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abstract

Turbulence is ubiquitous in space and astrophysical plasmas and is believed to play an

important role in particle heating and nonthermal acceleration. These plasmas are commonly

threaded by an external magnetic field imposed by the object they surround (e.g., planet,

star), making magnetized plasma turbulence a problem of significant interest. In this thesis,

we use numerical simulations to study two relatively unexplored regimes of magnetized

plasma turbulence, viz., the sub-electron inertial scale in nonrelativistic low electron beta

plasmas and both the magnetohydrodynamic and kinetic scales in relativistically hot plasmas.

Phenomenology is used to model the energy distribution of turbulent fluctuations and

particles.

In the nonrelativistic regime studied, energy dissipation is seen to be strongly intermittent,

concentrating on electron-scale current sheets. A few of these current sheets exhibit signatures

of electron-only reconnection.

The particle energy probability density function in the relativistic regime displays a

nonthermal tail of ultrarelativistic particles that goes from power-law-like to log-normal as the

guide field is increased. We propose that this can be understood in terms of the acceleration

mechanism that dominates in each case. Also noteworthy is the observed intermittency in

the spatial distribution of ultrarelativistic particles.
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1 introduction

1.1 The basic problem of turbulence

The cover of the book “Turbulence” by Uriel Frisch shows a page of Leonardo da Vinci’s

notes from his lifelong studies on hydrodynamics. In it, drawings of different flows can be

seen, including a couple displaying the formation of very complicated – turbulent – structures.

Da Vinci’s experimental research on turbulent water flows was surely remarkable for the time

and even presaged some modern ideas (e.g., eddies spanning multiple scales) but, having lived

in the pre-Newtonian era, he lacked both the physical and mathematical tools to provide a

proper quantitative description of his observations and his conclusions were not always in

line with modern fluid theory (Marusic and Broomhall, 2021).

It is an understatement to say that in the five centuries since da Vinci’s passing physics and

mathematics have advanced a great deal. Among the remarkable developments of theoretical

physics is the discovery in the 19th century of the Navier-Stokes equation (Navier, 1823;

Stokes, 1843), which is the dynamical equation governing incompressible flows. Today it is

even possible to solve this equation on a computer and reproduce the turbulent flows da

Vinci observed in the 15th and 16th centuries (Colagrossi et al., 2021).

It is noteworthy that turbulence emerges in numerical simulations that solve the Navier-

Stokes equation, as it suggests that this phenomenon is contained in it (in the case of

incompressible hydrodynamics). However, to say that we truly understand turbulence we

would like to have a mental picture of the phenomenon that can be turned into a precise

mathematical model to be corroborated or falsified against experiments and simulations.

The complexity of the turbulent flow suggests that one should try to model the statistical

properties of turbulence1, ideally using quantities that are easy to measure in experiments or

simulations. A first-principles understanding of turbulence based on the dynamical equation
1For a more rigorous justification for a probabilistic description of turbulence, see Frisch (1995), Chapter

3.
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would be highly desirable, but this is an extremely challenging mathematical problem that

remains evasive to this day (although advances in this direction are taking place; see, for

example, Eyink (2018b,a)).

An alternative to the first-principles approach is the use of phenomenology, where the

dynamical equation is complemented by unproven but plausible assumptions inferred from

empirical observations. This was the approach successfully followed by Andrey Kolmogorov

to derive the second and third order structure functions (Kolmogorov, 1941a,b), obtaining

the celebrated K41 theory, to be reviewed in the next section.2

The main topic of this dissertation is magnetized plasma turbulence, ubiquitous in space

and astrophysical systems (e.g., heliosphere, magnetosphere, accretion disks; see Biskamp

(2003); Bruno and Carbone (2013)). By magnetized we mean that the plasma is subjected

to an externally imposed magnetic field, which we will refer to as guide field. In plasma

turbulence, we have the additional complication of the formation of turbulent structures in

the electromagnetic field. Moreover, the low collisionality typical of space and astrophysical

plasmas and the different possible values of the plasma parameters (e.g., magnetic guide

field, plasma beta) will offer us a wide variety of turbulent regimes that should keep plasma

physicists entertained and employed for the foreseeable future.

Numerical simulations are even more important in plasma turbulence than in hydrody-

namics, as in situ measurements of the space and astrophysical plasmas of interest require

at best sending expensive probes into the magnetosphere or heliosphere, and at worst into

astrophysical systems so distant that the project would violate the implicit rule of science

that the researchers should still be alive by the start of the data collection.

In this dissertation, we use numerical simulations to study relatively unexplored regimes

of magnetized plasma turbulence, viz., plasmas with low electron beta (and ion beta of order

one) and relativistically hot plasmas. Phenomenology will be used to interpret the results

and, in some cases, to derive mathematical models that can be contrasted against numerical
2We also note that the second order structure function was independently arrived at by Alexander

Obukhov (Obukhov, 1941).
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observations (for example, the energy spectrum).

Throughout the rest of this introduction, we will go over the background material necessary

to understand the motivation and methodology of the work that will be presented in Chapters 2

and 3.

1.2 Hydrodynamic turbulence phenomenology

In this section, we illustrate the idea of turbulence phenomenology by briefly reviewing the

well-understood hydrodynamic case. Thus, we will work out Kolmogorov 1941 theory, or

just K41. The reader interested in more extensive treatises should check Frisch (1995) and

Biskamp (2003).

To use phenomenology we need to have a good mental picture of the phenomenon we

intend to describe, so let us begin this section by presenting the Navier-Stokes equation for

an incompressible fluid:

∂tU + (U · ∇)U = −∇
(
P

ρ

)
+ ν∇2U + f , (1.1a)

∇ · U = 0, (1.1b)

where U(x, t) is the fluid velocity field, P (x, t) is the pressure, assumed isotropic, f is any

external force per unit mass (it could be gravity or it could be the force with which you stir

your tea), ρ is the mass density (which we are assuming uniform for simplicity), and ν is

the kinematic viscosity (also assumed uniform). The first line is simply Newton’s second

law applied to a fluid element. The second line is the condition of incompressibility. These

equations are to be complemented by initial and boundary conditions.

Let us now define the longitudinal structure function of order p, S∥
p(r, ℓ, T ), a quantity that

is easy to measure in experiments (for low p) and that will be useful in our phenomenological
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study of turbulence:

S∥
p(r, ℓ, T ) ≡ ⟨δUp

∥ (r, ℓ, t)⟩, δU∥(r, ℓ, t) ≡ [U(r + ℓ, t) − U(r, t)] · ℓ

ℓ
, (1.2)

where p > 0 is an integer and ℓ = |ℓ|. The averaging ⟨...⟩ should formally be defined as an

ensemble average but, in practice, it is replaced by a time average by invoking the ergodic

theorem, as it is easy to measure velocity at a fixed position. Structures of infrequent

occurrence become increasingly important as p grows, making it difficult to measure the

structure function for high p, as it requires to keep collecting data for a long time. Note that,

for now, we keep the dependence on the position vector r, the separation vector ℓ, and the

time T which represents the moment when we start collecting data (to be distinguished from

the time t of the instantaneous velocity, as we are averaging over it). Later, we will postulate

that the longitudinal structure function only depends on ℓ.

It is convenient to rewrite the Navier-Stokes equation in dimensionless form, so let us

introduce a velocity scale U0 and a length scale L0. There is more than one way to choose

these scales. For example, for water flowing past an obstacle, U0 could be the speed of the

flow far from the obstacle and L0 could be some length characterizing the obstacle (which is

probably close to the energy injection scale we will discuss below). Alternatively, if turbulent

structures are formed, U0 could be the root-mean-square of the velocity variation over scale

L0.

Dividing the Navier-Stokes equation by U2
0/L0, we get

[∂t̃Ũ + (Ũ · ∇̃)Ũ ] = −∇̃P̃ +Re−1∇̃2Ũ + f̃ , Re = L0U0

ν
∼ |(U · ∇)U |

|ν∇2U |
, (1.3)

where we have defined the dimensionless quantities Ũ = U/U0, P̃ = P/(ρU2
0 ), f̃ = fL0/U

2
0 ,

∇̃ = L0∇, and t̃ = tU0/L0. We have also introduced the Reynolds number Re, which is an

estimate of the strength of the nonlinear term relative to the viscous term. When Re ≪ 1,

viscous effects are strong and small perturbations in the fluid tend to be smoothed out,
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leading to a very ordered flow that respects the symmetries of the Navier-Stokes equation

and the boundary conditions (e.g., reflection symmetries, space- and time- translational

symmetries). This is called laminar flow.

When Re ≫ 1, viscous effects are weak and the nonlinear term dominates, leading to

instabilities where small perturbations in the fluid can grow exponentially. This results in

the formation of chaotic structures with a much faster dynamics than the large-scale flow. A

great illustration of this transition from laminar to chaotic and, eventually, to fully turbulent

flow as the Reynolds number increases can be found in the figures of the first chapter of

Frisch (1995), where it can be seen how the symmetries displayed by laminar flow are broken

one by one as Re grows.

Figure 1.10 in Frisch (1995) shows the turbulent wake behind two cylinders with Re = 1800.

Careful visual inspection of turbulent flows like this one reveals the presence of coherent

structures, or eddies, across a wide range of scales. Other features of the flow are the

appearance of statistical homogeneity and, in the frame of reference that eliminates the mean

(i.e., the large scale) flow, isotropy. By this we mean the following: it feels that, far from

boundaries, the longitudinal structure function defined by Equation (1.2) should be the same

on every point and for every direction ℓ/ℓ, so it should not depend on r or on the direction

of ℓ (but it may depend on ℓ). Moreover, experimental measurements of the velocity in

turbulent flows at a fixed point, over periods that start at different times, reveal that the

histogram of the velocity is always the same (e.g., see Chapter 3 of Frisch (1995)), so we may

drop the dependence of S∥
p on T . These are symmetries of the Navier-Stokes equation, which,

after being broken by the formation of complex structures in the flow, are recovered (far from

the boundaries) in this statistical sense when Re > 103. This restoration of the symmetries

at high Re (formally, at Re → ∞) is the defining characteristic of fully developed turbulence.

From now on we will only focus on fully developed turbulence, so we will postulate that

S∥
p(r, ℓ, T ) = S∥

p(ℓ).

Another symmetry of the Navier-Stokes equation that emerges when ν → 0 is that of scale
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invariance. Thus, in the case of fully developed turbulence, we may postulate a hierarchy of

self-similar eddies until reaching the scale where viscous dissipation becomes important (this

will be better understood in later paragraphs). Mathematically, S∥
p(Λℓ) = ΛbS∥

p(ℓ).3

Let us now describe qualitatively the dynamics of turbulence. Our picture will be based

on the work of Richardson and Kolmogorov (Richardson, 1922; Kolmogorov, 1941a,b). The

viscosity ν of the fluid sets a dissipation scale ℓd. Let us say that a force represented by f in

the Navier-Stokes equation injects energy into the fluid at some scale ℓ0 ≫ ℓd. This can be, for

example, a spoon stirring the fluid or an incoming flow hitting an obstacle, like the cylinders

in Figure 1.10 of Frisch (1995)4. The energy should dissipate due to the presence of the viscous

term in the Navier-Stokes equation, but the wide separation between the energy injection

and dissipation scales results in the energy cascading through the formation of self-similar

eddies spanning the full range of scales from injection to dissipation5, where energy flows

from one scale into the next by the nonlinear interaction between eddies of similar size, given

by the nonlinear term in the Navier-Stokes equation. This nonlinear interaction is said to be

scale-local: only eddies of similar size can exchange energy efficiently. We can understand

this with the following phenomenological argument. Let us try to visualize the interaction

between two eddies whose respective sizes differ by more than an order of magnitude. The

smaller eddy will perceive the larger one as a large-scale flow and is only passively advected

by it, suffering no distortion (we can even eliminate this large-scale flow altogether with a

simple Galilean boost). On the other hand, the small eddy cannot significantly affect the

much larger one by itself, rather, multiple small eddies would have to act in coordination to

distort the larger one.

If the rate of energy injection is constant, we can propose the existence of a steady state

where the mean energy dissipation rate per unit mass, ε, equals the mean energy injection
3The property of self-similarity is not actually true, as we will briefly discuss later.
4Note that in the frame of reference where the mean flow is zero it looks like the obstacle is stirring the

fluid.
5This cascade continues even into the dissipation range, although the eddies can no longer be postulated

to be self-similar. In fact, the self-similarity breaks even before reaching the dissipation scale.
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rate per unit mass. At scales ℓ satisfying ℓd ≪ ℓ ≪ ℓ0 (the so-called inertial range), there

is neither energy injection nor dissipation, just a constant energy flux between scales as

described above.

Let us now derive a formula for the longitudinal structure function of order p. We can

follow Kolmogorov and postulate that the statistical properties of fully developed turbulence

in the inertial range depend only on ℓ and ε. Then, dimensional analysis gives

S∥
p(ℓ) = Cpε

p/3ℓp/3, (1.4)

where the dimensionless constants Cp were postulated to be universal (i.e., independent of the

large scale mechanism that generates the turbulence) by Kolmogorov. This is the so-called

K41 theory.

For p = 2 and p = 3 we get, respectively

S
∥
2(ℓ) = C2ε

2/3ℓ2/3, S
∥
3(ℓ) = C3εℓ. (1.5)

The first formula above is the famous two-thirds law. The second formula above can be

derived rigorously (see Frisch (1995), Chapter 6) for homogeneous isotropic turbulence (under

the additional assumption that the rate of energy dissipation satisfies ε > 0 when ν → 0),

leading to the very important four-fifths law

S
∥
3(ℓ) = −4

5εℓ. (1.6)

which is exact so long as the premises involved in its derivation hold true.

The universality of the coefficients Cp for p ̸= 3 has been criticized by Lev Landau, but

a better systematic derivation of (1.4) based on the four-fifths law and the self-similarity

hypothesis leads to the same result without assuming universality (see Frisch, 1995, Chapter

6).
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We will now re-derive the two-thirds law using a more hand-wavy argument reminiscent

of those we will use in Chapters 2 and 3. Let us break up the range of scales between energy

injection and dissipation into a discrete sequence of eddies of scales ℓ1 through ℓN , satisfying

ℓ0 > ℓ1 > ... > ℓN > ℓd, where ℓn = anℓ0, with 0 < a ≲ 1 (a is often chosen to be 0.5,

but the exact number does not matter). The locality of the interaction implies that energy

can only be transferred between two neighboring scales, say ℓn and ℓn+1. For an eddy of

scale ℓn, the relative motion of two points on opposite sides can be characterized by velocity

δUℓn ∼
√

⟨(δU · ℓn/ℓn)2⟩). During time τℓn ∼ ℓn/δUℓn (called turnover time) the eddy suffers

a distortion comparable to its size, so this must be the energy transfer time.

In the steady state, the rate of energy dissipation per unit mass, ε, must equal the energy

flux across scales, implying ε ∼ δU2
ℓn
/τℓn ∼ δU3

ℓn
/ℓn, so we recover the two-thirds law

δU2
ℓn

∼ (εℓn)2/3. (1.7)

For completeness, we mention that by equating the viscous diffusion time τd ∼ ℓ2/ν to

the cascade time τℓ ∼ ℓ/δUℓ ∼ (ℓ2/ε)1/3 we can obtain an estimate of the dissipation scale,

ℓd ∼ (ν3/ε)1/4. Experimental evidence shows that viscosity becomes important at scales

about 30 times larger than this estimate.

Both the two-thirds and four-fifths laws match empirical observations rather well over

a wide range of scales. However, deviations from observations become increasingly evident

with growing p, showing that the hypothesis of self-similarity in the inertial range is, in fact,

false, as eddies become more sparse towards smaller scales. This takes us to the concept of

intermittency, but in this thesis, we will not present the existing plethora of different models

of intermittency. Instead, we will introduce the relevant ideas as we need them.

We close this section with another very important result. A simple way to visualize the

distribution of energy throughout scales is to look at the one-dimensional energy spectrum,

E(k), where k is the magnitude of the wave vector. For an isotropic 3-dimensional fluid we



9

would define

E(k) = 1
2

∫ 2π

0

∫ π

0
|Uk|2k2 sin θdθdϕ, (1.8)

where Uk is the 3D Fourier transform of the velocity field U(x) at a given time.6

It can be proven that the energy spectrum and the second-order structure function are

related in the following way (see chapter 4 of Frisch (1995))

S2(ℓ) ∝ ℓχ ⇐⇒ E(k) ∝ k−(χ+1), 0 < χ < 2. (1.9)

For the two-thirds law, this gives the famous Kolmogorov spectrum, E(k) ∝ k−5/3.

1.3 Plasma turbulence

The main topic of this dissertation is turbulence in weakly collisional plasmas with an

externally imposed magnetic field that we will call guide field. This type of plasma environment

is typical in space physics and astrophysics, where the guide field is imposed by a planet or a

star. Another reason for the importance of magnetized plasma turbulence stems from the

fact that, while there is always a frame of reference that eliminates the mean flow, there is no

frame of reference that eliminates the magnetic field.7 This means that for a given magnetic

eddy, a much larger one will look like a guide field. The presence of a guide field suggests

that turbulent structures may be anisotropic, with length scale ℓ along the local magnetic

field and a different length scale λ in the field-perpendicular direction.

Despite this important difference, the general mental picture of plasma turbulence is

similar to the hydrodynamic case: energy is injected at some scale λ0 and cascades to a
6In experiments and observations one generally has a measurement of the velocity as a function of time,

rather than a velocity field for fixed time. However, the Fourier spectrum of this time signal given in terms of
frequency ω can be reinterpreted as a spectrum in terms of the wavenumber k by use of the Taylor hypothesis,
as we will discuss briefly in section 2.1.

7This is only true if the electric field is weaker than the magnetic field, as is the case in all the plasmas of
interest.
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much smaller dissipation scale λd, with the flux through scales mediated by the nonlinear

interaction between coherent structures. However, this problem is notoriously more difficult.

This is not only due to the formation of turbulent structures in the electric and magnetic

fields, but because of the wide variety of turbulent regimes that are possible in a weakly

collisional plasma. The weak collisionality pushes the dissipation scale below the plasma

microscales (e.g., ion inertial di, ion gyro-scale ρi, ion-acoustic scale ρs), opening up a new

range of scales for turbulent fluctuations. Thus, we can distinguish between the inertial

range, λ0 ≫ λ ≫ di, ρi, ρs, where the plasma can be approximately described as a single,

magnetized charged fluid (magnetohydrodynamics, or MHD), and the sub-ion or kinetic

range, λ ≪ di, ρi, ρs, where kinetic physics that can be neglected at the MHD scale becomes

important and the plasma can no longer be treated as a single fluid.

Let us review some important phenomenology of collisionless, strongly magnetized, non-

relativistic plasma turbulence. Our discussion will be brief but there is no shortage of reviews

discussing plasma turbulence in great detail (e.g., Biskamp, 2003; Bruno and Carbone, 2013;

Tobias et al., 2013; Schekochihin, 2022). Let us say that energy is injected at some scale

λ0 ≫ λ ≫ di, ρi, ρs and cascades through the inertial range, eventually reaching the sub-ion

scale. Our dynamical equations for the inertial range will be those of reduced MHD, which

in terms of the Elsässer fields Z±
⊥ are (e.g., Oughton et al., 2017)

∂tZ
± ∓ vA∇∥Z

±
⊥ + Z∓

⊥ · ∇⊥Z±
⊥ =

−∇⊥P + 1
2(η + ν)∇2

⊥Z±
⊥ + 1

2(η − ν)∇2
⊥Z∓

⊥ + f±, (1.10)

Z±
⊥ = U⊥ ± B⊥, vA = B0/

√
4πρ, ∇ · Z± = 0,

where U⊥ and B⊥ are the bulk velocity and magnetic fluctuations, respectively, vA is the

Alfvén speed, ρ the plasma density, B0 is the guide field, and P is the total pressure (plasma

plus magnetic). In the inertial range, the terms with the viscosity ν and the resistivity η, as

well as the stirring force f±, can be neglected. In the absence of injection and dissipation,
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these equations conserve the Elsässer energies, ⟨|Z±|2⟩.

The solutions to these equations are nondispersive Alfvén wave packets propagating either

along the direction of the guide field (Z−) or opposite to it (Z+). From the nonlinear term,

we infer that only counter-propagating wave packets can interact. This interaction between

counter-propagating Alfvén wave packets will give rise to the energy cascade in the inertial

range.

The dynamics in the field-parallel direction, given by the linear term in Equation (1.10),

has characteristic time τA ∼ ℓ/vA. The field-perpendicular dynamics, given by the nonlinear

term, has characteristic time τ±
nl ∼ λ/δZ∓

λ , with δZ±
λ =

√
⟨|Z±(x + λ, t) − Z±(x, t)|2⟩. Three

possibilities may be contemplated: τnl ≫ τA, τnl ≪ τA, and τnl ∼ τA. The first of these

corresponds to the regime known as weak turbulence, where the linear term dominates and

significantly deforming a wave packet takes multiple collisions. All we will say here about this

case is that the turbulent cascade is only in the field-perpendicular direction and eventually

reaches the regime of strong turbulence, where τnl ∼ τA. The reader who would like to know

more about this regime may check the reviews cited above.

Regarding the case τnl ≪ τA, multiplying by vA we obtain vAτnl ≪ ℓ. This means that in

the time of the energy cascade information cannot travel across the whole length ℓ of the

turbulent structure, so it cannot stay coherent for long. This only leaves us with the so-called

critical balance condition, τnl ∼ τA, where the linear and nonlinear terms in Equation (1.10)

(in the range where energy injection and dissipation are negligible) are of the same order.

This defines the regime known as strong turbulence.

From now on we will assume balanced turbulence, δZ+ ∼ δZ− ∼ δU ∼ δB, so we will

drop the ± signs from the fields.8

Let us derive the scaling of the field-parallel cascade. If the mean injection and, assuming

a steady state, dissipation rate per unit mass of the Elsässer energies is ε, we must have
8This rules out important turbulent systems that are imbalanced, like the solar wind. However, the point

of this short review is just to expose the readers to the basics of plasma turbulence phenomenology and to
aid them in understanding the meaning and importance of the turbulent regimes to be discussed in Chapters
2 and 3.
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ε ∼ δZ2
ℓ /τA, where δZℓ represents a field variation along the local magnetic field.9 Using

τA ∼ ℓ/vA, we easily get the scaling δZℓ ∝ ℓ1/2 or E(k∥) ∝ k−2
∥ . This is a very robust scaling,

as it makes no assumptions about the field-perpendicular cascade.

Let us repeat the exercise for the field-perpendicular cascade. Now we have ε ∼ δZ2
λ/τnl and

τnl ∼ λ/δZλ. This gives δZλ ∝ λ1/3 or E(k⊥) ∝ k
−5/3
⊥ . Using the critical balance condition,

we also find the anisotropy of the turbulent fluctuations, ℓ ∝ λ2/3. The results we just derived

are the famous Goldreich-Sridhar 1995 (GS95) turbulence phenomenology (Goldreich and

Sridhar, 1995). Interestingly, multiple numerical simulations have shown a field-perpendicular

spectrum closer to k−3/2
⊥ rather than k

−5/3
⊥ (e.g., Maron and Goldreich, 2001; Müller et al.,

2003; Müller and Grappin, 2005; Mason et al., 2006, 2008; Perez and Boldyrev, 2008).

The flattening of the energy spectrum compared to GS95 suggests a weakening of the

nonlinear interaction towards increasingly small λ. A possible explanation is the theory of

dynamic alignment proposed in Boldyrev (2005, 2006); Perez et al. (2012), which states that

magnetic and bulk velocity fluctuations tend to align the direction of their polarization in

the field-perpendicular plane, resulting in a field-perpendicular anisotropy of the turbulent

fluctuations defined by the alignment angle, θλ ∼ λ/ξ ≪ 1. This reduces the nonlinear

interaction by a factor θλ and increases the nonlinear time, τnl ∼ ξ/δZλ ∼ λ/(θλδZλ).

Numerical observations show θλ ∝ λ1/4. This gives scalings δZλ ∝ λ1/4, E(k⊥) ∝ k
−3/2
⊥ , and

ℓ ∝ λ1/2.

A lot has been written regarding why the scaling of the alignment angle should be λ1/4,

but we will just refer the reader to Boldyrev (2005, 2006); Perez et al. (2012), as well as the

reviews cited above and the references therein.

So much for the inertial range. As the energy keeps flowing to smaller scales, it eventually

reaches the ion scales and a steepening of the spectrum is observed, with the scaling approach-

ing k−2.8 down to electron scales (e.g., Alexandrova et al., 2009; Kiyani et al., 2009; Chen

et al., 2010, 2012; Sahraoui et al., 2013a; Chen and Boldyrev, 2017). It seems reasonable
9For a good discussion of why it has to be the local magnetic field see, for example, Schekochihin (2022).

See also Equation (2.6).
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to suggest that this is due to the transition from nondispersive Alfvén wave packets in the

inertial range to dispersive ones in the sub-ion scale, the so-called kinetic Alfvén turbulence or

simply KAW turbulence (after kinetic Alfvén waves). Kinetic Alfvén waves can be obtained as

the linear solutions of dynamical equations derived from a two-fluid model; we will not discuss

the derivation here, but a similar procedure can be found in Section 3.3. This leads to an

energy spectrum that scales as k−7/3
⊥ (e.g., Cho and Lazarian, 2004; Schekochihin et al., 2009),

which is too flat. In Boldyrev and Perez (2012), the authors derive a k−8/3
⊥ scaling, quite close

to observations, by introducing intermittency to the KAW model (concretely, they propose

that magnetic and density fluctuations tend to organize into intermittent two-dimensional

structures). Interestingly, the KAW model does not predict the correct location of the

spectral break observed in regions of the solar wind with low ion beta (the model predicts

the transition to KAW turbulence at the ion acoustic scale but observations show the ion

inertial scale). For a discussion of this problem and possible explanations of the spectral

steepening alternative to KAW turbulence (e.g., Landau damping), see, for example, Chen

et al. (2014); Boldyrev et al. (2015).

What comes next? In plasmas with low electron beta, βe = (ρe/de)2 ≪ 1, the electron

gyro-scale ρe and inertial scale de are well separated and the turbulent cascade can continue

into the sub-de range down to ρe. This turbulent regime will be the topic of Chapter 2. In

particular, Section 2.1 will be dedicated to reviewing the phenomenological derivation and

some of the observational and numerical evidence of inertial Kinetic Alfvén turbulence (Chen

and Boldyrev, 2017; Roytershteyn et al., 2019).

And what about turbulence in relativistic plasmas? This is the topic of Chapter 3. In

particular, Section 3.3 is dedicated to the numerical characterization and phenomenological

modeling of the energy spectrum in both the inertial and kinetic ranges (Vega et al., 2022a,

2024b).

We hope the discussion in this section has helped the reader understand where our work

fits into the vast space of plasma turbulence.
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Let us now summarize the steps we followed to derive the scaling laws of hydrodynamic

turbulence in the previous section and of MHD turbulence in this section. This is the approach

we will follow in Chapters 2 and 3 as well. The general method is:

• Find approximate dynamical equations for the turbulent fluctuations (e.g., reduced

MHD).

• Find the linear modes (e.g., Alfvén waves) and quantities conserved by the dynamical

equations in the absence of injection and dissipation (e.g., energy).

• Assume that the conserved quantity cascades with constant flux ε to smaller scales due

to the scale-local nonlinear interaction between wave packets of the modes found in the

previous step.

• Find an estimate of ε. This will consist of a formula of the form ε ∼ wλ/τλ, where wλ

is the amount of the conserved quantity in structures of scale λ that flows to smaller

scales over cascade time τλ. wλ and τλ are to be estimated in terms of the turbulent

fluctuations and the scale λ.

• The formula for ε may depend on the turbulent fluctuations of more than one field. The

linear solutions to the dynamical equations can tell us how the amplitudes of different

fields are related to each other. Alternatively, one may guess how they are related from

simple dimensional analysis. This allows us to write the formula for ε in terms of the

fluctuations of a single field.

• From the formula for ε found in the previous step, find the scaling of the turbulent

fluctuation, Xλ ∝ λχ, where X is the turbulent field (e.g., magnetic, bulk kinetic,

electric). From this scaling, we can obtain the energy spectrum of X: E(k⊥) ∝ k
−(2χ+1)
⊥ .

• With the critical balance condition we can obtain the anisotropy of the fluctuations

ℓ ∝ λα.
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One last comment before moving on to the next section. In our discussion of dynamic

alignment, we hinted at the formation of increasingly thin magnetic structures towards

smaller scales in the guide-field-perpendicular plane. By Ampère law, this would result in

the formation of increasingly thin, field-parallel current sheets. At some aspect-ratio these

structures may become unstable and break, leading to magnetic reconnection (e.g., Zhdankin

et al., 2013; Loureiro and Boldyrev, 2017; Mallet et al., 2017). If the energy cascade can

continue into the sub-ion range, the thin, often electron-scale structures that form may also

break and lead to the so-called electron-only magnetic reconnection (e.g., Phan et al., 2018;

Boldyrev and Loureiro, 2019; Vega et al., 2020, 2023b). Magnetic reconnection is believed

to play a pivotal role in collisionless dissipation and nonthermal particle acceleration. We

will discuss collisionless dissipation and magnetic reconnection in the next two sections,

respectively.

1.4 Energy dissipation in collisionless plasmas

In the last section, we described how, in a weakly collisional turbulent plasma, energy cascades

down from an injection scale and into the sub-ion range. Even in such weakly collisional

environments as the solar wind and corona, significant plasma heating is observed (e.g.,

Matthaeus and Velli, 2011; Bruno and Carbone, 2013; Howes, 2015), so there is great interest

in understanding how the cascade of electromagnetic and bulk kinetic energy eventually

makes its way into the microscopic degrees of freedom of the plasma, even in the case of

vanishingly small viscosity and resistivity. The electric work, E · J , is often used as a proxy

for collisionless dissipation in weakly collisional plasmas (e.g., Wan et al., 2012, 2015, 2016),

but this gives the total energy exchange between the electromagnetic energy density and

the plasma energy (including bulk kinetic). The energy exchange with the bulk motion can

be partially removed from the electric work by computing it in the comoving frame of one

particle species (e.g., the electrons), but it cannot be fully eliminated.
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An alternative measure of collisionless energy dissipation is obtained in Yang et al. (2017);

below we follow their derivation. Starting from the nonrelativistic Vlasov equation for the

one-particle distribution function of species s (ions or electrons), fs(x,v, t),

∂fs

∂t
+ v · ∇fs + qs

ms

(
E + v

c
× B

)
· ∂fs

∂v
= 0, (1.11)

and taking the zeroth, first, and second moments we get:

∂t(msns) + ∇ · (msnsUs) = 0, (1.12a)

∂t(msnsUs) + ∇ · (nsUsUs) = −∇ · Ps + nsqs

(
E + Us

c
× B

)
, (1.12b)

∂tEs + ∇ · (EsUs) = −∇ · (Ps · Us) − ∇ · hs + nsqsE · Us, (1.12c)

where ms is the particle mass, ns is the particle density, Us is the bulk velocity, Ps is

the pressure tensor, qs is the electric charge, E and B are the electric and magnetic field,

respectively, Es is the total (bulk plus thermal) kinetic energy density, and hs is the heat flux

vector.

The pressure tensor, kinetic energy density, and heat flux are defined in terms of the

one-particle distribution function fs:

Ps = ms

∫
(v − Us)(v − Us)fs(x,v, t)d3v, (1.13a)

Es = ms

2

∫
v2fs(x,v, t)d3v, (1.13b)

hs = ms

2

∫
(v − Us)2(v − Us)fs(x,v, t)d3v. (1.13c)

The kinetic energy density can be separated into the bulk or fluid kinetic energy E f
s and

the thermal or internal energy E th
s , which is the kinetic energy of the particles measured in
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the comoving frame:

E f
s = 1

2msnsU
2
s , E th

s = ms

2

∫
(v − Us)2fs(x,v, t)d3v, (1.14a)

Es = E f
s + E th

s . (1.14b)

If we take the dot product of equation (1.12b) with Us and use ∇ · (Ps · Us) = Us · (∇ ·

Ps) + (Ps · ∇) · Us, we get

∂tE f
s + ∇ · (E f

sUs) = −∇ · (Ps · Us) + (Ps · ∇) · Us + nsqsE · Us. (1.15)

We note that the pressure-strain interaction, −(Ps · ∇) · Us, has just appeared. Subtracting

the equation above from (1.13c), we get

∂sE th
s + ∇ · (E th

s Us) = −(Ps · ∇) · Us − ∇ · hs. (1.16)

Taking the time derivative of the electromagnetic energy density Em = (B2 + E2)/(8π)

and using Faraday’s law and Maxwell-Ampère’s law, we obtain the well-known equation

∂tEm + c

4π∇ · (E × B) = −E · J , (1.17)

where J = ∑
s nsqsUs is the current density.

If we now average equations (1.15), (1.16), and (1.17) over the entire domain of a numerical

simulation with periodic boundary conditions (as is often the case with simulations of plasma

turbulence), the terms of the form ∇ · (...) vanish, so we obtain

∂t⟨E f
s⟩ = ⟨(Ps · ∇) · Us⟩ + ⟨nsqsE · Us⟩, (1.18a)

∂t⟨E th
s ⟩ = −⟨(Ps · ∇) · Us⟩, (1.18b)

∂t⟨Em⟩ = −⟨E · J⟩. (1.18c)
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A picture of the energy exchange between particles and fields emerges from the three

equations we just derived. The average electric work, ⟨nsqsUs · E⟩, mediates the energy

exchange between the electromagnetic field and the bulk fluid motion, while it is the average

pressure-strain interaction, −⟨(Ps · ∇) · Us⟩, that is responsible for the rate of change of the

internal energy by mediating its exchange with the fluid energy. Furthermore, the numerical

analysis presented in Yang et al. (2017) suggests that the energy exchange between the

electromagnetic field and the bulk flows takes place at large scales, with the bulk energy

then cascading towards smaller scales and eventually some of it transforming into internal

energy through the pressure-strain interaction. This transfer of energy toward the microscopic

degrees of freedom of the plasma would result in entropy production if collisions were present,

possibly even if collisionality was weak (e.g., Eyink, 2018a). Thus, this should be our measure

of energy dissipation. To make the case even stronger, in Yang et al. (2022) the authors show

that the pressure-strain interaction is the most appropriate estimate of dissipation by explicit

comparison against other proxies commonly used, including the electric work.

Several numerical studies of different regimes of plasma turbulence have used the electric

work as a proxy of energy dissipation and found it to be strongly intermittent and concentrated

on intense current sheets (e.g., Wan et al., 2012, 2015, 2016; Zhdankin et al., 2013). In

Section 2.3, we use the pressure-strain interaction to address the question of the intermittency

of energy dissipation in a turbulent low electron beta environment (Vega et al., 2023b).

In this section, we discussed collisionless energy dissipation in general terms without looking

into specific physical mechanisms that result in plasma heating and particle acceleration. In

the next section, we will discuss a very important mechanism of magnetic to plasma energy

conversion known as magnetic reconnection.
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1.5 Magnetic reconnection

In this section, we present a short, qualitative description of magnetic reconnection, focusing

on those aspects of the phenomenon that are relevant for later chapters. For detailed reviews

see, for example, Zweibel and Yamada (2009); Zweibel and Yamada (2016); Guo et al. (2023b).

Magnetic reconnection is a fundamental plasma physics process in which magnetic field

lines break and reconnect, releasing magnetic energy into the plasma. It is widely believed to

play a role in the heating of the solar corona (e.g., Parker, 1990; Klimchuk, 2006; Parnell

and De Moortel, 2012) and nonthermal acceleration to ultrarelativistic energies seen in

astrophysical sources like black hole accretion disks, pulsar magnetospheres, and pulsar

winds (e.g., Guo et al., 2023b). It has also been observed to be spontaneously generated in

MHD turbulence (e.g., Zhdankin et al., 2013) and sub-ion scale turbulence (e.g., Phan et al.,

2018; Vega et al., 2020, 2023b), and was seen to play an important role in energy dissipation

in these plasma environments.

For clarity, we show in Figure 1.1 a concrete example of magnetic reconnection that we

found in one of the 2.5D particle-in-cell simulations of sub-ion plasma turbulence that we will

present in Chapter 2. As we will explain below, the figure shows electron-only reconnection.

However, we will first explain the classical, double-layer reconnection with ion coupling, so

Figure 1.1 is just meant to be illustrative.

The magnetic topology of a typical 2D reconnection event can be clearly appreciated in

this example, where the in-plane magnetic field lines are shown in black and the out-of-plane

current density is shown in the colormap. In a general reconnection event, magnetic field lines

pointing in opposite directions approach each other; in Figure 1.1 this is happening along

the red arrows labeled “Inflow”. At the MHD scale, magnetic field lines are frozen to the

plasma, so they drag plasma particles into the reconnection site as they get closer, generating

a plasma inflow. Once magnetic field lines are closer than the ion inertial scale, ion inertia

becomes important, i.e., the field lines decouple from the ions. However, electrons remain

frozen to the magnetic field lines until they are closer than the electron inertial scale. It is
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within this thin, electron-scale layer, that magnetic field lines break and reconnect. When

this happens, the accumulated magnetic tension is released in the form of plasma energy, as

the outgoing field lines drag particles along the outflow, first recoupling to the electrons and,

given enough space along the outflow (about 40 times the ion inertial scale, Sharma Pyakurel

et al. (2019)), to the ions.

Figure 1.1: Example of electron-only magnetic reconnection site found in one of the 2.5D
particle-in-cell simulations to be analyzed in Chapter 2. The color map shows the out-of-plane
(and guide-field-parallel) current density, Jz, normalized to the root-mean-square out-of-plane
current density computed over the whole simulation domain. The thin black lines represent
the magnetic field lines. The large, red arrows exhibit the direction of the particle (electrons)
inflow and outflow. On the axes, de refers to the electron inertial scale.

What we just described qualitatively in the previous paragraph is the classical two-fluid

model of reconnection where an electron-scale diffusion layer is embedded into a thicker,

ion-scale diffusion layer, and both electrons and ions move together at the exhaust at speeds

close to the ion Alfvén speed computed with the in-plane magnetic field along the inflow,

measured just outside the outer diffusion layer. However, as we mentioned before, this does

not correspond to the example shown in Figure 1.1. The figure shows magnetic reconnection

happening spontaneously in sub-ion scale turbulence, where the thin current layer is too short

along the outflow for effective ion coupling. This is an example of electron-only magnetic
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reconnection, similar to those observed in the magnetosheath by the Magnetospheric Multiscale

(MMS) mission (Phan et al., 2018), where only Alfvénic electron jets are seen along the

outflow (with the Alfvén velocity calculated with the in-plane magnetic field along the inflow,

just outside the electron diffusion layer). We also note the small but intense out-of-plane

(and guide-field-parallel) current sheet at the center, seen in dark blue, with a peak current

of more than three times the root-mean-square value. This current sheet is less than 5de long

and about 0.5de thick, with de the electron inertial scale. Alfvénic electron jets and a large

out-of-plane current sheet are electron-only reconnection signatures that can be used to find

these sites.

The topology of the magnetic field lines suggests another method to find reconnection

candidates in 2.5D simulations of plasma turbulence: look for saddle points of the out-of-plane

magnetic potential or X-points. This method is developed in detail in Section 2.2 and is

complemented by the other reconnection signatures discussed here to identify electron-only

reconnection sites spontaneously generated in a simulated 2.5D turbulent environment (Vega

et al., 2020). We also look for reconnection in a 3D spectral simulation relying on signatures

like Alfvénic electron jets and intense current sheets, and we analyze its role in energy

dissipation (Vega et al., 2023b).

Magnetic reconnection spontaneously generated in relativistic plasma turbulence is known

to play a fundamental role in turbulent particle acceleration (Comisso and Sironi, 2019). This

will be discussed in more detail in the next section.

1.6 Relativistic plasma turbulence as a particle

accelerator

In weakly collisional plasma turbulence, the interaction with turbulent fluctuations may remove

some particles from the thermal population, creating a nonthermal tail in the particle energy

probability density function (pdf). Indeed, nonthermal particle acceleration to ultrarelativistic
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energies has been observed in multiple simulations of relativistic plasma turbulence, with the

particle energy pdf developing power-law tails (e.g., Zhdankin et al., 2017, 2019; Zhdankin,

2021; Comisso and Sironi, 2018, 2019; Wong et al., 2020; Nättilä and Beloborodov, 2021,

2022; Vega et al., 2022b, 2023a), or log-normal tails if the guide field is strong (e.g., Vega

et al., 2024b,a). This makes relativistic plasma turbulence a promising acceleration candidate

that may help explain the radiative signatures of nonthermal ultrarelativistic particles in

astrophysical systems such as pulsar magnetospheres and winds (e.g., Bühler and Blandford,

2014), jets from active galactic nuclei (e.g., Begelman et al., 1984), and black hole accretion

disks (e.g., Yuan and Narayan, 2014), complementing other known energization mechanisms

like collisionless shocks (e.g., Blandford and Eichler, 1987; Marcowith et al., 2016) and

magnetic reconnection (e.g., Uzdensky et al., 2011; Drake et al., 2013; Sironi and Spitkovsky,

2014; Sironi, 2022; French et al., 2023; Guo et al., 2020, 2023b), and also acting as a source

that spontaneously generates intermittent structures like shocks and reconnection (e.g., Stone

et al., 1998; Servidio et al., 2009; Eyink et al., 2013; Zhdankin et al., 2013; Comisso and

Sironi, 2019; Vega et al., 2020, 2023b).

Numerical studies of particle acceleration in driven, moderately magnetized relativistic

plasma turbulence (Zhdankin et al., 2017, 2018b) and decaying magnetically dominated10

plasma turbulence (Comisso and Sironi, 2018, 2019) have shown that the power-law tail

developed in the particle energy pdf steepens with increasing system size, asymptotically

reaching a system-size-independent value where the outer-scale of turbulence determines

the high-energy cut-off of the distribution. Our numerical studies of relativistic plasma

turbulence (Vega et al., 2022b,a, 2023a, 2024b,a, reproduced in Chapter 3 of this thesis) were

done in this asymptotic limit, except for one small-box, strong-guide-field simulation used to

study kinetic scale relativistic turbulence.

In simulations of decaying relativistic plasma turbulence, the slope is also seen to flatten
10By “magnetically dominated” we mean that the simulation was initialized with far more energy in the

magnetic fluctuations than in the particles. It is observed that in such an initialization the plasma is quickly
heated to a relativistic temperature (e.g., Comisso and Sironi, 2019; Vega et al., 2022b, 2023a), so we will
often refer to magnetically dominated plasma turbulence as relativistic turbulence.
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as the magnetization σ̃0 = δB2
0/(4πϵ0) increases while keeping B0/δB0 constant, where B0 is

the guide field, δB0 is the initial root-mean-square magnetic fluctuation, and ϵ0 is the initial

enthalpy density, asymptotically converging to a fixed value for σ̃0 ≫ 1 (Comisso and Sironi,

2018, 2019). When σ̃0 is kept constant and B0/δB0 is increased, the slope is seen to steepen

until giving way to a log-normal distribution (Vega et al., 2022b, 2024b,a, and Chapter 3

here).

In Comisso and Sironi (2019), the authors identify two stages of turbulent particle

energization where different mechanisms act on the particles: an initial injection phase in

which a particle is quickly kicked out of the bulk population and into the relativistic tail of

the distribution, and a second phase of stochastic acceleration where the particle continues

to be energized as it interacts with turbulent fluctuations in the inertial range.

In the injection phase, particles are accelerated in reconnecting current sheets. Studies of

relativistic plasma turbulence and relativistic reconnection show that, in simulations with

guide field B0 ∼ δB0, the main contribution to the energy injection comes from the nonideal

electric field (Comisso and Sironi, 2019; Sironi, 2022; Guo et al., 2023a; French et al., 2023),

while the ideal electric field dominates the energy injection when the guide field is weak (Guo

et al., 2023a; French et al., 2023).

In the second stage, the energization resembles a diffusion process in energy space, with

diffusion coefficient scaling as γ2, where γ is the particle Lorentz factor (Comisso and Sironi,

2019; Wong et al., 2020). Numerical suppression of the injection phase shows that the

power-law tail in the particle energy pdf still develops but with a much smaller population

of particles, showing that it is this second stage that is responsible for the development of

the power-law. In contrast, the first stage supplies a population of particles with gyroradius

large enough to interact efficiently with turbulent fluctuations in the inertial range (Comisso

and Sironi, 2019; Vega et al., 2024a).

Although the acceleration process in relativistic plasma turbulence is not fully understood,

recent analytical and numerical studies indicate that spontaneously generated turbulent
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structures may indeed play an essential role in particle energization (e.g., Trotta et al.,

2020; Ergun et al., 2020; Lemoine, 2021; Pezzi et al., 2022; Bresci et al., 2022; Vega et al.,

2022b; Xu and Lazarian, 2023; Lemoine et al., 2023). In Section 3.4 we present our work

showing how power-law tails may develop in the particle energy pdf if particles are accelerated

stochastically in spontaneously generated magnetic traps until they escape by pitch angle

scattering (Vega et al., 2022b), also noting that the high-energy tail of the particle energy

pdf evolves into a log-normal when the guide field is strong compared to the initial magnetic

fluctuations (Vega et al., 2024b,a). To understand this, we present our more recent work on

acceleration, where we take a closer look at the actual acceleration mechanisms, viz., the

electric field parallel to the magnetic field, curvature acceleration, and mirror acceleration,

and we discuss how they depend on the properties of Alfvénic turbulence (Vega et al., 2024a).

We close Chapter 3 with our work on the observed intermittency in the spatial distri-

bution of ultrarelativistic particles accelerated in decaying magnetically dominated plasma

turbulence (Vega et al., 2023a).
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2 plasma turbulence in environments with low

electron beta

2.1 Inertial kinetic Alfvén turbulence

Let Ti and Te be the ion and electron temperature, respectively. In plasma environments where

the ions are much hotter than the electrons, Ti ≫ Te, and βi ∼ 1 (e.g., the magnetosheath

(Wang et al., 2012; Chen and Boldyrev, 2017), the solar wind close to the solar corona (Shi

et al., 2023)), the electron beta satisfies βe = (ρe/de)2 ≪ βi = (ρi/di)2 ∼ 1. This means

that the electron gyroradius ρe and inertial scale de are well differentiated, so sub-ion scale

turbulent fluctuations can cascade through the range of scales ρi, di ≫ λ ≫ de and then

continue into de ≫ λ ≫ ρe.

Measurements of the solar wind density and magnetic energy spectra between the ion and

electron scales reveal anisotropic fluctuations elongated along the guide-field, k∥ ≪ k⊥ (Chen

et al., 2010), and a k−2.8 power-law behavior (e.g., Alexandrova et al., 2009; Kiyani et al.,

2009; Chen et al., 2010, 2012; Sahraoui et al., 2013a), remarkably close to the k−8/3
⊥ spectrum

of kinetic Alfvén turbulence with intermittency corrections, which also predicts anisotropy

k∥ ∝ k
2/3
⊥ (Boldyrev and Perez, 2012). The frequency and polarization of the fluctuations are

also seen to be consistent with a kinetic Alfvén cascade (Boldyrev et al., 2013; Chen et al.,

2013b). All this strongly suggests a kinetic Alfvén turbulent cascade between the ion and

electron scales.

Data collected by the Magnetospheric Multiscale (MMS) mission in regions of the magne-

tosheath with βe ≪ βi ∼ 1 revealed that the behavior of turbulence changes as it transitions

into the range of scales de ≫ λ ≫ ρe (e.g., increased magnetic compressibility, steeper

magnetic energy spectrum), hinting at the existence of a new regime of plasma turbulence

(Chen and Boldyrev, 2017). Observations are consistent with theoretical models based on

new low-frequency plasma modes known as inertial kinetic Alfvén waves, or iKAW (Chen and
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Boldyrev, 2017; Passot et al., 2017, 2018). The existence of this regime was later confirmed

in numerical simulations (e.g., Roytershteyn et al., 2019). In the remainder of this section,

we will review the phenomenology and the observational and numerical evidence of iKAW

turbulence.

A universal property of magnetized plasma turbulence is the emergence of intermittent

magnetic structures, which manifests itself in the formation of current sheets (e.g., Karimabadi

et al., 2013; Zhdankin et al., 2014; Papini et al., 2019). These coherent structures are known

to play a pivotal role in the dissipation of energy in weakly collisional plasma turbulence (e.g.,

Wan et al., 2012, 2015, 2016; Karimabadi et al., 2013; Zhdankin et al., 2014; Camporeale

et al., 2018). The availability of the sub-de range of scales to turbulent fluctuations should

make plasmas with low electron beta a particularly fertile ground for the generation of

electron-scale current sheets, and quantifying their contribution to energy dissipation is a

question of considerable interest. The formation of electron-scale current sheets and their

role in energy dissipation was the main topic of Vega et al. (2023b), and will be discussed in

Sections 2.2 and 2.3.

Some electron-scale current sheets may be tearing unstable and undergo electron-only mag-

netic reconnection (Boldyrev and Loureiro, 2019), recently discovered in the magnetosphere

(Phan et al., 2018). In electron-only reconnection, only Alfvénic electron jets are observed

along the outflow, with ions not coupling to the electrons’ motion due to the reconnecting

current sheet being too short along the outflow (much shorter than the ∼ 40di necessary

for effective ion coupling; see, for example, Sharma Pyakurel et al. (2019)). Electron-only

reconnection was observed in a turbulent environment with properties consistent with kinetic

scale turbulence (Stawarz et al., 2019), so one may ask whether it is a characteristic property

of this turbulent regime, and what role it plays in energy dissipation. The first question was

addressed in Vega et al. (2020) and the second in Vega et al. (2023b), and they will both be

discussed in Section 2.2.
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The dynamics of Alfvén modes

Here we derive a phenomenological model for the turbulence cascade in the range d−1
e ≪

k⊥ ≪ ρ−1
e in a plasma environment with βe ≪ βi ∼ 1. First, we will justify the need for this

calculation by showing that the dispersion relation of kinetic Alfvén waves breaks down when

k⊥de ≪ 1. This dispersion relation is derived assuming an isotropic and Maxwellian plasma

(i.e., the one-particle probability density function is a locally isotropic Maxwellian for ions

and electrons), and frequency ω satisfying ω ≪ k∥vth,e, where vth,e is the electron thermal

velocity (Schekochihin et al., 2009). One obtains

ω2 =
k2

∥v
2
Ak

2
⊥ρ

2
i

βi + 2/(1 + βe/βi)
. (2.1)

Using Equation 2.1 and the assumption Te/Ti ≪ 1 it can be shown that ω2/(k∥vth,e)2 ∼ 1 at

scale

k2
⊥d

2
e ∼ (2 + βi)(βe/βi) < 1, (2.2)

which means that the assumption ω ≪ k∥vth,e no longer holds for d−1
e ≪ k⊥ ≪ ρ−1

e , which is

the range of scales we are interested in. Thus, we need to derive the dynamical equations of

the modes with frequency ω > k∥vth,e, implying that the electron inertia will be important.

We will assume strongly anisotropic fluctuations (i.e., k⊥ ≫ k∥), ordering k∥/k⊥, δB/B0 ∼

δn/n0, ω/Ωe ≪ 1, and k∥vth,e ≪ ω ≪ k⊥vth,i (this excludes whistler modes, which have higher

frequency). We will adopt an isotropic fluid model for electrons, so their dynamics will be

dictated by the continuity equation

∂ne

∂t
+ ∇ · (neUe) = 0, (2.3)



28

and the momentum conservation equation

∂Ue

∂t
+ (Ue · ∇)Ue = − 1

mene

∇Pe − e

me

(
E + Ue

c
× B

)
. (2.4)

In the two equations above, ne is the electron density, me is the electron mass, Ue is the

electron fluid velocity, Pe is the electron pressure, and E and B are the electric and magnetic

field, respectively.

There are too many variables for only two equations, but we can simplify this to a system

of two equations for the density fluctuations and the field-perpendicular magnetic fluctuations.

Let us start by rewriting the continuity equation in terms of the field-parallel electron

velocity, Ue,∥, and the field-perpendicular electron velocity, Ue,⊥,

∂ne

∂t
+ ∇⊥ · (neUe,⊥) + ∇∥(neUe,∥) = 0, (2.5)

where we have introduced the magnetic-field-perpendicular and -parallel differential operators

∇⊥ and ∇∥, respectively. While δB/B0 ≪ 1 implies that the parallel component of the fields

can be approximated by their z component, this is not the case for the ∇∥ operator. To

understand this, let us write this operator in terms of ∂z:

∇∥ = B

B
· ∇ = ∂z + δB⊥

B0
· ∇. (2.6)

Since k∥ ≪ k⊥, the second term on the right-hand side above cannot be neglected.

Going back to the continuity equation (2.5), we can write the parallel electron velocity

in terms of the field-parallel current density, Ue,∥ = −J∥/(nee) (where we are assuming that

electrons dominate in the current due to their much smaller inertia compared to the ions),

and the current itself can be written in terms of the field-parallel component of the magnetic

potential, A∥, through Ampère’s law (where we can neglect the displacement current for
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being in the nonrelativistic regime):

J = c

4π∇ × B = c

4π∇ × (∇ × A) = − c

4π∇2A, (2.7)

where we used the Coulomb gauge, ∇ · A = 0. It is conventional to define the scalar function

ψ ≡ −Az ≈ −A∥, so δB⊥ = ẑ × ∇ψ. In terms of ψ, the parallel component of equation (2.7)

is

J∥ = c

4π∇2
⊥ψ, (2.8)

where we are neglecting ∇2
∥ψ, as k2

⊥ ≫ k2
∥. The parallel electron velocity is then

Ue,∥ = − c

4πnee
∇2

⊥ψ. (2.9)

The perpendicular velocity can be obtained from the perpendicular component of the

momentum conservation equation. Let vE = c(E × B)/B2 be the nonrelativistic E × B drift.

If we expand the perpendicular velocity as Ue,⊥ = vE + δU⊥, substitute in the momentum

equation, and take the cross product with B, to the next to leading order we get

Ue,⊥ = vE − mec

eB2 B × dE

dt
vE, (2.10)

where dE/dt ≡ ∂/∂t + vE · ∇. An order of magnitude estimate for the second term gives

(ω/Ωe)vE, which is smaller than the first one by a factor ω/Ωe, but we will keep it as the

leading term will cancel out in the continuity equation.

The electric field can be separated into a potential part and a solenoidal part:

E = −∇ϕ+ Esol, (2.11)
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where ϕ is the electric potential and

c∇ × Esol = −∂tδB. (2.12)

Thus, the E × B drift becomes

vE

c
= ẑ × ∇ϕ

B0
+ Esol × ẑ

B0
. (2.13)

Substituting (2.9), (2.10), and (2.13) into the continuity equation and using (2.12) we

get, to leading order

∂t

(
δne

n0
− δBz

B0
+ mec

eB2
0
∇2ϕ

)

+ c

B0
(ẑ × ∇ϕ) · ∇

(
δne

n0
− δBz

B0
+ mec

eB2
0
∇2ϕ

)
− c

4πn0e
∇∥∇2

⊥ψ = 0. (2.14)

Next, we will work with the field-parallel component of the momentum conservation

equation:

∂Ue,∥

∂t
+ (vE · ∇)Ue,∥ = − 1

mene

∇∥Pe − e

me

E∥, (2.15)

where we used k⊥ ≫ k∥ and Ue,⊥ ∼ Ue,∥ (this can be seen by writing the electron velocity in

terms of the current density, the current density in terms of the magnetic field, and using

δB⊥ ∼ δBz; see below) to approximate (Ue · ∇)Ue,∥ ≈ (vE · ∇)Ue,∥. The parallel electric field

can be written in terms of the electric and magnetic potentials:

E∥ = −∇∥ϕ+ 1
c
∂tψ. (2.16)

The electron pressure fluctuations are negligible compared to the electric potential fluctuations,

as can be seen using Equation (2.22) below and the condition Te ≪ Ti, so the pressure term
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in (2.15) can be dropped. Then, substituting Equations (2.9) and (2.16) into (2.15) we get

∂t

(
ψ − d2

e∇2
⊥ψ
)

− d2
e(vE · ∇)∇2

⊥ψ = c∇∥ϕ. (2.17)

We still have too many variables and too few equations. Let us find a way to relate the

electric potential fluctuations ϕ with the magnetic fluctuations δBz. To do this, we will

return to the perpendicular momentum conservation equation, but this time we may neglect

the dUe,⊥/dt term (i.e., we only keep the lowest order of Ue,⊥):

E⊥ + Ue,⊥

c
× B ≈ 0. (2.18)

Writing the perpendicular velocity in terms of the current, and the current in terms of the

magnetic field we get

Ue,⊥ = − J⊥

nee
= −(∇ × B)⊥

4πnee
c (2.19)

Substituting in (2.18) and using (∇×B)×B = (B ·∇)B −(1/2)∇(B2), B2 ≈ B2
0 +2B0δBz,

and k⊥ ≫ k∥, we get

E⊥ ≈ c

4πnee
[(B · ∇)δB⊥ −B0∇⊥δBz]. (2.20)

Since δB⊥ ∼ δBz (see Equation (2.28) below), the first term in the right-hand side in the

equation above can be dropped. Then, using E⊥ = −∇⊥ϕ, we get

ϕ = cB0

4πnee
δBz. (2.21)

Next, we will relate ϕ with δne. Since for inertial kinetic Alfvén waves ω ≪ kvth,i, the ions
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have time to adapt to the potential, so the Boltzmann formula for the density gives

ϕ = −cTi

e

δn

n0
, (2.22)

where we also invoked quasineutrality to substitute δni = δne ≡ δn.

Combining equations (2.21) and (2.22), we get

δBz

B0
= −βi

2
δn

n0
. (2.23)

Substituting (2.22) and (2.23) in Equations (2.14) and (2.17) we finally arrive at a system of

two equations for the magnetic potential fluctuations ψ and the electron density fluctuations

δn. We write the equations in terms of the dimensionless fluctuations ψ̃ = ψ/(deB0),

δñ = (βi/2)(δn/n0):

∂

∂t̃

[
(1 − ∇̃2

⊥)ψ̃
]

+ [(ẑ × ∇̃δñe) · ∇̃]∇̃2
⊥ψ̃ = −∇̃∥δñ, (2.24)

∂

∂t̃

[(
1 + 2

βi

− ∇̃2
⊥

)
δñ

]
+ [(ẑ × ∇̃δñ) · ∇̃]∇̃2

⊥δñ = ∇̃∥∇̃2
⊥ψ̃, (2.25)

where t̃ = tΩe and ∇̃ = de∇.

Linearizing these equations one obtains a mode we will call inertial kinetic Alfvén wave,

with dispersion relation

ω2 =
k2

∥v
2
Ak

2
⊥ρ

2
i

βi(1 + k2
⊥d

2
e)(1 + 2/βi + k2

⊥d
2
e)
, (2.26)

and dimensionless amplitudes related as

δñ2
k = 1 + k̃2

⊥

1 + 2/βi + k̃2
⊥
k̃2

⊥ψ̃
2
k. (2.27)
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Combining equations (2.27) and (2.23) we obtain the magnetic compressibility:

δB2
z

δB2
⊥

= 1 + k2
⊥d

2
e

1 + 2/βi + k2
⊥d

2
e

. (2.28)

Equations (2.24) and (2.25) conserve the following quantity:

E =
∫ [

δñ

(
1 + 2

βi

− ∇̃2
⊥

)
δñ− ∇̃2

⊥ψ̃(1 − ∇̃2
⊥)ψ̃

]
d3x̃. (2.29)

In the regime of interest in this chapter, we have k̃2
⊥ = (k⊥de)2 ≫ 1 + 2/βi, so equa-

tion (2.27) implies δñλ ∼ ψ̃λ/λ̃, where δñλ and ψ̃λ denote the typical fluctuations of the

dimensionless fields at scales λ̃ = λ/de across the guide field.

In this same limit, the nonlinear dimensionless time τ̃λ can be estimated from Equations

(2.24) and (2.25) as τ̃λ ∼ λ̃2/δñ by keeping only the leading order in k⊥de ∼ λ̃−1. Let us say

that E cascades with constant flux ε, then ε = wλ/τ̃ ∼ (δñλ/λ̃)2/(λ̃2/δñ) ∼ δñ3
λ/λ̃

4, where

wλ was estimated from Equation (2.29). This leads to the following scaling for the density

and magnetic fluctuations δñλ ∼ ψ̃/λ̃ ∼ ε1/3λ̃4/3, which implies density and magnetic energy

spectra scaling as Sn,B ∝ k
−11/3
⊥ .1

We can derive the anisotropy implied by the critical balance condition by balancing the

linear and nonlinear terms in Equations (2.24) and (2.25), obtaining ψ̃λδñλ/λ̃
4 ∼ δñλ/ℓ̃.

Substituting the scaling laws derived for δñλ and δψ̃λ/λ̃, we get ℓ̃ ∼ λ̃5/3, where ℓ̃ = ℓ/de is

the field-parallel scale.

For a discussion on the inertial whistler modes and the possibility that they are excited,

we refer the reader to Chen and Boldyrev (2017).

Observations in the Earth’s magnetosheath

Figure 2.1 is from Chen and Boldyrev (2017) and is made with data collected in the

Earth’s magnetosheath by the four MMS spacecraft during the period (2015 October 16,
1We also note that if we take the limit k⊥de ≪ 1 we recover the Sn,B ∝ k

−7/3
⊥ scaling of KAW turbulence.
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09:24:11–09:25:24), when they were located 11.9 RE from the Earth, with RE the planet’s

radius. The average plasma parameters were: B ≈ 39 nT, ni ≈ ne ≈ 14 cm−3, Ui ≈ Ue ≈

180 km s−1, Ti ≈ 210 eV, Te ≈ 23 eV, with temperature anisotropies (T⊥/T∥)i ≈ 1.6 and

(T⊥/T∥)e ≈ 1.0. This results in average betas βi ≈ 0.79 and βe ≈ 0.087. For details on the

data collection and more extensive data analysis, we refer the reader to Chen and Boldyrev

(2017). Here we just discuss some of their results.

Figure 2.1: Top: Energy spectra of magnetic fluctuations. Bottom: Magnetic compressibility
δB2

∥/δB
2
⊥. The red solid line is Equation (2.28) and the black dotted lines show its asymptotic

limits 1/(1 + 2/βi) and 1. The green dashed line marks the scale given by Equation (2.2),
where the frequency of Alfvén waves no longer satisfies ω ≪ k∥vth,e. Figure 5 in Chen and
Boldyrev (2017), copied here with the authors’ permission.

Figure 2.1 shows the spectra of B⊥ and B∥, and their ratio (i.e., the magnetic compress-

ibility). δ|B| was used as a proxy for δB∥ and δB2
⊥ = |δB|2 − δB2

∥ . The frequency on the

horizontal axis of the plots can be converted into a wavenumber k with the mean speed of

the flow (i.e., the speed on a scale much larger than the turbulent fluctuations) by invoking
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the Taylor hypothesis. Simply put, the Taylor hypothesis proposes that when the large-scale

velocity is much larger than the turbulent fluctuations, the time measurement of the fields on

a given point can be reinterpreted as a fixed-time cut across the turbulent environment as

seen in the frame of reference that eliminates the large-scale flow. For a detailed analysis on

the validity of the Taylor hypothesis for the spectra presented in this subsection, see Chen

and Boldyrev (2017).

Understanding that the frequency is proportional to the wavenumber, the top panel

of the figure shows good agreement with the predicted k
−11/3
⊥ scaling in the sub-de region.

In the bottom panel, the magnetic compressibility is seen to increase from approximately

1/(1 + 2/βi) to approximately 1, while following Equation (2.28) closely. We note that the

increase in compressibility could not be due to noise, as random fluctuations would have

the same average energy in all three components, resulting in δB2
∥/δB

2
⊥ = 0.5, which is only

seen for fsc > 200 Hz. No hints of parallel propagating whistler waves are seen (they would

appear as a bump in the magnetic energy spectrum; see, for example, Matteini et al. (2017)),

so the observations are consistent with a transition to inertial kinetic Alfvén turbulence in

the sub-de region.

Confirmation in numerical simulations

The existence of inertial kinetic Alfvén turbulence was confirmed in 2.5D (2D domain with

3-component vector fields) and 3D simulations (Roytershteyn et al., 2019). Here we will

discuss some of the results in Roytershteyn et al. (2019); for more extensive data analysis we

refer the reader to that paper.

The 2.5D simulation discussed in Roytershteyn et al. (2019) was run with particle-

in-cell code VPIC (Bowers et al., 2008). The simulation was initialized with a uniform

two-species plasma with Maxwellian velocity distributions, and the same uniform density

n0 for each species. The plasma parameters were: βe = 0.04, βi = 0.4, ωpe/Ωce = 2, and

mi/me = 100. The simulation plane was perpendicular to the mean magnetic field B0,



36

oriented in the z direction. The simulation domain was a double periodic L× L square with

L = 8πdi = 80πde ≈ 251 de, resolution nx = ny = 3456 cells, and 4000 particles per cell per

species. The time step was ωpeδt ≈ 0.05.

Decaying turbulence was initialized by imposing randomly phased perturbations:

δB =
∑

k

δBk cos(k · x + χk), δU =
∑

k

δUk cos(k · x + ϕk), (2.30)

with the wave numbers k = {2πm/L, 2πn/L}, with m = −2, ..., 2 and n = 0, ..., 2. The

injection scale of turbulence is, thus, k⊥di ≈ 0.7. The amplitudes of the initial modes satisfy

conditions k · δBk = 0, B0 · δBk = 0, k · δUk = 0, and |δBk|/B0 = |δUk|/vA, where δU is

the ion and electron bulk velocity fluctuation2 and vA = B0/(4πn0mi)1/2 is the Alfvén speed.

The initial root-mean-square magnetic fluctuation was ⟨δB2(x, t = 0)⟩1/2/B0 = ⟨δU2(x, t =

0)⟩1/2/vA ≈ 0.1, so the initial average energy density of the magnetic and kinetic fluctuations

together was U ≈ 0.01B2
0 .

Figure 2.2: Left: Magnetic (blue) and electric (red) energy spectra. Right: Magnetic
compressibility. The dashed line shows the analytic prediction of Equation 2.28. In both
panels, the vertical lines mark scales corresponding to (in order of increasing k⊥) k⊥de = 1
and k⊥ρe = 1.

The left panel of Figure 2.2 shows the magnetic and electric energy spectra at a time
2The electron velocity was slightly higher than the ion velocity to provide the current density corresponding

to ∇ × B.
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when turbulence was fully developed. Three distinct ranges of scales can be identified in

the spectra. At k⊥de ≲ 1 the magnetic energy spectrum exhibits a spectral index close to

the theoretical prediction of -8/3 of intermittent kinetic Alfvén turbulence (e.g., Boldyrev

and Perez, 2012) and to observations of -2.8 in space plasmas (e.g., Alexandrova et al., 2009;

Kiyani et al., 2009; Chen et al., 2010, 2012; Chen and Boldyrev, 2017) and other simulations

(e.g., Howes et al., 2011; Boldyrev and Perez, 2012; Sahraoui et al., 2013b; Grošelj et al.,

2018). Furthermore, the electric energy spectrum scales close to k2
⊥SB, with SB the magnetic

energy spectrum. In the range of scales d−1
e ≲ k⊥ < ρ−1

e , the magnetic energy spectrum

has steepened to a slope close to the -11/3 predicted by inertial kinetic Alfvén turbulence,

also observed in the magnetosheath (Chen and Boldyrev, 2017) and the 3D simulation in

Roytershteyn et al. (2019). One last transition happens across k⊥ρe ∼ 1, where the spectrum

steepens even further due to increased electron Landau damping.

The right panel of Figure 2.2 shows the magnetic compressibility δB2
∥/δB

2
⊥ ≈ δB2

z/(δB2
x +

δB2
y) together with the theoretical model given by Equation 2.28. The model is seen to

reproduce the general trendline up to k⊥ ≲ ρ−1
e , but βe = 0.04 gives a very small separation

of scales and finite gyroradius effects would need to be considered for a better fit.

Analysis of the frequency spectrum of the magnetic fluctuations done in Roytershteyn

et al. (2019) further corroborates the presence of kinetic inertial Alfvén modes.

2.2 Electron-only magnetic reconnection

Finding reconnection sites in 2.5D simulations

In this subsection, we implement a numerical method to look for electron-only magnetic

reconnection in data from the 2.5D VPIC simulation discussed in the previous section and

an additional 2.5D VPIC simulation with βe = βi = 0.5, resolution nx = ny = 1024, 10000

particles per cell per species, time step ωpeδt ≈ 0.17, and same parameters as the low electron

beta simulation otherwise. The turbulence was also initialized in the same way. In the
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presentation below we closely follow Vega et al. (2020) (for other similar numerical studies

of magnetic reconnection in turbulent plasmas, see Haggerty et al. (2017) and references

therein).

In a 2D domain, the in-plane magnetic field can be computed from a single-component

potential function:

B⊥ = ∇ × (ψẑ) = ∂ψ

∂y
x̂ − ∂ψ

∂x
ŷ. (2.31)

Since B⊥ · ∇ψ = 0, the in-plane magnetic field is tangent to the contour lines of ψ. Moreover,

since B⊥ = 0 at the X-point, from Equation (2.31) we get ∇ψ = 0. This and the magnetic field

topology around the X-point imply that ψ has a saddle point wherever there is reconnection,

so to find the reconnection candidates we start by looking for these saddle points.

To find ψ from the simulation data, we start from Ampère’s law (just like in the previous

section, we assume that the displacement current can be neglected):

∇ × B⊥ = 4π
c

Jz. (2.32)

Using 2.31 and writing Jz = Jzẑ we get the following Poisson equation:

∇2ψ = −4π
c
Jz, (2.33)

or, in Fourier space

ψk = 4π
c

Jzk

k2 , k ̸= 0. (2.34)

The scalar field ψ can then be obtained by anti-transforming ψk. This method to solve the

Poisson equation was implemented in Matlab using this program’s fast Fourier transform.

The saddle points of ψ were found by numerically computing its first and second derivatives.
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The numerical gradient of the potential is never exactly zero, so we looked for points where

the determinant of the Hessian matrix was negative and the first derivatives were less than

1% of the standard deviation of the derivatives over the whole domain.

Figure 2.3: Contour lines of the magnetic potential ψ (black) and saddle points of ψ (blue).
Left: βe = 0.04. Right: βe = 0.5. Visual inspection reveals electron-only reconnection
candidates in both cases; the green-red X signs mark the specific regions analyzed in detail
below. The red and green lines were traced following the direction of the (orthogonal) Hessian
eigenvectors at the corresponding saddle points.

Figure 2.3 shows the contour lines of ψ and the saddle points found after several eddy

turnover times (the eddy turnover time being approximately 30Ω−1
ci ), in both the βe = 0.04

and βe = 0.5 simulations. Direct inspection of the contour lines reveals a good reconnection

candidate, marked in each case with an X, with the red line corresponding to the direction

of the outflow and the green line to the inflow, directions given by the eigenvectors of the

Hessian matrix of ψ. To confirm that this is a reconnection event, we plot in Figure 2.4 cuts

of the fields along the inflow and the outflow. This figure shows the reconnecting component

of the magnetic field (B1), the electron inflow and outflow velocities (Ue2 and Ue1), the ion

inflow and outflow velocities (Ui2 and Ui1), the electron density (ne), and the out-of-plane

current density (Jz) along the inflow and outflow directions. The velocities were normalized

to the electron Alfvén velocity computed with the reconnecting magnetic field, estimated as

half the jump of the magnetic field across the electron inflow layer. The magnetic field was
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normalized to the guide field B0. The velocity plots show that in these reconnection sites the

ions do not couple to the electron inflow and outflow, similar to the observational results by

Phan et al. (2018).

Figure 2.4: Profiles around the X-points marked on Figure 2.3. Direction ξ1 corresponds to
the Hessian eigenvector directed along the outflow, while ξ2 is directed along the inflow. The
X-point found by the Matlab algorithm is at ξ1 = ξ2 = 0. In the βe = 0.5 example, the Jz

peak and the zero of the outflow velocity deviate from the position of the X-point, which
is expected since the reconnection layer is not perfectly symmetric (e.g., Cassak and Shay,
2007; Doss et al., 2015). In both cases, a large-scale plasma flow at the X-point results in
nonzero mean electron and ion flows in the reconnection layer.
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As explained in Section 1.5, we can understand why the ions do not couple to the electron

motion by noting that in the sub-di scale, ion inertia becomes important, so they no longer

move with the magnetic field lines the way electrons do. Indeed, studies have shown that

for electron scale reconnecting current sheets only electrons participate in the reconnection

event, with ions gradually coupling to the inflow and outflow as the length of the current

sheet is increased up to tens of di, where we recover the traditional, double layer magnetic

reconnection (e.g., Mandt et al., 1994; Phan et al., 2018; Sharma Pyakurel et al., 2019).

Analyzing the sizes of the out-of-plane current sheets characterized by the current density

Jz, we find that in the run with βe = 0.04 (top panel in Figure 2.4) the thickness of the current

sheet is about T ∼ 0.5de, while its length is about L ∼ 4de. In the run with βe = 0.5 (bottom

panel in Figure 2.4), the current sheet dimensions are slightly larger. In both cases, however,

the lengths of the current sheets and electron outflow regions are significantly smaller than

the scale ∼ 40di necessary for ion coupling.

To find more reconnection candidates, we looked for saddle points within intense current

sheets. The first step in constructing the current sheets is to locate all the points of the

simulation grid where the current density is above a given threshold (chosen to be 3 times

the rms current density). Next, the local maxima are found among those points by looking

at the current density on a square window of side 2n+ 1 centered on the point of interest

(we used n = 3). Points where the current density is the maximum within the window are

classified as local maxima. Going through the local maxima from highest to lowest, the

following procedure is performed. Starting on the point with the highest current density, its

four closest neighbors are checked, and those with current density above a certain threshold

(chosen to be 75% of the local maximum) are taken to be part of the current sheet. The

neighbors of the new points are then checked and so on until the boundary points of the

current sheet are surrounded by points with current density below the threshold (while for

all the points in the current sheet it is above). When this process is completed for one local

maximum, the program moves on to the next one. If this one belongs to any of the current
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sheets already found, it is skipped. This algorithm, which was implemented in Matlab, is

based on the algorithm previously discussed in Zhdankin et al. (2013).

Figure 2.5: Current sheets found (in green). The red Xs are the current peaks of those sheets
containing saddle points (blue circles).

For each current sheet, our program measures its length L, defined as the largest distance

between any two points belonging to it, and the thickness T , defined as its size in the direction

of most rapid descent from the peak. The current sheets found in both the low and high

electron beta simulations at a particular time are shown in Figure 2.5. The red Xs mark

the peaks of current sheets that overlap with saddle points (potential reconnection sites).

Interestingly, only one current sheet containing a saddle was found in the high electron beta

run, corresponding to the reconnection site discussed above.3 The reconnecting current sheet

length determined by our algorithm was 14.6 de and the thickness was 1.2 de. In the low

electron beta case, five reconnection candidates were found by our algorithm, including the

example discussed previously and displayed in Figure 2.4. The lengths measured for the

current sheets ranged from 3.2 de to 18.1 de, with an average of 7.9 de. The thicknesses

ranged from 0.4 de to 1.0 de, with an average of 0.6 de.
3To understand how generic such a situation is, the algorithm was applied to a few other randomly

selected snapshots in both the low and high electron beta simulations, finding from 5 to 8 reconnection sites
per snapshot in the former case and from 1 to 3 in the latter. This suggests that electron-only reconnection
events are easier to generate in the low electron beta environment.
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We checked that, out of the five reconnection candidates found by the algorithm in

the low electron beta case, the profiles corresponding to the X-points with coordinates

(x/de, y/de) = (104.4, 37.4) and (x/de, y/de) = (143.9, 221.7) have a structure qualitatively

similar to the example shown in Figure 2.4. For the remaining two points, with coordinates

(x/de, y/de) = (94.7, 34.2) and (x/de, y/de) = (168.4, 23.7), it is harder to clearly identify an

electron inflow and outflow due to the strongly asymmetric structures of the current sheets,

as can be seen in Figure 2.5.

Finally, we estimated the reconnection rate of the electron-only reconnection sites in both

the low and high electron beta simulations. Several traditional methods were considered.

First, one can define a local reconnection rate by using the magnetic and electric fields on

the scale of the electron layer (e.g., Cassak et al., 2017). However, we found that in the low

electron beta case, the electron inflow velocity Ue,2 does not agree with the E × B velocity,

Ez/B2 (the subscript ‘2’ refers to the inflow direction as labeled in Figure 2.4). The latter,

measured at distance ±T from the midplane of the reconnection layer, produces a value

several times larger than the electron inflow velocity measured directly. This may be related

to the presence of strong gradients of the electric field, gradients of pressure, and electron

inertial effects inside the structure. Another way of measuring the reconnection rate is by

finding the ratio of the electron inflow velocity to the electron outflow velocity. This method

was also found to be unreliable, giving in some cases reconnection rates above unity. This

may be due to the difficulties in identifying the right points to measure the inflow and outflow

velocities in the case of asymmetric current sheets.

On the other hand, if we assume that there is no accumulation of electric charge on the

reconnection sites (i.e., a steady state), for each of them we must have Ue,inflowL ∼ Ue,outflowT

(all the electrons flowing in must also flow out), implying Ue,inflow/Ue,outflow ∼ T/L. Thus,

the current sheet aspect ratio, T/L, which can be reliably measured by our algorithm, can

be used as a proxy for the reconnection rate. In this way, the average reconnection rate

obtained in the low electron beta case was 0.093, while in the high electron beta case, it was
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0.084. The aspect ratio T/L was also calculated for other values of the threshold used to

define the current sheets, producing similar results. Rather interestingly, the results are close

to 0.1, which may suggest that the previously established result on collisionless magnetic

reconnection (e.g., Birn et al., 2001; Comisso and Bhattacharjee, 2016; Cassak et al., 2017)

also applies to the novel electron-only reconnection regime.

Finding reconnection sites in 3D simulations

Finding reconnection candidates in 3D is significantly harder than in 2.5D, as one cannot rely

on looking for X-points. In previous studies, reconnection was found in 3D simulations by

identifying sites where numerous reconnection signatures were present simultaneously (e.g.,

large current density, particle heating, fast ions and electrons; see, for example, Agudelo

Rueda et al. (2021)). Closely following Vega et al. (2023b), we take a similar approach and find

candidates for electron-only reconnection by searching for large values of the pressure-strain

interaction (a signature of particle heating (Yang et al., 2017, 2022, and Section 1.4)) and

large variations in the electron fluid velocity (a signature of fast electron outflows) in the

vicinity of strong current peaks.

Our 3D simulation, analyzed in Vega et al. (2023b), was run with spectral code Spec-

tralPlasmaSolver (SPS), developed at Los Alamos National Laboratory. SPS solves the kinetic

equations for all plasma species by expanding the particle distribution function in Hermite

functions (akin to a moment expansion). It results in a truncated set of three-dimensional

partial differential equations (PDEs) for the expansion coefficients whose expressions can be

explicitly found in Delzanno (2015); Roytershteyn et al. (2018).

The simulation was initialized with a uniform two-species plasma with Maxwellian velocity

distributions corresponding to βe = 0.1, βi = 1, and the same uniform density n0 for each

species, embedded into a uniform magnetic field of strength B0 oriented in the z direction. The

ratio of the plasma electron frequency to the electron cyclotron frequency was ωpe/Ωce = 100,

and the ion-to-electron mass ratio was mi/me = 100. The dimensions of the simulation
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domain were Lx = Ly = 10di = 100de and Lz = 60di = 600de, and periodic boundary

conditions were used. The spatial domain was decomposed into 511 × 511 × 63 Fourier modes

and the velocity domain in 4 × 4 × 4 Hermite modes. The reduced spatial resolution in the

z-direction reflects the fact that in the presence of a strong guide field, turbulent fluctuations

are anisotropic, approximately satisfying the critical balance condition, kz/k⊥ ∼ δB/B0 (e.g.,

Boldyrev and Perez, 2012; TenBarge and Howes, 2012; Boldyrev et al., 2021). The use of

reduced resolution in the parallel direction excludes the possibility of describing fluctuations

with very short parallel wavelengths. At present, there is little evidence to suggest that

coupling to such fluctuations is an important process in the turbulent regime considered.

Consequently, the resolution was chosen to reduce the numerical cost of the simulation. The

model utilized here can be thought of as an advanced two-fluid model retaining 128 fluid

moments (64 per species) and utilizing a closure at the level of heat flux tensor (see, e.g.,

discussion in Delzanno, 2015; Roytershteyn et al., 2018). The artificial collisional operator

had collisionality ν = 0.01ωpe (Delzanno, 2015). The time step was Ωceδt = 1. We emphasize

that the implicit time discretization used in SPS allows us to study a regime with rather large

ωpe/Ωce, which is extremely challenging for algorithms based on explicit time discretization,

such as those used in many production PIC codes.

Decaying turbulence was seeded by imposing randomly phased initial perturbations of

the magnetic and velocity fields of the type

δB =
∑

k

δBk cos(k · x + χk), δU =
∑

k

δUk cos(k · x + ϕk), (2.35)

with the wave numbers k = {2πl/Lx, 2πm/Ly, 2πn/Lz}, where l,m = −2, ..., 2 and n =

0, ..., 2. Since we initialize kz = 0 modes, certain modes are included in the sum twice (e.g.,

(kx, ky, 0) and (−kx,−ky, 0)), so the sum is further restricted to make sure that each k is

sampled only once. The injection scale of turbulence is thus k⊥di ≈ 2. In (2.35) δU refers to

the ion and electron velocities (just like in the 2.5D case, electrons are a bit faster than ions
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to generate the current required by the initial magnetic field). The amplitudes of the initial

modes satisfy conditions k · δBk = 0, B0 · δBk = 0, k · δUk = 0, and |δBk|/B0 = |δUk|/VA,

where VA = B0/(4πn0mi)1/2 is the Alfvén speed. The initial root-mean-square fluctuation

was ⟨δB2(x, t = 0)⟩1/2/B0 = ⟨δU2(x, t = 0)⟩1/2/VA ≈ 0.071, implying that the initial average

energy density of the magnetic and kinetic fluctuations together was U ≈ 0.005B2
0 .

We applied the algorithm described in the previous subsection to generate 2D current

sheets on each guide-field-perpendicular 2D layer of the 3D simulations (we note that different

2D current sheets found this way are actually part of the same 3D current ribbon). We

looked for current peaks that were at least twice the rms current in the whole domain and

defined the current sheets around each peak as those points where the current density was

at least 50% of the peak. In the next section, we will analyze the statistics of the current

sheets and their role in energy dissipation. Here we will look at one particular current sheet

that stands out for displaying the highest energy dissipation rate R of any site in the whole

domain in any of the time slices analyzed, where we used the pressure-strain interaction

R = −[(Pe ·∇) ·Ue +(Pi ·∇) ·Ui] as a measure of dissipation (see Yang et al. (2017, 2022) and

Section 1.4). Ps and Us are the pressure tensor and fluid velocity of species s, respectively.

Closer inspection of this site reveals multiple signatures of electron-only magnetic recon-

nection. The top-left panel in Figure 2.6 shows the electron fluid velocity Uey normalized to

the electron Alfvén speed, with the in-plane electron streamlines in black. Inflow and outflow

patterns are clearly present. The corresponding profiles of the in-plane electron and ion fluid

velocities, the in-plane magnetic field, and the out-of-plane current density along the inflow

and outflow directions are shown in the bottom-left panel of Figure 2.6. The direction of the

outflow cut (marked by the green line) was chosen so that it connects the maxima of the

y-component of the electron fluid velocity. The inflow direction (red line) was chosen along

the x-direction. All the fluid velocities are normalized to the electron Alfvén speed computed

with the rms in-plane magnetic field. We note that, unlike the case of 2D reconnection, nearly

Alfvénic velocities are seen not only along the outflow but also along the inflow. Similar
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Figure 2.6: Example of reconnection candidate. Top-left: The color map shows the y
component of the electron flux and the arrows show the electron fluid velocity. Bottom-left:
Profiles of different fields along the inflow (direction X1; red line in top panel) and the outflow
(direction X2; green line in top panel). Top-right: Color map of pressure-strain interaction.
Bottom-right: Ion (blue) and electron (red) velocities along outflow. The horizontal scale
spans about 5di, or half the domain length in the field-perpendicular plane. There is no ion
coupling to the electron motion.
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enhanced inflows were also observed in 3D reconnection simulations in Pyakurel et al. (2021),

where it was attributed to a significant mass outflow along the guide field.

The top-right panel of Figure 2.6 shows the large peak in R that was found around

the reconnection site. The bottom right panel displays the ion and electron outflows in

an enlarged region spanning half the field-perpendicular domain. As can be seen in the

figure, ion flows are significant (relative to the ion Alfvén speed, which for the given mass

ratio is ten times smaller than the electron Alfvén speed) and do exhibit a reversal around

the reconnection site. At the same time, ion and electron motions remain decoupled until

outflows begin to interact with other turbulent structures on the scales comparable to the ion

gyroradius (recall that here βi ≈ 1 and hence ρi ≈ di ≈ 10de). In this sense, it is appropriate

to interpret the presented reconnection event as electron-scale reconnection.

The reconnection site shown in Figure 2.6 is part of a 3D current structure elongated

along the background field, with a field-parallel length of approximately 300de. Its average

half-thickness and half-length are 0.77de and 7.5de, respectively. The in-plane length was

defined the same way as in the 2.5D case, but due to the complex topology displayed by many

current sheets, for the thickness we used the medial axis transform, originally introduced

in Blum (1967).

Before we continue characterizing this reconnection site, let us briefly discuss the medial

axis transform. The medial axis transform defines the so-called skeleton (or medial axis) of

an object (e.g., a current sheet) as the locus of points that have more than one closest point

on the boundary of the object. In 2D, the skeleton consists of the centers of circles that are

tangent to the contour at two points at least. The skeleton preserves the topology of the

original shape so the method is well-suited for defining the thickness of current sheets with

complex shapes. The left panel of Figure 2.7 shows an example of the “skeletonization” of

a 2D current sheet. The boundary of the current sheet is shown in red and the skeleton is

shown in a color map representing the distance of each point of the skeleton to the boundary
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Figure 2.7: Left panel: Example of skeletonization of a current sheet. The red curve traces the
boundary of the current sheet as defined in the text. The curve within is the skeleton obtained
with the medial axis transform, with the color code representing the shortest distance to the
red boundary. Right panel: Color map of the same current sheet.

(that is, the radius of the corresponding inscribed circle).4 For comparison, the right panel of

Figure 2.7 shows a color map of the current sheet.

The skeleton (or medial axis) and the distance of each point on it to the boundary of the

current sheet (the radius function) were obtained using the Matlab Image Processing Toolbox

functions “bwskel” and “bwdist”, respectively. The half-thickness, T , was then estimated by

averaging the radius function over the points of the skeleton.

Going back to the 3D reconnecting structure, to estimate its value of R we consider the

2D areas made of 2.5de × 2.5de windows centered on each point of the skeleton of each 2D

current sheet that spans the 3D structure over 30 field-perpendicular planes, and we compute

R within these areas. The size of the windows was chosen to enclose peaks in R as observed

in the top-left panel of Figure 2.6. R computed this way, for this particular 3D structure,

turns out to contribute 25% of the total pressure-strain interaction in the whole domain, in

only 0.26% of the total volume.

We have also examined other metrics typically associated with reconnection for the

structure discussed above. It was found that this structure corresponds to one of the largest
4The skeleton together with the corresponding radius function constitute the medial axis transform.
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values of magnetic shear in the simulation, which was analyzed by studying the mapping of

the field lines between two xy planes of the simulation located at different z (e.g., Daughton

et al., 2014, and references therein). It also corresponds to large electron agyrotropy (Scudder

and Daughton, 2008), which signals departures of the electron velocity distribution function

from cylindrical symmetry about the local magnetic field.

2.3 Role of current sheets in energy dissipation

Statistics of current sheets

In the previous section, we explained how we identified and measured 2D current sheets on

each field-perpendicular cut of the 3D SPS simulation. Figure 2.8 shows the distributions of

the measured thicknesses and lengths, as well as the aspect ratios of the current sheets (Vega

et al., 2023b). These distributions show that these are electron-scale current sheets, as

expected given the low electron beta.5

Figure 2.8 also contains a similar analysis performed for two specific subsets of the

2D current sheets. The first subset is characterized by large values of the pressure-strain

interaction, which may indicate strong energy dissipation. The second subset is characterized

by large changes in the velocity of the electron flow, which may indicate the presence of

outflows expected in electron-only reconnection. The distributions of both subsets and their

intersection, shown in purple, follow a similar trend. However, since only 16 current sheets

satisfy both the pressure-strain interaction and electron bulk velocity criteria, this subset of

current sheets has limited statistical significance.

We placed a 2D current sheet into the large pressure-strain interaction subset if there

existed a point within a window of 2.5de × 2.5de centered on its skeleton where R was at least

ten times its root-mean-square (rms) value over the whole domain. The window size was
5It should be noted that the lack of ion scale current sheets is due to the choice of energy injection scale

and box size. However, the relevant observation is that kinetic scale turbulence indeed creates electron scale
current sheets.



51

Figure 2.8: Histograms of half-thicknesses T (top), half-lengths L (middle), and aspect ratios
T/L (bottom) of the 2D current sheets, with different sets shown in different colors. The
number of 2D current sheets in each case is shown in parentheses. The blue dots mark the
centers of the bins. The data denoted by different colors belong to the same bins but are
shifted for clarity.
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chosen to pick up peaks in R, similar to the ones seen in the top-right panel of Figure 2.6.

Such peaks are typically found around a current sheet skeleton but they do not overlap with

it.

Similarly, we placed a 2D current sheet into the large-electron-outflow subset if it contained

a large variation of the electron velocity Ue in the vicinity of its skeleton. Specifically, we

looked for variations in the in-plane electron fluid velocity larger than 95% of the electron

Alfvén velocity VAe within 5de × 5de windows centered on the skeletons. (Here VAe is defined

with the rms value of the in-plane magnetic field.) Such structures are of interest because

the presence of electron outflows is one of the signatures (but not a guarantee) of magnetic

reconnection, and also because velocity gradients explicitly enter the expression for R. The

distributions of current sheet sizes corresponding to different subsets look similar and have

comparable averages. However, more intense energy dissipation and/or electron outflows

seem to favor more anisotropic current sheets.

Intermittency of energy dissipation

To illustrate the intermittency of energy dissipation (i.e., a significant contribution to the

dissipation coming from a small fraction of the domain; see, for example, Wan et al. (2012);

Zhdankin et al. (2016); Camporeale et al. (2018); here we follow Vega et al. (2023b)), we

consider the relation between current density and energy dissipation in the 2D current sheets.

The left panel of Figure 2.9 shows the average R computed within 2.5de × 2.5de windows

centered on those points of current sheet skeletons where the current density is above a given

threshold. This figure demonstrates that, indeed, the average R is higher in the vicinity of

intense current sheets, reaching values that are over a hundred times the average where the

current densities are four times the rms.

The right panel of Figure 2.9 shows, in blue, R integrated over the corresponding vicinities

of the skeletons, normalized to R integrated over the whole domain. In red, we show the

corresponding areas (2D volumes) over which R was integrated, normalized to the volume
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Figure 2.9: Left: Average pressure-strain interaction around points of the current sheet
skeletons where the current density is above the threshold shown on the horizontal axis.
The pressure-strain interaction is normalized to its average over the whole domain and the
current density is normalized to its rms value. Right: Fraction of the overall pressure-strain
interaction contributed by the vicinity of points of current sheet skeletons (in blue). The
fractional volume occupied by the region around skeletons where pressure-strain interaction
was computed (in red).

of the whole domain. This plot illustrates the intermittency of intense energy dissipation.

Notably, R computed in regions where the current density exceeds twice its rms value, adds

up to more than the total R over the whole domain while occupying about 20% of the volume

of the whole domain (this is possible due to partial cancellation with sites where R < 0).

Thus, energy dissipation in this low electron beta turbulent environment is seen to be strongly

intermittent, similar to what has been observed in simulations of other collisionless plasma

environments (e.g., Wan et al., 2012, 2015; Camporeale et al., 2018).

2.4 Discussion

Observations of the Earth’s magnetosheath (Chen and Boldyrev, 2017) and numerical

simulations (Roytershteyn et al., 2019) reveal the existence of a new regime of plasma

turbulence in the range of scales d−1
e ≪ k⊥ ≪ ρ−1

e in environments with βe ≪ βi ∼ 1. This

sub-de turbulence is well differentiated from the typical sub-di turbulence by its statistical
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properties (e.g., magnetic energy spectrum, compressibility). Observations of the magnetic

energy spectrum are fit well by theoretical models that describe the turbulence in terms of

nonlinear interactions of inertial kinetic Alfvén modes (Chen and Boldyrev, 2017; Passot

et al., 2018). However, there was not much separation between de and ρe in the simulations

analyzed and finite gyroradius effects may need to be accounted for to get a better fit with

the mangetic compressibility, although the model did reproduce the general trendline. To

better study iKAW turbulence, new simulations with lower βe would be highly desirable.

Our numerical study of this regime of plasma turbulence shows that electron-scale current

sheets are naturally generated in this low electron beta environment and a few of them

undergo electron-only magnetic reconnection (Vega et al., 2020, 2023b). A comparison

between 2.5D simulations with βe ≪ 1 and βe ∼ 1 suggests that electron-only reconnection is

generated more efficiently in the former (Vega et al., 2020).

In the 3D simulation, the energy dissipation as measured by the pressure-strain interaction

was seen to be strongly intermittent, with current sheets representing about 20% of the

volume of the whole domain contributing more than 100% of it. One particular reconnection

site stood out for representing the most intense dissipation event found in the time slices

analyzed, having a peak in the pressure-strain interaction approximately equal to 22 times

the rms value at that particular time. This reconnection site was a current structure spanning

about 30 field-perpendicular layers and contributed 25% of the pressure-strain interaction in

0.26% of the volume (Vega et al., 2023b). This finding aligns with previous studies that have

also demonstrated strong intermittency in energy dissipation in various plasma regimes (e.g.,

Wan et al., 2012, 2015; Camporeale et al., 2018), highlighting the ubiquity of intermittent

structures and dissipation in turbulent plasmas.
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3 turbulence in relativistic plasmas

3.1 What is a relativistic plasma and why is it

important?

It seems pertinent to open this chapter by discussing the meaning of “relativistic plasma”.

The term can refer to plasmas where the bulk motion is relativistic or where the microscopic

particle motion is relativistic (i.e., a relativistically hot plasma). In the simulations of

decaying magnetically dominated plasma turbulence without radiation cooling that we

analyze here, magnetic fluctuations with energy far exceeding the particle energy are seeded

at the initialization and the system is allowed to evolve. We observe that the resulting

bulk motion is only mildly relativistic, with root-mean-square velocity Urms ≲ c/2, while

the microscopic particle motion is strongly relativistic, with average Lorentz factor ⟨γ⟩ ∼ 10

(Vega et al., 2022a,b, 2023a, 2024b).1

In the astrophysics community, there is significant interest in relativistic plasma turbulence

for its potential as an efficient particle accelerator, but a proper theoretical study of the

properties of this turbulent regime is often neglected. However, understanding the properties

of relativistic plasma turbulence is an interesting problem in its own right, and is the topic

of Vega et al. (2022a) and Vega et al. (2024b), where we use a two-fluid model to derive

dynamical equations for the turbulent fluctuations in a relativistic plasma with strong guide

field. The model is then compared to the energy spectrum measured in numerical simulations,

both in the inertial and kinetic range. We present this work in Section 3.3.

Recent numerical simulations have shown that relativistic plasma turbulence leads to

efficient particle energization, which results not only in thermal plasma heating but also in

nonthermal acceleration to ultrarelativistic energies, a process manifested in either power-law
1This situation may be different when radiation loses are present, as part of the kinetic energy of particles

is converted into radiation, reducing their relativistic mass and, as a consequence, the inertia of the fluid
elements, making it easier to accelerate the latter to highly relativistic speeds.
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or log-normal tails of the particle energy distribution function, depending on the strength

of the guide field (Zhdankin et al., 2017, 2018b,a, 2019, 2021; Comisso and Sironi, 2018,

2019, 2021; Wong et al., 2020; Nättilä and Beloborodov, 2021; Demidem et al., 2020; Vega

et al., 2022b, 2023a, 2024b,a; Chernoglazov et al., 2021; Nättilä and Beloborodov, 2021). In

this respect, relativistic plasma turbulence can be considered as a mechanism of particle

acceleration complementary to previously studied particle acceleration by collisionless shocks

or magnetic reconnection events (e.g., Marcowith et al., 2016; Guo et al., 2020). This regime

of plasma turbulence may be present in astrophysical objects, such as jets from active galactic

nuclei (e.g., Begelman et al., 1984), pulsar-wind nebulae (e.g., Bühler and Blandford, 2014),

and accretion discs (e.g., Yuan and Narayan, 2014), so it may help explain the ubiquitous

radiative signatures of nonthermal ultrarelativistic particles in these systems.

In Vega et al. (2022b), we propose a model of stochastic particle energization where

particles are accelerated inside spontaneously generated magnetic traps until they escape by

pitch angle scattering. The model produces power-law solutions for the tail of the particle

energy probability density function (pdf) and the formula derived for the spectral index is

a good fit for our numerical simulations with guide field of the same order as the magnetic

fluctuations, in the asymptotic limit of strong magnetization (see Comisso and Sironi (2019)

and Section 1.6). In Vega et al. (2024b) and Vega et al. (2024a), we show with numerical

simulations that in relativistic plasma turbulence with a guide field much stronger than the

magnetic fluctuations, particle acceleration leads to a log-normal distribution rather than

a power-law in the particle energy pdf. In Vega et al. (2024a), we discuss curvature drift

and mirror acceleration as possible energization mechanisms and suggest that which one

dominates is what determines what type of distribution the particle energy pdf will evolve

into. In view of our analysis of acceleration mechanisms, we offer a reinterpretation of the

formula for the power-law spectral index derived in Vega et al. (2022b). We present our work

on particle acceleration in Sections 3.4 and 3.5.

In Vega et al. (2023a), we study the spatial distribution of particles in simulations of rela-
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tivistic plasma turbulence and observe that ultrarelativistic particles are highly intermittent

in space. This could potentially explain the radiation flares observed in astrophysical sources

(e.g., Abdo et al., 2011; Tavani et al., 2011) and simulations (e.g., Nättilä and Beloborodov,

2021; Grošelj et al., 2024). This will be the topic of Section 3.6.

3.2 Numerical simulations

We performed simulations of decaying turbulence in an electron-positron plasma with uniform

guide field B0 = B0ẑ with the fully relativistic particle-in-cell code VPIC (Bowers et al.,

2008), both in 2.5D (two-dimensional domain and three-component vector fields) and in 3D.

Let us now define the two magnetization parameters related to the guide field B0 and the

root-mean-square (rms) magnetic fluctuations δB:

σ = B2
0

4πn0wmec2 , σ̃ = δB2

4πn0wmec2 . (3.1)

where n0 denotes the unperturbed number density of electron or positron species, and n0wmec
2

is the corresponding enthalpy density. Assuming that the plasma particle distribution is an

isotropic Maxwell-Jüttner function with temperature T , the enthalpy per particle is calculated

as w = K3(1/θ)/K2(1/θ), where Kν is the modified Bessel function of the second kind. In

this formula, θ = kBT/mec
2 is the normalized temperature.

Denoting the rms value of the initial magnetic perturbations as δB0 = ⟨δB2(x, t = 0)⟩1/2

and the initial enthalpy per particle as w0, we define the magnetization paramenters at t = 0

in our simulations as:

σ0 = B2
0

4πn0w0mec2 , σ̃0 = δB2
0

4πn0w0mec2 . (3.2)

The particle distribution function is initialized with an isotropic Maxwell-Jüttner distri-

bution, with the temperature parameter θ0 = 0.3. For such an initialization, w0 =
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K3(1/θ0)/K2(1/θ0) ≈ 1.88.

Table 3.1 summarizes the parameters of the simulations. The 2.5D simulation domains

were double periodic L×L squares with 100 particles per cell per species. The simulation plane

was normal to the mean magnetic field. The 3D domains were triple periodic L×L×L cubes

with 16 particles per cell per species. However, for the data analysis of the 3D simulations,

reduced resolution data was used, with each of the lower resolution cells being eight of the

full-resolution cells, leaving the average number of particles per cell at 8 × 16 = 128, which is

approximately the same as in the 2.5D cases.

Turbulence was seeded by randomly phased magnetic fluctuations of the Alfvénic type

δB(x) =
∑

k

δBkξ̂k cos(k · x + χk), (3.3)

where χk are the random phases and the wave numbers are chosen in the interval k =

{2πnx/L, 2πny/L}, with nx, ny = 1, ..., nmax for the 2.5D runs, and k = {2πnx/L, 2πny/L,

2πnz/L}, with nx, ny = 1, ..., nmax, nz = 1, 2 for the 3D runs. The field polarizations

correspond to the shear-Alfvén modes (e.g., Lemoine et al., 2016; Demidem et al., 2020),

ξ̂k = k × B0/|k × B0|, and all the amplitudes δBk are chosen to be the same.

The simplified 2.5D setup allows us to afford a relatively high numerical resolution of

kinetic-range turbulence. Since all the vector components of the electromagnetic field and

particle momenta are preserved, it is expected to capture some essential nonlinear interactions

existing in the 3D case. Numerical studies involving 2.5D and 3D runs seem to produce

similar energy spectra of fields and particles (e.g., Zhdankin et al., 2017, 2018a; Comisso and

Sironi, 2018, 2019; Vega et al., 2023a).

Throughout this chapter, time is normalized to the large-scale crossing time l/c, where c is

the speed of light and the outer scale of turbulence is evaluated as l = 2π/k (nmax) = L/nmax,

with nmax = 8 in the 2.5D runs I through VII and with nmax = 4 in small-box 2.5D run VIII

and 3D runs IX and X.
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Run Dimension L/de
Resolution
(# of cells ) nmax σ0 σ̃0 (B0/δB0)2 ωpeδt

I 2.5D 2010 166402 8 0.63 10 1/16 0.04
II 2.5D 2010 166402 8 2.5 40 1/16 0.04
III 2.5D 2010 166402 8 10 10 1 0.04
IV 2.5D 2010 166402 8 40 40 1 0.02
V 2.5D 2010 166402 8 90 10 9 0.02
VI 2.5D 2010 166402 8 360 40 9 0.02
VII 2.5D 1600 235522 8 4000 40 100 0.012
VIII 2.5D 200 166402 4 4000 40 100 3.5 × 10−4

IX 3D 1005 20483 4 40 40 1 0.03
X 3D 1005 20483 4 80 80 1 0.03

Table 3.1: Summary of the runs.

Figure 3.1: Top left: Time evolution of energy in electromagnetic fluctuations normalized to
its initial value for runs II, IV, IX, and X, with guide field satisfying B0 ≲ δB0. The horizontal
line is at half the initial energy. Top right: Time evolution of energy in electromagnetic
fluctuations normalized to its initial value for run VII, with guide field satisfying B0 ≫ δB0.
Bottom left: Time evolution of root-mean-square velocity of bulk plasma fluctuations for
runs II, IV, IX, and X. Bottom right: Time evolution of root-mean-square velocity of bulk
plasma fluctuations for run VII.
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Figure 3.1 shows the time evolution of the energy of electromagnetic fluctuations (top

row) and of the plasma bulk velocity fluctuations (bottom row) in runs II, IV, VII, IX, and X,

spanning cases with strong and weak guide field, as well as 2.5D and 3D. As turbulence evolves,

the initial energy of magnetic fluctuations is transferred to the plasma particles. Since in our

numerical setup the initial magnetic energy significantly exceeds the kinetic energy of the

particles, by the time the field energy declines by half, the particles become significantly heated

and their kinetic energy becomes comparable to the energy of electromagnetic fluctuations.

At approximately the same time, the bulk plasma fluctuations relax to the subsonic velocities

Urms ≲ c/
√

3, in agreement with the phenomenological discussion in Section 3.6, and the

turbulence reaches a quasi-steady state described by universal statistical characteristics such

as fluctuations spectra and particle energy distribution functions. We perform our statistical

analysis after this initial relaxation is completed.

3.3 Turbulence in strongly magnetized relativistic

plasmas

The discussion in this section will be largely based on Vega et al. (2022a, 2024b). We will

consider a strongly magnetized, magnetically dominated electron-positron plasma, 1 ≪ σ̃ ≪

σ. As turbulence evolves, electromagnetic fluctuations efficiently heat the plasma, so the

temperature becomes ultrarelativistic while, simultaneously, σ̃ decreases. This reflects the

fact that relativistic turbulent motion is inherently compressible, which allows colliding fluid

elements to convert their kinetic energy into heat rapidly (Zhdankin et al., 2018a; Nättilä

and Beloborodov, 2021; Vega et al., 2022b, 2023a). We will therefore analyze the case when

plasma bulk fluctuations are nonrelativistic, while plasma temperature is ultrarelativistic.2

2While the idealized assumption of the ultrarelativistic equation of state simplifies the formulae, it is not
crucial for our analytic discussion. For mildly relativistic particle distributions, θ ∼ 1, such as, for instance,
those obtained as pair-creation-annihilation equilibria (Svensson, 1982), one needs to add the rest-mass term
to the normalized enthalpy, w → w + 1, in the expression for the relativistic inertial scale drel, and use the
general equation of state in the expression for the acoustic velocity, vS .
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Dynamical equations of Alfvén modes

Consider the nonrelativistic bulk motion of a relativistically hot collisionless plasma with

temperature Ts ≫ msc
2, where s = {e, i} denotes the particle species. The momentum

equation takes the form (e.g., Mihalas and Mihalas, 1999):

∂Us

∂t
+ (Us · ∇) Us = −∇ · Ps

ϵs/c2 + nsqs

ϵs/c2

[
E + Us

c
× B

]
, (3.4)

where ϵs = nsmsc
2 +us +2Ps,⊥ +Ps,∥ is the enthalpy density, ns is the particle number density,

us is the internal energy density, and Ps ≈ diag(Ps,⊥, Ps,⊥, Ps,∥) is the pressure of the particles.

If we assume isotropic pressure, Ps,⊥ = Ps,∥ = Ps, the enthalpy is ϵs ≈ us + Ps ≈ (4/3)us,

where we used that for ultrarelativistic temperature the energy-momentum tensor is traceless,

so us = 3Ps. In our simulations with σ̃ ≪ σ (or B0/δB ≫ 1) we saw strong pressure

anisotropy, Ps,∥ ≫ Ps,⊥, so us = Ps,∥ and ϵs ≈ 2us. In addition, one can assume some

equation of state, for instance, the adiabatic law of relativistically hot plasma, Ps ∝ n4/3
s for

isotropic pressure and Ps,∥ ∝ n2
s if Ps,∥ ≫ Ps,⊥.

We are interested in Alfvénic plasma fluctuations that are relatively low frequency as

compared to cyclotron frequencies, ω ≪ Ωs/γs, where γs is the typical gamma factor of

particle thermal motion and Ωs is the nonrelativistic gyrofrequency. We also impose a

self-consistent assumption that the Fourier spectra of the fields are anisotropic in the Fourier

space with respect to the background magnetic field B0, k∥ ≪ k⊥, and the fluctuations obey

the critical balance condition δB/B0 ∼ k∥/k⊥ ≪ 1 (e.g., Goldreich and Sridhar, 1995).

The following derivation is analogous to the procedure developed for the nonrelativistic

case (e.g., Chen and Boldyrev, 2017; Loureiro and Boldyrev, 2018; Boldyrev et al., 2021;

Milanese et al., 2020). As follows from the field-perpendicular component of the momentum

equation, to the leading order in the small parameter ωγs/Ωs the particle motion is the E ×B

drift, while to the next order it is the polarization drift (compare to the nonrelativistic case,
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formula (2.10)),

Us,⊥ = vE + ϵs

nsqsB2c
B × dE

dt
vE, (3.5)

where vE = c(E × B)/B2 and the time derivative is dE/dt ≡ ∂/∂t + vE · ∇.3 The field-

parallel component of the velocity field is expressed through the parallel electric current,

Us,∥ = Js,∥/(nsqs). Moreover, vE can be written

vE

c
= ẑ × ∇ϕ

B0
+ Esol × ẑ

B0
, (3.6a)

c∇ × Esol = −∂tδB. (3.6b)

where E = −∇ϕ+ Esol and ϕ is the electric potential (see Section 2.1).

Substituting (3.5) and (3.6) into the continuity equation,

∂ns

∂t
+ ∇⊥ · (nsUs,⊥) + ∇∥(nsUs,∥) = 0, (3.7)

we obtain, to the leading order in magnetic, electric, and density fluctuations

∂

∂t

(
δns

n0
− δBz

B0
− ϵs,0

n0qsB2
0
∇2

⊥ϕ

)

+ 1
B0

(ẑ × ∇ϕ) · ∇
(
δns

n0
− δBz

B0
− ϵs,0

n0qsB2
0
∇2

⊥ϕ

)
+ 1
n0qs

∇∥Js,∥ = 0. (3.8)

In this equation, n0 is the unperturbed density of each species and δns = ns − n0 is the

corresponding density perturbation. The parallel gradient is taken along the direction of

the magnetic field, ∇∥ = ∂/∂z − 1
B0

(ẑ × ∇Az) · ∇, where the field-perpendicular magnetic

perturbation is expressed as δB⊥ = −ẑ × ∇Az.

In order to find the electric current, we turn to the magnetic-field-parallel component of
3We did not include the diamagnetic drift proportional to ẑ × ∇ · Ps in the perpendicular velocity (3.5),

since such a drift does not lead to particle transport and should not contribute to the continuity equation.



63

the momentum equation:

∂Us,∥

∂t
+ (vE · ∇⊥) Us,∥ = −

∇∥P∥

ϵs/c2 + nsqs

ϵs/c2E∥. (3.9)

We now multiply each of the Equations (3.8) and (3.9) by n0qs and sum over particle

species. As a result, Equation (3.8) turns into the charge conservation law:

∂

∂t

(
ρ− 2ϵ0

B2
0

∇2
⊥ϕ

)
+ 1
B0

(ẑ × ∇ϕ) · ∇
(
ρ− 2ϵ0

B2
0

∇2
⊥ϕ

)
+ ∇∥J∥ = 0, (3.10)

where ρ = qiδni + qeδne is the electric charge density, J∥ = Je,∥ + Ji,∥ is the parallel current,

and ϵ0 = (ϵi,0 + ϵe,0) /2 is the mean unperturbed enthalpy. To simplify the formulae, we

have assumed without loss of generality that qi = |qe| ≡ q. We may also assume that in the

ultrarelativistic case, the unperturbed enthalpy is the same for both species, ϵi,0 = ϵe,0 = ϵ0.

In the ultrarelativistic limit with P∥/P⊥ ≫ 1, ϵ0 = 2P∥,0, where P∥,0 = (Pi∥,0 + Pe∥,0)/2. We

will assume that the unperturbed pressure is the same for both species, so P∥,0 = Pi∥,0 = Pe∥,0.

The parallel momentum equation (3.9) then leads to

∂J∥

∂t
+ (vE · ∇⊥) J∥ = −qn0c

2

ϵ0
∇∥δP∥ + 2n2

0c
2q2

ϵ0
E∥, (3.11)

where δP∥ = δP∥,i − δP∥,e denotes the pressure imbalance.

We note that the terms containing the electric charge density ρ and pressure imbalance δP∥

in Equations (3.10) and (3.11) reflect deviation of plasma fluctuations from quasineutrality,

that is, from the condition δni = δne. It is easy to see by using Gauss’s law, −∇2ϕ = 4πρ,

that these terms are relatively small in the case of weak magnetization, that is, when

σ ∼ B2
0/(8πϵ0) ≪ 1. In the opposite case of strong magnetization that we consider in this

work, the deviation from quasineutrality is essential and as a result, both the electric charge

and pressure imbalance become dynamically significant. In the case of a nonrelativistic

electron-proton plasma, we need to replace ϵ0 → n0mic
2/2, and the magnetization parameter
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turns into the so-called quasineutrality parameter, Ω2
i /ω

2
pi = λ2

i /ρ
2
i . Here, λi is the ion Debye

scale, ρi is the gyroscale, and ωpi is the ion plasma frequency. Therefore, Ω2
i /ω

2
pi is the

nonrelativistic analog of relativistic magnetization σ.

To close system (3.10)-(3.11), we replace the charge density by using Gauss’s law, ρ =

−(1/4π)∇2
⊥ϕ, express the parallel electric current as J∥ = −(c/4π)∇2

⊥Az, and use the

adiabatic law for each particle species to evaluate the pressure gradients:

∇∥δP∥ =
(

1 + v2
S

c2

)
P∥,0

n0
∇∥ (δni − δne) = −v2

S

c2
ϵ0

n0

1
4πq∇∥∇2

⊥ϕ. (3.12)

where we have introduced the speed of sound v2
S = c2∂P∥/∂u|0.4 Finally, we introduce the

new variables for the scalar and vector potentials, ϕ̃ = ϕc/B0, Ãz = Azc/
(
B0

√
1 + 2/σ

)
.

Substituting these expressions into Equations (3.10) and (3.11), we finally obtain the system of

equations describing Alfvén dynamics of a relativistic plasma in both magnetohydrodynamic

and inertial regimes:

∂

∂t
∇2

⊥ϕ̃+
(
ẑ × ∇⊥ϕ̃

)
· ∇⊥∇2

⊥ϕ̃ = −vA∇∥∇2
⊥Ãz, (3.13)

∂

∂t

(
Ãz − d2

rel∇2
⊥Ãz

)
−
(
ẑ × ∇⊥ϕ̃

)
· ∇⊥d

2
rel∇2

⊥Ãz = −vA∇∥

(
ϕ̃− v2

S

c2 d
2
rel∇2

⊥ϕ̃

)
, (3.14)

where

vA = c√
1 + 2/σ

≈ c (3.15)

is the relativistic Alfvén speed in a pair plasma,

d2
rel = ϵ0c

2

2ω2
pe

= ϵ0mec
2

8πn0e2 (3.16)

4Note that if Ps,∥ ∝ na
s , then a = 1 + v2

S/c2. For an isotropic plasma, v2
S/c2 = 1/3, so a = 4/3. If

Ps,∥ ≫ Ps,⊥, v2
S/c2 = 1 and a = 2.
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is the relativistic inertial scale, and the magnetic-field-parallel gradient is given by

∇∥ = ∂/∂z − 1
vA

(ẑ × ∇⊥Az) · ∇⊥. (3.17)

Except for the very last term in Equation (3.14) describing the relativistic pressure

contribution, the system of equations (3.13) and (3.14) is analogous to the nonrelativistic

case. The nonrelativistic electron-ion case is recovered by replacing the Alfvén speed and the

inertial length by their nonrelativistic counterparts using the substitutions ϵ0 → n0mic
2/2 in

the Alfvén velocity and ϵ0 → 2n0mec
2 in the inertial length. It may also be instructive to

compare the dispersion relation (3.18) with the dispersion relation of nonrelativistic inertial

kinetic Alfvén waves (e.g., Streltsov and Lotko, 1995; Lysak and Lotko, 1996; Boldyrev et al.,

2021, Equation 19), where, similarly, the kinetic correction coming from thermal particle

motion enters the numerator, while the inertial correction appears in the denominator. In

our relativistic case, these two corrections are necessarily of the same order. We also note

that, similarly to the previous study (TenBarge et al., 2021), at large scales k2
⊥d

2
rel ≪ 1,

Equations (3.13) and (3.14) describe shear Alfvén waves in a relativistically hot plasma

and they are mathematically analogous to the equations of reduced magnetohydrodynamics.

Available fluid and first-principle particle-in-cell kinetic simulations of relativistic turbulence

at such scales (e.g., Zrake and MacFadyen (2012); Zhdankin et al. (2018a); Chernoglazov

et al. (2021); Vega et al. (2022b,a); see also next subsection) indeed produce the energy

spectra consistent with the spectrum of nonrelativistic Alfvén turbulence (e.g., Boldyrev,

2006; Boldyrev et al., 2009; Mason et al., 2006, 2012; Perez et al., 2012; Tobias et al., 2013;

Chandran et al., 2015; Chen, 2016; Kasper et al., 2021).

The dispersion relation of the linear waves described by Equations (3.13) and (3.14) is

ω2 = k2
zv

2
A

1 + (v2
S/c

2)k2
⊥d

2
rel

1 + k2
⊥d

2
rel

, (3.18)

which can be termed relativistic inertial Alfvén waves. Similarly to the kinetic-Alfvén waves,
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the numerator of this expression involves the contribution of the thermal effects. Similarly

to the inertial Alfvén waves, the denominator includes the contribution of the electron (and

positron) inertia. This is somewhat analogous to the inertial kinetic-Alfvén modes in a

nonrelativistic plasma (e.g., Streltsov and Lotko, 1995; Lysak and Lotko, 1996; Chen and

Boldyrev, 2017; Roytershteyn et al., 2019; Loureiro and Boldyrev, 2018; Boldyrev et al., 2021).

In contrast with the nonrelativistic case, however, in a relativistic plasma, we have vS ∼ c, so

that the thermal contribution in the numerator is never negligible. Rather, the thermal and

inertial effects in Equation (3.18) are necessarily of the same order. Since vA ≈ c, the phase

velocity of relativistic inertial Alfvén waves is close to the speed of sound, itself comparable

to the thermal speed, so Landau damping of the linear modes is also generally strong at

k2
⊥d

2
rel ≳ 1. As discussed in Appendix A, the applicability of the linear dispersion relation in

Equation (3.18) depends on the particle distribution function, which is strongly nonthermal.

Finally, as can be checked directly, Equations (3.13) and (3.14) conserve two quadratic

integrals:

E = B2
0

8πv2
A

∫ [(
∇⊥Ãz

)2
+ d2

rel

(
∇2

⊥Ãz

)2
+
(
∇⊥ϕ̃

)2
+ v2

s

c2 d
2
rel

(
∇2

⊥ϕ̃
)2
]
d3x, (3.19a)

H =
√
ϵ0

c

∫
∇2

⊥ϕ̃
(
Ãz − d2

rel∇2
⊥Ãz

)
d3x. (3.19b)

Turbulence in the inertial range

In the hydrodynamic range of scales, k2
⊥d

2
rel ≪ 1, the energy integral becomes:

E = B2
0

8πv2
A

∫ [
(∇⊥Ãz)2 + (∇⊥ϕ̃)2

]
d3x =

∫ [
(δB)2

8π + E2

8π + ϵ0
v2

E

c2

]
d3x, (3.20)

where in the second expression, we have restored the corresponding physical fields. The term

ϵ0
v2

E

c2 , which came from the 2/σ term hidden in the 1/v2
A factor, can be interpreted as the

kinetic energy. We see that the ratio of the electric to kinetic energy is given by the parameter
E2

8π

/(
ϵ0

v2
E

c2

)
= B2

0/(8πϵ0) ∼ σ. In both relativistic and nonrelativistic cases, when σ ≫ 1,



67

the charge fluctuations are significant and the electric energy dominates the kinetic energy.

Therefore, the energy of fluctuations is mostly contained in magnetic and electric fields. This

had already been hinted at in the previous subsection, where significant deviations from

quasineutrality were noted. Figure 3.2 illustrates how the electric fluctuations gradually

approach the magnetic fluctuations as σ0 increases until the two are in approximate energy

equipartition.

In this limit, the system of Equations (3.13) and (3.14) is mathematically analogous to

the equations of nonrelativistic reduced magnetohydrodynamics, with the only difference

that in the magnetically dominated case, the field ϕ in these equations should be associated

with the intensity of electric rather than kinetic fluctuations. Based on this analogy, we

may conjecture that the spectrum of the total energy of relativistic magnetically dominated

plasma turbulence, the spectrum of its residual energy, and the alignment angle of turbulent

fluctuations, should be similar to their reduced MHD counterparts when reinterpreted in

terms of magnetic and electric fields. Here, we compare these predictions against runs V and

VI in Table 3.1.

In Figure 3.3, we present the spectra of magnetic and electric fluctuations as well as the

total energy spectrum, Wk⊥ = |Bk⊥|2 + |Ek⊥|2. The phase-volume compensated scaling of

the energy spectrum in the magnetohydrodynamic interval of scales k2
⊥d

2
rel ≪ 1 is close to

Wk⊥2πk⊥ ∝ k
−3/2
⊥ . Such a spectrum is expected in nonrelativistic magnetohydrodynamic

turbulence (e.g., Boldyrev, 2006; Boldyrev et al., 2009; Mason et al., 2006, 2012; Perez et al.,

2012; Tobias et al., 2013; Chandran et al., 2015; Chen, 2016; Kasper et al., 2021), where the

energy is contained in magnetic and kinetic fluid fluctuations. We see that it also holds in

relativistic collisionless plasma turbulence dominated by magnetic and electric fields. Our

result is also consistent with the recent relativistic MHD studies (TenBarge et al., 2021;

Chernoglazov et al., 2021). The kinetic scale cascade will be discussed in the next subsection.

In nonrelativistic magnetohydrodynamic turbulence, the magnetic energy is known to

exceed the energy of kinetic fluctuations. Phenomenological and numerical considerations
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Figure 3.2: Electric and magnetic energy spectra of runs II (top), IV (middle), and VI
(bottom). The sequence from the top to the bottom illustrates the growing deviation from
quasineutrality as σ0 increases.

demonstrated that the difference between the magnetic and kinetic energies, the so-called

residual energy, is positive and has a spectral index close to −2 (e.g., Boldyrev et al., 2011,
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Figure 3.3: The magnetic and electric spectra, and the total electromagnetic energy spectrum,
for two different magnetizations. The total energy spectrum approaches a k−3/2 power-law at
k⊥de ≪ 1, and a k−3.5 power-law at k⊥de ≫ 1.

Figure 3.4: The spectra of the normalized residual energy for two different magnetizations,
averaged over nine data cubes covering the indicated intervals of turn-over times. The solid
lines are shown for the reader’s reference.

2012; Chen et al., 2013a). In the relativistic magnetically dominated case, we may introduce

the analog of residual energy as the difference between the magnetic and electric energies,

Rk⊥ = |Bk⊥|2 − |Ek⊥|2. This quantity is measured in Figure 3.4. To compensate for the

overall energy decline in decaying turbulence we have normalized the residual energy by the

total energy of fluctuations and then averaged over several data cubes. A power-law spectrum

is indeed observed,but the scaling is slightly steeper than in its nonrelativistic counterpart,

more consistent with Rk⊥2πk⊥ ∝ k−2.4
⊥ .

Finally, a characteristic feature of nonrelativistic plasma turbulence in the presence of a

strong guide field, is the dynamic alignment between the shear-Alfvén magnetic and velocity
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Figure 3.5: The cosine of the alignment angle φλ between the magnetic and electric fluctuations
in numerical simulations. The results are averaged over nine data cubes covering the indicated
time intervals. The straight lines are shown for reference.

fluctuations. As mentioned in Section 1.3, such fluctuations become spontaneously aligned

in a turbulent cascade, with the alignment angle scaling as sin θλ ∝ λ1/4, where λ is the

field-perpendicular scale, (e.g., Boldyrev, 2006; Podesta et al., 2009; Chen et al., 2011; Perez

et al., 2012). Such an alignment progressively reduces the strength of nonlinear interaction at

small scales, which arguably explains the shallower-than-Kolmogorov spectrum of turbulent

energy, k−3/2
⊥ . In the case of magnetically-dominated turbulence, one may similarly expect a

scale-dependent dynamic alignment between the electric and magnetic field fluctuations,

cosφλ = ⟨|δE · δB|⟩
⟨|δE||δB|⟩

, (3.21)

where λ is the scale of the fluctuations in the field-perpendicular plane, e.g., δB ≡ B(x +

λ) − B(x) where λ ⊥ B0. To see whether a similar alignment exists in our numerical

simulations of collisionless relativistic turbulence, we plot the cosine of the angle φλ vs scale

λ in Figure 3.5. We observe a scaling close to that of the nonrelativistic case, and also to the

relativistic MHD case (Chernoglazov et al., 2021). We however notice that the scaling varies

slightly with the plasma magnetization parameter σ0; it is slightly shallower in the case of

stronger magnetization, possibly reflecting a shorter inertial range due to a larger relativistic

inertial scale.
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Kinetic scale turbulence

At kinetic scales, 1/d2
rel ≪ k2

⊥ ≪ 1/ρ2
e, the inertial Alfvén waves are transformed into

ω2 = v2
S

c2 k
2
zv

2
A, while the integral (3.19a) takes the form:

E = B2
0d

2
rel

8πv2
A

∫ [(
∇2

⊥Ãz

)2
+ v2

S

c2

(
∇2

⊥ϕ̃
)2
]
d3x. (3.22)

This quantity is expected to cascade in a Fourier space toward large wavenumbers, some-

what analogously to the enstrophy cascade in 2D incompressible hydrodynamic turbulence

(Kraichnan, 1967). Such a cascade is however only marginally local, so it depends on the

conditions at the low-k boundary of the inertial interval. For a given field-perpendicular

length λ, the amplitude of the linear modes of equations (3.13) and (3.14) satisfy Ãz,λ ∼ ϕ̃λ,

and the nonlinear interaction time can be estimated from these equations as τλ ∼ λ2/ϕ̃λ.

The condition of constant flux of E then reads ϕ̃2
λ/(λ4τλ) = const, which gives for the scaling

of fluctuations ϕ̃λ ∝ λ2 and for the electromagnetic energy spectrum of relativistic inertial

Alfvén waves

Wk⊥2πk⊥ ∝ k−3
⊥ . (3.23)

The nonlinear interaction time for such modes turns out to be independent of scale, which

implies that for the critically balanced cascade, ω ∝ 1/τλ, we have kz ∝ const, that is, the

cascade proceeds in the field-perpendicular direction.

Similarly to the hydrodynamic case, the energy cascade is expected to have intermittency

corrections that lead to a steeper energy spectrum,

Wk⊥ dk⊥ ∝ k−3
⊥ ln−1/3(k/k0) dk⊥. (3.24)

Here, k0 is the large-scale boundary of the spectrum, which approximately corresponds to

the inverse electron inertial scale. The intermittency correction reflects the non-locality of
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turbulence. The electromagnetic energy spectrum close to k−3
⊥ implies that vorticity and

current structures at scales k⊥ ≫ k0 are strained most efficiently by turbulent eddies at scales

k0 (e.g., Boffetta and Ecke, 2012).

As we mentioned before, significant Landau damping may affect relativistic Alfvén

turbulence at kinetic scales. We, however, conjecture that as a consequence of the non-locality

of turbulence, the spectrum should exhibit a near power-law behavior, close to that given by

Equations (3.23) and (3.23). Indeed, the Kraichnan spectrum is established due to gradient-

stretching of small-scale structures by turbulent eddies of the scale k0 ∼ 1/drel. As a result,

all small-scale modes have the same evolution time and the same parallel phase velocity. A

particle resonating with structures of scales k⊥ ≫ 1/drel then essentially resonates with an

entire eddy of scale k0 ∼ 1/drel. Landau damping may therefore regulate the overall intensity

of kinetic-scale fluctuations, while not significantly affecting their spectrum. Our numerical

results analyzed below seem to be consistent with this prediction.

Since the kinetic range of scales is not well resolved in runs V and VI (only 8 cells per

nonrelativistic de), to better study the kinetic cascade we performed simulations VII and

VIII. Run VII is a large-box, high-resolution simulation that spans both hydrodynamic and

kinetic scales, with about 15 cells per nonrelativistic de. Run VIII is a small-box simulation

where the number of cells per nonrelativistic de was increased to 80, drastically improving

the resolution of the sub-de fluctuations while decreasing the hydrodynamic range.

In the large-box run VII, an initial plasma current is also added to the system to

compensate for the curl of the initial magnetic perturbations, Jz = (c/4π)∇ × δB0. This

helps to avoid the generation of high-frequency ordinary modes with non-zero Ez in addition

to the low-frequency Alfvén modes. To add the current, the initial plasma density n0 is kept

uniform, and velocity U s
z = Jz/(2qsn0) is added to each particle of species s with charge

qs = ±e (positrons and electrons) sampled from the Maxwell-Jüttner distribution, provided

|vs
z + U s

z | < c. The distribution is unchanged in the region where |vs
z + U s

z | > c. The addition

of such a current does not change the core of the particle distribution function but modifies
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Figure 3.6: Spectra of electric and magnetic fluctuations in the large-box run VII. The total
energy spectrum is slightly steeper than k−3, but is consistent with the spectrum including a
logarithmic intermittency correction, cf. Equations (3.23) and (3.24).

its high-energy tail, as will be seen in the next section.

In the small-box run VIII, the addition of a compensating current is less practical, since it

would formally require the electron velocities to exceed the speed of light in more cells. We do

observe the generation of a weak ordinary mode in this case. The presence or absence of the

initial compensating current, however, does not qualitatively affect the particle distribution

function and the spectra of Alfvénic fluctuations eventually generated by the developed

turbulence.

The energies of electric and magnetic fluctuations in the large-box run are shown in

Figure 3.6. The total energy spectrum is slightly steeper than k−3
⊥ , however, it is consistent

with the Kraichnan spectrum of turbulence including a logarithmic intermittency correction,

in agreement with Equation (3.24). We find that k−1
0 = 1.2 de provides a good match. Also,

as we mentioned before, Landau damping may play a role in the steepening of the spectrum.

The electric and magnetic energy spectra for the small-box run VIII are shown in Figure

3.7. The visible bump in the energy spectrum at the nonrelativistic inertial scale (left panel)

warrants a discussion. As the initial field-perpendicular magnetic perturbations relax, they

drive turbulence at large scales. In a magnetically dominated plasma, the excited large-scale

fluctuations can be a combination of the two modes whose magnetic polarizations are normal
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Figure 3.7: The electric and magnetic spectra for the small-box run VIII. The left panel shows
the spectra of the perpendicular components of electric and magnetic fields, as well as the
spectrum of Ez. The Ez-spectrum is concentrated at the nonrelativistic inertial scale defined
in Equation (3.26) and corresponds to the ordinary mode produced by the initial magnetic
perturbations. The right panel shows the kinetic-Alfvén spectra where the fluctuations
associated with the ordinary mode have been removed. The spectra indicated by the solid
lines are given for the reader’s orientation.

to the background field: the shear-Alfvén mode and the ordinary mode. The frequency of

the ordinary mode is given by

ω2 = ω2
p + k2c2, (3.25)

where ω2
p = 2ω2

pe⟨1/γ3⟩, see Equations (A.12) and (A.15) in Appendix A. This mode is excited

in our setup with a relatively low amplitude, contributing only a small fraction of the total

turbulent energy. Such a mode is not important at the hydrodynamic scales.

In the small-box run, the imposed magnetic fluctuations at t = 0 are relatively strong

at small scales; their decay leads to the production of a weak ordinary mode. Such a mode

is most strongly generated at the smallest scale available for Aflvénic fluctuations since the

current is largest there. This is the inertial scale of a nonrelativistic pair plasma, expressed as

dnonrel = de/
√

2. (3.26)
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Figure 3.8: Frequencies of the ordinary fluctuations and the potential fluctuations measured
in Run VIII according to Equations (A.15) and (3.28). Here, we denote dp ≡ c/ωp, where the
relativistic plasma frequency ωp is defined in Equation (3.25), and Ωce,rel ≡ Ωce/⟨γ⟩, where
Ωce is the nonrelativistic electron cyclotron frequency and ⟨γ⟩ is given in Table 3.2.

The left panel of Figure 3.7 shows that the energy of the ordinary modes is indeed concentrated

at these kinetic scales that are the focus of our study. Since the phase velocity of the ordinary

mode exceeds the speed of light (see Equation (3.25)), such fluctuations are not significantly

damped. Therefore, we need to make sure that in our statistical analysis, the fluctuations

associated with such a mode are separated from the Alfvénic fluctuations.

The ordinary mode can be detected in simulations if we observe that its electric field

is polarized in the z direction, while the electric polarization of the shear-Alfvén mode

is normal to the z direction. The frequency of the Ez fluctuations can be numerically

found by taking the Fourier transform of the z-component of the Maxwell-Ampere law

∇ × B = (4π/c)J + (1/c)∂E/∂t, obtaining

ω2 =

∣∣∣(∇ × B)z,k − 4π
c
Jz,k

∣∣∣2∣∣∣1
c
Ez,k

∣∣∣2 . (3.27)
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Figure 3.8 shows this frequency calculated for the small-box run. The frequency indeed agrees

with the analytic dispersion relation given by Equation (3.25). Since k⊥ ≫ kz, the frequency

of the ordinary mode is much larger than the frequency of shear-Alfvén fluctuations. The

oblique shear-Alfvén fluctuations are characterized by a mostly potential electric field. The

frequency of the potential electric fluctuations can be measured by substituting Gauss’s law

∇ · E = 4πρ into the charge conservation equation ∂ρ/∂t+ ∇ · J = 0 and taking the Fourier

transform, obtaining

ω2 =

∣∣∣4π
c

k · Jk

∣∣∣2∣∣∣1
c

k · Ek

∣∣∣2 . (3.28)

This formula can also be obtained by taking the divergence of the Maxwell-Ampère law.

Figure 3.8 illustrates that it is indeed much smaller than the frequency of the ordinary mode.

We also note that the frequency calculated in Equation (3.28) coincides with the frequency

of electric charge fluctuations.

Run U e
z,rms U e

⊥,rms Uz,rms U⊥,rms ⟨γ̃e⟩ ⟨γ⟩
VII 0.47c 0.070c 0.32c 0.053c 1.25 11.3
VIII 0.61c 0.079c 0.39c 0.056c 1.73 9.5

Table 3.2: Parameters of the velocity fluctuations for the electron fluid, and for the bulk
plasma motion, U = (niU

i + neU
e)/(ni + ne). Here, γ̃e is the Lorenz factor associated with

the electron fluid velocity and γ to the particle velocity. The measurements are made at
ct/l = 76 for run VII and ct/l = 33 for run VIII.

The nearly linear scaling of the measured frequency of potential fluctuations with the

wavenumber can result from two independent effects. First, it may reflect the almost linear

dispersion relation of the Alfvén mode given by Equation (3.18). Indeed, in our 2.5D runs, the

magnetic-field direction deviates from the z-axis by a small angle, sin θ ∼ δB⊥/B ∼ 0.05. By

the critical balance condition, Alfvén fluctuations with the wavenumber k⊥ then correspond

to the field-parallel wavenumber k∥ ∼ k⊥ sin θ. According to Equation (3.18), this gives

the frequency of linear Alfvén mode, ω ∼ k⊥c sin θ ∼ 0.05 k⊥c, which is not far away from

the measurements in Figure 3.8. Second, it may correspond to the linear “Doppler shift”
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of the frequency provided by the passive advection of the small-scale plasma structures by

large-scale Alfvén fluctuations, U⊥,rms. Since U⊥,rms ∼ 0.05 c in our runs (see Table 3.2), the

corresponding angle-averaged frequency shift, ω ∼ k⊥U⊥,rms/
√

2, is also consistent with the

measurements in Figure 3.8.

The magnetic-field spectrum associated with the ordinary mode is found from Faraday’s

law:

|B⊥,k⊥ |2 = k2
⊥c

2

ω2 |Ez,k⊥ |2, (3.29)

where the frequency should be substituted from Equation (3.27). Since the frequency of

the ordinary fluctuations is much larger than that of the Alfvén mode, we may average

high-frequency ordinary fluctuations independently of the low-frequency Alfvén fluctuations.

We may then obtain the electromagnetic spectrum associated with the Alfvén modes by

subtracting the spectrum of the ordinary mode (3.29) from the total spectrum of magnetic

fluctuations. The right panel of Figure 3.7 shows the spectra of the electric and magnetic

fields where the fluctuations associated with the ordinary mode have been removed. The

observed spectrum is close to k−3, which is consistent with the scaling expected for the

kinetic-Alfvén modes.

3.4 Particle energization in relativistic plasma

turbulenece

Stochastic particle energization in magnetic traps

To explain the origin of the power-laws observed in the particle energy pdfs, we follow Vega

et al. (2022b) and propose a model where a fraction of particles may be trapped locally

by spontaneously generated magnetic structures where the particles get accelerated until

they escape the trap due to pitch angle scattering. The pitch angle width of the trapped
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population depends on the so-called magnetic compressibility of turbulence, and it defines the

power-law exponent of the resulting particle energy distribution function. Below, we present

our phenomenological model for particle acceleration and then compare our predictions with

runs I through VI, and IX and X.

We will base our discussion on the two key numerical observations related to the stochastic

acceleration process. First, the particle energization resembles a diffusion process in the

energy space, with the diffusion coefficient scaling with the particle energy as γ2 at γ ≫ 1.

This may indicate that the particles experience a second-order Fermi acceleration (e.g.,

Fermi, 1949; Teller, 1954; Kulsrud and Ferrari, 1971), where scattering events are provided by

moving magnetic mirrors (e.g., turbulent eddies or magnetic structures advected by turbulence

(Achterberg, 1984; Selkowitz and Blackman, 2004; Yan et al., 2008; Pongkitiwanichakul and

Chandran, 2014; Demidem et al., 2020)). An individual scattering event then randomly

changes the particle energy as ∆γ ∝ ±γ, see, e.g., the discussion in Blandford and Eichler

(1987); Zhdankin et al. (2018a). It is also consistent with particle interactions with wave

turbulence since, as was elucidated in Demidem et al. (2020), the quasilinear diffusion

coefficient of ultrarelativistic particles in strong Alfvénic turbulence is also proportional to

γ2. Second, numerical simulations indicate the presence of an exponentially strong regular

dissipation process at large energies (e.g., Figure 4 in Wong et al., 2020), which is crucial for

establishing a power-law distribution of ultrarelativistic particles.

We propose that a power-law particle energy distribution may be understood based on the

following phenomenological dynamical model that incorporates both observed diffusion and

dissipation. Consider an ultrarelativistic particle with momentum p ≡ |p| ≈ p0, and describe

particle interactions with nonrelativistic randomly moving fluid elements by a stochastic

dynamical equation (Langevin equation):

dp/dt = pη(t), (3.30)
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with an isotropic Gaussian white random noise

⟨ηi(t)ηj(t′)⟩ = 2Dδijδ(t− t′), (3.31)

⟨ηi(t)⟩ = 0, (3.32)

where D is a constant normalization coefficient. Such an equation satisfies the required

diffusion scaling ⟨(∆p)2⟩ ∝ p2, while the random vector η mimics the velocity of the scatterers.

The corresponding Fokker-Planck equation for the probability density function F (p), can

then be easily derived (e.g., Øksendal, 2003):

∂F

∂t
= D

∂

∂pi
p
∂

∂pi
(pF ) , (3.33)

where we sum over repeated indices. As there is a local mean magnetic field in a region

where particles get accelerated, we may rewrite Equation (3.33) in the spherical coordinates

with respect to the direction of the field. Introducing the phase-space-volume compensated

function g(p, µ) = F (p, µ)4πp2, we get

∂g(p, µ)
∂t

= D
∂

∂p
p3 ∂

∂p

(
g

p

)
+D

∂

∂µ

(
1 − µ2

) ∂

∂µ
g. (3.34)

Here, µ = cos θ is the cosine of the angle between the particle momentum and the magnetic

field.

We now assume that a particle gets accelerated locally when it can be trapped by a

turbulent structure. We can estimate the trapping angles using the conservation of the

magnetic moment, M = p2
⊥/B. If a typical trap has minimum and maximum magnetic

fields Bmin and Bmax, respectively, for marginally trapped particles with energy pc we have

p2 = p2
∥ +MBmin = MBmax, so µ2 < µ2

0 = cos2θ0 = p2
∥/p

2 = ∆B/Bmax.5 The particles “leak”
5Note that this derivation assumes energy conservation, so it should only be valid in the rest frame of the

magnetic mirror. Since we are assuming nonrelativistic bulk motion, we will neglect the transformation of
the magnetic field and the angle and take the result as valid in the laboratory frame.
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from the acceleration region due to pitch angle scattering when their pitch angle cosines

exceed µ0 (note that pitch angle scattering breaks the conservation of the magnetic moment).

To find the steady-state solution of Equation (3.34), we use separation of variables to

write g(p, µ) = f(p)h(µ), obtaining

0 = h
∂

∂p
p3 ∂

∂p

(
f

p

)
+ f

∂

∂µ

(
1 − µ2

) ∂

∂µ
h. (3.35)

Next, we calculate the lowest eigenvalue of the pitch angle diffusion operator (the second

term in the equation above)6,

− ∂

∂µ

(
1 − µ2

) ∂

∂µ
h = λh. (3.36)

In general, it should be supplemented by a boundary condition of the form (h+ a ∂h/∂µ)|µ|=µ0

= 0, ensuring that the distribution function matches at the boundary the distribution function

of non-accelerated particles.7 As the contrast between the accelerated and non-accelerated

particles is expected to increase at larger γ, the parameter a may in principle vary (slowly

decline) with γ. For our simplified treatment, we choose h|µ|=µ0 = 0, which we expect to be

valid asymptotically at large γ. The eigenvalue can then be found perturbatively in the small

parameter µ2
0, which gives, up to the first order:

λ = π2

4µ2
0

− 1
2 − π2

12 . (3.37)

The momentum diffusion equation now takes the form

∂f

∂t
= D

∂

∂p
p3 ∂

∂p

(
f

p

)
−Dλf. (3.38)

6More generally, one may propose a linear combination of eigenfunctions with different eigenvalues, but
the one with smallest eigenvalue dominates at high energies. We also note that the eigenfunction with the
lowest eigenvalue is the only one that is positive definite.

7For a → 0 this transforms into the Dirichlet boundary condition, while for a → ∞ into the Neumann
boundary condition.



81

The last term on the right-hand side describes the loss of particles from the acceleration region

of the phase space, while the first term describes the particles supply into this region and their

acceleration (we remind that Equations (3.33) and (3.38) are valid only for ultrarelativistic

energies, p ≈ γmc and γ ≫ 1). The steady-state solution of Equation (3.38) can then be

found as f(p)dp ∝ p−αdp, where

α =
√
λ+ 1 =

√
π2

4
Bmax

∆B + 1
2 − π2

12 . (3.39)

The particle distribution function is, therefore, non-universal in our model, in that it

depends on the ratio Bmax
∆B

for a given magnetic trap.

Numerical results

Figure 3.9: The magnetic-field strength distribution functions and the corresponding magnetic
compressibilities κ. The distribution is independent of the magnetization parameter but
depends on the relative strength of the applied magnetic field.

In the previous subsection, we derived a power-law formula for the particle energy pdf

f(p) within a magnetic trap where, in our model, particles are accelerated. We will now
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compare our model with our numerical results. Let fglobal the ultrarelativistic tail of the

particle energy pdf for the entire simulation domain and let ftrap,j ∝ γ−αj be the particle

energy pdf of ultrarelativistic particles accelerated by magnetic trap j, where we are using the

particle Lorentz factor γ = p/(mc) instead of p as it is more convenient to use a dimensionless

parameter in the calculation that follows. We may write

fglobal =
∑

j

ftrap,j =
∑

j

ajγ
−αj , (3.40)

where the coefficients aj are normalization constants for each magnetic trap, renormalized

by some constant factor to define the global distribution. Let αmin be the smallest αj (i.e.,

αj − αmin ≥ 0 for every j). Then

fglobal =
∑

j

ftrap,j = γ−αmin
∑

j

ajγ
−(αj−αmin) ∼ γ−αmin , for γ ≫ 1. (3.41)

From Equation (3.39) and writing Bmax
∆B

= 1/(1−Bmin/Bmax) we see that αmin corresponds

to the trap with the smallest Bmin/Bmax ratio (or, to be more correct, the traps with the

smallest Bmin/Bmax will tend to dominate in the summation (3.40)). To compute a proxy

for the smallest Bmin/Bmax that is easy to calculate with the simulation data we will define

Bmin = ⟨B⟩ − (δB)rms and Bmax = ⟨B⟩ + (δB)rms, where B is the magnitude of the magnetic

field, (δB)rms is the root-mean-square magnetic fluctuation, and the average ⟨...⟩ is over the

whole domain. In this way, we imagine a hypothetical magnetic trap with a very strong

Bmax (one standard deviation above the mean) and a very weak Bmin (one standard deviation

below the mean). Now we can estimate αglobal by defining the global magnetic compressibility

κ = ∆B/Bmax, with ∆B = 2(δB)rms. The magnetic field strength distribution functions

and corresponding turbulent magnetic compressibilities for runs I to VI are presented in

Figure 3.9. Note that the magnetic compressibilities are very similar in different runs with

the same δB0/B0, but they depend on δB0/B0.

Finally, we can estimate the power-law spectral index α of the global particle energy pdf
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as

α =
√
π2

4
1
κ

+ 1
2 − π2

12 . (3.42)

Figure 3.10 shows the corresponding particle energy distribution functions for 2.5D runs

I to VI and 3D runs IX and X. The energetic tails of the distribution functions exhibit

approximate power-law behavior. As seen in Table 3.3, the power-law exponents are in very

good agreement with the prediction given by Equation (3.42), especially in the cases of strong

magnetization σ̃0 ≳ 40 and guide field B0 ≤ δB0. These exponents also agree well with the

exponents reported by Comisso and Sironi (2018, 2019) for even stronger magnetization,

corresponding to σ̃0 = 80 in our notation.8 This means that our simulations have reached

the universal asymptotic regime of strong magnetization mentioned in Section 1.6. In the

regime of weak magnetization,9 σ̃0 = 10, our model underestimates the power-law exponents

in the limit of weak guide field, (B0/δB0)2 ≪ 1. This may indicate that the assumptions of

the model, such as the isotropy of the random noise in Equation (3.31), the relation of the

global magnetic compressibility κ to the local trapping angles µ0, and simplified boundary

conditions in Equation (3.36), need to be modified for the low magnetization, weak guide

field cases.

We note that in the case of the 3D runs, the measurements were made at an earlier

time compared to the 2.5D runs with similar σ0 and σ̃0 due to the faster decay of the

electromagnetic energy with time (see top-left panel of Figure 3.1).

Strong-guide-field runs V and VI (B0/δB0 = 3) are still evolving at t = 8 l/c; they start

approaching quasisteady states only at about t = 16 l/c. Although run VI does seem to

display a power-law behavior, we note that, as can be seen in the middle-right panel, its
8Note that our definition of fluctuation magnetization σ̃0 is a factor of two different from the corresponding

definition in (Comisso and Sironi, 2018, 2019). For instance, our σ̃0 = 40 corresponds to σ0 = 20 in Comisso
& Sironi simulations.

9This case belongs to the asymptotic regime of weak magnetization, as it agrees with the cases of even
smaller magnetization studied in Zhdankin et al. (2018a).
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high-energy tail may be better described by a log-normal distribution10:

f(γ) dγ = A

γ
exp

[
−(ln γ − µ)2

2σ2
s

]
dγ, (3.43)

where A is a normalization constant.

Run Dim. ct/l α (pred.) α (meas.)
I 2.5D 8.2 2.0 2.7
II 2.5D 9.9 2.0 2.1
III 2.5D 8.2 2.9 3.0
IV 2.5D 8.1 2.8 2.7
V 2.5D 25 5.1 –
VI 2.5D 26 5.2 4.8
IX 3D 4 3.0 2.7
X 3D 4 3.0 2.6

Table 3.3: Parameters of the runs and the corresponding predicted and measured exponents
of the particle distribution function, f(γ)dγ ∝ γ−αdγ. The middle column states the time
when both the magnetic compressibility and observed slope were measured.

Going to even higher guide field, Figure 3.11 shows the particle energy pdf of runs VII

and VIII (B0/δB0 = 10), which takes even longer to stabilize than runs V and VI. Unlike

the other simulations with σ̃0 = 40, no power-law tail is observed. However, a log-normal

distribution is a very good fit for both cases. Moreover, the particle distribution in momentum

space (p∥, p⊥), shown in Figure 3.12, is seen to be strongly anisotropic with respect to the

background magnetic field. The electrons are energized mostly in the field-parallel direction,

leading to a nearly one-dimensional particle distribution function. The anisotropy is also

reflected in the energy-momentum tensor, with T⊥/Tzz ≈ 0.02 for both run VII and VIII.

The absence of well-defined power-law tails in runs V and VI or their absence altogether

in runs VII and VIII, where a log-normal particle energy distributions in seen instead, may

indicate that different particle acceleration mechanisms operate in the weak and strong guide
10We note that both the plasma magnetization and the statistical standard deviation are conventionally

denoted by the same letter σ. We therefore denote the standard deviation by σs; it should not be confused
with the plasma magnetization parameter.
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Figure 3.10: The particle energy distribution functions in runs I, II (top-left), III, IV
(top-right), V, VI (middle row), IX, and X (bottom). The lines indicating power-law
slopes are given for reference. The middle-right panel shows a log-normal fit on run VI,
f(γ) ∝ γ−1 exp[−(ln γ − µ)2/(2σ2

s)].

field regimes. In the next section, we delve deeper into the possible acceleration mechanisms;

our analysis will lead us to a reinterpretation of our model of magnetic traps.
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Figure 3.11: Electron energy distribution functions. The black dashed lines show log-normal
fits, f(γ) ∝ γ−1 exp[−(ln γ − µ)2/(2σ2

s)].

Figure 3.12: The electron distribution functions. Here, p∥ and p⊥ are particle momenta in
the directions parallel and perpendicular to the background magnetic field B0. The functions
are strongly anisotropic. The anisotropy at very large energies is slightly less pronounced in
run VIII, which is likely a consequence of the smaller box size.

3.5 A closer look at acceleration by Alfvénic

turbulence

In this section, we will follow Vega et al. (2024a). A relativistic particle whose gyroradius is

much smaller than the typical scale of magnetic field variations preserves its first adiabatic

invariant, the magnetic moment. Such a particle can be accelerated by turbulent fluctuations

in several different ways. These can be divided into three categories. First is the acceleration

by a parallel electric field, that is, the electric field component parallel to the magnetic field.

Second is the acceleration due to magnetic curvature drifts. And third is the acceleration by

magnetic mirror forces. In all the cases, a particle is, of course, accelerated by an electric
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field. The proposed division into the three categories helps to associate the acceleration

mechanisms with turbulent structures. Below, we analyze these cases concentrating on an

ultrarelativistic pair plasma.

Acceleration by parallel electric field

The parallel electric field fluctuations are relatively weak in Alfvénic turbulence with a strong

guide field. For instance, in a magnetically dominated ultrarelativistic plasma, the linear

wave analysis in Appendix A yields for the parallel and perpendicular electric fluctuations at

scales λ ≳ drel:

E∥

E⊥
≈ 1
w2

0
k∥k⊥d

2
rel, (3.44)

see Equation (A.25) in Appendix A. Here, k⊥ ∼ 1/λ is the field-perpendicular wave number of

the electric field, k∥ the field-parallel wavenumber, w0 is the enthalpy per particle associated

with the (relativistic) distribution function of the bulk electrons, and drel is the corresponding

relativistic inertial scale. In the ultrarelativistic case, w0 ≫ 1, the parallel electric field

remains relatively weak even for the strongest current sheets of thickness λ ∼ drel and field

variations E⊥ ∼ δB⊥. As a relativistic electron propagates through such a structure, its

energy gain is

mec
2∆γ = qE∥ℓ ∼ q drel δB⊥/w

2
0, (3.45)

which is equivalent to

∆γ ∼
√
σ̃/w0. (3.46)

When σ̃ is initially large, as is the case in the numerical setups of decaying turbulence

analyzed in Chapter 3 of this thesis and elsewhere (e.g., Comisso and Sironi, 2018, 2019),
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the parallel particle heating and acceleration are initially strong. However, as the magnetic

perturbations relax and release energy to plasma particles, plasma magnetization σ̃ decreases

while (in the absence of significant radiative cooling) the particle enthalpy w0 increases. As

a result, parallel electric heating by Alfvén modes becomes progressively less significant.

Moreover, the parallel electric acceleration is linear (or algebraic) in time, as opposed to the

exponential acceleration due to curvature and mirror effects discussed below. Finally, we

note that parallel heating and acceleration increase the field-parallel momentum of a particle,

but not its field-perpendicular momentum. Therefore, the particle’s pitch angle decreases as

a result of such a process.

Curvature acceleration

When the parallel electric field effects are negligible and the particle magnetic moment is

conserved, the dominant acceleration is provided by the curvature and polarization drifts.

Indeed, these drifts do not vanish in the limit of small pitch angles and, therefore, they remain

efficient when the particle’s parallel momentum increases. In a turbulent state, curvature

fluctuations are related to fluctuations of the electromagnetic field strength. One can show

that in Alfvénic turbulence, curvature and polarization drifts provide similar contributions to

particle energization. In our phenomenological treatment, we, therefore, broadly place both

mechanisms in the same category, and as an illustration, consider curvature acceleration in

detail.

To discuss the curvature acceleration, assume that a uniform component of the magnetic

field is in the z-direction. The Alfvénic magnetic perturbation δB⊥ is then in the x − y

plane. A sketch of the projection of a curved magnetic-field line onto the x − y plane is

given in Figure 3.13. We assume that such a magnetic structure is moving with the velocity

β = vE/c, as shown in the figure. Here, the E × B velocity, vE = cE × B/B2, describes

the bulk velocity fluctuations of the plasma. As we discussed before, such fluid fluctuations

are typically only mildly relativistic (also seen in other studies; see, for example, Zhdankin
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Figure 3.13: Sketch of a curved magnetic field line. The projection of the line on the plane
normal to the background magnetic field B0 is shown. For simplicity, it is assumed that the
magnetic structure moves with velocity β in the direction parallel to the field-line curvature.
An electron propagating along the curved line, experiences curvature acceleration.

et al., 2018a), so for simplicity, we can neglect relativistic factors associated with the fluid

motion. A relativistic electron propagating along the magnetic field line experiences curvature

acceleration. When the pitch angle is small, the electron moves along the line at nearly the

speed of light. As the electron passes the curved part of the line, its energy changes according

to (e.g., Northrop, 1963):

∆ ln(γ) ∼ β
S

Rc

, (3.47)

where Rc is the curvature radius of the total magnetic field line (which is not its projection

in Figure 3.13) and S is the corresponding length of the curved path. Here, β = β · Rc/Rc is

the projection of the velocity β onto the direction of the curvature vector, that is, the vector

connecting the point on the trajectory with the curvature center. For the collision shown
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in Figure 3.13, the particle gains energy, β > 0. Such collisions are more probable, so the

particle gains energy on average.

A standard geometric calculation gives for the curvature radius

Rc = λ

[
1 +

(
B0

δB⊥

)2]
, (3.48)

and for the path length

S = 2ϕλ
[
1 +

(
B0

δB⊥

)2]1/2

, (3.49)

where fore an estimate, one can assume 2ϕ ≲ π. Substituting these expressions into

Equation (3.47), we obtain

∆ ln(γ) ∼ 2ϕβ
[
1 +

(
B0

δB⊥

)2]−1/2

. (3.50)

We note that this result does not depend on the magnitude of the curvature given by the

structure’s scale, λ. Indeed, a smaller curvature radius would provide a stronger acceleration,

however, the propagation path would be shorter, resulting in the same energy gain.

The calculation can be advanced further if the magnetic fluctuations are relatively weak,

δB⊥/B0 ≪ 1. In this case, we approximate:

∆ ln(γ) ∼ 2ϕβ δB⊥

B0
. (3.51)

As we saw in Section 3.3, in strong magnetically dominated Alfvénic turbulence the electric

and magnetic fluctuations are nearly in equipartition, E⊥ ∼ δB⊥. Therefore, at small

field-parallel scales, ℓ ≪ ℓ0, the plasma velocity fluctuations can be evaluated as

β(ℓ) ∼ δB⊥(ℓ)
B0

∼ δB⊥,0

B0

(
ℓ

ℓ0

)1/2

, (3.52)
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where δB⊥,0 represents the magnetic fluctuations on the outer scale of turbulence, ℓ0, and we

used the field-parallel scaling of magnetic fluctuations characteristic of Alfvénic turbulence,

δB⊥ ∼ δB⊥,0(ℓ/ℓ0)1/2; see our discussion on RMHD turbulence in Section 1.3. We then

estimate the contribution of a structure of scale ℓ to the energy gain as

∆ ln(γ) ∼ 2ϕ
(
δB⊥(ℓ)
B0

)2

∼ 2ϕ
(
δB⊥,0

B0

)2
ℓ

ℓ0
. (3.53)

We see that the acceleration rate is sensitive to the relative strength of the turbulent

fluctuations; it rapidly decreases as δB⊥,0/B0 decreases. We also notice that larger-scale

fluctuations provide stronger acceleration, suggesting that the process may be dominated by

the particle interactions with the largest, outer-scale turbulent eddies. However, interactions

with small-scale fluctuations may be more frequent. Indeed, in one parallel crossing time,

the particle would experience Nℓ ∼ ℓ0/ℓ interactions with structures of scale ℓ. Therefore,

structures of all scales may provide comparable contributions to the particle acceleration.

We may assume that the motion of small-scale structures is not correlated with the motion

of the large ones, so their contributions to particle acceleration can be counted independently.

A more detailed estimate (see Equation (B.6) in Appendix B) then suggests that the particle

energy gain in one parallel crossing time would include a logarithmic correction,

∆0 ln(γ) ∼ 2ϕA∥ ln
(
ℓ0

ℓ∗

)(
δB⊥,0

B0

)2

, (3.54)

where ℓ∗ is the parallel scale of the smallest eddy contributing to the curvature drift. Here,

A∥ is a numerical coefficient of order unity. In Alfvénic turbulence, the field-parallel and field-

perpendicular scales of nonlinear fluctuations are related by the critical balance condition,

ℓ/ℓ0 ∼ (λ/λ0)κ, where, for simplicity, one can assume the Goldreich and Sridhar (1995)

scaling, κ ≈ 2/3. The precise value of κ is not crucial for our discussion. We can then
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alternatively express Equation (3.54) through the field-perpendicular scale:

∆0 ln(γ) ∼ 2ϕA⊥ ln
(
λ0

λ∗

)(
δB⊥,0

B0

)2

, (3.55)

with A⊥ = κA∥. Obviously, eddies that are smaller than the particle gyroradius, cannot

contribute to the particle drift. Therefore, λ∗ should be the larger of the two parameters: the

inner scale of the turbulence and the particle gyroradius,

λ∗ = max(drel, ρ⊥). (3.56)

One can demonstrate that the choice of λ∗ depends on the energy of the particle. As

shown in Appendix C, one can introduce an important parameter, the critical energy, that

characterizes the process of particle acceleration in Alfvénic turbulence. The critical energy

depends on the parameters of turbulence and of the plasma as follows:

γc = B0

δB⊥,0

drel

ρ0

(
λ0

drel

)1/3

, (3.57)

where ρ0 = c/Ωce = mec
2/(qB0). For the energies below the critical value, γ < γc, the

particle’s gyroradius is smaller than the plasma inertial scale, and one should use λ∗ = drel.

However, for energies exceeding the critical value, γ > γc, the gyroradius becomes larger than

the inertial scale, drel. In this case, one needs to use λ∗ = ρ⊥, where the gyroradius is given

by

ρ⊥ = ρ0

(
δB⊥,0

B0

)3/2 (
ρ0

λ0

)1/2
γ3/2. (3.58)

In the latter case, the logarithmic factor in Equation (3.55) can be rewritten as

ln
(
λ0

λ∗

)
= 3

2 ln
(
γ0

γ

)
, (3.59)



93

where γ0 is the Lorenz factor corresponding to the largest, outer-scale eddies, ρ⊥ = λ0. Due

to the dependence of the logarithmic factor on γ, the particle acceleration deviates from the

exponential law and vanishes when the particle’s gyroradius approaches the outer scale of

turbulence, γ ∼ γ0; see a more detailed calculation in Appendix C.

Formulae (3.53) and (3.54) or (3.55) are our main result for the curvature acceleration

in magnetically dominated Alfvénic turbulence. They have several important consequences.

First, in contrast with the linear acceleration provided by a parallel electric field, the curvature

acceleration is exponentially fast. Given long enough acceleration time (say, running time

of numerical simulations), it would dominate over the energization provided by the parallel

electric field. If we allow β to attain both positive and negative values with certain probabilities,

Equation (3.50) would lead to a logarithmic random walk. It would result in log-normal

energy distributions of accelerated particles.

Second, in the limit of a strong guide field, δB0 ≪ B0, the electron magnetic moment is

conserved even when the electron interacts with intense intermittent structures. Therefore,

as the electron accelerates, its field-perpendicular momentum does not significantly change,

while the field-parallel momentum increases. We, therefore, propose that in magnetically

dominated strong-guide-field Alfvénic turbulence, the acceleration is provided by curvature

drifts, particles are accelerated along the magnetic field lines, and they attain log-normal

energy distributions. Due to the quadratic dependence of the acceleration rate on the intensity

of turbulent fluctuations, the acceleration time increases significantly when δB0/B0 decreases.

These results are consistent with the observations of the time evolution of the electromagnetic

energy in Section 3.2 and particle energy distributions in Section 3.4.

Mirror acceleration

Curvature acceleration does not significantly depend on the pitch angle in that it remains

efficient even when the pitch angle is small. In contrast, the mirror acceleration depends

crucially on the value of the pitch angle. Figure 3.14 shows a head-on interaction of an
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Figure 3.14: Sketch of an electron-mirror interaction for small pitch angles. For simplicity,
velocity β is directed along the magnetic mirror axis.

electron with a magnetic mirror when the electron pitch angle is small, sin2 θ < 1 − (∆B/B2).

Here, ∆B = B2 − B1 > 0 is the variation of the magnetic field strength, as shown in the

figure. In this case, the electron is not reflected by the mirror but rather propagates through

the mirror throat. For simplicity, assume that the electron is ultrarelativistic and the mirror

is moving at a relatively lower speed. When the electron passes through the mirror, its energy

increases approximately as

∆ ln(γ) ∼ 1
2β

(
∆B/B2

1 − ∆B/B2

)
sin2 θ, (3.60)

where we assumed sin2 θ ≪ 1. We see that for small pitch angles, the mirror acceleration

given by Equation (3.60) is much less efficient than the acceleration by curvature. Due to the

conservation of magnetic moment in Alfvénic turbulence with a strong guide field, δB0 ≪ B0,

particle acceleration decreases the pitch angle even further, sin2 θ ∼ 1/γ2. Therefore, the

mirror acceleration becomes even less relevant.

The situation changes drastically in the case of a moderate guide field, B0 ∼ δB0. In this

case, collisions with intermittent structures with thickness drel and magnetic-field variations

δB0 provide significant pitch angle scattering to particles whose gyroradius exceeds drel. As

discussed in the previous section and in Appendix C, these are the particles with energies

exceeding the critical energy, γ ≥ γc. Therefore, energetic particles can have large pitch
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Figure 3.15: Sketch of an electron-mirror interaction for large pitch angles. For simplicity,
velocity β is directed along the magnetic mirror axis.

angles, sin2 θ > 1 − ∆B/B2, in which case they may be efficiently accelerated by mirrors.

Such a situation is shown in Figure 3.15. In such an interaction, a particle gets reflected from

the mirror, and its energy increases according to

∆ ln(γ) ∼ 2β cos θ. (3.61)

This energy gain is larger than that associated with a small pitch angle, Equation (3.60). It

is also larger or comparable to the curvature acceleration at a similar guide-field strength.

Therefore, in the case of a moderate guide field, the population of particles with large pitch

angles satisfying sin2 θ > 1 − (∆B/B2), is accelerated by both curvature and mirror effects.

As a result, such particles gain energy at a higher exponential rate than the population with

small pitch angles, sin2 θ < 1 − (∆B/B2).

This consideration offers us a new way to interpret the model of particle acceleration

discussed in Section 3.4: particles are accelerated fast when they are trapped in the phase-

space region defined by the pitch angle condition, sin2 θ > 1 − (∆B/B2). Due to pitch angle

scattering, particles leak from this region when their pitch angles become smaller. At smaller

pitch angles, the acceleration is exponentially weaker and it is neglected. Such a “phase-space

leaky box” leads to power-law energy distributions of accelerated particles. The power-law

exponent depends on the rate of particle leakage, which in turn, is a function of the turbulence
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Figure 3.16: Electric and magnetic energy spectra for simulations with B0/δB0 = 1 (left
panel) and B0/δB0 = 10 (right panel). Note rather weak parallel electric field fluctuations.
The slopes indicated by the solid black lines are given for the reader’s orientation.

intensity, ∆B/B2.

It is also worth noting that in Alfvénic turbulence, mirror structures are generally

spatially separated from the regions of large curvature, and, therefore, may be considered

as complementary effects. Indeed, phenomenological arguments and numerical simulations

suggest that magnetic strength and magnetic curvature are anti-correlated in Alfvénic

turbulence (e.g., Schekochihin et al., 2004; Kempski et al., 2023). Moreover, magnetic

mirrors are also separated from the intermittent structures that provide pitch angle scattering.

Indeed, strong magnetic shears in Afvénic turbulence are typically associated with rotations of

magnetic field direction rather than with variations of magnetic field strength (e.g., Zhdankin

et al., 2012a,b).

Interpretation of numerical results

It is quite illustrative to compare run IV, with B0/δB0 = 1, and run VII, with B0/δB0 = 10.

Both runs are very similar in the way the Alfvénic turbulence is initialized. The only

significant difference is the strength of the applied guide field, B0. In both cases, the most

efficient phase of particle heating continued until the growing energy of particles approaches
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Figure 3.17: Particle energy probability density function for simulations with B0/δB0 = 1
(left panel) and B0/δB0 = 10 (right panel). In the case of a moderate guide field, the energy
distribution function has a power-law tail. In the case of a strong guide field, the high-energy
tail is well approximated by a log-normal function f(γ) ∝ γ−1 exp[−(ln γ − µ)2/2σ2

s ], with
µ ≈ 2.6 and σ2

s ≈ 0.61. This function is shown by the dashed line. Note the significantly
longer time required to accelerate the particles in the case of a strong guide field.

an approximate equipartition with the decaying energy of electromagnetic fluctuations. This

happened when about half of the initial magnetic energy was transferred to particles, so their

energies reached ⟨γ⟩ ∼ 10 for each species. The electromagnetic spectra of turbulence and

the energy distribution functions of the electrons are shown at these moments in Figures 3.16

and 3.17. Figure 3.16 shows that the spectra of electromagnetic fluctuations in the Alfvénic

interval, k⊥drel ≲ 1, are similar in both runs.

Note, however, that it took a significantly longer time to energize the particles in the case

of a strong guide field than in the case of a moderate guide field, in qualitative agreement with

our discussion. Moreover, the resulting nonthermal tails (γ > 10) of the energy distribution

functions are drastically different in the two cases. In the case of a strong guide field, the

distribution is well approximated by a log-normal function. In the case of a moderate guide

field, the distribution is close to a power law. This also qualitatively agrees with our modeling.

Figure 3.18 shows the distributions of pitch angles of accelerated particles. In the case

of a strong guide field, the pitch angles are extremely small. This is consistent with our

formula for the critical energy, Equation (3.57), that gives for this case γc ≈ 8000. This
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Figure 3.18: pitch angle distribution of ultrarelativistic particles (γ > 100) for simulations
with a moderate guide field, B0/δB0 = 1 (left panel) and a strong guide field, B0/δB0 = 10
(right panel). In the case of a strong guide field, the pitch angles are extremely small. In
the case of a moderate guide field, the pitch angles of accelerated particles crucially depend
on the particle’s energy. For energies smaller than the critical energy, γ ≪ γc (in this run,
γc ≈ 70), the particles are accelerated mostly along the background magnetic field. Above
the critical energy, γ ≳ γc, particles with larger pitch angles are accelerated more efficiently.

means that even the most energetic particles generated in our run, with the energies γ ∼ 1000,

will have gyroradii much smaller than drel. The smallest Alfvénic eddy contributing to the

acceleration is, therefore, λ∗ = drel. The process of curvature acceleration is then described

by Equation (3.55), leading to a log-normal particle energy distribution.

The situation is fundamentally different in the case of a moderate guide field. Here, the

critical energy estimate provided by Equation (3.57), gives γc ≈ 70. Figure 3.18, left panel,

indeed shows that particles with the smaller energies, γ ≪ 70, are accelerated mostly along

the magnetic field lines. However, particles with higher energies γ ≳ 70 are more efficiently

accelerated when they have large pitch angles. This is consistent with our picture of particle

acceleration suggesting that in the case of a moderate guide field, B0 ∼ δB0, particles with

γ ≳ γc experience strong pitch angle scattering and efficient acceleration by magnetic mirrors.



99

3.6 Spatial intermittency of fast particles

We have discussed how relativistic turbulence may energize particles and how the different

acceleration mechanisms affect the ultrarelativistic tail of the particle energy pdf. One may

also wonder how fast particles are distributed in space. In this section, we follow Vega et al.

(2023a) and demonstrate that particle heating and acceleration in relativistic turbulence are

associated with strong spatial intermittency of the resulting particle distribution function.

We argue that the acceleration process creates two populations of particles with different

intermittency characteristics. The bulk of the particles, corresponding to the thermal energies

γ ≲ γth, develops the log-normal distribution of the particle density. The population of the

accelerated nonthermal particles (γ ≫ γth), on the other hand, has a strongly inhomogeneous

“clumpy” spatial distribution, corresponding to a power-law density distribution function.

Strong spatial intermittency of accelerated relativistic particles may be relevant for the

radiation flares in such astrophysical objects as pulsar wind nebulae, magnetospheres of

black-hole accretion disks, magnetospheres of neutron stars, and blazar jets (e.g., Abdo et al.,

2011; Tavani et al., 2011; Wong et al., 2020; Nättilä and Beloborodov, 2021; Grošelj et al.,

2024).

In what follows, we first present general physical arguments suggesting that the distribution

of plasma particles energized by relativistic turbulence should be spatially intermittent. We

then compare the results with simulations II and IV (2.5D), and IX and X (3D).

Phenomenological model

Consider a setting where decaying turbulence is initialized with 1 ≪ σ0 ≲ σ̃0. As the magnetic

perturbations relax, their energy is converted into relativistic large-scale hydrodynamic plasma

flows, whose Lorentz factors γ̃ may locally significantly exceed unity. Such ultrarelativistic

plasma flows are however highly compressible and, as was pointed out in Section 3.2, their

velocities rapidly (on a few large-scale crossing times) become only mildly relativistic. Indeed,
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the speed of sound in a relativistic plasma does not exceed c/
√

3 (assuming isotropic pressure

and adiabatic large-scale motion), so initial ultrarelativistic and, therefore, supersonic flows

rapidly relax to subsonic velocities ≲ c/
√

3, while simultaneously, the plasma is heated to

ultrarelativistic temperatures. This phenomenological picture is consistent with our numerical

results, as well as other numerical studies (e.g., Zhdankin et al., 2018a), and with the numerical

results presented below.

The resulting relativistic turbulence is therefore inherently compressible. Compressible

turbulence is associated with spatially intermittent density fluctuations. In a hydrodynamic

picture, the probability distribution function of density fluctuations acquires the log-normal

statistics. This may be illustrated in a simple hydrodynamic model of Gaussian random

advection. Assume, somewhat idealistically, that the velocity field is nonrelativistic, random,

Gaussian, and independent of the density fluctuations. For simplicity, we also assume that

this field is short-time correlated, and has a zero mean, ⟨U(x, t)⟩ = 0. Its statistics are

therefore fully described by the covariance

⟨U i(x, t)U j(x′, t′)⟩ = 2κij(x − x′)δ(t− t′), (3.62)

where the tensor κij(x − x′) describes spatial correlation of the velocity fluctuations, and

δ(t − t′) is the Dirac delta function. Starting from the continuity equation for the density

field,

∂n

∂t
+ ∇ · (nU) = 0, (3.63)

which can be viewed as a stochastic Langevin equation with the random noise U(x, t), one

can derive the corresponding Fokker-Planck equation for the probability density function of

the density field,

∂P (n, t)
∂t

= D
∂

∂n
n
∂

∂n
(nP ) . (3.64)
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Here, we introduced the diffusion coefficient defined as

D = ∇i∇′
jκ

ij(x − x′)|x=x′ , (3.65)

and we sum over repeated indexes. The derivation of the Fokker-Planck equation is standard

and can be found in e.g., (Zinn-Justin, 2021, Ch. 34), and the Stratonovich convention is used.

As can be directly verified, the solution to the diffusion equation (3.64) is the log-normal

distribution. Numerical simulations of nonrelativistic compressible turbulence indeed produce

log-normal density distributions (e.g., Kritsuk et al., 2017). Below we will demonstrate that

such distributions are also observed in our numerical simulations of relativistic turbulence.

However, as we saw in previous sections, a small population of plasma particles gets

accelerated by turbulent electric fields in a run-away fashion, developing power-law tails

in the particle energy pdf11. We argue that this population of accelerated, ultrarelativistic

particles does not, in general, move with the bulk velocity of the plasma but rather tends to

cluster in space. We observe that the statistics of such particles are strongly intermittent,

i.e., described by power-law probability density functions, not only in the momentum but

also in configuration space.

As discussed in Comisso and Sironi (2019); Wong et al. (2020) and reviewed in Section 1.6,

particle acceleration involves two stages. In the first stage, particles are accelerated by

reconnection events, which are intermittent in space. In the second stage, particles are

accelerated by interaction with random turbulent fluctuations. One can argue that acceleration

by turbulence may also lead to spatially intermittent particle distributions.

Given our discussion of acceleration in the previous section and our assumption that

B0 ≲ δB0, it seems appropriate to illustrate how fast particles may cluster in space by

considering acceleration by magnetic mirrors. For simplicity, we will consider a quasi-one-

dimensional model where particles are scattered by a strong magnetic mirror as shown in
11We remind the reader we are assuming B0 ≲ B0. If B0 ≫ δB0, the ultrarelativistic tail of the particle

energy distribution is a log-normal instead, as seen in Sections 3.4 and 3.5.
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Figure 3.19. Such a mirror may correspond to large-scale magnetic fluctuations in turbulence.

Assume that the mirror is moving in the normal direction with the beta factor β = U/c,

the particles propagate along the axis of the mirror at the pitch angle θ, and their beta

factor is βp = v/c. Assume that the particles have similar Lorenz factors γ and occupy a

small spatial volume dV . In the mirror rest frame, the magnetic field is stationary and the

Figure 3.19: Sketh of particle interaction with a strong magnetic mirror moving with a plasma
element.

energy of the particles does not change during a reflection. It can be demonstrated by direct

calculation that, in the laboratory frame, the energy of the particles after a reflection is given

by

γ′ = Λγ, (3.66)

with the scaling factor

Λ = 1 + β2 − 2β · βp

1 − β2 . (3.67)

Obviously, particles get energized when Λ > 1. Simultaneously, one can show that a small



103

volume element filled by the particles gets compressed along the axis of the mirror according

to

dV ′ = dV/Λ, (3.68)

implying that the process of acceleration leads to stronger spatial clusterization of particles.

Relation (3.68) holds when particles propagating with the same pitch angle θ, also have the

same parallel velocities βp cos θ. This is possible for the ultrarelativistic case, βp → 1. The

ultrarelativistic case also ensures that the factor Λ depends on the first order of β, which

makes the acceleration most efficient.

Similarly, one can address the “geometric” dispersion, that is, dispersion due to different

pitch angles of particle velocities. One can show that these pitch angles become progressively

closer to each other (and to the axis of the mirror) after each reflection with Λ > 1. If a

beam of ultrarelativistic particles is moving within a small collimation angle dθ around the

angle θ, then after the reflection, the new collimation angle satisfies:

dθ′ = dθ/Λ. (3.69)

Reflections where particles get accelerated lead to stronger angular collimation of the particle

beam.

As discussed in Section 3.4, ultrarelativistic particles in runs with B0 ≲ δB0 have power-law

energy distribution functions, f(γ)dγ ∝ γ−α dγ. Based on the consideration presented above,

we may analyze the probability density functions of the density, P (n), for such particles. For

that consider a small volume of a given number of nearly monoenergetic particles. According

to Equation (3.68), as these particles get energized by a factor Λ, the density grows as

n′ = Λn. This together with Equation (3.66) implies their density increases proportionally to

their energy, n ∝ γ. The volume occupied by such an element, however, decreases inversely

proportionally to n, reducing in this war the fractional volume it represents. The probability
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Figure 3.20: Probability density function of particle density n (number of particles per cell)
for 2.5D run IV (left) and 3D run IX (right) simulations, both with σ0 = 40. Both curves are
well approximated by a log-normal distribution around the peak and a normal distribution
at low particle density (n ≪ 100).

to observe density n at a given point in space (or the fractional volume with the densities in

the interval [n, n+ dn]) is therefore:

P (n) dn ∝ n−α−1 dn, (3.70)

which suggests that the spatial distribution of the accelerated particles is also strongly

intermittent and described by power-law probability density functions.

Numerical results

Here we compare our phenomenological predictions to 2.5D simulations (runs II and IV) and

3D simulations (runs IX and X). With the parameters chosen, the inertial scale is resolved in

both 2.5D and 3D simulations. The initial gyroradius is resolved in 2.5D but unresolved in

3D runs.

Figure 3.20 shows the distribution of the plasma density obtained in our numerical

simulations. The bulk of the distribution function has intermittent (non-Gaussian) statistics

and seems to be well approximated by the log-normal distribution, which is consistent with
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the prediction of the previous section. At low densities, the numerical curve is, however,

better approximated by the normal distribution. This may reflect the fact that the density

measurements in particle-in-cell simulations are affected by statistical noise that becomes

progressively stronger when particle occupation numbers per cell become progressively

smaller.12

The left column of Figure 3.21 shows the time evolution of the particle-energy pdf in

each simulation. A quasi-steady state with a high-energy power-law tail is reached at (or

within a dynamical time λ/Urms of) the relaxation time t1/2, defined as the time when the

total energy in electromagnetic fluctuations has decreased to half the energy in the initial

magnetic fluctuations, suggesting that the energization of ultrarelativistic particles forming

the power-law tail happens mostly at t ≲ t1/2, while the bulk of the plasma continues to

be heated afterward. Also, a comparison with similar runs by Comisso and Sironi (2019,

Figures 9 and 11) suggests that at the beginning of the initial-magnetic-field relaxation, the

particle acceleration is mostly provided by magnetic reconnection events, while by t ∼ t1/2

the energization process is taken over by interactions with random turbulent fluctuations

developed in the system. (This statement should be understood in a statistical sense, meaning

that the particle energy distribution function evolves differently in these two regimes. As

for individual particles, their acceleration to high energies involves two stages, even in a

quasi-steady state developed at t1/2. As shown by Comisso and Sironi (2019), in the initial

particle injection stage, rapid particle acceleration is provided by reconnection events, while in

the second stage, a gradual stochastic Fermi-type acceleration is provided by interactions with

turbulent fluctuations; see also Wong et al. (2020) and our discussion of stochastic acceleration

in Sections 3.4 and 3.5.) Since in decaying turbulence the velocity of bulk plasma fluctuations

keeps declining at later times, the turbulent acceleration becomes progressively less efficient

beyond t1/2 as well. We may therefore conclude that the most efficient nonthermal particle

acceleration by turbulent fluctuations is achieved on a time scale of t1/2.
12We note that VPIC uses first-order particle interpolation.
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Figure 3.21: Left column: Particle energy pdfs. Quasi-steady states with well-established
power-law tails are reached within one or two light-crossing times l/c of the electromagnetic
fluctuation energy falling off to half of its initial value. Right column: Particle density pdfs
for ultrarelativistic particles. Evidence of strong intermittency (non-Gaussianity) can be seen
in the large-density power-law tails. The power slopes α and α + 1 are given for the reader’s
orientation.
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The right column of Figure 3.21 shows the time evolution of the density pdf calculated only

for the energetic particles in each simulation.13 We see clear evidence of strong intermittency

of density fluctuations associated with the accelerated particles, indicated by power-law tails

of the corresponding density distributions. As with Figure 3.20, our 2.5D and 3D simulations

(runs IV and IX) produce qualitatively similar results. Comparison of 3D cases IX and X

suggests that the power-law tails become better defined at larger magnetizations σ̃0. Around

the turbulence relaxation times t1/2, the observed power laws are broadly consistent with

Equation (3.70). At t > t1/2, that is, after the phase of active particle acceleration, the density

pdfs steepen and may be expected to eventually evolve toward the distribution functions of

the bulk plasma particles.

The log-normal or power-law distributions of the density fluctuations are related to the

spatially intermittent, non-space-filing structures formed by turbulence. Such structures

are known to affect energy dissipation and plasma heating. As an illustrative example, we

consider the intermittency of synchrotron radiation that may be generated in relativistic

turbulence. We assume that the medium is optically thin and that the synchrotron cooling

time significantly exceeds the particle acceleration time. The average power P of synchrotron

radiation emitted by an ultrarelativistic electron propagating at a pitch angle θ is given by

P = 2cσTγ
2B

2

8π β
2 sin2 θ, (3.71)

where

σT = 8π
3

(
e2

mec2

)2

(3.72)

is the Thomson cross-section of the electron. Our numerical code does not include radiation,
13In these measurements, the density is not produced by the code as in Figure 3.20, but rather directly

calculated by counting the number of energetic particles in each cell. As the particle population numbers are
large, the statistical noise does not noticeably affect the measurements. We verified this by constructing the
same density pdfs by using larger cells, where the noise is smaller. We did not observe a significant difference
with the presented results.
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Figure 3.22: Top left: The color map shows the distribution of magnetic-field strength in
the simulation domain. Top right: The color map shows the synchrotron radiation proxy
R = ∑

i γ
2
i β

2
i sin2 θiB

2/B2
0 , where the sum is over the electrons in each cell in Run II and

only the energetic particles with γ > 100 are taken into account. This is a proxy of the
synchrotron radiation that would be emitted by electrons if this effect was included in the
simulation. Note the logarithmic scale used in the color code, which implies very strong
variations of the intensity of radiation in the simulation domain (the bottom of the color bar
identifies all cells where R < 104). Bottom left: An enlarged subdomain indicated by the
square in the top left panel. The color map shows the total magnetic field |B| and the black
dots identify cells where there are more than 10 energetic (γ > 100) particles. Bottom right:
The color map shows the magnetic fluctuations in the z direction δBz. The field lines of the
in-plane magnetic field δB⊥ are shown in red. The clusters of particles seem to concentrate
in the vicinity of magnetic structures and align with the magnetic field lines. For the reader’s
orientation, we note that the gyroradius of ultrarelativistic particles scales in the presented
simulation as ρe ≈ (γ/10)de.
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but we note that the radiation power is proportional to γ2B2β2 sin2 θ, so we may study the

proxy to the density of radiative losses by analyzing the distribution of the local dimensionless

quantity R = ∑
V γ

2
i (B/B0)2β2

i sin2 θi, where we sum over all the electrons contained in a

given small volume V . The top panels of Figure 3.22 illustrate the spatial distribution of the

magnetic field and the radiation proxy R in run IV. This Figure suggests that relativistic

turbulence generates very strong, spatially intermittent variations of the radiation power

density in the simulation domain. For instance, 50% of the energetic radiation coming from

the particles with γ > 100 (the top right panel of Figure 3.22), is generated in just 3.3% of

the volume of the domain, while 80% of the radiation comes from about 10% of the volume.

The bottom panels of Figure 3.22 show a zoomed-in region of the simulation domain,

which illustrates the clusterization of energetic particles with γ > 100. Fast particles seem

to be concentrated in the vicinity of a strong magnetic structure, and the shapes of their

clusters follow the morphology of the magnetic field lines. This may also be consistent with

the expectation that the interaction of particles with magnetic structures plays an important

role in their acceleration, as discussed in Sections 3.4 and 3.5.

3.7 Discussion

Using a two-fluid model, we derived dynamical equations for the turbulent fluctuations of

a strongly magnetized, relativistically hot plasma assuming nonrelativistic bulk motion. In

the inertial range, k⊥drel ≪ 1, the equations become identical to those of nonrelativistic

reduced MHD, with the electric fluctuations in place of the bulk kinetic fluctuations. Indeed,

we saw in fully relativistic particle-in-cell simulations with B0/δB0 = 3 (runs V and VI)

that the energy spectrum is dominated by magnetic and electric fluctuations in approximate

equipartion. In these simulations, the total energy (magnetic plus electric) in the inertial

range exhibits a spectrum close to that of Alfvénic turbulence, Wk⊥2πk⊥ ∝ k
−3/2
⊥ .

The similarity to nonrelativistic reduced MHD was also seen to manifest in the scale-
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dependent dynamic alignment between magnetic and electric fluctuations, and this observation

can help us understand the energy spectrum. We found that magnetic and electric fluctuations

become progressively more orthogonal to each other towards smaller scales, with the cosine

of the angle between them scaling close to cosφℓ ∝ ℓ0.25. Based on the analogy with the

nonrelativistic case, we proposed that such an alignment reduces the strength of nonlinear

interactions in the relativistic dynamics, thus explaining the observed -3/2 scaling of the

energy spectrum. We also note that run VI, with stronger initial magnetic fluctuations than

run V, displayed a slightly shallower scaling of the alignment angle. This may be related to

a shorter inertial interval of turbulence due to a larger relativistic inertial scale of thermal

particles.

Furthermore, the electric and magnetic energy spectra show an excess of magnetic energy

over electric, which becomes progressively smaller at smaller scales, analogous to the generation

of the so-called residual energy, that is, the excess of magnetic over kinetic energy known in

the nonrelativistic quasi-neutral case. The measured spectrum of the residual energy is close

to Rk⊥2πk⊥ ∝ k−2.4
⊥ , which is slightly steeper than its nonrelativistic counterpart, indicating

an interesting difference with the nonrelativistic case.

To better study relativistic kinetic-scale turbulence we used strong-guide-field runs VII

(with box size similar to other 2.5D runs) and VIII (small box run), which resolve better the

sub-de range at the expense of a reduced inertial range. Such kinetic-scale turbulence may

be relevant for energy dissipation and particle energization in a turbulent plasma, and it is

somewhat analogous to the kinetic-Alfvén or inertial-Alfvén turbulence previously studied in

nonrelativistic cases. However, we demonstrated that the kinetic-scale energy cascade in the

ultrarelativistic case is qualitatively different from the nonrelativistic counterparts.

First, contrary to non-relativistic kinetic-Alfvén or inertial-Alfvén turbulence, the thermal

and inertial effects are necessarily of the same order in the ultrarelativistic kinetic-scale

turbulence. Second, the scaling of the energy spectrum is slightly steeper than k−3, which

is different from the kinetic-Alfvén case (the energy spectrum ∼ k−8/3 (e.g., Alexandrova
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et al., 2009; Boldyrev and Perez, 2012; TenBarge and Howes, 2012; Boldyrev et al., 2015;

Zhou et al., 2023)) and the inertial-Alfvén case (the spectrum is ∼ k−11/3 (e.g., Loureiro and

Boldyrev, 2018; Milanese et al., 2020)).

Based on the equations derived from the two-fluid model, we proposed that in the ultrarela-

tivistic case, the energy spectrum is consistent with the Kraichnan spectrum of incompressible

2D turbulence corresponding to the enstrophy cascade, k−3 or k−3 ln−1/3(k/k0) if the intermit-

tency corrections are taken into account. This intermittency-corrected Kraichnan spectrum

is seen to be a good match for run VII. The small-box run VIII had stronger initial magnetic

fluctuations at the kinetic scales. As a result, the “contamination” of the spectrum by the

O-mode was stronger and had to be removed by hand. The resulting spectrum was close to a

Kraichnan k−3
⊥ scaling.

We noted that the kinetic-scale cascade may be affected by Landau damping which, in

general, is not weak in the relativistic case. The spectrum, however, exhibits a near power-law

behavior despite being affected by the damping. We conjectured that this might be the

consequence of the non-locality of kinetic-scale turbulence.

In the astrophysics community, the study of relativistic plasma turbulence is largely

motivated by its efficiency as a particle accelerator, observed in multiple numerical simulations

presented here and elsewhere (e.g., Zhdankin et al., 2017, 2018b,a, 2019, 2021; Comisso and

Sironi, 2018, 2019, 2021; Wong et al., 2020; Nättilä and Beloborodov, 2021; Demidem

et al., 2020; Vega et al., 2022b, 2023a, 2024b,a; Chernoglazov et al., 2021; Nättilä and

Beloborodov, 2021), potentially explaining the nonthermal ultrarelativistic particles ubiquitous

in astrophysical plasmas. In this chapter, we proposed a phenomenological description

of nonthermal relativistic particle acceleration in magnetically dominated strong Alfvénic

turbulence. We argue that in the limit of strong magnetization, σ̃ ≳ 1, particle acceleration is

universal in that it depends only on the relative strength of the guide field and the magnetic

turbulent fluctuations. The process of acceleration is governed by the conservation of magnetic

moment. In the case of a strong guide field, B0 ≫ δB0, the particle’s magnetic moment
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is conserved and the acceleration is provided by magnetic curvature drifts. The curvature

acceleration energizes particles in the direction parallel to the magnetic field lines, resulting

in a log-normal tail of particle energy distribution function. The situation is qualitatively

different in the case of a moderate or small guide field, B0 ≲ δB0. In this case, as the

gyroradius of an energetic particle exceeds the inner scale of turbulence (in our case, drel),

interactions with intense turbulent structures like current sheets can break the particle’s

magnetic moment. Magnetic mirror effects become important at such energies, resulting

in power-law energy distributions of accelerated particles. The proposed phenomenological

picture is consistent with available numerical simulations, as shown in Sections 3.4 and 3.5.

Finally, we proposed, based on particle-in-cell numerical simulations and analytical mod-

eling, that magnetically dominated relativistic turbulence is essentially strongly compressible

and it naturally generates spatially intermittent distributions of plasma particles. The bulk

of the plasma particles, with energies comparable to the average energy (we call it the

“thermal energy” γth), have an essentially non-Gaussian, log-normal density distribution. The

“run-away” fraction of particles that are accelerated to much higher energies γ ≫ γth, exhibit

even more intermittent statistics, with the power-law distribution functions of their number

density P (n)dn ∝ n−βdn. Based on numerical observations and phenomenological modeling,

we argue that the scaling exponents are related approximately as β = α+ 1, where α is the

spectral index in the power-law tail of the particle energy pdf.

The strongly non-Gaussian statistics of particle distribution are related to the formation

of structures or density “clumps” in the simulation domain. Such strong spatial intermittency

may have important implications for energy dissipation in relativistic turbulence. As an

example, we have considered the distribution of energetic synchrotron radiation that can be

produced by particles with γ ≫ γth in such turbulence. We observed that the contrast of

the radiation intensity spans many orders of magnitude over a simulation domain, with the

majority of the radiated energy originating in a small fraction of the plasma volume.
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4 conclusions

In this dissertation, we explored magnetized plasma turbulence numerically and phenomeno-

logically, in both the nonrelativistic and relativistic regimes. Our study of the former,

presented in Chapter 2, focused on plasma environments with βe ≪ βi ∼ 1, which can be

found in the magnetosheath and in the solar wind close to the solar corona. This opens up

the range between the electron inertial and gyro-scales to turbulent fluctuations. We reviewed

iKAW phenomenology, which is based on an electron fluid model and produces the correct

scaling law for the magnetic energy spectrum observed in numerical simulations in the range

d−1
e < k⊥ < ρe.

We analyzed 2.5D and 3D simulations and found the low electron beta environment

to be fertile ground for electron scale current sheets, some of which exhibited signatures

of electron-only magnetic reconnection, like an outflow of Alfvénic electron jets. The 3D

simulation showed an enhanced electron inflow relative to the 2.5D case, which may be

attributed to a field-parallel outflow, as was reported in Pyakurel et al. (2021).

We used the pressure-strain interaction as a measure of energy dissipation in the 3D

simulation and found it to be strongly intermittent and concentrated on current sheets.

The most intense dissipation event found was seen to correspond to electron-only magnetic

reconnection.

The lowest electron beta achieved in our simulations was βe = 0.04 in 2.5D and βe = 0.1

in 3D, both providing a very small scale separation. To improve on our study of iKAW

turbulence, a 3D simulation with a lower electron beta than either one analyzed here would

be highly desirable.

In astrophysics, there is interest in relativistic plasma turbulence as a particle accelerator.

In Chapter 3 we presented a numerical and phenomenological study of decaying magnetically

dominated plasma turbulence, where the magnetic fluctuations seeded at the initialization

were seen to quickly heat the plasma to strongly relativistic temperatures, while the bulk
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motion was only mildly relativistic. Approximating the bulk motion as nonrelativistic and

the microscopic motion as ultrarelativistic, we used a two-fluid model to derive a scaling law

for the electromagnetic energy spectrum both in the inertial and in the kinetic ranges. Our

phenomenological model for the inertial range was seen to be analogous to nonrelativistic

reduced MHD with electric fluctuations in place of bulk velocity fluctuations. In the kinetic

range, the turbulent cascade is reminiscent of the enstrophy cascade in 2D incompressible

hydrodynamic turbulence. Our numerical results were in good agreement with both models.

Nonthermal particle energization was observed in our simulations of relativistic plasma

turbulence, with the particle energy pdf developing a power-law tail for weak guide field,

B0 ≲ δB0. As the guide field is increased, the slope steepens, eventually giving way to a

log-normal distribution when B0 ≳ 3δB0. We argued that this can be understood in terms of

the acceleration mechanism that dominates. When the guide field is strong, the magnetic

moment of the particles is conserved and they are accelerated by the parallel electric field

(at early times) and by the curvature and polarization drifts. In this case, acceleration is in

the field-parallel direction, reducing the pitch angle and effectively neutralizing acceleration

by magnetic mirrors. This results in a log-normal particle energy distribution. When the

guide field is weak, particles can experience interactions with magnetic structures that break

magnetic moment conservation, resulting in pitch angle scattering. Thus, particles may

be trapped in regions of the phase space where their pitch angle is large and they are

efficiently accelerated by magnetic mirrors, resulting in power-law tails in the particle energy

distribution.

Finally, the space distribution of ultrarelativistic particles was seen to be strongly inter-

mittent in our simulations with B0 ≲ δB0, perhaps the result of acceleration by magnetic

mirrors. A study of the space intermittency of ultrarelativistic particles in the simulations

with strong guide field is pending.

Another natural continuation of our work on relativistic plasma turbulence would be a

statistical study of current sheets, magnetic reconnection, and energy dissipation. The latter
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would require finding a relativistic generalization of the pressure-strain interaction.

We hope that the work that went into this thesis leaves the field of plasma turbulence at

least a tiny step closer to completion.
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a low-frequency waves in a relativistic plasma

We consider a strongly magnetized, magnetically dominated pair plasma, where the cyclotron

frequency is much larger than the plasma frequency and the frequency of the considered wave

modes. Here, we imply the relativistic versions of the cyclotron and plasma frequencies that

depend on the details of the particle distribution function, see the discussion below. In what

follows, we denote by ωpe =
√

4πn0e2/me the nonrelativistic electron plasma frequency. We

also assume that the electron gyroscale is negligibly small, k2
⊥ρ

2
e ≪ 1.

It is convenient to choose the coordinate frame such that k = (k⊥, 0, kz), where z is the

direction along the background magnetic field. Under these conditions, the plasma dielectric

tensor simplifies to:

εlm =


1 0 0

0 1 0

0 0 P

 , (A.1)

where the function P (ω,k) depends on the particle distribution function and will be discussed

later. In order to find the frequencies and polarizations of the plasma modes, we need to

solve the wave equation:

(
k2δlm − klkm − ω2

c2 εlm

)
Em = 0, (A.2)

which in the matrix form reads


k2

z − ω2

c2 0 −kzk⊥

0 k2 − ω2

c2 0

−kzk⊥ 0 k2
⊥ − ω2

c2 P




Ex

Ey

Ez

 = 0. (A.3)
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To obtain nontrivial solutions, we equate the determinant of the matrix to zero, obtaining:

(
k2 − ω2

c2

)([
k2

z − ω2

c2

] [
k2

⊥ − ω2

c2 P

]
− k2

zk
2
⊥

)
= 0. (A.4)

Setting the first multiplicative term to zero, one gets the dispersion relation of the electro-

magnetic extraordinary mode,

ω2 = k2c2, (A.5)

whose electric-field polarization is normal to both the background magnetic field and the

wave vector,

EX = (0, Ey, 0). (A.6)

By equating the second term to zero, we obtain

k2
⊥ + k2

zP − ω2

c2 P = 0. (A.7)

In order to specify the function P in this expression, we need to know the particle distribution

function. Following (Godfrey et al., 1975; Arons and Barnard, 1986; Gedalin et al., 1998), we

assume that the particle velocity distribution function is one-dimensional, f(u) = f̃(uz)δ(u⊥),

with the normalization

∫
f(u) d3u =

∞∫
−∞

f̃(uz) duz = 1. (A.8)

In this expression, we denote uz = vz/
√

1 − v2
z/c

2, where vz is the particle velocity, so that

γ2 = 1 + u2
z/c

2. This simplifying assumption is motivated by two independent considerations.

First is the fact that in a very strong guide magnetic field such as that relevant, e.g., for

pulsar magnetospheres and winds, (e.g., Arons and Barnard, 1986; Gedalin et al., 1998), the
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field-perpendicular components of particle momenta are significantly reduced with respect to

their field-parallel ones due to strong synchrotron cooling. Second is the numerical observation

that magnetically dominated Alfvénic turbulence (σ̃ ≫ 1) strongly heats plasma particles in

the field-parallel rather than field-perpendicular direction (Nättilä and Beloborodov, 2022).

We also note that in astrophysical applications, plasma can stream along the background

magnetic field with relativistic velocity. Our consideration will apply to the plasma rest

frame, where we assume that the particle momentum distribution is symmetric with respect

to the ±z-directions.

In the considered limit of a very strong large-scale magnetic field and a one-dimensional

particle velocity distribution function, one obtains for a pair plasma (Gedalin et al., 1998):

P (ω,k) = 1 −
2ω2

pe

ω2 W (ω, kz) . (A.9)

The function W in this expression is given by

W = −ω2

kz

c∫
−c

1
ω − kzvz + iν

df̃

dvz

dvz, (A.10)

where ν → +0 is needed to describe collisionless Landau damping. Let us first discuss the

limit of large parallel phase velocity, ω ≫ kzvth, where vth is the characteristic (e.g., thermal)

speed of the particle distribution. Obviously, this limit can also describe the case of cold

nonrelativistic plasma, when plasma temperature is negligibly small. In this limit, we can

neglect the imaginary part and integrate Equation (A.10) by parts:

W = ω2
c∫

−c

f̃

(ω − kzvz)2 dvz ≈
c∫

−c

f̃ dvz =
∞∫

−∞

(
1 − v2

z

c2

)3/2

f̃ duz ≡
〈

1
γ3

〉
. (A.11)

One can then define the plasma frequency for relativistic pair plasma as follows:

ω2
p ≡ 2ω2

pe

〈
1
γ3

〉
, (A.12)
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which provides the relativistic generalization of the nonrelativistic expression. The function

P now has the form

P = 1 −
ω2

p

ω2 . (A.13)

Substituting this function into Equation (A.7), we obtain the dispersion relation:

ω2 =

(
ω2

p + k2c2
)

±
√(

ω2
p + k2c2

)2
− 4ω2

pk
2
zc

2

2 . (A.14)

Here, the positive sign in front of the square root corresponds to the ordinary mode, while

the negative sign to the Alfvén mode, which transforms into the inertial-Alfvén mode at

k > ωp/c. In the case of cold plasma, both solutions are allowed. However, in our case of

relativistic plasma temperature, the latter solution is not applicable as it would correspond

to the parallel phase speed smaller than the thermal speed. We, therefore, analyze only the

expression corresponding to the “+” sign in Equation (A.14).

In the long-wave limit, kc ≪ ωp, this expression gives ω = ωp, and the corresponding

electric field is polarized along the background magnetic field, E = (0, 0, Ez). In the opposite

limit, kc ≫ ωp, we get ω = kc. One can check that in this case, the electric field lies in the

x− z plane and it is normal to the wave vector k. In the limit of quasi-perpendicular wave

propagation, k⊥ ≫ kz, the dispersion relation for the ordinary mode simplifies to

ω2 = ω2
p + k2c2 (A.15)

for any value of the wavenumber, with the electric polarization being nearly aligned with the

background magnetic field,

EO ≈ (0, 0, Ez). (A.16)
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We now consider the limit of low phase velocities, ω ∼ kzvth, which will give us the

dispersion relation for the Alfvén mode. In this limit, the dispersion relation depends on

the details of the particle distribution function. As was discussed previously, magnetically

dominated turbulence with σ̃0 ≫ 1 leads to ultrarelativistic particle heating, with vth ≈ c.

We will therefore assume relativistic distribution functions in our consideration. For instance,

one can consider the one-dimensional equilibrium Maxwell-Jüttner distribution,

f̃(uz) = 1
2K1(1/θ)c

exp (−γ/θ) , (A.17)

where γ = 1/
√

1 − v2
z/c

2, K1 is the modified Bessel function of the second kind, and θ =

kBT/mc
2. For ultrarelativistic particle temperatures, θ ≫ 1, one can replace K1(1/θ) ≈ θ.

In what follows, we will also need to know the enthalpy density w corresponding to this

distribution. For ultrarelativistic one-dimensional gas, the internal energy density and pressure

are related as P∥ = u, and we derive the normalized enthalpy density:

w = (u+ P∥)/n0mec
2 = 2θ. (A.18)

We now assume without loss of generality that kz > 0, and rewrite the expression for the

W function (A.10) as follows:

W = − ω2

k2
zc

c∫
−c

1
(1 − vz/c) − (1 − ω/kzc) + iν

df̃

dvz

dvz. (A.19)

The distribution function declines fast when particle energy exceeds the thermal energy, that is

when γ > θ, or equivalently 1−vz/c < 1/(2θ2), where we have approximated 1/γ2 ≈ 2(1−vz/c).

The integral is thus dominated by the velocity values satisfying 1 −vz/c ∼ 1/(2θ2). Therefore,

the behavior of the ultrarelativistic W -function depends on whether 1 − ω/kzc is greater or

smaller than the small parameter 1/(2θ2). It is easy to see that this is just the condition that

compares the parallel phase velocity of the waves, ω/kz, with the velocity associated with the
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thermal motion of the particles, vth = c
√

1 − 1/θ2. These two asymptotic limits should be

considered separately; we refer the reader to Godfrey et al. (1975); Gedalin et al. (1998) for a

detailed analysis. For our consideration of the ultrarelativistic Alfvén mode with kz ≪ k⊥,

the essential limit is

∣∣∣∣1 − ω

kzc

∣∣∣∣ ≪ 1
2θ2 . (A.20)

In this limit, the imaginary part of the distribution function is negligible. Moreover, in this

case, one can neglect 1 − ω/kzc with respect to 1 − vz/c in the denominator. The asymptotic

expression for the W -function in this limit can then be found from Equation (A.19) where

we integrate by parts,

W ∼ ω2

k2
zc

2

c∫
−c

1
(1 − vz/c)2 f̃ dvz ∼ ω2

k2
zc

2

c∫
0

4γ4 f̃ dvz = ω2

k2
zc

2

∞∫
0

4γ f̃ duz = ω2

k2
zc

2 2 ⟨γ⟩ . (A.21)

The average value of γ depends on the distribution function. For the considered ultrarelativistic

Maxwell-Jüttner distribution, one gets ⟨γ⟩ = θ. Substituting this into Equation (A.9), one

obtains

P = 1 −
4θω2

pe

k2
zc

2 ≈ −
4θω2

pe

k2
zc

2 . (A.22)

Equation (A.7) then leads to the dispersion relation of the ultrarelativistic Alfvén mode

ω2 = k2
zc

2
(

1 − k2
⊥c

2

4ω2
peθ

)
= k2

zc
2
(

1 − k2
⊥d

2
rel

w2

)
, (A.23)

where we have defined the relativistic inertial scale of a pair plasma as

d2
rel = c2 θ

ω2
pe

= c2 w

2ω2
pe

. (A.24)

Recalling that our derivation is valid under the assumption that 1 − ω2/k2
zc

2 ≪ 1/θ2, we see
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that the Alfvén dispersion relation (A.23) holds up to the scales k2
⊥d

2
rel ∼ 1. At perpendicular

scales comparable to the relativistic inertial scale, the thermal effects become essential and

Landau damping becomes strong.

Using Equations (A.3) and (A.22) we get the polarization of the Alfvén mode:

EA = (Ex, 0, Ez), Ez

Ex

≈ kzk⊥d
2
rel

w2 ≪ 1, (A.25)

so that this mode is nearly potential.

Finally, we discuss the Alfvén wave for the case of the so-called “waterbag” distribution,

which has cut-offs in the momentum space. Such functions were used to study relativistic

beams in a plasma (e.g., Roberts and Berk, 1967; Davidson and Startsev, 2004), to model

pair plasma distributions in pulsar magnetospheres (Arons and Barnard, 1986), and analyzed

in detail in Gedalin et al. (1998). We will however modify the “waterbag” distribution by

smoothing out its sharp edges. This can be done in many different ways by introducing

various regularizations whose particular forms are not relevant for our consideration. We

may, for example, adopt the following model function

f̃(uz) = A
1

e
γ−γm

θ + 1
. (A.26)

In the limit θ/γm → 0, such a distribution approaches (up to the normalization constant

A) the Heaviside step function H(γm − γ). We however assume that θ is small but nonzero,

0 < θ/γm ≪ 1, in which case the sharp boundary of the step function is smoothed over a

narrow region ∆γ ∼ θ. In the ultrarelativistic case, γm ≫ 1, the normalization constant

is A = 1/(2cγm) and the enthalpy density corresponding to such a distribution is given by

w = γm. The derivative of the distribution function is then a θ-broadened delta function,

c df̃/duz = Aδ(γ − γm), and we can integrate Equation (A.10) to obtain (Gedalin et al.,
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1998):

W = 1
γm

ω2

k2
zv

2
m

1
(ω2/k2

zv
2
m − 1) , (A.27)

where 1/γ2
m = 1 − v2

m/c
2. The resulting dispersion relation for the Alfvén mode is then

ω2 = k2
zc

2 1 + k2
⊥v

2
mγm/2ω2

pe

1 + k2
⊥c

2γm/2ω2
pe

= k2
zc

2 1 + v2
m

c2 k
2
⊥d

2
rel

1 + k2
⊥d

2
rel

, (A.28)

where we use the relativistic inertial scale

d2
rel = c2 γm

2ω2
pe

= c2 w

2ω2
pe

. (A.29)

These expressions agree with our hydrodynamic result (3.18). For perpendicular scales larger

than the inertial scale, k2
⊥d

2
rel ≪ 1, we obtain the familiar ultrarelativistic Alfvén mode,

cf. (A.23),

ω2 ≈ k2
zc

2
(

1 − k2
⊥d

2
rel

γ2
m

)
= k2

zc
2
(

1 − k2
⊥d

2
rel

w2

)
, (A.30)

while in the opposite, “kinetic” range k2
⊥d

2
e ≫ 1, the dispersion relation changes to

ω2 ≈ k2
zv

2
m

(
1 + 1

k2
⊥d

2
relw

2

)
. (A.31)

The parallel phase velocity of this mode exceeds vm. The Landau damping is weak if this

phase velocity is not too close to vm, that is if their difference is larger than the boundary

broadening, 1/
√

1 − ω2/k2
zc

2 − γm > θ. Substituting here expression (A.31), we derive the

condition for such a mode to exist:

k2
⊥d

2
rel <

γm

2θ . (A.32)
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We note the analogy of the “waterbag” distribution with the Fermi distribution in a degenerate

gas. The acoustic-type mode (A.31) appearing at kinetic scales in this case is then analogous

to the so-called “zero sound”, ω ≈ kvF , existing in a degenerate plasma where the particles

have a Fermi distribution with a cutoff at the Fermi speed vF . We also point out that

different kinetic particle distributions lead to similar results for the relativistic Alfvén mode

when expressed in terms of the fluid parameters drel and w; this can be seen from comparing

Equations (A.23) and (A.30).
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b curvature acceleration: the logarithmic factor

Here, we derive the logarithmic factor in the formula (3.54) for the curvature acceleration.

For that, we introduce the field-parallel spectrum of the magnetic fluctuations defined as

W (k∥) dk∥ =
(
δB⊥,0

B0

)2
k0

k2
∥
dk∥, (B.1)

where k0 = 1/ℓ0. The normalization is chosen to satisfy

(
δB⊥,0

B0

)2

=
∞∫

k0

W (k∥) dk∥. (B.2)

We then divide the interval of the wavenumbers k∥ into logarithmic sub-intervals [kn, kn+1],

where kn = k0a
n. Here n = 0, 1, 2, . . . is an integer number, and a > 1 is some scaling factor.

The energy contained inside such an interval,

Wn =
kn+1∫
kn

W (k∥) dk∥ =
(
δB⊥,0

B0

)2
a− 1
an+1 , (B.3)

is then associated with the energy contained in the eddies of scale ℓn = 1/kn. An electron

propagating along the magnetic field line will encounter Nn = ℓ0/ℓn = an such eddies.

According to formula (3.53), the contribution of the eddies of size ℓn to the electron energy

gain is then proportional to NnWn. To find the total acceleration, we need to sum the

contributions of all the eddies, from the largest scale, ℓ0, to the smallest one, ℓ∗ = 1/k∗:

n∗−1∑
n=0

NnWn =
(
δB⊥,0

B0

)2
a− 1
a

n∗. (B.4)

Here, we have introduced the total number of the intervals, n∗, which can be evaluated as:

n∗ = loga

(
k∗

k0

)
= ln (ℓ0/ℓ∗)

ln(a) . (B.5)
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Since n∗ should be an integer, only the integer part of this expression should be taken into

account. We then arrive at the final formula

n∗−1∑
n=0

NnWn = A∥ ln
(
ℓ0

ℓ∗

)(
δB⊥,0

B0

)2

, (B.6)

where

A∥ = a− 1
a ln(a) . (B.7)

The numerical factor A∥ is a rather slowly changing function of the scaling parameter a. For

instance, for a = 2 we get A∥ ≈ 0.72.
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c the critical energy

In a collisionless plasma where fluctuations of the electric and magnetic fields are relatively

small in comparison with B0, a charged particle preserves the first adiabatic invariant, the

magnetic moment. If the magnetic moment is initially small, it will remain small as the

particle gets accelerated. The complete expression for the magnetic moment includes not only

field-perpendicular but also field-parallel particle momentum (e.g., Northrop, 1963; Littlejohn,

1983, 1984; Egedal et al., 2008). In a curved magnetic field, as the field-parallel momentum

increases during particle acceleration, so should the field-perpendicular momentum. For an

ultrarelativistic particle, one may then relate the typical values attained by the particle’s

parallel and perpendicular momenta as the particle propagates in a curved magnetic field:

p2
⊥ ∼ p2

∥γ
2ρ2

0/R
2
c . (C.1)

Expressing the particle gyroradius as ρ2
⊥ = γ2ρ2

0 sin2 θ, we rewrite formula (C.1) for a small

pitch angle:

ρ2
⊥ ∼ ρ4

0γ
4/R2

c . (C.2)

If the particle gyroradus, ρ⊥, is smaller than the inner scale of turbulence, drel, the largest

curvature of the magnetic-field lines is provided by the smallest turbulent eddies, with scales

drel. The curvature radius can then be evaluated as in formula (3.48) of the main text,

Rc ∼ drel

(
B0

δB⊥(drel)

)2

∼ λ0

(
drel

λ0

)1/3 (
B0

δB⊥,0

)2

. (C.3)

Here, for simplicity, we assumed the Goldreich and Sridhar (1995) scaling of turbulence,

α = 1/3. Substituting this expression into Equation (C.2), we derive the scaling of the typical
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particle gyroradius with the energy:

ρ⊥ ∼ ρ0

(
ρ0

λ0

)(
δB⊥,0

B0

)2 (
λ0

drel

)1/3

γ2. (C.4)

This gyroradius becomes comparable to the inner scale of turbulence, drel, when the particle

energy reaches the critical value:

γc = B0

δB⊥,0

drel

ρ0

(
λ0

drel

)1/3

. (C.5)

For energies larger than the critical energy, the curvature of the magnetic field lines

guiding the particle motion, is provided by the eddies comparable to the particle gyroradius,

λ ∼ ρ⊥. In this case, the field curvature radius needs to be estimated as

Rc ∼ λ0

(
ρ⊥

λ0

)1/3
(

B0

δB⊥,0

)2

. (C.6)

Substituting Equation (C.6) into Equation (C.2), we derive the scaling of the particle

gyroradius with the Lorenz factor,

ρ⊥ ∼ ρ0

(
δB⊥,0

B0

)3/2 (
ρ0

λ0

)1/2
γ3/2. (C.7)

This scaling holds only when ρ⊥ is larger than the smallest scale of Alfvénic turbulence, drel.

Interestingly, in this limit one can give an alternative derivation of formula (C.1), which is

more suitable for our analysis of magnetic turbulence. In an Alfvénic turbulent eddy with

the field-perpendicular and field-parallel scales, λ and ℓ, the directions of magnetic field lines

are known with the angular uncertainty of θλ ∼ λ/ℓ. Therefore, a particle with a gyroradius

ρ⊥ ∼ λ cannot maintain a pitch angle smaller than θλ. Expressing the (small) particle pitch
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angle as p⊥/p∥, we write this condition as

p⊥

p∥
∼ λ

ℓ
. (C.8)

The magnetic-line curvature associated with such an eddy can be evaluated as Rc ∼ ℓ2/λ,

and the scale of the eddy guiding the particle motion as λ ∼ ρ⊥ = γρ0 sin θ. One can then

express λ and ℓ through ρ⊥ and Rc and verify that Equation (C.8) becomes equivalent to

Equation (C.1).

Once the energy of an accelerated particle exceeds γc, we may use Equation (3.59) to

rewrite the energy gain Equation (3.55) as:

∆0 ln(γ) ∼ 3ϕA⊥ ln
(
γ0

γ

)(
δB⊥,0

B0

)2

. (C.9)

Since the right-hand side of this equation now depends on γ, it is more appropriate to write

instead of Equation (C.9) the differential equation for the energy evolution:

d ln(γ)
dt

= A0 ln
(
γ0

γ

)
, (C.10)

where we have denoted

A0 = 3ϕA⊥

(
δB⊥,0

B0

)2
c

ℓ0
. (C.11)

Assuming that at t = 0, the particle’s energy is γc, we can solve Equation (C.10) to get:

ln
(
γ

γ0

)
= ln

(
γc

γ0

)
e−A0t. (C.12)

For t ≪ 1/A0, ln(γ) grows linearly with time. At t ≳ 1/A0, the particle gyroradius quickly

approaches the outer scale of turbulence, γ ∼ γ0, and the curvature acceleration vanishes.
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