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Abstract

Hyperbolic and kinetic equations often have parameters that vary considerably over

the region. In certain asymptotic regimes where the parameter is very small, the stan-

dard hyperbolic or kinetic solvers break down because of the prohibitive computational

cost. This thesis explores two efficient methods — Domain Decomposition methods and

Asymptotic Preserving (AP) methods for these problems.

The first part aims at constructing a domain decomposition formulation for the Jin-

Xin relaxation system [58] with two-scale relaxations, which is a prototype for more

general physical problems such as phase transitions, river flows, kinetic theories etc..

We propose the interface condition based on the sign of the characteristic speed at the

interface. A rigorous analysis on the L2 error estimate is presented, based on the Laplace

Tranform, for the linear case with an optimal convergence rate. For the nonlinear case,

using standard compactness argument, we are able to prove the asymptotic convergence

of the solution of the original relaxation system to the unique entropy weak solution

of the domain decomposition system. The interface condition is derived rigorously by

matched asymptotic analysis for a general flux with an extension to the case when a

standing shock is sticking to the interface.

The second part focuses on the development of AP methods for kinetic equations in

the high field regime where both the collision and field effect dominate the evolution.

The stiff force term poses extra numerical challenges as apposed to the stiff collision

term which has been well-studied in the hydrodynamic regime. We first consider the

Vlasov-Poisson-Fokker-Planck system used in electrostatic plasma and astrophysics. The
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AP scheme is constructed based on the combination of two stiff terms so as to use the

symmetric discretization in [59]. The semiconductor Boltzmann equation is considered

next. By penalizing the collision term by a classical BGK operator and treating the

force term implicitly, we are able to overcome the exceptional difficulty that no specific

expression of the local equilibrium is available. The distribution function is still shown

to converge to the high field limit, which guarantees the capturing of the asymptotics

without numerically resolving the small parameter.
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Chapter 1

Introduction

Multiscale description that hybridizes the microscopic (or mesoscopic) kinetic and macro-

scopic hydrodynamic models is necessary in many physical situations. Such problems

are usually described by equations that contain small parameters, such as relaxation

time or mean free path. In the asymptotic regimes where only the averaged or macro-

scopic quantities are important, tremendous computational difficulties arise because the

small parameters are prohibitively expensive to be resolved. Considerable attributes

have been paid to the design of efficient and robust numerical methods for this kind of

problems, among which the most popular ones are Domain Decomposition methods and

Asymptotic Preserving (AP) methods.

This thesis, mainly composed of two parts, explores both approaches. The first part

aims at developing a domain decomposition method for a semilinear hyperbolic systems

with two-scale relaxations. The efficiency of such method has been mathematically

justified for both linear (Chapter 2) and nonlinear cases (Chapter 3). The second part

is devoted to designing asymptotic preserving methods for kinetic equations in the high

field regime (Chapter 4 and Chapter 5).

Hyperbolic systems with relaxations are used to characterize many physical prob-

lems. Important examples include gas not in thermodynamic equilibrium [98], phase

transitions with small transition time [66, 91], viscoelasticity with vanishing memories
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[86, 100], and kinetic theories [16], among many others. In general, relaxation phe-

nomena happen when a stable equilibrium state is perturbed, resulting in a set of rate

equations where the local source term is amplified by the reciprocal of the relaxation

time ε. In the regimes where ε is very small, the asymptotic expansion of it gives the

local equilibrium that leads to the conservation laws. Such regimes pose huge computa-

tional challenges since one needs to numerically resolve the small scales which can be too

costly. A domain decomposition method, that couples the hyperbolic relaxation system

in the non-equilibrium regime with the associated conservation laws in the equilibrium

regime is computationally competitive.

Our goal in the first part of this thesis is to derive an interface condition to bridge the

equations in two regimes. The major difficulty is that a boundary layer might be gener-

ated when approximating the relaxation system by the conservation laws. Thus a way

to avoid resolving the boundary layer while still preserving the outer profile is desirable.

Here we consider instead a simplified model, the well-known Jin-Xin relaxation system

[58] as a prototype for its intrinsic difficulties and its relevance in applications. Inspired

by [41], we propose the interface condition which depends on the sign of the characteris-

tic speed at the interface by adopting the boundary layer analysis [55]. This new domain

decomposition system, completely decoupled, can be solved numerically using any high

resolution method. Moreover, it can be easily extended to more complicated cases such

as dynamic interface.

To show that our domain decomposition system is asymptotically close to the origi-

nal two-scale hyperbolic relaxation system is not an easy task. For the linear case where

the flux takes the form f(u) = λu, we are able to represent the solutions explicitly by

the Laplace Transform, thus deriving the stiff well-posedness of the system as well as
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the L2 error estimate with the optimal convergence rate. The asymptotic error is shown

to depend on the smaller relaxation time, and the boundary and interface layer effects.

For the nonlinear case, by introducing a regularized system that smooth out the discon-

tinuous relaxation parameter, we are able to show the existence of the unique entropy

weak solution to the original hyperbolic relaxation system by compactness argument. A

special trick here is that we cannot use the classical L1 contraction principle to get a

uniform BV estimate since the relaxation parameter is space dependent. Therefore we

refer to the invariance w.r.t. time and get the estimate by working on a system obtained

by taking the derivative w.r.t. time of the original one. We also show the strong conver-

gence in L∞
(
(0, T ), L1

loc(R)
)

to a weak solution as the smaller parameter goes to zero

thanks to the uniform estimates in sup and BV norms. Finally by a matched asymptotic

analysis, we prove in a rigorous way that for a general nonlinear flux, the traces of u

at the interface are linked by the well-known Bardos-Lerous-Nédélec condition, which is

indeed an extension of what we have in [55] by taking into account the situation when

a standing shock sticks to the interface.

Despite its efficiency and accuracy, the domain decomposition method suffers from

severe difficulties in where to put the interface and how to propose the interface condition

especially when the governing equations are complicated. Thus a new approach, the

asymptotic preserving schemes, that pioneered by Jin [53, 54], has attracted considerable

interests recently. The main idea of these schemes is to preserve the discrete analog of

the continuous asymptotic limits from the microscopic to the macroscopic models. A

distinctive feature is that only a microscopic solver is needed everywhere at the cost

of the macroscopic level. These schemes have been well studied for kinetic equations

that have a hydrodynamic or diffusive scalings [36, 59, 35, 51, 43, 44, 37]. However,
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there is little result for the system with a high field scaling where both the field effect

and collision are dominant in the evolution process. The second part of this thesis is to

develop numerical methods for such systems, with emphasis on the connections to their

high field limit.

We first consider the Vlasov-Poisson-Fokker-Planck (VPFP) system, which is the ki-

netic description of the Brownian motion of a large system of particles in a surrounding

bath. Such system arises for instance in the electrostatic plasma where the interactions

are Coulomb force and in galaxies where massive particles interact through gravita-

tional force. Its high field scaling, measured by the ratio of the two important physical

quantities—the mean free path and the Debye length, leads asymptotically to a non-

linear convection equation for the macroscopic mass density as the ratio goes to zero

[78, 45].

Besides the usual stability constraint posed by the small parameter in the collision

term like the most kinetic equations in the hydrodynamic regime, new difficulties arise

in the high field regime here. One comes from the stiff force term and the other comes

from the diffusive nature of the Fokker-Planck operator. We propose an asymptotic

preserving method [57] based on the observation that the two stiff terms can be combined

into one term that shares the same structure as the classical Fokker-Planck operator,

so that a symmetric discretization [59] can be applied. Therefore, both stiff terms can

be treated implicitly simultaneously, while only a symmetric tri-diagonal matrix has to

be inverted. This scheme also offers favorable properties such as mass conservation,

positivity preservation and uniform stability.

We next consider the semiconductor Boltzmann equation which describes the semi-

classical evolution of the electron distribution function f . The collision here is a linear
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integral function of f in the low electron densities, describing the interactions of electrons

with themselves and lattice imperfections; while it takes a nonlinear integral form when

the electron density is high. Unfortunately, there is no symmetric combination of the two

stiff terms as we did for the VPFP system. Even worse, there is no explicit expression

of the local equilibrium, which makes the existing AP method [33, 56, 106] hard to

implement. We adopt the penalization idea introduced by Filbet and Jin [36] and,

inspired by the fact that functions that share the same conserved quantities with the

exact local equilibrium can be used as candidates for penalty, we only penalize the

collision term by a BGK operator that conserves mass, and treat the stiff force term

implicitly by the spectral method. This idea is applicable to both cases above. The

compensate for the “wrong Maxwellian” penalty is merely an extra term depending on

the time step in the asymptotic error.

The rest of the thesis is organized as follows.

1.1 Chapter Organization

In Chapter 2, after a brief review of the Jin-Xin relaxation system and its properties,

we focus on the initial boundary value problem of it in the upper half plane. Follow-

ing the asymptotic expansion [103], we are able to reveal the explicit expression of the

boundary layer profile. The interface condition is then proposed relying on this informa-

tion. By use of the Laplace Transform, we prove the stiff well-posedness and asymptotic

convergence for the derived domain decomposition system when the flux in the associ-

ated conservation law is linear. An optimal convergence rate is obtained as well. The

corresponding numerical algorithms are given and tested on several examples in the end.
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The analytical results for the nonlinear flux are gathered in Chaper 3. By introducing

a regularized system, we first show the well-posedness of the original two-scale hyperbolic

relaxation system. At the same time, we construct a priori estimate of the solution in

the supx and BVx norm, as well as a local continuity result in time. After that, a

strong convergence in L∞
(
(0, T ), L1

loc(R)
)

to a entropy weak solution of the limit system

is obtained through standard compactness argument. Finally by matched asymptotic

analysis, we derive an autonomous ordinary differential equation for the inner solution,

which together with some fine estimation, implies the interface condition. This is an

extension to the one constructed in Chapter 2.

Chapter 4 aims at designing an asymptotic preserving scheme for Vlasov-Poisson-

Fokker-Planck system in the high field regime. Starting from the system, we first give

a brief review of the formal derivation of the high field limit as well as the underlying

physics. Based on the key observation that two stiff terms can be treated together as a

Fokker-Planck operator, we give the first order scheme using the symmetric discretization

introduced in [59]. A mathematical justification of the properties of the scheme is

obtained as well. The scheme is extended to second order. Extensive numerical examples

are given to verify the asymptotic property, uniform accuracy, and its efficiency for

problems with mixing scales and the Riemann initial data.

A similar numerical issue for the semiconductor Boltzmann equation is investigated

in Chapter 5, with quite different solutions. Asymptotic property of the scheme is proved

to be of order of the small parameter with an extra term depending on the time step.

Such a property has been verified by several numerical examples for both degenerate and

nondegenerate cases. Examples with the Riemann initial data and mixing scales are also

given to check the performance of the scheme. A physically more realistic example is
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also presented in the end with our new observation.
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Chapter 2

A semilinear hyperbolic system with

two-scale relaxations

2.1 Introduction

Consider the hyperbolic system
uεt + vεx = 0, (2.1a)

vεt + uεx = − 1

ε(x)
(vε − f(uε)), (2.1b)

where ε(x) is the relaxation time and f(x) satisfies the sub-characteristic condition:

|f ′(x)| < 1. (2.2)

The problem is posed for x ∈ [−L,L] and t > 0 with initial data

uε(x, 0) = u0(x), vε(x, 0) = v0(x), (2.3)

and the order of the relaxation time varies considerably over the domain [−L,L]. In this

chapter, we consider the case when ε(x) is given by:

ε(x) = 1, x ∈ [−L, 0); ε(x) = ε, x ∈ (0, L], (2.4)

where ε � 1 is a small parameter. For the boundary condition, we simply choose the

Dirichlet condition for u, i.e:

uε(xL, t) = bL(t), uε(xR, t) = bR(t). (2.5)
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More general boundary conditions can also be analyzed by the method of the present

chapter. The initial data and boundary data are required to be compatible, i.e., b1(0) =

u0(xL), b2(0) = u0(xR).

Since the relaxation time is small in the region (0, L], numerical computation of this

system becomes very costly. On the other hand, in (0, L], the solution is, to leading

order in ε, governed by the equilibrium equation

ut + f(u)x = 0 , (2.6)

which can be more efficiently solved numerically. Thus a domain decomposition method,

which couples the relaxation system (2.1) for x ∈ [−L, 0), where ε(x) = O(1), with the

equilibrium equation (2.6) for x ∈ (0, L], is computationally competitive. Interface

conditions at x = 0 must be provided for this coupling.

System (2.1) was first proposed by Jin-Xin [58] for numerical purpose, which supplies

a new and powerful approximation to equilibrium conservation law (2.6). There have

been many works concerning the asymptotic convergence of the relaxation systems (2.1)

to the corresponding conservation laws (2.6) as the relaxation time tends to zero. Most

of the results dealt with the Cauchy problem. In particular, Natalini [75] gave a rigorous

proof that the solution to Cauchy problem (2.1) with initial condition (2.3) converges

strongly in C([0,∞), L1
loc(R)) to the unique entropy solution of (2.6) when ε → 0. See

also [76] for a review in this direction, and results for larger systems [7] and on more

general hyperbolic systems with relaxations [21, 65, 77, 11].

In the presence of physical boundary conditions, Kriess and some others first gave the

suitability of boundary conditions for linear hyperbolic systems when the source term

is not stiff, see, for examples [64, 50, 73, 85]. Wang and Xin [99] later gave a similar



10

result of the system (2.1)–(2.3) with boundary condition (2.5). They proved that when

the initial and boundary data satisfy a strict version of the subcharacteristic condition

(2.2), the solution of the relaxation system converges as ε→ 0 to a unique weak solution

of the conservation law (2.6) which satisfies the boundary-entropy condition. [104] and

[103] then gave an explicit necessary and sufficient condition (the so-called “Stiff Kriess

Condition”) on the boundary that guarantees the uniform well-posedness of the IBVP,

and also revealed the boundary layer structures. [103, 105] dealt with the linear cases

while [104] considered the nonlinear one. For the convergence of the relaxation scheme,

one can refer to [19, 94].

Domain decomposition methods connecting kinetic equation and its hydrodynamic

or diffusion limit have received a lot of attention in the past 20 years. This project is

strongly motivated by [41]. Others can refer to [5, 95, 10, 32, 107, 62, 63, 29, 28, 31, 93, 46,

60]. A thorough study on the problem of this chapter provides a better understanding of

the more general coupling problem of kinetic and hydrodynamic equations, since indeed

the Jin-Xin relaxation system (2.1) can be viewed as a discrete-velocity kinetic model,

while (2.6) resembles some important features of hydrodynamic (compressible Euler)

equations.

Relaxation systems themselves are important in many physical situations, such as

kinetics theories [16], gases not in thermodynamic equilibrium [98], phase transitions

with small transition time [66], river flows, traffic flows and more general waves [100].

In this chapter, we give a domain decomposition method for system (2.1)–(2.4) by

providing the interface condition at x = 0. The interface condition depends on the

sign of f ′(u) at the interface. When f ′(u(0, t)) < 0, there will be an interface layer

in u around x = 0+ when approximating the original system (2.1) by (2.6), then one
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can solve (2.6) in the right region first and then transfers the value of v(0, t) to the

left as one boundary condition for (2.1) in the left region, see (2.12)–(2.13). On the

other hand, when f ′(u(0, t)) < 0, one just uses v(0, t) = f(u(0, t)) as one boundary

condition for (2.1) in the left region, and solves it first, then uses the value u(0, t) as the

boundary condition for (2.6) in the right region. The details are given in (2.14)–(2.15).

For the linear case, i.e., f(u) = λu, where |λ| < 1 a constant, we first prove the stiff

well-posedness of the original system (2.1) in Theorem 2.3 in the sense that the L2 norm

of the solution is controlled by the L2 norm of the initial and boundary data. Then we

prove the asymptotic convergence in Theorem 2.4 to show that the difference between

the solution to our domain decomposition system and the solution to the original system

is asymptotically small. Sharp error estimates are also given.

This domain decomposition can be directly extended to more general cases, such

as the coupling of multiple regions, f ′(u(0, t)) changing sign in time, ε depending on

both time and space [27], and more complicated cases such as when the equilibrium

equation is a hyperbolic system instead of the scalar conservation law, and in higher

space dimensions. Some details are given in section 2.6.

This chapter is organized as follows. In section 2.2 we show the formal expansion of

the initial boundary value problem (2.1) in the upper half plane {x > 0, t > 0} in which

the boundary layer may exist. We also refer to the theorems in [104] which validate this

expansion. Section 2.3 is devoted to present the domain decomposition method, and the

corresponding interface condition is given. We then prove the stiff well-posedness and

asymptotic convergence for the linear case. The theorems are proved in two parts: one

for homogeneous initial data (section 2.4) and the other the inhomogeneous one (section

2.5). For the homogeneous one, we simply use the Laplace Transform to obtain the
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solution, while for the inhomogeneous case, we construct several auxiliary systems to

decompose the solution into two parts, one generated by the initial data, and the other by

the interface condition. With this decomposition, we are able to use some existing results

for the Cauchy problem to avoid the difficulties raised by the Laplace Transform. Finally

in section 2.6, we present the corresponding numerical algorithms and some extensions of

the domain decomposition method, and finally give some numerical examples to validate

the theoretical analysis.

2.2 The local equilibrium limit

In this section, we recall the asymptotic analysis proposed in [104]. Here we only consider

the boundary layer effect, and let

v0(x) = f(u0(x))

in order to avoid the initial layer effect. When x ∈ [0, L] where ε is small, one can use

the hyperbolic conservation law (2.6) to approximate the relaxation system. Away from

x = 0 and t = 0, use the expansion

uε(x, t) ∼ u0(x, t) + εu1(x, t) + ε2u2(x, t) + . . . ,

vε(x, t) ∼ v0(x, t) + εv1(x, t) + ε2v2(x, t) + . . . ,

then matching the orders of ε, one obtains:

v0 = f(u0),

∂tu
0 + ∂xv

0 = 0,

∂tv
0 + ∂xu

0 = −(v1 − f ′(u0)u1). (2.7)

...
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Thus the leading order of the expansion gives

∂tu
0 + ∂xf(u0) = 0, v0 = f(u0), (2.8)

which is the equilibrium limit (the zero relaxation limit) (2.6).

Near x = 0, introduce the stretched variable ζ = x/ε, and write the asymptotic

expansion of uε(x, t) as

uε(x, t) ∼ u0(x, t) + εu1(x, t) + . . .+ Γ0
u(ζ, t) + εΓ1

u(ζ, t) + . . . ,

vε(x, t) ∼ v0(x, t) + εv1(x, t) + . . .+ Γ0
v(ζ, t) + εΓ1

v(ζ, t) + . . . ,

here Γ0
u, Γ0

v, Γ1
u, Γ1

v, ..., depending on ζ and t, are the boundary layer correctors near

x = 0. Apply this ansatz to (2.1), and expand the nonlinear term f(uε) near x = 0 as

f(uε) = f(u0(x, t) + Γ0
u(ζ, t) + εu1(x, t) + εΓ1

u(ζ, t) + ...)

= f(u0(0, t) + εζ∂xu
0(0, t) + ...+ Γ0

u(ζ, t) + εu1(x, t) + εΓ1
u(ζ, t) + ...)

= f(u0(0, t) + Γ0
u(ζ, t)) + εf ′(u0(0, t) + Γ0

u(ζ, t))(ζ∂xu
0(0, t) + u1(0, t) + Γ1

u(ζ, t)) + ε2...

where the second equality comes from the relation x = εζ. By using (2.7) and (2.8) one

has the equation to the leading order O(1
ε
)

∂ζΓ
0
v = 0, (2.9)

∂ζΓ
0
u = −(v0(0, t) + Γ0

v − f(Γ0
u + u0(0, t))). (2.10)

(2.9) implies Γ0
v ≡ 0 because the boundary layer Γ0

v(ζ, 0) should decay as ζ → 0. Also,

(2.10) can be written as

(Γ0
u)ζ = −(v0(0, t)− f(u0(0, t) + Γ0

u)) ' f ′(u0(0, t))Γ0
u(ζ, t),
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thus one gets the behavior of the boundary layer in u:

Γ0
u(ζ, t) = exp(f ′(u0(0, t))ζ)Γ0

u(0, t). (2.11)

Since the boundary layer has to decay exponentially fast, one needs f ′(u0(0, t)) < 0.

In other words, if f ′(u0(0, t)) < 0, there will be a boundary layer, otherwise there will

not be a boundary layer.

The above analysis was rigorously validated in [104].

2.3 A domain decomposition method

In section 2.2, one sees that when ε goes to 0, the hyperbolic system (2.1) can be

approximated by the equilibrium equation (2.6) that does not have any stiff term. But

the interface condition that connects the two regions should be provided. In this section,

we will give the detailed algorithm that approximates the solution of the two-scale

problem. We will consider the case with f ′(u(0, t)) < 0 and f ′(u(0, t)) > 0 separately.

2.3.1 f ′(u(0, t)) < 0

In this case, there will be an interface layer in u near the interface x = 0, so one can not

simply use u obtained from (0, L] to solve (2.6) in domain [−L, 0). Instead we can use

the information of v at x = 0 directly from the equation in (0, L] since there is no O(1)

interface layer in v. Here is the coupling algorithm.
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• Step 1. For x ∈ (0, L], solve

urt + f(ur)x = 0, (2.12a)

vr(x, t) = f(ur(x, t)), (2.12b)

ur(x, 0) = u0(x), (2.12c)

ur(L, t) = bR(t). (2.12d)

Note in this case one can solve (2.12) first to get vr(0, t), and then solve (2.13).

• Step 2. For x ∈ [−L, 0), solve

ult + vlx = 0, (2.13a)

vlt + ulx = −(vl − f(ul)), (2.13b)

ul(x, 0) = u0(x), vl(x, 0) = v0(x), (2.13c)

ul(−L, t) = bL(t), (2.13d)

vl(0, t) = vr(0, t), (2.13e)

where vr(0, t) is obtained from Step 1.

2.3.2 f ′(u(0, t)) > 0

In this case, at the interface x = 0 there is no O(1) interface layer in u and v. In other

words, u and v are in local equilibrium v = f(u), and we can just use this as the interface

condition. We give the following algorithm.

• Step 1. For x ∈ [−L, 0), solve
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

ult + vlx = 0, (2.14a)

vlt + ulx = −(vl − f(ul)), (2.14b)

ul(x, 0) = u0(x), vl(x, 0) = v0(x), (2.14c)

ul(−L, t) = bL(t), (2.14d)

f(ul(0, t)) = vl(0, t); (2.14e)

• Step 2. For x ∈ (0, L], solve

urt + f(ur)x = 0, (2.15a)

vr(x, t) = f(ur(x, t)), (2.15b)

ur(x, 0) = u0(x), (2.15c)

ur(0, t) = ul(0, t), (2.15d)

where ul(0, t) is obtained from Step 1.

Remark 2.1. In this case there will be a boundary layer in u near x = L−, which is

why in Theorem 2.4 that the convergence rate is O(ε).

In both cases, we define the solution to the domain decomposition system as follows:u(x, t) = ul(x, t), v(x, t) = vl(x, t), (x, t) ∈ [−L, 0)× [0, T ], (2.16a)

u(x, t) = ur(x, t), v(x, t) = vr(x, t), (x, t) ∈ (0, L]× [0, T ]. (2.16b)

Remark 2.2. If f ′(u(0, t)) changes sign at the interface, one can check the sign of

f ′(u(0, t)) at the current time step, and then use either (2.12)–(2.13) or (2.14)–(2.15)

to continue to the next step. More general cases, such as time-dependent ε or higher

space dimensions, are discussed in section 2.6.3.
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The detailed numerical implementation of this domain decomposition method is given

in section 2.6.

Now we state the main theorems in this chapter about the stiff well-posedness of

the original relaxation system and asymptotic convergence of our domain decomposition

system.

Theorem 2.3. Let U ε = (uε, vε)T be the solution of the original system (2.1). If

u0(x), v0(x), bL(t), bR(t) ∈ L2, and U0(±L) = 0, bL(0) = bR(0) = 0, then the solu-

tion to the original system (2.1), with variable ε(x) given in (2.4), is stiffly well-posed

in the sense: ∫ T

0

∫ L

−L
|U ε(x, t)|2dxdt+

∫ T

0

|U ε(−L, t)|2dt+

∫ T

0

|U ε(L, t)|2dt

≤ KT

[∫ T

0

|bL(t)|2dt+

∫ T

0

|bR(t)|2dt+

∫ L

−L
|U0(x)|2dx

]
,

where KT is a positive constant independent of ε. Moreover, if u0(x), v0(x), bL(t) and

bR(t) are continuous, then the solution U ε is continuous in x.

Theorem 2.4. Assume bL(t), bR(t) ∈ L2(R+), U0(±L) = 0, U0(x) ∈ H3([−L,L]) and

U0(0) = U ′0(0) = U
′′
0 (0) = 0, then there exists a unique solution U = (u, v)T of the

domain decomposition system (2.12)–(2.13) or (2.14)–(2.15) such that∫ L

−L

∫ ∞
0

|U ε − U |2e−2αtdtdx→ 0

as ε→ 0 for any α > 0. Moreover, if we assume bL(t), bR(t) ∈ H2(R+), bL(0) = b′L(0) =
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bR(0) = b′R(0) = 0, and U ′0(±L) = 0, then∫ L

−L

∫ ∞
0

|U ε − U |2e−2αt dtdx

≤ O(1)ε||bL||2L2 +O(1)ε||bR||2L2 +O(1)ε2||bL||2H2

+O(1)ε2||bR||2H2 +O(1)ε||v0−λu0||2L2[0,L]

+

 O(1)ε2||U0||2H3 , for λ > 0,

O(1)ε||U0||2L2 +O(1)ε2||U0||2H3 , for λ < 0.

Remark 2.5. (1) In the λ < 0 case, there is an interface layer near x = 0+, while

in the λ > 0 case, there is a boundary layer near x = L−, so in both cases, the op-

timal convergence rate due to the boundary data is O(1)ε, which is where the terms

O(1)ε||bL(t)||2L2 +O(1)ε||bR(t)||2L2 come from.

(2) The lower convergence rate in the case of λ < 0 is due to the presence of an

interface layer near x = 0+ generated by the initial data.

(3) O(1)ε||v0−λu0||2L2[0,L] comes from the initial layer in v.

2.4 Error estimate for the domain decomposition

method in the linear case: the homogeneous ini-

tial data

In this and the next sections, we will give a rigorous justification of the domain decom-

position method for linear problems, where f(u) = λu, for |λ| < 1 a constant. We first

represent the exact solution to the original system (2.1)–(2.4) by the Laplace Transform,

and then study the stiff wellposedness and the asymptotic convergence followed by direct

calculations.
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Denote

U ε =

 uε

vε

 , A =

 0 1

1 0

 , S =

 0 0

λ −1

 .

Here we consider system (2.1) with zero initial data (2.3), i.e., u0(x) = 0, v0(x) = 0

and nonzero boundary data (2.5). In this case one can focus on the boundary layer

effects and avoid the interactions between the initial and boundary layers.

2.4.1 Solution by the Laplace Transform

When (2.1) is linear, i.e., f(u) = λu, one can find the exact solution of (2.1)–(2.4) by

the Laplace Transform. Let

Û ε(x, ξ) = L(U ε) =

∫ ∞
0

e−ξtU ε(x, t)dt, Re(ξ) > 0.

Here ξ = α + iβ, then L(∂tU
ε) = ξÛ ε − U ε(x, 0) = ξÛ ε(x, ξ). With the homogeneous

initial condition, system (2.1)–(2.5) becomes

∂xÛ
ε =

1

ε(x)
A−1(S − ε(x)ξI)Û ε =

1

ε(x)
M(ε(x)ξ)Û ε, (2.17)

ûε(−L, ξ) = b̂L(ξ), ûε(L, ξ) = b̂R(ξ), (2.18)

where matrix

M(ξ) = A−1(S − ε(x)ξI) (2.19)

has two eigenvalues

µ±(ξ) =
λ±

√
λ2 + 4ξ(1 + ξ)

2
, (2.20)

and two corresponding eigenvectors 1

µ∓(ξ)
1+ξ

 =

 1

g∓(ξ)

 . (2.21)
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Thus the solution of (2.17) (2.18) can be written as:

Û ε(x, ξ) = c1e
µ−(ξ)x

 1

g+(ξ)

+ c2e
µ+(ξ)x

 1

g−(ξ)

 for x < 0, ε(x) = 1;

Û ε(x, ξ) = c3e
µ−(εξ)x

ε

 1

g+(εξ)

+ c4e
µ+(εξ)x

ε

 1

g−(εξ)

 for x > 0, ε(x) = ε,

(2.22)

where the coefficient c1, c2, c3, c4 are determined by the boundary conditions:

c1e
−µ−(ξ)L + c2e

−µ+(ξ)L = b̂L(ξ), (2.23)

c3e
µ−(ξε)L

ε + c4e
µ+(ξε)L

ε = b̂R(ξ). (2.24)

By continuity at the interface, one has

c1 + c2 = c3 + c4, (2.25)

c1g+(ξ) + c2g−(ξ) = c3g+(εξ) + c4g−(εξ). (2.26)

From (2.23)–(2.26), one sees that c1–c4 are uniquely determined. Denote

c3 = Ec1 + Fc2, (2.27)

c4 = Gc1 +Hc2, (2.28)

where

E =
g+(ξ)− g−(εξ)

g+(εξ)− g−(εξ)
, F =

g−(ξ)− g−(εξ)

g+(εξ)− g−(εξ)
, G =

g+(ξ)− g+(εξ)

g−(εξ)− g+(εξ)
, H =

g−(ξ)− g+(εξ)

g−(εξ)− g+(εξ)
.

Plugging (2.27)–(2.28) into (2.23)–(2.24), one has

c1 =
b̂R(ξ)e−µ+(ξ)L − b̂L(ξ)(Feµ−(εξ)L

ε +Heµ+(εξ)L
ε )

(Eeµ−(εξ)L
ε +Geµ+(εξ)L

ε )e−µ+(ξ)L − (Feµ−(εξ)L
ε +Heµ+(εξ)L

ε )e−µ−(ξ)L
,(2.29)

c2 =
b̂R(ξ)e−µ−(ξ)L − b̂L(ξ)(Eeµ−(εξ)L

ε +Geµ+(εξ)L
ε )

(Feµ−(εξ)L
ε +Heµ+(εξ)L

ε )e−µ−(ξ)L − (Eeµ−(εξ)L
ε +Geµ+(εξ)L

ε )e−µ+(ξ)L
.(2.30)
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2.4.2 Stiff well-posedness

We first summarize some properties of the eigenvalues µ±(ξ) in (2.20) and g±(ξ) appeared

in the eigenvector in (2.21), which will be heavily used hereafter. We then prove the stiff

well-posedness stated in Theorem 2.3.

First, we give some bounds on µ±(ξ).

Lemma 2.6. Under the subcharacteristic condition |λ| < 1, one has

(1) |λ|(1 + 2α) ≤ Re
√
λ2 + 4ξ(1 + ξ) ≤ 1 + 2α, for Re (ξ) = α ≥ 0; (2.31)

(2) Re µ+(ξ) > 0, Re µ−(ξ) < 0; (2.32)

(3) when λ < 0, 2Re µ−(εξ) ≤ −2|λ|, 2Re µ+(εξ) ≥ −2ελα; (2.33)

when λ > 0, 2Re µ−(εξ) ≤ −2ελα, 2Re µ+(εξ) ≥ 2λ. (2.34)

For the proof of the lemma, please refer to [103].

Now we give bounds and asymptotic behavior of g±(εξ).

Lemma 2.7. Under the subcharacteristic condition |λ| < 1, one has

(1) For λ > 0, g−(εξ) = O(1)εξ, and 0 < C1 ≤ |g+(εξ)| ≤ C2, here C1 and C2 are two

positive constants, and g+(εξ)− λ = O(1)εξ;

(2) For λ < 0, g+(εξ) = O(1)εξ, and 0 < C3 ≤ |g−(εξ)| ≤ C4, here C3 and C4 are two

positive constants, and g−(εξ)− λ = O(1)εξ;

(3) g±(ξ)− g±(εξ), g+(ξ)− g−(εξ), g+(εξ)− g−(ξ) are uniformly bounded with respect to

both ε and ξ, and they are bounded away from zero for Reξ = α > 0.

Proof. (1). When λ > 0, from definition (2.21), one sees

g−(εξ) =
λ−

√
λ2 + 4εξ(1 + εξ)

2(1 + εξ)
=

−2εξ

λ+
√
λ2 + 4εξ(1 + εξ)

= O(1)εξ,
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and

g+(εξ) =
λ+

√
λ2 + 4εξ(1 + εξ)

2(1 + εξ)
.

In order to prove that g+(εξ) is uniformly bounded with respect to εξ, and the denomi-

nator is nonzero, one just needs to check what happens when |εξ| goes to 0 or ∞. Let

εξ = reiθ, one sees that when |εξ| → 0, i.e., when r → 0, |g+(εξ)| → λ; when |εξ| → ∞,

i.e., when |r| → ∞, one has

|g+(εξ)| →

∣∣∣∣∣
√
λ2 + 4reiθ(1 + reiθ)

2(1 + reiθ)

∣∣∣∣∣→ (cos2 2θ + sin4 θ)
1
4 ,

which is bounded and nonzero. Moreover,

g+(εξ)− λ =
2(1− λ2)εξ√

λ2 + 4εξ(1 + εξ) + λ(1 + 2εξ)
= O(1)εξ.

(2). When λ < 0, similarly one has

g+(εξ) =
λ+

√
λ2 + 4εξ(1 + εξ)

2(1 + εξ)
=

−2εξ

λ−
√
λ2 + 4εξ(1 + εξ)

= O(1)εξ,

and

g−(εξ) =
λ−

√
λ2 + 4εξ(1 + εξ)

2(1 + εξ)
.

In the same way as in (1), one can prove that g−(εξ) is uniformly bounded in εξ.

(3). Note

g+(ξ)−g−(εξ)=
λξ(ε− 1) + (1 + εξ)

√
λ2 + 4ξ(1 + ξ) + (1 + ξ)

√
λ2 + 4εξ(1 + εξ)

(1 + ξ)(1 + εξ)
.

Let ξ = reθ, then when ε → 0, and |r| → 0, one has |g+(ξ)−g−(εξ)| → 2|λ|. When

ε→ 0, |r| → ∞, and ε|r| → 0, one has

|g+(ξ)−g−(εξ)| →

∣∣∣∣∣λ+
√
λ2 + 4ξ(1 + ξ)

1 + ξ

∣∣∣∣∣→ 1

2
(cos2 2θ + sin4 θ)

1
4 ,
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which is bounded and nonzero. When ε→ 0, |r| → ∞, and ε|r| → ∞, one can still prove

that |g+(ξ)−g−(εξ)| is uniformly bounded away from 0, but the detailed calculation

will be omitted. Similarly, one can prove the same result for g+(εξ)−g−(ξ). As for

g+(ξ)− g+(εξ), notice

g+(ξ)−g+(εξ) =
λξ(ε− 1) + (1 + εξ)

√
λ2 + 4ξ(1 + ξ)− (1 + ξ)

√
λ2 + 4εξ(1 + εξ)

(1 + ξ)(1 + εξ)
,

then following the same procedure as above, it is not hard to check that it is uniformly

bounded as ε→ 0, and |ξ| → ∞. Moreover, when ε→ 0, |ξ| → α,

|g+(ξ)− g+(εξ)| →

∣∣∣∣∣−λα +
√
λ2 + 4α(1 + α)− (1 + α)λ

1 + α

∣∣∣∣∣ ,
which is nonzero, one can arrive at the same conclusion for g−(ξ)− g−(εξ).

Remark 2.8. (1) We will fix Reξ = α > 0 from now on.

(2) From definition (2.22), one sees that, when λ > 0, by (2.34), there is a boundary

layer near x = L, and on the other hand, when λ < 0, by (2.33), there is an interface

layer near x = 0. This observation will play an important role in subsequent proofs.

Now we prove the theorem about the stiff well-posedness.

Proof. We use solution (2.22) of the original system (2.1) given by the Laplace Trans-

form. Consider the integral:∫ L

−L
dx

∫ ∞
−∞
|Û ε(x, ξ)|2dβ =

∫ 0

−L
e2Reµ−(ξ)xdx

∫ ∞
−∞
|c1|2(1 + |g+(ξ)|2)dβ

+

∫ 0

−L
e2Reµ+(ξ)xdx

∫ ∞
−∞
|c2|2(1 + |g−(ξ)|2)dβ

+

∫ L

0

e2Reµ−(εξ)x
ε dx

∫ ∞
−∞
|c3|2(1 + |g+(εξ)|2)dβ

+

∫ L

0

dx

∫ ∞
−∞
|c4e

µ+(εξ)x
ε |2(1 + |g−(εξ)|2)dβ.
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By Lemma 2.7 one sees E, F , G, and H in (2.27)–(2.28) are uniformly bounded away

from 0. And from (2.29), (2.30), (2.27) and (2.28) one gets

c1, c2, c3, c4 = O(1)(b̂L(ξ) + b̂R(ξ)),

and moreover, from (2.24),

eµ+(εξ)L
ε c4 = (b̂R(ξ)− c3e

µ−(εξ)L
ε ), (2.35)

so eµ+(εξ)L
ε c4 =O(1)eµ−(εξ)L

ε b̂L(ξ) +O(1)b̂R(ξ). Therefore∫ L

−L
dx

∫ ∞
−∞
|Û ε(x, ξ)|2dβ ≤ O(1)

∫ ∞
−∞

(
|b̂L(ξ)|2 + |b̂R(ξ)|2

)
dβ. (2.36)

Then by Parseval’s identity:∫ ∞
0

e−2αt|U ε(x, t)|2dt =
1

2π

∫ ∞
−∞
|Û ε(x, α + iβ)|2dβ, (2.37)

the stiff well-posedness, as stated in Theorem 2.3, now follows.

2.4.3 Asymptotic convergence and error estimates

Next we turn to the question of the asymptotic convergence and error estimate stated

in Theorem 2.4. To prove the theorem, still we compare the analytical solution of the

domain decomposition problem (2.12)–(2.15) with the original problem given in section

4.1 with the help of the Laplace Transform.

Proof. Consider the case λ < 0 first. The solution of (2.12) is

ur(x, t) =

 0, x− L ≤ λt,

bR
(
t+ 1

λ
(L− x)

)
, x− L ≥ λt, 0 ≤ x ≤ L.
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Using the Laplace Transform, it becomes

ûr(x, ξ) = b̂R(ξ)e
ξ
λ

(L−x), for x > 0. (2.38)

The solution of (2.13) is

Û l(x, ξ) = d1e
µ−(ξ)x

 1

g+(ξ)

+ d2e
µ+(ξ)x

 1

g−(ξ)

 , (2.39)

where d1 and d2 are determined by

d1e
−µ−(ξ)L + d2e

−µ+(ξ)L = b̂L(ξ), (2.40)

d1g+(ξ) + d2g−(ξ) = λb̂R(ξ)e
ξ
λ
L. (2.41)

Now compare the first expression of (2.22) with (2.39), and the second with (2.38)

respectively. For x ∈ [0, L], using (2.22) and (2.38), one gets for the first component u∫ L

0

dx

∫ ∞
−∞
|ûr − ûε|2dβ =

∫ L

0

dx

∫ ∞
−∞
|c3e

µ−(εξ)x
ε + c4e

µ+(εξ)x
ε − b̂Re

ξ
λ

(L−x)|2dβ

≤
∫ L

0

dx

∫ ∞
−∞
|c3(eµ−(εξ)x

ε −eµ+(εξ)x−L
ε eµ−(εξ)L

ε )|2dβ+

∫ L

0

dx

∫ ∞
−∞
|b̂R(ξ)|2|eµ+(εξ)x−L

ε − e
ξ
λ

(L−x)|2dβ

= I1 + I2.

Here the first inequality was derived by substituting c4 in (2.35). For I1, it is easy to

see:

I1 ≤ O(1)

∫ ∞
−∞
|c3(ξ)|2dβ

(∫ L

0

e2Reµ−(εξ)x
ε dx+ e2Reµ−(εξ)L

ε

∫ L

0

e2Reµ+(εξ)x−L
ε dx

)
.

Then by (2.33) one gets the estimate for I1 as:

I1 ≤ O(1)ε

∫ ∞
−∞
|c3(ξ)|2dβ

= O(1)ε

∫ ∞
−∞

(|b̂L|2 + |b̂R|2)dβ ≤ O(1)ε(||bL||2L2 + ||bR||2L2). (2.42)
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Note here in I1, the term that contains eµ−(εξ)x
ε is the result of interface layer, which

drops the L2 convergence rate down to ε
1
2 .

For I2, notice∫ L

0

|eµ+(εξ)x−L
ε − e

ξ
λ

(L−x)|2dx

=

∫ L

0

|eµ+(εξ)−x
ε −e

ξ
λ
x|2dx ≤

∫ ∞
0

|eµ+(εξ)−x
ε − e

ξ
λ
x|2dx = O(1)

∣∣∣∣µ+(εξ)

ε
+
ξ

λ

∣∣∣∣2(2.43)

one has

I2 ≤
∫ ∞
−∞
O(1)

∣∣∣∣µ+(εξ)

ε
+
ξ

λ
|2|b̂R(ξ)

∣∣∣∣2 dβ = O(1)ε2
∫ ∞
−∞
|ξ|4|b̂R(ξ)|2dβ

≤ O(1)ε2||bR||2H2 . (2.44)

Here we use the fact

µ+(εξ)

ε
+
ξ

λ
=

2εξ2(1− λ2)

λ(λ2 + 2εξ − λ
√
λ2 + 4εξ(1 + εξ))

= O(1)εξ2, (2.45)

and also we assume that bR(t) ∈ H2(R+) and bR(t) satisfies the compatibility condition

bR(0) = b′R(0) = 0. Adding I1 and I2 yields∫ L

0

dx

∫ ∞
−∞
|ûl − ûε|2dβ ≤ O(1)ε(‖bL‖2

L2 + ‖bR‖2
L2) +O(1)ε2 ‖bR‖2

H2 . (2.46)

When x ∈ [−L, 0] the difference between (2.22) and (2.39) is the difference between

the coefficients, i.e.∫ 0

−L
dx

∫ ∞
−∞
|Û l − Û ε|2dβ = O(1)

∫ ∞
−∞

(|d1 − c1|2 + |d2 − c2|2)dβ.

Compare (2.23)–(2.26) with (2.40)–(2.41), one finds

|c1 − d1| = O(1)εξ(b̂L + b̂R), |c2 − d2| = O(1)εξ(b̂L + b̂R),
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after using Lemma 2.7 and some basic calculations. The details are omitted.

Therefore, ∫ 0

−L
dx

∫ ∞
−∞
|Û l − Û ε|2dβ ≤ O(1)ε2

∫ ∞
−∞

(|ξb̂L(ξ)|2 + |ξb̂R(ξ)|2)dξ

≤ O(1)ε2(||bL||2H1 + ||bR||2H1). (2.47)

Here we used the assumption that bL(t) ∈ H1(R+), and bL(t) satisfies bL(0) = 0. Now

we are done with the λ < 0 case.

For λ > 0, the proof is similar. First the solution to (2.14) is

Û l(x, ξ) = k1e
µ−(ξ)x

 1

g+(ξ)

+ k2e
µ+(ξ)x

 1

g−(ξ)

 , −L ≤ x ≤ 0, (2.48)

where k1 and k2 are determined by

k1e
−µ−(ξ)L + k2e

−µ+(ξ)L = b̂L(ξ), (2.49)

k1(λ− g+(ξ)) + k2(λ− g−(ξ)) = 0. (2.50)

When 0 ≤ x ≤ L, the solution to (2.15) is

ur(x, t) =

 0, λt ≤ x ≤ L,

ul(0, t− x
λ
), 0 ≤ x ≤ λt, 0 ≤ x ≤ L.

So after using the Laplace Transform, one gets:

ûr(x, ξ) = e−ξ
x
λ ûl(0−, ξ) = e−ξ

x
λ (k1 + k2). (2.51)

Now compare (2.48) and (2.51) with (2.22). The difference between (2.48) and the

first expression of (2.22) is again the difference between the coefficients. Thus∫ 0

−L
dx

∫ ∞
−∞
|Û l − Û ε|2dβ = O(1)

∫ ∞
−∞

(|k1 − c1|2 + |k2 − c2|2)dβ.
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Comparing (2.23)–(2.26) with (2.49) (2.50), one finds

|c1 − k1| = O(1)εξb̂L, |c2 − k2| = O(1)εξb̂L.

Therefore, ∫ 0

−L
dx

∫ ∞
−∞
|Û l − Û ε|2dβ ≤ O(1)ε2

∫ ∞
−∞
|ξb̂L(ξ)|2dξ

≤ O(1)ε2||bL||2H1 . (2.52)

The difference between (2.51) and the second expression of (2.22) is estimated as follows:∫ L

0

dx

∫ ∞
−∞
|ûr − ûε|2dβ

=

∫ L

0

dx

∫ ∞
−∞
|c3e

µ−(εξ)x
ε + c4e

µ+(εξ)x
ε − (k1 + k2)e−ξ

x
λ |2dβ

=

∫ L

0

dx

∫ ∞
−∞
|c3(eµ−(εξ)x

ε −eµ+(εξ)x−L
ε eµ−(εξ)L

ε) + b̂Re
µ+(εξ)x−L

ε −(k1 + k2)e−ξ
x
λ|2dβ

≤ J1 + J2 + J3.

To get the second equality, we again use (2.35). First,

J1 =

∫ ∞
−∞
|b̂R(ξ)|2dβ

∫ L

0

e2Reµ+(εξ)x−L
ε dx

≤ O(1)ε||bR(t)||2L2 , (2.53)

where the inequalities (2.32), (2.33) and (2.34) were used. For J2, one has:

J2 =

∫ L

0

dx

∫ ∞
−∞

∣∣∣[c3 − (k1 + k2)]eµ−(εξ)x
ε − c3e

µ+(εξ)x−L
ε eµ−(εξ)L

ε

∣∣∣2
≤

∫ L

0

dx

∫ ∞
−∞
|c3−k1−k2|2e2Reµ−(εξ)x

ε dβ +O(1)ε

∫ ∞
−∞
|c3|2dβ.

Since c3 + c4 = c1 + c2 = k1 + k2 + O(1)εξb̂L(ξ), c4 = e−µ+(εξ)L
ε (b̂R(ξ)− c3e

µ−(εξ)L
ε ), one

has |c3−k1−k2|2 = O(1)ε2|ξb̂L(ξ)|2. Therefore,

J2 ≤ O(1)ε2||bL||2H1 +O(1)ε||bL||2L2 . (2.54)



29

Note here the convergence rate is ε, which is caused by the boundary layer effect of

eµ+(εξ)x−L
ε in J1 and J2. The remaining part J3 is

J3 =

∫ L

0

dx

∫ ∞
−∞
|(k1+k2)eµ−(εξ)x

ε − (k1+k2)e−ξ
x
λ |2dβ

≤ O(1)

∫ ∞
0

|eµ−(εξ)x
ε − e−ξ

x
λ |2dx

∫ ∞
−∞
|k1+k2|2dβ

≤ O(1)ε2||bL||2H2 . (2.55)

The calculation here is similar to (2.44). In total, one gets∫ L

0

dx

∫ ∞
−∞
|ûr − ûε|2dβ ≤ O(1)ε(‖bL‖2

L2 + ‖bR‖2
L2) +O(1)ε2 ‖bL‖2

H2 . (2.56)

To this end, we have proved Theorem 2.4 with zero initial data.

Remark 2.9. Here we jump to the estimation of the convergence rate, and omit the

steps to prove the uniform convergence stated in Theorem 2.4, which is easily obtained

by dominated convergence theorem.

2.5 Error estimate for the domain decomposition

method in the linear case: the inhomogeneous

initial data

The case with inhomogeneous initial data is much more complicated. For clarity, we

consider instead the Cauchy problem here, that is, x ∈ (−∞,∞) instead of [−L,L]. A

new idea here is to construct some related initial value problem and make use of the

existing results about the Cauchy problem [103] to overcome the difficulties arisen in

the Laplace Transform. With these two results, the problem with both boundary and

initial data is straightforward, and details will be omitted.
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2.5.1 Solution by the Laplace Transform

Again, we solve system (2.1) with L = ∞ by the Laplace Transform. Then (2.1) and

(2.3) become:

∂xÛ
ε =

1

ε(x)
M(ε(x)ξ)Û ε + A−1U0(x), (2.57)

where M is defined in (2.19). Then the general solution is:
Û ε(x, ξ) = eM(ξ)x(ÛL +

∫ x
0
e−M(ξ)yA−1U0(y)dy) for x < 0, ε(x) = 1;

Û ε(x, ξ) = eM(εξ)x
ε (ÛR +

∫ x
0
e−M(εξ) y

εA−1U0(y)dy) for x > 0, ε(x) = ε,

(2.58)

where one can denote eM(ξ)x by

eM(ξ)x = eµ+(ξ)xΦ+(ξ) + eµ−(ξ)xΦ−(ξ), (2.59)

and Φ± are defined by:

Φ+(ξ) =
1

g+(ξ)− g−(ξ)

 1

g−(ξ)

 (g+(ξ),−1), (2.60)

Φ−(ξ) =
1

g+(ξ)− g−(ξ)

 1

g+(ξ)

 (−g−(ξ), 1). (2.61)

Then (2.58) can be rewritten as:

Û ε(x, ξ) = eµ+(ξ)xΦ+(ξ)(ÛL(ξ) +
∫ x

0
e−µ+(ξ)yA−1U0(y)dy)

+eµ−(ξ)xΦ−(ξ)(ÛL(ξ) +
∫ x

0
e−µ−(ξ)yA−1U0(y)dy) for x < 0, ε(x) = 1;

Û ε(x, ξ) = eµ+(εξ)x
ε Φ+(εξ)(ÛR(ξ) +

∫ x
0
e−µ+(εξ) y

εA−1U0(y)dy)

+eµ−(εξ)x
ε Φ−(εξ)(ÛR(ξ) +

∫ x
0
e−µ−(εξ) y

εA−1U0(y)dy) for x > 0, ε(x) = ε.

(2.62)
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Here ÛL(ξ) =

 ûL(ξ)

v̂L(ξ)

 and ÛR(ξ) =

 ûR(ξ)

v̂R(ξ)

 are two vectors independent of x,

and defined by the boundary condition and interface conditions as follows.

First, when x→∞, Û ε(x, ξ)→ 0, one gets

(g+(εξ), −1)

 ûR(ξ)

v̂R(ξ)

+

∫ ∞
0

e−µ+(εξ) y
ε (g+(εξ), −1)

 v0

u0

 (y)dy = 0,

that is,

g+(εξ)ûR(ξ)− v̂R(ξ) +

∫ ∞
0

e−µ+(εξ) y
ε (v0(y)g+(εξ)− u0(y))dy = 0. (2.63)

When x→ −∞, Û ε(x, ξ)→ 0, thus

(−g−(ξ), 1)

 ûL(ξ)

v̂L(ξ)

+

∫ −∞
0

e−µ−(ξ)y(−g−(ξ), 1)

 v0

u0

 (y)dy = 0,

that is,

−g−(ξ)ûL(ξ) + v̂L(ξ) +

∫ −∞
0

e−µ−(ξ)y(−v0(y)g−(ξ) + u0(y))dy = 0. (2.64)

Then by continuity, Φ+(ξ)ÛL + Φ−(ξ)ÛL = Φ+(εξ)ÛR + Φ−(εξ)ÛR, it is easy to get:

ûL = ûR, v̂L = v̂R. (2.65)
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Plugging (2.63) - (2.65) into (2.62), one ends up with a simplified version of (2.62):

Û ε(x, ξ) =
1

g+(εξ)− g−(εξ)


 1

g−(εξ)

∫ ∞
x

eµ+(εξ)x−y
ε (u0(y)− v0(y)g+(εξ))dy

+

 1

g+(εξ)

∫ x

0

eµ−(εξ)x−y
ε (u0(y)− v0(y)g−(εξ))dy

+

 1

g+(εξ)

 eµ−(εξ)x
ε (v̂R(ξ)− ûR(ξ)g−(εξ))

 , for x > 0; (2.66)

and

Û ε(x, ξ) =
1

g+(ξ)− g−(ξ)


 1

g+(ξ)

∫ x

−∞
eµ−(ξ)(x−y)(u0(y)− v0(y)g−(ξ))dy

+

 1

g−(ξ)

∫ 0

x

eµ+(ξ)(x−y)(u0(y)− v0(y)g+(ξ))dy

+

 1

g−(ξ)

 eµ+(ξ)x(−v̂L(ξ) + ûL(ξ)g+(ξ))

 , for x < 0. (2.67)

2.5.2 The stiff well-posedness

Due to the nonzero initial data, it is hard to estimate the L2 norm of the solution from

the expression (2.66)–(2.67). So we take a detour to look at the initial value problem with

initial data supported in the right (or left) half plane. For this initial value problem, one

can solve it by the Fourier Transform, thus avoid the difficulties caused by the Laplace

Transform. Without loss of generality, we consider x > 0 here. The x < 0 case is the

same. First we have the following lemma.
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Lemma 2.10. Assume U ε
IV P =

 uεIV P

vεIV P

 is the solution to


uεt + vεx = 0, (2.68a)

vεt + uεx = −1

ε
(vε − λuε), (2.68b)

uε(x, 0) = u0(x), vε(x, 0) = v0(x), (2.68c)

here u0 and v0 are supported in [0,∞). Then the solution, after the Laplace Transform,

is

Û ε
IV P (x, ξ) =

1

g+(εξ)−g−(εξ)


 1

g−(εξ)

∫ ∞
x

eµ+(εξ)x−y
ε (u0(y)−v0(y)g+(εξ)) dy

+

 1

g+(εξ)

∫ x

0

eµ−(εξ)x−y
ε (u0(y)−v0(y)g−(εξ)) dy

 , (2.69)

and the following inequality holds:∫ ∞
−∞

∫ ∞
−∞
|Û ε

IV P (x, ξ)|2dxdβ ≤ O(1)

∫ ∞
0

|U0(x)|2dx. (2.70)

Proof. First solution (2.69) is obtained in the same way as (2.66), so we will omit the

details. Then if the Fourier Transform w.r.t x is used instead of the Laplace Transform

w.r.t t in this case, one gets [103]∫ ∞
−∞
|U ε

IV P (x, t)|2dx ≤ O(1)

∫ ∞
0

|U0(x)|2dx, ∀t > 0. (2.71)

Integrating with respect to t gives∫ ∞
0

dt

∫ ∞
−∞
e−2αt|U ε

IV P (x, t)|2dx ≤ O(1)

∫ ∞
0

|U0(x)|2dx.

Then by Parseval’s identity (2.37), one can prove the inequality. For more details, see

[103].
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One also needs to estimate
∫∞

0
e−µ+(εξ) y

ε (u0(y)− v0(y)g+(εξ))dy and
∫ −∞

0
e−µ−(ξ)y

(u0(y)− v0(y)g−(ξ))dy which appear in (2.63) and (2.64) respectively. The estimates of

these two integrals are similar by using the energy estimate. So we only estimate the

first integral here.

Lemma 2.11. Let

ŵIBVP (εξ) =

∫ ∞
0

e−µ+(εξ) y
ε (u0(y)− v0(y)g+(εξ))dy, (2.72)

then ∫ ∞
−∞
|ŵIBVP (εξ)|2dβ ≤ O(1)

∫ ∞
0

|U0(x)|2dx. (2.73)

Proof. The idea of the proof follows that in [103]. We construct the following initial

boundary value problem on the right half plane x > 0. Later one can see that ŵIBVP (εξ)

can be expressed by the Laplace Transform of the boundary value of the following prob-

lem, thus can be bounded by the initial data. This is the key motivation of constructing

the following system: 

uεt + vεx = 0, (2.74a)

vεt + uεx = −1

ε
(vε − λuε), (2.74b)

uε(x, 0) = u0(x), vε(x, 0) = v0(x), (2.74c)

Buu
ε(0, t) +Bvv

ε(0, t) = 0. (2.74d)

Here Bu and Bv are two constants that satisfy the so-called Stiff Kreiss Condition (SKC)

[103]: Bu
Bv

/∈ [−1, λ+|λ|
2

]. The Laplace Transform of the solution to this system can be

written as:

Û ε
IBV P (x, ξ) = eµ+(εξ)x

ε Φ+(εξ)

[
Û ε
IBV P (0, ξ) +

∫ x

0

e−µ+(εξ) y
εA−1U0(y)dy

]
+eµ−(εξ)x

ε Φ−(εξ)

[
Û ε
IBV P (0, ξ)+

∫ x

0

e−µ−(εξ) y
εA−1U0(y)dy

]
, (2.75)
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where Û ε
IBVP (0, ξ) =

 ûεIBVP

v̂εIBVP

 satisfies


Buû

ε
IBVP (0, ξ) +Bvv̂

ε
IBVP (0, ξ) = 0, (2.76a)

Φ+(εξ)

(
Û ε
IBVP (0, ξ) +

∫ ∞
0

e−µ+(εξ) y
εA−1U0(y)dy

)
= 0. (2.76b)

From definition (2.72), the second condition (2.76b) can be written as

g+(εξ)ûεIBVP (0, ξ)− v̂εIBVP (0, ξ) = ŵIBVP (εξ),

thus

Û ε
IBVP (0, ξ) =

ŵIBVP (εξ)

Bu +Bvg+(εξ)

 Bv

−Bu

 . (2.77)

Now the energy estimate can be used to get the upper bound of
∫ T

0
|UIBVP (0, t)|2dt. Let

H =

 1 −λ

−λ 1

, multiply (2.74) by e−2αtUTH, and integrate over [0, T ] × [0,∞),

one has (here we omit the subscription and superscription for a while)

1

2

∫ ∞
0

(U,HU)(x, T )e−2αTdx+ α

∫ T

0

∫ ∞
0

(U,HU)(x, t)e−2αtdxdt

+
1

ε

∫ T

0

∫ ∞
0

(v − λu)2e−2αtdxdt+
1

2

∫ T

0

(λu2 − 2uv + λv2)(0, t)e−2αtdt

=
1

2

∫ ∞
0

(U0(x), HU0(x))dx.

One needs to choose the boundary condition such that λu(0, t)2 − 2u(0, t)v(0, t) +

λv(0, t)2 ≥ c|U(0, t)|2, where c is a bounded constant. Later we will show that this

kind of boundary condition exits and it is a subclass of SKC. Then one can get∫ T

0

|U ε
IBVP (0, t)|2e−2αtdt ≤ O(1)

∫ ∞
0

|U0(x)|2dx. (2.78)
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Let T →∞, then ∫ ∞
0

|U ε
IBVP (0, t)|2e−2αtdt ≤ O(1)

∫ ∞
0

|U0(x)|2dx. (2.79)

By Parseval’s identity and (2.77) (2.79), one obtains (2.73). As for the boundary condi-

tion, there are plenty of choices. Any Bu and Bv that satisfy

Bu

Bv

> −1

λ
(1−

√
1− λ2) or

Bu

Bv

< −1

λ
(1 +

√
1− λ2), for λ > 0,

−1

λ
(1−

√
1− λ2) <

Bu

Bv

< −1

λ
(1 +

√
1− λ2), for λ < 0,

Bu

Bv

> 0, for λ = 0,

will work, and it is not hard to see it is a subclass of the SKC.

Similarly, we have the following corollary.

Corollary 2.12. Let

ŵIBVP2(ξ) =

∫ −∞
0

e−µ−(ξ)y(u0(y)− v0(y)g−(ξ))dy, (2.80)

then ∫ ∞
−∞
|ŵIBVP2(ξ)|2dβ ≤ O(1)

∫ 0

−∞
|U0(x)|2dx. (2.81)

Now we go back to the proof of Theorem 2.3 of the stiff well-posedness with nonzero

initial data and when the problem is set in (−∞,∞) instead of [−L,L].

Proof. When x > 0, from the solution (2.66) one gets∫ ∞
0

dx

∫ ∞
−∞
|Û ε(x, ξ)|2dβ ≤

∫ ∞
0

dx

∫ ∞
−∞
|Û ε

IV P |2dβ

+

∫ ∞
0

dx

∫ ∞
−∞

∣∣∣∣∣∣∣
 1

g+(εξ)

 eµ−(εξ)x
ε (vR − g−(εξ)uR)

∣∣∣∣∣∣∣
2

1

|g+(εξ)− g−(εξ)|2
dβ

= I1 + I2. (2.82)
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By (2.70) I1 can be estimated as:

I1 ≤ O(1)

∫ ∞
0

|U0(x)|2dx. (2.83)

As for I2, since 1
|g+(εξ)−g−(εξ)| is uniformly bounded, one has

I2 ≤ O(1)

∫ ∞
0

dx

∫ ∞
−∞

e2Reµ−(εξ)x
ε

[
|vR|2 +O(1)|uR|2

]
dβ.

Then by (2.63), (2.64), (2.72) and (2.80), one obtains:

g+(εξ)uR − vR = ŵIBVP ,

−g−(ξ)uR − vR = ŵIBVP2.

Thus uR = O(1)ŵIBVP (εξ) + O(1)ŵIBVP2(ξ), vR = O(1)ŵIBVP (εξ) + O(1)ŵIBVP2(ξ). Fi-

nally by Lemma 2.11 and Corollary 2.12,

I2 ≤ −O(1)
ε

2Reµ−(εξ)

∫ ∞
−∞
|U0(x)|2dx. (2.84)

Then by (2.33) (2.34), one sees that
∫∞

0
dx
∫∞
−∞ |Û

ε(x, ξ)|2dβ is uniformly bounded. In

the same way, one can prove∫ 0

−∞
dx

∫ ∞
−∞
|Û ε(x, ξ)|2dβ ≤ O(1)

∫ ∞
−∞
|U0(x)|2dx. (2.85)

Till now we have proved the stiff well-posedness of the original system stated in Theorem

2.3.

2.5.3 The asymptotic convergence and error estimates

Next we will prove the asymptotic convergence and error estimates. The first step is

still using the Laplace Transform to represent the exact solution. We will consider the
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case λ < 0 first. Consider the domain decomposition system (2.12)–(2.13) with L =∞.

The case when L is finite is the same but with two more extra terms coming from the

boundary which can be analyzed in the same way as follows.

First in comparing the solution to the domain decomposition system (2.12)–(2.13)

with the original system (2.1), in order to avoid the difficulties caused by the Laplace

Transform, we need the help of the following lemma, which compares the initial value

problem (2.68) with its reduced system:u0
t + λu0

x = 0, (2.86a)

u0(x, 0) = u0(x). (2.86b)

Here we assume u0(x) is supported on [0,∞).

Lemma 2.13. Let U ε
IV P and U0

IV P be the solution of relaxation problem (2.68) and

equilibrium problem (2.86) respectively, then∫ ∞
0

dx

∫ ∞
−∞
|Û ε

IV P − Û0
IV P |2dβ ≤ O(1)ε2||U0||2H2 +O(1)ε||v0 − λu0||2L2[0,∞). (2.87)

Proof. The proof is based on the Fourier Transform, and one can refer to [103] for

details.

Now we are ready to prove Theorem 2.4 about the asymptotic convergence of the

domain decomposition system.

Proof. When x > 0, the solution is ur(x, t) = u0(x− λt). After the Laplace Transform,

one gets:

ûr(x, ξ) = −1

λ

∫ ∞
x

u0(y)e−
ξ
λ

(x−y)dy, (2.88)

v̂r = λûr. (2.89)
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For x < 0, the solution to (2.13) can be represented as

Û l(x, ξ) = eµ+(ξ)xΦ+(ξ)(D̂(ξ) +

∫ x

0

e−µ+(ξ)yA−1U0(y)dy)

+eµ−(ξ)xΦ−(ξ)(D̂(ξ) +

∫ x

0

e−µ−(ξ)yA−1U0(y)dy). (2.90)

Here D̂(ξ) =

 D̂u(ξ)

D̂v(ξ)

 is determined by:

(−g−(ξ) 1)

 D̂u(ξ)

D̂v(ξ)

+

∫ −∞
0

e−µ−(ξ)y(−g−(ξ) 1)

 v0

u0

 (y)dy = 0,

1

g+(ξ)−g−(ξ)

[
(D̂u(ξ)g+(ξ)−D̂v(ξ))g−(ξ)+(D̂v(ξ)−D̂u(ξ)g−(ξ))g+(ξ)

]
=−
∫ ∞

0

u0(y)e
ξ
λ
ydy,

where the second equation is simplified as

D̂v(ξ) = −
∫ ∞

0

u0(y)e
ξ
λ
ydy. (2.91)

Now one can compare the difference of (2.88) and (2.66) on the right domain. Since

the solution to (2.86) is (2.88), and part of (2.66) is (2.69), one has∫ ∞
0

dx

∫ ∞
−∞
|ûε − ûr|2dβ ≤

∫ ∞
0

dx

∫ ∞
−∞
|ûεIV P − û0

IV P |2dβ

+

∫ ∞
0

dx

∫ ∞
−∞

∣∣∣∣ 1

g+(εξ)− g−(εξ)

∣∣∣∣2 (1 + |g+(εξ)|2)|eµ−(εξ)x
ε (v̂R(ξ)− g−(εξ)ûR(ξ))|2dβ

= I1 + I2,

I1 ≤ O(1)ε2||U0||2H2 +O(1)ε||v0 − λu0||2L2[0,∞), (2.92)

I2 ≤ O(1)

∫ ∞
0

e2Reµ−(εξ)x
ε dx

∫ ∞
−∞
|v̂R(ξ)− g−(εξ)ûR(ξ)|2dβ ≤ O(1)ε||U0||2L2 . (2.93)

The calculation of the last inequality is the same as (2.84). Notice here that the term

that contains e2Reµ−(εξ)x
ε is due to the interface layer, since the initial data can induce

an interface layer at the interface in this case.
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Now compare the solution on the left domain, (2.90) with (2.62). The difference

comes from the difference in coefficients, thus∫ 0

−∞
dx

∫ ∞
−∞
|Û l − Û ε|2dβ

≤ O(1)

∫ 0

−∞
dx

∫ ∞
−∞
|eµ+(ξ)x|2(1 + |g−(ξ)|2)[g+(ξ)(D̂u − ûL)− (D̂v − v̂L)]2dβ

+

∫ 0

−∞
dx

∫ ∞
−∞
|eµ−(ξ)x|2(1 + |g+(ξ)|2)[−g−(ξ)(D̂u − ûL) + (D̂v − v̂L)]2dβ.

By boundary conditions (2.64) and (2.91), the second term vanishes, so∫ 0

−∞
dx

∫ ∞
−∞
|Û l − Û ε|2dβ ≤ O(1)

∫ 0

−∞
dx

∫ ∞
−∞
e2Reµ+(ξ)x(|D̂u − ûL|2 + |D̂v − v̂L|2)dβ.

Next compare the parameters derived in the original system (2.63)–(2.65) with those of

the domain decomposition method (2.91) (2.91), one gets∫ 0

−∞
dx

∫ ∞
−∞
|Û l−Û ε|2dβ = O(1)

∫ ∞
−∞

(|D̂u − ûL|2 + |D̂v − v̂L|2)dβ

= O(1)

∫ ∞
−∞
|D̂v − v̂L|2dβ

= O(1)

∫ ∞
−∞

∣∣∣∣∣−
∫ ∞

0

e
ξ
λ
yu0(y)dy −

−ŵIBVP + g+(εξ)
g−(ξ)

ŵIBVP2

1− g+(εξ)
g−(ξ)

∣∣∣∣∣
2

dβ

≤ O(1)

∫ ∞
−∞

∣∣∣∣∫ ∞
0

(u0(y)−v0(y)g+(εξ))e−µ+(εξ) y
ε dy−

∫ ∞
0

u0(y)e
ξ
λ
ydy

∣∣∣∣2 dβ
+O(1)

∫ ∞
−∞

∣∣∣∣g+(εξ)

∫ −∞
0

(u0(y)− v0(y)g−(ξ))e−µ−(ξ)ydy

∣∣∣∣2 dβ
+O(1)

∫ ∞
−∞

∣∣∣∣g+(εξ)

∫ ∞
0

u0(y)e
ξ
λ
ydy

∣∣∣∣2 dβ
= J1 + J2 + J3.

We begin with the simplest part J3. First note that g(εξ) is uniformly bounded (see

Lemma 2.7), and
∫∞

0
u0(y)e

ξ
λ
ydy can be considered as Laplace transform of u0(y), so

by Parseval’s identity, the integral
∫∞
−∞

∣∣∣∫∞0 u0(y)e
ξ
λ
ydy
∣∣∣2 dβ is uniformly bounded, then
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by dominated convergence theorem, J3 → 0 as ε → 0. Moreover, since when λ < 0,

g+(εξ) = O(1)εξ, thus

J3 ≤ O(1)ε2
∫ ∞
−∞

∣∣∣∣ξ ∫ ∞
0

u0(y)e
ξ
λ
ydy

∣∣∣∣2 dβ.
If the compatibility condition on u0(y) is assumed such that u0(0) = 0,

∫∞
0
ξu0(y)e

ξ
λ
ydy

can be considered as the Laplace transform to u′0(y), so

J3 ≤ O(1)ε2
∫ ∞
−∞
|L(u′0(y))(ξ)|2dβ ≤ O(1)ε2

∫ ∞
0

|u′0(y)|2dy. (2.94)

Next we look at J2. Similar to J3, one will first get

J2 ≤ O(1)ε2
∫ ∞
−∞

∣∣∣∣ξ ∫ −∞
0

(u0(y)− v0(y)g−(ξ))e−µ−(ξ)ydy

∣∣∣∣2 dβ.
By recalling (2.80) and integration by parts, one gets

ŵIBVP2 = − 1

µ−(ξ)

∫ −∞
0

e−µ−(ξ)y(−u′0 + g−(ξ)v′0)dy, (2.95)

where the compatibility conditions u0(0) = 0 and v0(0) = 0 are used. Since −µ−(ξ) =

µ+(ξ)− 2λ, one has

(µ+(ξ)− 2λ)ŵIBVP2 =

∫ −∞
0

e−µ−(ξ)y(−u′0 + g−(ξ)v′0)dy.

Notice when λ < 0, µ+(ξ) = − ξ
g−(ξ)

, thus

−ξŵIBVP2 = 2λg−(ξ)ŵIBVP2 + g−(ξ)

∫ −∞
0

(−u′0(y) + g−(ξ)v′0(y))dy.

Therefore, the following estimate holds:∫ ∞
−∞
|ξŵIBVP2|2dβ ≤ O(1)

∫ ∞
−∞

∣∣∣∣∫ −∞
0

e−µ−(ξ)y(u′0−g−(ξ)v′0)(y)dy

∣∣∣∣2dβ+O(1)

∫ ∞
−∞
|ŵIBVP2(ξ)|2dβ.

(2.96)
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The integral with respect to y on the right hand side is similar to ŵIBV P2 in (2.80),

except to change u0 and v0 to u′0 and v′0 respectively. So one has∫ ∞
−∞
|ξŵIBVP2|2dβ ≤ O(1)

∫ ∞
0

|U ′0(x)|2dx+O(1)

∫ ∞
0

|U0(x)|2dx. (2.97)

Therefore,

J2 ≤ O(1)ε2
∫ ∞

0

|U ′0(x)|2dx. (2.98)

Now we turn to J1. First using g+(εξ) ∼ O(1)εξ gives

J1 ≤ O(1)

∫ ∞
−∞
ε2
∣∣∣∣ξ ∫ ∞

0

v0e
−µ+(εξ) y

ε dy

∣∣∣∣2 dβ +O(1)

∫ ∞
−∞

∣∣∣∣∫ ∞
0

u0(y)(e−µ+(εξ) y
ε − e

ξ
λ
y)dy

∣∣∣∣2 dβ.
(2.99)

Notice in (2.72) if one exchanges u0 and v0 and let u0 ≡ 0, then use (2.72) (2.96), and

similar to (2.97), one will get:∫ ∞
−∞

∣∣∣∣ξ ∫ ∞
0

v0e
−µ+(εξ) y

ε dy

∣∣∣∣2 dβ ≤ O(1)

∫ ∞
0

|v′0(x)|2dx. (2.100)

On the other hand, for the term
∫∞
−∞

∣∣∣∫∞0 u0(y)(e−µ+(εξ) y
ε − e ξλy)dy

∣∣∣2 dβ, integration by

parts w.r.t. y three times, and assume the compatibility conditions u0(0) = u′0(0) =

u
′′
0(0), it becomes∫ ∞

−∞

∣∣∣∣∫ ∞
0

u0(y)(e−µ+(εξ) y
ε − e

ξ
λ
y)dy

∣∣∣∣2 dβ
=

∫ ∞
−∞

∣∣∣∣∣
(
e
ξ
λ
y

(
λ

ξ

)3

− e−
µ+(εξ)

ε

(
− ε

µ+(εξ)

)3
)
u
′′′

0 (y)dy

∣∣∣∣∣
2

dβ

=

∫ ∞
−∞

∣∣∣∣∣
∫ ∞

0

(
e
ξ
λ
y

(
λ

ξ

)3

− e
ξ
λ
y

(
−ε

µ+(εξ)

)3

+ e
ξ
λ
y

(
−ε

µ+(εξ)

)3

− e−
µ+(εξ)

ε

(
−ε

µ+(εξ)

)3
)
u
′′′

0 (y)dy

∣∣∣∣∣
2

dβ

≤
∫ ∞
−∞

∣∣∣∣∣
((
λ

ξ

)3

−
(
−ε

µ+(εξ)

)3
)∫ ∞

0

e
ξ
λ
yu
′′′

0 (y)dy

∣∣∣∣∣
2

dβ+

∫ ∞
−∞

∣∣∣∣∣
(

ε

µ+(εξ)

)3∫ ∞
0

(e
ξ
λ
y− e−µ+(εξ) y

ε )u
′′′

0 (y)dy

∣∣∣∣∣
2

dβ

= L1 + L2
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For L1, notice that

λ

ξ
− ε

µ+(εξ)
=

2λεξ + λ+
√
λ2 + 4εξ(1 + εξ)

2ξ(1 + εξ)
=

λε

1 + εξ
+

ε

λ−
√
λ2 + 4εξ(1 + εξ)

= O(1)ε

by Lemma 2.6, and

ε

µ+(εξ)
= − 1

ξg−(εξ)
= O(1)

1

ξ
, (2.101)

by Lemma 2.7, one can estimate L1 as

L1 ≤ O(1)ε2
∫ ∞
−∞

∣∣∣∣1ξ
∫ ∞

0

u
′′′

0 (y)e
ξ
λdy

∣∣∣∣2 dβ ≤ O(1)ε2 ‖u′′′0 ‖L2 . (2.102)

In term L2, use Cauchy-Schwartz inequality for integral w.r.t. y, one obtains

L2 ≤ O(1)

∫ ∞
−∞

∣∣∣∣1ξ
∣∣∣∣6 ∫ ∞

0

∣∣∣e−µ+(εξ) y
ε − e

ξ
λ
y
∣∣∣2 dy ∫ ∞

0

|u′′′0 (y)|2dydβ

≤ O(1) ‖u′′′0 ‖L2

∫ ∞
−∞

ε2
∣∣∣∣1ξ
∣∣∣∣2 dβ ‖u′′′0 ‖L2= O(1)ε2, (2.103)

where the second inequality using the fact in (2.43) and (2.45). Therefore, one arrives

at the estimation for J3:

J3 ≤ O(1)ε2||u0(y)||2H3 +O(1)ε2||v0(y)||2H1 , (2.104)

In summary,∫ ∞
−∞
dx

∫ ∞
−∞
|Û ε− Û |2dβ ≤ O(1)ε||v0−λu0||2L2 +O(1)ε||U0||2L2[0,∞) +O(1)ε2||U0||2H3 . (2.105)

The case with λ > 0 is rather similar, but there is no interface layer at x = 0, so one

will find the term that contains ||U0||2L2 will have a convergence rate O(1)ε2 instead of

O(1)ε.
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2.6 Domain-decomposition based numerical schemes

and numerical experiments

We use ∆t and ∆x to represent the time step and mesh size respectively, unj to denote

u at time n∆t and position j∆x. Let M = T/∆t, and N = L/∆x. We use the upwind

scheme to the Riemann invariants u ± v to solve the left part (2.13) or (2.14), and use

the Godunov scheme to solve the equilibrium equation in (2.12) or (2.15).

2.6.1 The numerical scheme

Case I: f ′(un0 ) < 0, ∀n ≥ 0

• Step 1. Discretization of (2.12) on the right domain.

For j = 0, 1, ..., N , n = 0, 1, ...,M , solve

un+1
j − unj

∆t
+
F n
j+ 1

2

− F n
j− 1

2

∆x
= 0, (2.106)

vn+1
j = f(un+1

j ), (2.107)

u0
j = u0(xj), v0

j = v0(xj), (2.108)

unN = bR(tn); (2.109)

where F n
j+ 1

2

= f(R(0, unj , u
n
j+1)), F n

j− 1
2

= f(R(0, unj−1, u
n
j )), and R(0, ζ, η), the
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Riemann solver, is defined as:

R(0, ζ, η) =



ζ, if f ′(ζ), f ′(η) ≤ 0,

η, if f ′(ζ), f ′(η) ≥ 0,

ζ, if f ′(ζ) > 0 > f ′(η), s > 0,

η, if f ′(ζ) > 0 > f ′(η), s < 0,

f ′−1(0), otherwise.

where s = f(ζ)−f(η)
ζ−η is the shock speed.

• Step 2. Discretization of (2.13) on the left domain.

For j = −N, ...,−1, 0, n = 0, 1, ...,M , let the Riemann invariants P n
j = unj +

vnj , Q
n
j = unj − vnj , and solve

P n+1
j − P n

j

∆t
+
P n
j − P n

j−1

∆x
= −(vnj − f(unj )), (2.110)

Qn+1
j −Qn

j

∆t
−
Qn
j+1 −Qn

j

∆x
= (vnj − f(unj )), (2.111)

P 0
j = u0(xj) + v0(xj), Q0

j = u0(xj)− v0(xj), (2.112)

un+1
−N = bL(tn+1), vn+1

0 obtained from right by (2.107). (2.113)

Case II: f ′(uno ) > 0, ∀n ≥ 0

• Step 1. Discretization of (2.14) on the left domain.

For j = −N, .... − 1, 0, n = 0, 1, ...,M , let the Riemann invariants P n
j = unj +

vnj , Q
n
j = unj − vnj , then solve
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P n+1
j − P n

j

∆t
+
P n
j − P n

j−1

∆x
= −(vnj − f(unj )), (2.114)

Qn+1
j −Qn

j

∆t
−
Qn
j+1 −Qn

j

∆x
= (vnj − f(unj )) (2.115)

P 0
j = u0(xj) + v0(xj), Q0

j = u0(xj)− v0(xj), (2.116)

un+1
−N = bL(tn+1), (2.117)

P n+1
0 = un+1

0 + f(un+1
0 ); (2.118)

• Step 2. Discretization of (2.12) on the left domain.

For j = 1, ..., N , n = 0, 1, ...,M , solve

un+1
j − unj

∆t
+
F n
j+ 1

2

− F n
j− 1

2

∆x
= 0, (2.119)

u0
j = u0(xj), v0

j = v0(xj), (2.120)

uN+1
0 obtained from left, (2.121)

where F n
j+ 1

2

and F n
j− 1

2

are defined as in Case I. To solve for un+1
0 , since (2.114)

is an explicit scheme for P n+1, we first use it to get P n+1
0 , and then use Newton

iteration for (2.118) to get un+1
0 .

2.6.2 Coupling of multiple regions

The previous method for two regions can be easily extended to three or more regions

with different scales. For example, consider the coupling that consists of equilibrium

(where ε(x) is small) region on the left, relaxation (where ε(x) is of O(1)) in the middle,

and equilibrium region on the right, that is,

ε(x) = ε, x ∈ [−L, x1); ε(x) = 1, x ∈ [x1, x2); ε(x) = ε, x ∈ [x2, L],
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where x1 < x2. Consider the case f ′(u(x1, t)) < 0 and f ′(u(x2, t)) > 0 for t ≤ T . The

other cases can be treated similarly. Our algorithm will solve the middle region [x1, x2)

first with interface condition v = f(u) at x1 and x2, and then solve the left and right

regions. To be more specific, one can follow the following steps.

• Step 1. For j = N1 + 1, ...N2, n = 0, 1, ...M that correspond to the middle

region [x1, x2), solve the equations (2.114)–(2.116) for Riemann invariants P n
j =

unj + vnj , Q
n
j = unj − vnj with boundary conditions at x1 and x2 respectively given

by

P n+1
N1+1 = un+1

N1+1 + f(un+1
N1+1); P n+1

N2
= un+1

N2
+ f(un+1

N2
). (2.122)

Notice here one needs to use Newton’s iteration at both boundary points to get

un+1
N1+1 and un+1

N2
from P n+1

N1+1 and P n+1
N2

respectively using (2.122).

• Step 2. For j = 0, ...N1, n = 0, 1, ...M , one is in the left region [−L, x1), solve

(2.106) and (2.108) with boundary value un+1
N1+1 got from the previous step.

• Step 3. For j = N2 + 1, ...N , n = 0, 1, ...M , solve (2.119) and (2.120) with the

boundary value un+1
N2

obtained from step 1.

In summary, near the interface, if there is a boundary layer in the equilibrium region,

then solve the equilibrium equation first and then pass on to the relaxation regions

through the value of v; on the other hand, if there is no boundary layer, then one can

always take v = f(u) as the interface condition and solve the relaxation region first. In

any situation, the system can be completely decoupled in different regions, and one can

always find an appropriate order to solve them.
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2.6.3 More general cases

• If f ′(u) changes sign at interface, one can check the sign of f ′(u) at the current

time step, and then use either (2.106)-(2.113) or (2.114)-(2.121) to continue to the

next step.

• If ε also depends on t, so the interface may be dynamic, then one needs to adap-

tively adjust the interface location (see for example [27]) and then use the domain

decomposition method.

• In higher space dimension, if the interface is a curve or surface, we simply use the

Cartesian grids and extend the 1d method to higher dimensions using dimension-

by-dimension technique. This will result a first order error due to the grid effect.

A more sophisticated method would use an interface aligned mesh or immersed

interface method [70]. We will not elaborate on this since it is out of the scope of

the paper.

2.6.4 Numerical examples

The first two examples are given to validate our domain decomposition system numeri-

cally. Therefore we focus on the behavior of l1 error with a changing ε (we only change

ε for x > 0, while for x < 0, let ε = 1). Here we use ∆x = 10−3, ∆t = 2.5 × 10−4 in

the regime ∆x, ∆t � ε, and run the algorithm to T = 0.2. We change ε from 0.05 to

0.0025, then calculate the error

Ul1 = max
0≤n≤M

N∑
j=0

|(uε)nj − unj |∆x, Vl1 = max
0≤n≤M

N∑
j=0

|(vε)nj − vnj |∆x.

Here (uε)nj and (vε)nj are obtained by directly solving the original system (2.1)–(2.5).
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Example 2.1. Let f(uε) = 1
4
(e−u

ε − 1) in (2.1), with initial condition uε(x, 0) =

sin(πx)3, and boundary condition u(−1, t) = u(1, t) = 0. In this case, f ′(u) < 0, so

there will be an interface layer at the interface x = 0. The left picture in Figure 1 gives

the log(error) versus log(ε). One can see that the convergence rate is O(ε).

Example 2.2. Now we consider the case f ′(u) > 0. Let f(uε) = 1
4
(eu

ε − 1), initial

condition uε(x, 0) = sin(πx)3, and boundary condition u(−1, t) = u(1, t) = 0. Still one

sees that the convergence rate is O(ε), as shown in the right picture in Figure 1.

Figure 1: Convergence rate for Example 2.1 when there is a boundary layer at the
interface and for Example 2.2 when there is no boundary layer at the interface.

Next we will compare our domain decomposition method using the underresolved

mesh with the original relaxation system. Let ε = 0.002 be fixed for x > 0. The

relaxation system is solved by fine mesh (∆x, ∆t� ε) to serve as the reference solution

to (2.1)–(2.5), which are referred to as “analytical” solutions in the Figures 2 and 3.

Example 2.3. The set up is the same as example 2.1. The solutions are plotted at

T = 0.5. In this case, there is an interface layer in u at x = 0, as one can see from Figure

2. In comparison, one can see that the relaxation system solved with a relatively large

mesh size (∆x, ∆t � ε), referred to as “under-relax” in Figures 2 and 3, gives poor



50

results at the interface which results in larger numerical errors away from the interface.

The error becomes smaller if the mesh size is reduced (yet still underresolved). On the

other hand, the domain decomposition method gives more accurate approximation even

when the mesh size is large (∆x, ∆t� ε).

Figure 2: Example 2.3. We use ∆x = 0.04, ∆t = 0.02 (left), and ∆x = 0.01, ∆t = 0.005
(right).

Example 2.4. The set up is the same as example 2.2. The results at T = 0.6 are

plotted in Figure 3. Similar to example 2.3, one can find that the relaxation system is

better approximated with the decreasing of the mesh size, while the domain decompo-

sition method gives good approximation even with the large mesh size compared to ε.

Example 2.5. Let f(uε) be the same as in example 2.2, but consider the Riemann

initial data:

uε(x, 0) =

 −1, if −1 ≤ x ≤ −0.2;

1, if −0.2 < x ≤ 1.

In this case a contact discontinuity formed at the left hand side will propagate across

the interface to the right. Let ∆x = 0.02, ∆t = 0.01. From Figure 4, one will see
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Figure 3: Example 2.4. We use ∆x = 0.04, ∆t = 0.02 (left), and ∆x = 0.01, ∆t = 0.005
(right).

that, before the contact discontinuity passes through the interface, there is not much

difference between the under-resolved solution of the relaxation system and the domain

decomposition solution, but after that the domain decomposition method has an obvious

advantage in producing more accurate results. The results are given at different times

to show the dynamics of the solution.

Example 2.6. Let f(uε) be the same as in example 2.1, and consider the following

Riemann initial data:

uε(x, 0) =

 1, if −1 ≤ x ≤ 0.2;

−1, if 0.2 < x ≤ 1.

Here we use ∆x = 0.02 and ∆t = 0.01. In this case, a shock forms at the right region and

propagates to the left region. From Figure 5, one can see that, when the shock crosses

the interface, the domain decomposition method gives spurious solution at the interface.

This is because our interface layer analysis assumes that the solution is smooth, yet here

the interaction between the interface layer and shock complicates the problem, thus our

domain decomposition system may not be valid here.
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Figure 4: Example 2.5, a contact discontinuity passing through the interface.

Example 2.7. Let f(uε) be the same as in example 2.1, and consider the following

Riemann initial data:

uε(x, 0) =

 −1, if −1 ≤ x ≤ 0.2;

1, if 0.2 < x ≤ 1.

With this initial data, a rarefaction wave forms in the right region, and propagates across

the interface to the left. We still let ∆x = 0.02 and ∆t = 0.01, and the solutions are

plotted at different times in Figure 6. One can see that, unlike a shock, the domain

decomposition method gives a good approximation when the rarefaction wave crosses

the interface.
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Figure 5: Example 2.6, a shock from the right region passing through the interface.

2.7 Concluding remarks

In this chapter, a domain decomposition method is presented and analyzed on a semilin-

ear hyperbolic system with multiple relaxation times. In the region where the relaxation

time is small, an asymptotic equilibrium equation is used for computational efficiency

which is coupled with the original relaxation system on the other part of the region

through an interface condition. A rigorous analysis establishes the well-posedness and

error estimate in terms of the relaxation time on this domain decomposition method,

and numerical results are presented to study the performance of this method.

This is a prototype model for the more general coupling of kinetic and hydrodynamic

equations which are competitive multiscale computational methods using multi-physics,

thus a deep mathematical understanding of this simpler model problem will shed light

on the more general physical problems.
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Figure 6: Example 2.7, rarefaction wave

There are still remaining problems to be studied. Among them we mention the prob-

lem of shock passing through the interface, nonlinear hyperbolic systems with relaxation,

and the error estimate on the numerical schemes based on such a domain decomposition

method.
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Chapter 3

Asymptotic convergence of a

hyperbolic relaxation system to a

domain decomposition system: the

nonlinear case

3.1 Introduction

In this chapter, we would like to extend the the asymptotic convergence result in the

last chapter to the nonlinear case. Recall the original two-scale hyperbolic relaxation

system (2.1) uεt + vεx = 0, (3.1a)

vεt + a2uεx = −λ(x, ε)(vε − f(uε)), (3.1b)

where λ(ε, x) is the reciprocal of the relaxation time and takes the form

λ(x, ε) =

 1, x < 0,

1
ε
, x > 0, ε� 1.

(3.2)
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The initial data is assumed to be well-prepared

u0(x) ∈ L∞(R) ∩ BV(R), (3.3)

v0(x) = f(u0(x)) so that v0 ∈ L∞(R) ∩ BV(R), (3.4)

and the sub-characteristic condition is specified as follows [75]

a > M(N0), where N0 = max
(
‖u0 ‖L∞(R), ‖f(u0)‖L∞(R)

)
, (3.5)

M(N0) = sup
|ξ|≤B(N0)

|f ′(ξ)|, B(N0) = 2N0 + F (2N0),

F (N0) = sup
|ξ|<N0

|f(ξ)|.

We will show in this chapter that for general nonlinear flux f , the correct coupling

obtained at the limit of (3.1) is as follows.

∂tu+ ∂xv = 0, t > 0, x < 0 (3.6a)

∂tv + a2∂xu = f(u)− v, (3.6b)

u(0, x) = u0(x), v(0, x) = v0(x), (3.6c)

u(t, 0−) = U(t, 0), v(t, 0−) = v(t, 0+) (3.6d)

a2 d

dy
U(t, y) = f(U(t, y))− v(t, 0−), y > 0 (3.7a)

U(t, 0) = u(t, 0−) (3.7b)



∂tu+ ∂xf(u) = 0, t > 0, x > 0 (3.8a)

v(t, x) = f(u(t, x)), (3.8b)

u(0, x) = u0(x), (3.8c)

u(t, 0+)
BLN
:= u(t, 0−) (3.8d)
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where (3.8d) is in the sense of the well-known Bardos-Lerous-Nédélec condition

sgn
(
u(t, 0+)− u(t, 0−)

)(
f(u(t, 0+))−f(k)

)
≤ 0, for all k between u(t, 0−) and u(t, 0+).

(3.9)

Here U is the inner solution defined in (3.73). Notice that the limit system verifies the

equality of the flux at the interface

v(t, 0−) = v(t, 0+) = f(u(t, 0+)). (3.10)

As already pointed out in the last chapter, the naive connection in u(t, 0−) = u(t, 0+)

is not correct in the case when there is an interface layer, therefore (3.8d) is needed.

In fact, (3.6d) and (3.8d) are nothing but an extension of (2.13e), (2.14e) and (2.15d)

to a more general flux. Namely, when there is no shock sticking to the interface, i.e.,

u(t, 0+) = U(t,+∞), then

• if f ′(U(t,+∞)) = f ′(u(t, 0+)) > 0, then (3.7) only has trivial solution, therefore

u(t, 0−) = u(t, 0+), which implies v(t, 0−) = f(u(t, 0+)) = f(u(t, 0−)), the one that

has been used in (2.14e);

• if f ′(U(t,+∞)) = f ′(u(t, 0+)) ≤ 0, then (3.7) has non trivial but strictly monotone

solution U , and we only need v(t, 0+) = v(t, 0−) as a connection between (3.6) and

(3.8), the same as in (2.13e). And moreover, the difference between u(t, 0+) and

u(t, 0−) satisfies (3.9).

It is also important to point out that there is no need to explicitly solve the inner

problem, as observed in [55] and also [96] on the coupling of kinetic and fluid equations.

We will assume throughout the chapter that the flux function f ∈ C1(R) with f(0) = 0,

and no genuine nonlinearity is needed.
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The rest of the chapter is organized as follows. In the next section, we will establish

the well-posedness of the original two-scale hyperbolic system (3.1) as well as a priori

estimates for the solution which make allows to pass rigorously to the limit. Then the

strong convergence to the unique entropy weak solution of (3.6) and (3.8) is obtained

in section 3.3. Section 3.4 is devoted to the derivation of the interface condition (3.6d)

and (3.8d) via matched asymptotic analysis. And in the end, some concluding remarks

are given in section 3.5.

3.2 Well-posedness of the original two-scale hyper-

bolic system

3.2.1 The regularized system

Existence and stability of the solution to the Cauchy problem (3.1)–(3.4) will rely on

a suitable regularization of the equations and the data. Let ρ(x) be a non-negative

symmetric kernel with

ρ ∈ C∞c (R), ρ ≥ 0, supp(ρ) ⊂ [−1, 1],

∫
R

ρ(x)dx = 1, (3.11)

and consider the sequence of mollifiers {ρδ}δ>0 generated by ρ

ρδ(x) =
1

δ
ρ
(x
δ

)
, x ∈ R.

The discontinuous relaxation coefficient in (3.2) is given the following classical regular-

ization

Λ(x, ε, δ) = (ρδ ∗ λ(·, ε)) (x)
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with the property min(1, 1
ε
) ≤ Λ(x, ε, δ) ≤ max(1, 1

ε
). More precisely

Λ(x, ε, δ) =


1
ε
, x ≥ δ,

smooth transition, −δ < x < δ,

1, x ≤ −δ,

so that for any given fixed ε > 0, ‖Λ(·, ε, δ)−λ(·, ε)‖L1(R) stays uniformly bounded w.r.t.

δ > 0 with the following well-known property

lim
δ→0
‖Λ(·, ε, δ)− λ(·, ε)‖L1(R)= 0. (3.12)

The forthcoming analysis will heavily make use of (3.12) which we stress to hold for any

given fixed ε > 0. The main guideline is to recover uniform estimates in ε when sending

the regularization parameter δ to 0 while keeping ε fixed. The initial data is regularized

as follows. Consider a smooth function

ψ ∈ C∞c (R+), 0 ≤ ψ(y) ≤ 1, ψ(y) =

 1, 0 ≤ y ≤ 1,

0, y ≥ 2,
sup|ψ′(y)| ≤ 1, (3.13)

and define a sequence of smooth truncating functions {ψδ}δ>0 setting

ψδ(x) = ψ(δ|x|), x ∈ R.

The initial data u0 in (3.3) is smoothed and truncated according to

uδ0(x) = ψδ(x) (ρδ ∗ u0)(x)

so that uδ0 ∈ C∞c (R) for all δ > 0. Recall that (see Guisti [40] for a proof)

ρδ ∗ u0 → u0 in L1
loc(R) as δ goes to 0 with lim

δ→0+
TV(ρδ ∗ u0) ≤ TV(u0), (3.14)

so that we easily deduce from the properties of the truncation function stated in (3.13)

uδ0 → u0 in L1
loc(R) as δ → 0 with ‖uδ0 ‖L∞(R)≤‖u0 ‖L∞(R), (3.15)
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while

TV(uδ0) =‖∂xuδ0 ‖L1(R)≤‖ρδ ∗ u0 ‖L1(R) +TV(ρδ ∗ u0) ≤ ||u0||L∞(R) + TV (ρδ ∗ u0). (3.16)

Hence, the sequence {uδ0}δ>0 has uniformly bounded total variation and sup norm. The

initial data v0 is also regularized and truncated in a well-prepared manner

vδ0 = f(uδ0), with vδ0 uniformly bounded in L∞(R) ∩ BV(R).

In view of (3.15)–(3.16), we clearly have that vδ0 → v0 = f(u0) in L1
loc(R) as δ →

0. Equipped with these regularizations, we propose the following regularized Cauchy

problem ∂tu
ε,δ + ∂xv

ε,δ = 0, (3.17a)

∂tv
ε,δ + a2∂xu

ε,δ = −Λ(x, ε, δ)(vε,δ − f(uε,δ)), (3.17b)

with initial data

uε,δ(0, x) = uδ0(x), vε,δ(0, x) = f(uδ0(x)). (3.18)

The local existence theory for the smooth solution to Cauchy problem (3.17)–(3.18) is

classical, and we refer the reader to Protter-Weinberger [84] for instance for the following

result. To simplify the notations, we omit the superscripts ε and δ when these refer to

fixed parameters.

Theorem 3.1. Given initial data u0 and v0 in C1(R) that vanish outside the interval

[−M,M ] for M > 0, there exists a unique classical solution (u, v) to the Cauchy problem

(3.17) defined on a maximal time interval [0, Tc). If the maximal time Tc is finite, then

necessarily :

lim
t→Tc

sup
x∈R

(
|u(t, x)|+ |v(t, x)|

)
= +∞. (3.19)
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The solution (u, v) belongs to C1
(
[0, Tc) × R

)
and vanishes outside

⋃
t∈[0,Tc)

[−(M +

at),M + at].

Under the sub-characteristic condition (3.5), the global in time existence of the clas-

sical solution (uε,δ, vε,δ) of (3.17)–(3.18) for any given δ > 0 and ε > 0 is guaranteed by

the following result due to Natalini [75].

Proposition 1. Under the sub-characteristic condition (3.5), the classical solution (uε,δ, vε,δ)

of (3.17)–(3.18) is bounded in sup norm for all time, uniformly w.r.t. ε and δ with

|uε,δ(t, x)| ≤ B(N0), |vε,δ(t, x)| ≤ aB(N0), for (t, x) ∈ (0,∞)×R. (3.20)

The smooth non-homogeneity in the space variable x in the relaxation parameter

Λ(x, ε, δ) > 0 does not affect the proof given by Natalini [75], exactly the same steps

apply.

3.2.2 Existence and stability of the solution

The main results of this section ensures the existence and stability for the original Cauchy

problem (3.1)–(3.4).

Theorem 3.2. Given well-prepared initial data u0 and v0 satisfying the assumption

(3.3)-(3.4). Assume the sub-characteristic condition (3.5). Then for any given fixed

parameter ε > 0 and time T > 0, the sequence
{

(uε,δ, vε,δ)
}
δ>0

of classical solutions

of the regularized problem (3.17)-(3.18) converges as δ goes to zero to a unique weak

solution (uε, vε) of the Cauchy problem (3.1)–(3.4) in L∞
(
(0, T ), L1

loc(R)
)
. This weak

solution satisfies the following a priori estimates, for a real constant C > 0 independent
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of ε:

(i) ‖uε(t, ·)‖L∞(R)≤ B(N0), ‖vε(t, ·)‖L∞(R)≤ aB(N0), (3.21)

(ii) TV uε(t, ·) ≤ C, TV vε(t, ·) ≤ C, (3.22)

while for all compact set K ⊂ R

(iii)

∫
K

|uε(t2, x)− uε(t1, x)|dx ≤ C|t2 − t1|, 0 ≤ t1 ≤ t2 (3.23)∫
K

|vε(t2, x)− vε(t1, x)|dx ≤ C|t2 − t1|. (3.24)

The proof of this statement heavily relies on the use of the characteristic variables

r±(t, x) = a u(t, x)± v(t, x) (3.25)

where we temporarily skip the small parameters in the notations for simplicity. Equipped

with this customary change of variable, the relaxation system (3.1) or (3.17) are given

in the convenient diagonal form:∂tr− − a∂xr− = −Λ(x, ε, δ)G(r−, r+), (3.26a)

∂tr+ + a∂xr+ = Λ(x, ε, δ)G(r−, r+), (3.26b)

where

G(r−, r+) = f

(
r− + r+

2a

)
− r+ − r−

2
. (3.27)

At the corner stone of the analysis, the sub-characteristic condition (3.5) (see Katsoulakis-

Tzavaras [61], Natalini [75] for instance) makes the mapping G quasi-monotone in the

sense that

∂r−G(r−, r+) < 0, ∂r+G(r−, r+) > 0 (3.28)
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for any given pair (r−, r+) verifying |r−+r+|/2a < B(N0) so that |f ′((r−+r+)/2a))| < a

holds with a prescribed according to (3.5). In addition, there exists locally a unique C1

curve (r+, h(r+)) of equilibria, i.e. verifying

G(h(r+), r+) = 0 (3.29)

for all r+ in R such that |r+ + h(r+)|/2a < B(N0) so that (3.5) holds true. For all the

r+ under consideration,

h(r+) is strictly increasing, (3.30)

and we have h(0) = 0. It is worth observing that the (well-defined) unique solution l of

l + h(l) = 2ak for any given k with |k| < B(N0) verifies the identity l − h(l) = 2f(k).

Let us also recall the L1 contraction property which will be heavily used later on.

Given two classical solutions of the equations (3.26), then the differences r− − r̄− and

r+ − r̄+ obey, once respectively multiplied by sgn(r− − r̄−) and sgn(r+ − r̄+) :

∂t|r−− r̄−| − a∂x|r−− r̄−| = −Λ(x, ε, δ)
(
G(r−, r+)−G(r̄−, r̄+)

)
sgn(r−− r̄−),

∂t|r+− r̄+|+ a∂x|r+− r̄+| = +Λ(x, ε, δ)
(
G(r−, r+)−G(r̄−, r̄+)

)
sgn(r+− r̄+).

Thus adding these two identities gives

∂t
(
|r+ − r̄+|+ |r− − r̄−|

)
+ a∂x

(
|r+ − r̄+| − |r− − r̄−|

)
= Λ(x, ε, δ)

(
G(r−, r+)−G(r̄−, r̄+)

)(
sgn(r+− r̄+)− sgn(r−− r̄−)

)
≤ 0, (3.31)

thanks to the quasi-monotonicity property (3.28). A first consequence of these inequal-

ities is
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Proposition 2. Under the assumption of Theorem 3.2, the limit solution (uε, vε) satis-

fies for all ε > 0 the following entropy like inequalities expressed in terms of the charac-

teristic variables∫∫
R+
t ×R

[(
|rε+ − l|+ |rε− − h(l)|

)
∂tϕ+ a

(
|rε+ − l| − |rε− − h(l)|

)
∂xϕ

]
dtdx ≥ 0. (3.32)

for any given non negative test function ϕ in C1
c (R

+ × R) and all l in R such that

|l + h(l)|/2a < B(N0).

A second consequence is the following L1 contraction property (see also [61], [75]).

Proposition 3. Assume the sub-characteristic condition (3.5). Let (uε,δ, vε,δ) and (ūεδ, v̄εδ)

be two classical solutions of the equations (3.17) with initial data (uδ0, v
δ
0) and (ūδ0, v̄

δ
0),

that vanish outside the cone
⋃
t≥0[−(M + at), (M + at)]. Then for all time t > 0, the

associated characteristic variables obey the following inequality∫ M

−M

(
|rεδ+− r̄εδ+ |+|rεδ−− r̄εδ− |

)
(t, x)dx ≤

∫ M+at

−(M+at)

(
|(r+)δ0−(r̄+)δ0|+|(r−)δ0−(r̄−)δ0|

)
(x)dx.

(3.33)

In the case of a problem invariant by translation in x, the above L1 contraction

principle is well known to imply a uniform BV estimate for the solution to (3.17) as

long as the initial data (u0, v0) is chosen in BV (see [75] for instance). However, the

dependence of the relaxation coefficient Λ(x, ε, δ) in the space variable obviously prevents

the classical solution of the regularized equation (3.17) from being translation invariant in

x. Thus the expected uniform BV estimate can no longer be inferred from (3.33), neither

can it be derived from the direct differentiation w.r.t. x of the governing equations

(3.17) (see [92]) since in the limit δ → 0, ∂xΛ(x, ε, δ) concentrates in a Dirac mass at the

interface x = 0. Instead, we can take advantage of the invariance w.r.t. time variable of



65

the classical solutions of (3.17) and we prove hereafter that uniform BV estimates can

be inferred from it. The key estimates are gathered in the following statement.

Proposition 4. Under the assumption of Theorem 3.2, the classical solution (uε,δ, vε,δ)

of the regularized Cauchy problem (3.17)–(3.18) verifies, for any given ε > 0 and δ > 0,

(i) ‖uε,δ(t, ·)‖L∞(R)≤ B(N0), ‖vε,δ(t, ·)‖L∞(R)≤ aB(N0), (3.34)

(ii) ‖∂tuε,δ(t, ·)‖L1(R)≤ C, ‖∂tvε,δ(t, ·)‖L1(R)≤ C, (3.35)

(iii) TV vε(t, ·) ≤ C, (3.36)

(iv) TV {x<0}
(
uε,δ(t, ·)

)
≤ C

(
1+ ‖λ(·, ε)− Λ(·, ε, δ)‖L1(R)

)
, (3.37)

TV {x>0}
(
uε,δ(t, ·)

)
≤ C

(
1+ ‖λ(·, ε)− Λ(·, ε, δ)‖L1(R)

)
, (3.38)

for some constant C > 0 independent of ε and δ.

Proof. (i) (3.34) is nothing but the estimate (3.20) stated in Propositon 1.

(ii) Deriving the uniform L1 estimate for the time derivative of the classical solutions

(uε,δ, vε,δ) relies on differentiating system (3.17) w.r.t. time. Define

sε,δ− (t, x) = a∂tu
ε,δ(t, x)− ∂tvε,δ(t, x), (3.39)

sε,δ+ (t, x) = a∂tu
ε,δ(t, x) + ∂tv

ε,δ(t, x), (3.40)

then they solve the system∂ts
ε,δ
− − a∂xs

ε,δ
− = −Λ(x, ε, δ)R(sε,δ− , s

ε,δ
+ ), (3.41a)

∂ts
ε,δ
+ + a∂xs

ε,δ
+ = Λ(x, ε, δ)R(sε,δ− , s

ε,δ
+ ), (3.41b)

where

R(s−, s+) = f ′(u)
s− + s+

2a
− s+ − s−

2
, (3.42)
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again omitting the superscripts ε, δ for simplicity. Under the sub-characteristic condition

(3.5), R obeys the quasi-monotonicity property

∂s−R(s−, s+) < 0, ∂s+R(s−, s+) > 0 (3.43)

for any given ε > 0 and δ > 0. Similar steps to those used in the derivation of the L1

contraction principle from quasi-monotonicity yields∫
|x|<M

(
|sε,δ+ (t, x)|+ |sε,δ− (t, x)|

)
dx ≤

∫
|x|<M+at

(
|sε,δ+ (0, x)|+ |sε,δ− (0, x)|

)
dx (3.44)

for any given real number M > 0 so that the initial data sε,δ+ (0, x), sε,δ− (0, x) vanish for

all x with |x| ≥M . Next observe from the governing equations (3.17) expressed at time

t = 0 
∂tu

ε,δ(0, x) = − d

dx
vδ0(x), (3.45a)

∂tv
ε,δ(0, x) = −a2 d

dx
uδ0(x) + Λ(x, ε, δ)(f(uδ0)(x)− vδ0(x)), (3.45b)

then by the choice of the well-prepared initial data vδ0 = f(uδ0), we get

‖∂tuε,δ(0, ·)‖L1(R) ≤ ‖f ′(uδ0)‖L∞(R) TV(uδ0), (3.46)

‖∂tvε,δ(0, ·)‖L1(R) ≤ a2TV(uδ0) (3.47)

so as to infer the bound

max
(
‖sε,δ+ (0, ·)‖L1(R), ‖sε,δ− (0, ·)‖L1(R)

)
≤ a
(
‖f ′(uδ0)‖L∞(R) +a

)
TV(uδ0) ≤ C,

where C > 0 is independent of δ. We therefore deduce from the L1 contraction property

(3.44)

‖sε,δ− (t, ·)‖L1(R)≤ C, ‖sε,δ+ (t, ·)‖L1(R)≤ C.
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These uniform estimates clearly imply (3.35).

(iii) The expected BV estimate (3.36) of vε,δ immediately follows from the identity

∂xv
ε,δ(t, x) = −∂tuε,δ(t, x).

(iv) Let us now establish the next uniform BV estimate (3.38) in two steps. First define

ξε,δ(t, x) = f(uε,δ(t, x))− vε,δ(t, x), (3.48)

it clearly solves

∂tξ
ε,δ + Λ(x, ε, δ)ξε,δ = a2∂xu

ε,δ − f ′(uε,δ)∂xvε,δ. (3.49)

Now recast this equation as follows

∂tξ
ε,δ + λ(x, ε)ξε,δ = a2∂xu

ε,δ − f ′(uε,δ)∂xvε,δ + Θε,δ (3.50)

where by definition

Θε,δ(t, x) = (λ(x, ε)− Λ(x, ε, δ))(f(uε,δ)− vε,δ). (3.51)

Observe that∫
R

|Θε,δ(t, x)|dx ≤ ‖(f(uε,δ)− vε,δ)(t, .)‖L∞(R)‖λ(., ε)− Λ(., ε, δ)‖L1(R)

≤ C ‖λ(., ε)− Λ(., ε, δ)‖L1(R) (3.52)

for some constant C > 0 independent of ε and δ. Let us again emphasize that for any

given fixed ε > 0, the L1 distance ‖ λ(·, ε) − Λ(·, ε, δ) ‖L1(R) stays uniformly bounded

w.r.t. δ > 0 and in addition vanishes in the limit δ → 0 (see (3.12)). Now focusing on
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positive values of x so that λ(x, ε) = 1
ε
, we infer the pointwise in x inequality:

∂t

∫ t

0

e
s
ε |ξε,δ(s, x)|ds ≤ e

t
ε

{ ∣∣Θε,δ(t, x)
∣∣+ ‖f ′(uε,δ)(t, .)‖L∞(R)

∣∣∂xvε,δ(t, x)
∣∣ }

+a2e
t
ε

∣∣∂xuε,δ(t, x)
∣∣ , x > 0,

which implies once integrated in time

∣∣ξε,δ(t, x)
∣∣ ≤ e− tε |ξε,δ(0, x)|+

∫ t

0

e
s−t
ε

{
|Θε,δ(s, x)|+ ‖f ′(uε,δ)(s, .)‖L∞(R) |∂xvε,δ(s, x)|

}
ds

+a2

∫ t

0

e
s−t
ε

∣∣∂xuε,δ(s, x)
∣∣ ds, x > 0, (3.53)

where ξε,δ(0, x) = f(uε,δ(0, x))− vε,δ(0, x) = 0 since the initial data is well-prepared. We

next propose the following bootstrap argument. Rewrite the equation (3.17b) as follows

a2∂xu
ε,δ = −∂tvε,δ + λ(x, ε)(f(uε,δ)− vε,δ)−Θε,δ(x, t), (3.54)

with Θε,δ defined in (3.51). One easily infers the rough estimate∫ ∞
0

∣∣∂xuε,δ(t, x)
∣∣ dx ≤ 1

a2

∫ ∞
0

(
|∂tvε,δ|+ |Θε,δ|

)
(t, x)dx+

1

εa2

∫ ∞
0

|ξε,δ|(t, x)dx, (3.55)

valid for all time t > 0. Introduce

gε,δ(t) =

∫ ∞
0

∣∣∂xuε,δ(t, x)
∣∣ dx (3.56)

then plugging the estimate (3.53) in (3.55) yields

gε,δ(t) ≤ 1

a2
‖∂tvε,δ(t, .)‖L1(R) +

1

a2
‖Θε,δ(t, .)‖L1(R) +

1

ε

∫ t

0

e
s−t
ε gε,δ(s)ds

+
1

εa2

∫ t

0

e
s−t
ε

(
‖Θε,δ(s, ·)‖L1(R) +‖f ′(uε,δ(s, ·))‖L∞(R)‖∂xvε,δ(s, ·)‖L1(R)

)
ds.

Observe that the estimates (ii) and (3.52) ensure

‖∂tvε,δ(t, ·)‖L1(R) + ‖Θε,δ(t, ·)‖L1(R)≤ C
(

1+ ‖λ(·, ε)− Λ(·, ε, δ)‖L1(R)

)



69

where the constant C > 0 is independent of t, ε and δ. Similarly, one may infer the

estimate

1

ε

∫ t

0

e
s−t
ε

(
‖Θε,δ(s, ·)‖L1(R) +‖f ′(uε,δ(s, ·))‖L∞(R)‖∂xvε,δ(s, ·)‖L1(R)

)
ds

≤ C
(

1+ ‖λ(·, ε)− Λ(·, ε, δ)‖L1(R)

)(1

ε

∫ t

0

e
s−t
ε ds

)
≤ C

(
1+ ‖λ(·, ε)− Λ(·, ε, δ)‖L1(R)

)
. (3.57)

We thus arrive at

gε,δ(t) ≤ C
(

1+ ‖λ(·, ε)− Λ(·, ε, δ)‖L1(R)

)
+ 1

ε

∫ t
0
e
s−t
ε gε,δ(s)ds, (3.58)

which by the Gronwall’s inequality implies that for all time t > 0

TV{x>0}
(
uε,δ(t, ·)

)
= gε,δ(t) ≤ C

(
‖λ(·, ε)− Λ(·, ε, δ)‖L1(R) +1

)
e

1
ε

∫ t
0 e

s−t
ε ds, (3.59)

with 1
ε

∫ t
0
e
s−t
ε ds ≤ 1.

At last, we establish the estimate on the total variation of uε,δ in the left half line

{x < 0}. We proceed using similar steps to those developed above. Consider again the

equilibrium gap function ξε,δ defined in (3.48) and its governing equation (3.50). Now

consider negative values of x so that λ(x, ε) = 1 to get the analogue of (3.53) but for the

half line {x < 0} :

∣∣ξε,δ(t, x)
∣∣ ≤ e−t|ξε,δ(0, x)|+

∫ t

0

es−t
{
|Θε,δ(s, x)|+ ‖f ′(uε,δ)(s, .)‖L∞(R) |∂xvε,δ(s, x)|

}
ds

+a2

∫ t

0

es−t
∣∣∂xuε,δ(s, x)

∣∣ ds, x < 0, (3.60)

so that defining

gε,δ(t) =

∫ 0

−∞

∣∣∂xuε,δ(t, x)
∣∣ dx (3.61)
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yields again from (3.54) but expressed for negative values of x a similar estimate to

(3.58). The Gronwall’s inequality again gives the expected conclusion. Details are left

to the reader.

Now we are ready to prove the main theorem in this section.

Proof the Theorem 3.2. First observe from the estimates (iv) established in Proposition

4 that, for any given δ > 0

TVR

(
uε,δ(t, ·)

)
= TV{x<0}

(
uε,δ(t, ·)

)
+ TV{x>0}

(
uε,δ(t, ·)

)
+ |uε,δ(t, 0+)− uε,δ(t, 0−)|

≤ C
(
1+ ‖λ(·, ε)− Λ(·, ε, δ)‖L1(R)

)
, (3.62)

since uε,δ(t, 0−) = uε,δ(t, 0+), for some positive constant C independent of ε and δ. Now

let ε be fixed, the estimate (3.62) ensures that {uε,δ}δ>0 stays uniformly in BV(Rx) for

all time t ∈ (0, T ) with T > 0 given, while being uniformly bounded in sup-norm. The

well-known Helly’s Theorem asserts that for any given compact Kx in Rx, the canonical

embedding of L1(Kx) ∩ BV (Rx) is compact in L1(Kx). So let {sn}n∈N be a countable

dense subset of [0, T ]. For each time sk, a classical diagonal extraction procedure in space

gives the existence of an extracted subsequence, still labeled
{(
uε,δ(sk, ·), vε,δ(sk, ·)

)}
δ>0

which converges in L1
loc(Rx) to some limit (uε(sk, ·), vε(sk, ·)) with bounded sup-norm

as δ goes to 0. By another diagonal extraction procedure in time, we can assume that

the same subsequence
{

(uε,δ(sj, ·), vε,δ(sj, ·))
}
δ>0

converges to (uε(sj, ·), vε(sj, ·)) at each

time sj up to some relabeling. To reach any given time t ∈ (0, T ), we partition [0, T ]

into N subintervals (ti, ti+1) where ti are selected from the dense subset {sn}n∈N so that

|ti+1− ti| < η for given η > 0. Let us first show that {uε,δ(t, ·)}δ>0 is a Cauchy sequence

in L∞
(
(0, T ), L1

loc(R)
)
. Consider any given pair δ1, δ2 > 0, then for any t ∈ (0, T ), there
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exists ti such that |ti − t| ≤ η and we write

‖uε,δ2(t, ·)− uε,δ1(t, ·)‖L1
loc(Rx)

≤‖uε,δ2(t, ·)−uε,δ2(ti, ·)‖L1
loc(Rx)

+ ‖uε,δ2(ti, ·)−uε,δ1(ti, ·)‖L1
loc(Rx)

+ ‖uε,δ1(ti, ·)−uε,δ1(t, ·)‖L1
loc(Rx)

.

The term in the middle comes from a Cauchy sequence and goes to 0 as δ1, δ2 go to 0.

As for the first and third terms, observe that for any given K ⊂ R,∫
K

|uε,δ(t, x)− uε,δ(ti, x)|dx ≤
∫ t

ti

(∫
K

|∂tuε,δ(t, x)|dx
)
dt ≤ C|ti − t| ≤ Cη (3.63)

for some constant C > 0 independent of ε > 0 and of K in view of estimate (3.35). We

therefore get

‖uε,δ2(t, ·)− uε,δ1(t, ·)‖L1(R)≤ 2Cη+ ‖uε,δ2(ti, ·)− uε,δ1(ti, ·)‖L1(R) . (3.64)

Since η can be made arbitrarily small, this shows that {uε,δ(t, ·)}δ>0 is a uniform Cauchy

sequence in t ∈ (0, T ). The same arguments apply to the sequence {vε,δ(t, ·)}δ>0. Hence

we proved that there exists an extracted subsequence, denoted by
{(
uε,δ(t, ·), vε,δ(t, ·)

)}
δ>0

,

which is uniformly bounded in sup norm and which converges in L∞
(
(0, T ), L1

loc(R)
)

and

almost everywhere to some limit
(
uε(t, ·), vε(t, ·)

)
. Let us conclude by showing that all

extracted subsequences actually converge to the same limit which proves in turn unique-

ness. Start from the L1 contraction principle (3.33), one has for all time t ∈ (0, T ) and

M > 0∫ M

−M

(
|rε,δ+ − r̄

ε,δ
+ |+ |r

ε,δ
− − r̄

ε,δ
− |
)
(t, x)dx ≤

∫ M+at

−(M+at)

(
|(r+)δ0− (r̄+)δ0|+ |(r+)δ0− (r̄+)δ0|

)
(x)dx.

The above convergence results assert that there exists an extracted subsequence (rε,δ+ , rε,δ− )

(resp. (r̄ε,δ+ , r̄ε,δ− )) which converges to some limit (rε+, r
ε
−) (resp. (r̄ε+, r̄

ε
−)) in L∞((0, T ), L1

loc(Rx))
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as δ goes to 0. These limits are seen to satisfy∫ M

−M

(
|rε+ − r̄ε+|+ |rε− − r̄ε−|

)
(t, x)dx ≤

∫ M+at

−(M+at)

(
|r0

+ − r̄0
+|+ |r0

− − r̄0
−|
)
(x)dx,

which gives the expected uniqueness property. Let us now characterize the limit (uε, vε).

First observe from the inequality (3.31) that for any given non-negative test function

ϕ ∈ C1
c

(
(0,∞)×R

)
∫∫

R+
t ×R

[(
|rε,δ+ − r̄

ε,δ
+ |+ |r

ε,δ
− − r̄

ε,δ
− |
)
∂tϕ+ a

(
|rε,δ+ − r̄

ε,δ
+ | − |r

ε,δ
− − r̄

ε,δ
− |
)
∂xϕ

]
dtdx ≥ 0.

Let us now choose well-prepared initial data ū0 and v̄0 with compact support such that

(r̄+)δ0 = ψδ(x)l and (r̄−)δ0 = ψδ(x)h(l) for any given l ∈ R with |l + h(l)|/2a < B(N0).

Observe that uε(t, x) = l+h(l)
2a

, vε(t, x) = l−h(l)
2

trivially solve the Cauchy problem (3.1) so

that by uniqueness we have in the limit δ → 0: r̄ε+(t, x) = l and r̄ε−(t, x) = h(l). Therefore

we have proved (3.32) for all the l under consideration. An additional characterization

of the limit (uε, vε) comes as follows. Let us consider test function ϕ ∈ C1
c

(
(0,∞)×R

)
,

then the weak form of (3.17) reads
∫∫

R+
t ×Rx

uε,δϕt + vε,δϕxdxdt = 0, (3.65a)∫∫
R+
t ×Rx

vε,δϕt + a2uε,δϕx − Λ(x, ε, δ)(f(uε,δ)− vε,δ)ϕdxdt = 0. (3.65b)

Notice that since f is smooth with f(0) = 0 and {uε,δ} stays uniformly bounded in

sup norm, one has f(uε,δ(t, x))| ≤ C|uε,δ|. Moreover, f(uε,δ(t, x)) → f(uε(t, x)) a.e. in

t and x. Therefore by the Lebesgue’s dominated convergence theorem, f(uε,δ(t, x)) →

f(uε(t, x)) in L1
loc(R

+
t ×Rx). Now passing to the limit in (3.65), notice that∫∫

R+
t ×Rx

Λ(x, ε, δ)(f(uε,δ)− vε,δ)ϕdxdt

=

∫∫
R+
t ×Rx
(Λ(x, ε, δ)− λ(x, ε))(f(uε,δ)− vε,δ)ϕdxdt+

∫∫
R+
t ×Rx
λ(x, ε)(f(uε,δ)− vε,δ)ϕdxdt
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and by (3.12) and the sup norm estimate (3.34), the limit (uε, vε) indeed solves
∫
uεϕt + vεϕxdxdt = 0, (3.66a)∫
vεϕt + a2uεϕx − λ(x, ε)(f(uε)− vε)ϕdxdt = 0, (3.66b)

for any given test function ϕ in C1
c

(
(0,∞)×R

)
.

Let us conclude this section by proving the expected a priori estimates, namely

(ii) and (iii) in Theorem 3.2. The L1
loc continuity in time estimates (iii) are direct

consequences of their counter parts verified in (3.63) by {uε,δ}δ>0 for any given ε > 0,

with some constant independent of ε. Concerning the BV estimate, let us first observe

from the estimate (iv) in Proposition 4 that focuses on the right half line R+
x . For any

given ϕ ∈ C1
c (R+

x ) with ‖ϕ‖L∞(R)≤ 1,∫
R

uε,δ(t, x)∂xϕdx ≤ sup
ϕ∈C1

c (R+
x )

∫
R

uε,δ∂xϕdx = TV(uε,δ) ≤ C(1+ ‖λ(·, ε)−Λ(·, ε, δ)‖L1(R))

sending δ to 0 with ε > 0 kept fixed yields∫
R+
x

uε(t, x)∂xϕdx ≤ C

with the same uniform constant C above which does not depend on ε. We therefore

conclude that

TV{x>0}
(
uε(t, ·)

)
= sup

ϕ∈C1
c (R+

x ),||ϕ||L∞(R)≤1

∫
R+

uε(t, x)∂xϕdx ≤ C.

Similarly, one can derive a uniform BV estimate in the open set R−x

TV{x<0}
(
uε(t, ·)

)
= sup

ϕ∈C1
c (R+
−),||ϕ||L∞(R)≤1

∫
R−
uε∂xϕ ≤ C

for some constant C > 0 independent of ε. Then uε(t, ·) having finite total variation in

R−x and R+
x , does admit left and right traces at x = 0. We may therefore write

TVR

(
uε(t, ·)

)
= TV{x<0}

(
uε(t, ·)

)
+ TV{x>0}

(
uε(t, ·)

)
+
∣∣uε(t, 0+)− uε(t, 0−)

∣∣
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with |uε(t, 0+)− uε(t, 0−)| ≤ 2 ‖uε(t, ·)‖L∞(R)≤ C in view of (3.34). So we conclude that

{uε}ε>0 has uniform in ε bounded total variation. The corresponding uniform estimate

for {vε}ε>0 follows from the companion estimate (iii) in Proposition 4. This concludes

the proof of the main theorem in this section.

3.3 Strong convergence in L∞
(
(0, T ), L1

loc(R)
)

In this section, we want to show the limit behavior when sending the relaxation param-

eter ε to 0.

Theorem 3.3. Given any initial condition u0, v0 satisfying (3.3)–(3.4) and assume the

sub characteristic condition (3.5), the sequence (uε, vε) converges to a unique limit (u, v)

in L∞
(
(0, T ), L1

loc(R)
)

for all T > 0, where u and v have bounded sup norm and bounded

total variation. The limit solves for any test function ϕ ∈ C1
c ((0,∞)×R−x ) :

(a)

∫
R+
t ×R

−
x

uϕt + vϕxdxdt = 0, (3.67)∫
R+
t ×R

−
x

vϕt + a2uϕx − (f(u)− v)ϕdxdt = 0, (3.68)

while v(t, x) = f(u(t, x)) a.e. t > 0, x > 0 and for any given non-negative test function

ϕ ∈ C1
c ((0,∞)×R+

x )

(b)

∫
R+
t ×R

+
x

|u− k|ϕt + sgn(u− k)(f(u)− f(k))ϕkdxdt ≥ 0, ϕ ≥ 0, (3.69)

for all k ∈ R with |k| < B(N0).

In addition, the following L1 contraction principle holds

1

2a
‖(r+−r̄+)(t, .)‖L1

loc(R−x )

+
1

2a
‖(r−−̄r−)(t, ·)‖L1

loc(R−x )

+ ‖(u−ū)(t, .)‖L1

loc(R+
x )

≤ ‖u0−ū0 ‖L1
loc(Rx)

,

(3.70)
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and the estimates (i)-(iii) in Theorem 3.2 are satisfied for (u, v) as well.

To begin with, we need the following technical lemma.

Lemma 3.4. For a.e. t > 0, we have

‖(f(uε)− vε)(t, ·)‖L1(R+
x )≤ Cε (3.71)

where C > 0 is independent of ε.

Proof. (3.17b) gives∫
R+
x

λ(x, ε)
∣∣f(uε,δ)− vε,δ

∣∣ (t, x)dx

≤ ‖∂tvε,δ(t, ·)‖L1(R) +a2TV(uε,δ(t, ·))+ ‖f(uε,δ)− vε,δ ‖L∞(R)‖λ(·, ε)− Λ(·, ε, δ)‖L1(R)

≤ C
(
1+ ‖λ(·, ε)− Λ(·, ε, δ)‖L1(R)

)
for some uniform constant C independent of ε or δ in view of estimates (i)-(iv) in

Proposition 4. Then using the strong convergence argument given before, sending δ to

0 with ε > 0 fixed yields

1

ε

∫
R+
x

|f(uε)− vε|(t, x)dx ≤ C.

Now we go back to prove the main theorem in this section.

Proof of Theorem 3.3. For any given T > 0, the uniform estimates (i)-(iii) in Theorem

3.2 allow to prove that there exists an extracted subsequence {(uε, vε)}ε>0 that has

uniform bounded sup norm in x which converges in L∞
(
(0, T ), L1

loc(R)
)

and a.e. in t, x

to some limit (u, v) as ε goes to 0 using identical steps as those developed in the proof
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of Theorem 3.2. Now given two initial data u0 and ū0 with corresponding well-prepared

v0 and v̄0. First observe that the sequence (rε−, r
ε
+)ε>0 (resp. (r̄ε−, r̄

ε
+)ε>0) converges

in L∞
(
(0, T ), L1

loc(R)
)

for any given T > 0 to (r−, r+) (resp. r̄−, r̄+). Lemma 3.4

implies that v(t, x) = f(u(t, x)) a.e. t > 0, x > 0, so that r−(t, x) = h(r+(t, x)) (resp.

r̄−(t, x) = h(r̄+(t, x))). Recall the L1 contraction principle (3.33) and passing to the

limit ε→ 0 yields∫ 0

−M

(
|r+ − r̄+|+ |r− − r̄−|

)
(t, x)dx+

∫ M

0

(
|r+ − r̄+|+ |h(r+)− h(r̄+)|

)
(t, x)dx

≤
∫
|x|<M+at

(
|r0

+ − r̄0
+|+ |h(r0

+)− h(r̄0
+)|
)

(x)dx

since the initial data is well-prepared. Now by the increasing monotonicity property of

h, one has

(r+ − r̄+)(h(r+)− h(r̄+)) ≥ 0

so that

|r+ − r̄+|+ |h(r+)− h(r̄+)| = |r+ − r̄+ + h(r+)− h(r̄+)| = 2a|u− ū|.

Therefore we can write∫ M

0

(
|r+ − r̄+|+ |h(r+)− h(r̄+)|

)
(t, x)dx = 2a

∫ M

0

|u− ū|(t, x)dx,

and correspondingly∫
|x|≤M+at

(
|r0

+ − r̄0
+|+ |h(r0

+)− h(r̄0
+)|
)

(x)dx = 2a

∫
|x|≤M+at

|u0 − ū0|(x)dx.

We thus have for any given M > 0 and time t > 0∫ 0

−M

(
|r+ − r̄+|+ |r−−r̄−|

)
(t, x)dx+ 2a

∫ M

0

|u− ū|(t, x)dx ≤ 2a

∫
|x|≤M+at

|u0 − ū0|(x)dx,
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which proves the L1
loc contraction principle (3.70). This principle implies uniqueness of

the limit (u, v). Proving that this limit satisfies (3.67)–(3.68) follows from (3.66) using

routine arguments already sketched in the proof of Theorem 3.2 and considering the

test function ϕ ∈ C1
c

(
(0,∞) × R−x

)
. Let us at last derive (3.69) from inequality (3.32)

focusing on the non-negative test function ϕ with compact support in R+
x . Taking the

limit ε→ 0 provides∫
R+
t ×R

+
x

(
|r+ − l|+ |h(r+)− h(l)|

)
ϕt + a

(
|r+ − l| − |h(r+)− h(l)|

)
ϕxdtdx ≥ 0

for any given l ∈ R such that k = l+h(l)
2a

verifies |k| < B(N0). Observe that l−h(l)
2

= f(k).

The increasing property met by h ensures

|r+ − l|+ |h(r+)− h(l)| = |r+ + h(r+)− (l + h(l))| = 2a|u− k|

together with

|r+− l| − |h(r+)− h(l)| = sgn(r+− l)(r+− l− h(r+) + h(l)) = 2sgn(u− k)(f(u)− f(k))

(3.72)

since (u− k)(r+ − l) ≥ 0. This yields the expected Kruz̆kov entropy inequalities.

3.4 Matched asymptotic analysis

So far we only showed that the solution of the original system (3.1) converges to the weak

solution of (3.67)–(3.69). However, since the test function ϕ vanishes in a neighborhood

of the interface, we missed the information at x = 0. In this section, we want to derive

the interface condition by matched asymptotic analysis in a rigorous way, which is the

generalization of the one used in the domain decomposition system (2.12)–(2.15).
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Since a relaxation layer may develop at the interface, we propose to reveal its struc-

ture in the limit ε goes to zero using a blow-up technique (see [96] in a related setting).

Fix ε > 0 and δ > 0, define the fast variable y = x
ε

so that x = εy and let

U ε,δ(t, y) = uε,δ(t, εy), Vε,δ(t, y) = vε,δ(t, εy), y ∈ R. (3.73)

Observe that U ε,δ(t, .) and uε,δ(t, .) (resp. Vε,δ(t, .) and vε,δ(t, .)) have the same sup norm

and total variation, so that Proposition 4 ensures

‖U ε,δ(t, ·)‖L∞(R)≤ C, TV
(
U ε,δ(t, ·)

)
≤ C

(
1+ ‖λ(·, ε)− Λ(·, ε, δ)‖L1(R)

)
,(3.74)

‖Vε,δ(t, ·)‖L∞(R)≤ C, TV
(
Vε,δ(t, ·)

)
≤ C, (3.75)

for some constant C > 0 independent of ε and δ. Since again U ε,δ and uε,δ have identical

sup norm, the following sub-characteristic condition holds uniformly in ε and δ :

|f ′(U ε,δ)| < a, (3.76)

with a prescribed according to (3.5). Hence, the quasi-monotone property (3.28) and the

monotonicity of h expressed in (3.30) apply for all the values of U ε,δ under consideration.

This will play an important role hereafter.

The rescaled profiles U ε,δ and Vε,δ are easily seen to be the C1 solutions ofε∂tU ε,δ + ∂yVε,δ = 0, t > 0; y ∈ R, (3.77a)

ε∂tVε,δ + a2∂yU ε,δ = εΛ(εy, ε, δ)(f(U ε,δ)− Vε,δ), (3.77b)

for any given positive ε and δ. In view of the estimates (3.74)-(3.75), sending δ to 0

with ε fixed and then letting ε go to 0, the sequence
{
U ε,δ(t, ·),Vε,δ(t, ·)

}
ε,δ>0

can be

shown to converge to some limit (U(t, ·),V(t, ·)) in L1
loc(Ry) for any given t > 0. Clearly

(U(t, ·),V(t, ·)) have bounded sup norm and bounded total variation. They will be
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referred hereafter to as the inner relaxation layer or the inner solution for short, while

(u(t, ·), v(t, ·)) will be called the outer solution.

Let us first establish the following results only concerned with the inner solutions.

Lemma 3.5. For a.e. t > 0, the inner solution (U(t, ·), V(t, ·)) is Lipschitz continuous

in y and admits bounded asymptotic limit (U(t,±∞), V(t,±∞)). It verifies

V(t, y) = V(t,+∞) = V(t,−∞), y ∈ R, (3.78)

with

U(t, y) = U(t,−∞), y < 0, (3.79)

and  a2dyU(t, y) = f(U(t, y))− V(t,−∞), y > 0,

U(t, 0) = U(t,−∞).
(3.80)

Moreover, we have :

f(U(t,+∞)) = V(t,−∞). (3.81)

If at time t > 0, the solution U(t, ·) to (3.80) is not locally constant in the half line

{y > 0}, then it must be strictly monotone for y > 0 with

f ′(U(t,+∞)) ≤ 0. (3.82)

Observe that the time t acts as a parameter for the inner solution. The asymptotic

limits U(t,±∞) and V(t,±∞) will be determined in the forthcoming matching analysis

with the left and right traces at x = 0 of the outer solutions u(t, x) and v(t, x).
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Proof. The weak form of (3.77) reads
∫∫

R+
t ×Ry

ε U ε,δ∂tϕ+ Vε,δ∂yϕ dtdy = 0, (3.83a)∫∫
R+
t ×Ry

ε Vε,δ∂tϕ+ a2U ε,δ∂yϕ− εΛ(εy, ε, δ)(f(U ε,δ)− Vε,δ)ϕ dtdy = 0, (3.83b)

for any given test function ϕ ∈ C1
c

(
(0,∞)×Ry

)
. We have

lim
δ→0

εΛ(εy, ε, δ) := α(y, ε) =

 ε, y < 0,

1, y > 0,
(3.84)

so that for any given time t > 0 the uniform sup norm and total variation estimates

(3.74)-(3.75) clearly ensure that in the limit δ → 0, ε fixed, and then ε → 0 the inner

solution (U ,V) verifies
∫∫

R+
t ×Ry
V(t, y)∂yϕ(t, y) dtdy = 0, (3.85a)∫∫

R+
t ×Ry

a2U(t, y)∂yϕ(y)− α(y, 0)(f(U(t, y)− V(t, y))ϕ(t, y) dtdy = 0. (3.85b)

Choosing test function ϕ(t, y) = φ(t)ψ(y) for φ ∈ C1
c ((0,∞)) and ψ ∈ C1

c (Ry) yields for

a.e. t > 0 
∫
Ry

V(t, y)ψ′(y) dy = 0, (3.86a)∫
Ry

a2U(t, y)ψ′(y)− α(y, 0)(f(U(t, y))− V(t, y))ψ(y) dy = 0, (3.86b)

since φ can be chosen arbitrarily. Obviously V(t, y) is constant in y for a.e. t > 0 and

thus (3.78) holds. Then choosing ψ with compact support in R−y , (3.84) immediately

gives that U(t, .) also stays constant in the half line {y < 0}

U(t, y) = U(t,−∞) y < 0. (3.87)
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Then choosing ψ with compact support in R+
y , one easily infers that U(t, .) is a classical

solution of the ordinary differential equation

a2 d

dy
U(t, y) = f(U(t, y))− V(t,−∞), y > 0. (3.88)

To derive the required initial data U(t, 0+), we choose at last ψ ∈ C1
c (Ry) and argue

the property that U(t, y) is constant with α(y, 0) = 0 for y < 0 while being a smooth

solution of (3.88) for y > 0. Integrations by part in (3.86b) which we recast as follows∫
R−y

a2U(t, y)ψ′(y) dy +

∫
R+
y

a2U(t, y)ψ′(y)− α(y, 0)(f(U(t, y))− V(t, y))ψ(y) dy = 0,

then resumes to

a2(U(t, 0+)− U(t, 0−)) ψ(0) = 0,

namely in view of (3.87)

U(t, 0+) = U(t, 0−) = U(t,−∞). (3.89)

This identifies the initial data of the Cauchy problem (3.88) and proves by the way the

Lip continuity property of U(t, .) in the fast variable y.

Let us prove that the solution U(t, ·) of the ODE Cauchy problem (3.88) with (3.89)

is either trivial, that is U(t, y) = U(t,−∞) for all y > 0 (and thus all y in R), or strictly

monotone in the half line {y > 0}. Indeed assume that dyU(t, y) vanishes for some

y? > 0 so that U(t, y?) is a critical point of (3.85), i.e. f(U(t, y?)) − V(t,−∞) = 0.

But classical properties of scalar autonomous ODE problem ensure that a critical point

cannot be achieved for finite y > 0, so that if y? is finite, necessarily U(t, y) stays constant

for all y. Conversely assume the inner solution to be non-trivial, then it is necessarily

strictly monotone for all finite y > 0. To conclude, let us prove in the latter case that

lim
y→+∞

dyU(t, y) = 0. (3.90)
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This will imply that U(t,+∞) is a critical point of the ODE (3.88), that is :

f(U(t,+∞)) = V(t,+∞) = V(t,−∞). (3.91)

By the Hartman-Grobman’s Theorem [47], we further observe that U(t,+∞) cannot be

an unstable critical point, namely f ′(U(t,+∞)) > 0 cannot hold, so that the last claim

of Lemma 3.5

f ′(U(t,+∞)) ≤ 0,

must be valid. To derive (3.90), let us differentiate the smooth ODE (3.88) w.r.t. y to

get the following representation formula for the derivative

dyU(t, y) = dyU(t, 0+) L(y), L(y) ≡ exp
( 1

a2

∫ y

0

f ′(U(t, s))ds
)
,

where we have |dyU(t, 0+)| > 0 in the case of a non-trivial inner solution. Let us prove

that the uniform boundedness for y > 0 of U(t, y) necessarily requires

lim
y→+∞

L(y) = 0, (3.92)

which in turn implies (3.90). First observe that since U(t, s) monotonically reaches a

finite limit U(t,+∞) as s goes to +∞ while by assumption, f(u) admits a finite number

of inflection points, necessarily f ′(U(t, s)) keeps a constant sign for large enough values

of s. Consequently, L(y) admits a limit as y goes to +∞ which may be null or not. To

rise a contradiction, assume that there exists some strictly positive constant η > 0 with

the property that

L(y) > η > 0, for all y > 0. (3.93)

In such a case, one would infer that (U(t,+∞) − U(t, 0))dyU(t, y) > (U(t,+∞) −

U(t, 0))dyU(t, 0+)η, since by the monotonicity property (U(t,+∞)−U(t, 0))dyU(t, 0+) >
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0, and hence (U(t,+∞)−U(t, 0))(U(t, y)−U(t, 0)) > (U(t,+∞)−U(t, 0))dyU(t, 0+)η y.

This linear growth estimate clearly rises a contradiction with the uniform boundedness

of the inner solution U(t, y) so that (3.93) cannot hold true. In other words, (3.92) must

be valid. This concludes the proof.

We now derive the following matching conditions to link the inner solution (U ,V)

with the outer solution (u, v).

Proposition 5. For a.e. t > 0, V and v perfectly match

V(t, y) = v(t, 0−) = v(t, 0+), for all y ∈ R. (3.94)

U and u are linked according to

U(t, y) = u(t, 0−), y < 0. (3.95)

while, defining R±(t, y) = aU(t, y)± V(t, y), the following inequalities hold

1

2

(
|R+(t, y)− l| − |R−(t, y)− h(l)|

)
≥ sgn(u(t, 0+)− k)(f(u(t, 0+))− f(k)), y > 0,

(3.96)

for any given l ∈ R such that k = (l + h(l))/2a verifies |k| < ||u0||L∞(R).

The proof is postponed at the end of this section. Observe that the matching condi-

tion (3.94) together with the identity V(t,+∞) = f(U(t,+∞) stated in (3.81) actually

ensures

f(U(t,+∞)) = v(t, 0+) = v(t, 0−). (3.97)

By contrast to U(t,−∞) and u(t, 0−), U(t,+∞) and u(t, 0+) may not match, but a first

consequence of the entropy like inequalities (3.96) is
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Corollary 3.6. For a.e. t > 0, the following Kruz̆kov inequalities hold

sgn
(
U(t,+∞)− k

)(
f(U(t,+∞))−f(k)

)
≥ sgn(u(t, 0+)− k)(f(u(t, 0+))−f(k)), (3.98)

for all k ∈ bU(t,+∞), u(t, 0+)e. In particular, we have :

f(U(t,+∞)) = f(u(t, 0+)) = v(t, 0−). (3.99)

For any given real numbers a and b, ba, be denotes the interval (min(a, b),max(a, b)).

Rephrasing (3.98)–(3.99), if U(t,+∞) and u(t, 0+) differ, they are actually separated by

an entropy satisfying standing shock for the equilibrium scalar conservation law (2.6).

Remark 3.7. If U(t,+∞) 6= u(t, 0+). In the case of a genuinely non-linear flux f

(either strictly convex or concave), the Kruz̆kov entropy inequalities (3.98) are known to

be equivalent to the following requirement (see for instance [24]) :

f ′(u(t, 0+)) < 0 < f ′(U(t,+∞)). (3.100)

As a consequence, U(t,+∞) would be an asymptoticly unstable critical point in the

sense of Hartman-Grobman Theorem [47], which cannot be, hence the inner solution is

necessarily trivial

U(t, y) = u(t, 0−) for all y ∈ R. (3.101)

The standing shock thus sticks at the corresponding interface, separating directly u(t, 0−)

from u(t, 0+). The situation may turn more exotic in the case of a general non-linear

flux f , an entropy satisfying standing shock verifies in general

f ′(u(t, 0+)) ≤ 0 ≤ f ′(U(t,+∞)), (3.102)
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where both inequalities may be strict or not and, simultaneously or not. Necessarily,

if the inner layer is non-trivial, the critical point U(t,+∞) cannot be hyperbolic (this

would require f ′(U(t,+∞)) ≤ 0) and we must have f ′(U(t,+∞)) = 0. Standing shock

and non trivial relaxation layer may well coexist for general fluxes.

To further explore the matching conditions in between U and u in the setting of

a general flux function f , let us state another consequence of the entropy inequalities

(3.96) :

Corollary 3.8. For a.e. t > 0, the following inequalities are met :

sgn
(
u(t, 0+)− k

)(
f(u(t, 0+))− f(k)

)
≤ 0, (3.103)

for all k in bu(t, 0−),U(t,+∞)e.

As a consequence of Corollaries 3.6 and 3.8, the most important outcome of the

matching analysis is the last result of this section :

Proposition 6. For a.e. t > 0, left and right traces of the outer solution u(t, x) at

x = 0 obey :

sgn
(
u(t, 0+)− u(t, 0−)

)(
f(u(t, 0+))− f(k)

)
≤ 0, k ∈ bu(t, 0−), u(t, 0+)e, (3.104)

while

v(t, 0−) = f(u(t, 0+)). (3.105)

Rephrasing this statement, the traces of the outer solution u(t, x) at x = 0 are

linked by the so-called Bardos-Leroux-Nédélec boundary condition [6] expressed for the

equilibrium scalar conservation law (2.6). With this respect, the detailed knowledge of

the inner solution U can be bypassed.

Let us establish the proposed statements. We begin with :



86

Proof of the Proposition 5. Let (rε,δ− , r
ε,δ
+ ) denote the solution of the Cauchy problem

(3.26) in diagonal form, with initial data (r±)δ0 = auδ0 ± vδ0. Then for any given l ∈ R

with |(l + h(l))/2a| ≤ ||u0||L∞(R), let us introduce the smooth truncated initial data

(r+)δ0,l(x) = ψδ(x)l and (r−)δ0,l(x) = ψδ(x)h(l) (note that ψδ(x)(ρδ ∗ l)(x) = ψδ(x)l) and

the corresponding unique solution (rε,δ−,l, r
ε,δ
+,l). Observe that for fixed ε > 0, limδ→0 r

ε,δ
+,l = l

and limδ→0 r
ε,δ
−,l = h(l). The two solutions under consideration obey the entropy like

inequality (3.31)

∂t
(
|rε,δ+ − r

ε,δ
+,l|+ |r

ε,δ
− − r

ε,δ
−,l|
)

+ a∂x
(
|rε,δ+ − r

ε,δ
+,l| − |r

ε,δ
− − r

ε,δ
−,l|
)
≤ 0. (3.106)

To condensate the notations, let

pε,δl = |rε,δ+ − r
ε,δ
+,l|+ |r

ε,δ
− − r

ε,δ
−,l|, qε,δl = a

(
|rε,δ+ − r

ε,δ
+,l| − |r

ε,δ
− − r

ε,δ
−,l|
)

so that (3.106) reads

∂tp
ε,δ
l + ∂xq

ε,δ
l ≤ 0. (3.107)

Let ε > 0 be given and y > 0 be fixed, consider any b > 0 satisfying

0 < εy < b. (3.108)

For any given time T > 0, let us multiply (3.107) by any given non-negative test function

ϕ(t) in C1
c

(
(0, T )

)
and integrate for (t, x) ∈ [0, T ] × [εy, b] to infer under the ordering

condition (3.108) :∫ T

0

∫ b

εy

−pε,δl (t, x)ϕ′(t)dtdx+

∫ T

0

(
qε,δl (t, b)− qε,δl (t, εy)

)
ϕ(t)dt ≤ 0. (3.109)

Let us defineRε,δ
± (t, y) = aU ε,δ(t, y)±Vε,δ(t, y) = rε,δ± (t, εy) and correspondinglyRε,δ

±,l(t, y) =

rε,δ±,l(t, εy). Setting Qε,δl (t, y) = a
(
|Rε,δ

+ −R
ε,δ
+,l| − |R

ε,δ
− −R

ε,δ
−,l|
)

(t, y), we have the iden-

tity Qε,δl (t, y) = qε,δl (t, εy). Hence changing the sign in (3.109) gives :∫ T

0

∫ b

εy

pε,δl (t, x)ϕ′(t)dtdx+

∫ T

0

(
Qε,δl (t, y)− qε,δl (t, b)

)
ϕ(t)dt ≥ 0.
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Let η > εy and average the above inequality (valid for all b > εy) for b ∈ (η, 2η) to get

1

η

∫ T

0

∫ 2η

η

∫ b

εy

pε,δl (t, x)ϕ′(t)dtdbdx+

∫ T

0

(
Qε,δl (t, y)− 1

η

∫ 2η

η

qε,δl (t, b)db

)
ϕ(t)dt ≥ 0.

Let us observe that∣∣∣∣1η
∫ T

0

∫ 2η

η

∫ b

εy

pε,δl (t, x)ϕ′(t)dtdbdx

∣∣∣∣
≤ sup

0≤t≤T
‖pε,δl (t, ·)‖L∞(R)‖ϕ′ ‖L1(0,T )

1

η

∫ 2η

η

(b− εy)db ≤ C(
3

2
η − εy)

for some uniform constant C > 0 in ε and δ thanks to the corresponding uniform sup

norm estimates satisfied by the solutions (uε,δ, vε,δ) and (uε,δl , v
ε,δ
l ) of the regularized

problem (3.17). For ε > 0 fixed, passing to the limit δ → 0 and then to the limit ε→ 0

yields ∫ T

0

ϕ(t)

(
Ql(t, y)− 1

η

∫ 2η

η

ql(t, b)db

)
dt ≥ −3

2
Cη. (3.110)

Observe that this inequality now holds for any η > 0 since the ordering condition (3.108)

resumes to b > 0. In (3.110), we have

Ql(t, y) = a (|R+(t, y)− l| − |R−(t, y)− h(l)|)

with R±(t, y) = aU(t, y)± V(t, y) while

ql(t, b) = a (|r+(t, b)− l| − |h(r+(t, b))− h(l)|)

since all the b under consideration are positive, i.e. we deal with the equilibrium half

line {x > 0} with the property that r−(t, x) = h(r+(t, x)). Arguments based on the

monotonicity of h and already developed in the proof of Theorem 3.3 (see (3.72)) ensure

the identity

ql(t, b) = 2a sgn
(
u(t, b)− k

)
(f(u(t, b))− f(k)) , k =

l + h(l)

2a
.
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Passing to the limit η → 0 in (3.110) yields (recall that u(t, b) has bounded total variation

and thus admits a right trace at x = 0)∫ T

0

ϕ(t)
(
Ql(t, y)− ql(t, 0+)

)
dt ≥ 0.

This inequality is valid for any given non-negative test function ϕ in C1
c ((0, T )), so that

we deduce the inequality (3.96). Let us now prove that the next matching condition

V(t, y) = v(t, 0+) for y > 0 and a.e. t > 0. To this aim, we start from the equation

∂tu
ε,δ + ∂xv

ε,δ = 0 and repeat the same arguments as previously to get∫ T

0

ϕ(t)

(
V(t, y)− 1

η

∫ 2η

η

v(t, b)db

)
= 0, y > 0, a.e. t > 0

for all η > 0 and all test function ϕ ∈ C1
c ((0, T )). Sending η → 0 yields the expected

result. To derive the condition U(t, y) = u(t, 0−) when y < 0, we proceed mutatis

mutandis the same way choosing ε > 0, some fixed y < 0 and negative real number

b satisfying the ordering condition b < εy < 0 and we apply the above steps to the

equation ∂tv
ε,δ + a2∂xu

ε,δ = f(uε,δ)− vε,δ to get∫ T

0

(
U ε,δ(t, y)− 1

|η|

∫ −|η|
−2|η|

uε,δ(t, b)db

)
ϕ(t)dt

+
1

|η|a2

∫ T

0

∫ −|η|
−2|η|

∫ b

εy

(
vε,δ(t, x)ϕ′(t) +

(
f(uε,δ(t, x))− vε,δ(t, x)

)
ϕ(t)

)
dxdtdb = 0

for any given test function ϕ ∈ C1
c ((0, T )). Uniform sup norm estimates for uε,δ and vε,δ

again apply to prove that the second term vanishes in the limit δ → 0 then ε → 0 and

η → 0, while the first term gives rise to∫ T

0

(
U(t, y)− u(t, 0−)

)
ϕ(t)dt = 0, y < 0.

This implies the expected result. At last to prove the condition V(t, y) = v(t, 0+) for

y > 0 (hence the continuity property v(t, 0−) = v(t, 0+)) we proceed similarly but with

the equation ∂tu
ε,δ + ∂xv

ε,δ = 0. Details are left to the reader.
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Let us now turn establishing Corollaries 3.6 and 3.8.

Proof of Corollary 3.6. Sending y to +∞ in (3.96), one has for any given l ∈ R such

that k = (l + h(l))/2a verifies |k| < ||u0||L∞(R) :

1

2

(
|R+(t,+∞)−l|−|R−(t,+∞)−h(l)|

)
≥ sgn(u(t, 0+)−k)(f(u(t, 0+))−f(k)). (3.111)

In particular, these inequalities are valid restricting attention to values of l so that k

belongs to bU(y,+∞), u(t, 0+)e. This will suffice to our purpose. Note from (3.81) that

R±(t,+∞) = aU(t,+∞)± f(U(t,+∞)), thus the identity R−(t,+∞) = h(R+(t,+∞))

holds. Rephrasing arguments developed in the course of Theorem 3.3 (see (3.72)),

the left hand side of the inequality (3.111) is seen to boil down to sgn
(
U(t,+∞) −

k
)(
f(U(t,+∞))− f(k)

)
for all the k under consideration, which is nothing but (3.96).

It then suffices to choose successively k = U(t,+∞) and k = u(t, 0+) to get (3.97).

Proof of Corollary 3.8. Let us first recall that R±(t, y) = aU(t, y)±f(U(t,+∞)) for a.e.

t > 0. Now given y fixed, choose ly = aU(t, y) + f(U(t, y)) in (3.96) with the property

h(ly) = aU(t, y)− f(U(t, y)). Observe that :

|R+(t, y)− ly| = |f(U(t, y))− f(U(t,+∞))|,

|R−(t, y)− h(ly)| = |f(U(t, y))− f(U(t,+∞))|,

so that we arrive at

0 ≥ sgn(u(t, 0+)− U(t, y))(f(u(t, 0+))− f(U(t, y))) (3.112)

since ky = (ly + h(ly))/2a = U(t, y). Notice that (3.112) is true for any given y > 0, so

it implies (3.103) for all k in between U(t, 0) and U(t,+∞) with U(t, 0) = u(t, 0−) by

(3.95).
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The proof of Proposition 6 will rely on the following technical result.

Lemma 3.9. With the notations of Proposition 5, for a.e. t > 0, the entropy like

inequalities

sgn(U(t,+∞)− k)
(
f(U(t,+∞))− f(k)

)
≤ 0, (3.113)

are satisfied for all k ∈ bu(t, 0−),U(t,+∞)e.

Proof. Recall that R±(t, s) solve for all s > 0

±a dsR±(t, s) = ±G(R−, R+)(t, s),

so that, the quasi-monotone property (3.28) ensures for all l ∈ R with |l + h(l)|/2a <

||u0||L∞(R)

1

2
ds

(
|R+ − l| − |R− − h(l)|

)
≤ 0, s > 0

since the sub-characteristic condition (3.76) is satisfied. Integrating the above inequality

for s in [y, Y ] with y < Y yields

1

2

(
|R+(t, Y )− l| − |R−(t, Y )− h(l)|

)
≤ 1

2

(
|R+(t, y)− l| − |R−(t, y)− h(l)|

)
.

Sending Y to +∞ gives the following inequality

sgn(U(t,+∞)− k)
(
f(U(t,+∞)− f(k))

)
≤ 1

2

(
|R+(t, y)− l| − |R−(t, y)− h(l)|

)
,

using identical steps to those developed in the proof of Corollary 3.6. Choosing at last

for any given y > 0, ly = aU(t, y) + f(U(t, y)) like in the course of the proof of Corollary

3.8 yields the required conclusion.

Proof of Proposition 6. Clearly, a proof is needed only when u(t, 0−) and u(t, 0+) are

distinct, we thus assume u(t, 0−) 6= u(t, 0+). First, observe that in the case of a trivial
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relaxation layer, namely U(t,+∞) = u(t, 0−), the inequalities (3.98) assert that u(t, 0−)

and u(t, 0+) are connected by a standing shock for the conservation law (2.6). Hence

the Bardos-Leroux-Nédélec condition (3.104) applies by definition. Second, assume the

inner layer to be non-trivial, u(t, 0−) 6= U(t,+∞), but with U(t,+∞) = u(t, 0+). Then

the inequalities (3.113) immediately give the required result thanks to the mononicity

in y of the inner solution U(t, y) since this property readily implies

sgn(u(t, 0+)− u(t, 0−)) = sgn(U(t,+∞)− u(t, 0+)) = sgn(U(t,+∞)− k),

for all k ∈ bu(t, 0−),U(t,+∞)e.

We are thus left with the case of three distinct values u(t, 0−), U(t,+∞) and u(t, 0+).

The key step is to show that the entropy inequalities (3.103) and (3.113) actually ensure

a natural ordering in between these three distinct values. We start assuming that the

monotone in y function U(t, y) is increasing and we intend to prove

u(t, 0−) < U(t,+∞) < u(t, 0+). (3.114)

In that aim, observe that the inequalities (3.113) give

f(U(t,+∞)) ≤ f(k), k ∈ [u(t, 0−),U(t,+∞)]

since again due to monotonicity, sgn(U(t,+∞)− k) = +1 for all the k under consider-

ation. But U(t,+∞) and u(t, 0+) verify f(U(t,+∞)) = f(u(t, 0+)), we thus get

f(u(t, 0+)) ≤ f(k), k ∈ [u(t, 0−),U(t,+∞)]. (3.115)

The inequalities (3.103) in turn ensure that necessarily sgn(u(t, 0+) − k) = +1 for all

the k under consideration, and in particular for k = U(t,+∞). Hence the proposed

ordering (3.114). To conclude, we notice after Oleinik (see [24] for instance) that in the
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case U(t, y) < u(t, 0+), the entropy inequalities (3.98) are equivalent to the geometrical

property that the chord in between U(t, y) and u(t, 0+) must stay below the graph of

f(u), this just reads f(u(t, 0+)) ≤ f(k) for all k ∈ [U(t,+∞), u(t, 0+)], that is to say:

f(u(t, 0+) ≤ f(k)), k ∈ [u(t, 0−), u(t, 0+)]. (3.116)

This is nothing but the expected condition (3.104) since again by (3.114) sgn(u(t, 0+)−

u(t, 0−)) = +1.

The case of a decreasing inner solution U(t, .) can be treated by a straightforward

adaptation of the steps we have proposed, recalling after Oleinik that an entropy sat-

isfying shock with U(t, y) > u(t, 0+) comes with the property that the chord joining

u(t, 0+) to U(t, y) must stay above the graph of f(u). Details are left to the reader. This

concludes the proof.

3.5 Concluding remarks

The solution of the original two-scale hyperbolic relaxation system (3.1)–(3.4) is proved

to converge as the smaller relaxation time vanishes to the unique solution of the do-

main decomposition system (3.6)–(3.8). The interface condition is derived in a rigor-

ous way by matched asymptotic analysis, and result in a form that is the well-known

Bardos-Lerous-Nédélec condition. This is an extension of that in the last chapter by

allowing a standing shock sticking to the interface.
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Chapter 4

Vlasov-Poisson-Fokker-Planck

system

4.1 Introduction

The Vlasov-Poisson-Fokker-Planck (VPFP) system is the kinetic description of the Brow-

nian motion of a large system of particles in a surrounding bath. For example, in elec-

trostatic plasma, when the interactions between the electrons and a surrounding bath

through Coulomb force are taken into account, the time evolution of the electron distri-

bution function f : (t, x, v) ∈ R+ ×RN ×RN → R+ solves the VPFP system, under the

action of a self-consistent potential φ:
∂tf + v · ∇xf −

q

me

∇xφ · ∇vf =
1

τe
LFP(f), (4.1a)

−4x φ =
q

ε0
(ρ− h(x)), (4.1b)

where ε0 is the vacuum permittivity, q and me are elementary charge and mass of the

electrons, and τe is the relaxation time due to the collisions of the particles with the

surrounding bath. The function h(x) is a given positive background charge, and one can

assume the global neutrality relation∫
RN

∫
RN
f(x, v)dxdv =

∫
RN
h(x)dx. (4.2)
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ρ(t, x) is the density of electrons given by

ρ(t, x) =

∫
RN
f(t, x, v)dv.

LFP(f) is the Fokker-Planck operator

LFP(f) = ∇v · (vf + µe∇vf),

where
√
µe =

√
kBTth
me

is the thermal velocity, kB is the Planck constant, and Tth is

the temperature of the bath. Two important physical quantities that characterize the

particle system are the mean free path le =
√
µeτe, which is the average distance traveled

by a particle between two successive collisions, and the Debye length Λ =
√

ε0kBTth
q2N ,

which is the typical distance over which significant charge separation can occur. Here

N is the typical value for the concentration of the particles. Another application of the

VPFP system is in galaxies where massive particles interacting through gravitational

force. The main difference is that the force is attractive, so in (4.1b) we have 4xφ =

q
ε0

(ρ− h(x)) instead, and the physical meanings of the constants are different.

The existence and uniqueness of the weak and classical solutions of the VPFP and

related systems have been well studied. Degond [25] first showed the existence of a

global-in-time smooth solution for the Vlasov-Fokker-Planck equation in one and two

space dimensions in electrostatic case, and also proved the convergence of the solution

to that of the Vlasov-Poisson equations when the diffusion coefficient goes to zero. Later

on, Bouchut [8, 9] extended the result to three dimensions when the electric field was

coupled through a Poisson equation, and the results were given in both electrostatic

and gravitational cases. Zheng and Majda [108] gave the existence of a global weak

solution of the VPFP system from a new prospect, where by allowing the initial data to
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be measure-valued, it includes some physically interesting case such as electron sheets.

For more results, one can refer to [14, 15, 97].

If the mean free path of the electrons is much smaller than the Debye length, then

system (4.1) can be written in the dimensionless form as∂tf + v · ∇xf −
1

ε
∇xφ · ∇vf =

1

ε
Pnon(f), (4.3a)

−4x φ = ρ− h, (4.3b)

where ε =
(
le
Λ

)2
, the ratio between the mean free path and the Debye length, and Pnon

is the nondimensionalized Fokker-Planck operator:

Pnon = ∇v · (vfε +∇vfε).

Under this scaling, the limiting process ε → 0 is the so-called high-field limit which is

different from the low-field limit (or named as parabolic limit), in which the diffusion

dominates the behavior, see [83] for example. The high field limit was first introduced in

[82] in which it gave a fluid approximation to the semiconductor Boltzmann equation for

high electric fields. Later some numerical simulations of this kinetic model and high-field

model were performed in [17].

Now one can formally derive the limit equation. First integrating (4.3a) over RN ,

one gets

∂tρ+∇x · j = 0, (4.4)

where j =
∫
RN vf(t, x, v)dv. Then multiplying (4.3a) by v and integrating over RN to

get

ε(∂tj +∇x · q) + ρ∇xφ+ j = 0, (4.5)

where q =
∫
RN v ⊗ vf(t, x, v)dv. Let ε→ 0 in (4.5), one obtains

j = −ρ∇xφ. (4.6)
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Then plugging it into (4.4) to get the high field limit equation∂tρ−∇x · (ρ∇xφ) = 0, (4.7a)

−4x φ = ρ− h(x). (4.7b)

This formal analysis can be made rigorous. In [78], it was first proved that in one

dimension (for both space and velocity) the solution of (4.1) converges to (4.7) when

ε → 0. It was also shown that the limit system has a smooth global-in-time solution

in electrostatic case and a local-in-time solution in gravitational case. The results were

extended to multidimension in the electrostatic case in [45].

Efforts have been devoted to numerically solving the VPFP system, see for instance,

[48, 49, 101, 102]. All these schemes use a particle method, random or deterministic, to

treat the convective part and deal with the Fokker-Planck operator by reconstructing the

distribution function via a field-free Fokker-Planck kernel. These methods are efficient

but only have first order accuracy. Another approach was given in [88] using a finite

difference method, with implicit time discretization. Although this method is free of

the constraint 4t ∼ 4v2, it has to invert a nonsymmetric matrix which is the main

difficulty in higher dimension.

Unlike the previous works which intend to capture the behavior of the Vlasov-Poisson

system such as Landau damping when the diffusion effect is rather weak, our goal is to

develop a scheme that is efficient in the high field regime. The numerical difficulties

arise in two ways. The first one is the stiff coefficient in the forcing term containing

the electric potential. An explicit method would require that 4t ∼ min(4x, ε 4 v)

which becomes too expensive when ε is small. The other one is the diffusive nature of

the Fokker-Planck operator, which poses the constraint 4t ∼ O(ε 4 v2). Instead of

treating the forcing term and Fokker-Planck operator separately, our idea is to combine
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both stiff terms and propose a time implicit method to overcome these two difficulties

simultaneously. The combined term still has the form of a Fokker-Planck operator,

with a Maxwellian that depends on ∇xφ, and it is treated implicitly in the same way

as [59] so that only a symmetric tri-diagonal matrix has to be inverted. This induces

an Asymptotic Preserving(AP) method, as characterized by Jin in [53]. See [54] for a

review. It allows large time steps and coarse meshes in the regime ε� 1. This method

can be extended to higher dimension directly.

The rest of the chapter is organized as follows. In section 4.2 we give the first order

scheme and prove some properties of it such as positivity, stability, mass and asymptotic

preservation. A second order scheme is given at the end of this section. Section 4.3 is

devoted to numerically validate the properties of the scheme. By comparing with the

explicit scheme on a resolved mesh, we show that our scheme is efficient in capturing

the high field limit. At last, some concluding remarks are given in section 4.4.

4.2 An AP scheme for the VPFP system in the high

field regime

A standard explicit scheme for the VPFP system requires time step4t ∼ min(ε4v2,4x)

due to the stiffness of the forcing term and collision term contained 1
ε

and diffusive nature

of the Fokker-Planck operator. In order to avoid this constraint, we propose the following

scheme which is based on an implicit treatment of the combined stiff terms.

We first combine the two stiff terms in (4.3a), 1
ε
∇xφε · ∇vf and 1

ε
Pnon. In this way,

we will not change the property of Fokker-Planck operator, but can treat the two stiff
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terms simultaneously.

An equivalent form of the VPFP system reads∂tf + v · ∇xf =
1

ε
P(f), (4.8a)

−4x φ = ρ− h, (4.8b)

where

P(f) = ∇v ·
[
e−
|v+∇xφ|2

2 ∇v

(
e
|v+∇xφ|2

2 f

)]
. (4.9)

In this form, one can introduce

M = e−
|v+∇xφ|2

2 , (4.10)

and one will see that formally f goes to

feq =
ρ

(2π)
N
2

M =
ρ

(2π)
N
2

e−
|v+∇xφ|2

2

when pushing ε to 0. This is the so-called “local Maxwellian”, and it is easy to check

that the limit ρ indeed solves the high field limit equation (4.7), see for example [45].

4.2.1 The first order scheme

The time discretization of the first order scheme reads

fn+1 − fn

4t
+ v · ∇xf

n =
1

ε
P (fn+1), (4.11)

where the operator P is the discrete version of operator P , and it is treated in the same

way as [59]. In fact, there are several methods about how to discretize the Fokker-

Planck operator, such as [20, 34, 67]. Here we choose the method of [59] because it

gives a symmetric matrix which is not only easy to invert, but also has some good

properties such as negative definiteness. From now on, denote f(xi, vj, t
n) by fni,j, where
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0 ≤ i ≤ Nx, 0 ≤ j ≤ Nv, and Nx and Nv are the number of mesh points in x and v

directions respectively. We briefly state the discretization as follows. Let

P̃ (g) =
1√
M
∇v ·

(
M∇x

(
g√
M

))
, (4.12)

then it relates to P as

P (f) =
√
MP̃

(
f√
M

)
. (4.13)

The discretization of P̃ is straightforward, and the one dimensional version takes the

form

(P̃ g)j

=
1

4v2
√
Mj

(√
MjMj+1

[(
g√
M

)
j+1

−
(

g√
M

)
j

]
−
√
MjMj−1

[(
g√
M

)
j

−
(

g√
M

)
j−1

])

=
1

4v2

(
gj+1 −

√
Mj+1 +

√
Mj−1√

Mj

gj + gj−1

)
. (4.14)

Similarly, one can extend it to higher dimension with no extra efforts. Therefore (4.11)

becomes

fn+1 − fn

4t
+ v · ∇xf

n =
1

ε

√
Mn+1P̃

(
fn+1

√
Mn+1

)
. (4.15)

Now we can summarize the algorithm for the first order method. Given fn, ρn and φn

at time tn.

• Step 1. Approximate the transport term v ·∇xf
n in (4.15) by a first order upwind

method or second order high resolution method.

• Step 2. Sum (4.15) over discrete v, note that the right hand side will be zero

(see(4.16)), so ρn+1 can be obtained explicitly in this step.

• Step 3. Solve (4.3b) by any Poisson solver, say, fast Fourier Transform for periodic

case, to get φn+1. Then calculate Mn+1 via (4.10).
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• Step 4. Plug Mn+1 into (4.15), one ends up with a linear system for fn+1, invert

the system by the conjugate gradient method to get fn+1.

4.2.2 Some properties of the scheme

In this section, we show that in one space dimension, the first order scheme has some

good properties under the hyperbolic CFL condition, which is not restrictive at all.

Mass conservation

The original system preserves mass, so it is desirable to have this property numeri-

cally. Observe that

∑
j

√
MjP̃

(
f√
M

)
j

=
1

4v2

(∑
j

√
MjMj+1

[(
f

M

)
j+1

−
(
f

M

)
j

]
−
∑
j

√
Mj−1Mj

[(
f

M

)
j−1

−
(
f

M

)
j

])
= 0, (4.16)

the conservation of mass follows if a conservative scheme is used for the convection term

v∂xf .

Positivity preservation

Plugging (4.14) into (4.15) and with the upwind discretization on ∂xf , the first order

scheme reads

fn+1
i,j − fni,j

∆t
+ max(vj, 0)

fni,j − fni−1,j

4x
+ min(vj, 0)

fni+1,j − fni,j
4x

=

√
Mn+1

i,j

ε4 v2

(√
Mn+1

i,j+1

[(
f

M

)n+1

i,j+1

−
(
f

M

)n+1

i,j

]
+
√
Mn+1

i,j−1

[(
f

M

)n+1

i,j−1

−
(
f

M

)n+1

i,j

])
.(4.17)
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We use the maximum principle argument. If at time tn, fni,j is positive for all 0 ≤ i ≤ Nx,

0 ≤ j ≤ Nv, and assume
(
f
M

)n+1

k,l
= mini,j

(
f
M

)n+1

i,j
where 0 ≤ k ≤ Nx, 0 ≤ l ≤ Nv. Then

from (4.17), one has

fn+1
k,l = fnk,l

(
1− v+

l

4t
4x

+ v−l
4t
4x

)
+ v+

l

4t
4x

fnk−1,l − v−l
4t
4x

fnk+1,l

+

√
Mn+1

k,l

ε4 v2

(√
Mn+1

k,l+1

[(
f

M

)n+1

k,l+1

−
(
f

M

)n+1

k,l

]
+
√
Mn+1

k,l−1

[(
f

M

)n+1

k,l−1

−
(
f

M

)n+1

k,l

])
,

where v+
l = max(vl, 0) ≥ 0, v−l = min(vl, 0) ≤ 0. Under the CFL condition maxj |vj|4t4x ≤

1, it is easy to see that the right hand side of the above expression is positive. Note that

M is always positive, so mini,j
(
f
M

)n+1

i,j
is positive, which implies that fn+1

i,j is positive

for all 0 ≤ i ≤ Nx, 0 ≤ j ≤ Nv.

Stability

Having the properties of positivity and mass conservation, stability directly follows.

Consider l1 norm ‖fn ‖l1=
∑

i,j |fni,j|, then one has

‖fn+1 ‖l1=
∑
i,j

|fn+1
i,j | =

∑
i,j

fn+1
i,j =

∑
i,j

fni,j =‖fn ‖l1 , (4.18)

where the second equality comes from positivity, and the third equality is a consequence

of the mass conservation.

Asymptotic preservation

Following the idea in [44], define the discrete entropy

Hn
i,j =

∑
j

fi,j log

(
f

M

)n
i,j

, (4.19)
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whereHi,j = H(xi, vj), and for the time being we will omit the subscript i and superscript

n without any ambiguity. Then it is not hard to show the following inequality:

∑
j

P (fj) log

(
f

M

)
j

=
∑
j

√
MjP̃

(
fj√
Mj

)
log

(
f

M

)
j

=
1

4v2

∑
j

√
MjMj+1

[(
f

M

)
j+1

−
(
f

M

)
j

]
log

(
f

M

)
j

− 1

4v2

∑
j

√
MjMj−1

[(
f

M

)
j

−
(
f

M

)
j−1

]
log

(
f

M

)
j

=
1

4v2

(∑
j

√
MjMj+1

[(
f

M

)
j+1

−
(
f

M

)
j

][
log

(
f

M

)
j

−log

(
f

M

)
j+1

])
(4.20)

≤ 0.

And from the last equality, every term in the summation is no greater than 0, so

∑
j

P (fj) log

(
f

M

)
j

= 0 ⇒
(
f

M

)
j

is independent of j,

or fj = CMj, ∀j, where C is a function independent of j (or v). And by mass conser-

vation, C = ρ

(2π)
N
2

. Then from (4.11), one has

ε

[∑
j

(
fn+1
j − fnj
4t

+ v∂xf
n
j

)
log

(
f

M

)n+1

j

]
=
∑
j

P (fn+1
j ) log

(
f

M

)n+1

j

, (4.21)

so ε→ 0 implies
∑

j P (fn+1
j ) log

(
f
M

)n+1

j
→ 0, thus fn+1

j → ρn+1

(2π)
N
2
Mn+1

j , ∀j.

Now go back to the scheme (4.15), summation over j gives

ρn+1 − ρn

4t
+
∑
j

vj · ∂xfnj = 0. (4.22)
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The above argument says fn converges to ρn

(2π)
N
2
Mn as ε→ 0, so

∑
j

vj∂xf
n
j = ∂x

[∑
j

(vj + ∂xφ
n − ∂xφn)e−

|vj+∂xφ
n|2

2
ρn

(2π)
N
2

]

= −∂x

[∑
j

∂xφ
ne−

|vj+∂xφ
n|2

2
ρn

(2π)
N
2

]

= −∂x(ρn∂xφn)
∑
j

1

(2π)
N
2

e−
|vj+∂xφ

n|2

2 , (4.23)

and one can see that
∑

j
1

(2π)
N
2
e−
|vj+∂xφ

n|2

2 approximates 1 with a second order accuracy

in v, plugging (4.23) into (4.22) one gets a time consistent semidiscretized form of the

limit equation (4.7), thus justifying the correct high field limit in the time discrete case.

Remark 4.1. In fact, for the space homogeneous case (∂xf = 0), one can show that

the entropy decays from the inequality (4.20). Note that in this case M does not change

with time. Multiply (4.11) with log

(
fn+1
j

Mj

)
and summing over j, and by (4.20) one has

∑
j

fn+1
j log

(
fn+1
j

Mj

)
−
∑
j

fnj log

(
fn+1
j

Mj

)
=

1

ε

∑
j

P (fn+1
j ) log(

fn+1
j

Mj

) ≤ 0,

or equivalently,

∑
j

fn+1
j log

(
fn+1
j

Mj

)
−
∑
j

fnj log

(
fnj
Mj

)
+
∑
j

fnj

[
log

(
fnj
Mj

)
− log

(
fn+1
j

Mj

)]
≤ 0

Thus

∑
j

fn+1
j log

(
fn+1
j

Mj

)
−
∑
j

fnj log

(
fnj
Mj

)
=

∑
j

fnj log

(
fn+1
j

fnj
− 1 + 1

)

≤
∑
j

fnj

(
fn+1
j

fnj
− 1

)
=
∑
j

(fn+1
j − fnj ) = 0,

where the inequality comes from the inequality log(1 + x) ≤ x, and the last equality is

the result of mass conservation.
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4.2.3 A second order scheme

Using backward difference formula for time discretization [43], the second order scheme

in one space dimension is given by

3fn+1 − 4fn + fn−1

24 t
+ 2v∂xf

n − v∂xfn−1 =
1

ε

√
Mn+1P̃ (

fn+1

√
Mn+1

). (4.24)

For space discretization, we use the MUSCL scheme [68], i.e.,

vj · ∂xf = vj
fi+ 1

2
,j − fi− 1

2
,j

4x
, (4.25)

and fi+ 1
2
,j takes the form

vj > 0, fi+ 1
2
,j = fi,j +

1

2
φ(θi+ 1

2
)(fi+1,j − fi,j); (4.26)

vj < 0, fi+ 1
2
,j = fi+1,j −

1

2
φ(θi+ 1

2
)(fi+1,j − fi,j), (4.27)

where θi+ 1
2

is the smooth indicator, and φ is the slope limiter function, say, the minmod

limiter [69]

φ(θ) = max{0, min{1, θ}}. (4.28)

4.3 Numerical Examples

In order to avoid some difficulties that might be introduced by boundaries, we will

consider periodic boundary condition in x-direction. Our simulations will be for the

electrostatic case, for which a global-in-time smooth solution exists.



105

4.3.1 The order of convergence

This section is devoted to check the order of accuracy of the schemes (4.15) and (4.24).

Consider the VPFP system in 1dx × 1dv. Take the equilibrium initial data

ρ0(x) =

√
2π

2
(2 + cos(2πx)), f 0(x, v) =

ρ0(x)√
2π

e−
|v+φ0x|

2

2 , (4.29)

where x ∈ [0, 1], v ∈ [−6, 6]. φ0 is the solution to (4.3b) with

h(x) =

√
2π

1.2661
ecos(2πx), (4.30)

and satisfies the periodic boundary condition φ0(0) = φ0(1).

We take Nv = 64 as the number of grid points in v−direction, and take space

grid points Nx = 32, 64, 128, 256, 512 respectively. Choose time step 4t = 4x/8 to

satisfy the CFL condition 4t ≤ 4x/maxj |vj| in transport part. The output time is

Tmax = 0.125. Check the relative error in l1 norm

e4x = max
t∈(0,Tmax)

‖ f4x(t)− f24x(t) ‖1

‖ f 0 ‖1

,

where f4x is the numerical solution calculated from a grid of size 4x. If e4x ≤ C4xk

for all 0 < 4x� 1, then the scheme is said to be k-th order accurate.

The l1 error of the first order and second order methods are presented in Figure 7.

The order of accuracy is shown to be first and second in space and time uniformly with

respect to ε. (The error in v is spectrally small, see [59], so it will not contribute much

to the errors.)

4.3.2 The asymptotic preserving property

In this section, we want to show that no matter whether the initial data is in equilibrium,

the first order method (4.15) and second order method (4.24) will push f towards the
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Figure 7: The l1 errors of the first order scheme (left) and second order scheme (right).

local Maxwellian in one step, and this is exactly the strong AP property defined in [36].

For the equilibrium initial data, we take the same one as in previous section (4.29) .

For nonequilibrium initial data we take the following “double peak” function

ρ0(x) =

√
2π

2
(2 + cos(2πx)), f 0(x, v) =

ρ0(x)√
2π

(
e−
|v+1.5|2

2 + e−
|v−1.5|2

2

)
, (4.31)

and let h(x) = 5.0132
1.2661

ecos(2πx) which satisfies the neutrality condition. We show the time

evolution of the “distance” between f and equilibrium M eq = ρ√
2π
e−
|v+φx|2

2 with respect

to different ε.

‖f −M eq ‖1=
∑
i,j

|fi,j −M eq
i,j | 4 x4 v.

Figure 8 gives the time evolution of ‖ f −M eq ‖1 for different ε, which shows that

fn − (M eq)n = O(ε) for all n ≥ 1 whether the initial condition is in equilibrium or not.

This validates that the first order scheme is indeed AP.

For the second order scheme, we have similar results, see Figure 9.
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Figure 8: The time evolution of ‖f −M eq ‖1 for different ε with equilibrium initial data
(left) and nonequilibrium initial data (right) using the first order scheme. The mesh
sizes are Nv = 64, Nx = 64, 4t = 4x/8.

4.3.3 Mixing regimes

Now we test our scheme in mixing regimes, where ε varies in space by several orders of

magnitude. For example, take ε to be

ε(x) =

 ε0 + 1
2
(tanh(5− 10x) + tanh(5 + 10x)) x ≤ 0.3;

ε0 x > 0.3,

where ε0 = 0.001, so that it contains both the kinetic and high field regimes. The initial

data is given by

ρ0(x) =

√
2π

6
(2 + sin(2πx)), f 0(x, v) =

ρ0(x)√
2π

e−
|v+φ0x|

2

2 , (4.32)

where x ∈ [−1, 1] and φ0 is the solution to (4.3b) with

h(x) =
1.6711

1.2661
ecos(2πx), (4.33)

and satisfies the periodic boundary condition φ0(−1) = φ0(1).
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Figure 9: The time evolution of ‖f −M eq ‖1 for different ε with equilibrium initial data
(left) and nonequilibrium initial data (right) using the second order scheme. The mesh
size are Nv = 64, Nx = 64, 4t = 4x/15.

In this test we compare the second order scheme (4.24) with the explicit scheme which

uses the second order Runge-Kutta discretization in time and MUSCL scheme for space

discretization. In our scheme, we take Nx = 100 and 4t = 4x/15 = 0.00125, while in

explicit scheme, we take Nx = 2000 and4t = min{ 4x
max |v| , ε0∆x, ε0∆v2}/5 = 7.0313 e−6.

The shape of ρ at three different times are presented in Figure 10, and one can see that

our new second order scheme gives a good approximation to the “reference” solution

obtained by the explicit method with much smaller mesh size and time step.

4.3.4 A Riemann problem

Now we apply our second order method to the 1−D Riemann problem:
(ρl, hl) = (1/8, 1/2), 0 ≤ x < 1/4; (4.34a)

(ρm, hm) = (1/2, 1/8), 1/4 ≤ x < 3/4; (4.34b)

(ρr, hr) = (1/8, 1/2), 3/4 ≤ x ≤ 1. (4.34c)
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Figure 10: The mixing regime problem. The solid line is computed by an explicit method
with refined mesh and serves as the ”reference” solution. The dots are obtained by the
new second order scheme.
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Let φ initially be the solution to −4x φ = ρ−h, and f = ρ√
2π
e−
|x+∇xφ|2

2 . Again periodic

boundary condition in x direction is applied.

For our second order scheme, we take Nx = 100 and 4t = 4x/15 = 0.00125. In

comparison, we use the second order Runge-Kutta scheme with MUSCL scheme in space,

and take Nx = 2000 and4t = min{ 4x
max |v| , ε04x, ε04v

2}/5 = 7.0313 e−6. We compute

the macroscopic variable ρ, φ and flux j(t, x) =
∫
R vf(t, x, v)dv. Figure 11 shows that

the results obtained by our second order scheme agrees very well with the “reference”

solution obtained by the explicit scheme with refined mesh.

Figure 11: The comparison of density, flux and potential for a Riemann problem at
time t = 0.2 between the under-resolved solution by the second order scheme (dots) and
resolved solution by the explicit second order Runge-Kutta scheme (solid line).

4.4 Concluding remarks

An asymptotic-preserving scheme for the Vlasov-Poisson-Fokker-Planck system in the

high field regime has been introduced in this chapter. The main idea is to combine the

two stiff terms, 1
ε
∇xφε · ∇vfε and 1

ε
Pnon together into a modified form of the Fokker-

Planck operator, which contains the information of the potential. Then we can use the

method developed in [59] to discretize this modified collision operator, and resulting in

an implicit scheme that only needs to invert a symmetric system, which can be solved by
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the conjugate gradient method. This scheme shares some good properties: it conserves

mass, preserves positivity, is stable and asymptotic preserving. A uniformly second order

scheme is also available here. Some numerical experiments are carried out to test the

performance of the scheme.
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Chapter 5

The semiconductor Boltzmann

equation

5.1 Introduction

In the semiconductor kinetic theory, the semi-classical evolution of the electron distribu-

tion function f(t, x, v), in the parabolic band approximation, solves the kinetic equation:

∂tf + v · ∇xf −
q

me

E · ∇vf = Q(f), t > 0, x ∈ Rdx , v ∈ Rdv , (5.1)

where q and me are positive elementary charge and effective mass of electrons, E(t, x)

is the electric field. The collision operator Q can be decomposed into three effects

Q = Qel +Qinel +Qee, (5.2)

where Qel and Qinel describe the interactions between the electrons and the lattice

imperfections, with the first one caused by ionized impurities and elastic part of the

phonon collisions (or called crystal vibrations) and the second one by inelastic part of

the phonon collisions. Qee characterizes the correlations between electrons themselves.

For low electron densities, the general form of Q is [74]

Q(f) =

∫
Rdv

(
s(v′, v)f(t, x, v′)− s(v, v′)f(t, x, v)

)
dv′, (5.3)
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where s is the transition probability depending on the specific scattering mechanism

described above, and satisfies the principle of detailed balance

s(v′, v)M(v′) = s(v, v′)M(v), (5.4)

where

M(v) =

(
2πKBT

m

)− dv
2

e
− v2

2v2
th (5.5)

is the Maxwellian, vth is the thermal velocity related to the lattice temperature T through

v2
th = KBT

me
and KB is the Boltzmann constant. The null space of Q in (5.3) is spaned

by this Maxwellian (5.5).

When the electron density is high, one should take Pauli’s exclusion principle into

account, and the collision operator Q becomes

Qdeg(f) =

∫
RNv

(
s(v′, v)f ′(1− f)− s(v, v′)f(1− f ′)

)
dv′, (5.6)

which is referred to as the degenerate case. Here f and f ′ are shorthanded notations for

f(t, x, v) and f(t, x, v′) respectively.

In principle, the electric field is produced self-consistently by the electrons moving

in a fixed ion background with doping profile h(x) throngh

∇x(ε(x)∇xΦ) = ρ(x)− h(x), E = −∇xΦ, (5.7)

where ρ(x) is the electron density, Φ is the electrostatic potential and ε(x) is the per-

mittivity of the material.

The numerical computation of electron transport in semiconductors through the

Boltzmann equation (BE) (5.1) is usually too costly for practical purposes since it in-

volves the resolution of a problem rested on 7-dimensional time and space. Several
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macroscopic models based on the diffusion approximation were derived. The classical

drift-diffusion (DD) [87] model was introduced, with the assumption that all the scatter-

ings in Q are strong and that the electron temperature relaxes to the lattice temperature

at the microscopic time scale. The connection between BE and DD model has been well

understood physically and mathematically [42, 81]. The case of the Fermi-Dirac statistics

was investigated in [42] as well. However, in most situations, the momentum relaxation

occurs much faster than temperature relaxation, thus results in an intermediate state at

which the electrons have reached a local equilibrium with a different temperature other

than the lattice temperature. The time evolution of this state is described by the Energy-

Transport (ET) model, which is a system of diffusion equations for the electron density

and energy. This model can be viewed as an augmented drift-diffusion model, and is

derived asymptotically under the scaling that both the elastic Qel and electron-electron

Qee collisions are dominant [4]. Another model is the Spherical Harmonic Expansion

(SHE) model which is obtained based on the observation that in some cases the electron-

electron collision cannot constitute one of the dominant scattering mechanisms [89, 90].

This model, the only dominant collision mechanism of which is Qel, can be considered

as a diffusion equation in the extended space: position and energy. In fact, the ET

model was usually derived through the SHE model by taking the limit on the scaled

electron-electron collision mean free path [26]. See also [30] for the new and simpler

derivation of the ET model directly through the Boltzmann equation. [3] outlines a

hierarchy between various macroscopic models as well as shows the macroscopic limit

that links the two successive steps within the hierarchy.

However, due to the rapid progress in miniaturization of semiconductor devices, the

standard drift diffusion models break down in some regime of hot electron transport.
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This regime concerns the physical situations where both the electric effects and collisions

are dominant, which is called the high field regime. After rescaling of the variables,

equation (5.1) can be written as

∂tf + v · ∇xf −
1

ε
E · ∇vf =

1

ε
Q(f), t > 0, x ∈ Rdx , v ∈ Rdv , (5.8)

where ε is the ratio between the mean free path and the typical length scale. It was first

studied by Frosali et.al [39, 38], and later by Poupaud [82] for the nondegenerate case,

where the limiting equation is a linear convection equation for the mass density with the

convection proportional to the electric field. It also gives a necessary condition for the

limit equation to embrace a unique solution, while if such a condition is not satisfied,

a travelling wave solution will exist which is the so-called runaway phenomenon. When

the electrostatic potential is obtained through the Poisson equation, [18] derives the high

field limit for the BGK-type collsion, and also reveals the boundary layer behavior when

bounded domain is considered. The high field asymptotics for the degenerate case was

carried out in [1], where the limit equation is a nonlinear convection equation for the

macroscopic density which has a local in time regular solution. It was revisited in [2]

where the convergence to entropy solutions and existence of shock profiles for the limit

nonlinear conservation law were considered.

Considerable literature has been devoted to the design of efficient and accurate nu-

merical methods for (5.1), such as [52, 12, 13, 22], to name just a few. This scheme

becomes inefficient in the high field regime. Only recently, schemes efficient in the high

field regime started to emerge [57, 23]. In this chapter, we are interested in designing

a numerical method that automatically becomes a macroscopic solver for the high field

limit equation when sending the small parameter ε to 0, which is the so called Asymptotic
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Preserving (AP) property put forward by Jin [53].

As one can see, when ε is small, two terms of equation (5.8) become stiff and explicit

schemes are subject to severe stability constraints. Implicit schemes allow larger time

steps and mesh sizes, but it is usually expensive due to the prohibitive computational

cost required by inverting a large algebraic system, even in the non-degenerate case

where the collision operator is linear. Another remarkable difficulty is that there is

no specific form of the local equilibrium Mh in the high field regime, which makes the

modern asymptotic preserving methods such as [23, 33, 106] very hard to implement. To

overcome the first difficulty, we follow the idea in [36] by penalizing the non-symmetric

stiff term by a BGK operator which is much easier to treat implicitly. To overcome the

second difficulty, inspired by the observation in [35] that one needs not to use the exact

local equilibrium as a penalization but a “good” approximation of it might be enough,

we only penalize the collision term by a ‘classical’ BGK operator with the Maxwellian

defined in (5.5) instead of the real Maxwellian for the high field limit, and leave the stiff

force term alone implicitly, at the cost of a weaker AP property

fn −Mn
h = O(4t+ ε) for n ≥ N and any initial data, (5.9)

where fn denotes f at discrete time tn.

The rest of the chapter is organized as follows. In the next section we give a brief

review of the scalings in the high field regime and the corresponding macroscopic limit.

Section 5.3 is devoted to the new scheme, as well as a derivation of its asymptotic

property. Then we present several numerical examples to test the efficiency, accuracy

and asymptotic property of the schemes in section 5.4. We also point out an open

question and our understanding in the end. At last, some concluding remarks are given
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in section 5.5.

5.2 Scalings and the high field limit

Since the transition probability in (5.3) satisfies the detailed balance principle, it is

convenient to introduce a new function

φ(v, v′) =
s(v′, v)

M(v)
, so that φ(v, v′) = φ(v′, v). (5.10)

Then the collision Q reads

Q(f) =

∫
Rdv

φ(v, v′)
(
M(v)f(t, x, v′)−M(v′)f(t, x, v)

)
dv′. (5.11)

Following [82], and also Chapter 2 in [74], introduce the rescaled variables:

x̃ =
x

L
, t̃ =

t

T
, ṽ =

v

vth
,

where L and T are reference length and time. By the dimension argument, the collision

term should be proportional to the reciprocal of a characteristic time, thus we define an

average relaxation time τ and the rescaled collision Q̃

1

τ
=

∫
RN
φ(v, v′)M(v)M(v′)dvdv′, Q̃ = τQ.

Note here that for the degenerate case the definition of τ is a bit different but similar.

The mean free path now can be defined as l = τvth. Next define the thermal voltage Uth

and the rescaled electric field Ẽ as

Uth =
mev

2
th

q
, Ẽ =

E

E0

,

where E0 is a reference field. Then the Boltzmann equation (5.1) takes the form

τ

T
∂t̃f +

τvth
L

ṽ · ∇x̃f −
τvth
Uth

E0 Ẽ · ∇ṽf = Q̃. (5.12)
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Now introduce the dimensionless parameter ε = l
L

and consider the high field scalings

E0 =
Uth
l
, T =

τ

ε
,

(5.12) becomes

∂tf + v · ∇xf −
1

ε
E · ∇vf =

1

ε
Q(f), (5.13)

where we have dropped the tilde for convenience.

5.2.1 The high field limit: the nondegenerate case

In (5.13), when ε vanishes, the limiting equation is a linear convection equation for the

macroscropic particle density with a convection proportional to the scaled electric field.

That is,

f(t, x, v)→ ρ(t, x)FE(t,x)(v), (5.14)

where FE(t,x)(v) is the solution to∫
Rdv

FE(v)dv = 1, E · ∇vFE +Q(FE) = 0, FE ≥ 0; (5.15)

while the equation for the macroscopic density ρ is obtained by integrating (5.13) w.r.t.

v

∂tρ(t, x) +

∫
RN
v · ∇xf = 0, (5.16)

and then passing to the limit to get

∂tρ(t, x) +∇x · (ρ(t, x)σ(E(t, x))) = 0, σ(E) =

∫
Rdv

vFE(v)dv. (5.17)

Not all Q gives a unique solution of (5.15). Poupaud [82] gave a criteria for the transition

probability s in the following theorem.
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Theorem 5.1. [82] Assume that the collision cross-section φ(v, v′) > 0 satisfies φ(v, v′) ∈

W 1,∞(R2dv), then the collision frequency

ν(v) =

∫
RN
s(v, v′)dv′ =

∫
RN
φ(v, v′)M(v′)dv′ (5.18)

is bounded and positive. If it further satisfies∫ ∞
0

ν(v + ηE)dη = +∞, a.e., (5.19)

and the initial data f(0, x, v) = f 0(x, v) solves E ·∇vf
0(x, v)−Q(f 0)(x, v) = 0 a.e., then

the solution to (5.13) converges to ρFE in the following sense: ∃ a positive constant CT

that depends on the initial data such that for any time t ≤ T , the following inequality

‖ f(t, ·, ·)− ρ(t, ·)FE(t,·)(·) ‖L1(Rdx×Rdv )≤ CT ε

holds.

Remark 5.2. Equation (5.17) together with (5.15) can be regarded as the first order

approximation of (5.13) which resembles the hydrodynamic approximation of the Boltz-

mann equation by the Euler equations. (5.17) that rules out all the diffusion effect, is

nothing but Ohm’s law. If one goes further to the second order approximation, a new

drift diffusion equation can be derived, which again resembles the Navier-Stokes approx-

imation of the Boltzmann equation.

Remark 5.3. The above result is obtained for the case where electrical field is given.

The analytical result for the case when the electrical field is self-consistent through the

Poisson equation is only derived by Cercignani, Gamba and Levermore in [18] for the

BGK collision operator, while for general collision it is still open.
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5.2.2 The high field limit: the degenerate case

Similar to the nondegenerate case, the transition probability s(v, v′) in (5.6) also satisfies

the principle of detailed balance [80], so it can be reformulated in the same way as (5.11),

Qdeg(f)(t, x, v) =

∫
RN
φ(v′, v)

(
M(v)f(t, x, v′)

(
1−f(t, x, v)

)
−M(v′)f(t, x, v)

(
1−f(t, x, v′)

))
dv′,

(5.20)

where M(v) and φ(v′, v) are defined the same as before in (5.5) and (5.10). The null

space of Qdeg(f)(t, x, v) is spaned by the Fermi-Dirac distribution

MFD =
1

1 + e
mev2

2KBT
− µ
KBT

, (5.21)

where T is the lattice temperature and µ is the electron Fermi energy. The dimensionless

form of the degenerate case is the same as (5.13), except that the collision Q is replaced

by Qdeg.

Assume B is either the Brillouin zone or the whole space Rdv . When sending ε to 0,

f can no longer be decoupled into two functions with one depending on x and t and the

other on v seperately because of the nonlinearity of the collision operator, instead one

has, under the hypothesis that φ ∈ W 2,∞(B2) and φ0 ≤ φ(v, v′) ≤ φ1 for some positive

constant φ0 and φ1,

f → F (ρ(t, x), E(t, x))(v)

where F (ρ, E)(v) is the unique solution in space DE = {F ∈ L1(B); E · ∇vF ∈ L1(B)}

such that 0 ≤ F ≤ 1 and

E · ∇vF −Qdeg(F ) = 0,

∫
RN
F (t, x, v)dv = ρ(t, x). (5.22)

Moreover, the mapping

(ρ, E) 7→ F (ρ, E) (5.23)
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from R+ × Rdx to L1(B) is C2 differentiable. Then the macroscopic density ρ solves

∂tρ(t, x) +∇x

(
j(ρ(t, x);E(t, x))

)
= 0, ρ(0, x) =

∫
RN
f 0(x, v)dv, (5.24)

where j(ρ;E) =
∫
RN vF (ρ, E)(v)dv. This result was proved in [1] for a given E(x) ∈ Rdx

on the time intervals such that the limit solution is regular.

Remark 5.4. Although there is no such condition like (5.19) to insure the existence of

the limit solution, the hypothesis that φ(v, v′) should be uniformly bounded from below

and above already implies it.

Remark 5.5. Due to the nonlinearity of the flux function in (5.24), only the existence

and uniqueness of a local in time regular solutions were available and shock might be gen-

erated later [2]. This is different from the nondegenerate case, where the limit equation

(5.17) is linear in ρ, thus a unique global in time solution exists.

5.3 A numerical scheme for the semiconductor Boltz-

mann equation

To design an asymptotic preserving method, one usually needs to treat the two stiff

terms – the force term and collision term implicitly. However, this would bring new

difficulties to invert the algebraic system originated by the non-symmetric difference

operator and the collision operator. In the last chapter when the collision is of the

Fokker-Planck type, these two terms were combined and rewrote into one symmetric

operator in velocity space. But unfortunately, this strategy cannot be implemented

here because no symmetric combination of the two is available. Another remarkable
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difficulty is that one cannot write down the local equilibrium Mh in high filed limit

explicitly, thus we cannot use the existent asymptotic preserving method for kinetic

equation in the hydrodynamic regime [23], nor can we use the even-odd decomposition

[56] due to the fact that one cannot derive a “non-stiff” force term. Here we adopt the

penalization idea introduced by Filbet and Jin [36]. In addition, inspired by the fact

that functions that share the same conserved quantities with the exact local equilibrium

can be used as candidates for penalty [35], we will only penalize the collision term by

a BGK operator which conserves mass, and treat the stiff force term implicitly by the

spectral method. To better illustrate our idea, we begin with the simplest case which is

the so-called “time relaxation model”.

Here for the sake of simplicity, we will explain our idea in the one dimensional

case. The generalization to the multidimensional case can be done in a straightforward

manner simply using the dimension-by-dimension discretization. Denote f(xl, vm, t
n) by

fnlm, where 0 ≤ l ≤ Nx and 0 ≤ m ≤ Nv, and Nx and Nv are the numbers of mesh points

in x and v directions respectively.

5.3.1 The nondegenerate isotropic case

In the low density approximation, if one only considers the collisions with background

impurities, the collision opertor can be approximated by a linear relaxation time operator

[18, 74]:

Q =

∫
Mf ′ −M ′fdv′ = Mρ− f, (5.25)

which is the simplest case with φ(v′, v) = 1 in (5.11). This is usually called the “time-

relaxation” model.



123

In this model, one can directly treat both stiff terms implicitly. The first order

scheme reads

fn+1 − fn

4t
+ v · ∇xf

n − 1

ε
E · ∇vf

n+1 =
1

ε
(Mρn+1 − fn+1), (5.26)

and we use the spectral discretization for the stiff force term. The scheme can be

implemented as follows

• Step 1. Integrate (5.26) over v, note that the two stiff terms vanish, and one ends

up with an explicit semidiscrete scheme for ρn+1:

ρn+1 − ρn

4t
+∇x ·

∫
RN
vfndv = 0;

– Step 1.1. If the electrical field is obtained through (5.7), then solve it by any

Poisson solver such as the spectral method to get En+1.

• Step 2. Approximate the transport term v · ∇xf
n in (5.26) by a non-oscillatory

high resolution shock-capturing method.

• Step 3. Use the spectral discretization for the stiff force term, i.e., (5.26) can be

reformulated into[
1 +
4t
ε
− 4t

ε
E · ∇v

]
fn+1 = fn −4tv · ∇xf

n +
4t
ε
Mρn+1,

then take discrete Fourier Transform w.r.t. v on both sides, one has[
1 +
4t
ε
− i4t

ε
E · k

]
f̂n+1 = F

(
fn −4tv · ∇xf

n +
4t
ε
Mρn+1

)
, (5.27)

where f̂ and F (f) denote the discrete Fourier Transform of f w.r.t. v.

• Step 4. Use the inverse Fourier transform on f̂n+1 to get fn+1.
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Remark 5.6. Although the force term E
ε
·∇vf contains a derivative, which looks “more

stiff” than the collision term, one cannot just treat it implicitly and leave the collision

explicit. This can be seen from the simple Fourier analysis on the toy model

ft +
E

ε
fv = −1

ε
f, (5.28)

with the discretization

fn+1 − fn

4t
+
E

ε
∂vf

n+1 = −1

ε
fn,

where fn(v) denotes f(tn, v). Applying the Fourier Transform on fn(v) w.r.t. v to get

f̂n(k), then one has

∣∣∣f̂n+1(k)
∣∣∣2 =

(
1− 4t

ε

)2

1 +
(4t
ε
E · k

)2

∣∣∣f̂n(k)
∣∣∣2 ,

note that for stability the coefficient on the right hand side needs to be less than one for

all values of k, that is 4t
ε
< 2, thus 4t must be dependent of ε.

Since both of the stiff terms are treated fully implicitly, we have the following strong

AP property.

Proposition 7. Let

‖ fn(x, ·) ‖L2(Rdv )=

√∫
RN
f(tn, x, v)2dv, (5.29)

then in the regime 4t� ε we have

‖fn−Mn
h ‖L2(Rdv ) ≤ αn‖f 0−M0

h‖L2(Rdv )+O(ε) with α < Cε < 1 and C independent of ε,

(5.30)

where Mn
h = ρnFE is the local equilibrium in the high field regime, with FE being the

solution to the limit equation (5.15) with Q = ρM − f .
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Proof. Assume all functions are smooth and in L2(Rdv). SinceMh satisfies−E·∇vM
n+1
h =

Q(Mn+1
h ) = ρn+1M −Mn+1

h , a simple manipulation of scheme (5.26) gives(
1 +
4t
ε
− 4t

ε
E · ∇v

)
(fn+1−Mn+1

h ) = (fn−Mn
h )− (Mn+1

h −Mn
h )−4tv · ∇xf

n.(5.31)

Now take the Fourier Transform w.r.t. v on both sides, (5.31) reformulates to

f̂n+1 − M̂n+1
h

=
f̂n − M̂n

h

1 + 4t
ε
− i4t

ε
E · k

− M̂n+1
h − M̂n

h

1 + 4t
ε
− i4t

ε
E · k

− 4t
1+4t

ε
−i4t

ε
E · k

F (v· ∇xf
n).(5.32)

Let

G =
1

1 + 4t
ε
− i4t

ε
E · k

, (5.33)

take the L2 norm on both sides, one has, by Minkowski inequality

‖ f̂n+1 − M̂n+1
h ‖L2

≤ ‖ G(f̂n − M̂n
h ) ‖L2 +

∣∣∣∣∣∣G((M̂n+1
h − M̂n

h ) +4tF (v · ∇xf
n)
) ∣∣∣∣∣∣

L2
. (5.34)

Notice that
∣∣∣M̂n+1

h −M̂n
h

∣∣∣ ≤ C1 4 t(M̂h)t and
∣∣∣∣G4 t

∣∣∣∣
L∞
≤ C2ε for 4t � ε, where C1

and C2 are two constants independent of 4t and ε. Then (5.34) becomes

‖ f̂n+1 − M̂n+1
h ‖L2≤ ‖ G(f̂n − M̂n

h ) ‖L2 +Cε. (5.35)

Since ‖ G ‖L∞≤ C3ε < 1 with C3 independent of ε for 4t � ε, applying Parseval’s

indentity, one has

‖fn+1 −Mn+1
h ‖L2(Rdv ) ≤ α‖fn −Mn

h ‖L2(Rdv ) +O(ε). (5.36)
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5.3.2 The nondegenerate anisotropic case

This section is devoted to the nondegenerate anisotropic case. Recall that the collision

operator takes the form

Q(f) =

∫
RNv

φ(v, v′)
(
M(v)f(t, x, v′)−M(v′)f(t, x, v)

)
dv′ = Q+(f)− ν(v)f. (5.37)

Although Q is linear in f , due to the non-symmetric nature of the transition probability

s(v′, v), treating it implicitly as what we did in the last section will make it difficult to

invert, especially in higher dimensions. To overcome this difficulty, we adopt the idea

introduced by Filbet and Jin in [36] by penalizing the collision term by a BGK operator,

the simple structure of which makes it easy to be treated implicitly. Thus the first order

scheme reads

fn+1 − fn

4t
+v·∇xf

n−1

ε
E ·∇vf

n+1 =
1

ε
Q(fn)−λ

ε
(ρnM−fn)+

λ

ε
(ρn+1M−fn+1), (5.38)

where M is defined in (5.5). Then (5.38) has the similar implicit structure as (5.26),

thus one can solve it by the same steps introduced in section 5.3.1, yielding a scheme

that is implicit but can be implemented explicitly.

Notice that in [36], the penalty is the local equilibrium of the collision operator,

which will drive f to the right Maxwellian if treated implicitly. However, as it has

been mentioned, there is no explicit form of the “high field equilibrium” which is the

solution to E · ∇vf = Q(f), so we instead penalize the equation by the Maxwellian

of the collision term, and this will indeed force f to the right local equilibrium by the

following proposition. The cost of this “wrong Maxwellian” penalty is the extra4t error

in (5.39). It is interesting to point out that this result is similar to the observation in [35]

where the authors use the classical Maxwellian instead of the quantum one to penalize

the quantum Boltzmann collision operator, and get the right asymptotic property.
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Proposition 8. In (5.29), if Q takes the form of Q = ρM − f and λ > 1
2
, then

‖fn −Mn
h ‖L2(Rdv ) ≤ αn‖f 0 −M0

h‖L2(Rdv ) +O(ε+4t) with α < 1, (5.39)

where Mn
h = ρnFE is the local equilibrium in the high field regime, with FE being the

solution to the limit equation (5.15) with Q defined as above.

The proof is very similar to the one for Proposition 9 in the next section and is

omitted here.

Remark 5.7 (Choice of λ). For the general collision, λ should be chosen to satisfy

λ > maxv µ(v), where ν is the collision frequency defined in (5.18). One can also refer

to [106] for positivity concern.

Remark 5.8. This method can be easily extended to case with non-parabolic energy

diagram such as Kane’s model [12, 13, 22] since the convection term is treated explicitly.

5.3.3 The degenerate case

When the quantum effect is taken into account, the collision operator becomes nonlinear.

Nevertheless, this can be dealt with in the same way as in section 5.3.2 at the same cost.

Again inspired by [35], we use the classical Boltzmann distribution instead of the Fermi-

Dirac distribution (5.21) as the penalty to avoid the complicated nonlinear solver for the

Fermi-energy in (5.21) from mass density ρ. Since the 4t error will be inevitable in the

asymptotic property as we have seen in the last section, this change of penalty will only

introduce new error of O(4t). Similar to (5.38), the first order scheme takes the form

fn+1 − fn

4t
+ v · ∇xf

n − 1

ε
E · ∇vf

n+1 =
1

ε
Qdeg(fn)− λ

ε
(ρnM − fn) +

λ

ε
(ρn+1M − fn+1),

(5.40)
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where Qdeg is defined in (5.6) and M is the same as (5.5). In practice, similar to Remark

5.7, λ is chosen to be maxv
∫
RN φ(v′, v)M(v′)(1− f(v′))dv′ .

Because of the nonlinearity of Qdeg, it is not easy to check the asymptotic property

analytically. Instead we check it for the case where Qdeg is replaced by the “quantum

BGK” operator “MFD − f” in the following proposition.

Proposition 9. Assume the solutions are smooth and in L2(Rdv). If λ > 1
2
, then the

scheme (5.40) with Qdeg replaced by “MFD − f” has the asymptotic property

‖fn −Mn
qh‖L2(Rdv ) ≤ αn‖f 0 −M0

qh‖L2(Rdv ) +O(ε+4t) (5.41)

with 0 < α < 1, where Mqh is the solution to the high field limit equation

−E · ∇vMqh = MFD −Mqh,

∫
RN
Mqhdv =

∫
RN
fdv =

∫
RN
MFDdv = ρ. (5.42)

Proof. Since Mqh satisfies −E · ∇vM
n+1
qh = Mn+1

FD −M
n+1
qh , the scheme (5.40) becomes(

1 +
λ4 t

ε
− 4t

ε
E · ∇v

)
(fn+1 −Mn+1

qh )

=

(
1 +

(λ− 1)4 t

ε

)
(fn −Mn

qh)−
(

1 +
(λ− 1)4 t

ε

)
(Mn+1

qh −M
n
qh)

+
λ4 t

ε
(ρn+1 − ρn)M − 4t

ε
(Mn+1

FD −M
n
FD)−4tv · ∇xf

n. (5.43)

After taking the Fourier Transform w.r.t. v on both sides, it reformulates to

f̂n+1 − M̂n+1
qh

=
1 + (λ−1)4t

ε

1 + λ4t
ε
− i4t

ε
E · k

(
f̂n−M̂n

qh

)
−

1 + (λ−1)4t
ε

1 + λ4t
ε
− i4t

ε
E · k

(
M̂n+1

qh −M̂
n
qh

)
+

λ4t
ε

1 + λ4t
ε
−i4t

ε
E · k

(ρn+1−ρn)M̂ −
4t
ε

1 + λ4t
ε
− i4t

ε
E · k

(
M̂n+1

FD − M̂
n
FD

)
− 4t

1 + λ4t
ε
− i4t

ε
E · k

F
(
v · ∇xf

n
)
. (5.44)
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Let

G1 =
1 + (λ−1)4t

ε

1 + λ4t
ε
− i4t

ε
E · k

, (5.45)

take the L2 norm for (5.44), and apply the same procedure as in Proposition 7, we have

‖ f̂n+1 − M̂n+1
qh ‖L2≤ ‖G1 ‖L∞‖ f̂n − M̂n

qh ‖L2 +O(4t+ ε), (5.46)

where the O(4t) terms come from the second, third and forth terms in (5.44) and form

major difference compared to (5.32). If λ > 1
2
, ‖G1 ‖L∞≤ α < 1, the result (5.41) then

follows.

Remark 5.9. To get better asymptotic property than (5.39) and (5.41), we would like

to extend the scheme to second order. Follow the idea in [51], using backward difference

formula in time and MUSCL scheme [68] in space, we have

3fn+1 − 4fn + fn−1

24 t
+ 2v · ∂xfn − v · ∂xfn−1 +

1

ε
En+1 · ∂vfn+1

=
2

ε
Q(fn)− 1

ε
Q(fn−1)− 2λ

ε
(ρnM−fn)+

λ

ε
(ρn−1M−fn−1)+

λ

ε
(ρn+1M−fn+1).(5.47)

However, since the stiff terms contain a first derivative, it poses a very restrictive

bound on λ for stability
(
here one condition we derived is |∇vQ(f)| ≤ λ ≤ min(3, 5

2
+

ε
4t)|∇vQ(f)|

)
which might not be applicable in general cases, a better second order

discretization in time is needed in the future work.
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5.4 Numerical examples

In this section, we perform several numerical tests for the semiconductor Boltzmann

equations with different collisions and in different asymptotic regimes. In the one di-

mensional examples, we use the following settings unless otherwise specified. The com-

putational domain for x and v is [0, Lx] × [−Lv, Lv] = [0, 1] × [−8, 8] with Nx = 128

grid points in x direction and Nv = 32 in v direction. The time step is chosen to be

4t = 4x
10

to satisfy the CFL condition 4t ≤ 4x
maxj |vj | in the transport part. Periodic

boundary conditions in x will be used to avoid any difficulties that might be generated

by boundary. The “M” is the absolute Maxwellian

M(v) =
1√
2π
e−

v2

2 . (5.48)

The permittivity ε(x) in the Poisson equation (5.7) is taken to be ε(x) ≡ 1.

5.4.1 The time relaxation model

We first test the numerical method presented in section 5.3.1 for the simplest time

relaxation model (5.13) with (5.25). The initial condition is taken as

ρ0(x) =

√
2π

2
(2 + cos(2πx)) , and f 0(x, v) = ρ0(x)M(v), (5.49)

which is not at the local equilibrium. The electric field E(t, x) satisfies the Poisson

equation (5.7) with the doping profile

h(x) =

∫ Lx
0

ρ(x)dx

1.2611
ecos(2πx). (5.50)

We show the time evolution of the asymptotic error defined as

errorAP n =
∑
l,m

|El · ∇vf
n
l +Mρnl − fnlm| 4 x4 v, (5.51)
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where the derivative w.r.t. v is calculated by the spectral method. Figure 12 gives the

error with ε decreasing by 1
10

each time, which shows that the asymptotic error is of

order ε, thus verifies the results in Proposition 7.
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Figure 12: The time relaxation model coupled with the Poisson equation for the electric
field. The time evolution of asymptotic error (5.51) for different ε with nonequilibrium
initial data using the first order scheme in section 5.3.1.

5.4.2 The nondegenerate anisotropic case

In this section, we consider the nondegenerate anisotropic case with collision cross-section

defined as

φ(v, v′) = 1 + e−(v−v′)2 , (5.52)

and the initial condition is chosen the same as (5.49).

• Asymptotic property
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Figure 13: The nondegenerate anisotropic model with a fixed electrical field. The time
evolution of asymptotic error (5.53) for different ε with nonequilibrium initial data (left),
and a test of other errors (5.54) and (5.55) in comparison (right).

Consider fixed E = 0.2 at the moment. Figure 13 gives the relations between ε and

the asymptotic error defined as

errorAP n =
∑
l,m

∣∣El · ∇vf
n
l +Q(f)nl,m

∣∣4 x4 v, (5.53)

where the derivative w.r.t. v is again calculated by the spectral method. The initial

data is away from the equilibrium. It can be seen in Figure 13 that when ε is relatively

large, the error is dominated by ε. However, when ε is small enough, the time step

4t = 3.9063e− 4 will play a role so that the error will not decrease with the ε. The first

order scheme is better performed asymptotically than we expected in Proposition 8 as

the error observed in Figure 13 is smaller than O(4t).

To show that our scheme does not push f to the wrong Maxwellian, in Figure 13 we

also plot the following two errors. One is defined as

errorPenn =
∑
l,m

|El · ∇vf
n
l + λ(ρM − f)| 4 x4 v (5.54)
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to show that our penalization will not affect the asymptotic property. The other is the

distance between f and the Maxwellian of the collision

errorMn =
∑
l,m

∣∣fnl,m − ρnlM ∣∣4 x4 v, (5.55)

which is to show that our implicit treatment of the stiff force term necessarily accounts

for the right asymptotic limit. It is shown that both errors stays large when ε is small,

which means f will not be driven to either cases above when sending ε to 0.

• A Riemann problem

Consider the Riemann initial data to test the efficiency of the method:
(ρl, hl) = (1/8, 1/2), 0 ≤ x < 1/4; (5.56a)

(ρm, hm) = (1/2, 1/8), 1/4 ≤ x < 3/4; (5.56b)

(ρr, hr) = (1/8, 1/2), 3/4 ≤ x ≤ 1. (5.56c)

Initially f 0(x, v) = ρ√
2π
e−

v2

2 and let E be the solution of −∇xE = ρ− h. Again periodic

boundary condition in x direction is applied. ε is fixed to be 10−3. For reference solution,

we use the explicit second order Runge-Kutta discretization in time and MUSCL scheme

for space discretization, with Nx = 1024, Nv = 64 and 4t = min(4x/10, ε4 v)/4 =

2.4414e− 05. Define the flux and energy as the first and second moments of f :

flux =

∫ Lv

−Lv
fvdv, energy =

∫ Lv

−Lv
fv2dv. (5.57)

From Figure 14, one sees a good match between our solution and the reference solution.
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Figure 14: The plot of density, flux and energy at time t = 0.2 of the anisotropic
nondegenerate case with (5.52) with E obtained by Poisson equation. The initial data
is given in (5.56).

5.4.3 The degenerate case

In this section, we consider the degenerate case where the collision Qdeg is defined as

(5.6).

• Asymptotic property

The initial condition is taken as

ρ0(x) =

√
2π

4
(2 + cos(2πx)), and f 0(x, v) = ρ0(x)M(v) (5.58)

to satisfy 0 ≤ f ≤ 1. The electrical field E is obtained through the Poisson equation

−∇xE = ρ − h with h given by (5.50). Again we compare the asymptotic error (5.53)

with Q replaced by Qdeg for different orders of ε. As in the non-degenerate anisotropic

case, the error is first dominated by ε and then by 4tβ when ε is small enough, which
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Figure 15: The degenerate isotropic model coupled with the Poisson equation. The
time evolution of asymptotic error (5.53) with Q replaced by Qdeg for different ε with
nonequilibrium initial data using the first order scheme in section 5.3.1.

is the same as was shown in section 5.3.3 (in section 5.3.3, β is shown to be 1, but

numerically we get better result with β > 1), see Figure 15 where 4t = 3.9063e− 4.

• Mixing scales

To test the ability of our scheme for mixing scales, consider ε taking the following

form:

ε(x) =

 ε0 + 1
2
(tanh(5− 10x) + tanh(5 + 10x)) x ≤ 0.3;

ε0 x > 0.3,
(5.59)

where ε0 = 0.001 so that it contains both the kinetic and high field regimes, see Figure

16. The initial condition is taken to be

f 0(x) =
1

6
(2 + sin(πx))e−

1
2
v2 . (5.60)

Consider the anisotropic scattering where φ(v, v′) is taken the same form as in (5.52). E

is calculated through Poisson equation (5.7) with h given by (5.50). We use the second
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order Runge-Kutta time discretization with the MUSCL scheme on a refined mesh to

get the reference solution. Good agreements of these two solutions can be observed in

Figure 17.

5.4.4 The electron-phonon interaction model

In this section, we consider a physically more realistic model, the electron-phonon inter-

action model, where the transition probability is

s(v, v′) = K0δ

(
v′2

2
− v2

2

)
+K

[
(nq + 1)δ

(
v′2

2
− v2

2
+~ωp

)
+ nqδ

(
v′2

2
− v2

2
− ~ωp

)]
,

(5.61)

and nq given by nq = 1

e

~ωp
KBTL −1

is the occupation number of phonons. Here ~ is the

planck constant, KB is the Boltzmann constant, ωp is the constant phonon frequency,

TL is the lattice temperature, K and K0 are two constants for the material.

The singular nature of s(v, v′) makes the collision hard to compute numerically, but

the cylindrical symmetry of s make it possible to use polar coordinates so that the
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Figure 17: The degenerate anisotropic model coupled with the Poisson equation. Con-
sider the mixing regimes with ε given in (5.59). Compare the first order scheme (5.26) on
coarse mesh with an explicit method on refined mesh. We plot the macroscopic density,
flux and energy at different times.
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singularity in the delta function can be removed and the dimension of integral can be

decreased by one [12, 13, 22]. However, this trick is not easy to be implemented here

since we treat the stiff force term implicitly, and changing to polar coordinates will make

it harder to invert. Instead, we use the spectral method [79] which can also remove the

singularity.

In this numerical example, assume dx = 1 and dv = 2. Recall that the collision (5.3)

can be written as

Q = Q+(f)(t, x, v)− ν(v)f(t, x, v). (5.62)

Similar to [79], we restrict f on the domain Dv = [−Lv, Lv]2 and extend it periodically

to the whole domain. Lv is chosen such that the support of f is supp(f) ⊂ B(0, R) = BR

and Lv = 2R. Similar to [79], approximate f by truncated Fourier serious

f(v) ≈
Nv/2∑

k=−Nv/2+1

f̂ke
i π
Lv
k·v, f̂k =

1

(2Lv)2

∫
Dv

f(v)e−i
π
Lv
k·vdv, (5.63)

then Q+(f) is computed as follows

Q+(f) =

∫
BR

S(v′, v)f(t, x, v′)dv′

=

Nv/2∑
k=−Nv/2+1

f̂k

∫
BR

ei
π
Lv
k·v′
[
(nq + 1)Kδ

(
1

2
v2 − 1

2
v′2 + ~wp

)

+nqKδ

(
1

2
v2 − 1

2
v′2 − ~wp

)
+K0δ

(
1

2
v2 − 1

2
v′2
)]

dv′. (5.64)
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Let ξ′ = 1
2
v′2, then change of variable v′ =

√
2ξ′(cos θ′, sin θ′) leads to

Q+(f) =

Nv/2∑
k=−Nv/2+1

f̂k

[
(nq + 1)K

∫ 2π

0

ei|k|
√

2(ξ+~wp) cos θ′ π
Lv dθ′χξ+~wp≤ 1

2
R2

+ nqK

∫ 2π

0

ei|k|
√

2(ξ−~wp) cos θ′ π
Lv dθ′χ0≤ξ−~wp≤ 1

2
R2

+ K0

∫ 2π

0

ei|k|
√

2ξ cos θ′ π
Lv dθ′χξ≤ 1

2
R2

]
=

Nv/2∑
k=−Nv/2+1

f̂kB(|k|, |v|), (5.65)

with

B(|k|, |v|) = 2π

[
(nq + 1)KJ0

(√
2(ξ + ~wp)|k|

π

Lv

)
χξ+~wp≤ 1

2
R2

+KnqJ0

(√
2(ξ − ~wp)|k|

π

Lv

)
χ0≤ξ−~wp≤ 1

2
R2+K0J0

(√
2ξ|k| π

Lv

)
χξ≤ 1

2
R2

]
, (5.66)

where J0 is the Bessel function of order 0

J0(α) =
1

2π

∫ 2π

0

eiα cos θdθ.

In the same way, the collision frequency ν(v) can be computed as

ν(v) =

∫
B(0,Lv)

s(v, v′)dv

= 2π
[
K(nq + 1)χ0≤ξ−~wp≤ 1

2
R2 +Knqχξ+~wp≤ 1

2
R2 +K0χξ≤ 1

2
R2

]
. (5.67)

Now let Lv = 8, x ∈ [0, 1], KBTL = 1
2
, ~wp = 1, K = 0, and K0 = 1/5π. Then the

2D Maxwellian is M = 1(√
π

2KBTL

)2 e− v2

2KBTL = 1
π
e−v

2
. We test two situations. One is for

the pure high field regime with fixed ε = 10−3 and the initial data taking the form of

(5.49) with M replaced by 1
π
e−v

2
. The macroscopic quantities at time t = 0.2 are given

in Figure 18. The other is for mixing regimes problem, as ε defined the same as (5.59)

but on the space interval [0, 1] and initial condition taken (5.60). To get better accuracy,
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Figure 18: The macroscopic quantities for the electron-phonon interaction model with
smooth initial data (5.49) and ε = 10−3: mass density (ρ), fluxes in v1 (flux1) and v2

(flux2) directions, and energy at time T = 0.2. ε = 10−3. Solid line: explicit method
with Nx = 1024, Nv = 32. Dots: second order scheme (5.47) with Nx = 128, Nv = 32.

we use (5.47) and choose λ = maxv ν(v) in this case which does not violate the stability

constraint. See Figure 19 for the time evolution of the macroscopic quantities. The

reference solution is calculated by the forward Euler method with second order slope

limiter method for space discretization on a much finer mesh.

It can be checked that the collision frequency (5.67) meets the condition (5.19), but

φ(v, v′) = s(v,v′)
M(v′)

does not belong to W 1,∞(R4) as assumed in Theorem 5.1. To our

knowledge, no result is available numerically or analytically for the existence of the high

field limit in this situation. From our numerical experiment, it seems to indicate that

in this case, the solution does exist since our schemes capture it well in Figure 19. This

is the first attempt to treat this problem in the high field regime, and we would like to

put the designing of a fast efficient scheme in the future as well as the approximation of

the runaway phenomenon that might be generated in this case.
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Figure 19: The time evolution of macroscopic quantities in electron-phonon interaction
model in mix regimes (5.59) with initial data (5.60): mass density, electric field, flux in
v1 direction, and energy. Solid line: an explicit method with Nx = 1024, Nv = 32. Dots:
the second order scheme (5.47) with Nx = 128, Nv = 32.



142

5.5 Concluding remarks

A numerical scheme for the semiconductor Boltzmann equation efficient in the high field

regime has been introduced in this chapter. One difficulty in this problem is that there

is no explicit form for the local equilibrium, which makes the asymptotic preserving

methods hard to design. Our main idea is to penalize the collision term by a BGK

operator and treat the stiff force term implicitly by the spectral method. The price to

pay for this “wrong Maxwellian” penalization is merely the 4t error in the asymptotic

property (5.39) and (5.41). We also test our scheme to a physically more realistic model

in the end, and give our explanation to an open question.
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Chapter 6

Conclusion

6.1 The hyperbolic relaxation system

For the hyperbolic system with two-scale relaxations, it is much more efficient to compute

the approximate scalar conservation law in the regime where the relaxation time is small.

Motivated by [41], we propose a domain decomposition method for it. The interface

condition is obtained according to the sign of the characteristic speed at the interface

via formal asymptotic analysis. The derived system, completely decoupled, is proved

to be asymptotically close to the original hyperbolic relaxation system. When the flux

in the associated scalar conservation law is linear, we are able to represent the solution

explicitly by the Laplace Transform so as to derive the asymptotic error of the domain

decomposition system in L2 sense. The idea of the proof follows that in [103] with

new contributions on constructing auxiliary systems. On the other hand, for the general

nonlinear flux, by use of the classical compactness argument, we first prove the existence

and stability of the solution to the original system as well as its strong convergence to

the entropy weak solution of the new decoupled system. Then by matched asymptotic

analysis, we redo the derivation of the interface condition in a rigorous way, obtaining

an extension of it to the case when there is a standing shock sticking to the interface.

Although we have a deep mathematical understanding of the simple 2× 2 prototype
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model, there is still a long way to reach the more general coupling of the kinetic and

hydrodynamic equations. An interesting attempt is to consider the coupling of two

hyperbolic systems with different number of equations, for instance, the coupling between

the Broadwell model and the corresponding hydrodynamic limit. Difficulties arise here

because there are incoming and outgoing waves in both equilibrium and non-equilibrium

regimes, making the resulting domain decomposition system impossible to be decoupled.

And one characteristic speed of the Broadwell model being zero further complicates the

boundary layer analysis [72, 71]. Another situation is untouched either, that is when

shock passes through the interface, the boundary layer and shock layer may have some

interesting interactions that is worth thinking about.

6.2 The high field limit

We construct numerical schemes for the Vlasov-Poisson-Fokker-Planck system and the

semiconductor Boltzmann equation efficient in the high field regime. Numerical chal-

lenges come form the two stiff terms: the collision term and the force term. For the

first system, we treat both terms implicitly at the same time based on the observation

that the combination of them share the same structure as the Fokker-Planck operator,

hence the symmetric discretization in [59] can be applied here. Such method is proved

to have all the expected properties: mass conservation, positivity preservation, asymp-

totic preservation and stability. An extension to the second order is also obtained. For

the second equation, another distinctive difficulty is that no explicit expression of the

equilibrium is available. To overcome it, we adopt the idea from [36] by penalizing

the collision term by a classical ‘BGK’ operator and treat the force term implicitly by
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the spectral method. This idea is applicable to both non-degenerate and degenerate

cases. A compensate for the wrong “Maxwelliam” is merely the extra O(4t) error in

the asymptotic property, the same conclusion as observed in [35].

The methods for the VPFP system is well-established, but for the semiconductor

Boltzmann equation, there is some room to improve. A second order scheme that up-

grade the O(4t) error to O(4t2) is imperative. As mentioned in Chapter 5, we are

trapped in the stability requirement for the magnitude of the penalty parameter, and

we would like to find a good second order method with good stability in the near future.

For the electron-phonon interaction model in section 5.4.4, we are interested in explor-

ing further in constructing a fast efficient solver for the singular collision operator and

a numerical approximation of the potential runaway phenomenon as well.
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