝑞 = 1,… , 𝑝𝑖} ∈ 𝐷 ⊂ ℛ
𝛼 represents a tuple of process parameters inputs for 

material 𝑖 in a specific domain of interest 𝐷. The properties of each material in the defined 𝑎-D (𝑎 

is the dimension of space) is modeled using the following decomposition: 

𝑦𝑖(𝒔) = 𝑓𝑖(𝒔) + 𝜖𝑖(𝒔),       𝑖 ∈ 𝐼 
 

(14) 

where, 𝑓𝑖(𝒔) represents a mean zero Gaussian process, and 𝜖𝑖(𝒔) represents measurement noise 

with zero mean and 𝜎𝜖
2 variance. Here 𝒔 ∈ 𝐷 ⊂ 𝑅𝑎 represents a location over a bounded region 

D in a multi-dimensional parameter space. It should be noted that while the model development 

here is general, the case study is conducted considering 𝛼 = 3 corresponding to P, v, and h. The 

proposed method can incorporate multiple process parameters beyond the ones studied in this 

work. 

The key principle of this model is to borrow information from the available, quick to sample 

data of 316L and Cu in order to make accurate predictions for their compositions. The aim is to 

combine process parameter observations from the 316L-Cu compositions with the data collected 
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from 316L and Cu separately. To achieve this transfer of knowledge from 316L and Cu data to 

their compositions, a shared representation of all material properties is defined as: 

𝒚(𝒔) = (

𝑦316𝐿(𝒔)

𝑦𝐶𝑢(𝒔)

𝑦316𝐿−𝐶𝑢(𝒔)
) = (

𝑓316𝐿(𝒔)

𝑓𝐶𝑢(𝒔)

𝑓316𝐿−𝐶𝑢(𝒔)
) + (

𝜖316𝐿(𝒔)

𝜖𝐶𝑢(𝒔)

𝜖316𝐿−𝐶𝑢(𝒔)
) = 𝒇(𝒔) + 𝝐(𝒔) 

 

(15) 

 

where the stochastic term 𝒇(𝒔) is a mean zero multivariate Gaussian process with covariance 

cov𝑖𝑗
𝑓 (𝒔, 𝒔′) = 𝑐𝑜𝑣𝑖𝑗

𝑓
(𝑓𝑖(𝒔), 𝑓𝑗(𝒔

′)) that characterizes the inherent variability and stochastic 

deviations in properties, both within and across different materials. The key feature provided by 

the expression in Eq. (15) is that the model uses every observation from training input (316L and 

Cu) and limited observations from 316L-Cu compositions to make predictions for the entire span 

of 316L-Cu properties. Based on Eq. (15), prediction for the 316L-Cu compositions at any new 

input point (𝒔∗) is a weighted combination of all training data observations and the limited 316L-

Cu composition property observations. This weighted combination is characterized by a flexible 

covariance function cov𝑖𝑗
𝑓
(𝑓𝑖(𝒔), 𝑓𝑗(𝒔′)) and an additive noise term 𝜖(𝒔).  

As mentioned before, we resort to the convolution process to construct the covariance 

function. We consider 3 independent latent processes {𝑋𝑚(𝒔):𝑚 ∈ 𝐼}, one for each material, and 

5 different smoothing kernels {𝑘𝑚,𝑖(𝒔):𝑚 ∈ 𝐼, 𝑖 ∈ 𝐼} to share information between the target 

material (316L-Cu) properties and the materials in the training set, i.e., 316L and Cu. Fig.  32 

illustrates the proposed model structure where stars define kernel convolutions. 

As shown in Fig.  32, the model structure is quite flexible. The structure allows 𝑓316𝐿−𝐶𝑢 to 

possess unique properties encoded in 𝑋316𝐿−𝐶𝑢 and 𝑘316𝐿−𝐶𝑢,316𝐿−𝐶𝑢 and shared features with 

training materials are encoded in 𝑋𝑖 and 𝑘𝑖,316𝐿−𝐶𝑢, 𝑖 = 316𝐿, 𝐶𝑢. In addition, it allows the 

information from the same latent function to be shared through different smoothing kernels 

(𝑘𝑖,316𝐿−𝐶𝑢 𝑣𝑠. 𝑘𝑖,𝑖). Thus, the target material function (𝑓316𝐿−𝐶𝑢) will have the ability to use practical 

knowledge from training observations through the different covariance parameters, resulting in an 
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output that can intrinsically possess both shared and independent features. Readers are referred 

to Appendix C for a more detailed explanation and mathematical derivation of the proposed 

covariance function. 

Fig.  32. Structure of the proposed multivariate Gaussian process algorithm. 

Following the derivation in Appendix C, and based on the multivariate normal theory, the 

predictive distribution of 𝑦316𝐿−𝐶𝑢(𝒔
∗) is expressed as: 

𝑦316𝐿−𝐶𝑢(𝒔
∗)|𝒚 ∼ 𝑁 (𝜼𝑇�̂�𝑝×𝑝

−1 𝒚, côv(𝐬∗, 𝐬∗) + σ̂𝜖
2 − �̂�𝑇

316𝐿−𝐶𝑢
(𝒔∗)�̂�𝑝×𝑝

−1 �̂�316𝐿−𝐶𝑢(𝒔
∗)) (16) 

The predictive distribution as shown in Eq. (16) is based on the observations from all outputs. 

Thus, we can borrow strength from the previous observations of all outputs to make prediction for 

the material properties of 316L-Cu compositions. In other words, the model can interpolate across 

different outputs by weighting the effect of 316L and Cu on their compositions.  
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4.4.2. Cross validation 

To validate the predictive capability of the model and to avoid overfitting, a common issue 

in supervised learning, a leave-one-out cross validation (LOO-CV) method was used [204]. Cross 

validation plots for density and surface roughness are depicted in Fig.  33 and Fig.  34. These 

plots represent a comparison between the experimental density and roughness values at specific 

P, v, h combinations and their predicted values for the same P, v, h combinations. The closer the 

values are to the diagonal line, the more accurate the model predictions. However, a perfect fit 

would indicate overfitting of the training data [197]. To quantitatively assess the model’s 

performance, mean absolute prediction error (MAPE) was calculated as the deviation from the 

diagonal line:  

𝑀𝐴𝑃𝐸 =
1

𝑛
 ∑  |𝑦𝑖,𝑜 − 𝑦𝑖,𝑝|

𝑛

𝑖=1

 
(17) 

where 𝑛 is the number of data points used for cross validation, 𝑦𝑖,𝑜 is the observed value for the 

data point 𝑖, and 𝑦𝑖,𝑝 is the predicted value for the data point 𝑖. MAPE values are listed in Table 

18. According to the results, the MAPE for density values were 1% on average for all three mass 

fractions. On the other hand, the MAPE for surface roughness values were 48% on average for 

all three mass fractions. This discrepancy can be explained by considering the training data for 

density and surface roughness shown in Fig.  29, Fig.  30, and Fig.  31. For density, there is a 

strong correlation with VED with minimal scatter in the data. In other words, the data set is ideal 

for training the algorithm. However, the scatter in surface roughness data, especially for Cu 

samples, is adversely affecting the algorithm’s predictive capability. It should be noted that 

although the standard error of each prediction for surface roughness is large with respect to the 

measurement scale (14 μm), the averaged predictions are within acceptable distance from the 

diagonal line.   

To further reduce the MAPE values, more training data from the 316L-Cu data set can be 

provided to the algorithm. Cross validation plots and corresponding MAPE values indicated that 
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the predicted values are in good agreement with the experiments.  

 

Fig.  33. Cross validation plot based on density data set for the proposed multivariate Gaussian process 
algorithm. 

 

Fig.  34. Cross validation plot based on average surface roughness data set for the proposed multivariate 
Gaussian process algorithm. 

 

Table 18. Mean absolute prediction error of density and surface roughness for all 316L-Cu compositions. 

Mass fraction 
Mean Absolute Prediction Error 

Density (kg/m3) (%) Surface roughness (μm) (%) 

0.25 89.2 1.1 2.9 47.2 

0.50 90.0 1.0 2.8 47.8 

0.75 90.4 1.1 2.8 47.7 



81 
 

4.5. Predictions 

4.5.1. Process maps and analysis 

After validity of the model was established, predictions for a wide range of process 

parameters were carried out. Test data was generated by equally dividing the entire range of P 

and v (120 ≤ P ≤ 370 W and 400 ≤ v ≤ 1700 mm/s) used in the training data set by 100, and 

changing h by 0.01 mm increments from 0.07 to 0.11 mm. Overall, 3000 predictions for density 

and surface roughness were generated by the model. Predictions are shown in Fig. 35, Fig. 36, 

and Fig. 37 in the form of process parameter maps for all three mass fractions. Since these 

process maps were generated using linear interpolation of triangulated data points, a large 

number of predictions were necessary to maintain the accuracy of the maps within the entire 

range of data sets without the need for performing any smoothing operations on contour lines. 

A general look at different hatch spacings in the maps appeared to suggest no significant 

effect on predicted values of density and surface roughness within each mass fraction. However, 

Fig.  38 shows a slight decrease in density means for 𝑚𝑓𝐶𝑢= 0.25, whereas 𝑚𝑓𝐶𝑢= 0.50 and 

𝑚𝑓𝐶𝑢= 0.75 remained relatively constant. This indicates that effects of hatch spacing on density 

weakens as copper content within the part increases, whereas laser power and velocity remain 

the dominant process parameter in the overall VED. A comparison of means supports this 

argument. Tukey Honest Significant Difference (HSD) test results shown in Fig.  39 revealed that 

changes in hatch spacing had significant effects on density and roughness levels of most samples 

at 𝑚𝑓𝐶𝑢
= 0.25. There was no significant difference in means of Sa at 𝑚𝑓𝐶𝑢

= 0.50 and density at 

𝑚𝑓𝐶𝑢= 0.75. Significant differences for density mean at 𝑚𝑓𝐶𝑢= 0.50 and Sa means at 𝑚𝑓𝐶𝑢= 0.75 

appeared only for 0.07-0.11 and 0.07-0.11, 0.08-0.11 pairs, respectively. In other words, results 

were insensitive to small changes in hatch spacing. Post mortem melt pool geometry data is 

required to determine critical values of hatch spacing with regard to density as reported in 

[71,146].  
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Fig.  35. Predicted process parameter maps for 𝑚𝑓𝐶𝑢= 0.25. 
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Fig.  36. Predicted process parameter maps for 𝑚𝑓𝐶𝑢= 0.50. 
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Fig.  37. Predicted process parameter maps for 𝑚𝑓𝐶𝑢= 0.75. 
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Fig.  38. Means of predicted values for density and surface roughness per hatch spacing. 

 

Fig.  39. Tukey HSD results for comparison of means of (a) density and (b) surface roughness. 
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After consideration of hatch spacing effects, a detailed look at the effects of power and 

velocity on surface roughness and density can be discussed for each mass fraction. Surface 

roughness results for 𝑚𝑓𝐶𝑢
= 0.25 showed little sensitivity to changes in laser power. This 

sensitivity increased for 𝑚𝑓𝐶𝑢= 0.50 and 𝑚𝑓𝐶𝑢= 0.75. An increase in mass fraction means an 

increase in copper content within the part which corresponds to an increase of laser power 

influence on the properties including surface roughness. Laser velocity appeared to be the most 

influential parameter in surface roughness variations across mass fractions. High velocities 

correspond to high surface roughness levels at moderate and high laser powers for 𝑚𝑓𝐶𝑢
= 0.25 

and 𝑚𝑓𝐶𝑢= 0.50. This is due to elongated melt pools produced by high velocities. Elongated melt 

pools break up under Rayleigh instability to reduce surface tension during which balling occurs 

along the laser scan paths [216,217]. For 𝑚𝑓𝐶𝑢= 0.75, high velocity at low laser power 

corresponds to high surface roughness. This can also be attributed to balling effect. Low power 

and high velocity result in low VED which can be insufficient to form stable and large enough melt 

pools. This area also corresponds to low density regions, which further supports this argument. 

As a result, partially melted powder remains on the surface causing an increased surface 

roughness [216,217]. Balling is a major contributor to surface roughness in SLM [206]. Process 

maps also showed that the maximum surface roughness decreased from 16.9 μm to 13.4 μm as 

the copper content increased to 𝑚𝑓𝐶𝑢= 0.75. In addition to surface tension and viscosity 

differences that can change melt pool dynamics and the resulting surface roughness, this 

decrease can be attributed to the differences between average particle size of 316L and Cu. As 

shown in Fig.  28, and Fig. B2, ECD of mixture with 𝑚𝑓𝐶𝑢= 0.25 is 23 μm while ECD of mixture 

with 𝑚𝑓𝐶𝑢= 0.75 is 18 μm. Based on reported studies, SLM processing of powders with finer 

particle size results in smoother surfaces due to higher packing density which in turn can generate 

a stable and continuous melt pool and ultimately produce smoother surfaces [205,206]. This 
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highlights the significance of powder granulometry in process-parameter relationship of multi-

material AM. 

A closer look at results for 𝑚𝑓𝐶𝑢
= 0.50 showed that high density regions correspond to low 

surface roughness regions. This correlation became stronger with an increase in hatch spacing. 

At first glance, one might be tempted to choose the process parameters corresponding to the 

highest density regions since they also yield acceptable surface roughness values. However, as 

discussed in section 3.2, a tradeoff must be made for roughness versus waviness. For 𝑚𝑓𝐶𝑢
= 

0.50, the process parameters that yield the highest density and lowest surface roughness levels 

can also lead to high waviness levels. 

An observation can be made for density levels at 𝑚𝑓𝐶𝑢= 0.75 where two islands with high 

levels of density were formed, one at low laser power levels and the other at high laser power 

levels. The island at lower laser power levels started to disappear as hatch spacing increased to 

0.11 mm. Moreover, these islands appeared at similar velocity values for each mass fraction, 

indicating that this phenomenon can be attributed to changes in laser power levels only. It should 

be noted that the high-density region at low laser powers is the same region where maximum 

density was achieved for 𝑚𝑓𝐶𝑢
= 0.25, where the part is mostly made of 316L. Furthermore, it was 

shown in Fig.  29 that part density of copper is mainly correlated to laser power levels and high 

laser powers correspond to higher part density. Since at 𝑚𝑓𝐶𝑢= 0.75 the part is mostly made of 

copper, it can be hypothesized that the high-density region at low laser powers is caused by the 

presence of un-melted copper powder particles within an otherwise fully dense 316L. The 

disappearance of the second island can be explained by considering the fact that with an increase 

in hatch spacing, the overall VED decreased to a level where 316L particles would partially melt 

and create lack of fusion porosity resulting in a decrease in overall density levels [71,218]. This 

behavior can be used in the future to manufacture metal composites with secondary material 
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inclusions for property enhancement of SLM parts. Future studies will look at the nature of the 

bonding at these conditions to verify these hypotheses. 

4.5.2. Predicting multi-material process parameters  

After discussing the predicted process maps at length, a set of suitable process 

parameters for grading 316L-Cu multi-material parts can be predicted. The predicted VED as a 

function of 316L-Cu composition is shown in Fig.  40 followed by the corresponding power, 

velocity, and hatch values as well as estimated density and surface roughness values in Table 

19. Process parameters for 316L were chosen according to the machine manufacturer’s 

recommended settings, whereas the process parameters for Cu were chosen based on 

experimental data reported in section 3. The criterion for choosing the suitable process 

parameters for all three mass fractions were highest achievable density at average surface 

roughness values. According to Fig.  39, changes in hatch spacing resulted in significant changes 

in density for 𝑚𝑓𝐶𝑢= 0.25. Therefore, h=0.07 mm was chosen to achieve maximum density. 

However, at 𝑚𝑓𝐶𝑢= 0.50, the only significant change was observed between hatch spacing of 0.07 

and 0.11 mm. In the SLM process, larger hatch spacing values for a given power and velocity 

results in faster manufacturing time. Therefore, for 𝑚𝑓𝐶𝑢= 0.50, predicted process parameters 

were chosen from the h= 0.09 mm map for a faster processing time. Finally, at 𝑚𝑓𝐶𝑢= 0.75, 

predicted values were chosen from h=0.07 mm for maximum density. The resulting VED graph 

shown in Fig.  40 indicates that neither value of VED for 316L or Cu are suitable for grading a 

316L-Cu multi-material part. Moreover, the relationship between VED and 316L-Cu compositions 

is nonlinear and nontrivial. This highlights the need for a predictive tool, such as the one presented 

in this work, for determination of suitable process parameters in multi-material AM using SLM.   
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Fig.  40. Predicted VED values for 316L-Cu multi-material based on the best (a) density, and (b) surface 

roughness values. 𝑚𝑓𝐶𝑢
 values are presented in percentages. 

Table 19. Predicted parameters and their corresponding density and surface roughness for 316L-Cu 
multi-material part. 

Composition 
VED 

[J/mm3] 
P [W] v [mm/s] h [mm] 

Density 
[kg/m3] 

Sa [μm] 

316L 100 195 1083 0.09 7861 4.9 

𝑚𝑓𝐶𝑢= 0.25 78 120 1100 0.07 7934 6.1 

𝑚𝑓𝐶𝑢= 0.50 222 360 900 0.09 8323 7.4 

𝑚𝑓𝐶𝑢= 0.75 246 345 1000 0.07 8548 7.0 

Cu 514 370 400 0.09 8664 6.3 

 

As discussed in this section, it is evident that there are no unique solutions to choosing 

the suitable process parameters as a function of compositional gradient. There are multiple viable 

process parameter sets based on the importance to the user. Here, only density and surface 

roughness were chosen as criteria. Other properties such as yield strength or hardness can be 

added to the list of criteria depending on the application of the multi-material part. Moreover, the 

proposed model can include other process parameters like layer thickness and beam diameter in 

predictions making it increasingly more complicated to choose a single set of process parameters. 

Numerical techniques such as Pareto optimality solution can be used to automate the decision-

making process and eliminate guesswork from the determination of suitable process parameters. 

It should be noted that discretizing a continuous gradient into three separated zones 

neglects the melt pool interactions of each compositional gradients with the other. This 

assumption underlines the limitation of the proposed methodology. Commercial multi-material 
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SLM solutions will soon become available. Once a system is available that is capable of depositing 

variations of compositional gradients and apply different laser parameters as a function of the 

deposited gradient, the proposed methodology can be applied to many more mass fractions to 

represent the continuous gradient zone more accurately. This work is the first step in that 

direction.  

4.6. Conclusions 

For the first time, suitable process parameters for compositional grading of 316L-Cu multi-

material were determined using machine learning and high throughput experimentation. 

Specifically, a multivariate Gaussian process model was developed to predict density and surface 

roughness of 316L-Cu parts along with the corresponding laser power, velocity and hatch spacing 

at different compositions. Process parameter maps for three different compositions were 

generated to provide firsthand knowledge of process-property relationship in a 316L-Cu multi-

material part. The major findings of this study are as follows: 

• The proposed multivariate Gaussian process model can accurately predict the process 

parameters of 316L-Cu parts with different compositions by transferring and sharing the 

information among the training data from 316L, Cu and 316L-Cu compositions. The 

averaged mean absolute prediction error for density and surface roughness are 1% and 

47.6% respectively. Large scatter in surface roughness training data is the cause of 

larger prediction errors.   

• Results revealed that process parameters within a gradient zone of a 316L-Cu multi-

material part are a function of gradient composition. This relationship is nonlinear and 

nontrivial. Furthermore, results indicate that neither process parameter sets for 316L or 

Cu are suitable for grading a 316L-Cu multi-material part.  

•  Power and velocity are the most influential process parameters on part density and 

surface roughness of 316L-Cu compositions, both within and across mass fractions. 
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Hatch spacing effects were minimal, with 𝑚𝑓𝐶𝑢= 0.25 showing the most sensitivity 

towards its variation.   

Other numerical methods such as pareto optimality solution can be applied to narrow down 

the number of viable process parameter sets and take the guess work out of the process. Further 

mechanical and metallurgical characterization work is also required to validate the recommended 

process parameters and support the formulated hypotheses resulted from this work. The 

underlying mechanisms behind the nonlinear relationship between process parameters and 

material composition, and the special case of  𝑚𝑓𝐶𝑢 = 0.25, merits an in-depth study that will be 

the subject of future work. The overarching process parameter maps that were enabled by use of 

machine learning provided valuable insights into process-property relationship of 316L-Cu multi-

material system for the first time. The discussions and results presented in this work will open 

new avenues of research in multi-material AM as this new manufacturing solution matures over 

the coming years.    
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Appendix A – Supplementary figures 

 

Fig. A1. An SEM image of HX microstructure. (a) Melt pool boundaries are shown in white dashed lines. 
According to this image the melt pool depth and width are estimated to be 60 μm and 100 μm, 

respectively. (b) Primary dendritic arm spacing is measured to be 0.4 ± 0.03 μm. 

 

Fig. A2. SEM image of fracture surfaces obtained from HX samples (a,b). Submicron intermetallic 
inclusions are indicated by white arrows. It is hypothesized that defects found on grain boundaries are 

artifacts from the extraction of these intermetallic inclusions during sample preparation. 
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Fig. A3. Optical images and 3D surface profiles of 316L samples manufactured at (a) VED = 32 (J/mm3), 
(b) VED = 128 (J/mm3), and (c) VED = 333 (J/mm3). 
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Fig. A4. Optical images and 3D surface profiles of Cu samples manufactured at (a) VED = 76 
(J/mm3), (b) VED = 278 (J/mm3), and (c) VED = 661 (J/mm3). 
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Appendix B – Mixing  

Powders were weighted according to the target mass fractions and transported to glass 

containers for mixing. Retsch PM400 planetary Ball Mill system was used as a tumbling mixer. 

To achieve a homogeneous mixture, several different mixing parameters were chosen. After each 

run, mixture was tested for homogeneity.  

Table B1 shows the mixing parameters that resulted in a mixture with a satisfactory level of 

homogeneity. To test for homogeneity, three identically sized samples were taken from the 

mixture using powder thief method while the mixture was in motion. Samples were taken from 

top, middle and bottom of the mixture. For each sample, distribution of copper within 316L was 

qualitatively examined using Energy Dispersive X-Ray Spectroscopy (EDS). Iron and copper were 

chosen as representative elements for each powder. Fig.  B1 shows the EDS results. As evident 

by the color maps, particles are distributed uniformly within the field of view indicating a 

homogeneous mixture. It should be noted that in the strictest sense, mixtures always remain 

heterogeneous [208]. In addition to homogeneity, mixture had to be tested for particle 

agglomerates and morphology. Average ECD and aspect ratio of 316L, Cu and their mixtures are 

compared in Fig.  B2 to ensure particle morphology and size were not adversely affected during 

mixing. Overall, results suggest that the mixing process was able to produce homogeneous 

mixtures of 316L-Cu without altering the powder characteristics.  

Table B1. Mixing parameters. 

Speed (rpm) Time (min) Intervals Rotation Rest (sec) 

200 6 5 Alternating 1 
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Fig.  B1. Representative EDS scans of 316L-Cu mixtures at mass fraction of (a) 0.25, (b) 0.50, and (c) 
0.75. 

Fig.  B2. (a) Comparison of average ECDs. (b) Comparison of average aspect ratios. 
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Appendix C – Construction of Covariance Function  

We construct 𝒇(𝒔) using a convolution process to borrow information from the training 

observations and account for nontrivial commonalities in the data. This construction enables a 

highly flexible covariance structure that can handle heterogeneity in observed process 

parameters. More specifically, we propose sharing multiple independent Gaussian white noise 

processes {𝑋𝑚(𝒔):𝑚 ∈ 𝐼} between the target material function 𝑓316𝐿−𝐶𝑢(𝒔) and materials in the 

training database {𝑓𝑖(𝒔): 𝑖 = 316𝐿, 𝐶𝑢}. Since the latent function are drawn from a Gaussian 

process, and if we share these latent functions across all material outputs, then all outputs can 

be expressed as a jointly distributed Gaussian process. More specifically, all outputs {𝑦𝑖(𝒔): 𝑖 ∈ 𝐼} 

are constructed as: 

𝑦316𝐿−𝐶𝑢(𝑠) = 𝑓316𝐿−𝐶𝑢(𝑠) + 𝜖316𝐿−𝐶𝑢(𝑠)

= ∑ 𝑘𝑚,316𝐿−𝐶𝑢(𝑠) ∗ 𝑋𝑚(𝑠)

𝑚∈𝐼

+ 𝜖316𝐿−𝐶𝑢(𝑠) 

𝑦𝑖(𝑠) = 𝑓𝑖(𝑠) + 𝜖𝑖(𝑠) = 𝑘𝑖,𝑖(𝑠) ∗ 𝑋𝑖(𝑠) + 𝜖𝑖(𝑠) , 𝑖 = 316𝐿, 𝐶𝑢                        

 

(C1) 

Where ∗ defines a kernel convolution 𝑘𝑚,𝑖(𝒔) ∗ 𝑋𝑚(𝒔) = ∫ 𝑘𝑚,𝑖(𝒔 − 𝒖)𝑋𝑚(𝒖)𝑑𝒖
+∞

−∞
, 𝑘𝑖,𝑖’s are the 

kernels connecting latent function 𝑋𝑖 to output 𝑦𝑖, and 𝑘𝑖,316𝐿−𝐶𝑢s are the kernels connecting the 

latent function 𝑋𝑖 to 𝑦316𝐿−𝐶𝑢. In order to derive the covariance functions, we use Gaussian kernels 

[219] as follows:  

𝑘𝑚𝑖(𝒔) =
𝛼𝑚𝑖√|𝚲𝑚𝑖|

√𝜋𝑎
4 𝑒𝑥𝑝 {−

1

2
(𝒔 − 𝝁𝑚𝑖)

T𝚲𝑚𝑖(𝒔 − 𝝁𝑚𝑖)}                   
 

(C2) 

Finally, following the construction in [219,220] the covariance function can be derived as follows: 

cov𝑖𝑗
𝑓 (𝒔, 𝒔′) = ∑

2𝑎 2⁄ 𝛼𝑚𝑖𝛼𝑚𝑗

√|𝚿|
𝑚 exp {−

1

2
(𝒅 − (𝝁𝑚𝑖 − 𝝁𝑚𝑗))

𝑇
𝚿−1(𝒅 − (𝝁𝑚𝑖 − 𝝁𝑚𝑗))}                   

(C3) 

Where 𝒅 = 𝒔𝑖 − 𝒔𝑗 is a spatial separation vector between two locations 𝒔𝑖 and 𝒔𝑗, 𝚿
−1 =

(𝚲𝑚𝑖
−1 + 𝚲𝑚𝑗

−1 )
−1
= 𝚲mi(𝚲mi + 𝚲mj)

−1
𝚲mj, 𝛼𝑚𝑖, 𝛼𝑚𝑗, 𝜇𝑚𝑖 and 𝜇𝑚𝑗 are kernels parameters. 

Given cov𝑖𝑗
𝑓 (𝒔, 𝒔′), and since cov𝑖𝑗

𝑦
(𝒚𝒊(𝒔), 𝒚𝒋(𝒔′)) = cov𝑖𝑗

𝑓 (𝒔, 𝒔′) + cov𝑖𝑗
𝜖 (𝒔, 𝒔′)𝜏𝑖𝑗, the covariance 

between all datapoints of any two output 𝑖 and 𝑗 can be written as:  
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𝛀𝑝𝑖×𝑝𝑗
(𝑖𝑗)

= (

cov𝑖𝑗
𝑓
(𝒔𝒊𝟏 − 𝒔𝒋𝟏) … cov𝑖𝑗

𝑓
(𝒔𝒊𝟏 − 𝒔𝒋𝒑𝒋)

⋮ ⋱ ⋮

cov𝑖𝑗
𝑓
(𝒔𝒊𝒑𝒊 − 𝒔𝒋𝟏) … cov𝑖𝑗

𝑓
(𝒔𝒊𝒑𝒊 − 𝒔𝒋𝒑𝒋)

) + 𝚺𝛕𝒊𝒋 (C4) 

where 𝚺 is a diagonal matrix with elements 𝜎𝜖
2 representing measurement noise. Let 𝑃 = ∑ 𝑝𝑖𝑖∈𝐼  

be the total number of observations from all outputs. The resulting covariance matrix established 

through a convolution process is written as: 

𝛀𝑃×𝑃 =

(

 
 
𝛀𝑝316𝐿×𝑝316𝐿
(316𝐿,316𝐿)

𝟎𝑝316𝐿×𝑝𝐶𝑢 𝛀𝑝316𝐿×𝑝316𝐿−𝐶𝑢
(316𝐿,316𝐿−𝐶𝑢)

𝟎𝑝𝐶𝑈×𝑝316𝐿 𝛀𝑝𝐶𝑢×𝑝𝐶𝑢
(𝐶𝑢,𝐶𝑢)

𝛀𝐶𝑢×𝑝316𝐿−𝐶𝑢
(𝐶𝑢,316𝐿−𝐶𝑢)

𝛀𝑝316𝐿−𝐶𝑢×𝑝316𝐿
(316𝐿−𝐶𝑢,316𝐿)

𝛀𝑝316𝐿−𝐶𝑢×𝑝𝐶𝑢
(316𝐿−𝐶𝑢,𝐶𝑢)

𝛀𝑝316𝐿−𝐶𝑢×𝑝316𝐿−𝐶𝑢
(316𝐿−𝐶𝑢,316𝐿−𝐶𝑢)

)

 
 

 (C5) 

Our joint model now can be parametrized through the kernel parameters in the covariance 

function denoted as 𝜽, and the measurement noise term 𝜎𝜖. We denote the observations from all 

outputs by 𝒚 = [𝑦316𝐿
𝑇 , 𝑦𝐶𝑢

𝑇 , 𝑦316𝐿−𝐶𝑢
𝑇 ]𝑇, then the log-likelihood of the joint multivariate Gaussian 

process is given by: 

l(𝛉, 𝜎𝜖; 𝐲) = −
𝑃

2
log(2𝜋) −

1

2
log|𝛀𝑃×𝑃| −

1

2
𝒚𝑡𝛀𝑃×𝑃

−1 𝒚 (C6) 

The parameters’ estimate can be obtained by maximizing the log-likelihood function in Eq. C6. 

Either multivariate optimization algorithms can be used (Nelder-Mead simplex, conjugate 

gradient, etc.) to directly maximize the log-likelihood function and Monte Carlo methods can be 

utilized to simulate the maximum a posteriori estimate of 𝜽 and 𝜎𝜖. Given �̂� and �̂�𝜖, the joint 

Gaussian distribution of the observed values 𝒚 and the estimated value at a new input point 𝒔∗ is 

expressed as:  

(
𝒚

𝒚316𝐿−𝐶𝑢(𝒔
∗)) ∼ 𝑵(𝟎, [

�̂�𝑃×𝑃 �̂�(𝒔∗)

�̂�𝑇(𝒔∗) côv316𝐿−𝐶𝑢,316𝐿−𝐶𝑢
𝑓 (𝒔∗, 𝒔∗) + �̂�2

]) (C7) 

where �̂�𝑇(𝒔∗) = [�̂�𝑇316𝐿(𝒔
∗), �̂�𝑇

𝐶𝑢
(𝒔∗), �̂�𝑇

316𝐿−𝐶𝑢
(𝒔∗)]

𝑇
 and �̂�𝑇

𝑖
(𝒔∗) = [côv316𝐿−𝐶𝑢,𝑖

𝑓 (𝒔∗ −

𝒔𝑖1), côv316𝐿−𝐶𝑢,𝑖
𝑓 (𝒔∗ − 𝒔𝑖2), … , côv316𝐿−𝐶𝑢,𝑖

𝑓
(𝒔∗ − 𝒔𝑖𝑝𝑖)].   

 


