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Abstract

This thesis contributes significantly to the field of multimodal foundation models by
developing a generalist approach to visual understanding that spans various levels
of granularity and modality. Previously, the study of visual understanding has pro-
gressed from classical image recognition, characterized by discrete categorization using
human-defined labels, to a more integrated approach that combines insights from
natural language understanding. This evolution has facilitated advancements in open-
vocabulary visual understanding, highlighting the synergy between textual and visual
data as it occurs in human perception.

Recent developments have seen a shift towards creating comprehensive, specialized
models for individual tasks. However, the focus has increasingly turned towards
constructing a generalist model capable of handling multiple tasks across different
granularities and modalities. Such generalist models boast not only parameter efficiency,
allowing a single model architecture to adapt to various tasks, but also data efficiency,
where the model parameters are optimized across diverse datasets.

The recent advancement of this research trend is the creation of steerable models that
align closely with human cognitive processes, enabling direct and intuitive interactions
between humans and Al systems. Throughout my doctoral studies, I have engaged with
these evolving trends, progressively working towards the realization of effective and
efficient generalist models. This thesis details these developments, emphasizing both the

theoretical advancements and practical applications in the field of visual understanding.



Chapter 1
Introduction

The burgeoning field of visual understanding has evolved from classical image under-
standing, where machines were confined to a language of their own, to the advent of
steerable models that delve into the human linguistic realm. This roadmap is consistent
with the human’s ambitious AGI goal. However, along the formidable road, we must
confront several key challenges before developing the “giant" foundation model: (1)
How could machines understand the visual world precisely, efficiently, and consistently.
(2) How to align the machine’s knowledge space of the visual world with the human
knowledge space. (3) Spanning the visual understanding task, how can we develop a
generalized system with mutual benefits. (4) How do we bridge human communication
with machine language.

Along the roadmap, my research vision is to distill human and world knowledge
into a unified foundation model. In pursuit of this vision, my research agenda is
centered around building powerful machine models that are seamlessly aligned
with human knowledge space supporting multimodality input and output that are
easily accessible to assist human life. These agendas are supported by driving deep
neural networks to model the visual world, align with human knowledge, generalize to
multiple tasks, and interact with humans. To that end, my Ph.D. research concentrates
on four areas spanning the entire spectrum from modeling to deployment:

Classical Image Understanding My Ph.D. initially focuses on classical image under-

standing problems concentrated on image classification, object detection, and instance
segmentation. These foundational tasks delve into the basic building blocks of how
deep neural networks recognize images, objects, and pixels, marking the evolution
from convolutional networks to transformers in this field. One significant challenge
in this area, particularly when using convolutional networks, is the aliasing problem
during feature downsampling, which leads to distortion of high-frequency information
and inconsistent results. In my publication [218, 219], we introduced an adaptive anti-
aliasing module that utilizes a convolution layer to predict a blurring kernel for each

spatial location on the feature map, effectively preserving high-frequency information



Natural Language Image Understanding
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Figure 1.1: The connection between my research agendas to the overview of Ph.D.
research.

and thereby enhancing accuracy and consistency across classification, detection, and
segmentation tasks. Furthermore, with the development of transformers in image classi-
fication and object detection, there emerged a need for an end-to-end training system for
instance segmentation. Where people are using the two-stage method with anchors and
roi-align for segmentation and detection. Addressing this, my work [217] developed a
transformer-based model capable of end-to-end processing for object detection, instance
segmentation, and edge detection by employing a similarity mapping between object
queries and image features, thereby contributing to the end-to-end training system for
segmentation.

Natural Language Image Understanding After establishing a strong understand-

ing of the visual world through deep neural networks, where models cluster images,
pixels, etc. with similar traits and map them to predefined category IDs, the field has
progressed towards integrating this machine-based understanding with natural lan-
guage. This integration has led to the emergence of works in image-text retrieval, and
open-vocabulary detection and segmentation. My work X-Decoder [299], explores these
directions within a single framework, which is elaborated upon in the following section.
Additionally, our project, OpenSEED [283], investigates object and pixel-level open
vocabulary understanding, showing SoTA performance, particularly in pixel-level tasks.
This is achieved by training open vocabulary object detection models to increase the
vocabulary size and using conditioned mask decoding to bridge object detection with
instance segmentation, thus the mapping from pixel to semantic is enriched. We have
also ventured into more nuanced granularity with Semantic-SAM [126], aligning both
instance and part-level objects with semantic meanings. This approach has addressed
the challenge of ambiguity in mapping a query to the correct granularity level (instance,



part), and further map those queries with natural language. In [124], we further fuse

the vision and language embedding space to enable querying instances, part through
visual context.

Generalist Model As specialist models in various domains of visual understanding

evolve, it becomes evident that there is a significant overlap in the training methodologies
and model architectures across tasks. My Ph.D. mainly focuses on creating a generalist
model for multi-modality understanding, specifically focusing on pixel, region, and
image level performance. This observation motivates me to develop X-Decoder [299],
the first generalist model that can handle different levels of visual understanding (image,
pixel, region) without additional overhead for multimodal input and output. We create
X-Decoder through a transformer decoder, where different tasks share the same set
of weights by adjusting self-attention masks between learnable queries and features.
This framework has not only achieved 9 state-of-the-art results in open-vocabulary
segmentation benchmark but has also laid the groundwork for subsequent innovations.
Building upon the X-Decoder, my work evolved to include human interaction in
the model. In this context, I build SEEM [302], a generalist model that integrates
human instruction for segmentation tasks, allowing users to query segments in an
image using points, scribble, box, etc. SEEM achieves competitive performance across
interactive segmentation, generic segmentation, referring segmentation, and video
object segmentation on 9 datasets with minimum 1/100 supervision compared with
SAM and other models. Moreover, the model demonstrates strong compositional
abilities as well as referring image segmentation capability that is generalizable to video
object segmentation. This evolution is further enhanced by integrating large language
model (LLM) embeddings in the FIND framework, which unifies the tasks of X-Decoder
and SEEM. FIND [216] is the first work that interfaces the pre-trained LLM weight
with visual features for understanding tasks. In addition to the multi-modal capability,
FIND also supports interleave segmentation, grounding, and retrieval. As shown in

Fig. 1.2, the modality and granularity generalization procedure has been shown in a 2d
coordinate system.

| |
Interaction +--@®---- ®-----o- Interaction|--@---- 9----9- Interaction - -

° ° .
Language + --¢----9-----4- Languaget--@----4-----¢- Language - - -----9--- - ¢
| | | | | | | | |
Vision - -----4----4- Vision T --@----4----4- Vision T --@----4----4-
| | | | | | | | |
1 1 1 . 1 1 1 - Il Il I .
Image Region Pixel Image Region Pixel Image Region Pixel
(a) X-Decoder (Foundation Model) (b) SEEM (+Interactive) (c) FIND (+Interleave)

Figure 1.2: Visualization of task coverage of X-Decoder, SEEM, FIND span granularity
(x-axis), and modality (y-axis). X-Decoder is the first foundation model building along
the line, while SEEM extends to the interactive section, and FIND covers the whole
interleave space.



Steerable Model After the vision and language model are well aligned with each

other, I started to delve into the human-accessible interface for vision-language founda-
tion models. The interface enables users to interact with the information encapsulated
within these models, leading to the concept of steerable models. These models are
designed to act as Al-assisted tools, allowing users to communicate with the founda-
tion model through conversation. This approach is part of a growing trend to merge
vision models with large language models (LLMs), facilitating information queries via
LLMs. Building on this concept, I have developed LLaVA-Grounding [284] and LLaVA-
Plus [154]. These are general-purpose multimodal assistants trained end-to-end to
systematically enhance the capabilities of large multimodal models. LLaVA-Grounding,
in particular, brings an innovative dimension by providing pixel-level grounding chat
capabilities. It also enables a visual chat feature that supports interactive visual com-
munication, marking a significant advancement in the realm of steerable models with
multi-modal LLMs. For LLaVA-Plus, it supports multimodal large language models
with tool usage capability. This area of research is rapidly evolving, with ongoing efforts
to further explore and refine the potential of these models. It is the first attempt reported
to combine end-to-end training and tool-chaining methods.

In addition to this line of research, I have also worked on generation models for
video inpainting [303].

1.1 Related Work

In the realm of image classification, substantial advancements have been driven by deep
learning models, predominantly Convolutional Neural Networks (CNNs). Seminal
models like AlexNet [113] and later, more sophisticated architectures such as VGG
[205] and ResNet [79], have set foundational benchmarks in the field. These models
employ deep layers and innovative training techniques to capture complex image fea-
tures at various scales, dramatically enhancing classification accuracy. More recently,
the introduction of attention mechanisms, specifically through the Transformer archi-
tecture, has been explored in models like Vision Transformer (ViT) [52], which adapts
the self-attention-based architecture originally used in natural language processing
to image classification tasks. This shift represents a significant move towards non-
convolutional, purely attention-based models that manage to perform at or above par
with established CNNs on standard benchmarks like ImageNet. These developments
illustrate a pivotal transition in image classification methodologies, focusing on deeper,
more computationally efficient architectures capable of leveraging large-scale datasets.

Later, people start to focus on instance segmentation. Instance segmentation in com-
puter vision has evolved from the early classification of bottom-up segments [64, 73, 44,
74] to sophisticated frameworks like the RCNN series, culminating in the widely adopted



Mask R-CNN [75]. Efforts to refine these models have focused on enhancing efficiency
and effectiveness through lighter, anchor-less, one-stage detectors [12, 220, 81] and
advanced boundary delineation techniques using polygons [19, 140] or polar represen-
tations [251]. Recent developments include MaskFormer [37] and Mask2Former [34],
which utilize a dense prediction head similar to our approach, though our research
primarily addresses instance edge detection combined with bounding box and instance
segmentation. However, adapting these transformer-based models for such tasks has
proven challenging due to low detection accuracy, indicating a need for significant
methodological adjustments. Additionally, our method employs a point supervised
edge detection loss, differing from approaches that sample points on predicted feature
maps [104, 36] or use sparse sampling for panoptic tasks [136], highlighting a unique
application of point supervision in our work.

While image classification and segmentation models evolve, integrating with natural
language models becomes a new trend. Vision-language (VL) pretraining has effectively
enhanced performance across various VL tasks, evolving from using transformers with
pre-extracted object features [30, 134, 289, 5] to employing end-to-end transformers that
process raw image pixels [101, 128, 54]. Recent studies have explored the benefits of
large-scale image-text data in visual representation learning, including applications in
zero-shot image classification, action recognition, and image generation [241, 238, 206,
187,93, 277,271, 138]. Moreover, these pre-trained models are expanding into region-
level tasks like phrase grounding and open-vocabulary object detection [97, 68, 294,
172], with proposed unified frameworks integrating image-text pairs with region-level
data [16, 130, 285, 266, 53]. The developments and applications of VL pretraining are
comprehensively reviewed in [58].

Moreover, with a comprehensive understanding of vision and language, the gener-
alist and steerable model attracts new attention. Recent advancements in foundation
models have significantly impacted various domains, including computer vision [277],
natural language processing [226, 46, 13, 176 ], and multimodal interactions [3, 127, 267].
Notable examples include GPT-3 [13], which excels in natural language tasks, and
Florence [277, 249], adaptable to multiple computer vision applications. The model
Flamingo [3] integrates vision and language models through cross-attention, while
BLIP-2 [127] enhances vision-language pre-training with an innovative two-stage ap-
proach. These developments suggest the potential for unifying language and vision
models in a shared embedding space, moving beyond traditional multi-modal methods
that integrate separate model outputs for enhanced interaction.



1.2 Contribution and Thesis Outline

This doctoral thesis makes significant contributions to the field of multi-modal founda-
tion model, with a specific focus on four key research topics: Classical Image Understand-
ing, Natural Language Image Understanding, Generalist Model, and Steerable Model. The
central contribution of this thesis lies in the development of novel methodologies and
theoretical insights to address these challenges. In the thesis, we will focus on classical
image understanding and the generalist approach.

In terms of the thesis outline: Chapter I investigates classical image understanding
with a focus on the work [218] and [217]. Later in Chapter II, we start to focus on the
methods building towards the generalist model, such as image understanding spanning
the granularity from pixel, region, to image and modality from vision to language. In

this section, we focus on the works including [298, 302, 216].



Part 1

Classical Image Understanding



Chapter 2

Delving Deeper into Anti-aliasing in
ConvNets

Publication Statement. This chapter is joint work with Xueyan Zou, Fanyi Xiao, Zhid-
ing Yu, Yuheng Li, Yong Jae Lee. The paper version of this chapter appeared in IJCV
and BMVC20 [218,219].

Aliasing refers to the phenomenon that high frequency signals degenerate into
completely different ones after sampling. It arises as a problem in the context of deep
learning as downsampling layers are widely adopted in deep architectures to reduce
parameters and computation. The standard solution is to apply a low-pass filter (e.g.,
Gaussian blur) before downsampling [291]. However, it can be suboptimal to apply the
same filter across the entire content, as the frequency of feature maps can vary across
both spatial locations and feature channels. To tackle this, we propose an adaptive
content-aware low-pass filtering layer, which predicts separate filter weights for each spatial
location and channel group of the input feature maps. We investigate the effectiveness and
generalization of the proposed method across multiple tasks, including image classifica-
tion, semantic segmentation, instance segmentation, video instance segmentation, and
image-to-image translation. Both qualitative and quantitative results demonstrate that
our approach effectively adapts to the different feature frequencies to avoid aliasing

while preserving useful information for recognition.

2.1 Introduction

Deep neural networks have led to impressive breakthroughs in visual recognition,
speech recognition, and natural language processing. On certain benchmarks such as
ImageNet and SQuAD, they can even achieve “human-level” performance [173, 77, 214,
189]. However, common mistakes that these networks make are often quite unhuman
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Figure 2.1: Toy example demonstrating the effect of adaptive filtering for anti-aliasing.
(a) Input image. (b) Result of direct downsampling. (c) Result of downsampling after
applying a single Gaussian filter tuned to match the frequency of the noise. (d) Result
of downsampling after applying spatially-adaptive Gaussian filters (stronger blurring
for background noise and weaker for edges).!

like. For example, a tiny shift in the input image can lead to drastic changes in the
output prediction of convolutional neural networks (ConvNets) [200, 8, 214]. This
phenomenon was demonstrated to be in part due to aliasing when downsampling in
ConvNets [291].

Aliasing refers to the phenomenon that high frequency information in a signal is
distorted during subsampling [65]. The Nyquist theorem states that the sampling rate
must be at least twice the highest frequency of the signal in order to prevent aliasing.
Without proper anti-aliasing techniques, a subsampled signal can look completely
different compared to its input. Below is a toy example demonstrating this problem on
1D signals:

k=2, stride=2

001100110011 *==2% 010101 (2.1)
maxpool

011001100110 —>k 2 stride=2. 419111 (2.2)
maxpool

Here k is the kernel size (1 x 2). Because of aliasing, a one position shift in the original
signal leads to a completely different sampled signal (bottom) compared to the original
sampled one (top). As downsampling layers in ConvNets are critical for reducing
parameters and inducing invariance in the learned representations, the aliasing issue
accompanying these layers will likely result in a performance drop as well as undesired
shift variance in the output if not handled carefully.

!We generate the background impulse noise using a Bernoulli distribution (with P = 0.5) per pixel
location with a normal distribution determining the impulse noise magnitude. We then overlay the
foreground image over the background noise. For (c), the fixed filter value is generated by g(z,y) =
e —(@*+v*)/20* where o is the standard deviation of the Gaussian filter, and (z,y) is the index of the
filter location W1th (0,0) as the filter center. For (d), the filter “strength” is varied by o as well as the
kernel size.
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To tackle this, Zhang [291] proposed to insert a Gaussian blur layer before each
downsampling module in ConvNets. Though simple and effective to a certain degree,
we argue that the design choice of applying a universal Gaussian filter is not optimal —
as signal frequencies in a natural image (or feature map) generally vary throughout
spatial locations and channels, different blurring filters are needed in order to satisfy the
Nyquist theorem to avoid aliasing. For example, the image in Fig. 2.1 (a) contains high
frequency impulse noise in the background and relatively lower frequency edges in
the foreground. Directly applying a downsampling operation produces discontinuous
edges and distorted impulse noise shown in (b) due to aliasing. By applying a Gaussian
filter before downsampling, we can avoid aliasing as shown in (c). However, as the high
frequency impulse noise needs to be blurred more compared to the lower frequency
edges, when using a single Gaussian filter tuned for the impulse noise, the edges are
over-blurred leading to significant information loss. To solve this issue, what we need is
to apply different Gaussian filters to the foreground and background separately, so that
we can avoid aliasing while preserving useful information, as in (d).

With the above observation, we propose a content-aware anti-aliasing module, which
adaptively predicts low-pass filter weights for different spatial locations. Furthermore,
as different feature channels can also have different frequencies (e.g., certain channels
capture edges, others capture color blobs), we also predict different filters for different
channels. In this way, our proposed module adaptively blurs the input content to avoid
aliasing while preserving useful information for downstream tasks. To summarize, our

contributions are:

e We propose a novel adaptive and architecture independent low-pass filtering layer in

ConvNets for anti-aliasing.

e We propose novel evaluation metrics, which measure shift consistency for semantic
and instance segmentation tasks; i.e., a method’s robustness to aliasing effects caused

by shifts in the input.

e We conduct experiments on image classification (ImageNet), semantic segmentation
(PASCAL VOC and Cityscapes), instance segmentation (MS-COCQO), video instance
segmentation (YoutubeVIS), and domain generalization (ImageNet to ImageNet VID,
COCO to YoutubeVIS). The results show that our method outperforms competitive
baselines with a good margin on both accuracy and shift consistency.

e We demonstrate intuitive qualitative results, which show the interpretability of our

module when applied to different spatial locations and channel groups.

This chapter expands upon our previous conference paper [301] with the following

new contributions:
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e We propose a novel consistency metric for video instance segmentation and evaluate
the robustness of our approach to video natural perturbation on the YoutubeVIS
dataset (Section 2.4.4 and 2.4.8.2).

e We conduct experiments on the image-to-image translation task using pix2pixHD
[236] as a baseline. Results in Section 2.4.5 and 2.4.8.3 show that our approach can

generate more realistic images both qualitatively and quantitatively.

o Weidentify our adaptive filtering layer as a variant of the sliding window self-attention

in vision transformers (Section 2.3.4).
e We give more comprehensive related work analysis in Section 2.2.

e We discuss some limitations of our approach in Section 2.5.

2.2 Related Work

Anti-aliasing Aliasing is a well-known problem in signal processing, and lowpass
filters are often designed according to the Nyquist theorem to counter it [201, 186]. In
addition, the phenomenon has been studied under the scope of invariance in pattern
recognition [243, 1, 15, 135]. More recently, it has been shown that aliasing also widely
exists in deep neural networks and has non-negligible effect on the network predictions.
For example, Zhang [291] made the observation that network predictions are not con-
sistent to shifting inputs and pointed out that these phenomena are caused by aliasing
when a feature map is downsampled. Our subsequent work [301] further proposed
adaptive filtering layers in place of the fixed low-pass filtering layers proposed in [291] to
better address the shift inconsistency problem. Recently, several concurrent works have
either addressed aliasing issues in GANs using a continuous interpretation [100], or tar-
get the design of truly shift-invariant convnets with adaptive polyphase sampling [20].
Anti-aliasing is also highly related to geometric transformation invariance, which is
explored in several recent works [292, 118, 11, 197].

Network Robustness Current deep neural networks are vulnerable to input per-
turbations without special training recipes. These perturbations can be malicious
such as adversarial attacks [212, 114], or naturally occurring such as input transla-
tion [163, 10, 269, 291], natural perturbations [200], domain gaps [174, 123], or out-of-
distribution samples [119, 120]. One underlying reason is that networks tend to pick up
superficial patterns instead of learning truly compositional representations [60], and
their vulnerability to input perturbations can also lead to prediction inconsistencies.
Adversarial defense methods via novel training pipelines [162, 141], losses [98] and ar-
chitectures [250] have been proposed to obtain adversarially robust networks. [163, 10]

propose new algorithms to learn more shift-invariant representations. In addition, data
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Figure 2.2: Method overview. (Left) For each spatial location and feature channel
group in the input X, we predict a k£ x k filter w. (Right) We apply the learned filters
on X to obtain content aware anti-aliased features. See text for more details.

augmentation is an effective way to improve network robustness [286, 291, 278] and
generalization. Finally, domain generalization methods (e.g., [228, 227, 88]) have been
proposed to increase a model’s robustness to domain differences in the data.

Image Filtering Low-pass filters like box [196] and Gaussian [65] are classic content
agnostic smoothing filters; i.e., their filter weights are fixed regardless of spatial location
and image content. Bilateral [180] and guided [76] filters are content aware as they
can simultaneously preserve edge information while removing noise. Recent works
integrate such classic filters into deep networks [291, 250]. However, directly integrating
these modules into a neural network requires careful tuning of hyperparameters subject
to the input image (e.g., o, and o, in bilateral filter or r and € in guided filter). [210, 94]
introduced the dynamic filtering layer, whose weights are predicted by convolution
layers conditioned on pre-computed feature maps. Our method differs from them in
two key aspects: 1) our filter weights vary across both spatial and channel groups,
and 2) we insert our low-pass filtering layer before every downsampling layer for anti-
aliasing, whereas the dynamic filtering layer is directly linked to the prediction (last)
layer in order to incorporate motion information for video recognition tasks. Finally,
[232] introduces an adaptive convolution layer for upsampling, whereas we focus on

downsampling with an adaptive low-pass filtering layer.

Applications The application of anti-aliasing covers a variety of visual recognition
tasks, ranging from classification [45], dense prediction [75, 22], video analysis [263]
to generation tasks [236]. We find that anti-aliasing techniques are especially effective
for dense prediction tasks including instance segmentation [75, 12] and semantic seg-
mentation [158, 24]. These tasks require precise modeling of object boundaries, so that



Figure 2.3: Variance of the learned filter weights across spatial locations. Low variance
corresponds to more blur, while high variance corresponds to less blur. Our model
correctly learns to blur high frequency content (e.g., edges) more to prevent aliasing,
and blur low frequency content less to preserve useful information.
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Figure 2.4: Visualization of predicted feature maps within and across groups. The
features within each group are more similar to each other than to those in other groups.
Each group captures a different aspect of the image (e.g., edges, color blobs).

Group 3

pixels from the same object instance can be correctly grouped together. Thus, while
blurring can help reduce aliasing, it can also be harmful to these tasks (e.g., when the
edges are blurred too much or not blurred enough hence resulting in aliasing). We
investigate the effect of anti-aliasing in these pixel-level tasks, whereas our closest work,
[291], focused mainly on image classification. In addition, video insconsistency caused
by motion blur, natural perturbations, etc. has also been widely observed [200, 69, 131].
We specifically explore the consistency problem in video instance segmentation [263 ]
to demonstrate the effectiveness of our approach. Finally, generative models also have
sampling operations in their encoder and/or decoder architecture [236, 193, 181]. Thus,
we also investigate our approach in this area.

2.3 Approach

To enable anti-aliasing for ConvNets, we apply the proposed content-aware anti-aliasing
module before each downsampling operation in the network. Inside the module, we
first generate low-pass filters for different spatial locations and channel groups (Fig. 5.2
left), and then apply the predicted filters back onto the input features for anti-aliasing
(Fig. 5.2 right).
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2.3.1 Spatial adaptive anti-aliasing.

As frequency components can vary across different spatial locations in an image, we
propose to learn different low-pass filters in a content-aware manner across spatial
locations. Specifically, given an input feature X that needs to be down-sampled, we
generate a low-pass filter w; ; (e.g., a 3 x 3 conv filter) for each spatial location (¢, j) on
x. With the predicted low-pass filter w; ;, we can then apply it to input X:

Y= Z w%{l © Xitpjto (2.3)

P,q€Q

where Y; ; denotes output features at location (7, j) and 2 points to the set of locations
surrounding (4, j) on which we apply the predicted smooth filter. In this way, the
network can learn to blur higher frequency content more than lower frequency content,
to reduce undesirable aliasing effects while preserving important content as much as

possible.

2.3.2 Channel-grouped adaptive anti-aliasing.

Different channels of a feature map can capture different aspects of the input that vary
in frequency (e.g., edges, color blobs). Therefore, in addition to predicting different
filters for each spatial location, it can also be desirable to predict different filters for each
feature channel. However, naively predicting a low-pass filter for each spatial location
and channel can be computationally very expensive. Motivated by the observation that
some channels will capture similar information [247], we group the channels into &
groups and predict a single low-pass filter w; ; , for each group g. Then, we apply w; ; 4
to the input X:

Vi = 2. Wity Xi

i+p,j+q>
P,qE2

(2.4)

where g is the group index to which channel c belongs. In this way, channels within a
group are learned to be similar, as shown in Fig. 2.4.

2.3.3 Learning to predict filters.

To dynamically generate low-pass filters for each spatial location and feature channel
group, we apply a convolutional block (conv + batchnorm) to the input feature X €
R exhxw o output w € R 9*Fxhxw where g denotes the number of channel groups
and each of the k? channels corresponds to an element in one of k£ x k locations in
the filters. For grouping, we group every c/g consecutive channels, where c is the

total number of channels. Finally, to ensure that the generated filters are low-pass, we
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Figure 2.5: Our new consistency metrics. (b,c,d): mean Average Instance Segmenta-
tion Consistency (mAISC). (ef,g): mean Average Semantic Segmentation Consistency
(mASSC). Both metrics first crop two patches from the input image (a) and then per-
form detection/segmentation (det/seg) on its content (b,c,e,f). Then, the overlapping
part from the two patches are selected out (d,g) for evaluating the consistency score.

constrain their weights to be positive and sum to one by passing it through a softmax

layer.

2.3.4 Analyzing the predicted filters.

In this section, we analyze the behavior of our learned filters. First, we analyze how the
filters spatially adapt to different image content. For this, we compute the variance of
the learned filter weights across different spatial locations. A k x k average filter with
1/k? intensity in each element will have zero variance whereas an identity filter with one
in the center and zeros everywhere else will have high variance. From Fig. 2.3, one can
clearly see that when the image content has high frequency information (e.g., elephant
background trees, bird contours), the learned filters’ variance tends to be smaller; i.e.,
more blur is needed to prevent aliasing. Conversely, the filters” variance is larger when
the content is relatively smoother (e.g., background in bird images); i.e., less blur is
needed to prevent aliasing. In this way, the learned filters can reduce aliasing during
sampling while preserving useful image content as much as possible.

We next analyze how the filters adapt to different content across different feature
groups. Fig. 2.4 shows this effect; e.g., group 1 captures relatively low frequency in-
formation with smooth areas, while group 2 captures higher frequency information
with sharp intensity transitions. In this way, the learned filters can adapt to different
frequencies across feature channels, while saving computational costs by learning the
same filter per group.

2.3.5 Relation with self-attention

Recently, the transformer architecture [226] has emerged as a state-of-the-art alternative
to convolutional networks on various vision tasks including classification [52], detec-
tion [18], and segmentation [252]. To deal with the transformer’s quadratic complexity
to input length, more efficient architectures such as the SwinTransformer [157] and



16

accuracy consistency | generalization
methods Filter Size | Top-1 Abs Top-5 Abs Delta | Abs Delta | Abs  Delta
ResNet-101 [79] - 77.7 93.8 - 90.6 - 67.6 -
3x3 78.4 94.1 +07]916 +10|688 +12
LPF [291] 5x5 77.7 93.9 +0.0 918 +12]67.0 -0.6
Ours 3x3 79.0 94.4 +13 918 +12 699 +23
5x5 78.6 94.3 +09 (922 +1.6 | 69.1 +1.5

Table 2.1: Image classification accuracy, consistency on ImageNet [45], and domain
generalization results ImageNet — ImageNet VID [45]. We compare to strong ResNet-
101 [79] and LPF (low-pass filter) [291] baselines. Our method shows consistent
improvement in accuracy, consistency, and generalization.

LongFormer [9] have been proposed. Their key idea is to apply both sparse global and
local attention. In this section, we show that our proposed anti-aliasing module can be
interpreted as a form of sliding window local attention.

Given feature map X with dimension h x w x d, a sliding window local attention will
apply local self-attention within each £ x k feature patch window. It can be represented
by the following equation:

ACHLNCI
Vd

where z is the feature patch with size k x k x d, z. is the center point of the feature

)¢u(7) (2.5)

Attention(x.) = softmaz(

patch z, and ¢ represents linear projection. The self-attention layer will first compute
the cross similarity between z, to each feature point in « (k? total), apply a softmax to
normalize the similarity values to sum to one, and finally, use the resulting weights to
compute a weighted sum over the projected values (¢,(z)) of the k? points.

In the above equation, we can consider replacing the linear projections (¢,(-) and
¢x(-)) and the dot product between them, with a conv layer to compute the summing
weights:

Attention(x.) = softmaz(conv(x))p;(x) (2.6)

where ¢, is identity projection. This equation exactly represents our proposed anti-
aliasing module.

In both cases (Eqns. 2.5 and 2.6), the output is a weighted sum of its input value
tensor, and demonstrates that our approach can be viewed as a form of sliding window
self-attention.

2.4 Experiments

We first introduce our experimental settings and propose consistency metrics for image
classification, instance segmentation, and semantic segmentation. We compare to
strong baselines including ResNet [79], Deeplab v3+ [24], Mask R-CNN on large
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Mask Box
method mAP Delta mAISC Delta | mAP Delta mAISC Delta
Mask R-CNN [75] | 36.1 - 62.9 - 40.1 - 65.1 -
LPF [291] 368 +0.7 66.0 +41 | 409 +0.8 68.8 + 3.7
Ours 372 +1.1 67.0 +51 | 414 +1.3 69.8 + 4.7

Table 2.2: Instance segmentation results on MS COCO. We compare to Mask R-
CNN [75] and LPF [291]. Our approach consistently improves over the baselines on
both mask and box detection accuracy. Our model performs especially well on shift
consistency, with a 5.1 and 4.7 point improvement over Mask R-CNN on mAISC mask
and box, respectively.

PASCAL VOC Cityscapes
method mIOU Delta mASSC Delta | mIOU Delta mASSC  Delta
Deeplab v3+ [24] 78.5 - 95.5+0.11 - 78.5 - 96.0+0.10 -
LPF [291] 79.4 +09 9594007 +04 78.9 +04 96.1+£0.05 +0.1
Ours 80.3 +1.8 96.0+0.13 + 0.5 79.5 +1.0 96.3+0.07 +0.3

Table 2.3: Semantic segmentation on PASCAL VOC 2012 [55] and Cityscapes [43]. We
compare to Deeplab v3+ [24] and LPF [291]. Our approach leads to a large improve-
ment in accuracy on PASCAL VOC and Cityscapes (1.8 point and 1.0 point, respectively).
Under the mASSC consistency metric, our approach also shows improvement upon the
two baselines. The results are averaged over three runs.

scale datasets including ImageNet, ImageNet VID [45], MS COCO [145], PASCAL
VOC [55] and Cityscapes [43]. We also conduct ablation studies on our design choices
including number of groups, parameter counts, as well as filter types. Finally, we present

qualitative results demonstrating the interpretability of our anti-aliasing module.

2.4.1 Image Classification

Experimental settings We evaluate on ILSVRC2012 [45], which contains 1.2M training
and 50K validation images for 1000 object classes. We use input image size of 224 x 224,
SGD solver with initial learning rate 0.1, momentum 0.9, and weight decay le-4. Full
training schedule is 90 epochs with 5 epoch linear scaling warm up. Learning rate is
reduced by 10x every 30 epochs. We train on 4 GPUs, with batch size 128 and batch
accumulation of 2. For fair comparison, we use the same set of hyperparameters and
training schedule for both ResNet-101, LPF [291] baselines as well as our method. The
number of groups is set to 8 according to our ablation study. We extend the code base
introduced in [291].

Consistency metric We use the consistency metric defined in [291], which measures
how often the model outputs the same top-1 class given two different shifts on the same

test image:

Consist = Ex nyaw hows {EF (Xnywy) = F(Xngws) (2.7)
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where E and I denote expectation and indicator function (outputs 1/0 with true/false
inputs). X is the input image, hy, w; (height/width) and h,, w, parameterize the shifts
and F(-) denotes the predicted top-1 class.

Results and analysis As shown in Table 2.1, our adaptive anti-aliasing module out-
performs the baseline ResNet-101 without anti-aliasing with a 1.3 point boost (79.0
vs 77.7) in top-1 accuracy on ImageNet classification. More importantly, when com-
paring to LPF [291], which uses a fixed blurring kernel for anti-aliasing, our method
scores 0.6 points higher (79.0 vs 78.4) on top-1 accuracy. Furthermore, our method
not only achieves better classification accuracy, it also outputs more consistent results
(+0.2/+0.4 consistency score improvements for 3x3 and 5x5 filter sizes) compared to
LPF. These results reveal that our method preserves more discriminative information

for recognition when blurring feature maps.

2.4.2 Domain Generalization

Experimental settings ImageNet VID is a video object detection dataset, which has
30 classes that overlap with 284 classes in ImageNet (some classes in ImageNet VID
are the super class of ImageNet). It contains 3862/1315 training/validation videos. We
randomly select three frames from each validation video, and evaluate Top-1 accuracy
on them to measure the generalization capability of our model which is pretrained on
ImageNet (i.e. it has never seen any frame in ImageNet VID). As a video frame may
contain multiple objects in different classes, we count a prediction as correct as long as

it belongs to one of the ground-truth classes.

Results and analysis Table 2.1 reveals that our method generalizes better to a dif-
ferent domain compared to the ResNet-101 baseline (42.3% points increase in top-1
accuracy for 3 x 3 filter) and LPF model (+1.1%) which adopts a fixed blur kernel. We
hypothesize that the better generalization capability comes from the fact that we learn a
representation that is less sensitive to downsampling (i.e., more robust to shifts). This
is particularly useful for video frames, as they can be thought of as having natural shift

perturbations of the same content across frames [200].

2.4.3 Instance Segmentation

Experimental settings In this section, we present results on MS-COCO for instance
segmentation [145]. MS-COCO contains 330k images, 1.5M object instances and 80
categories. We use Mask R-CNN [75] as our base architecture. We adopt the hyperpa-
rameter settings from the implementation of [168]. When measuring consistency, we

tirst resize images to 800 x 800 and then take a crop of 736 x 736 as input.
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mAVISC
Method a=05 Delta a=06 Delta a=07 Delta «o=0.8 Delta
Mask R-CNN [75] | 90.09 - 89.29 - 88.14 - 87.29 -
LPF [291] 90.11 +0.02 8896 -033 8838 +024 8732 +0.03
Ours 90.71 + 0.62 89.61 + 0.32 88.79 + 0.65 87.68 + 0.39

Table 2.4: Video instance segmentation consistency on YoutubeVIS [263]. We evaluate
video instance segmentation consistency for IOU thresholds («) ranging from 0.5
to 0.8. Our approach consistently increases video consistency with a good margin
(4+0.62/+0.32/40.65/+0.39) for all IOU thresholds, whereas LPF increases it with a
relatively smaller margin (40.02/40.32/40.03) or can even decrease video consistency
(-0.33 when a = 0.6).

Consistency metric (mAISC) We propose a new mean Average Instance Segmenta-
tion Consistency (mAISC) metric to measure the shift invariance property of instance
segmentation methods. As shown in Fig. 2.5, given an input image (a), we randomly
select two crops (b) and (c), and apply an instance segmentation method on them
separately. M (b) and M (c) denote the predicted instances in the overlapping region
of image (b) and (c). To measure consistency, for any given instance m; in M (b) we
find its highest overlapping counterpart m. in M(c). If the IOU between m;, and m. is
larger than a threshold (0.9 in our experiments), we regard m,, as a positive (consistent)
sample in M (b). (A sample m,. from M(c) can only be considered a counterpart of any
instance in M (b) once.) We compute the final mAISC score as the mean percentage of
positive samples in M (b) over all input image pairs.

Results and analysis We evaluate mAP and mAISC for both mask and box predic-
tions. As shown in Table 2.2, while simply applying a fixed Gaussian low-pass filter
improves mAP by +0.7/40.8 points for mask/box, our adaptive content-aware anti-
aliasing module is more effective (further +0.4/4-0.5 point improvement over LPF for
mask/box). This demonstrates that it is important to have different low-pass filters for
different spatial locations and channel groups. More interestingly, by introducing our
adaptive low-pass filters, mAISC increases by a large margin (+5.1/+4.7 for mask/box
over the baseline, and +1.0/+1.0 over LPF). This result demonstrates that 1) an anti-
aliasing module significantly improves shift consistency via feature blurring, and 2)
edges (higher frequency) are better preserved using our method (compared to LPF)

during downsampling which are critical for pixel classification tasks.

244 Semantic Segmentation

Experimental settings We next evaluate on PASCAL VOC2012 [55] and Cityscapes
[43] semantic segmentation with Deeplab v3+ [24] as the base model. We extend
implementations from [82, 83] and [225]. For Cityscapes, we use syncBN with a batch
size of 8. As for PASCAL VOC, we use a batch size of 16 on two GPUs without syncBN.



20

A
O NJA

) i
: / ®
L
LAY
41| -t .
-~ "7,

.

\

[
\

Figure 2.6: Video instance segmentation consistency metric. For any two consecutive
frames, if the object is detected in both frames, we record it as a positive pair.

We report better performance compared to the original implementation for DeepLab v3+
on PASCAL VOC. For Cityscapes, our ResNet-101 backbone outperforms the Inception
backbone used in [22].

Consistency metric (mASSC) We propose a new mean Average Semantic Segmenta-
tion Consistency (mASSC) metric to measure shift consistency for semantic segmenta-
tion methods. Similar to mAISC, we take two random crops (e,f) from the input image
(a) in Fig. 2.5. We then compute the Semantic Segmentation Consistency between the

overlapping regions X and Y of the two crops:

CO%SiSt(X, Y) = EiE[O,h)EjG[O,w) I[[S(X)ZJ = S(Y)Z,J} (28)

where S(X); ; and S(Y); ; denote the predicted class label of pixel (7, j) in X and Y/, and
h,w is the height and width of the overlapping region. We average this score for all

pairs of crops in an image, and average those scores over all test images to compute the
final mASSC.

Results and analysis As shown in Table 2.3, our method improves mIOU by 1.8 and
1.0 points on PASCAL VOC and Cityscapes compared to the strong baseline of DeepLab
v3+. Furthermore, our method also consistently improves the mASSC score (+0.5
and +0.3 for VOC and Cityscapes) despite the high numbers achieved by the baseline
method (95.5/96.0). Finally, to measure the variance of our mASSC results, we report

the standard deviation over three runs with different random seeds.

2.4.5 Video Consistency

Experimental settings We next validate our method’s generalization to video data and
its robustness to natural perturbations in video. For this, we perform the video instance
segmentation task on the YoutubeVIS dataset [263 ] using the model trained in Section

2.4.2. We only evaluate on the 20 overlapping classes between COCO and YoutubeVIS.
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datasets Cityscapes Facades
methods FID| Delta mloU Delta mAcc Delta | PSNR Delta SSIM Delta
pix2pixHD [236] / pix2pix [91] | 52.21 - 71.23 - 78.97 - 60.33 - 1.08 -
LPF [291] 5268 +047 67.61 -3.62 7561 -336 | 61.14 +0.81 137 +0.29
Ours [301] 50.21 -2.0 7199 +0.67 80.23 1.26 | 61.50 +1.17 141 +0.33

Table 2.5: Image-to-Image translation results. On the Cityscapes dataset, the generated
images of LPF have worse performance on both image quality and semantic segmenta-
tion, while the images generated by our approach tend to be more realistic (FID) and
semantically accurate (mIoU, mAcc). On the Facades dataset, for shifted image pairs,
our approach generates more consistent images compared to the baseline approaches
for both pixel (PSNR) and patch (SSIM) metrics.

Since the validation set of YoutubeVIS does not have ground-truth annotation for all

frames, we randomly select 260 videos in the training set to validate video consistency:.

Consistency metric (mAVISC) To measure an instance segmentation model’s robust-
ness to natural perturbations in video, we propose a new mean Average Video Instance
Segmentation Consistency (mAVISC) metric. For each video sequence, for all pairs
of consecutive frames, and for each object that appears in each pair of frames, we first
determine whether the object is detected according to a predetermined IOU threshold.

If so, we record it as a positive pair, as shown in Fig. 2.6. Below is the equation for

computing mAVISC:
1 N M; Qi
HI{IOU(GT, 4, Py ji) > o} =
NMQ: 2 e (29)

H{IOU(GT; ji41, Pijr+1) > a}}

where N, M;, (); is the number of video sequences, objects in the i’th video, and frames in
the i"th video, respectively. GT represents the ground truth video object bounding boxes,
P represents the bounding box predictions, and « is the IOU threshold to determine
whether the ground truth object is detected.

Results Table 2.4 shows video consistency results on the YoutubeVIS dataset for
Mask R-CNN, Mask R-CNN with LPF, and Mask R-CNN with our approach using the
proposed mAVISC metric. We evaluate on IOU thresholds ranging from o = 0.5 to
a = 0.8. (We do not include o = 0.9 because at this very strict threshold, there are too
few correct detections for any method, making difficult to make reliable conclusions.) As
shown in Table 2.4, our approach consistently increases video consistency with a good
margin (+0.62/+0.32/+0.65/+0.39) across all IOU thresholds, where LPF increases
with fairly small margin (+0.02/+0.32/+0.03) or even decreases video consistency
(-0.33 when a = 0.6).
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Figure 2.7: Effect of number of groups on top-1 accuracy and consistency. As the group
number increases, both Top-1 accuracy and consistency first increase then decrease. The
performance saturates with group number 8.

2.4.6 Image-to-Image Translation

Experiment Settings We evaluate image-to-image translation on the Cityscapes [43]
and Facades [224] datasets using Pix2PixHD [236] and Pix2Pix [91] as the baseline
models, respectively. On Cityscapes, following [236], we use 2976 images for training
and 500 images for evaluation. On Facades, we use a total of 400 images for training and
evaluation following [91]. For both Pix2Pix [91] and Pix2PixHD [236], we insert our
module before each downsampling layer and upsampling layer following [291]. For
downsampling, we simply insert our adaptive module with stride = 2. For upsampling,
we first use nearest neighbor interpolation to upsample the feature map and then
apply our adaptive filtering layer with stride = 1. We follow all the training settings
from [236, 91].

On the Cityscapes dataset, we focus on image generation quality as well as our
model’s generalization capability to the segmentation task. We use mloU, mAcc, and
FID to evaluate the generated image quality. For mIoU and mACC, we first run the
DeepLab V34 semantic segmentation model (trained in Section 2.4.3) on the generated
images, following [236]. We compare the resulting segmentation maps with the ground
truth segmentation maps. For FID, we use the publicly available codebase at https:
//github.com/mseitzer/pytorch-fid to compare the distributions of the generated
image features and the real image features. On the Facades dataset, we follow [291, 100]
to evaluate the shift consistency of the image generation model. To evaluate the similarity
of two shifted images, we compute both PSNR and SSIM to evaluate both pixel-wise

and patch-wise similarity.

Results In Table 2.5, we first compare pix2pixHD [236], pix2pixHD together with
LPF [291], and pix2pixHD with our approach on the Cityscapes dataset. Overall, our
approach generates more realistic images (e.g., FID score decreases by 2 points) and has
better mIOU and mAcc scores than both pix2pixHD and LPF. In addition, we compare
pix2pix [91], pix2pix together with LPF [291], and pix2pix with our approach on the


https://github.com/mseitzer/pytorch-fid
https://github.com/mseitzer/pytorch-fid
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methods top-1 Acc consistency
ResNet 66.5 79.1
Gaussian 66.7 79.8
Image Adaptive 66.7 78.7
Spatial Adaptive 67.7 80.3
Ours 68.0 80.9

Table 2.6: Filter ablations. Gaussian blur is better than no blur (ResNet). Learning the
blur filter globally (Image Ada.), spatially (Spatial Ada.), and over channels (Ours)
progressively does better.

Figure 2.8: Visualization of learned filter weights at each spatial location. We can see
that the learned filter weight is adaptive to different visual content. Specifically, our
model tends to “grow” edges so that it is easier for them to be preserved. For example,
the learned filter tends to integrate more information from left to right (see center-left
and bottom-left weights in the second row of this figure) on the vertical tree branch
and thus grow it to be thicker. This way; it is easier for the tree branch contours to be
preserved after downsampling.

Facades dataset. The results show that our model is more consistent on image shift
compared to the baseline approaches.

2.4.7 Ablation Studies

Experimental settings For efficiency, we perform all ablation studies using ResNet-18
with input image size 112 x 112 and batch size 200 on ImageNet. All other hyperparam-
eters are identical to those used in Sec. 2.4.1.

Number of channel groups. We vary the number of channel groups and study its
influence on image classification accuracy. As shown in Fig. 2.7, the trend is clear —
increasing the number of groups generally leads to improved top-1 accuracy. This
demonstrates the effectiveness of predicting different filters across channels. However,
there exists a diminishing return in this trend — the performance saturates when the
group number goes beyond 8. We hypothesize this is caused by overfitting.



Figure 2.9: Qualitative results for semantic segmentation on Cityscapes. In the first
row, within the yellow box region, our method clearly distinguishes the road edge
compared to Deeplab v3+ and LPF. Similar behavior (better segmented road contours)
is also observed in the second row. This holds for other objects as well — the light pole
has better delineation compared to both baselines in the third row.

MaskRcnn LPF Ours MaskRcnn LPF Ours

Figure 2.10: Qualitative results of video instance segmentation consistency. As shown
in the first three columns, our method produces more consistent instance segmentation
of the airplane wing whereas Mask-RCNN and LPF produce more inconsistent results
that fluctuate over frames. In the last three columns, we observe the existence of
redundant detections for both Mask-RCNN and LPF.

Number of parameters. We further compare the effects of directly increasing the
number of parameters in the base network vs adding more groups in our content-aware
low-pass filters. To increase the number of parameters for the base network, we increase
the base channel size in ResNet-18. We find that directly increasing the number of
parameters barely improves top-1 accuracy — when the number of parameters increases
from 12.17M to 12.90M, top-1 accuracy increases only by 0.1%. Also, with similar (or
less) number of parameters, our method yields a higher performance gain compared
to naively increasing network capacity (68.0% vs 67.7% top-1 accuracy for 12.60M vs
12.90M parameters). This shows that our adaptive anti-aliasing method does not gain
performance by simply scaling up its capacity.
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Pix2PixHD

Figure 2.11: Qualitative results for image to image translation on Cityscapes. In
the first row, our approach generates clear boundaries along the roof. In contrast, the
other methods produce blurry boundaries. In the second row, our approach not only
produces a clear edge on the car, it also generates a very tiny traffic light (see region
inside the red rectangle). The other two methods fail in this situation. In the last row,
our approach clearly identifies the boundary between the wall and bushes whereas the
other two approaches’ produce very blurry and dark generations.

Type of filter. In Table 2.6, we ablate our pixel adaptive filtering layers with various
baseline components. Applying the same low-pass filter (Gaussian, Image Adaptive)
across the entire image performs better than the vanilla ResNet-18 without any anti-
aliasing. Here, Image Adaptive refers to the baseline which predicts a single low-pass
tilter for the entire image. By adaptively learning a spatially variant low-pass filter,
performance improves further (Spatial Adaptive). Overall, our method achieves the
best performance which demonstrates the benefits of predicting filters that are both

spatially varying and channel adaptive.

Overhead. Finally, with our spatial/channel adaptive filtering added, the number
of parameters increases by 2.9-7.8% for ResNet models (e.g., 4% for R-101, 4.5M to
4.63M). As for runtime, on a RTX2070 GPU, our method (R-101 backbone) takes 6.4 ms
to forward a 224x224 image whereas a standard ResNet-101 takes 4.3 ms.

Type of Backbone. We compare Top-1 accuracy and Consistency with two additional
backbone networks, VGG [205] and DenseNet-121 [86], on the Cifar-10 dataset [112].
For VGG, our approach achieves 94.0 Top-1 accuracy and 97.2 Consistency, and for
DenseNet, our approach achieves 95.6 Top-1 accuracy and 97.4 Consistency. Similar
to the ResNet101 results, our approach improves Top-1 accuracy with a good margin
compared to the baseline network, which does not have any anti-aliasing (40.6 for VGG
and +1.7 for DenseNet) as well as LPF (+0.4 for VGG and +1.1 for DenseNet). Our
method’s consistency is also improved upon the baseline network (+0.6 for VGG and
+0.1 for DenseNet) although it does not outperform the LPF method (-0.4 for VGG
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and -0.9 for DenseNet). As Cifar-10 has relatively low resolution (32% pixels) images in
comparison with ImageNet (2242 pixels), there can be a trade-off between accuracy and
consistency. Specifically, we find that decreasing the content frequency for anti-aliasing
to improve shift consistency may have a side effect on classification accuracy when
the image resolution is already very low. Thus, the consistency performance may not
be improved as much in comparison with higher resolution images such as those in

ImageNet, as we had shown in Table 2.1.

2.4.8 Qualitative Results

2.4.8.1 Semantic segmentation.

We show qualitative results for semantic segmentation in Fig. 2.9 to demonstrate that
our module better preserves edge information. For example, in the first row, within the
yellow box region, our method clearly distinguishes the road edge compared to Deeplab
v3+ and LPF. Similar behavior (better segmented road contours) is also observed in the
second row. This holds for other objects as well — the light pole has better delineation

compared to both baselines in the third row.
2.4.8.2 Low-pass filter weights.

To further understand our adaptive filtering module, we visualize the low-pass filter
weights for each spatial location. As shown in Fig. 2.8, our model tends to “grow” edges
so that it’s easier for them to be preserved. For example, the learned filter tends to
integrate more information from left to right (see center-left and bottom-left weights in
Fig. 2.8 in the second row) on the vertical tree branch and thus grow it to be thicker.

This way, it’s easier for tree branch contours to be preserved after downsampling.

2.4.8.3 Video instance segmentation consistency

In addition to image results, we also show qualitative results on a video dataset. In
Section 2.4.4, we quantitatively demonstrated that our method provides additional
robustness to natural perturbations. Here we show qualitative results to illustrate its
effectiveness. In Fig. 2.10, each row represents a different time stamp. In the left airplane
example, we can observe that while all three methods can detect the airplane’s wing,
the detections of Mask R-CNN [75] and LPF [291] fluctuate over time (e.g. multiple
detections on the airplane’s wing) whereas our detections are quite stable. In the right
skiing example, both Mask R-CNN and LPF generate lots of redundant detections
compared to our approach that is likely caused by the aliasing effects of downsampling.
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2.4.8.4 Image-to-Image translation

Finally, we show qualitative results of applying our approach to generative models. In
Fig. 2.11, we compare with pix2pixHD [236] and pix2pixHD together with LPF [291]
on image-to-image translation using the Cityscapes dataset. We find that our adaptive
filters are better at preserving boundaries in image generation. In the first row, our
approach generates clear boundaries along the roof. In contrast, the other methods
produce blurry boundaries. In the second row, our approach not only produces a clear
edge on the car, it also generates a very tiny traffic light (see region inside the red
rectangle). The other two methods fail in this situation. In the last row, our approach
clearly identifies the boundary between the wall and bushes whereas the other two
approaches’ produce very blurry and dark generations. We attribute this property to
the fact that with LPF or the original conv filters, the filter weights are fixed at all spatial
locations. This means that it will be difficult for neighbouring in the higher resolution
output to have different values within a small local region. And this could potentially

cause the unclear boundary effect shown in Fig. 2.11.

2.5 Limitations

We have shown in this chapter that our approach is effective for various discriminative
and generative tasks. However, it also has some limitations. First, although both the
computation and parameter overhead is marginal, with our current implementation,
GPU memory overhead is not negligible as it involves the unfold function in PyTorch
which is memory intensive. Second, we empirically found the optimal group number
of filter weights to be 8 for our tasks. However, it may not be optimal for other tasks
and thus is a hyperparameter that needs to be tuned.

2.6 Conclusion

In this chapter, we proposed an adaptive content-aware low-pass filtering layer, which
predicts separate filter weights for each spatial location and channel group of the
input. We quantitatively demonstrated the effectiveness of the proposed method across
multiple tasks and qualitatively showed that our approach effectively adapts to the
different feature frequencies to avoid aliasing while preserving useful information for
recognition. Despite some of the limitations observed in Section 2.5, we believe our
work can be a promising foundation for exploring anti-aliasing on other tasks (e.g.,
video recognition) as well as other forms of input noise.

This work was supported in part by ARO YIP W911NF17-1-0410, NSF CAREER
115-2150012, NSF 1IS-2204808, NSF CCF-1934568, GCP research credit program, and
AWS ML research award.
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Chapter 3
End-to-End Instance Edge Detection

Publication Statement. This chapter is joint work with Haotian Liu, Yong Jae Lee. The

paper version of this chapter appeared in arXiv 2022.

Edge detection has long been an important problem in the field of computer vision.
Previous works have explored category-agnostic or category-aware edge detection.
In this chapter, we explore edge detection in the context of object instances. Although
object boundaries could be easily derived from segmentation masks, in practice, instance
segmentation models are trained to maximize IoU to the ground-truth mask, which
means that segmentation boundaries are not enforced to precisely align with ground-
truth edge boundaries. Thus, the task of instance edge detection itself is different and
critical. Since precise edge detection requires high resolution feature maps, we design
a novel transformer architecture that efficiently combines a FPN and a transformer
decoder to enable cross attention on multi-scale high resolution feature maps within a
reasonable computation budget. Further, we propose a light weight dense prediction
head that is applicable to both instance edge and mask detection. Finally, we use a
penalty reduced focal loss to effectively train the model with point supervision on
instance edges, which can reduce annotation costs. We demonstrate highly competitive
instance edge detection performance compared to state-of-the-art baselines, and also
show that the proposed task and loss are complementary to instance segmentation and

object detection.

3.1 Introduction

We address the problem of instance edge detection. Unlike category-agnostic [167, 7,
253] or category-aware (semantic) edge detection [275, 276], instance edge detection
requires predicting the semantic edge boundaries of each object instance. This problem

is fundamental and can be of great importance to a variety of computer vision tasks
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Figure 3.1: (a,b) Although closely related, instance segmentation and edge detection
are not fully invertible; i.e., a method that performs well on instance segmentation will
not necessarily perform well on edge detection. In this example, although the mask
IoUs in (a) and (b) are the same, their edge precision are very different. (c) Although
the annotated points (red) are on the object’s boundary, the edges (blue) that connect
them do not align well to the object’s boundary. (d) Cross attention weights between
object queries and image feature in DETR [18].

including segmentation, detection/recognition, tracking and motion analysis. In partic-
ular, instance edge detection can be critical for applications that require precise object
boundary localization such as autonomous driving or robot grasping.

Instance segmentation is closely related to instance edge detection. After all, in
theory, an instance’s boundary can be trivially extracted from the output of any standard
instance segmentation algorithm [75, 12]. However, in practice, this naive solution does
not produce good results [40, 33]. Since an instance segmentation algorithm is trained
to correctly predict all pixels that belong to an object, and since there are relatively few
pixels on an instance’s contour than inside of it, the model has no strong incentive to
accurately localize the instance boundaries. As shown in Fig. 3.1 (a), although the
predicted mask may have high quality pixel alignment with the ground truth mask, its
boundary may not be well-aligned with the ground truth instance edge. Thus, instance
edge detection itself is a unique and important task.

Meanwhile, the recent transformer [226] based DETR [18] object detector has drawn
significant attention as it greatly simplifies the detection pipeline by achieving end-
to-end learning without ROI pooling, NMS, and anchor modules. Moreover, several
transformer based object detection models [18, 169, 25] have shown that object bound-
aries produce high responses in the attention maps (Fig. 3.1 (d)), which suggests that
transformer based architectures can be suitable for instance edge detection. However,
DETR is not directly applicable to instance edge detection in several ways. First, the
quadratic complexity on self-attention over feature maps prevents DETR from using
high resolution feature maps in its transformer decoder. However, high resolution
features maps are critical for dense prediction tasks such as edge detection. Second,
since the output dimension (length) of edges can vary per object instance (unlike box co-
ordinates or classes), it is not straightforward to produce instance edge outputs directly
from an object query.
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To address these difficulties, we first propose a multi-scale transformer decoder
that takes in both encoder features and FPN features. The first several layers in the
transformer decoder take in the feature maps computed from the transformer encoder
while the last two layers take in the high resolution FPN feature maps. In this way,
object queries interact with different resolution feature maps in a coarse to fine grained
manner. To enable the model to output instance edge detections, we introduce a light
weight dense prediction head that computes a simple matrix multiplication between
object queries and high resolution feature maps to produce binary output maps (whose
spatial resolution is the same as the feature maps) where predicted 1/0’s indicate
edges/non-edges.

By changing only the loss function, we show that our method can perform either
edge detection or instance segmentation without any modification to the architecture.
At the same time, since instance edge detection and segmentation are closely related, if
we do perform both tasks together (with separate heads for each task), we show that
they provide complementary benefits to each other.

Finally, one key challenge with instance edge detection is its annotation requirement;
i.e., labeling all pixels along an object instance’s contour can be extremely expensive.
We therefore propose to train our instance edge detector using only point supervision.
Similar to how instance segmentation methods are trained with keypoint-based polygon
masks [19, 2], we use a sparse set of keypoint annotations along the object’s boundary.
For instance segmentation, this results in a 4.7x speed up over annotating all points [19].
However, due to the sparsity, simply connecting adjacent keypoints to ‘complete the
edge’ (as done in BMask R-CNN [40]) can often lead to incorrect annotations, as shown
in Fig. 3.1 (c). We therefore instead train the edge detector using the keypoints with a
penalty reduced loss along the edges.

3.1.0.1 Contributions.

(1) We introduce a novel transformer model with a multi-scale transformer decoder and
dense prediction head for instance edge detection, which achieves highly competitive
results on the COCO and LVIS datasets compared to related state-of-the-art baselines.
(2) We demonstrate that our model can perform object detection, instance segmentation,
and instance edge detection in a single pass, and show complementary benefits for each
task. (3) We show that we can efficiently train our instance edge detection model with

only point supervision using a penalty reduced focal loss.
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3.2 Related Work

3.2.0.1 Edge Detection.

Edge detection has a rich history and has been studied since at least the 1980s. Early
pioneering methods include the Sobel filter [106], zero-crossing [166, 221], and Canny
edge detector [17]. The early 2000s saw approaches driven by information theory
such as statistical edges [110], Pb [167] and gPB [7]. The advent of deep learning in
the last decade introduced highly effective approaches like HED [253, 156], and the
focus shifted from texture based edge detection [7] to category agnostic semantic edge
detection [73]. More recently, researchers have begun to focus on semantic aware edge
detection [275, 276] whose goal is to accurately localize the boundary between semantic
classes (but not between instances). In this work, we explore edge detection in the
semantic and instance aware setting [40] to localize object instance boundaries.

3.2.0.2 Instance Segmentation.

Instance segmentation is now a classic task in computer vision, where early meth-
ods [64, 73, 44, 74] resorted to classifying bottom-up segments. The development of the
RCNN framework [78, 63, 191] led to Mask R-CNN [75], a strong performing and sim-
ple architecture, which greatly increased the popularity of instance segmentation. Since
then, researchers have explored various directions to improve efficiency [12, 182] and
effectiveness [89, 104, 40]. Recent trends are towards developing light weight detectors
that contain only one-stage [12], without anchors [220], ROI-align and NMS [81].
Further, instead of formulating instance segmentation as a dense pixel prediction
task [158, 75], some approaches [19, 140] predict polygon points for each instance
to focus more on the object boundaries. Another uses a polar representation [251].

The recent concurrent works, MaskFormer [37] and Mask2Former [34], are similar to
our work in regards to the dense prediction head and pixel decoder. However, our main
focus is on solving the different instance edge detection task (while also performing
bounding box detection and instance segmentation), whereas those works focus on
segmentation. Importantly, we find that simply changing their models to perform
bounding box and mask prediction in the transformer decoder results in low detection
accuracy, suggesting that sophisticated changes to the methods would be needed to do
well on those tasks.

Finally, related to our point supervised edge detection loss, [104, 36] also perform
point supervised learning, however, they sample points on the model’s predicted feature
maps instead of using ground truth annotations. Similarly, although [136] performs
sparse sampling on output mask, it is designed for the panoptic segmentation task,

which is different from our goal of instance edge detection.
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3.2.0.3 Transformers.

The Transformer was first introduced in [226], and has become the state-of-the-art
architecture for natural language processing tasks [215, 279]. However, despite its
high accuracy, the transformer architecture suffers from slow convergence [151] and
quadratic computation and memory consumption [105, 9] necessitating a high num-
ber of GPUs and up to weeks for training. Recently, the transformer has begun to be
explored for visual recognition tasks including image classification [52], detection [18],
image generation [95], etc. Since image data typically has longer input sequences (pix-
els) than text data, the computation and memory problem is arguably more critical in
this setting. To address this, researchers have proposed methods [287, 237, 157] that
reduce both computation and memory complexity, allowing the transformer to perform
dense prediction tasks [252, 37, 209, 229]. Apart from the efficiency problem, the vision
transformer also suffers from long training times especially for object detection; specifi-
cally, 500 epochs for DETR [18] to achieve the same performance as Faster R-CNN [191]
with only 50 epochs. As such, many follow-up works to DETR aim at improving its
convergence speed via additional priors [297, 59, 169] or by reducing transformer den-
sity [297]. In particular, [169] achieves significant improvements by introducing a
conditional spatial query. In this work, we extend the DETR framework [169, 18] to

instance edge detection and segmentation.

3.3 Method

3.3.1 Problem Definition

Given an input image /, the task of instance edge detection is to correctly predict the
boundaries of each object instance Gg = {ey, €1, ..., €, } together with its category label

Ge =A{ly, 1y, ..., 1, }, where n is the number of instances in /.

3.3.2 Method Overview

Our method overview is shown in Fig. 5.2. It comprises four main components: (1) a
backbone network, which extracts a hierarchical combination of features (Sec. 3.3.2.1)
and a transformer encoder network that perform global attention over low resolution
feature maps; (2) a feature pyramid network (FPN) [143], which fuses the feature
maps of different levels (Sec. 3.3.2.2); (3) a multi-scale transformer decoder, which
takes in the different resolution feature maps and a set of object queries and performs
cross-attention between them (Sec. 3.3.2.3); and (4) light weight dense prediction heads,
which perform either instance edge detection or segmentation (Sec. 3.3.2.4), along with

prediction heads for box detection and classification. We also introduce our point based
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Figure 3.2: Method overview. Our model consists of four main components: a backbone
feature extractor, FPN, multi-scale transformer decoder, and task heads. The output
dimension for each module is indicated in [-], and bmm denotes batch matrix multipli-
cation.

instance edge detection loss in Sec. 3.3.3 and analyze relationship between object edge
and segmentation in Sec. 3.3.5. The multi-scale transformer decoder, light weight dense
prediction head, point based instance edge detection loss, and object edge and segmentation

relationship analysis are the main technical contributions.

3.3.2.1 Backbone Feature Extractor

Given an input image / with shape [3, h, w], the feature backbone extracts a set of feature
maps with shape [¢;, h/r;, w/r;] for ¢; € [256,512,1024,2048] and r; € [4,8, 16, 32]. We
set the feature extractor to be a ResNet [79] together with a transformer encoder [18]
with self-attention [226].

3.3.2.2 Feature Pyramid Network

The final output of the transformer encoder is 1/32 of the original image, which is too
low for edge detection. Thus, we integrate a feature pyramid network (FPN) [143]
to increase the resolution by fusing higher resolution feature maps from the back-
bone and self-attention features. The output of the FPN includes feature maps with
[1/4,1/8,1/16,1/32] of the original image resolution. We also add positional encod-
ings [226] to the projected features, which will enable the object queries (explained
shortly in Sec. 3.3.2.3) to better localize objects and their boundaries.

3.3.2.3 Transformer Decoder

Given n input object queries each with d dimensions (i.e., size [n,d]), the transformer
decoder first applies self-attention [226] to allow the object queries to interact with each
other to remove redundant predictions. It then applies cross attention [226] between
the object queries () with shape [n, d| and the feature map F (i.e., size [d, h/i, w/i] for
i € (32,16,8) with (h,w) as the image size) from the FPN. Note that the cross attention



34

operation has a time and memory complexity of O(nd(hw)? 4+ nd?(hw)). Thus, in order
to leverage high resolution feature maps without a large computation overhead, we use
a feature resolution of 1/32 in the first four layers and 1/16 and 1/8 in the last two layers
of transformer decoder. In this way, the object queries can attend to the features in a

coarse to fine-grained manner for improved dense prediction performance.

3.3.2.4 Dense Prediction Head

Our design for edge prediction is motivated by three observations: (1) Without training
with any dense pixel-level labels, and instead, with only box supervision, the cross
attention maps computed between the object queries and encoder features have the
nature to focus on instance edges [18, 169, 25] (Fig. 3.1 (d)). (2) The encoder features
within the same object instance have similar representations [18]. (3) By directly taking
a weighted combination of the high-resolution feature maps along channel dimension,
it leads to mask predictions that can clearly follow the boundaries of the instances [12].
These three observations suggest that convolving the feature maps with each object
query could lead to accurate pixel-level instance edge predictions.

Given the transformer decoded object queries ) with shape [n, d|, and image features
F from the FPN with shape [f, h/4, w/4], we first predict f weight coefficients for each
object query with a simple linear projection:

Q' = sigmoid(linear(d, f)(Q)) (3.1)

where linear(i, j) indicates linear projection from dimension i to j. The result is a coeffi-
cient for each query; i.e., coefficient tensor with shape [n, f]. This operation corresponds
to the ‘coef head” shown in Fig. 5.2.

Then, to predict the edge map for each object query, we apply a 1 x 1 convolution
to the feature maps F' using the object query Q' coefficients as filter weights. This is
equivalent to applying a batch matrix multiplication between )" and F:

O; = sigmoid(Q; x F),Vi (3.2)

where i is the index of the object query, @’ has shape [1, f], ' has shape [f, h, w], and
O, has shape [h, w]. Note that all object queries are multiplied with the same set of
features maps. This dense prediction head is general and very light weight, and is
applicable to any object instance based pixel classification tasks. For example, we can
easily obtain mask segmentations by only changing the edge detection loss function to

a mask segmentation loss.
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Figure 3.3: (a,b,c) show the annotated points that are regarded as positive samples and
the tunnels (in gray) that are inside the penalty reduced regions. We show these with
different fractions of annotated points. (d,e) Feature map norm on channel dimension
for the layer preceding the final output layer (pixel-wise mask/edge for instance/edge
detection).

3.3.3 Point Supervised Focal Loss

As dense labeling of all pixels along an object instance’s contour can be extremely
expensive, we train our instance edge detector using only point supervision along the
object’s boundary, similar to how instance segmentation methods are trained with
keypoint-based polygon masks [19, 2]. Note that simply connecting adjacent keypoints
to ‘complete the edge” as done in BMask R-CNN [40] will lead to incorrect annotations
that are not on the ground-truth edge (see Fig. 3.1 (c)).

To address this, we design a novel training objective to account for the sparse key-
point annotation. Specifically, we build upon the penalty-reduced pixel-wise logistic
regression with focal loss [117], which was designed to reduce the penalty in slightly
mis-predicted corners of a bounding box (since those slightly shifted boxes will also
localize the object well). In our case, we can use this loss to account for slightly mis-
predicted keypoints, but we also need to deal with a different issue, which is that a
large portion of the ground-truth edges are not annotated at all. To handle the latter,
we construct the ground-truth in the following way.

We first connect the ground-truth keypoints to create edges, and then blur the result
with a small 3 x 3 kernel (e.g., a Gaussian or a box filter). This creates a “tunnel” whose
values are greater than 0. We set these values to 0.7, and the original keypoints as 1, as
shown in Fig. 3.3 (a-c). The lower values for the tunnels account for the uncertainty in
ground-truth edge location for the non-keypoints. While we could also take continuous
values that degrade as a function of distance to the keypoints and edges, we find this
simple approach to work well in practice.

Formally, we use the ground-truth maps Y as targets in our extension of the penalty-
reduced pixel-wise logistic regression with focal loss [117]:

v, . (3.3)

-1
L,=—
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where ovand 3 are hyper-parameters of focal loss [144], and N is the number of annotated
keypoints inside an image. We set & = 2 and 3 = 4 following [117] and set v = 0.7. Y.,
and Y,,, denotes the prediction and ground truth value at location c, z, y. With this loss,
the model is encouraged to accurately predict the annotated edge points, while also
predicting edge points inside the ‘tunnels’ that connect those keypoints. To complement
the point supervised focal loss and to get sharper boundaries [40], we also add the dice

loss [170] for edge detection.

3.3.4 Opverall Objective

Our final objective combines the following: for edge detection, we use our point su-
pervised focal loss as well as dice loss [170] between the matched prediction and
ground truth edge pairs. For bounding box regression, we apply L1 and generalized
IoU loss [192]. For classification, and to match each object query to a ground truth
box, we use the paired matching loss from DETR [18]. Finally, when generalizing our
architecture to instance segmentation, we follow [220], and use the dice loss [170] and
sigmoid focal loss.

3.3.5 Relation to Instance Segmentation

Instance edge detection and instance segmentation are highly correlated tasks as their
ground truths are fully invertible. However, since the ratio of pixels on the boundary
over the inner pixels for an instance mask is very small, an instance segmentation model
will have less preference to correctly predict the edge boundaries compared to the inner
pixels. In contrast, an edge detection model would fully focus on correctly predicting
the edge boundaries as the inner pixels would be labeled as background.

In this section, we provide a quantitative analysis on this difference. In particu-
lar, we perform the analysis using the dice loss [170], but the conclusion holds for
other losses as well. We choose the dice loss because it is used in many state-of-the-art
instance segmentation methods [220, 37, 34] due to its explicit accounting of the imbal-
ance in foreground versus background pixels, which largely improves segmentation
performance.

Given predicted (either edge or mask) instance map p and ground truth map y, each
with shape [k, w], the dice loss L(p, y) is:

0.91L(p,y) =1 = (252 pjyy)/ (S52 p5 + 3% v)) (34)
Its partial derivative with respect to a prediction p; at pixel 7 is:

OL(p,y))

0915

= =2y (S0 P2+ M y3) — 20 0 pi) /(20 pE 4 0 y3)? (3.5)
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Next, let us consider the case in which pixel i is on the instance boundary (y; = 1) but
the model incorrectly predicts it as background (p; = 0). We would like to analyze the
impact of such incorrect boundary predictions when the objective is mask segmentation
versus edge detection. Since a neural network’s weights are updated according to their
gradient direction and magnitude, the absolute gradient value of a prediction on a
single pixel can measure how much it influences the training procedure (given same
loss function and prediction value). We can therefore take the ratio between the absolute
gradient value of the boundary pixel’s prediction when the objective is edge detection
(with predictions and ground truth denoted as p] and y;, respectively) over that when

the objective is mask segmentation:

OL(p',y")) m@L(p, y))
Ip; Ip;

[0.9]] = (3P + 5 )/ (S5 + i) = a > 1
(3.6)

For the same object instance, since its mask will be at least as big as its boundary (and
typically much larger), we will have " y? > >, /2, and also >/, p? > Y, p/? for
any reasonably performing model, where ¢/, p’ denote edge ground truth and prediction
maps, and y, p denote mask ground truth and prediction maps. Thus, we can easily
conclude that the gradient magnitude of edge detection will be much larger than that
of instance segmentation for pixel predictions on the object boundary, as shown on the
right hand side of Eq. 3.6.

In other words, for pixels on the object boundary, the instance edge detection ob-
jective enforces a stronger influence than the instance mask segmentation objective. In
addition, if we think this about the problem more intuitively, edge detection feature
maps will have high response only on the boundary pixels for each object (Fig.3.3 (e))
whereas instance segmentation will train towards predicting all pixels within each object
(Fig.3.3 (d)). And since the ratio of pixels on the boundary over the inner pixels is very
small, the model will have less preference to correctly predict the edge boundaries than
the inner pixels in mask segmentation.

Thus, we argue that instance edge detection itself is an important task to explore,
distinct from instance segmentation, especially for applications that require precise

object boundary localization e.g., self driving or robot grasping.

3.4 Experiments

In this section, we first explain the datasets and evaluation metrics used for evaluating
instance edge detection. We then present our implementation details. We further
describe our key baselines, and compare to them both quantitatively and qualitatively.

Finally, we ablate our model with various baseline components.
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3.4.0.1 Datasets.

We train our model on MS COCO [145] and evaluate on both COCO as well as LVIS [70]
as the boundary annotations in LVIS are much more precise, as shown in Fig. 3.4 (right).

MS COCO [145] contains 118K images for training, and 5K images for evaluation
with around 1.5M object instances and 80 categories. The annotation contains bounding
box, category labels, and keypoint-based mask polygons. All instances in the dataset
are exhaustively annotated.

LVIS [70] contains 164K images and 2.2M high-quality instance segmentation masks
for over 1000 entry-level object categories. Its images are a subset of the images from MS
COCO. We keep all the annotated instances that overlap with MS COCO and re-label

the categories in the same way as COCO for evaluation.
3.4.0.2 Evaluation Metrics.

As well-established problems, both semantic aware [275, 276] and agnostic [7, 167 ]
edge detection have standard evaluation pipelines. We use the same standard ODS
(optimal dataset scale) and OIS (optimal image scale) metrics to evaluate instance edge
detection.

Briefly, an edge thinning step is typically applied to produce (near) pixel-wide edges.
Then, bipartite matching is used to match the predicted edges P D with the ground-truth
edges GT (see Fig. 3.4 left). Candidate matches are those whose distance is within a
small pre-defined distance proportional to the image size. Then, precision p and recall
r are computed, where precision measures the number of predicted edge points that
are matched to a ground truth edge, and recall measures the number of ground truth
edge points that are matched to a predicted edge. The F-measure is then computed as
2-p-r/(p+r). ODS is the best F-measure using the global optimal threshold across
the entire validation set. OIS is the aggregate F-measure when the optimal threshold is
chosen for each image. (We provide more details in the supplementary document.)

In addition, a recent paper [33] proposes the ‘Boundary IoU” to supplement mask
mAP for evaluating the boundary of instance segmentation. However, we argue that
this is an imprecise measurement on edge, as it blurs the boundary and computes the

IoU between the thick boundary and ground truth edges.
3.4.0.3 Implementation Details.

Training: We adopt the DETR framework proposed in [18] and replace the transformer
decoder with the conditional decoder from Conditional DETR [169] to accelerate model
training by ~6x. For MS COCO, we train all models on 4 NVIDIA 3090 Ti GPUs
with per GPU batch size of 2. For the experiments in Table 3.1, we use the multi-
scale transformer decoder with 6 consecutive layers. For each layer, the input feature
resolution is [1/32,1/32,1/32,1/32,1/16, 1/8] corresponding to the original image size.
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Figure 3.4: (Left) Bipartite matching between edge detections and ground-truth anno-
tated edges. (Right) Annotations from COCO vs. LVIS. It clearly shows that LVIS has
more fine-grained boundary annotations than COCO.

COCO LVIS
Backbone Epochs #Param | ODS OIS APMv — Aptr — Apmesk | ODS OIS
Mask R-CNN R-50 50 44M | 629 629 232 40.9 37.0 63.8 64.3
BMask R-CNN R-59 12 47M | 441 473 235 38.6 36.6 455 46.1
BMask R-CNN R-50 50 47M | 442 472 229 37.6 35.0 459 46.7
Ours (Mask) R-50 50 46M | 56.0 564 184 42.8 34.0 60.0 604
Ours (Edge) R50 50  46M | 631 638 - 426 - | 662 67.9
Ours (Edge + Mask) R-50 50 47M 63.6 645 217 43.0 35.0 66.6 68.3
Mask R-CNN R101 50  63M | 637 637 244 426 383 | 647 652
BMask R-CNN R-101 12 66M | 447 482 247 40.6 38.0 465 47.0
BMask R-CNN R-101 50 66M | 448 477 243 40.0 36.7 46.7 46.1
Ours (Edge) R-101 50 65M | 63.6 64.4 - 44.3 - 67.1 68.7

Table 3.1: Edge detection, object detection, and instance segmentation results on MS
COCO and LVIS.

The dense prediction head takes in the last layer output of the FPN network with a size
of 1/4 of the original resolution. In Table 3.2, 3.3, to reduce computation cost, we use
single scale transformer decoder with a 1/32 input resolution. And the dense prediction
head takes in FPN features with 1/8, 1/4 of the original image resolution respectively.
Most of the hyperparameters follow the implementation in [169].

Evaluation: We evaluate our approach on three different tasks including object
detection, instance segmentation, and edge detection. For object/instance detection, we
follow [145] and use mAP metric for evaluation. For instance edge detection, we use
ODS and OIS following [253]. The reason for not including AP for edge detection is
because the boundary of instance segmentation will only have a probability range from
[0.5,1], which will introduce errors in computing the AP score. To compensate for this,

we use AP boundary [33] to evaluate our model when there is a mask output.

3.4.0.4 Baselines.

The most related work to ours that simultaneously predicts instance mask and bound-
aries is BMask R-CNN [40], which learns a separate instance edge detection head in
parallel with the mask and box heads in Mask R-CNN [75]. In addition, since instance
edges can be computed from instance segmentation masks, we also compare to the
boundaries of the masks produced by Mask R-CNN [75]. Instance edge is derived from
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instance mask by applying a laplacian filter on the binary mask. This baseline is used to
demonstrate that this way of computing instance edges is insufficient due to the bias in
the mask segmentation objective, which rewards accurate prediction of interior pixels
in the ground-truth mask more than those that are on the boundary (since they are

relatively much fewer).

3.4.1 Quantitative Results

In Table 3.1, we compare our approach with various state-of-the-art baselines for edge
detection, object detection, and instance segmentation tasks using the COCO and LVIS
datasets. For BMask R-CNN, we use the authors’ publicly available codebase. For Mask
R-CNN, we use Detectron2 [248] to train and evaluate the baseline model. For all the
baseline methods, we re-train the model with 50 epochs schedule. Despite multiple
attempts, we could not get BMask R-CNN trained with 50 epochs to outperform its 12
epochs model, which is why we report both of them in the table.

Edge detection On the COCO dataset, our approach achieves the best results under
ODS/OIS edge detection metrics compared to BMask R-CNN and Mask R-CNN. Sur-
prisingly, we achieve ~18% better performance than BMask R-CNN, which is our closest
baseline. When taking a closer look at the qualitative results in Fig. 6.5, the reason
becomes clear. For example, in the second column of Fig. 6.5, using the same edge
probability threshold, the thickness of the predicted instance boundaries for BMask
R-CNN varies widely. This indicate that the model lacks a unified treatment for all
instances, and thus it is harder to find a single threshold that works well for all instances
in all images. The quantitative results on OIS and ODS again prove this hypothesis: the
OIS improves by around 3-4 points for BMask R-CNN while it does not change a lot for
all other models. In addition, because we are directly thresholding the predicted masks
for Mask R-CNN and our mask variant (Ours Mask) to obtain edge detections, their
OIS and ODS remain nearly constant under all mask settings. Apart from our better
performance compared to the edge detection method of BMask R-CNN, our approach
also performs better than instance segmentation methods (especially on lvis dataset
with accurate ground truth): Mask R-CNN and our mask variant (Ours Mask). This
is mainly due to two reasons: (1) The baseline mask predictions are inaccurate along
boundaries. (2) The baseline mask can have holes inside. These observations are further
illustrated in Sec. 3.4.3.

On the LVIS dataset, the results are consistent with those on the COCO dataset.
However, in general all methods achieve better results using LVIS annotations. And our
approach performs extremely well on LVIS dataset in comparison with Mask R-CNN
with ~ 3-4 higher on both scale of models (R-50, R-101). This is also explainable if we
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COCO VIS
e oL rafio | ODS OIS AP™ | ODS OIS

== =2 1/2 | 584 594 413 | 617 639
contour GT | 59.0 59.3 41.0 625 63.1 23 | 617 625 411 647 664

point GT | 63.0 63.7 415 | 66.7 67.9 11 | 630 637 415 | 667 679

Table 3.2: (Left) Varying the type of ground truth training target for edge detection.
(Right) Varying the number of ground truth edge points used for training. With ratio 1,
the average number of keypoints across all instances is 23.

take a look at Fig. 3.4: LVIS has more precise boundary annotations than COCO. The
predictions are usually aligned better with these more accurate annotations.

Object detection Our approach also achieves the best result on box mAP with ~2-4
points higher on ResNet 50 backbone with 50 epochs compared to both Mask R-CNN
and BMask R-CNN. When training with a larger ResNet 101 backbone, this improvement
also holds with a consistent performance gain of ~2-4 points.

Instance segmentation Finally, we compare with the baselines on the instance seg-
mentation task using our model with the dense prediction head plus mask loss. It
performs ~2 points worse than Mask R-CNN and BMask R-CNN. One hypothesis is
that training an object query containing both mask and box information has a divergent
effect; e.g., object query for box detection should have the ability to locate the extreme
points of an object, whereas instance segmentation requires the query to focus on the
full object.

3.4.2 Ablation Study

Type of ground truth. We first study the effect of our point supervised training objec-
tive, which models the uncertainty in the edges that are not labeled by the keypoints
by assigning them a softer target score. We compare to the training objective used in
BMask R-CNN, which simply connects the keypoints to create ground-truth edges, and
applies both a weighted binary cross-entropy loss and the dice loss [170]. As shown in
Table 3.2 (left), training with our point supervision objective (point) produces signifi-
cantly better edge detection performance on both COCO and LVIS datasets compared to
the baseline (contour). Furthermore, the improvements on edge detection also lead to

a 0.5 improvement in box mAP, which demonstrates their complementary relationship.

Number of edge points. A key advantage of training an edge detector with point
supervision is the large reduction in annotation effort that is required. We therefore
investigate how the number of annotated edge points affects instance edge detection
performance. Specifically, we sample the number of end points that are used for training
from 1/1 to 2/3 to 1/2 of the full original set of annotated keypoints. As shown in
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Figure 3.5: Qualitative results comparing to the baselines. The thickness of predicted
edges varies largely for BMask R-CNN. In addition, the mask boundary quality of
Mask R-CNN is not as good as that of Ours Edge and Ours Mask. Finally, there exist
redundant predictions or holes in our mask variant (Ours Mask) predictions.

Table 3.2 (right), by decreasing the annotation by 1/3 and 1/2, both ODS and OIS
decreases as expected but not by a large amount.

Annotation types. We also ablate our COCO

DETR based dense prediction framework  box mask edge | AP*® APmek  ODS OIS

under different types of annotations (box, v 40.9 - - -

mask, and edge). As shown in Table 3.3, v v 411 345 563 564
v v 41.3 - 634 642

by adding mask and edge objectives, box s v v | 416 351 636 645

prediction improves by 0.2 and 0.4 points
Table 3.3: Varying annotation types (bound-

ing boxes, masks, and edges) for model
training.

respectively. We can also conclude from
the table that training with an edge objec-
tive leads to a much better edge detection
result in comparison with training with a mask objective. This further proves our argu-
ment that instance edge detection is different from instance segmentation. Last but not
least, by simply adding an edge objective to mask objective, AP box further improves by
0.3 points, and AP mask improves by a good margin with 0.6 point.

3.4.3 Qualitative Results

For a fair comparison, all qualitative results use the models trained with a ResNet 50
backbone with 1x schedule. We threshold the mask probability with 0.5 to obtain the
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binary mask together with their boundaries. And for edge detection methods, we use
0.7 as a threshold to filter out noisy predictions. As stated in Sec. 3.4.1, we can observe
clear reasons for why our approach achieves better performance for edge detection. For
example, in the second row of Fig. 6.5, while the blue cow predicted by BMask R-CNN
is nearly thresholded out, the edge of the yellow cow remains very thick. This is the
primary reason for BMask R-CNN’s low performance. Further, the third column of
Fig. 6.5 shows the results of Mask R-CNN, which clearly indicate that it is usually unable
to predict the boundaries well (e.g. the blue cow in second row, the person in fourth
row) compared with our mask and edge models. Last but not least, although our mask
variant (Ours Mask) usually generates high quality boundaries, when the mask is large,
redundant predictions or holes can appear in the mask as shown in the fourth column.

3.5 Conclusion and Limitations

We introduced a novel point supervised transformer model for edge detection. In an
extension to the DETR object detector, we introduce a multi-scale transformer decoder
and a dense prediction head that could be easily applied to both instance segmentation
and edge detection. Although our approach achieves good results for object and edge
detection, it does not perform as well on instance segmentation. This is likely because
of the divergent objective function — for the same object query, instance segmentation
requires focusing on the whole object but edge/object detection requires focusing more
on object boundaries.

3.6 Summary

With a clear understanding and exploration of how each kind of specialist works, another
question naturally emerges. How can we have a generalist model that can integrate
those models into a single framework? So in the next chapter, we are going to give a
clear demonstration of the works that we build towards the generalist model.
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Chapter 4

Generalized Decoding for Pixel, Image,

and Language

Publication Statement. This chapter is joint work with Zi-Yi Dou, Jianwei Yang, Zhe
Gan, Linjie Li, Chunyuan Li, Xiyang Dai, Harkirat Behl, Jianfeng Wang, Lu Yuan,
Nanyun Peng, Lijuan Wang, Yong Jae Lee, Jianfeng Gao. The paper version of this
chapter appeared in CVPR 2023 [298].

We present X-Decoder, a generalized decoding model that can predict pixel-level
segmentation and language tokens seamlessly. X-Decoder takes as input two types of
queries: (7) generic non-semantic queries and (7i) semantic queries induced from text
inputs, to decode different pixel-level and token-level outputs in the same semantic
space. With such a novel design, X-Decoder is the first work that provides a unified way
to support all types of image segmentation and a variety of vision-language (VL) tasks.
Without any pseudo-labeling, our design enables seamless interactions across tasks
at different granularities and brings mutual benefits by learning a common and rich
pixel-level understanding. After pretraining on a mixed set of a limited amount of seg-
mentation data and millions of image-text pairs, X-Decoder exhibits strong transferability
to a wide range of downstream tasks in both zero-shot and finetuning settings. Notably,
it achieves (1) state-of-the-art results on open-vocabulary segmentation and referring
segmentation on seven datasets; (2) better or competitive finetuned performance to
other generalist and specialist models on segmentation and VL tasks; and (3) flexibility
for efficient finetuning and novel task composition (e.g., referring captioning and image
editing shown in Fig. 6.1).
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Figure 4.1: With one suite of parameters, X-Decoder after pretraining supports all types
of image segmentation tasks ranging from open-vocabulary instance/semantic/panoptic
segmentation to referring segmentation, and vision-language tasks including image-text
retrieval, and image captioning (labeled in green boxes). It further empowers composite
tasks like referring captioning using X-Decoder itself and image editing collaborating
with generative models such as Stable Diffusion [195] (labeled in boxes).

4.1 Introduction

Visual understanding at different levels of granularity has been a longstanding problem
in the vision community. The tasks span from image-level tasks (e.g., image classifica-
tion [45], image-text retrieval, image captioning [28], and visual question answering
(VQA) [6]), region-level localization tasks (e.g., object detection and phrase ground-
ing [184]), to pixel-level grouping tasks (e.g., image instance/semantic/panoptic seg-
mentation [158, 102, 72]). Until recently, most of these tasks have been separately
tackled with specialized model designs, preventing the synergy of tasks across different
granularities from being exploited. In light of the versatility of transformers [226], we
are now witnessing a growing interest in building general-purpose models that can
learn from and be applied to a diverse set of vision and vision-language tasks, through
multi-task learning [85, 71], sequential decoding [233, 265, 26, 160], or unified learning
strategy [277, 260, 271, 285]. While these works have shown encouraging cross-task
generalization capabilities, most target the unification of image-level and region-level
tasks, leaving the important pixel-level understanding underexplored. In [26, 160], the
authors attempt to unify segmentation into a decoding of a coordinate sequence or a
color map, which, however, produces suboptimal performance and limited support for
open-world generalization.

Arguably, understanding images down to the pixel level is one of the most important
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yet challenging problems in that: (1) pixel-level annotations are costly and undoubtedly
much more scarce compared to other types of annotations; (2) grouping every pixel
and recognizing them in an open-vocabulary manner is less studied; and (3) more
importantly, it is non-trivial to learn from data at two substantially different granularities
while also obtaining mutual benefits. Some recent efforts have attempted to bridge
this gap from different aspects. In [35], Chen et al. propose a unified architecture
Mask2Former that tackles all three types of segmentation tasks but in a closed set. To
support open vocabulary recognition, a number of works study how to transfer or distill
rich semantic knowledge from image-level vision-language foundation models such
as CLIP [187] and ALIGN [93] to specialist models [61, 50, 190]. However, all these
initial explorations focus on specific segmentation tasks of interest and do not show
generalization to tasks at different granularities. In this work, we take one step further
to build a generalized decoder called X-Decoder! towards the unification of pixel-level
and image-level vision-language understanding, as shown in Figure 6.1.

A generalized decoding framework. We formulate all tasks including pixel-level
image segmentation, image-level retrieval, and vision-language tasks into a generic
decoding procedure. Specifically, X-Decoder is built on top of a vision backbone and
a transformer encoder for extracting multi-scale image features, following the frame-
work of Mask2Former [35]. The key novelty lies in the decoder design. First, it takes
two sets of queries as input: (i) generic non-semantic queries that aim to decode seg-
mentation masks for universal segmentation, similar to Mask2Former [35], and (i)
newly introduced textual queries to make the decoder language-aware for a diverse
set of language-related vision tasks. Second, it predicts two types of outputs: pixel-
level masks and token-level semantics, and their different combinations can seamlessly
support all tasks of interest. Third, we use a single text encoder to encode the textual
corpus involved in all tasks, including concepts in segmentation, phrases in referring
segmentation, tokens in image captioning and questions in VQA, etc. As a result, our
X-Decoder can naturally facilitate the synergy across tasks and advocate the learning of
a shared visual-semantic space, while respecting the heterogeneous nature of different
tasks.

An end-to-end learning paradigm. With our generalized decoder design, we pro-
pose an end-to-end pretraining method to learn from all granularities of supervision.
We unite three types of data: panoptic segmentation, referring segmentation, and
image-text pairs. Unlike previous works that use pseudo-labeling techniques to extract
fine-grained supervision from image-text pairs [285, 61], X-Decoder directly groups and
proposes a few meaningful segmentation candidates, so that it can map the regions
easily to the contents described in the captions on the fly. Meanwhile, the referring

segmentation task bridges generic segmentation and image captioning by sharing the

'Here, ‘X’ denotes versatile, and also represents ‘piXel’.
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latent queries and semantic queries during decoding.

Strong zero-shot and transfer ability to a wide range of segmentation and VL tasks.
Pre-trained with a limited amount of segmentation data and millions of image-text
pairs (4m images), our X-Decoder supports a diversity of tasks in a zero-shot and open-
vocabulary manner. Concretely, our model can be directly applied for all three types
of segmentation tasks in a wide range of domains, establishing new state-of-the-art
on ten settings of seven datasets. When transferred to specific tasks, our model also
exhibits consistent superiority to previous works. Finally, we observe some intriguing
properties in our model that it can support some novel task compositions and efficient

finetuning, thanks to the flexibility endowed by our model design.

4.2 From Specialist to Generalist Models

4.21 Pixel-Level Understanding

Pixel-level image understanding, also known as image segmentation, has been a long-
standing problem [57, 179].

Generic Segmentation. There are mainly three well-defined tasks for pixel-level under-
standing, including semantic [158], instance [72], and panoptic [102] segmentation.
Semantic segmentation cares about the per-pixel semantic within an image [158, 23, 32],
whereas instance segmentation groups pixels of the same semantic meaning into objects.
Models for both tasks have evolved from CNN-based architectures [158] to transformer-
based ones [32], and from two-stage models [75], one-stage models [12, 220] to the

recent query-based approaches [51, 217]. With the capability of per-pixel and instance-
level understanding, a natural step was taken to formulate panoptic segmentation [102,
229, 35]. Most recently, Mask2Former [35] proposed to address all three tasks with a

unified encoder-decoder architecture. Nevertheless, all these works cope with a limited

number of categories. In MSeg [115], the authors manually merge different datasets,
which is still limited to being a closed set.

Open-Vocabulary Segmentation. Recently, a number of works opt to transfer or distill

the rich visual-semantic knowledge from foundation models [ 187, 93] to specific segmen-
tation tasks. Prominent examples include LSeg [121], OpenSeg [61], and [90]. Instead

of using existing models, GroupViT [254] performed language-image pretraining from

scratch with a bottom-up grouping ViT [52], while DenseCLIP [190] demonstrated

the superiority of foundation models in finetuning settings compared with supervised

models.

Referring Segmentation by nature is open-vocabulary. Models are usually designed

specifically to learn from target datasets using various multimodal fusion strategies [ 84,

148,165, 268,272,244 ]. Since the emergence of vision transformers, works like LAVT [264]
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enhance the cross-modal interactions from the very beginning, which led to SoTA on
RefCOCO [272], RefCOCO+ [272] and G-Ref [164, 175]. CLIPSeg [161] extended the
textual query to a visual query and showed superior performance not only on referring
segmentation but also on semantic segmentation.

In this work, we propose X-Decoder, which is the first model to tackle generic and
referring segmentation tasks all in one model. Furthermore, the generalized decoder
jointly learns from segmentation data and image-text pairs end-to-end, and thus can
augment the synergy across tasks for rich pixel-level and image-level understanding.

4.2.2 Vision-Language Understanding

Vision-language (VL) pretraining has proven to be effective for various VL tasks [159,
213,211, 129]. The field has evolved from a transformer fusion model [30, 134, 289
with pre-extracted object features [5] to end-to-end transformers [101, 128, 54], that
directly learn from raw image pixels. Recently, researchers [241, 238, 206 ] have found
that image-text data at scale can be helpful for visual representation learning (e.g., ,
enabling zero-shot image classification [187, 93], action recognition [277, 271], and
image generation [138]). VL pre-trained models can be further extended to region-level
tasks, such as phrase grounding and open-vocabulary object detection [97, 68,294, 172],
and unified frameworks that aim to combine image-text pairs with region-level data
have also been proposed [16, 130, 285, 266, 53]. A comprehensive review on this topic
is provided in [58].

We are clearly witnessing a trend from building specialist models to generalist
ones. Early efforts [85, 71] build a multi-task learning paradigm to accommodate a
diversity of tasks. However, the interactions among different tasks in these works are
less studied, and the combination usually leads to performance degradation compared
with specialist models. Recently, a number of works aim to reformulate the tasks into
a unified sequential decoding process [26, 265, 233, 160, 109]. In this work, instead of
developing a unified interface for vision and VL tasks, our X-Decoder builds a generalized
decoding paradigm that can seamlessly connect the tasks by taking the common (e.g., ,
semantic) but respecting the natural differences (e.g., , spatial mask v.s. sequential
language), leading to significant improvements for different segmentation and VL tasks
across the board.
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Figure 4.2: Overall pipeline for our model. It consists of an image encoder, a text encoder
and our own designed X-Decoder.
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Figure 4.3: Unifying four different types of tasks with our proposed X-Decoder. From
left to right, they are: (a) generic semantic/instance/panoptic segmentation; (b) refer-
ring segmentation; (c) image-text retrieval and (d) image captioning and VQA. The
components with white text indicate not applied.

4.3 X-Decoder

4.3.1 Formulation

Our model follows the generic design of encoder-decoder architecture as shown in
Fig. 4.2. Given an input image I € R”*"W>3, we first use an image encoder Enc; to

extract features Z. Afterwards, we use the text encoder Ency to encode a textual query

T into Q; = (¢, - ,q}") of length n. The visual features, textual queries and the m
non-semantic or latent queries Q, = {(q}, - - - , ¢;"") are fed to our X-Decoder to predict the
outputs:

(Ofh1p) Ofnay) = XDec ((Qn, Q1) Z) (4.1)

where O, , and Oy, ;, are the pixel-level masks and token-level semantics for latent
and textual queries, respectively. In the above formula, we note three critical designs to
empower the generalization ability of our to a variety of vision and vision-language
tasks.

We define two types of queries and outputs for X-Decoder. As discussed earlier,
the queries for the decoder are categorized into latent queries Q), and text queries Q,,
which undertake generic vision and vision-language tasks, respectively. Likewise, the

output is categorized into pixel-level masks and semantic embeddings. By simply using
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different combinations, we can adapt our X-Decoder to various tasks with the same suite
of parameters.

We employ a single text encoder Enc; to encode the textual corpus from all tasks.
The common text encoder is used to encode referring phrases, text descriptions, image
captions in the task of referring segmentation, image-text retrieval and image captioning,
respectively. Furthermore, we reformulate the mask classification in segmentation into
a mask-text matching problem between O® and the textual embeddings of prompted
textual concepts similar to [260, 61]. Sharing the text encoder for all textual corpus
could maximally exchange knowledge from different tasks and learn a richer and more
coherent semantic space.

We fully decouple the image and text encoder. In many previous unified encoder-
decoder models [97, 265, 26], the image and text are fused in the encoder side. This
design makes it intractable not only for global image-text contrastive learning [187, 260],
but also generative pretraining [231]. In contrast, by fully decoupling the image and
text encoder and using the outputs all as queries, X-Decoder can learn from both intra-
image supervisions and inter-image ones, which is essential to learn stronger pixel-level

representations and support different granularity of tasks.

4.3.2 Unification of Tasks

Based on the above designs, X-Decoder can be used to seamlessly unify different vision
and vision-language tasks, simply with different combinations of queries as inputs.
Generic Segmentation. For this task, there are no textual queries as inputs. Hence,
Eq. (4.1) becomes:

(0}, O7) = XDec(Qu; Z) (4.2)
where O7, O;, correspond and have the same size to the latent queries Q. For generic
segmentation, our X-Decoder resembles Mask2former [35] but with open-vocabulary
capacity since it transforms mask classification into a mask-text matching problem.

Referring Segmentation. It requires both latent and text queries as inputs:

(0, 0}) = XDec((Qn, Q1); Z) (4.3)

and only uses the decoded outputs corresponding to the latent queries. Compared with
Eq. (4.2), Eq. (4.3) can be considered as language-conditioned generic segmentation.

Image-Text Retrieval. The decoupled image and text encoder in our X-Decoder makes
it straightforward for inter-image retrieval tasks. Specifically, we only feed the latent

queries to the decoder and obtain the semantic representation of an image:

0; = XDec (Qy; Z) (4.4)
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where the last (m-th) token in Oj is used as the image representation to compute the
similarities to texts.
Image Captioning and VQA. For both tasks, X-Decoder takes both latent and text queries

and decodes the outputs:
Of = XDec ((Qn, Qi); Z) (4.5)

where O; correspondingly has equal size to Q;, and no masks are predicted. There are
two slight differences between the two tasks. First, the caption prediction follows a
causal masking strategy while VQA does not. Second, we use all the outputs in O for
captioning, but only the last one to predict the answer for VQA.

The adaptation of our X-Decoder to each task is further depicted in Fig. 4.3. Based on
this unification, we can pretrain our jointly with all tasks using a proper combination of
queries and losses, and further finetune for individual tasks without any extra heads 2.
As discussed earlier, a lineup of works exploited a sequential decoding interface for the
unification [42, 234, 26, 26, 265, 160]. However, in this work, we advocate the unification
by functionality rather than interface, namely, we maximally share the common parts of

different tasks while keeping the remaining unchanged for individual tasks.

4.3.3 Unified Architecture

We follow Mask2Former [35] to build our decoder architecture. Given an image I €

RHXWx3 we extract hierarchical visual features from L layers:
Z = Enc;(I) = (z)1, (4.6)

where z; € R Wixdand { H;, W,} is the size of feature map at level [ and d is the feature
dimension. These hierarchical feature maps are important for pixel-level understanding
at different scales.

One Decoder XDec for All Tasks. Given the visual features Z, X-Decoder uses a stack
of transformer layers to refine the queries and render the outputs. At layer [, it first
cross-attends the visual features and then performs self-attention among latent and text
queries:

(Qi, ", Qi) = CrossAtt((Q; ', Qi ); Z) (47)
(Q1, Qi) = SelfAtt((Q; 1, Q")) (4.8)

In Eq. (4.7), we let all queries cross-attend the visual features. For latent queries, we

use a masked cross-attention mechanism as in [35], and full attention for the textual

2VQA is not used for pretraining following common practice.
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queries. In Eq. (4.8), we specifically design the self-attention mechanism: (i) we use
the last latent query to extract the global image representation and the remaining for
generic segmentation; (i¢) for image captioning, each textual query can attend itself,
its predecessors and all latent queries; (iii) for referring segmentation, latent queries
attend all text queries to use it as the language condition. Based on these rules, the
resulting self-attention in our X-Decoder is shown in Fig. 4.4.

Generic Segmentation Referring Retrieval Captioning VoA

Method Type ADE COCO g-Ref | COCO-Karpathy F30k-Karpathy | COCO-Karpathy | VQAv2-test
PQ mAP mloU PQ mAP mloU cloU IR@l TR@l IR@1 TR@1 | CIDEr BLEU |dev std

Mask2Former (T) [35] 39.7 264 477 | 532 433 63.2 - - - - - - - - -
Mask2Former (B) [35] * * 539 | 564 463  67.1
Mask2Former (L) [35] Segmentation 48.1 342 56.1 57.8  48.6 67.4
Pano/SegFormer (B) [139, 252] & % o« 510 | 554 *
kMaX-DeepLab (L) [273] 487  * 54.8 | 58.1 * * -
LAVT (B) [264] - - - - - - 61.2 - - - - - - - -
UNITER (B) [30] - - - - - - - 50.3 64.4 725 85.9 - - 727 729
UNITER (L) [30] - - - - - - - 52.9 65.6 756 873 - - 738 74.0
VinVL (B) [289] Vision Language | - - - - - - - 58.1 74.6 * * 129.3 382 | 760 76.1
VinVL (L) [289] (VL) - - - - - - - 58.8 75.4 * * 130.8 385 | 765 766
ALBEF-4M (B) [128] - - - - - - - 56.8 73.1 82.8 94.3 * * 745 747
METER-Swin (B) [54] - - - - - - - 54.9 73.0 790 924 * * 764 764
UViM (L) [109] * * * 458" * * - - - - - - - -
UniT (T) [85] - - - - - - - - - - - - - 676  *
GPV (T) [71] - - - - - - - - - - - 10232 * 625  x
UniTAB (B) [265] - - - - - - - - - - - 119.8 36.1 70.7  71.0
Pix2Seq v2 (B) [26] * 382 - - - - - - * 349 - -
Unified-1O (B) [160] General Purpose * * - - - - - - * * 618  «
Unified-TO (L) [160] g P * * - - - - - - * x  |678  «
GLIPv2 (T) [285] * -/42.0 - * - - - - 122.1 * 716 718
GLIPv2 (B) [285] - * -/458 - * - - - - 1285 «  |731 733
GLIPv2 (H) [285] - * - - /489 - * - - - - 131.0 * 746 748
X-Decoder (T) 416 277 51.0 | 526 41.3/- 624 |59.8|61.9 | 493 66.7 74.4 89.1 122.3 37.8 70.6  70.9
X-Decoder (B) 468 335 546 | 57.0 474/- 667 |624|645| 545 71.2 80.8 93.2 129.0 39.6 741 742
X-Decoder (L) 49.6 358 581 579 48.6/- 67.8 | 64.6|64.6 | 58.6 76.1 84.4 94.4 132.1 40.2 76.8 77.0

Table 4.1: Task-specific transfer of X-Decoder to different segmentation and VL tasks.
Note: “x" denotes the model has the capability for the task but does not have number
reported. “-" means the model does not have the ability for the specific task. “model
name" means the model does not have task specific finetune. “1" is the reported pre-
trained number for UViM, the corresponding X-Decoder (L) has pretrained PQ 56.9.
“2" is the reported coco test2014 value for GPV. “alb" means “pretrain|finetune". “a/b"
indicate “val/test".

As we illustrated in Sec. 4.3.2, X-Decoder always produces the masks only for the m
latent queries, i.e., OF = {of, -, 08 } € {0,1}™*#*W for all the latent queries. As for
the semantic outputs, X-Decoder predicts the outputs for both latent and text queries,
ie, Of,,y = {of, 0040} € R(m+mxd to cover both mask recognition and caption
generation.

One Encoder Ency for All Texts. Given the raw text such as a phrase or caption, we
convert it to discrete tokens using an off-the-shelf tokenizer and then send it to the text
encoder [187]. We apply causal masking to ensure its outputs are compatible with
caption decoding. For segmentation, we follow [187, 260] to convert the class name into
a phrase with a text prompt (e.g.,, “dog” — “an image of dog”), and encode the phrase
as above.
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Figure 4.4: Interaction among latent queries ( ), between latent and text queries
( ) for (a) Generic segmentation and image/text retrieval (b) referring segmen-

tation and (c) image captioning. The square latent query is designated for image-text
retrieval.

4.3.4 End-to-End Pre-training

We train our X-Decoder in an end-to-end manner with two types of losses corresponding
to the outputs.

Semantic Loss. There are three losses on the semantic outputs corresponding to three
tasks. For image-text retrieval, we compute the image-language contrastive loss as [187].
We take the last valid token feature of Q; from the text encoder to represent text as ¢,
and take the last (m-th) entry in Oj derived from X-Decoder as 6°, and obtain B pairs of
features for a minibatch of B image-text pairs. Afterwards, we compute the dot-product
between these B x B feature pairs to obtain affinity matrix S;; € R?*#, and compute
the bidirectional cross-entropy loss:

Ly = CE(Si,yu) + CE(SiI;a}"it) (4.9)

where y;; are the class labels corresponding to diagonal entries in S;;, and S}, is the
transpose of S;;.

For mask classification, we encode all C' class names including “background” into
C text queries and take the last valid token feature from each to represent the concept.
Afterward, we take the decoder outputs corresponding to the first (m — 1) latent queries
and compute the dot-product between these outputs and concept embeddings to obtain
an affinity matrix S € R(m=DxC and compute the loss L., = CE(Ss, yus), with the
corresponding ground-truth class y.s guided by Hungarian Matching [18].

For image captioning, we first extract the embeddings for all tokens in the vocabulary
of size V' from the text encoder. Given the last n semantic outputs from X-Decoder,
we compute the dot-product with all token embeddings to obtain an affinity matrix
Scap € R™V. Then we compute the cross-entropy 1oss L ., = CE(S.up, Yeap), with the
ground-truth next-token id y q,.

Mask Loss. Given the O} derived from m latent queries, we use the computed correspon-

dence based on Hungarian Matching [18] and follow [35] to use binary cross-entropy
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loss Ly.. and dice loss L4 to compute the loss for masks.
Finally, we combine the above four losses to pretrain our model with segmentation
and image-text pair data.

4.4 Experiments

Datasets and Settings. We pretrain X-Decoder on three types of data including panoptic
segmentation, image-text pairs (itp), and referring segmentation. For panoptic and
referring segmentation, we use COCO2017 [145] with segmentation annotations and
exclude the validation sets of Ref-COCOg UMD [272] and COCO Karpathy [270]. In
total, there are 104k images for segmentation pretraining, out of which 30k images
are with referring segmentation annotations. For image-text pairs, we use the stan-
dard 4M corpora, including Conceptual Captions [202], SBU Captions [178], Visual
Genome [111], and COCO Captions [29]. We broadly evaluate our models on all tasks
covered by pretraining. In particular, we benchmark on 10 settings of 7 datasets covering
a wide range of domains on zero-shot segmentation. Moreover, we finetune and report
results on VQA for fine-grained visual reasoning.

Implementation Details. Our visual encoder follows [35] to use 100 latent queries
and 9 decoder layers, and we add one additional latent query for image-level task.
However, we do not adopt a deformable encoder as it does not generalize well to open-
vocabulary settings. We adopt Focal-T [259] and DaViT-B/L [49] as the vision encoder
and a transformer text encoder with causal masking [187, 277] as language encoder.
The models are pre-trained on large-scale image-text data [277] (Base or Large) or
UniCL [260] for the tiny model.

4.4.1 Task-Specific Transfer

Without any architecture change except adding a head for VQA, we directly finetune
X-Decoder to demonstrate its task transfer capability. Table 4.1 presents the comparisons
with previous specialized and generalized models.

Comparison with segmentation models. We list the most recent published models
for individual tasks, including Mask2Former [35], Panoptic SegFormer [139], KMaX-
DeepLab [273] for generic segmentation, and LAVT [264] for referring segmentation.
Notably, our 25 epoch finetuned X-Decoder (L) establishes a new SoTA on ADE20k
dataset that outperforms the current SoTA KMaX-DeepLab (L) on ADE Panoptic
Segmentation (our model trained with 1024 resolution achieves 51.0 PQ), as well as
Instance Segmentation SoTA, Mask2Former-L. On COCO, our model attains comparable
or better performance to Mask2Former and kMaX-DeepLab. Finally, we compare with
LAVT [264] on COCO G-ref. It is worth pointing out that with lightweight finetuning,
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Model COCO (p/s) ITP Fix EM Pse- ADE-150 A-847 VOC PC-59 PC-459 SUN SCAN-20  SCAN-41 Cityscapes BDD

m cls cap udo | PQ mAP mloU mloU mloU mloU mloU mloU mloU PQ mloU mloU mAP PQ mloU PQ
MSeg (B) [115] v v X X X X X 19.1 * 73.4 43.4 * 29.6 33.4 * * 46.9 449 *
GroupViT (S) X X x v x v X * * 523 224 * * * - * - * -
LSeg+ (B) [121] 2NN S S 180 38 465 78 * *
ZegFormer (B) [47] v VX X v v/ X * * * * * - * * *
OpenSeg (B) [68] v oXx v X v v / 21.1 63 703 459 9.0 * * - * *
OpenSeg (B)[68] v X v v v v v/ | - - 264 81 702 448 115 *
MaskCLIP (L) [50] v /X X v 7/ X |151 6.0 23.7 8.2 * 45.9 10.0 * * * * * * *
X-Decoder-Seg (B) v v/ X X X X X | 153 83 19.5 2.9 95.7 63.5 133 33.0 41.6 325 224 473 228 352 441 141
X-Decoder-Seg™ (B) v v X X X X |169 95 238 4.6 97.8 64.7 121 322 351 338 18.5 476 259 369 427 166
X-Decoder (T) v v 7/ v X X X | 188 98 25.0 6.4 96.2 62.9 123 345 378 307 21.7 473 160 372 424 164
X-Decoder (B) v v 7/ v X X X |211 117 272 8.2 97.9 65.1 14.7 39.6 403 354 24.8 50.8 223 395 451 171
X-Decoder (L) v v 7/ v X X X |21.8 131 29.6 9.2 97.7 64.0 16.1 43.0 495 395 29.7 52.0 249 381 472 178

Table 4.2: One suite of model weights for open-vocabulary image segmentation. Note:
“ITP” means image-text pairs. “Fix” indicates whether contains fixed text/image encoder.
“EM" means whether the model has extra modules that are designed for open-vocabulary
settings (e.g. Adaptor, class agnostic proposal, and etc.). “Pseudo” means whether the
method uses an extra step to extract pseudo label image-text pairs. “gray" color means
a fully supervised approach. “light purple" color means a semi-supervised learning
approach. “FL-in21k" means the backbone is pretained with in21k data using a FocalNet
backbone. For COCO, different methods use different supervisions of mask (m), class
label (cls) and caption (cap). “x and -" follows Table 4.1

our tiny model already outperforms LAVT-Base (61.9 v.s. 61.2). Further increasing the
model size can bring additional gains by 2.6 and 2.7 points respectively, which helps to
set a new record on this benchmark in the published literature.

Comparison with VL models. We compare with a set of VL models on image-text
retrieval, image captioning and VQA in Table 4.1. X-Decoder achieves competitive
performance across the board. Specifically, X-Decoder outperforms UNITER [30] and
rivals VinVL [289] on COCO retrieval, and even beats all the baselines on Flickr30k [184].
Unlike all these works, the image and text encoders are fully decoupled in X-Decoder,
which leads to a much faster inference speed. On captioning and VQA, our models also
demonstrate superior performance to their counterparts. For example, it outperforms
VinVL by 1.3 and 1.7 on CIDEr and BLEU, respectively. Note that most of these works
use sophisticatedly designed training objectives, such as masked data modeling, image-
text matching and hard-negative mining [128, 230, 53]. In contrast, is pretrained with
image-text contrastive and image captioning, along with the segmentation losses. The
simplicity and effectiveness imply a great potential for using as a general pretraining
paradigm for VL.

Comparison with generalist models. We further compare with prior arts that explore
general-purpose vision models. Limited works report the generic segmentation per-
formance. Our model outperforms UViM [109] and Pix2Seq v2 [26] significantly on
COCO panoptic (56.9 v.s. 45.8) and instance segmentation (46.7 v.s. 38.2), respectively
(The X-Decoder (L) have the same zero-shot and finetuning performance). With the
same amount of segmentation data, these margins strongly justify our model design, ,
unifying functionality without any tweaks for individual tasks. When compared with
GLIPv2 [285], our model achieves comparable performance. Note that GLIPv2 uses

over 10M pretraining data, including around 2M with box supervision. Despite the
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Method CE. ME Q.E Dec. #Param PO HﬁEPE mloU  PQ CIIEIYZCI?PG;IOU
Mask2Former (T) [35] - - - - - 39.7 264 47.7 639 39.1 80.5
Pano/SegFormer (T) [139, 252] - - - - - 36.4 * 46.5 * * *
kMaX-DeepLab (T) [273] - - - 415« 450 643 385 797
Mask2Former (S) [35] - - - - - * * 51.3 648 407 818
35 -
35 -
/XK X X 026M 43 332 546 651 414 817
X-Decoder (L) v v X X 1.06M | 439 332 539 648 412 81.2
v v v X 1.15M | 44.0 328 540 646 41.1 81.5
v v v v 38.3M | 47.0 35.1 56.0 65.6 42.2 81.7

Table 4.3: Performance with different efficient finetuning strategies for X-Decoder large,
and comparisons with fully-finetuned models. Note: C.M denotes class embedding,
M.E. denotes mask embedding, Q.E. denotes query embedding, #Param means the
number of parameters tuned.

COCoO ADE COCO-Karparthy g-Ref
PQ mAP mioU |PQ mAP mloU | IR@ IR@1 CIDEr | cloU
X-Decoder 514 405 628 | 147 9.6 234 |30 485 820 597
*text: [yny] |514 39.8 617 |147 94 222 |299 469 786 |577 Model ‘
*text: [nyy] |514 386 617 |152 94 231 |303 475 789 |594

*latent: [yyn] | 50.9 396 620 |155 94 228 |298 476 811 |576

Model

COCO ADE COCO-Karparthy g-Ref
PQ mAP mloU | PQ mAP mloU | IR@l TR@1 CIDEr | cloU
*bs1024 509 39.5 624 152 10.0 246 306 481 85.0 58.0
*bs768 |51.0 395 624 154 100 242 29.0 4638 78.6 58.8
*bs512 | 50.7 393 620 149 9.7 243 | 274 438 761 58.6

Table 4.4: Ablation of query interaction in
X-Decoder. [x,x,x] denotes whether attend Table 4.5: Ablation of VL batch size. We

[object latent query, image latent query, mark the significant drop metrics in green.
text query|

el COCo ADE COCO-Karparthy g-Ref Model €OCo ADE COCO-Karparthy g-Ref
Mode PQ mAP mloU|PQ mAP mloU |IR@1 TR@1 CIDEr | cloU PQ mAP mloU |PQ mAP mioU | IR@l TR@1 CIDEr | cloU
e E G R AL T R G A E RO 5 Full Datasets | 509 395 624 | 152 100 246 306 481 850 | 580
TRetrieval | 514 404 626 |140 92 218 |nja nja 788 | 592 - coco 509 399 622 |153 9.8 244 | 274 382 326 | 594
-Captioning | 51.1 404 632 |150 96 232 |299 481 nja |57.7 -ccSm 512 397 626 |155 101 246 | 310 500 812 | 583
-Referring | 511 397 623 |152 89 226 |300 476 788 |nja V8 511 398 624 1146 97 238 | 361 561 1071 | 583
= = = - sbu 511 398 624 |153 95 246 | 303 483 812 | 583

Table 4.6: Ablation of pretraining tasks by Table 4.7: Ablation of VL datasets in X-
removing one at a time. We bold the best  Decoder. A single VL dataset is removed in
entry and underline the worst entry in each  each row. And we mark the metrics that
column. significantly drop/increase in green/red.

huge gap in pretraining data, X-Decoder outperforms GLIPv2 on both captioning and
VQA.

Efficient Finetuning. Finally, we study whether our pretrained X-Decoder can be fine-
tuned for segmentation with a low cost. In Table 4.3, we show that we can simply
finetune the class embedding layer, mask embedding layer or the whole decoder to
reach a decent segmentation performance and surpass the fully finetuned tiny SoTA
models like kMaX-DeepLab [273]. These results imply an efficient way of using our
pretrained X-Decoder models.

4.4.2 Zero-Shot Transfer

Without any change in model weights, X-Decoder can be directly applied to various
segmentation tasks and datasets after pretraining. In Table 4.2, we evaluate our model
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Region Retrieval: The Flamingo on the Right; The giraffe playing with lion. =~ —————> Localization:

Figure 4.5: An example of region retrieval as a showcase of task composition of image-
text retrieval and referring segmentation.

in a zero-shot manner on seven commonly used segmentation datasets in 10 different
settings from diverse domains, including common indoor, outdoor and self-driving
scenarios. We report PQ, mAP and mloU for generic segmentation quantitatively.
Comparison with baselines. We build two X-Decoder variants: (1) X-Decoder-Seg,
which is only trained with COCO panoptic segmentation using a text encoder for class
names; and (2) X-Decoder-Seg*, where we take the heuristic way to extract noun phrases
from COCO captions and use them as extra supervision on top of the matched decoder
outputs. First, X-Decoder-Seg shows clear advantages on open-vocabulary segmenta-
tion over MSeg [115], that manually conducts label mapping across different datasets.
Second, the extra supervision from COCO captions improves model performance on 9
out of 15 metrics, which indicates the benefit of joint learning with image-level supervi-
sion. Third, when pretraining with the full X-Decoder, the performance is significantly
boosted. Notably, the mIoU metric is improved by 7.4, 3.4 and 2.6 on SUN, ADE-150
and PC-459, respectively.

Comparison with state-of-the-art. We further compare with the most advanced meth-
ods for open-vocabulary image segmentation in Table 4.2. Clearly, our models achieve
the best results across all datasets. Among the base-sized models, X-Decoder (B) out-
performs OpenSeg (B) [61] on two challenging datasets, ADE-150 and PC-459 for
semantic segmentation. Scaling X-Decoder to large size further improves mloU by 2.4
and 1.4 on these two datasets. Among prior arts, MaskCLIP [50] is the first proposed for
open-vocabulary panoptic segmentation by combining Mask2Former with CLIP models.
With COCO caption supervisions, our simple baseline X-Decoder-Seg™ already performs
comparably. The full version of our tiny model X-Decoder (T) surpasses MaskCLIP
across the board except A-847. We note that these comparisons are not strictly fair in
terms of supervision, settings and models used. However, these results demonstrate
the effectiveness of our X-Decoder to learn from the different granularity of supervisions
end-to-end for open-vocabulary segmentation, which leads to new SoTA on 10 settings

of 7 datasets across three segmentation tasks.
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4.4.3 Model Inspection

Pretraining Tasks. By default, we exploit four pre-training tasks including generic
and referring segmentation, captioning and retrieval. In Table 4.6, we keep the generic
segmentation while ablating the importance of the other pre-training tasks. Accordingly,
we have the following observations:

Image-text retrieval help open-vocabulary segmentation: On ADE, mloU decreases from

23.4 to 21.8 and PQ by 0.7 without image-text retrieval. As both tasks share semantic
space, improved visual-semantic alignment boosts recognition of novel concepts.

Image captioning helps referring segmentation and vice versa: COCO g-Ref drops 2.0 pts

without training with image captioning, and CIDEr falls 3.2 pts without training with
referring tasks. This indicate sharing a text encoder and joint training enhances text
input understanding.

Image captioning and retrieval can mutually benefit each other: Removing captioning in

pretraining, R@1 drops by 0.8; and CIDEr decreases 3.2 pts without retrieval task. It
indicates X-Decoder fosters generative and contrastive learning synergy.

Query Interactions. The interaction among tasks is highly dependent on the interaction
between latent and text queries. We have described how the queries interact with each
other by default in Fig. 4.4. Here, we investigate how our model behaves with different
interactions in Tab. 4.4:

Image captioning requires both fine-grained and global image information: Comparing

rows 1-3 in Tab. 4.4, CIDEr score drops significantly when information flow from global
latent queries or other latent queries to text queries is cut off (82.0 — 78.6 and 78.9,
respectively).

Language-condition is important for ref-segmentation: In the last row of Tab. 4.4, turning

off text-to-latent query interaction significantly decrease ref-segmentation (59.7 —
57.6) performance, indicating generic segmentation can’t be converted to referring
segmentation using post-hoc matching with referring texts easily.

VL Batch Size & Dataset The default batch size of VL task is 1024, we explore the
gradual decreasing of VL batch size in Tab. 4.5. In addition, each VL dataset is removed

to investigate the pre-trained performance on different tasks.
Decreasing VL batch size hurts VL tasks and open-vocab Segmentation performance: As

shown in Tab. 4.5, decreasing the VL task batch size from 1024 to 256 significantly hurts
the retrieval and captioning performance as well as minor influence on open-vocabulary

settings.
VG dataset hurts pretraining VL tasks performance but improves open-vocab segmentation:

As shown in Table 4.7, removing the visual genome from the pretraining VL dataset
significantly improves captioning task with 22.1 points in pretraining caused by the
different annotation style of that dataset.
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4.4.4 Task Composition

X-Decoder has the unique benefit of task interaction. We demonstrate our model can per-
form region-based retrieval (Fig. 4.5) and referring-based captioning (Fig. 6.1) without
any architecture/weight change. As shown in Fig. 4.5, given a set of animal images and
text query, our model first retrieves the correct image and then grounds the query in
pixel level. Further, our model can be easily adapted to referring captioning by localizing
a given word and then modulating the predicted mask in the cross-attention layers for
text queries. This will allow the text queries to focus on the grounded region only. Thus
lead to the generated caption that focus on the specific area. Lastly, we also integrate
X-Deocder with diffusion model for referring image editing and inpainting. This has

been demonstrated in Fig. 6.1.

4,5 Conclusion

We introduce X-Decoder, a versatile model for pixel and image-level vision-language
understanding. Its unified design enables generic segmentation, referring segmentation,
and VL tasks with strong generalizability and SoTA/Comparable performance. We
hope this work can shed a light on the design of the next-generation general-purpose

vision system.
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Chapter 5

Segment everything everywhere all at

once

Publication Statement. This chapter is joint work with Jianwei Yang, Hao Zhang,
Feng Li, Linjie Li, Jianfeng Wang, Lijuan Wang, Jianfeng Gao, Yong Jae Lee. The paper
version of this chapter appeared in NeurIPS 2023 [302].

In this work, we present SEEM, a promptable and interactive model for segmenting
everything everywhere all at once in an image, as shown in Fig. 5.1. In SEEM, we
propose a novel decoding mechanism that enables diverse prompting for all types of
segmentation tasks, aiming at a universal segmentation interface that behaves like large
language models (LLMs). More specifically, SEEM is designed with four desiderata: 7)

. We introduce a new visual prompt to unify different spatial queries including
points, boxes, scribbles and masks, which can further generalize to a different referring
image; ii) . We learn a joint visual-semantic space between text and
visual prompts, which facilitates the dynamic composition of two prompt types required
for various segmentation tasks; i) . We further incorporate learnable
memory prompts into the decoder to retain segmentation history through mask-guided
cross-attention from decoder to image features; and iv) . We use
a text encoder to encode text queries and mask labels into the same semantic space
for open-vocabulary segmentation. We conduct a comprehensive empirical study to
validate the effectiveness of SEEM across diverse segmentation tasks. Notably, our single
SEEM model achieves competitive performance across interactive segmentation, generic
segmentation, referring segmentation, and video object segmentation on 9 datasets with
minimum 1/100 supervision. Furthermore, SEEM showcases a remarkable capacity for
generalization to novel prompts or their combinations, rendering it a readily universal

image segmentation interface.



62

Panoptic Instance  Semantic Point Box Scribble Cross Style Text+Visual
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No Prompt Visual Prompts @ Text Prompt / Ref Prompt & Composition

Figure 5.1: SEEM supports generic segmentation tasks—including semantic, instance,
and panoptic segmentation—in an open-set fashion when no prompt is provided. SEEM
also enables the use of visual, textual, and referring region prompts in flexbile combina-
tions, making it a promptable and interactive segmentation interface.

5.1 Introduction

Image segmentation is arguably the most important yet challenging problem in com-
puter vision. In the past, we have witnessed significant progress in a wide range of
segmentation tasks including instance, semantic and panoptic segmentation [203, 21,
102,75, 229, 35, 125]. Most recently, we are observing a clear trend toward more flexi-
ble segmentation models in different aspects: 1) From closed-set to open-vocabulary
segmentation. Many recent works proposed to either leverage contrastive learning
methods or pretrained multi-modal foundation models (e.g., CLIP [187]) to make the
segmentation models more transferable to unseen concepts [61, 50, 298, 255]; 2) From
generic to referring segmentation. In addition to generic segmentation that segments
an image thoroughly given a predetermined set of concepts, language-based referring
segmentation provides a user-friendly way of segmenting a specific region referred
by an arbitrary text phrase [148, 268, 244, 87, 150]; and 3) From one-shot to interactive
segmentation. In practice, segmentation models do not necessarily produce satisfac-
tory masks in one round. As such, people are also studying how to progressively
refine the segmentation results through intimate interactions between humans and
models [207, 39, 152, 27].

Despite the aforementioned efforts taken to design more powerful and feasible seg-
mentation models, we are still lacking a universal segmentation interface that is capable
of accommodating various types of human prompts and tackling different segmenta-
tion tasks as studied in individual works. In contrast, Large Language Models (LLMs)
have already emerged as such a universal interaction interface for language tasks, from
early models like GPT-3 [13] and T5 [188], to conversational agent [176] augmented by
advanced prompting [204, 293, 132] and chain-of-thought [242, 108, 199]. In this work,
we strive for a universal interface for segmenting everything everywhere all at once in an
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image. On this interface, we are targeted at unifying all segmentation tasks with a single
model in a promptable manner. To achieve this goal, we propose a new prompting
scheme in mask decoder that has four important properties: versatility, compositionality,
interactivity, and semantic-awareness. Specifically, we propose to encode points, masks,
text, boxes, and even a referred region from another image into prompts in the same
joint visual-semantic space. As such, our model can deal with any combination of the
input prompts, leading to strong compositionality. To enable interactivity, we further
introduce memory prompts for condensing the previous segmentation information
followed by communication with other prompts. As for semantic awareness, our model
can provide an open-set semantic label to any output segmentation.

With the proposed prompting scheme, we build a segment-everything-everywhere
model called SEEM comprised of a simple Transformer encoder-decoder architec-
ture [18, 35] with an extra text encoder [298, 283]. In SEEM, the decoding process
emulates a generative LLM but with a multimodality-in-multimodality-out interface.
An image encoder and text encoder are used as the prompt encoder to encode all types
of queries, which are fed into the decoder. Concretely, we encode all spatial queries,
namely, points, boxes, scribbles and masks into visual prompts by pooling their corre-
sponding visual features from the image encoder, and use the text encoder to convert
text queries into text prompts. By training on diverse segmentation tasks, our model
learns to deal with various prompts, align the visual and text prompts, and promote
their synergy via cross-attention between them. As a result, our single model after
pretraining attains competitive performance across all segmentation tasks. Since the
prompts of all 5 different types are mapped to the joint visual-semantic space, we can
teasibly combine prompts to resolve the ambiguity to obtain better segmentation results
and enable zero-shot adaptation to unseen user prompts. Furthermore, our model can
immediately generalize to the case of using an exemplar image segment as the prompt
and video object segmentation in a zero-shot fashion. In addition to its strong general-
ization capability, SEEM is also more efficient for interactive segmentation compared
with the counterparts like SimpleClick [283]. Since we take the prompts as input to
the decoder, when doing multi-round interactions with humans, our model only needs
to run the feature extractor once at the beginning and lightweight decoding each per
round. To the end, we build a segmentation interface with a single pre-trained model
that can segment every object with semantics (everything), cover every pixel in the
image (everywhere), and support all possible compositions of prompts (all at once). In

summary, our contributions are threefold:

e We design a new prompting scheme that can encode various user intents into prompts
in a joint visual-semantic space, enabling strong flexibility for various segmentation

tasks and generalization capability to unseen prompts or their combinations.
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e We build SEEM, a universal and interactive segmentation interface that integrates
the newly designed prompting mechanism into a lightweight decoder for all segmen-
tation tasks, leading to a model possessing properties of versatility, compositionality,

interactivity, and semantic awareness.

e We conduct extensive experiments and visualizations to show that our model has
strong performance on many segmentation tasks including open-vocabulary generic
segmentation, interactive segmentation, referring segmentation, and segmentation

tasks with combined prompts.

5.2 Related Work

Interactive segmentation. Interactive segmentation is the task of segmenting objects by
interactively taking user inputs. It has been a longstanding problem and has achieved
considerable progress [137, 66, 256, 152, 27, 103]. Generally, the interaction types can
take various forms, such as clicks, boxes, polygons, and scribbles, among which click-
based interaction models are the most prevalent. Concurrent to our work, SAM [103 ]
proposed a promptable segmentation model trained on 11 million images and 1.1
billion masks. It takes user interactions as prompts for general segmentation. Though
SAM demonstrates strong zero-shot performance, it produces segmentations without
semantic meaning. In addition, its prompt types are limited to points, boxes, and text,
whereas our model can also take in a referred region from another image as a prompt.

Generic segmentation. Segmentation of visual concepts has been a persistent chal-
lenge in the field of computer vision, as evidenced by its extensive literature [57, 56,
304, 171]. Generic segmentation techniques encompass several subtasks, including
instance segmentation, semantic segmentation, and panoptic segmentation [75, 21, 102],
each focusing on a different semantic level. For example, semantic segmentation aims
to identify and label each pixel within an image based on its corresponding semantic
class [23, 35, 158]. On the other hand, instance segmentation involves grouping pixels
that belong to the same semantic class into separate object instances [75, 12, 125]. Re-
cently, the Detection Transformer (DETR)[18], a model based on the Transformer [226]
architecture, has made significant advances in segmentation [139, 35, 125, 92, 282] tasks.
However, these approaches cannot recognize objects absent in the training set, which
constrains the model to a limited vocabulary size.

Unified vision models. Unified vision models [298, 258, 160, 103, 240] have recently
drawn a lot of attention because of their advantage in generalizing to various tasks
and flexibility. These models can deal with multiple vision tasks or data distributions.
Among them, some [298, 258, 160] train multiple tasks together with only one model

and thus can deal with all training tasks without finetuning on each target task. On
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Figure 5.2: Overview of SEEM- Decoder. (a) SEEM encodes image, text, and human
inputs into joint visual-semantic space as queries, features, and prompts, and then decodes
queries to class and mask embeddings. (b) With the benefit of SEEM decoder, the
machine loop enables memorizing history mask information, and the human loop
provides new corrections to the next round.

the other hand, SAM [103] and SegGPT [240] propose training strategies that enable
their models to handle new tasks and data distributions in a zero-shot manner. The
second approach is more favorable since there is no need to resolve conflicts among

tasks during training.

5.3 Method

5.3.1 Model Design

SEEM employs a generic encoder-decoder architecture but also employs a sophisticated
interaction scheme between queries and prompts, as shown in Fig. 5.2 (a). Given an
input image I € R¥*">3 an image encoder is first used to extract image features Z.
Then, SEEM-Decoder predicts the masks M and semantic concepts C based on the
query outputs O} (mask embeddings) and Of, (class embeddings), which interact with

text, visual, and memory prompts (P;, P, P,,):

(O}, O5) = Decoder(Qy,; (P, P, P,,)|Z) (5.1)
M = MaskPredictor(O}") (5.2)
C = ConceptClassifier(Oy) (5.3)

where Q, is the learnable queries, and P;, P,, P, represent the text prompts, visual
prompts, and memory prompts, respectively. During training, Q), is duplicated for
generic, referring, and interactive segmentation, as shown in Fig. 5.3. The corresponding
prompts interact with their queries through self-attention. The learnable queries can
freely interact with all prompts at inference time, thereby enabling zero-shot composition.
Our design is inspired by the successful practice in X-Decoder [298]. However, we
highlight the differences in Eq. (5.1), marked in red, which allow for a universal model
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Figure 5.3: Queries and prompt interaction during training and evaluation. (a) Learn-
able queries are duplicated as object, grounding, and visual queries with the same set
of weights for each task. (b) Attention mask between any two kinds of tokens (denoted
as gpm in Algorithm. 2). Tentative means the interaction is not trained but able to do
inference without any modification.

for image segmentation with the following properties:

. In SEEM, we introduce visual prompts P, to handle all non-textual inputs,
such as points, boxes, scribbles, and a referred region from another image. These non-
textual queries are beneficial to disambiguate the user’s intent when textual prompts
alone fail to identify the correct segment. For interactive segmentation, previous works
either convert spatial queries to masks and feed them into the image backbone [152]
or use different prompt encoders for each input type (points, boxes) [103]. The first
approach can be too heavy in applications because each interaction requires the image
to go through the feature extractor. The second approach is hard to generalize to unseen
prompts. To address these limitations, we propose a visual sampler (Fig. 5.2 (a)) to
convert all kinds of non-textual queries to visual prompts that lie in the same visual
embedding space:

P, = VisualSampler (s, Z) (5.4)

where Z is the feature maps extracted from either the target image (i.e., Z = Z) or
a referred image, and s € {points, box, scribbles, polygons} are the sampling locations
specified by the user. We first pool the corresponding region from the image feature
through point sampling [35]. For all visual prompts, we interpolate at most 512 point
feature vectors uniformly from the region specified by the prompt. A notable merit of
our proposed method is that the visual prompts are naturally well-aligned with the
textual prompts, as our model continuously learns a common visual-semantic space
through panoptic and referring segmentation.

. In practice, a user may cast their intent using different or combined
prompt types. Hence, a compositional approach to prompting is essential for real-
world applications. However, we confront two issues during model training. First, the
training data usually only covers a single type of interaction (e.g., none, textual, visual).
Second, although we use visual prompts to unify all non-textual prompts and align
them with textual prompts, their embedding spaces remain inherently different. To
mitigate this problem, we propose to match prompts of different types with different
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outputs. Considering that visual prompts P, come from image features while textual
prompts P, come from the text encoder, we select matched output indices for visual and
textual prompts by matching them with the mask embeddings O} or class embeddings

i, respectively:

ID, + Match(O}" - P, + IoU,,,45) (5.5)
ID; + Match(Oj, - P, 4+ IoU,,45x) (5.6)

where IoU,,.; is the IoU between ground-truth and predicted masks. The proposed
separate matching method outperforms approaches that only match with either O} or
Oy, for all prompts.

After training, our model becomes familiar with all prompt types and supports
a variety of compositions, such as no prompts, one prompt type, or both visual and
textual prompts using the same model and weights. In particular, the visual and textual
prompts can be simply concatenated and fed to SEEM-Decoder, even though it was never trained
in this way.

. Interactive segmentation usually cannot be completed in one shot and
requires multiple interaction rounds for refinement, similar to conversational agents
like ChatGPT. In SEEM, we propose a new type of prompt called memory prompts P,,
and use them to convey the knowledge of the masks from the previous iteration to
the current one. Unlike previous works that use a network to encode the previous
mask [152, 103], we introduce no extra module but simply a few memory prompts.
These memory prompts encode the history information by using a mask-guided cross-
attention layer [35]:

P! = MaskedCrossAtt(P!": M,|Z) (5.7)

where M, is the previous mask, and Z is the image feature map. In this way, cross-
attention only takes effect inside the regions specified by the previous mask. The
updated memory prompts P! then interact with the other prompts via self-attention to
convey the historical information for the current round.

. Different from previous class-agnostic interactive segmentation works
such as Simple Click [152] and the concurrent work SAM [103], our model produces
semantic labels to masks for all kinds of prompt combinations in a zero-shot manner,
since our visual prompt features are aligned with textual features in a joint visual-semantic
space. As shown in Fig. 5.3, semantic labels are directly computed using Of, (output of
visual queries) and the text embedding. Although we do not train with any semantic
labels for interactive segmentation, the calculated logits are well-aligned, benefiting
from the joint visual-semantic space.
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Algorithm 1 Pseudo code for SEEM.

# Inputs: Image(img) [B,3,H,W]; Pos_Mask(pm), Neg_Mask(nm) [B,1,H,W]; Text(txt) [abc...];
# Variables: Learnable Queries(()y); Attention Masks between () and P (qpm)
# Functions: Img_Encoder(),Text_Encoder(),Visual_Sampler(),feature_attn(),prompt_attn(),output();

def init( ):
Qo,Qt,Qv = Qn.copy(); # Initialize object, text and visual queries.
F,,P, = Img_Encoder(img), Text_Encoder(txt);# F, and P, denote image feature, text prompt.
P, = Visual_Sampler(F,, pm, nm); # Sample visual prompt from image feature, pos/neg mask.

def SEEM_Decoder(F,,Qo,Q+t,Qv Py, Pty Pn):

Qo,Qt,Qy feature_attn(F,,Q,,Q+,Q,); # Cross attend queries with image features.
Qo,Qt,Q0 prompt_attn(gpm, Qo ,Q:,Qv, Py, P, Py); # Self attend queries and prompts.
O »O0¢, Py, = output (Fy,Q,,Q+:,Qy); # Compute mask and class outputs.

def forward(img,pm,nm,txt):
Fy,Q0,Qt,Qv,Py, P, = init(); P, = None; # Initialize variables.
fori in range(max_iter):

L Om,O¢, Py, = SEEM_Decoder (F,,Q,,Q+:,Qv, Py, Pi, Py)

5.3.2 Model Pipeline and Loss Functions

We summarize the training and evaluation pipeline of the proposed method with
Pytorch-style pseudo-code in Algorithm 2. SEEM is trained with a linear combination of

losses for panoptic segmentation, referring segmentation, and interactive segmentation:

L :a‘cc_CE_pano + 5 £m_BCE_pano + '7£m_DICE_pano + aEC_CE_ref + bEm_BCE_ref ( 5 8)

+C£m_DICE_ref + a»CC_CE_iseg + b»Cm_BCE_iseg + CEm_DICE_iseg

Where o = 2,5 =v=15,a=0.2,b = c =2, CE, BCE, and DICE denotes cross-entropy,
binary cross entropy and dice loss, respectively.

5.4 Experiments

Datasets and Settings. SEEM is trained on three tasks: panoptic segmentation, re-
ferring segmentation, and interactive segmentation. Panoptic and interactive segmen-
tation are trained on COCO2017 [145] with panoptic segmentation annotations. Fol-
lowing [298], we exclude the validation set of Ref-COCOg [272], resulting in 107K
segmentation images in total. For referring segmentation, we use a combination of
Ref-COCO, Ref-COCOg, and Ref-COCO+ for COCO image annotations. We evalu-
ate generic segmentation (instance/panoptic/semantic), referring segmentation, and
interactive segmentation.

Implementation Details and Evaluation Metrics. Our model framework follows X-
Decoder [298] except the decoder. That is, we have a vision backbone, a language
backbone, an encoder, and SEEM-Decoder. For the vision backbone, we use FocalT [259],
DaViT-d3 (B), and DaViI-d5 (L) [49]. For the language encoder, we adopt a UniCL or
Florence text encoder [260, 277]. For all segmentation tasks, we use standard evaluation
metrics: PQ (Panoptic Quality) for panoptic segmentation, AP (Average Precision)



69

Table 5.1: One model for segmentation on a wide range of segmentation tasks. SEEM is
the first model to simultaneously support generic segmentation, referring segmentation,
and interactive segmentation, as well as prompt compositionality. (#Concurrent work. -

indicates the model does not have capability for the task, *

indicates do not have reported

number. )
Generic Segmentation | Referring Segmentation Interactive Segmentation
Method Segmentation Data Type COCo RefCOCOg PascalVOC
PQ mAP mloU |cloU mloU AP50 |5-NoC85 10-NoC85 20-NoC85 5-NoC90 10-NoC90 20-NoC90
Mask2Former (T) [35] COCO (0.12M) 532 433 63.2 - - - - - - - - -
Mask2Former (B) [35] COCO (0.12M) 56.4 46.3 67.1
Mask2Former (L) [35] COCO (0.12M) 578 486 674
Pano/SegFormer (B) [139] COCO (0.12M) Segmentation | 554  * * -
LAVT (B) [264] Ref-COCO (0.03M) - 612
PolyFormer (B) [150] Ref-COCO+VG+... (0.16M) 69.3
PolyFormer (L) [150] Ref-COCO+VG+... (0.16M) 71.1 - -
RITM (<T) [207] COCO+LVIS (0.12M) E 2.19 257
PseudoClick (<T) [153]  COCO (0.12M) 1.94 225
FocalClick (T) [27] COCO (0.12M) 297 352
FocalClick (B) [27] COCO (0.12M) Interactive * * 2.46 * * 2.88
SimpleClick (B) [152] COCO+LVIS (0.12M) 175 1.93 2.06 1.94 219 2.38
SimpleClick (L) [152] COCO+LVIS (0.12M) 1.52 1.64 1.72 1.67 1.84 1.96
152
UViM (L) [109] COCO (0.12M) ng -
Pix2Seq v2 (B) [26] COCO (0.12M) - 382 - - - -
X-Decoder (T) [298] COCO (0.12M) 526 413 624 59.8 * *
X-Decoder (B) [298] COCO (0.12M) 56.2 45.8 66.0 64.5 * *
X-Decoder (L) [298] COCO (0.12M) 569 467 675 | 646 @ * *
UNINEXT (T) [258] Image+Video (3M) - 449 - 70.0
UNINEXT (L) [258] Image+Video (3M) - 496 73.4
Painter (L) [239] COCO+ADE+NYUV2 (0.16M) Generalist | 434  * -
#5egGPT (L) [240] COCO+ADE+NYUV2 (0.16M) 344 - - - - - -
#SAM (B) [103] SAM (11M) - 247 265 328 223 313 412
#SAM (L) [103] SAM (11M) 1.85 2.15 2.60 2.01 2.46 3.12
103
SEEM (T) COCO+LVIS (0.12M) 50.8 39.7 62.2 60.9 65.7 74.8 172 2.30 3.37 197 2.83 441
SEEM (B) COCO+LVIS (0.12M) 56.1 46.4 66.3 65.0 69.6 78.2 1.56 2.04 293 177 247 3.79
SEEM (L) COCO+LVIS (0.12M) 575 47.7 67.6 65.6 703 78.9 151 1.95 2.77 171 2.36 3.61
SEEM (T) COCO+LVIS (0.12M) = = = 704 717 82.1 172 228 332 1.97 2.82 4.37
SEEM (B) COCO+LVIS (0.12M) Composition 762 778 87.8 1.56 2.03 291 177 246 3.76
SEEM (L) COCO+LVIS (0.12M) 751 769 86.8 152 1.97 2.81 172 2.38 3.64

Table 5.2: One model for all kinds of mask interactions. SEEM has strong generalization
capability on different input mask types.

COCO Open Image ADE

Method Point Stroke Scribble Polygon Box | Point Stroke Scribble Polygon BoX | Point Stroke Scribble Polygon BoX

1-IoU 1-IoU  1-IoU 1-IoU 1-IoU | 1-IoU 1-IoU  1-IoU 1-IoU 1-IoU | 1-IoU 1-IoU  1-IoU 1-IoU  1-IoU
SimpleClick (B) | 49.0 33.1 65.1 48.6 425 | 486 295 54.2 49.5 427 | 47.0 19.0 52.1 48.3 37.2
SimpleClick (L) | 389 339 68.8 39.2 347 | 375 29.1 59.8 35.2 31.2 | 36.8 164 56.4 41.7 29.5
SAM (B) 58.6 228 34.2 445 50.7 | 623 284 39.2 45.8 536 | 51.0 219 31.1 31.0 58.8
SAM (L) 647 444 57.1 60.7 509 | 653 459 55.7 57.8 524 | 574 458 53.1 45.8 58.7
SEEM (T) 789  81.0 81.2 722 737  67.1 69.4 69.5 63.1 609 654 673 67.3 59.0 53.4
SEEM (B) 817 828 83.5 76.0 757  67.6  69.0 68.7 64.2 603 664  68.6 67.7 60.5 53.6
SEEM (L) 83.4 84.6 84.1 76.5 769 668  67.8 67.6 62.4 60.1 655 66.6 66.3 58.1 54.1

for instance segmentation, and mloU (mean Intersection over Union) for semantic
segmentation. For interactive segmentation, we follow previous works [152, 146] to
simulate user clicks by comparing the predicted segmentation with the ground-truth
one in an automatic way. After one click on the image to generate the predicted mask, the
next click is placed at the center of the area with the largest segmentation error. We use
the Number of Clicks (NoC) metric to evaluate interactive segmentation performance,
which measures the number of clicks needed to achieve a certain Intersection over
Union (IoU), i.e., 85% and 90%, denoted as NoC@85 and NoC@90, respectively. We
also vary the number of maximum clicks indicated by K-NoC@90 (K=5, 10, 20), and
evaluate the mean IoU on the single click denoted as 1-IoU to study the performance
on different constraints. More qualitative evaluation with stroke, scribble, polygon, and
box as prompts are illustrated in the supplementary material.
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Table 5.3: Zero-shot video object segmentation. Without training with video or pairwise
image data, our approach is able to do video object segmentation in a zero-shot manner.
(#Concurrent work.)

Zero- Single DAVIS17 DAVIS16-Interactive YouTube-VOS 2018

Method Segmentation Data Type Refer-Type Shot Image | JE ] F IF J E c Js Fs Ju Fu
With Video Data

AGSS [142] VOS+DAVIS (0.1M) Mask X X 713 713 6! 3
AGAME [96] (Synth) VOS+DAVIS (0.11M) Mask X X 66.0 66.9 ¢
SWEM [147] Image+VOS+DAVIS (0.25M) Mask x X 828 824 869 77 35
XMem [38] Image+VOS+DAVIS (0.25M) Video Mask x X - 86.1 85.1 89.¢
SiamMask [235] COCO+VOS (0.21M) Box x X 67.8 60.2 5 7.7
MiVOS [39] BL30K+VOS+DAVIS (4.88M) Mask x X 82.6 811 7.7 86.2
ReferFormer-B [245] RefCOCO(+/g)+VOS+DAVIS (0.13M) Text X X - ‘ : . ’
TAM-L [262] XMem+SAM (11.2M Multiple Points x X 89.4 - - - -
UNINEXT-T [258]  Image+Video (3M) Ceneralict Mask x X - 770 768 810 708 79.4
UNINEXT-L [258]  Image+Video (3M) eneratis Mask X X 781 791 835 710 789
UNINEXT-L [258]  Image+Video (3M) Text X X

Without Video Data

Painter-L [239] COCO+ADE+NYUv2 (0.16M) Mask v X 346 285 408 241 276 358 143 187
#5egGPT-L [240] COCO+ADE+VOC+... (0.25M) Mask v X 75.6 725 786 747 751 802 674 759
#PerSAM-L [290] SAM+DAVIS (11M) Generalist Mask X v 60.3 56.6 63.9 * * * * *
SEEM-T v v 604 57.6 633 51.4 55.6 44.1 592 469
SEEM-B COCO+LVIS (0.12M) Mask/ v v 62.8 595 66.2 538 60.0 445 635 472
SEEM-L v v 58.9 55.0 62.8 50.0 57.2 382 613 433

Table 5.4: Ablation study on interaction strategy. “#Iter” denotes the maximum training
iteration on interactive segmentation in a single forward. “Negative” means adding
negative tokens during interactive segmentation. “Scratch" means the model trains
from scratch.

. . COCO Referring Segmentation Pascal VOC DAVIS17
Ablation  Fix #lter Pos Neg | py  ap mioU cloU ool AP@S0  NoCR0 NoC90 JFE ] F
Baselime Y 0 <~ X |507 395 608 579 633 716 174 543 596 558 635
-LVIS v/ 2 v v |510 398 622 586 639 726 157 491 595 559 63.1
+ Negative v 0/ 7 |509 398 614 588 640 726 181 541 601 563 639
+Scratch X 3 v/ v |502 395 607 514 592 670 145 441 606 57.7 634

/1 7 7 |57 397 605 583 634 713 176 514 592 554 63.0
-+ ter v 2 v v |505 395 610 580 632 716 178 520 596 562 63.0
vV 3 / v |504 395 610 580 630 715 155 467 599 564 635
vV 5 V v |506 394 609 584 634 716 154 459 597 563 63.1

5.4.1 Main Results

Generic segmentation With one suite of parameters pre-trained on all the segmentation
tasks, we are able to evaluate its performance on generic segmentation datasets. As
shown in Table 5.1, SEEM maintains competitive panoptic, instance, and semantic
segmentation performance against strong baselines. Compared with generalist models
such as UVIiM [109], Pix2Seqv2 [26] and especially the recent model Painter [239]
and SegGPT [240], our approach significantly outperforms those methods on generic
segmentation with a margin around 10 points on panoptic segmentation metrics.

Referring segmentation As shown in Table 5.1, compared with other referring seg-
mentation and generalist models, SEEM achieves competitive performance. Notably, by
adding a visual compositional prompt, referring segmentation performance is improved
with a large margin by 10.5 cloU, 6.0 mloU, and 9.3 AP50 points for the tiny model. And
this gap is retained for the base and large model. Specifically, this number is computed
by class embeddings Of (Output-Q-Textual). The margin is even larger when com-
puted with mask embeddings O}" (Output-Q-Visual) as shown in Table 5.5. Further,
we benchmark the vanilla composition (Ensemble) that directly combines visual and
text mask output probabilities as shown in Table 5.5 row 2.

Interactive segmentation As shown in Table 5.1, our approach achieves compa-
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rable performance with the specialized models, e.g. RITM, SimpleClick, and better
performance than SAM [103] (B) which is trained with x100 more segmentation data
than ours. Notably, unlike existing interactive models, SEEM is the first interface that
supports not only classical segmentation tasks but also a wide range of user input types,
including text, points, scribbles, boxes, and images, providing strong compositional
capabilities as shown in Table 5.2,5.5.

Table 5.5: The term “Text/Visual Prompt’ refers to the modality of information utilized
in the study. ‘Output Query’ is indicative of the type of query employed to predict the
output. ‘Composition Approach’ specifies the method through which text and visual
information are integrated.

Text ~ Visual Output Composition Focal-Tiny Davit-Base Davit-Large
Prompt Prompt Query  Approach |cloU mloU AP@50 cloU mloU AP@50 cloU mloU AP@50
Y N Text N/A 584 634 716  63.0 682 767 624 67.6 75.3
Y Y All Ensemble | 63.0 60.0 669 693 66.6 743 689 655 727
Y Y Text Self-Attn 66.5 69.6 788 750 769 8.3 732 765 85.9
N Y Visual N/A 707 718 813 754 778 874 752 782 87.7
Y Y Visual Self-Attn 71.5 728 822 759 783 877 749 784 87.7

User input type of interactive segmentation In Table 5.2, we compare 1-IoU of SEEM
with other strong baselines SimpleClick and SAM with 5 common types of prompts
on three datasets. 1-IoU indicates the mean IoU of all images with a single click. The
prompt types include point, stroke, scribble, and box. The results show that our SEEM
achieves the best performance in the extremely limited number of clicks over all three
datasets.

Video object segmentation Without any modification, our model is able to do
(interactive) video object segmentation in a zero-shot manner through the visual prompt
(by replacing the current image visuals prompt with the visual prompts from another
image). As shown in Table 5.3, without any observation of DAVIS/VOS dataset [257,
185], our approach is able to achieve close performance in a zero-shot manner with a
fully supervised method on DAVIS17 dataset [ 185]. Meanwhile, our model is able to
do interactive video object segmentation on DAVIS16-Interactive [185] and achieves
comparable performance with the supervised baselines with one single click of the first

frame.

5.4.2 Ablation Study

We conduct an ablation study on all the training segmentation tasks and zero-shot video
object segmentation, dissecting each component of our model. The results are presented
in Table 5.4.

LVIS mask annotation will improve interactive segmentation results. We replace the COCO
mask with an overlap IoU larger than 0.7 with LVIS mask during training. This will
improve the performance on interactive segmentation with 0.3 and 0.2 point gain on
NoC0.9 and NoC0.85.



Figure 5.4: Click/scribble-based segmentation. SEEM supports arbitrary formats of
clicks or scribbles by users. Moreover, it simultaneously gives the semantic label for the
segmented mask, which is not possible in SAM [103].

Figure 5.5: Text to mask or text referring segmentation. The referred text is shown on
the masks. SEEM adapts to various types of input images in the domain of cartoons,
movies, and games.

Training from scratch only hurts referring segmentation performance. We compare the
SEEM model trained with X-Decoder pre-trained checkpoint or the checkpoint initial-
ized with UniCL or Florence vision and language backbone (+Scratch). It indicates that
training from scratch will slightly improve the performance on interactive segmentation
but hurt the referring segmentation performance.

Increase interactive training iterations does help. As shown in Table 5.4, increasing the
training iteration (the first N-1 iteration is without gradient) from 1 to 5 will gradually
improve the interactive segmentation performance from 5.41 to 4.59 on NoC0.9. As
the computation cost increases with more clicks, we use iteration 3 for the main paper

results.

5.4.3 Qualitative Results

We further qualitatively evaluate SEEM. Based on the proposed prompting scheme and
decoder design, with the same suite of parameters, SEEM supports a wide range of
visual input types.

Visual prompt interactive segmentation. In Fig. 5.4, we show the visualization of
using SEEM to segment objects in an interactive way. The user can segment objects
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Referring Image
Figure 5.6: Zero-shot visual referring segmentation with SEEM. Given a referring image
with simple spatial hints, SEEM can segment the regions which are semantically similar
in different target images.

Figure 5.7: Zero-shot video object segmentation using the first frame plus one stroke.
From top to bottom, the videos are “parkour" and “horsejump-low” from DAVIS [183],
and video 101 from YouCook2 [295]. SEEM precisely segments referred objects even
with significant appearance changes caused by blurring or intensive deformations.

of interest by simply clicking or drawing a scribble. Taking these prompts, SEEM can
simultaneously produce both masks and semantic labels for the objects. Note that our
model is open-vocabulary, which empowers it to label unseen categories when given
the candidate vocabulary (i.e., cheetah and butterfly in Fig. 5.4). When no vocabulary
is given, SEEM can segment in a class-agnostic manner.

Text referring segmentation. We show the text referring to segmentation visualization
results in Fig. 5.5. The results demonstrate that our model is semantic-aware of open-
vocabulary concepts and attributes to understand language. In addition, SEEM is able
to generalize to unseen scenarios like cartoons, movies, and games.

Visual referring segmentation. In Fig.5.6, we show SEEM’s segmentation results when
prompted with referring regions from another image. By simply drawing a click or
scribble on one referring image, SEEM can take it as input and segment objects with
similar semantics on other images. Notably, this referring segmentation has a powerful
generalization capability to images of other domains. For example, by referring to the
elephant in the forest, another object of the same category can be segmented well under
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drastically different scenes like cartoons, plush toys, and grassland.

Video object segmentation. In Fig. 5.7, we further show SEEM’s referring segmentation
ability on the video object segmentation task in a zero-shot manner. By referring to the
objects in the first frame with scribbles, SEEM can precisely segment the corresponding
objects in the following frames, even when the following objects change in appearance

by blurring or intensive deformations.

5.5 Conclusion

We presented SEEM, which can segment everything (all semantics) everywhere (all
pixels) all at once (all possible prompt compositions). Apart from performing generic
open-vocabulary segmentation, SEEM can interactively take different types of visual
prompts from the user, including click, box, polygon, scribble, text, and referring region
from another image. These visual prompts are mapped into a joint visual-semantic
space with a prompt encoder, which makes our model versatile to various prompts
and can flexibly compose different prompts. Extensive experiments indicate that our
model yields competitive performance on several open-vocabulary and interactive
segmentation benchmarks. Further studies revealed the robust generalization ability
of our model in accurately segmenting images based on diverse user intents. We hope
our work will serve as a stepping stone toward a universal and interactive interface for

image segmentation and beyond.
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Chapter 6

Interfacing Foundation Models’
Embeddings

Publication Statement. This chapter is joint work with Linjie Li, Jianfeng Wang, Jian-
wei Yang, Mingyu Ding, Zhengyuan Yang, Feng Li, Hao Zhang, Shilong Liu, Arul
Aravinthan, Junyi Wei, Yong Jae Lee, Lijuan Wang. The paper version of this chapter
appeared in arXiv 2023 [300].

We present FIND, a generalized interface for aligning foundation models” embeddings.
As shown in Fig. 6.1, a lightweight transformer interface without tuning any foundation
model weights is enough for unified image (segmentation) and dataset-level (retrieval)
understanding. The proposed interface has the following favorable attributes: (1) Gen-
eralizable. It applies to various tasks spanning retrieval, segmentation, efc., under the
same architecture and weights. (2) Prototypable. Different tasks are able to be imple-
mented through prototyping attention masks and embedding types. (3) Extendable.
The proposed interface is adaptive to new tasks, and new models. (4) Interleavable.
With the benefit of multi-task multi-modal training, the proposed interface creates an
interleaved shared embedding space. In light of the interleaved embedding space, we
introduce FIND-Bench, which introduces new training and evaluation annotations to
the COCO dataset for interleaved segmentation and retrieval. Our approach achieves
state-of-the-art performance on FIND-Bench and competitive performance on standard
retrieval and segmentation settings.
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Segmentation

This creature is the tallest land
animal, known for its exceptionally
long neck and legs, and distinctive
coat of brown patches separated
by lighter lines. It is native to
Africa, where it browses on the
higher branches of trees, primarily
feeding on leaves and shoots.

Generic Segmentation Long-Context Segmentation Interactive Segmentation

Interleave Grounding

Input Lﬂ (is skiing) [ontheslope] under)g \"ﬁ (is skiing) [ontheslope (under)g t& (is surfing on) ’

A man§ red jacket and awoman A skillful surfer is ridi surtboard

also in A red jacket are standingon  on a small wave in the vast ocean,

a snow-cpvered slope, each holding showcasing his ability to balance
= asnowbourd. They are preparingto and control the surfboard.

~ slide down the snowy mountain

under the bright blue sky.

 preparingto Y
mountain

[ oy |
S (is sitting on) [a wooden bench]. Change to B
[ * c

Figure 6.1: The proposed FIND interface is generalizable to tasks that span granularity
(pixel to image) and modality (vision to language) with an interleaved representa-
tion space. Our approach is not only effective for in-domain tasks such as generic
segmentation, interactive segmentation, grounded segmentation, etc., but it is also
generalizable to downstream zero-shot tasks including cross-image interleave retrieval
and text grounding. The search space for the retrieval task here is the COCO validation
set.

6.1 Introduction

X-Decoder SAM Interleaved Multimodal:
Vision Encoder Wikitom Eireerter Segmentation Retrieval Grounding [Adog] (is sitting on) [a wooden bench]. .‘f‘;
I} ot 4 A A -
~ Vision and language
)./ FIND_Interface embeddings are identical.
1 A A Interleaved:
LLaMA Gemma Phi2 —
Language Encoder Language Encoder Language Encoder [@ " (issittingon) [awooden bench].
(1) Interface on Foundation Models (2) An Interleave Query

Figure 6.2: (1) The concept of interfacing foundation models embedding, the black
arrow means active attached modules and the gray arrow means the option that it can
switch to. (2) The concept of Interleaved v.s. Multimodal.

With the exhilarating progress in foundation models across the vision and language
domains, such as GPT4(V) [176], DALLE-3 [177], SAM [103], and LLaMA [223], etc.,

we have reached a stage where deep learning models achieve remarkable performances
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on both vision and language domains [14, 122]. Specifically, models like GPT-4(V) [176]
have showcased human-level perception and reasoning skills [274].

Recent studies such as LLaVA [149] and BLIP [127] have extensively investigated
the use of foundational models for visual Q&A tasks. Both BLIP and LLaVA process fea-
tures from vision foundational models through a language decoder, treating the visual
features purely as text tokens. This approach, however, neglects the potential for foun-
dational model embeddings to interact in a more integrated manner (e.g. interleaved).
Additionally, by focusing solely on visual Q&A, these models limit their capability to
a specific input-output type, disregarding the inherent flexibility and adaptability of
foundational model embeddings.

In this work, we aim to expand the output space (e.g. extend to pixel-level output)
of foundational models, unlocking their potential for interleaved understanding and
reasoning. To accomplish this, we introduce an INterface for Foundation models” em-
beDdings (FIND), which utilizes the pre-trained foundational model embeddings to
jointly handle downstream tasks of varying granularities (from pixel to image) in an in-
terleaved manner. This interface facilitates task-adaptive prototyping, meaning that only
the configuration file needs to be modified - not the model architecture - when adapting
to new tasks. As all vision-language tasks are trained uniformly, an interleaved shared
embedding space is created where vision and language references can be interchanged
and augmented. For instance, as depicted in Fig. 1, we can process queries where text
and images jointly describe a scenario. Furthermore, we anticipate that this interface
can bridge pre-trained foundational models from various modalities. For example, by
interfacing SAM and LLaMA, we can associate SAM features with semantic meanings.

To more effectively align and evaluate the interleaved embedding space, we construct
anew dataset named FIND-Bench. This dataset utilizes COCO images and includes new
annotations for integrated grounding and segmentation. Interestingly, these annotations
are directly generated from GPT-4, which does not take in any visual input. Despite its
lack of visual input processing, GPT-4 can directly link specific segments of generated
image descriptions with their corresponding COCO annotation IDs. For instance, it
can associate the phrase ‘the white dog” with the annotation ID of the white dog in the
image. This unique capability enables the creation of training and evaluation datasets
for retrieval and grounding in an interleaved context.

In summary, we make the following contributions:

e We introduce the FIND interface, designed to enhance the potential of foundational
model embeddings for more downstream tasks.

e The proposed FIND Interface is generalizable, flexible, and extendable to various

tasks and foundation models.
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e An interleaved shared embedding space is created for foundation models through
the unified interface.

e We propose a new Benchmark, FIND-Bench, which includes new training and

evaluation ground truths for interleave segmentation and retrieval.

e Our model achieves SoTA performance on interleaved image retrieval and seg-
mentation and shows better or comparable performance on generic, interactive,

and grounded segmentation and image-text retrieval.

6.2 Related Work

Foundation Models. Recent years have seen a speedy evolution of foundation models
in diverse areas such as computer vision [277], natural language processing [226, 46,
13, 176], and their interactions [3, 127, 267]. For example, GPT-3 [13] heralds break-
throughs in natural language understanding and generation tasks, like text completion,
translation, summarization, and question answering. As a vision foundation model,
Florence [277,249] can be easily adapted for various computer vision tasks, such as clas-
sification, retrieval, object detection, VQA, image captioning, video retrieval, and action
recognition. Flamingo [3] bridges powerful pre-trained vision-only and language-only
models by token fusion with cross-attention. BLIP-2 [127] proposes an efficient pretrain-
ing strategy that bootstraps vision-language pre-training with a lightweight Q-Former
in two stages.

Given those different foundation models in various modalities, we believe that LLMs
and vision models can be unified in the embedding space. Different from previous
multi-modal approaches, such as Flamingo [3], LLaVA [149] and Q-Former (BLIP-
2) [127] that feed the vision foundation model output into a language decoder and use
the LLM as an interpreter, our goal is to interface foundation model embeddings.
Interleaved Image-Text Understanding. Previous works have explored interleaved
visual understanding in the context of visual question answering, visual dialogue, image
captioning, and interleaved image retrieval [107, 62, 3]. In addition, recent works [280]
explore contextual detection that associates phrases with visual content in a sentence.
Although these works reveal interleaved capabilities for image understanding, they lack
an evaluation benchmark, as well as a complete training dataset. Though [296, 116, 4]
propose a new benchmark on interleaved generation and understanding of image and
document level, there is no benchmark available for the interleaved tasks between
interactive image parts and phrases.

To this end, we introduce the interleaved segmentation and interleaved retrieval tasks
with our carefully designed benchmark FIND-Bench. We further propose our approach

which uses masked attention to control different tasks, and we prototype the attention
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procedure following a protocol with adaptive retrieval, segmentation, and grounding
in an interleaved manner. Compared to works that use masked attention [127, 302] to
fuse the vision output and LLM input, we care more about interfacing and unifying
foundation models” embeddings, i.e., an LLM acts as both the encoder and decoder.

Image Understanding. Vision Transformers [80, 222, 237, 208, 246, 49, 67, 281, 194,
198] have dominated a wide range of key image understanding tasks, such as image
retrieval, detection, and segmentation, by applying self-attention to a sequence of image
patches. Some multimodal methods [31, 133, 288 ] have shown good performance for
retrieval tasks. However, they are not able to handle pixel-level understanding tasks,
like instance segmentation. On the other hand, open-vocabulary segmentation methods
have recently drawn much attention, including generic segmentation [23, 302, 48],
interactive segmentation [66, 103] that separates objects by actively integrating user
inputs, and grounded segmentation [302, 299] that grounds object segments from
language descriptions. In this work, we propose FIND as a unified interface that can
support all the above tasks, while maintaining good performance, and further enabling
two new tasks of interleaved segmentation and interleaved retrieval. We unify these

tasks by interfacing foundation models” embeddings.

6.3 FIND Approach

To bridge the embedding spaces of vision and language foundation models, we develop
the FIND Interface, which seamlessly assembles multi-modal embeddings at the se-
mantic level. In this section, we motivate and provide details of our FIND-Interface.
The model pipeline possesses the following valuable properties (see Fig. 6.3.b): (1)
It should be able to sample features from the foundation model embeddings for the
corresponding task (Embedding Sampler). (2) Those sampled embeddings should be
effectively interact with each other for corresponding tasks in a unified manner (FIND-
Interface). (3) The output embeddings can easily be decoded for the corresponding
tasks (Projection and Task Head).

6.3.1 Preliminary

To begin, we first introduce a unified definition (Fig. 6.3.a) for the downstream tasks
we explore in this chapter. We believe that segmentation, grounding, and retrieval can
all be generalized to a similarity mapping problem of the embeddings, where each
embedding is associated with an output (e.g. an image, a sentence, a segmentation
mask). Formally, we define:

Selected Output = arg max(O x OT)
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Figure 6.3: (a) Task Unification illustration. (b) FIND approach pipeline. The shape of
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represents different input information. (c) Detailed architecture of the FIND Interface.

where O is output embedding corresponding to the squares and circles in Fig. 6.3.a The
selected output could be the corresponding text sentence for an image query in image
retrieval, or selected segment in an image for a grounding sentence, etc.

Having established the task definition, we proceed to define the inputs. For each task
supported by FIND, we define the inputs as F' = {fa, fo, ... f}, T = {ta, tp, ..., 1.},
P={pspp, 02}, Q@ = {04 90, -, 9.}, where F, T, P, () are features, tokens, proposals,
and queries, respectively. The subscripts {a, b, ..., 2} denote the embedding used for each
task such as grounding proposals (p.grounding), class queries (g.class), etc. as shown
in Table 6.1. Each task also contains two attention operations: content attention and
conditional attention. Below, we formally define each embedding type and operation:

e Features: Image and text features that are directly predicted by foundation models.
e Tokens: Content embeddings that are sampled from the image, and language features
using an embedding sampler (e.g. corresponding to a region of an image referred by
human click or a portion of a sentence for an entity).

e Proposals: Blank embeddings decomposing information from features used as the out-
put proposals, with shape [n, d] where n is the proposal number, and d is the embedding
size. (e.g. The squares shown in Fig. 6.3.a.)

e Queries: Blank embeddings compress information from features or tokens directly
used for output, with shape [1, d] where d is the embedding dimension. (e.g. The circle
shown in Fig. 6.3.a.)

— Content Attention: Attention operations that allow proposals and queries to gather
information from features and tokens given attention mask.

— Condition Attention: Attention operations that allow proposals and queries to condition

on specific information (e.g. token embeddings) given attention mask.
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6.3.2 Pipeline

Our model is designed to interface with a pair of arbitrary vision and language founda-

tion models.

Embeddings Preparation Given the input image I and input text T, the vision encoder

V and language encoder L encode the image and text into features, respectively:
f.image = V(I), f.text = L(T> (61)

Similar to SEEM [302], we use an embedding sampler to sample customized vision
and language tokens from features for a specific task or human prompt given the sam-
pling coordinates coor. After sampling, we obtain ¢ jmage, t text = Embedding_Sampler( fimage, ftext, coor
In addition, the embedding sampler is also responsible for sampling learnable queries
and proposals from the embedding pool. Given learnable queries ¢ (e.g. with shape
[1,512]), and proposals p (e.g. with shape [1,512]), the task-specific queries and pro-
posals are sampled by the indices idz through ¢, px = Embedding_Sampler(q, §, idx).
The embedding sampler is an interpolation or grid sample layer that samples tokens
from features and blank learnable embeddings. We show the specific embeddings that

are used for each task in Table 6.1.

FIND Interface After the embeddings are prepared for each task, we define the task-
specific attention mask for both content and conditional attention. Given an arbitrary
Input = {f.a, ..., frzsteas -oostzy Dy s D2y Qeas -5 €. 1, the attention mask is a 2D binary
matrix M, with shape [len(input), len(input)], where the positive attention region
is defined in Table 6.1 in the columns of content attention and condition attention.
For example, g.image : f.image means the attention mask is positive in the direction
of g.image < f.image where image queries can see image features. As shown in
Fig. 6.3, the FIND interface takes in only task-specific embeddings and attention masks
and output queries and proposals for outputs. We illustrate the detailed operation in
Sec. 6.3.3.

Projection The outputs of FIND interface are a set of queries and proposals: Output =
{p-as s D-2s Qas -5 ¢.. . We then project the output using linear layers, Lenantic and Ly;zer,
to obtain semantic or pixel outputs: O; = Lyesmantic(Output), O, = L, (Output). The
semantic outputs are used for retrieval and semantic mappings, while pixel outputs are

used for mask prediction.

Task Head With the projected embeddings, each task can be represented as a similarity

mapping procedure. The proposal masks (M, posar), proposal similarity scores (P.2 ),

87p
sim

and query similarity scores (Qy;",) are defined as:
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PSJ) U stm — O{Svp} X O{3>p} (6.2)

sim sim
Mproposal = 0¥ x f.image (63)

S,P

where we abuse the symbol of U to note P}” and Q7 are computed in the same way.

For each task, the output is a combination of P} , and Q7 , where the similarity scores
define the selected proposals in P, or selected queries () across the dataset. In addition,
each proposal is associated with a mask, which gives pixel-level output for P3"

sim*

6.3.3 Interface Operators

The FIND Interface contains two main operators which are attention layers. Content
attention defines the operation that gathers information through a certain search space
defined by the attention mask, and conditional attention further constrains the search
space. Here, when we mention gathering information, we denote the abstract proce-
dure that proposals and queries are attending with corresponding features and tokens
through attention layers. After which the proposals and queries are the weighted sum
of corresponding features” and tokens’ embeddings. We formally define the content and
conditional attention as follows, in which the ¢, k, v are the same for each attention. As
shown in Fig. 6.3.b, the interface operators are a stack of modules that contain content
and conditional attentions, thus we use {};, and {} ;1 to denote the current and next
layer variables.

Tt, Pt, Qt = Cont_Attn([Pt, Qt, F, E], Mé) (64:)
Pii1,Qq, Tip1 = Cond_Attn([ B, Q, T3, Mf) (6.5)

where Cont_Attn, and Cond_Attn denote content and conditional attention, while M/,
and M¢ denote attention mask for Cont_Attn and Cond_Attn.

Given the embeddings, pipeline, and operators defined above, we show the proto-
type for each task in Table 6.1. To be more understandable, we give a case study for

interleave segmentation under our prototypable framework.

6.3.4 Case Study: Interleave Segmentation

As shown in Table 6.1, interleave segmentation makes use of both proposals and queries
denoted as p.entity and g.entity that are sampled from the learnable embeddings, with
shape [100, 512] and [n, 512], where n is the total number of entities queried in the image.
In addition, interleave segmentation also uses spatial and interleave tokens denoted by

t._spatial, t.interleave.
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Table 6.1: Multi-Modal Interface. We define each task under the prototype of the
interface that enables a shared embedding space, and a unified and flexible architecture
for future tasks. Where p, ¢, t, f stands for proposals, queries, tokens, memories, and
teatures. The colors red, blue, and yellow mean embeddings of vision, language and
interleave modality. “y:x" denotes that in the attention module, the attention mask is
visible between y and x in the unidirectional manner which means x is visible to y.

Task Embeddings Operators

Proposals Queries Tokens Content Attention Condition Attention Projection
.object: f.
Generic Segmentation object class ‘ class pqocljic 1lm:g;e p:p, 49:q, t:t Pixel, Semantic
. ass: t.class
Grounded Segmentation | grounding description description p.grounding: £.inage PiP, 4:q, Tt Pixel, Semantic
q.description: t.description | p.grounding: t.description
.i HE
Image-Text Retrieval image, caption caption 4 1r’nage 1ma%e P:p, 9:q, t:t ‘ Semantic
q.caption: t.caption
o t:f.d ip, q:q, t:t . q
Interactive Segmentation segment spatial spatial P seg@en 1mage PP, 4iq . Pixel, Semantic
q.spatial : t.spatial p.segment : t.spatial
p.entity: f.image B . £t
Interleave Segmentation entity entity interleave, _spatial q.entity: t.interleave PP, did, T Pixel, Semantic
- : . p.entity: t.interleave
t.interleave: t._spatial

q.image: f.image
Interleave Retrieval = image, interleave interleave, spatial | q.interleave:t.interleave P:P, q:q, t:t Semantic
t.interleave: t._spatial

The spatial tokens are sampled from image features f.image with t._spatial =
Embedding_Sampler( fmage, coor), where corr is the spatial mask coordinates. t.interleave
is the identity mapping of f.text, where the spatial entities are represented with [INTER-
ACTIVE]. We formally define input = {q.entity, p.entity, f.image, t._spatial,t.interleave}.
According to the operators’ column in Table 6.1, we can represent the attention mask in
the following format:

(6.6)

S

Il
o
oA
o
SRR B s>
oA

s

Il
R R
N A
N H T
= DA

F F F T F

The index of matrix coordinates follows the input order, and there is no f.image
involved in M¢. The corresponding attention mask for each task is shown in Fig. 6.3.c.
We then compute P,Q = FIND(input, M, M?), where P = {p.entity}, Q = {q.entity}.
Then, we project P, Q to the corresponding space with O, = {p,.entity, g;.entity} =
Lemantic({ P, Q}), and O,, = {p,.entity, gy.entity} = Ly ({P, Q}).

After we get the projected embeddings on semantic and pixel space, we compute

the similarity between queries and proposals:

S
sim

= ps.entilty X qs.entity (6.7)
Myroposal = pp-entity x f.image (6.8)

where P?,  is the similarity between proposals and queries on semantic space with

Stm

shape [100, n], and M, oposa: is the mask for each proposal. We compute the index for the

S
sim)

proposal with P;4, = argmax( dim = 1). And the final output mask for interleave

segmentation is computed as Mouiput = Mproposat [Pida -
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Figure 6.4: Example ground truth for FIND-Bench. (a) Grounded captions for COCO-
Entity training set. (b) Grounded captions together with interleaved visual references
for COCO-Entity validation set. (c) Grounded captions for COCO-Paragraph validation
set. (The interleaved visual references are omitted due to space limit.)

6.4 FIND Bench

In order to evaluate the capability of interleaved visual understanding, we propose a
new benchmark called FIND-Bench. This includes a fully annotated dataset for both
training and evaluation, featuring pairs of images and interleaved entity-based query,
as shown in Fig. 6.4. FIND-Bench supports two new tasks, interleaved image retrieval
and interleaved grounded segmentation, which we introduce in detail below.

6.4.1 Task Definition

Interleaved Image Retrieval Let / and 7" denote image and text, respectively. We define
a search query as a sequence () = {q1,¢2, . .., ¢}, Wwhere g can be either an instance
of /; or T;. An example could be “A person with a red shirt is playing with [IMAGE]
on the grassland.”, where [IMAGE] is an image. The search space, represented as
S={h,I,...,I,}, is an image dataset.

Interleaved Grounded Segmentation Similar to interleaved image retrieval, we again
define I as images, S, T as texts, where I, S represents entities (e.g. image reference,
“a person”), and T represents text connections. The search query is formulated as a
sequence @ = {q1.q2, ..., ¢}, ¢ € {I,5,T}. And the search space is all the segments
for an image {01, 09, ... 0,}. The objective is to find the corresponding o; in the image
for each instance of I, S in the query Q).

6.4.2 Dataset

Data Engine We create this new dataset on COCO images with ground truth labels,
including captions and panoptic segmentation annotations. In addition, we leverage
LLaVA [149] to generate detailed captions as instance-level pseudo-ground truth, and
GPT4 as the augmentation engine. We show the pseudo-code of the data engine in
Algo. 1, where GPT4 takes in all provided text information to generate entity-associated
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Algorithm 2 Pseudo code for Data Engine.

# Inputs: llava_cap, coco_cap, coco_pano, lvis_inst; Annotation of single image from multiple
source.

13 def data_engine(llava_cap,coco_cap,coco_pano,lvis_inst):
14 Content = ‘‘‘generate image captions with grounded entities and attributes with following:
pseudo image description: <{}>,
ground truth image captions: <{}>,
ground truth bounding boxes (x0,y0,w,h): (x0,y0) is the coordinate of the top-left corner,
(w,h) is box size),
category_info, and entity_id: <{}>,
entity_proposal: <{}>,
an example output format would be: "(entity_id)<A woman> sitting next to (entity_id)<a
handsome man>, with their hands holding together under (entity_id)<the blue sky>.",
where (entity_id) and <xxx> are associated with the ground truth bounding boxes.
entity_id is the real id number in the ground truth bounding boxes. generated caption
constraints: 1. xxx; 2. xxx; ’’7.
format(1llava_cap, coco_cap, coco_pano, lvis_inst)) ;output = GPT4(content)

captions. Finally, we use SEEM to find the most visual-like cross-image instance for
the labeled entity in each image. The pseudo-ground truths are verified by humans for
quality control.

Statistics As shown in the table below, our proposed dataset contains 118k training
images, 5k validation images, together with 300k training captions, and 1000k training
entities. Notably, each entity is associated with a bounding box, mask, phrase, or visual
reference to support both text and interleaved grounding.

Training Evaluation Entity Association
Images Captions Entities Images Captions Entities|Mask Phrase Visual

COCO-Entity 118189 353219 1104907 4990 4990 15305 | v v 4
COCO-Paragraph - - - 4981 4981 22569 | v/ v 4

6.5 Experiments

Datasets We use COCO [145] as our main training and evaluation dataset, which spans
diverse annotation types. In addition to COCO-panoptic, we make use of the annotations
from Ref-COCO [272, 164, 175], COCO-Karpathy [99], and the proposed COCO-Entity
dataset. Unless specified otherwise, our model is jointly trained on all tasks listed in
Table 6.1.

Settings We benchmark our method on three different sizes: Tiny (FocalNet), Base (Davit-
d3), and Large (Davit-d3) models. The vision backbone reuses the X-Decoder pre-
trained weights, unless otherwise specified as SAM. The language pre-trained weights
are LLaMa, unless specified as UniCL. During training, we fixed the vision and language
encoders and only train the FIND-Interface.

Evaluation Metrics We evaluate all the tasks with their standard evaluation metrics. For
the newly proposed interleaved image retrieval task, we use IR@5 and IR@10 (Interleave-
to-image Retrieval precision at rank 5/10) as the evaluation metrics. For interleaved



86

Table 6.2: Benchmark on general multi-modal understanding tasks with one model
architecture with joint training for all. In the 2nd and 3rd columns, we compare the
training dataset for each method, as well as whether the tasks are jointly trained for
producing the results. *Unlike X-Decoder and FIND, SEEM is trained with a deformable
vision encoder. We report both the ensembled and the decoder retrieval results for
X-Decoder (un-ensemble/ensemble), and the finetuned and pre-trained results for blip2
(finetuned/pre-trained). Note that we compute the ITC score for blip2 instead of ITM.

Generic Grounded Interactive Segmentation Tmage-Text Retrieval
COCo RefCOCO-g COCO-Entity COCO-Paragraph Pascal VOC COCO-Karpathy COCO-Entity COCO-Paragraph
Data Joint| PQ mAP  mloU |cloU mloU cloU mloU cloU mloU |Point Circle  Box R@1 TR@I IR@1 TR@1 R@1 TR@1
*Mask2Former (T) [35] COCO (0.12M) - [532 433 632 = - - - - - - - - - - - - -
*Mask2Former (B) [35] COCO (0.12M) - |564 463 671
*Mask2Former (L) [35] COCO (0.12M) - |57.8 486 674 = = - - - -
Grounding-SAM (H) [155]  Grounding (5M) v | - - - - - 89 577 561 566 - - -
SAM (B) [103] SAM (11M) - |- - - = = = - - - 582 - 618
SAM (L) [103] SAM (11M) - |- - - = = = - - - 681 - 635
*SEEM (T) [302] COCO+LVIS (0.12M) X |50.8 397 622 |609 657 543 561 526 546 |835 86.0 718
*SEEM (B) [302] COCO+LVIS (0.12M) X |56.1 464 663 |650 696 572 587 561 574 |87.3 888 755
*SEEM (L) [302] COCO+LVIS (0.12M) X |575 477 676|656 703 548 578 538 567|885 896 76.5 - - - - - -
X-Decoder (T) [299] COCO+ITP (412M) X |526 413 624 598 - 40.7 /495 55.0 / 667 465/ 52.6 48.0 / 556 548/ 62.3 585 /
X-Decoder (B) [299] COCO+ITP (412M) X |562 458 660 |645 * - - - - - - - 50.2 /545 66.8 /712 49.2 /569 51.3 /58,1 581/ 67.5 625/
X-Decoder (L) [299] COCO+ITP (412M) X [569 467 675 |646 * - - - - - - - 564 /586 73.1 / 76.1 58.1 / 60.0 59.9 / 62.7 58.7 / 71.6 72.0 /
CLIP/ImageBind (H) [62, 41] 7| = - - = = = - - E - - - 494 659 534 576 596 648
FROMAGe (L) [107] CC (12Mm) x| - - - = = = - - - - - - 275 37.8 274 331 328 413
BLIP-2 (L) [127] COCO+IPT (130.1M) X | - - - - = = - - - - - - 63.4 /591 744 /652 591/ 565 598/ 564 663 /646 658 /
FIND (T) COCO (0.12M) v |50 423 620 |6l1 653 685 625 650 594 |843 858 74.5 40.4 53.0 51.0 515 61.2 62.9
FIND (B) COCO (0.12M) v |55 490 657 |653 693 695 630 672 601 |83 880 75.0 458 60.6 563 56.7 655 69.1
FIND (L) COCO (0.12M) v |567 508 674 | 659 705 697 642 666 612 | 885 895 774 463 619 572 582 672 686

Table 6.3: Benchmark on interleaved understanding with the jointly trained model with
one set of weights. We conduct solid experiments on baselines approach ImageBind,
FROMAGe, and BLIP-2, where we exhaustively try the best settings.

Interleave Segmentation Interleave Retrieval Generic Segmentation
COCO-Entity COCO-Paragraph COCO-Entity COCO-Paragraph Class Visual Context Description
cloU mloU AP50 cloU mloU AP50 IR@5 IR@10 IR@5 TR@5 PQ mAP mloU PQ mAP mloU PQ mAP mloU
Mask2Former (L) [35] - - - - - - - - - - 578 486 674
Grounding-SAM (H) [155] - - - - - -
CLIP/ImageBind (H) [62,41] | - - - - - - 51.4 613 58.7 68.9
FROMAGe (L) [107] - - - - - - 241 342 26.0 36.6
BLIP-2 (L) [127] - - - - - - 20.8 / 258/ 221/ 27.1/ - - - - - - - - -
X-Decoder (T) [299] - - - - - - 23.6 322 25.6 35.5 526 413 624 - - - 185 159 225
X-Decoder (B) [299] - - - - - - 26.7 35.8 32.1 420 56.2 463 671 - - - 208 150 247
X-Decoder (L) [299] - - - - - - 26.8 36.2 322 43.4 57.8 486 674 - - - 235 21.1 217
SEEM (T) [302] 676 672 758 659 657 744 - - - - 50.8 39.7 622 - - - 186 157 16.0
SEEM (B) [302] 694 692 778 692 686 773 - - - - 56.1 464 663 - - - 229 21.6 200
SEEM (L) [302] 683 690 775 677 684 770 - - - - 56.9 46.7  67.5 - - - 240 264 187
FIND (T) 749 681 795 732 664 777 435 57.1 494 63.9 51.0 423 620 418 323 516 195 302 355
FIND (B) 763 697 818 751 68.0 79.7 51.4 64.6 60.5 73.4 555 49.0 657 471 367 536 165 267 267
FIND (L) 763 697 817 747 686 79.7 53.4 66.7 62.7 75.0 56.7 50.8 674 495 389 571 270 312 268

grounded segmentation, we evaluate based on cloU (pixel-wise IoU), and mloU (image-
wise IoU).

Baselines We evaluate ImageBind [62], FROMAGe [107], BLIP2 [127] for the inter-
leaved retrieval task, and Grounding-SAM [155] for interleaved (text-only) grounded
segmentation on FIND-Bench. We make every effort to design the pipeline to achieve

the best possible performance for the baselines.

6.5.1 Main Results

In the main experiments, we evaluate the capability of FIND on both general multi-
modal settings and interleaved settings.

Comparison on standard multi-modal settings. Table 6.2 compares FIND with strong
baselines on generic segmentation tasks including panoptic segmentation, instance seg-
mentation, and semantic segmentation. In addition, we demonstrate the segmentation
capability in both referring segmentation (RefCOCO-g: one sentence is associated with
one instance) and grounded segmentation (COCO-Entity and COCO-Paragraph: one
sentence is associated with multiple instances) settings. Moreover, we also benchmark

FIND'’s performance in image-text retrieval on three different ground truth types on
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COCO, where the average sentence length for the splits (Karpathy, Entity, and Para-
graph) gradually increases. Below are the takeaways:

The instance segmentation result stands out: When compared with models of similar archi-
tecture, such as Mask2Former, X-Decoder, and SEEM, our approach with a large vision
encoder performs extremely well on instance segmentation. It achieves a performance
that is 2.2 points higher than Mask2Fomer (L), which makes use of deformable convolu-
tion as well. Note that the segmentation training data is identical between Mask2Former
and FIND. The performance gain is likely because we have a fully unified segmentation
and grounding pipeline so that the semantic ground truth from each domain is mutually
beneficial.

Grounded segmentation and referring segmentation are mutually beneficial: In FIND, we
formulate both grounded segmentation and referring segmentation in a unified way, so
that alanguage description query is attended with language tokens to gather information
spanning the language token range. Afterwards, a similarity map is computed between
the language description query and segment proposals. The matched proposal is finally
used for predicting the mask. As shown in Table 6.2, in addition to state-of-the-art
performances on both COCO-Entity and COCO-Paragraph, our model also achieves
the best result over strong baselines on Ref-COCOg dataset, including SEEM which is
trained with deformable convolution.

Interactive segmentation performance is preserved in the unified settings. Unlike SEEM which
is only trained on image-only tasks, FIND is trained also on image-text tasks, such as
image-text retrieval. With the splitting design of proposals and queries, the training
in interactive segmentation and image-text retrieval is independent at the embedding
level. Thus, it enables our approach to achieve competitive performances (i.e. FIND
88.5/89.5/77.4 vs. SEEM 88.5/89.6/76.5).

The “less fascinating" results on image-text retrieval: The main reason for the sub-optimal
solution of our approach on image-text retrieval is caused by the batch size during
finetuning. All the models are trained jointly for all the tasks, to create the interleaved
shared embedding space between image, object, word, and sentence. Pilot experiments
in X-Decoder have shown that training with different resolutions such as 1024 for image
and 224 for language does not generalize well across granularities (e.g. 1024x1024 image
will perform poorly on image text retrieval, 224x224 image cannot be well segmented).
Thus, in FIND, we train our model with the same resolution for all tasks. In Table 6.2, all
the models are either 384x384 with batch size 384 or 1024x1024 with batch size 192 for
all tasks. Note that all other tables show results with the model with 640x640 training
resolution and 192 batch size. Our approach achieves competitive performance on
COCO-Entity and COCO-Paragraph compared with strong baselines.

Comparisons on interleaved settings. In Table 6.3, we evaluate FIND on the interleaved

image and pixel level understanding tasks on FIND-Bench. Different from COCO-Entity
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Table 6.4: Ablation study on different foundation model architectures.

Generic Segmentation Grounding Interactive Retrieval

Class Description g-Ref VOC |COCO-Karpathy
Vision Language PQ mAP mloU PQ mAP mloU cloU 1-IoU |IR@1 TR@1
X-Decoder (T) [299] UniCL [260] {48.5 39.0 614 124 20.7 189 61.3 82.6 40.4 54.0
X-Decoder (T) [299] LLaMa [223](48.5 389 612 195 302 355 61.6 82.5 40.2 52.2
SAM (B) [103] UniCL [260] (42.5 37.6 53.6 45 177 179 64.9 81.6 29.1 39.5
SAM (B) [103] LLaMa [223](42.5 369 53.0 6.1 15.6 16.6 58.9 81.5 27.0 35.5

and COCO-Paragraph in Table 6.2, the entity in the text is randomly replaced with
visual content with 0.5 probability.

Interleaved Segmentation: We build an interleaved segmentation baseline using the SEEM
model. Instead of formulating the grounding task in a sentence that SEEM doesn’t
support, we simply separately infer each entity for either interactive or grounding for
SEEM. As shown in Table 6.3, FIND outperforms SEEM with around +8 points on both
COCO-Entity and COCO-Paragraph under cloU metrics.

Interleaved Retrieval: Apart from interleaved segmentation capability at the image level,
we also explore the cross-image interleaved retrieval capability that is a zero-shot task
to the current settings. As the interleaved reference objects are also selected from COCO
val2017 sets, IR@1 is not meaningful, thus we only report IR@5 and IR@10 results. For
ImageBind and BLIP-2, we use the ensemble scores of all the texts, sentences, and
images. We follow the original settings of FROMAGe to perform interleaved image-text
retrieval. Our performance is substantially higher than the proposed baselines, which
again indicates the effectiveness of our interleaved shared embedding space.

Generic Segmentation: In addition to the classic evaluation on generic segmentation with
class names or fixed index, here we replace the categories with either class descriptions
(a long description without the corresponding class name) or visual prompts (an
average feature for the object embeddings in each class). With the benefit of LLMs,
FIND can perform much better on description-based generic segmentation. This is quite
intuitive, that a large language model has a smoother representation when describing
the same thing in multiple ways. In addition, an LLM is better at dealing with long

context. In addition, we also showcase that FIND is usable in the visual context setting.

6.5.2 Ablation Study

We ablate our approach in three perspectives: (1) How well the proposed interface is
generalized to different foundation models. (2) What is the effectiveness of each task
in the unified pipeline? (3) The effectiveness of using intermediate layers of the LLM
representation.

Apply to different foundation model architectures: In the main experiments, we use X-
Decoder as the vision encoder, and LLaMA as the language encoder, which shows

convening performance on all the benchmarks. X-Decoder has been trained to pair up
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Table 6.5: Ablate on each training task and language encoder feature level.

COCO g-Ref Entity | VOC | Karpathy Entity
PQ mAP mloU | cloU cloU | Point | IR@l1 TR@1 IR@1 TR@1

All 485 39.0 61.4 61.3 73.0 82.6 | 40.4 54.0 50.8 51.9
- Retrieval | 48.5 39.0 61.1 60.6 73.2 82.8 - - 443 4438
Task - Grounding | 48.6 39.1 61.3 - 40.9 82.8 - - 453  46.2
- Interactive | 48.6 38.8 61.0 - 36.5 - - - 314 334

- Interleave | 48.9 39.3 61.0 - - - - - - -
[-1] 483 39.1 61.2 61.3 73.0 82.6 | 38.9 52.2 50.3  50.8
Languagd [-6] 47.8 38.8 60.4 60.3 72.9 81.3 | 38.1 499 481 47.5
Level [-12] 48.5 39.0 61.4 61.3 73.0 82.6 | 404 54.0 50.8 51.9
[-18] 482 39.0 61.1 62.2 72.6 82.2 | 40.1 52.7  50.6 50.5
[-24] 485 388 615 | 616 729 | 826 | 402 522 505 513
[-30] 48.1 39.2 61.1 60.1 73.3 824 | 379 493 494 50.0

vision and language embeddings, however, SAM is only trained on segmentation data
without any semantic meaning. Thus, we use SAM as an ablation foundation model, to
study how important is vision encoder trained with semantic data. For the language
encoder, we adopt UniCL which has the same size as Bert to study the difference between
a standard language encoder, and an LLM encoder. As shown in Table 6.4, UniCL and
LLaMA usually have very similar performance with X-Decoder as vision encoder, except
that LLaMA is extremely effective for language description. Although the performance
of SAM is much worse than its counterpart X-Decoder on semantic understanding after
aligning the interface, our approach also shows that without any modification to SAM,
it applies to semantic understanding tasks on generic, grounded segmentation, and
image-text retrieval.

Independent task effectiveness: We explore the independent task effectiveness by gradually
removing a task in Table 6.5. Removing image-text retrieval hurts interleave retrieval
performance (we actually don’t train with cross-image visual prompts) by a great mar-
gin. Additionally, further removing the grounding task also decreases the performance
of the entity-based grounding task. As interleave grounding is highly related to in-
teractive segmentation, removing interactive segmentation also decreases interleave
segmentation performance. Last, when only panoptic segmentation is trained, the
performance is very similar to other settings, which indicates that the unified interface
is consistent with the procedure of training the basic understanding task.

Varying the feature embeddings layer for LLM: The large language model takes in language
tokens as input and outputs the generated text based on the input contents. Thus, it is
easy to think that the LLM embeddings would be less semantic near both the input and
output layers. However, we believe that the intermediate feature layers would be best
aligned with vision embeddings that are highly clustered and semantic. In Table 6.5,
we study the performance across generic segmentation, grounding, and image-texture
retrieval with features from layer -1 (close to output) to layer -30 (close to input). We
can observe that the features at layer -12 have the best performance, and both the top
and bottom layers are much worse for image-text retrieval on COCO-Karparthy splits.
Throughout the paper, we use -12 layer features for LLaMA.
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[Atennis player] (prepares to swing)

Along, slender, and lightweight
Aman in a white shirt and tennis racket holds a green and
wristbands is swinging his red and yellow fuzzy tennis ball securely in
green tennis racket at a ball on the the middle of its strings, capturing
blue playing field. He is gettingready  the essence of the game where

to serve the ball in a tennis game, players hit the ball back and forth
demonstrating his focus and skill. across a net.

TSI ESB =
Agiraffe is standing on the sandy road under the trees.
=

Figure 6.5: Qualitative results on interleave segmentation and retrieval.

6.5.3 Qualitative Results

We qualitatively demonstrate the effectiveness of our approach in Fig. 6.1 and Fig. 6.5.
Fig. 6.1 demonstrates that generic segmentation using FIND is able to handle complex
scenes. Notably, the picnic image for generic segmentation is generated from Dalle-3,
which indicates that our approach is working on both in-domain and out-of-domain
images. Further, sometimes one may not exactly know the exact word that we want
to reference, thus we also show that our model works well with complex descriptions.
The model is also able to maintain the interactive segmentation capability.

On the interleaved image retrieval settings, we show that our model is able to find
both visually similar and context-relevant images. For example, using a black dog as
an example tends to retrieve images that contain black dogs, and the same for white
dogs. In addition, the vision and language query is also exchangeable, where changing
a bench to a chair image is able to retrieve the result that has the exact matched instance.

In addition, although we never trained with language grounding, our model can
generalize to interleaved phrase grounding in that image, and the text can find the exact
grounded phrases in the long paragraph.

Conclusions and Future Directions This work proposes the FIND Interface, a gener-
alized interface for aligning foundation models” embeddings, and the corresponding
FIND benchmark for training and evaluation. In the future, we can further extend

FIND to integrate with novel foundation models, extend to long context, explore more
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cross-modal tasks, etc.
Broader Impact. Our proposed approach inherits ethical or social issues (e.g. bias
amplification, privacy risks, energy consumption) of foundational models.
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Chapter 7

Future Work

Supported by multimodal visual understanding, many future directions could be pow-
ered along the direction. The ongoing trend includes integrating LLMs with visual un-
derstanding. The potential direction includes visual assist LLM agents, code generation,
and robotic applications with better pixel-wise and natural knowledge understanding.

In Fig. 7.1, we have summarized the concrete idea associated with each direction.

s N

Code: I |
Support multi- Agent:

e N

LLMs: Robotics:

Extending the
pre-trained multi-
modal foundation
model to the ex-

Improve instruc-
tion following,
and pixel-level
understanding ca-

round visual as-
sist code genera-
tion with multi-
modal foundation

In extending to
the current LLM
base agent, we
can add visual

 ternal database. facilitate LLMs.

: J |

bility of robot.

pability of robot. el )\
T : 1 T
[Multimodal Perception]

Figure 7.1: Potential directions along LLMs, Robotics, Code, and Agent.

Large Language Models

Large language models (LLMs) have now encompassed multimodal understanding
and the capability for multi-round multimodal conversations, as illustrated in our recent
work [154, 284]. Furthermore, my study in FIND [216] demonstrates that LLMs can
directly operate on unpaired vision foundation models and LLMs. It enables interleave
retrieval over the database using LLM features. A current focus in LLM development is
in-context learning for integrating external knowledge. An emerging and promising
trend is the incorporation of new knowledge into already-trained foundation models,
enabling straightforward information updates. While there has been significant research
on retrieval-augmented methods, direct expansion of the model’s weight presents a
more efficient way for enhancing LLMs with additional knowledge.

Robotics



93

The advancement in robotic technology encompasses significant developments in
both hardware and software aspects. As depicted in Fig. 7.2, I give a comprehensive
overview of the robotics field. This includes integral components like robot hardware,
control systems, and sensors, all of which are crucial for enabling robots to interact
effectively with their environment. Deep learning models, nowadays a building block
of the control systems, play a pivotal role in bridging sensor APIs with control APIs.
These models are involved in various planning stages, such as task planning, which
integrates high-level instructions with external knowledge; policy planning, which
refines these instructions; and value planning, which prioritizes instructions during
execution. Among the emerging technologies, LLM agents or 'robot transformers” are
noteworthy for their ability to encapsulate the entire control system. My research on
steerable models [284, 154] is particularly significant in this context, as these models
facilitate the translation of human instructions into internal robotic functions. Moreover,
generalist models [216, 302, 299], capable of processing data from pixels and images to
videos, provide robots with a nuanced understanding of their surroundings, enhancing
their operational capabilities.

Hardware
(e.g. Bipedal/Quadrupedal Robot, Robotic Arm, ...)
Task Planning |
(Control System — Generalization:
Robotic | Policy Planning | » LLM Agent (Code Generation),
| (EEmEne 976 = ContiolAEE) Robot Transformers (End-to-End)

 Value Planning |

Sensors
(e.g. Vision, Language, Audio, ...)

Figure 7.2: Core research area under the scope of robotics.

Code Generation

Beyond large language models, code generation represents another active field of
research along the line, brimming with untapped potential. As depicted in Fig. 7.3 (a),
previous studies have delved into the corpus of code granularity, ranging from syntax
to the use of tools/agents, and modalities encompassing both vision and language.
However, current research has yet to fully address two crucial aspects: the ability to
perform multi-round, multimodal code generation, and the integration of generated
code at the project level. Drawing inspiration from my work on steerable models [284,
154] and my expertise in visual understanding, I propose that multi-round, multimodal
conversational abilities could bring new potentials to code generation. Such capabilities
would enable more natural and iterative improvements to the codebase, informed by
the results of code execution.

Agent
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In light of LLMs, people are starting to explore the potential of LLM being the “brain"
for various scenarios, especially in the virtual world. Fig. 7.3 illustrates the building
blocks of an LLM agent, which typically comprises three key components: Source
modality, base model, and application task. For source modalities, currently dominated
by language and code is potentially to expand to vision modality. Besides these input
sources, the foundational aspect of such models usually relies on pre-trained LLMs,
which are tailored to specific modalities through prompting. While recent publications
have begun to explore task-specific fine-tuning of these models, there remains a notable
gap in research regarding multimodal fine-tuning and understanding. I posit that a
multi-modal foundation model could significantly enhance the capabilities of agents in
this domain. By integrating diverse modalities, such a model could offer a more robust
and versatile framework for agent-based applications, opening new avenues for their

deployment and functionality.

/Base Model: (Application Task:

Compiler| Syntax Library Api  Agent Src MOdalitY:
; ; > GPT4-V, Virtual World,
: . 1o GPT-4, Tool Usage
4 i Vision,

Language . . ! Chat-GPT, Operating System,
GPT4 REACT Language, LLaMA, Web Browsing,
Code, LL
VASION Fo-veevemeemmommmemmemeens S, aVA, Theory Proof,
GPT4-V  VISPROG
Y ( a) N

(b)
Figure 7.3: (a): The scope of code generation with representative works, with x-axis
denoting granularity, and y-axis denoting modality. (b): The overall pipeline of LLM
agents.
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