
Multiphysics modeling of deformation in biomembranes and the
neuronal microenvironment, with application to Traumatic Brain

Injury

by

Debabrata Auddya

A dissertation submitted in partial fulfillment of
the requirements for the degree of

Doctor of Philosophy

(Mechanical Engineering)

at the

UNIVERSITY OF WISCONSIN–MADISON

2024

Date of final oral examination: 04/22/2024

The dissertation is approved by the following members of the Final Oral Committee:
Shiva Rudraraju, Assistant Professor, Mechanical Engineering (chair)
Christian Franck, Professor, Mechanical Engineering
Alejandro Roldan-Alzate, Associate Professor, Mechanical Engineering
Corinne Henak, Assistant Professor, Mechanical Engineering
Aviad Hai, Assistant Professor, Biomedical Engineering



© Copyright by Debabrata Auddya 2024
All Rights Reserved



i

Inarticulo Mortis Caelitus Mihi Vires



ii

acknowledgments

I am indebted to the University of Wisconsin-Madison for providing
an opportunity to conduct my doctoral research. I am very grateful to
my advisor Shiva Rudraraju for giving me a chance to work on a wide
spectrum of research problems. I am thankful to the PhD committee
members for their valuable time, and constructive feedback. The nu-
merical and computational components of my research work wouldn’t
have been possible without the super-computing infrastructure and
support provided by the Center for High Throughput Computing,
compphys, and mighty "gandalf"- our lab cluster. I am thankful to
my peers in the CMMG group for their valuable help in professional
and personal capacities. Huge shout-out to friends who have helped
me get through the thick and thins of my doctoral journey, uncertain
pandemic, and lockdown. Much obliged to my mentors for their sup-
port, feedback, and mentorship at different stages of my career. I also
want to thank my family members for their unconditional support
and grateful to the Lord Almighty.

— Debabrata Auddya

"Last but not least, I want to thank me for believing in me, I want to
thank me for doing all this hard work. I wanna thank me for having no
days off. I wanna thank me for never quitting. I wanna thank me for
always been a giver and trying to give more than I receive. I want to thank
me for trying to do more right than wrong. I want to thank me for just
being me at all times.” - Snoop Dogg



iii

contents

Contents iii

List of Tables v

List of Figures vi

Abstract xv

1 Introduction 1

2 Isogeometric modeling of Kirchhoff-Love shell kinematics: a
computational framework for modeling complex mechanical de-
formation pathways in biomembranes 9
2.1 Introduction 9
2.2 Numerical methods for biomembranes 13
2.3 Results 20
2.4 Discussion 27

3 Computational viscoelastic framework for modeling mechan-
ics and microstructure underlying neuronal deformation and
injury 30
3.1 Introduction 30
3.2 Viscoelastic basis of neuron microstructure 37
3.3 A representative viscoelastic network 43
3.4 Results 50
3.5 Conclusion 52

4 Spatio temporal modeling of biomarker expression in neuronal
clusters during traumatic brain injury 57
4.1 Introduction 57



iv

4.2 Chemical pathway of necroptosis 61
4.3 Mathematical formulation 70
4.4 Results 76
4.5 Conclusion 80

5 Conclusion 92

References 94



v

list of tables

3.1 Viscoelastic parameters constituting the neuronal microstruc-
ture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

4.1 Mechanical and chemical properties . . . . . . . . . . . . . . . 73
4.2 Comparison of chemical concentrations . . . . . . . . . . . . . 80



vi

list of figures

1.1 General schematic illustrating a cluster of neurons (top left),
and the numerical discretization (mesh) of a single neuron in
this cluster (top right) are shown. To highlight the regions of
analysis, a section of the axon (bottom right) that represents the
computational framework for the neuronal microstructure, and
a section of the membrane region (bottom left) demonstrating
various membrane bound phenomena are shown. Some of
these membrane phenomena are modeled in this work using a
three dimensional thin-shell framework. . . . . . . . . . . . . . 3

2.1 Surface parametrization of a biomembrane in the reference
undeformed configuration (Ω0) and current deformed config-
uration (Ω). The 2D surface, Ω0, is bounded by the curves ∂Ω0

(highlighted with color), and embedded in a 3D volume. Here,
X is the position vector of a point on the surface parametrized
in terms of the surface coordinates (ξ1,ξ2) which are asso-
ciated with a flat 2D domain that is then mapped to Ω0 as
X = X(ξ1, ξ2). The local tangent vectors to the surface at X are
A1 and A2, and N is the corresponding surface normal. The
position dependent triads {A1,A2,N} and {a1,a2,n} form the
local curvilinear coordinate basis for the reference undeformed
configuration and current deformed configuration, respectively. 16

2.2 Schematic of the various membrane boundary value problems
considered in this work. Shown are the geometry and bound-
ary conditions for (a) formation of tubular shapes in biomem-
branes, (b) Piezo1-induced membrane footprint generation . . 23



vii

2.3 Deformation profile and force-displacement response of a mem-
brane during tube pulling. Shown are the (a) deformation pro-
file with the application of axial force (ty) on a membrane with
a bending modulus (κB) of 20 pN-nm under a surface tension
(γ) of 0.1 pN/nm, (b) comparison of the 3D force-displacement
response with the axisymmetric solution and the equilibrium
tube pulling force predicted by the analytical model, (c) pro-
gression of tube pulling with increasing axial force, and (d)
dependence of the deformation profile and tube radius on the
surface tension of the membrane. . . . . . . . . . . . . . . . . . 24

2.4 Effect of surface tension on the membrane footprint area in-
duced by a Piezo1 dome. Plotted are the 3D displacement pro-
file, and its projection on the x−y and z−x planes. The bending
modulus (κB) of the membrane is taken to be 30 pN·nm, and a
rigid Piezo dome effect is simulated by rotating the membrane
(slope boundary condition) at the inner rim of the annular
geometry to a value of ϕ = 70 degrees. To clearly visualize the
increasing membrane footprint with decreasing surface tension,
we scale the y component of the displacement (uy) by a factor
of three in the x− y oriented plots. . . . . . . . . . . . . . . . . 26

3.1 Viscoelastic representation of proteins constituting the CSK
region of the neuronal microstructure. In this illustration five
different proteins are shown namely myelin, short filament
actin, spectrin, tau and microtubules. A strain based formula-
tion is used to obtain the constitutive equation for the above
network. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

3.2 Maxwell model representating the mechanical network of a
membrane within the neuronal microstructure. . . . . . . . . . 41



viii

3.3 Multimode Maxwell model representing the viscoelastic model
underlying ECM. Collagen is modeled and a linear elastic
spring and the other ECM proteins conferring structural in-
tegrity are modeled as two Maxwell elements in parallel. The
structure and values considered for this network have been
derived from Wang et al. (2022) . . . . . . . . . . . . . . . . . . 43

3.4 Viscoelastic representation of proteins constituting the CSK
region of the neuronal microstructure. In this illustration five
different proteins are shown namely myelin-1, short filament
actin-2, spectrin-3, tau-4 and microtubules-5. A strain based
formulation is used to obtain the constitutive equation for the
above network. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

3.5 The applied strain profile ε is split into ε1 and ε2 . . . . . . . . 47
3.6 (A) The axon is highlighted within a graphical illustration of

a neuron showing the different layers. (B) The chosen region,
with dimensions 10 µm X 5 µm, is discretized using a mesh
which enables finite element simulations. (C) Every Gaussian
point of each region has an underlying viscoelastic network
which captures its mechanical behaviour upon loading. The
mechanical properties of the viscoelastic elements used in the
networks have been obtained or estimated from literature, and
is given in Table.3.1 . . . . . . . . . . . . . . . . . . . . . . . . . 52



ix

3.7 (A) The BVP shows one end of the axon is fixed while the other
end undergoes displacement based loading. A strain rate of
1e+2 s−1 is applied up to a strain of 0.4, corresponding to a
time of 40ms and held at that value for another 40ms to enable
relaxation. (B) The maximum stress field distribution is plot-
ted across the spatial region of the neuronal microstructure.
(C) A plot of strain against time is shown to highlight loading
behaviour (D) Stress against time plots are shown for (Left
to Right) ECM, Membrane and CSK respectively. As evident
from the strain plot, stresses increase according to the under-
lying viscoelastic networks and eventually relaxes when the
displacement load is held at the given strain. . . . . . . . . . . 53

3.8 Stress developed across individual proteins resolved from the
overall stress response of the regions: (A) ECM and (B) CSK 54

3.9 (A) Graphical representation of neurons embedded within
a cluster. Additionally it also highlights a BVP with the left
end fixed and the right end subjected to displacement based
loading condition. (B) Computational estimation of neurons.
As the figure indicates, the red regions correspond to the CSK,
green represents membrane and blue, ECM. For simplicity the
mechanical properties of all the neurons are same. (C) Upon a
strain-dependent loading rate of 1e+2 s−1 upto a strain of 15
percent applied over 40 ms and held constant upto 350 ms, the
stress field distribution for the domain is obtained and plotted
as shown. The heterogeneity observed in the stress values for
individual neurons is captured in (D). For neurons marked
A through E in sub figure (B), the stresses developed in their
respective CSK is plotted against time. . . . . . . . . . . . . . . 55



x

4.1 Proposed pathway of necroptosis underlying secondary injury
during TBI. The pathway begins with mechanical deformation
manifested as increased strain to the brain, which triggers open-
ing of the pannexin channels leading to massive ATP efflux into
the extracellular region. Increased ATP causes purinergic recep-
tors to activate, particularly the P2X7R, which causes potassium
efflux from the intra- to extracellular milieu. Decrease in ionic
concentration of potassium initiates formation of the NLRP3
inflammasome complex. Simultaneously there is a heightened
increase in the demand for oxygen causing oxidative stress and
production of reactive oxygen species. This causes the NFκB
pathway to trigger, also leading to intracellular formation of
the NLRP3 inflammasome complex. This complex is respon-
sible for modulating formation of pro-inflammatory products
mainly cytokines such as TNF-α and ILs. TNF-α causes dysreg-
ulation in neuronal signalling by blocking EAAT’s on astrocytes
thereby reducing glutamate uptake. It also intensifies excita-
tory transmission by increasing permeability of the glutamate
receptors to calcium ions. Increased glutamate concentration in
the post synaptic region causes excitotoxicity and is considered
as the pivotal step towards necroptosis. . . . . . . . . . . . . . 82

4.2 Representation of a reduced pathway consisting of quantifiable
elements which contribute towards necroptosis. Illustrated in
this pathway are ATP, TNF-α and glutamate classified as chem-
ical concentration fields and the P2X7 receptor mathematically
as a phase field. This is attributed qualitatively to the opening
probability of the channel upon prolonged activation by ATP.
The shortened pathway enables formulation of diffusive equa-
tions to spatio-temporally resolve the chemical species across
the inhomogenous neuronal landscape. . . . . . . . . . . . . . 83



xi

4.3 Mechanical network representing the neuronal microenviron-
ment. The mechanical estimates of springs and dampeners are
obtained from Wang et al. (2022) . . . . . . . . . . . . . . . . . 84

4.4 (Left) Dependence of f(ϵ) with ϵ. (Right) Dependence of f(ϵ̇)
with ϵ̇. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

4.5 (A) ATP evolution against increasing strain (upto 80 percent)
has been shown here with different strain rates. In particu-
lar, the strain rate 102s−1 has been chosen to further illustrate
correlations between the chemical fields. (B) P2X7 receptor
opening probability is plotted against ATP evolution for the
aforementioned strain rate. Furthermore, this data suggests a
positive agreement with the findings of Xing et al. (2016) for
estimating P2X7 receptor probability with change in ATP. (C)
TNF-α evolution with change in receptor opening character-
istics has been demonstrated in this plot. It is observed that
at a relatively higher value of P2X7, TNF-α diffuses out and
continues evolving with time. (D) Glutamate excitotoxicity
in the extracellular region, influenced by increased presence
of inflammatory cytokines like TNF-α can be observed in this
plot. These results are compared with the findings of Zou et
al. Zou and Crews (2005) and show significant resemblance in
the nature of glutamate evolution. . . . . . . . . . . . . . . . . 85



xii

4.6 The design of the computational domain has been adapted from
a realistic representation of the neurons and the surrounding
microglia. As illustrated in (A) a specific region consisting
of neuron synapses and microglia has been considered which
has been magnified in (B). A schematic of pre-synaptic and
post-synaptic neurons are shown flanged on both sides by mi-
croglia. This design has been incorporated as our computa-
tional domain (C) to facilitate localisation of chemical fields,
visualization of diffusive behaviour of fields and understand
interactions between these species at different length and time
scales. A meshed version of the numerical domain has been
shown with colors (green: microglia,blue: ECM,red: synapse)
indicating distinct regions of interest. . . . . . . . . . . . . . . . 86

4.7 Illustration of a meshed neuron cluster domain (single neuron
assembly) in a random spatial distribution of single neuron-
microglia assemblies at different orientations (multi-neuron
assembly). The dimensions of the single neuron domain are
12µm X 10µm and that of the larger domain are 60µm X 72µm 87



xiii

4.8 (A) Boundary value problem demonstrating simple tension
on a computational domain represented by neuron synapse
(green), microglia (red) and ECM (blue). The domain is fixed
at one end, while the other end is displaced through a combina-
tion of strain and strain-rate loading conditions. (B) Uniaxial
strain (ϵ11) field profile obtained from the underlying viscoelas-
tic network by applying displacement through a strain rate of
102s−1 upto a strain of 0.8. (C) Chemical field evolution profiles
representing (left to right) ATP (originating from microglia),
P2X7 (localized in microglia), TNF-α (originating from mi-
croglia) and Glutamate (originating from neuron synapses).
(D) Field evolution plots against a strain of 0.8 has been il-
lustrated for increasing strain rates spanning over six orders
of magnitude (10−3 - 103). The strain rate measure for which
the field plots are highlighted is indicated in each subplot and
mentioned accordingly. . . . . . . . . . . . . . . . . . . . . . . 88

4.9 Maximum concentration of ATP within the field distribution is
recorded for a spectrum of strain and strain-rates. The resulting
data set obtained is utilised to construct a computational injury
curve. Using a specific cut-off for ATP concentration (6e− 3M)
two regions are obtained. The red one represents pathway
induced injury while the green one reflects uninjured regimes. 89



xiv

4.10 (A) Boundary value problem of multi neuron-microglia-ECM
assembly is shown. Similar to the single neuron assembly, the
larger domain is fixed at one end and displacement based load-
ing is applied at the other end as indicated. (B) ATP evolution
for multiple assemblies are shown as induced by the underly-
ing strain field. The heterogeneous nature of field evolution is
a hallmark characteristic for such larger domains and can be
spatio-temporally resolved to better understand neuron-cluster
based experiments. (C) Glutamate evolution is highlighted
which is localised near the neuron synapses. Cluster based
spatio-temporal resolution of chemical fields such as glutamate
serve as key indicators in excitoxicity prediction. . . . . . . . . 90

4.11 (A) Phase field demarcation of a heterogeneous distribution
indicating neuronal synapse and microglia (B) ATP evolution
for multiple assemblies are shown as induced by the underlying
strain field. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91



xv

abstract

Traumatic Brain Injury (TBI) is a progressively common pathological con-
dition worldwide caused due to concussion, impact or blast to the brain.
Existing challenges in TBI detection and diagnosis are partly a result of
the rich microstructural complexity of the brain and the multiscale het-
erogeneity of the cerebral architecture. During an injury, the brain gets
exposed to significant loads which fall within the pathological spectrum.
Neurons and neuron clusters, which are the functional and structural units
of the brain, in turn experience this mechanical strain/stress leading to
a wide range of morphological and biochemical abnormalities. Due to
the inherent challenges in predicting and diagnosing these loading and
injury conditions, there is a growing interest in computationally mod-
eling the neurons, and their structural and functional units. However,
current coarse-scale modeling and reduced representation of the under-
lying sub-neuronal structures often fail to render a rich spatio-temporal
representation of neuronal mechanics and subsequently capturing neu-
ronal injury. To address these limitations, we present continuum-scale
computational frameworks for modeling the neuronal microenvironment
and neuron clusters. We categorize this study into two aspects: biologi-
cal membranes and the neuronal microenvironment.The significance of
membranes in neuronal physiology is widely acknowledged due to their
crucial roles in facilitating both ionic transmission and the transport of
nutrients. In order to understand the morphological modifications which
biomembranes undergo to enable critical biological processes, we develop
a computational framework. This numerical methodology takes into ac-
count Kirchhoff Love thin shell kinematics, Helfrich energy representation
of the curvature energy and the framework of Isogeometrical Analysis
to model three dimensional representations of membranes. Unlike pre-
vious axisymmetric considerations, our model admits asymmetric and



xvi

higher order, lower energy modes of deformation which are fundamental
morphological adaptations that lipid bilayers seem to undergo.

In the following chapters, we present a detailed description of the
neuronal microenvironment and model various mechanical and chemical
metrics of injury. Initially, we present a continuum-scale computational
framework for modeling the neuronal microstructure and neuronal clus-
ters. We capture viscoelastic behaviour of the sub-neuronal proteins which
provide structural and functional integrity to the neurons using represen-
tative mechanical networks. A multi-scale approach of modeling defor-
mation of a cluster of neurons is constructed in which local sub-neuronal
strain-stress metrics are estimated under various global neuronal cluster
loading conditions.

In the final part of this work, we demonstrate a chemical basis of injury
in which the pathological degradation of the neuronal microenvironment
is considered. During a concussion or impact, beyond the initial mechani-
cal injury (primary injury), a series of subsequent downstream pathways
are set in motion, initiating a cascade of pathological biochemical pro-
cesses. We have modeled some of these potential early stage (before the
onset of any immune response) biochemical processes by simulating the
spatio-temporal evolution of the relevant molecular biomarkers. These
biomarkers are numerically modeled as coupled reaction-diffusion species
that are modulated by mechanical strain/stress. This results in a com-
prehensive numerical framework for capturing the mechano-chemical
multiphysics underlying neuronal injury, and also provides deeper in-
sights into the spatio-temporal localization of the the mechanical metrics
and the underlying biomarkers. A key highlight of this framework is the
ability to obtain a computational injury curve that captures injury sensi-
tivity of the neuronal microenvironment to rate dependent mechanical
loading, and this is demonstrated using some initial (coarse) estimates of
the injury envelope.
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1 introduction

The brain is considered as one of the most critical organs of the human
body. It plays a central role in the functioning, organisation and mainte-
nance of the rest of the organs. Neurons, which are the functional units
of the brain, are the primary constituents of the brain matter, and their
signaling activity constitutes the defining functionality of the brain. On
the downside however, the brain is also the most vulnerable organ and any
injury, impact or concussion to this soft biological structure jeopardizes
the human physiology to various degrees. In this context, we classify
such injuries arising from external loading conditions as Traumatic Brain
Injury (TBI). Even though TBI itself is a broad classification of injuries,
we direct our attention and investigation to sub-neuronal injuries often
referred to as Diffuse Axonal Injury (DAI). The axon is a long, slender
extension of the neuron and houses major structural, signal transmission
and protein transport components of the neuron. During a DAI major
structural and functional components of axon get affected leading to a
spectrum of pathological conditions. This diffuse damage is known to
persist as longtime cerebo-cranial effects from delayed brain degradation
and absence of visible symptoms. One prime challenge in diagnosing and
detecting injuries at the sub-neuronal scale is the increased complexity,
heterogeneity and multi-scale organisation of the brain. The brain spans
many orders of length scales and most of the diffuse damage manifests at
the sub-neuronal scale leading to the triggering of potential biochemical
pathways that may lead to the manifestation of a cascade of secondary
injuries.

Due to these inherent challenges in efficiently predicting and diagnos-
ing diffuse injuries, a widespread interest in computational modelling has
garnered attention. In general, computational models mimic the process
and effects of TBI. However, existing in-silico models have a coarse scale
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representation of the brain architecture leading to a paucity in capturing
the rich microstructural heterogeneity of the brain. Due to the reduced ap-
proximation, most models considered a homogenized version of the brain
thereby skipping critical neuronal behaviour at lower scales. So, in order
to address these challenges and current day limitations in efficiently mod-
eling and comprehensively illustrating the rich spatio-temporal mechanics
of the neuronal microenvironment we present a three dimensional contin-
uum scale viscoelastic mechanical framework for the neuronal microstruc-
ture and provide a rigorous connection between brain-scale mechanical
deformation and underlying neuronal-scale structural damage. We intend
to develop this extensive framework in order to identify and construct key
sub-neuronal elements which contribute to the structural organisation of
the neuronal microenvironment. Existing literature (Ahmadzadeh et al.
(2014); de Rooij and Kuhl (2018); Dubey et al. (2020); Kant et al. (2021);
Lu et al. (2006)) considered elementary proteins and their correspond-
ing mechanical role in providing structural support to neurons. These
studies represented proteins as viscoelastic members and demonstrated
their utility in characterizing the mechanical response of the axon during
external loading. Current state-of-the-art modeling and understanding of
the axonal behaviour and response during pathological and physiological
loading conditions is restricted to reduced order numerical modeling of the
mechanics and a limited consideration of the proteins and sub-neuronal
elements that, in reality, have complex chemo-mechano-biological contri-
butions within the neuronal microenvironment. In this work, we describe
and construct a comprehensive mechanical model illustrating and explain-
ing different proteins, building representative mechanical networks for
different regions of the neuronal subdomain (cytoskeleton, extracellu-
lar matrix and membrane), demonstrating their mechanical response in
transferring loads across the axon as a network and as a whole and finally
developing a robust numerical scheme and solving using state-of-the-
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art computational tools. The connection to chemistry and some of the
underlying potential pathways is treated in the next chapter.

Figure 1.1: General schematic illustrating a cluster of neurons (top left),
and the numerical discretization (mesh) of a single neuron in this cluster
(top right) are shown. To highlight the regions of analysis, a section of
the axon (bottom right) that represents the computational framework
for the neuronal microstructure, and a section of the membrane region
(bottom left) demonstrating various membrane bound phenomena are
shown. Some of these membrane phenomena are modeled in this work
using a three dimensional thin-shell framework.

As shown in Fig 1.1 the neuron microstructure has been emphasized
across two different regions. The first constitutes the neuronal microenvi-
ronment which consists of the cytoskeleton, membrane and the surround-
ing extra-cellular matrix. The second highlights the membrane and the



4

multitude of morphologies that these thin structures admit. A discussion
on the behaviour of membranes during various biophysical phenomena
(Fig 1.1) highlights structural and functional features which is presented
in Chapter 2. The modification in bilayer morphology leading to various
biophysical phenomena is of key interest from a structural perspective.
Therefore, we initially describe the morphological and functional character-
istics of the membrane and demonstrate the lipid bilayer mechanics using
Kirchhoff Love thin shell kinematics and Helfrich energy formulations.

The mechanics of membranes plays a central role in several biological
processes such as tubule formation, cell migration, cytokinesis etc. A num-
ber of mechanisms have been identified to influence membrane bending,
including geometric confinement by protein or lipid components of the
membrane (intrinsic factors) and peripheral proteins and the cytoskeleton
(extrinsic factors). Lipid bilayer models that assume an in-plane fluid-
like behaviour and an out-of-plane solid-like behaviour have provided
notable insight to investigations of such curvature generation mechanisms.
Particularly, the Helfrich-Canham model has furnished mechanistic in-
sight to shape formation of structures furnished out of large membrane
deformations such as vesicles, tubules, budding etc. Despite the wealth of
information provided by theoretical membrane mechanics models, an im-
portant restriction in several of these studies is the assumption of various
degrees of symmetry for the membrane geometry and its deformation. The
simplification of symmetry assumption in modeling membranes comes at
the cost of generality and precision in identifying the underlying physics,
as lower-energy, low-symmetry kinematic modes are often overlooked.

With growing interest in curvature-mediated biophysical phenomena
and in 3D imaging and reconstruction methods there is a need for general
purpose computational tools to enable fully three dimensional numerical
simulations. Deformation of shell-like surface geometries, as is the case
with biological membranes, involves tracking the underlying kinematics
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and evolution of geometric configurations of a 2-manifold embedded in
a 3-dimensional space. Such a geometric embedding demands a non-
Euclidean framework with a curvilinear coordinate basis. With the advent
of spline-based geometric representations of surfaces and the more recent
development of Isogeometric Analysis (IGA) techniques allow for an exact
representation of surface geometries and the use of a curvilinear coordi-
nate basis. We build upon these developments by adopting spline-based
representations of surface geometries, treatments of membrane kinematics
using a curvilinear basis, and the framework of IGA to develop a com-
prehensive computational modeling framework for studying complex
deformations in biological membranes.

In this study, we present a three-dimensional, Helfrich-energy based,
Kirchhoff-Love thin-shell computational framework for modeling the de-
formation of biological membranes in the regime of fully nonlinear kine-
matics and precise geometric representations. We utilise the governing
equations of Helfrich-energy based membrane mechanics and the numeri-
cal framework of IGA for solving the underlying partial differential equa-
tions. IGA methods form a numerical framework for finding approximate
solutions to general partial differential equations, are a generalization of
the classical Finite Element Method, and possess good numerical approxi-
mation and stability properties. As a result, we can investigate simulations
of membrane deformation under conditions that are notably more general
(having fewer restrictive kinematic assumptions) than those considered
previously in the literature Božič et al. (2001); Alimohamadi et al. (2018).

We simulate two classical and non trivial membrane deformation phe-
nomena: (a) formation of tubular shapes in biological membranes and
(b) Piezo1-induced membrane footprint generation and gating response.
In the following chapter, we present an outline of the mathematical frame-
work and the model development, followed by a presentation of the two
boundary value problems and an illustration of their three dimensional
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deformation evolution along with their biophysical implications. Finally, a
discussion of the framework, its utility and planned future developments
is presented.

In Chapter 3 we identify different regions of the neuronal microstruc-
ture which contribute to the structural integrity of the neuron, more specif-
ically the axon. These regions consist of proteins which are dynamic in
nature and which are constantly modeling/remodeling to adapt with the
changing neuronal microenvironmental conditions. We investigate into
these proteins by identifying their mechanical behaviour (stiffness, relax-
ation rate etc.) and idealise it using viscoelastic elements. The proteins
are combined into a mechanical network for each individual region where
each protein responds to their characteristic mechanical behaviour upon
load transfer. Once the network is constructed we develop our continuum
scale viscoelastic model using a one dimensional and three dimensional
continuum approach. The fidelity of our model underlies a modular ap-
proach in which any number of fundamental sub-neuronal components
can be represented in the generalised network and analytical solutions
for each component obtainable. We present two approaches: the one
dimensional domain, which is described for each protein component in
each region and the three dimensional viscoelastic continuum formula-
tion which has been described for a general continuum network and a
detailed algorithm illustrated. The latter approach has been implemented
in a finite element framework and its workflow described. Finally, we
demonstrate the working fidelity of our models using a series of results
and illustrations.

The other key highlight of our work is the implementation of a multi-
scale approach of the neuronal microenvironment. The purpose of this
implementation is to highlight the principle of load transfer from the brain
level (organ level) to the sub-neuronal level. Previous literature generally
investigated one length scale and generated the mechanical response of
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that order. However, in practice it is known that during injury the load
propagates from the organ to the neuron cluster to the sub-neuronal level.
Hence it is crucial to represent the mechanical behaviour at different length
scales to have a broader understanding of the load transfer mechanism.
The multi-neuron model is a numerical construction of a neuron cluster
embedded within a substrate. A single neuronal microenvironment within
the cluster of neurons is the fundamental scale and emphasizes on the
sub-neuronal mechanical response.

Given the complexity of the response of this network to three dimen-
sional loading, we gradually build the numerical model by first treating
reduced order one dimensional and eventually leading to a full three
dimensional representation. Overall we construct a multi-scale represen-
tation of neuronal cluster and neuronal microenvironment architecture
using our high fidelity mechanical network motivated by proteins which
serve as structural scaffolds. Numerical experiments on the model reveal
protein level mechanical response and insights into loading rates.

In Chapter 4 we characterize Traumatic Brain Injury (TBI) through
pathological degradation at various biological length scales from a mechano-
chemical perspective. To quantify the sequence of events following TBI,
classically, various mechanical modeling techniques have been proposed
which establish metrics that demonstrate localised to generic neuronal
damage. Broadly, the two categories of degradation encompass physio-
logical deterioration and upregulation of chemical entities such as neu-
rotransmitters which cause initiation of downstream pathophysiological
effects. The loss of structural and chemical integrity within neurons and
neuron clusters release molecules which serve as critical biological mark-
ers crucial to injury diagnosis. Aberration in concentration of essential
chemical components in the brain such as neurotransmitters, inflamma-
somes, cytokines and ionic channels lead to activation of necroptotic path-
ways which eventually causes neurodegeneration. Recent studies have
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highlighted the pathological effects caused due to upregulation of these
chemical species across the brain. The primary aim of this work is to
demonstrate a continuum framework which models the multiphysics of
mechano-chemical interactions underlying TBI. Using a coupled PDE (par-
tial differential equation) formulation and FEM (finite element method)
discretization, the framework highlights evolution of field variables which
spatio-temporally resolves mechanical metrics and chemical species across
the neuron cluster domain. Using geometric spatial localisation of specific
chemical components, we illustrate dynamics of chemical field evolution
across different regions of the neuronal microstructure. This enables vi-
sualisation of initiation, interaction and progression of field variables,
highlighting temporal activation of different components in the down-
stream necroptotic pathway.

We present a novel mechano-chemical framework which models some
of the potential mechanical and chemical metrics relevant to traumatic
brain injury. The results demonstrate the spatio-temporal resolution of
these metrics and thus provide valuable insights into some of potential
critical chemical thresholds underlying neuronal necroptosis. In a first-
of-its-kind representation of mechano-chemical interactions underlying
neurons and neuronal clusters we have qualitatively drawn comparison
between our results and existing literature, and also obtained some initial
representative estimates of the injury thresholds. The fidelity of our cur-
rent modeling approach allows for the inclusion of additional physics and
chemical species that can provide a better resolution of injury diagnosis
by linking to accepted clinical biomarkers of TBI.
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2 isogeometric modeling of kirchhoff-love shell
kinematics: a computational framework for
modeling complex mechanical deformation
pathways in biomembranes

The contents of this chapter are a published work:

Auddya, Zhang, Gulati, Vasan, Garikipati, Rangamani, Rudraraju,
“Biomembranes undergo complex non axisymmetric deformations gov-
erned by Kirchhoff-Love kinematics and revealed by a three dimensional
computational framework”, Proceedings of the Royal Society A, 477.2255,
2021.

2.1 Introduction
Membrane curvature is ubiquitous in biology McMahon and Gallop (2005).
Indeed, the bending of cell membranes is a central aspect of function for
cells and organelles in many cellular processes such as cell migration
Zhao et al. (2013), cell membrane repair Boye et al. (2017), membrane
trafficking Liu et al. (2009) and cytokinesis Schroeder (1972), as well
as the maintenance of distinctive membrane shapes within internal or-
ganelles like the endoplasmic reticulum Hu et al. (2008); Shibata et al.
(2006) and the Golgi complex McNiven and Thompson (2006). Some
important curved structures include tubules, sheets, vesicles and cisternae
Voeltz and Prinz (2007). A number of mechanisms have been identified
to influence membrane bending, including geometric confinement by pro-
tein or lipid components of the membrane (intrinsic factors) Zimmerberg
and Kozlov (2006); Koster et al. (2003) and peripheral proteins and the
cytoskeleton (extrinsic factors) Takano et al. (2008); Cocucci et al. (2012).
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These mechanisms are often coupled and are spatio-temporally regulated
by biochemical signaling cascades, leading to the mechanochemical cou-
pling of signaling and membrane deformations. Lipid bilayer models that
assume an in-plane fluid-like behaviour and an out-of-plane solid-like be-
haviour have provided notable insight to investigations of such curvature
generation mechanisms. Particularly, the Helfrich-Canham model Helfrich
(1973) has furnished mechanistic insight to shape formation of liquid shells
during vesiculation Miao et al. (1991); Hurley et al. (2010), tubulation
Derényi et al. (2002), viral budding Tzlil et al. (2004), clathrin-mediated
endocytosis Hassinger et al. (2017), and membrane neck formation Alimo-
hamadi et al. (2018); Vasan et al. (2020). These modeling efforts have been
complementary to advances in imaging techniques Choi and Lee (2009);
Dupire et al. (2012); Kukulski et al. (2012), enabling a deeper appreciation
of the complexity of membrane deformation.

Despite the wealth of information provided by theoretical membrane
mechanics models, an important restriction in several of these studies is the
assumption of various degrees of symmetry for the membrane geometry
and its deformation. Indeed, the computation of membrane bending
phenomena is significantly simplified with the axisymmetric assumption,
but as we have shown recently Vasan et al. (2020), this may come at the cost
of generality and precision in identifying the underlying physics, as lower-
energy, low-symmetry kinematic modes and even entire mechanisms may
be overlooked. With growing interest in curvature-mediated biophysical
phenomena and in 3D imaging and reconstruction methods Lee et al.
(2020a,b), there is a need for general purpose computational tools to
enable fully three dimensional numerical simulations.

The continuum mechanical treatment of solids considers deformation
as a mapping of the geometry (3D volume, 2D surface, or 1D curve) from
its reference, undeformed configuration to a deformed current configura-
tion under the influence of internal or external loads, of which the latter
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also may appear as boundary conditions. In limited cases, the geometry,
loads and boundary conditions result in a mathematical problem of de-
formation of a k-manifold immersed in an n-dimensional space (Rn). A
3-manifold is a volume, 2-manifold is a surface and 1-manifold is a curve.
For k = n, modeling solid deformation is relatively straightforward and
can be accomplished in the framework of Euclidean geometry using a
rectilinear coordinate basis.

However, deformation of shell-like surface geometries, as is the case
with biological membranes, involves tracking the underlying kinemat-
ics and evolution of geometric configurations of a 2-manifold embedded
in a 3-dimensional space Novozilov (1959). Such a geometric embed-
ding demands a non-Euclidean framework with a curvilinear coordinate
basis. While the mathematical treatment of such a framework is well-
developed (beginning with the celebrated work on differential geometry
by Riemann in the 19th century Riemann (1854)), its application to three-
dimensional modeling of biomembranes, which entails solving nonlinear
partial differential equations in a curvilinear coordinate basis is relatively
recent. Beginning with finite element models of Mindlin–Reissner plates
Hrabok and Hrudey (1984); Arnold et al. (2005); Shi and Voyiadjis (1991);
Zienkiewicz and Lefebvre (1988) and Kirchhoff-Love shells Simo and Fox
(1989); Hrabok and Hrudey (1984); Yang et al. (2000); Başar and Ding
(1990), initial efforts focused on developing numerical models in a rec-
tilinear coordinate basis with approximated geometries and kinematics.
However, the advent of spline-based geometric representations of surfaces
and the more recent development of Isogeometric Analysis (IGA) tech-
niques Cottrell et al. (2009) allow for an exact representation of surface
geometries and the use of a curvilinear coordinate basis. Such treatments
are now gaining traction in modeling structural applications Kiendl et al.
(2009, 2015); Zareh and Qian (2019); Nguyen-Thanh et al. (2015) and
also in the context of biological materials Tepole et al. (2015); Sauer et al.
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(2017); Roohbakhshan and Sauer (2017); Sauer and Duong (2017). We
build upon these developments, especially from Sauer et al. Sauer et al.
(2017), by adopting spline-based representations of surface geometries,
treatments of membrane kinematics using a curvilinear basis, and the
framework of IGA to develop a comprehensive computational modeling
framework for studying complex deformations in biological membranes.

In this work, we present a three-dimensional, Helfrich-energy based,
Kirchhoff-Love thin-shell computational framework for modeling the de-
formation of biological membranes in the regime of fully nonlinear kine-
matics and accurate geometric representations. With this treatment, we
are able to model membrane deformations, resolve geometric bifurca-
tions, and explore post-bifurcation responses. The main ingredients of
this framework are the governing equations of Helfrich-energy based
membrane mechanics Novozilov (1959); Sauer and Duong (2017); Sauer
et al. (2017); Steigmann (1999) and the numerical framework of IGA for
solving the underlying partial differential equations. IGA methods form a
numerical framework for finding approximate solutions to general partial
differential equations Cottrell et al. (2009), are a generalization of the
classical Finite Element Method Ciarlet (2002); Brenner and Scott (2007);
Strang and Fix (1973), and possess good numerical approximation and
stability properties Bazilevs et al. (2006). Crucially for accurate modeling
of membrane biophysics, since IGA uses spline basis functions to represent
the geometry and its deformation, it admits the continuity of slopes that
is a characteristic of membranes in all states except for those of actual
scission. As a result, we can now investigate simulations of membrane
deformation under conditions that are notably more general (having fewer
restrictive kinematic assumptions) than those considered previously in
the literature Alimohamadi et al. (2018); Božič et al. (2001); Guckenberger
and Gekle (2017); Zheng and Liu (1993); Jian-Guo and Zhong-Can (1993);
Molina et al. (2020). The computational framework is implemented as an
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open-source software library and provided as a resource to the biophysics
community Git (2021).

To demonstrate the scope of the computational framework, we simu-
late two classical and non trivial membrane deformation phenomena: (a)
formation of tubular shapes in biological membranes (b) Piezo1-induced
membrane footprint generation and gating response. For each case, three
dimensional membrane deformation is tracked, symmetry-breaking defor-
mation pathways identified, and a few case studies of boundary conditions
and loading are presented to exhibit the fidelity and modeling potential of
the proposed methodology. In the following sections, we present an out-
line of the mathematical framework and the model development, followed
by a presentation of the two boundary value problems considered, their
modeling results and biophysical implications. Finally, a discussion of the
framework, its utility and planned future developments is presented.

2.2 Numerical methods for biomembranes
The mathematical framework consists of surface geometry parametriza-
tion, Kirchhoff-Love membrane kinematics, Helfrich-energy based me-
chanics of lipid bilayers and surface partial differential equations gov-
erning mechanical deformation. Key ingredients of this framework are
described below, while the more detailed mathematical derivations are
provided in the SI. Using the IGA apparatus, the mathematical treatment
is then cast into a numerical formulation that allows for solving the gov-
erning equations to obtain the spatial evolution of membrane deformation.
These aspects of the framework are discussed under the computational
implementation subsection. The mathematical treatment introduced here
follows from Sauer et al. Sauer et al. (2017). Only the important results
are summarized in this section, and the detailed derivations are presented
in the SI.
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Surface parametrization and kinematics

Consider a lipid bilayer represented as a surface (2-manifold) embedded
in a 3D volume, as shown in Fig. 2.1. Let the reference (undeformed)
configuration and the current (deformed) configuration of the surface
geometry be denoted by Ω0 and Ω, respectively. The configurations Ω0

and Ω are parametrized by the coordinates ξ1 and ξ2 that map a flat 2D
domain to the surface coordinates X and x:

X = X(ξ1, ξ2) ∀ X ∈ Ω0, x = x(ξ1, ξ2) ∀ x ∈ Ω. (2.1)

The (covariant) tangent vectors in the reference and current configuration
are given by:

AI =
∂X

∂ξI
= X,I , ai =

∂x

∂ξi
= x,i . (2.2)

In the expressions that follow, except when indicated otherwise, uppercase
letters are associated with the reference configuration and lowercase letters
are associated with the current configuration.
Using the tangent vectors we define the surface normals as follows:

N =
A1 ×A2

∥A1 ×A2∥
, n =

a1 × a2

∥a1 × a2∥
. (2.3)

From the triad consisting of the tangent vectors and the normal that form
the local curvilinear coordinate basis, we can obtain expressions for the
metric tensor,

AIJ = AI ·AJ aij = ai · aj (2.4)

The second order derivatives of the surface coordinates X and x are given
by:

AI,J =
∂AI

∂ξJ

ai,j =
∂ai

∂ξj
(2.5)
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and from them we obtain the components of the curvature tensor,

BIJ = AI,J ·N bij = ai,j · n (2.6)

We are now able to define the primary kinematic metrics of interest:
the mean and Gaussian curvature. The mean curvature and Gaussian
curvature are frame invariant measures of a surface geometry, and hence
are natural choices for representing the kinematics of the surface as it
deforms. Using the components of the curvature tensor, we can obtain
expressions for the mean curvature,

H =
1
2B

IJAIJ on Ω0, h =
1
2b

ijaij on Ω (2.7)

and the Gaussian curvature,

K =
|B|

|A|
on Ω0, κ =

|b|

|a|
on Ω, |·| = det(·) (2.8)

Biophysics of membrane deformation

With a focus on representing the correct deformation, a biomembrane is
often modeled as a thin elastic shell governed by the classical Helfrich
formulation Helfrich (1973); Kishimoto et al. (2011); Morlot et al. (2012)
of membrane bending energy. In this treatment, the primary kinematic
variables are the curvatures capturing the bending of the membrane, and
the elastic energy density of the membrane is given by:

w = kB(h− h0)
2 + kGκ (2.9)

where kB and kG are the bending modulus and the Gaussian curvature
modulus of the membrane, and h0 represents the instantaneous curvature
induced in the membrane.
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Figure 2.1: Surface parametrization of a biomembrane in the reference
undeformed configuration (Ω0) and current deformed configuration (Ω).
The 2D surface, Ω0, is bounded by the curves ∂Ω0 (highlighted with color),
and embedded in a 3D volume. Here, X is the position vector of a point
on the surface parametrized in terms of the surface coordinates (ξ1,ξ2)
which are associated with a flat 2D domain that is then mapped to Ω0 as
X = X(ξ1, ξ2). The local tangent vectors to the surface at X are A1 and A2,
and N is the corresponding surface normal. The position dependent triads
{A1,A2,N} and {a1,a2,n} form the local curvilinear coordinate basis for the
reference undeformed configuration and current deformed configuration,
respectively.

Furthermore, we assume that the membrane is area preserving (i.e the
membrane area is constant) Evans and Skalak (1979) – a constraint that
is implemented using a Lagrange multiplier field. Enforcing the area-
preserving condition results in the following field expression for the elastic
energy density:

w = kB(h− h0)
2 + kGκ+ λ(J− 1) (2.10)
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where λ is the point value of the Lagrange multiplier field, and J is the sur-
face Jacobian field (ratio of an infinitesimal area element in the current con-
figuration to the area of its pre-image in the reference configuration). Here,
the Lagrange multiplier field represents the membrane tension Rangamani
et al. (2014); Steigmann (1999) that enforces the area preserving property
of biomembranes and thus influences the minimum energy configuration.
The Lagrange multiplier field is position dependent, is obtained as part
of the solution process, and thus permits non-homogeneous membrane
tensions that are needed to ensure that the membrane is area preserving
under general deformation conditions. In this model, we neglect in-plane
fluidity of the membrane Rangamani et al. (2013); Arroyo and DeSimone
(2009) and friction in the bilayer Simunovic et al. (2017); Quemeneur et al.
(2014); Rahimi and Arroyo (2012), as we are interested in determining
the elastic equilibrium states under quasi-static conditions and not the
underlying membrane relaxation or rate processes. The augmented Hel-
frich Hamiltonian whose extremum is sought over the membrane surface,
including the Lagrange multiplier field λ is given as:

E =

∫
Ω

(kB(h− h0)
2 + kGκ+ λ(J− 1)) da (2.11)

where Ω is the domain of integration over the membrane surface.

Governing equations

The governing equation for quasi-static mechanical equilibrium in 3D
simulations is obtained as the Euler-Lagrange condition of the Helfrich
energy functional following standard variational arguments, and is given
by:∫

Ω

1
2δaijσ

ij da+

∫
Ω

δbijM
ij da−

∫
Ω

δx ·p da−

∫
∂Ω

δx · t ds = 0, (2.12)
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where ∂Ω is the membrane boundary on which surface tractions and
displacement boundary conditions can be applied, as shown in Chapter 2.1.
Furthermore, δaij and δbij are variations of the components of the metric
tensor and the curvature tensor, respectively,

Here, σij are the components of the stress tensor, Mij are components
of the moment tensor (in the current configuration), p is the pressure
applied on the membrane surface (in the case of the tube constriction
boundary value problem), and t is the surface traction.
For a hyperelastic material model, we can express the stress and moment
components in terms of the strain energy density as Sauer and Duong
(2017):

σij =
2
J

∂w

∂aij

, (2.13)

Mij =
1
J

∂w

∂bij

(2.14)

For the Helfrich type strain energy density, these take the form:

σij = (kB(h− h0)
2 − kGκ)a

ij − 2kB(h− h0)b
ij, (2.15)

Mij = (kB(h− h0) + 2kGh)a
ij − kGb

ij (2.16)

Here, it is important to note that the Helfrich elastic model inherently lacks
resistance to shear deformation modes in three dimensions. This lack of
shear stiffness correctly represents the fluidity of the biomembranes, but
induces numerical instabilities while solving boundary value problems
involving three dimensional membrane deformation. We eliminate these
numerical instabilities by adding shear stabilization terms to the material
model but ensure that these terms are of smaller magnitude than the bend-
ing energy terms in the Helfrich energy Sauer et al. (2017). We perform
convergence studies with respect to both the underlying mesh (ensuring
mesh-objectivity) and the dependence on the shear stabilization terms.
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The results reported in this report are for sufficiently refined meshes. The
elastic modulus corresponding to the shear stabilization is small compared
to the bending modulus and is chosen to have minimal effect on the overall
stiffness or the deformation energy of the membrane.

Computational implementation

In this framework, we solve the governing equation given by Equation
(2.12) using the methodology of Isogeometric Analysis (IGA) Cottrell
et al. (2009). As stated in the introduction, IGA is mesh-based numerical
discretization scheme for finding approximate solutions to general partial
differential equations Cottrell et al. (2009), and is a generalization of
the classical Finite Element Method Ciarlet (2002); Brenner and Scott
(2007); Strang and Fix (1973). Numerical discretization of the problem
geometry in IGA is accomplished by using a spline-based C1-continuous
basis. In the context of biomembranes, this ensures accurate representation
of both the reference and deformed geometries without the spurious
slope discontinuities observed in more traditional finite element schemes
and other grid-based numerical schemes. We developed a first of its
kind in-house, parallel, C++ programming language based open-source
library for membrane mechanics in three dimensions. The important
components of this modular library are the implementation of membrane
kinematics without any axisymmetric restrictions, Helfrich material model,
weak form of the governing equations of membrane mechanics, and the
setup of the global boundary value problem with biomembrane specific
boundary conditions. This library sits on top of the PetIGA Dalcin et al.
(2016) open source library that provides the spline (NURBS) discretization
capability and the PETSC Abhyankar et al. (2018) open source library that
provides a suite of data structures and routines for the scalable (parallel)
solution of partial differential equations. The computational framework
is implemented as an open-source software library and is provided as a
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resource to the biophysics community through a GitHub repository Git
(2021).

2.3 Results
We demonstrate the simulation framework using two classical membrane
deformation problems: formation of tubular shapes in membrane and
Piezo1-induced membrane footprint generation and gating response. Through
these examples, we also demonstrate the emergence of increasingly com-
plex membrane deformations that are beyond the scope of traditional
axisymmetric formulations. These problems are described in detail below.

Formation of tubular shapes in biomembranes

Many cell organelles and cytoplasmic projections are shaped as vesicles,
tubes, or elongated membrane structures. Some examples of such shapes
are the filopodia protrusions, inner mitochondrial region, endoplasmic
reticulum, the Golgi complex, etc. These tubular structures play an im-
portant role in the locomotion of cells, production and folding of proteins,
and in the formation of vesicles for transporting proteins and lipids among
others. A typical mechanism for producing these tubular shapes involves
motor proteins that attach to the cell membrane and pull it along the
filaments of the cytoskeleton Koster et al. (2003); Shaklee et al. (2008).
From a biophysical standpoint, it is important to gain a quantitative un-
derstanding of the interaction between the proteins and the membranes
by determining the deformation mechanisms, forces exerted by proteins,
and kinematic constraints.

A classic benchmark problem in the understanding of elongated biomem-
brane structures is the analytical model of the formation and interaction
of membrane tubes proposed by Derényi et al Derényi et al. (2002). Some
key results of this model are the prediction of the magnitude of protein-
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membrane interaction forces and tubule radius, and their dependence on
the membrane bending modulus (κB) and surface tension (γ). The pro-
tein pulling force, ty, and the tubule radius, r, are related to the bending
modulus and surface tension of the membrane as follows: ty ∝ √

κB γ

and r ∝
√

κB/γ. In addition to these analytical estimates, numerical
solutions to the problem of membrane tube pulling, albeit with axisym-
metric constraints on deformation, are available in the literature Lipowsky
(2012); Bahrami and Hummer (2017) and in our earlier work Vasan et al.
(2020). Given the paucity of analytical solutions to membrane deforma-
tion problems based on the Helfrich-energy model, we take advantage of
the analytical estimates proposed by Derényi et al., the numerical solu-
tions available from axisymmetric models Vasan et al. (2020), and validate
the computational framework proposed in this work by comparing the
load-displacement response of membrane tube pulling from these two
approaches.

The boundary value problem solved, along with the spatial discretiza-
tion (mesh), boundary conditions on the displacement (u) and the mem-
brane boundary slope (ϕ) are shown in Chapter 2.2(a). The simula-
tion results are shown in Chapter 2.3: Chapter 2.3 (a) is the deformation
profile obtained during tube pulling, and in Chapter 2.3(b) is the load-
displacement response of the 3D framework compared to the asymmetric
result and the equilibrium value of tube pulling force predicted by the
analytical model. We note that the analytical model only predicts the final
equilibrium value of the tube pulling force, and hence only a single value
of the force from the analytical model is plotted. As can be seen from
Chapter 2.3(b), the 3D model very closely tracks the axisymmetric solu-
tion and asymptotically approaches the equilibrium value of force from
the analytical solution. Further, we show the evolution of the deformation
profile with increasing tube pulling force in Chapter 2.3(c), and the depen-
dence of the deformation profile and tubule radius on the applied surface
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tension in Chapter 2.3(d). Here we note that the small deviation of the
3D model results from the axisymmetric solution in Chapter 2.3(b) is due
to the fact that the 3D model boundary value problem is less constrained
along the outer rim than the axisymmetric boundary value problem. For
the 3D problem we enforce uy = 0 along the outer rim, whereas the ax-
isymmetric problem also enforces complete radial symmetry of the ux and
uz displacements in addition to enforcing uy = 0 (See Chapter 2.2(a)).
This makes the axisymmetric problem more stiff to the applied load.

Piezo1-induced membrane footprint and gating response

We next investigate how mechanosensitive channels can deform the mem-
brane. Mechanosensitive ion channels on the cell membrane play an
important role in the mechanosensory transduction processes of the cell.
These ion channels are sensitive to the forces acting on the cell membrane
and respond to these forces by undergoing conformational changes. These
changes result in the opening and closing of pores in the cell membrane
and thereby regulate the flow of ions and solutes entering and egressing
the cell. Examples of such mechanosensitive ion channels include Piezo1,
MscL and TREK-2 Ridone et al. (2019). In the case of Piezo1, a gated ion
channel made up of three protein subunits that induce a dome-shaped
structure on the cell membrane, the gating mechanism is triggered by
the membrane surface tension. The membrane deformation induced by
the surface tension acts as a mechanical signal that activates the protein
subunits and causes them to undergo a conformational change that results
in pore opening and transport of ions and solutes Gottlieb et al. (2012);
Lewis and Grandl (2015); Zhao et al. (2019).
While the exact mechanism of mechanosensory transduction effected by
the Piezo1 ion channel is still an open question, the extent of the deformed
shape induced by the Piezo1 dome (referred to as the membrane foot-
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Figure 2.2: Schematic of the various membrane boundary value problems
considered in this work. Shown are the geometry and boundary conditions
for (a) formation of tubular shapes in biomembranes, (b) Piezo1-induced
membrane footprint generation
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Figure 2.3: Deformation profile and force-displacement response of a
membrane during tube pulling. Shown are the (a) deformation profile
with the application of axial force (ty) on a membrane with a bending
modulus (κB) of 20 pN-nm under a surface tension (γ) of 0.1 pN/nm, (b)
comparison of the 3D force-displacement response with the axisymmetric
solution and the equilibrium tube pulling force predicted by the analytical
model, (c) progression of tube pulling with increasing axial force, and
(d) dependence of the deformation profile and tube radius on the surface
tension of the membrane.
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print) is understood to significantly influence the sensitivity of the gating
response of the channel Haselwandter and MacKinnon (2018). As ob-
served by Haselwandter and MacKinnon Haselwandter and MacKinnon
(2018), an extended membrane footprint amplifies the sensitivity of Piezo1
subunits to respond to changes in the membrane surface tension. At the
same time, increasing membrane tension significantly reduces the mem-
brane footprint and thereby renders the Piezo1 subunits less sensitive to
detect membrane mechanical signals.

In this analysis, we model the effect of surface tension on the area
of the membrane footprint induced by the Piezo1 dome. Our modeling
goal for this problem is to demonstrate the effect of membrane tension
on: (1) the membrane footprint, and (2) the out-of-plane membrane dis-
placement that can be interpreted as a kinematic trigger to activate the
gating mechanism in the protein subunits of Piezo1. The schematic for this
boundary value problem is shown in Fig 2.2(b), and the simulation results
demonstrating the effect of surface tension on the membrane footprint are
presented in Chapter 2.4. The plots show the 3D displacement profiles and
their 2D projections under the boundary conditions enforced by the Piezo1
dome. A Piezo dome effect on the membrane is modeled by rotating the
membrane (slope boundary condition) at the inner rim of the annular
geometry to a value of ϕ = 70 degrees that is chosen so as to simulate the
effect of a nearly hemispherical dome (which would correspond to ϕ = 90
degrees). This slope boundary condition assumes that the Piezo1 pro-
tein complex is a rigid dome that enforces a rotation on the surrounding
membrane to ensure slope continuity between the hemispherical dome
and the connected membrane. As can be seen from the subfigures Chap-
ter 2.4(a)-(d), decreasing the surface tension increases the membrane
footprint. Especially in the limit of very low surface tension (γ = 0.01
pN/nm) we see a significantly enhanced membrane footprint. The change
in the out-of-plane displacement of the membrane, (uy), shows a similar
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Figure 2.4: Effect of surface tension on the membrane footprint area in-
duced by a Piezo1 dome. Plotted are the 3D displacement profile, and its
projection on the x − y and z − x planes. The bending modulus (κB) of
the membrane is taken to be 30 pN·nm, and a rigid Piezo dome effect is
simulated by rotating the membrane (slope boundary condition) at the
inner rim of the annular geometry to a value of ϕ = 70 degrees. To clearly
visualize the increasing membrane footprint with decreasing surface ten-
sion, we scale the y component of the displacement (uy) by a factor of
three in the x− y oriented plots.
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dependence on the surface tension. Since the out-of-plane displacement
can be interpreted as a kinematic trigger to activate the gating mechanism
in the protein subunits of Piezo1, this implies that at lower surface ten-
sion values, a higher value of uy is attained, thus delivering an amplified
kinematic trigger, and therefore greater sensitivity of the Piezo1 dome to
changes in surface tension. These results are consistent with the observa-
tions by Haselwandter and MacKinnon Haselwandter and MacKinnon
(2018) that use the classical reduced order Monge and arc-length axisym-
metric parametrization methods to model the Piezo1-induced membrane
deformation. Note that the deformation profile at the inner rim is, in gen-
eral, non-axisymmetric, an effect that increases with membrane tension, γ.
This illustrates the power of the 3D computational framework, which while
it encompasses axisymmetric deformation, also admits non-axisymmetric
modes. With access to the larger space, deformation profiles that are at-
tainable at lower energies, are indeed attained since the elasticity problem
results in a (local-) minimum energy configuration. Thus, while the 3D
model reproduces the trends predicted by the reduced order models, its
true power is in identifying more complex deformation patterns that are
not accessible to the reduced order axisymmetric models.

2.4 Discussion
Biomembranes play central roles in various cell-scale and organelle-scale
phenomena like locomotion of cells Zhao et al. (2013), packaging and
trafficking of nutrients and signalling constituents Liu et al. (2009), main-
taining organelle morphology and functionality Hu et al. (2008); Shibata
et al. (2006); McNiven and Thompson (2006), etc. In almost all these
processes, these surfaces are known to undergo significant deformation
through bending; and the evolution of the out-of-plane bending defor-
mation is a key mechanism of morphological evolution, besides in-plane
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fluidity. Thus, many analytical and numerical approaches exist in the lit-
erature to model bending and curvature generation, especially for solving
the governing equations resulting from the Helfrich-Canham Helfrich
(1973) characterization of membrane elasticity.
While these widely used analytical and numerical approaches (e.g. Monge
parametrization, arclength parametrization and asymptotic methods)
yield solutions to a wide range of boundary value problems of mem-
brane bending, they are intrinsically limiting in capturing the complete
envelope of membrane deformations due to the underlying axisymmetric
restrictions on the kinematics and boundary conditions. Since the study
of biomembrane deformation draws heavily from the well established
models of elastic shells Helfrich (1973); Novozilov (1959), it is only nat-
ural to look for the validity of axisymmetric approximations and for the
existence of non-axisymmetric solutions in the deformation of elastic shell
geometries. Interestingly, many classical elastic structures have intrinsic
unstable modes (eigen modes) that lead to a snap-through buckling like
deformation or collapse of structures and are associated with lower de-
formation energy than the corresponding axisymmetric (non-buckling)
modes of deformation. Such modes are ubiquitous in elastic shells and
manifest as barrelling modes of thin cylinders Azzuni and Guzey (2018),
snap-through of elastic columns Brojan et al. (2007), and in folding, wrin-
kling, and creasing of elastic membranes Deng and Berry (2016), etc. If
such modes exist, and are accessible in biomembranes, then they would
naturally lead to a reduction in the load and energy barriers to membrane
deformation, and may result in heretofore numerically unexplored de-
formation profiles and membrane morphologies. Accessing these lower
symmetry modes and predicting the complex, three dimensional defor-
mation profiles in biomembranes provided the primary motivation for
developing the computational framework presented in this work.

Accordingly, in this work, we model two classical biomembrane prob-
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lems: formation of tubular shapes in biomembranes and Piezo1-induced
membrane footprint generation For each of these problems, we are able
to validate against results and observation available in the literature for
the simpler deformation modes, and also predict the more complex, less
symmetric deformation profiles that are not accessible by the traditional
analytical methods and axisymmetric numerical methods.

The computational framework is implemented as an open-source soft-
ware library and provided as a resource to the biophysics community.
It is expected that this framework will serve as a platform for exploring
complex deformation mechanisms (including geometric bifurcations and
post-bifurcation responses) in biomembranes, and result in an improved
understanding of the mechanics underlying various biomembrane phe-
nomena. Future extensions envisioned are support for in-plane fluidity
Rangamani et al. (2013), surface diffusion (to model protein transport on
the membrane) , and a contact model (to model membrane-membrane
interactions). In addition, the inability of the current framework to apply
non-uniform Dirichlet boundary conditions and constraints on displace-
ment degrees of freedom inside the domain (i.e. at non-interpolatory knots
of the spline surface) are significant limitations and will be addressed in
future developments.
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3 computational viscoelastic framework for
modeling mechanics and microstructure
underlying neuronal deformation and injury

3.1 Introduction
The brain is considered as one of the most critical organs of the human
body. It plays a central role in the functioning, organisation and mainte-
nance of the rest of the organs. Neurons, which are the functional units
of the brain, are the primary constituents of the brain matter, and their
signaling activity constitutes the defining functionality of the brain. On
the downside however, the brain is also the most vulnerable organ and any
injury, impact or concussion to this soft biological structure jeopardizes
the human physiology to various degrees. The criticality of the brain is
commensurate with its vulnerability to external mechanical insults lead-
ing to concussions, neuronal degradation and injury. In this context, we
classify such injuries arising from external loading conditions as Trau-
matic Brain Injury (TBI) Stocchetti and Zanier (2016). TBI itself can be
mild or severe depending upon the severity with which the injury occur
Alexander (1995). In the US alone, 1.7 million people suffer from mild
to severe TBI annually, with 75-90 percent of those injuries classified as
mild Georges et al. (2017); Faul et al. (2010). In the context of neuron
scale modeling, TBI is also known as Diffuse Axonal Injury (DAI), charac-
terised by swollen axonal profiles and morphological changes within the
neuron ultrastructure Gennarelli et al. (1998); Johnson et al. (2013). The
effects of TBI is often manifested in the form of significant physiological
and cognitive degradation Neumann and Lequerica (2015) in addition to
emotional, behavioural and social traumas Brenner et al. (2011); Milders
(2019).
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While the pathology and prognosis of severe TBI is well documented
and understood in the medical fraternity, delineating standard metrics
for classifying mild traumatic brain injury (mTBI) at the sub-neuronal
scale is lacking. This is mainly because diagnosing a diffuse damage is
more difficult than an intracranial contusion or lesion due to the absence of
visible symptoms. This diffuse damage is known to result in persistent and
longtime cerebo-cranial effects from delayed brain degradation Graham
et al. (2021). The fundamental reason behind the limitation to detect,
diagnose and treat diffuse injuries is the complex heterogeneous multiscale
organisation of the brain that spans many orders of length scales from
the tissue scale (10−1 m) to axon, dendritic spines, synapses (10−6 m) to
the sub neuronal architecture of cytoskeleton (CSK) and cell organelles
(10−9 m). It is at this neuronal and subneuronal scale that diffuse injury
manifests and triggers potential biochemical pathways which eventually
lead to neurodegenerative disorders.

Due to these inherent challenges in efficiently and accurately predicting
the long term effects and current clinical limitations in conducting brain
experiments on humans as well as live animal models, a widespread in-
terest to computationally model TBI has gained much traction. Generally,
computational models replicate the effects of common types of TBI and
characterise the response of the brain. However coarse scale modeling of
existing computational models lack a rich spatio-temporal resolution of
injury evolution, especially at the sub-neuronal scale. Hereby, we refer to
the complex organisation of the sub-neuronal components and its microen-
vironment as the neuron microstructure. Previously the microstructure was
considered as a homogeneous mass of material to characterise its mechan-
ical properties. In reality however, this region is an extremely complex
heterogeneous constitution of proteins having a vivid distribution of com-
position, connectivity, physiology and functioning. Existing homogenized
kinematic and mechanical metrics of brain-scale mechanical response often
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do not account for the underlying heterogeneous microstructure and thus
fail to provide a rigorous connection between the brain scale mechanical
deformation and the underlying neuron scale damage.

The sub-cellular scale also referred here as the neuron microstruc-
ture attributes to the spatial scale of individual proteins and supporting
constitutents that provide structural integrity to the axon. The role of
proteins in providing structural integrity to the axon in physiological and
pathological conditions serve as the foundation for modeling the neu-
ron microstructure. Current work in neuron-scale modeling conducted
loading experiments on neuron clusters to mechanically characterize the
response of some of the sub-cellular structures. The viscoelastic nature of
these proteins underlies much of the structural vulnerability as observed
from experiments and computational modeling. Recent work on in-silico
modeling of neuronal microstructure by characterising essential structural
proteins as mechanical elements will be discussed henceforth. The axon is
constituted by a microtubule-tau network assembly at the core, and this
was represented by elastic rods (microtubules) and viscoelastic elements
(tau) Ahmadzadeh et al. (2014). The objective was to demonstrate bind-
ing interactions of the two proteins and highlight that under low strain
rates tau mitigates the stress experienced by microtubules, whereas under
critical strain rates the latter undergoes rupture and there is breakdown of
tau. In general the work emphasized on the viscoelastic properties of tau
in mediating microtubule stabilization. Using physics-based constitutive
models, the axonal microstructure was modeled and rate dependent me-
chanical elements were introduced to understand behaviour of elementary
proteins in regulating structural integrity of the axon. Even simplistic as-
sumptions arising from relatively recent experimental models considered
neurons as a single linear solid (SLS) in the characterisation of tau protein
hyperphosphorylation due to mechanical deformation Braun et al. (2020).

To investigate the role and dynamics of essential proteins such as
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dynein, microtubules and actin within the axon, an analytical model was
proposed de Rooij et al. (2018) which demonstrated the distribution of
forces across the connecting load bearing components of the neuronal mi-
crostructure. These components, essentially proteins, were represented us-
ing viscoelastic elements and classical force-equilibrium balance equations
were used to quantify the forces across them. This modeling approach
served as one of the harbingers of constructing mechanical descriptions
of axons considering multiple proteins which constitute the structural
scaffold.

Specific studies on the binding properties within the neuronal CSK
between spectrin-actin suggested unfolding of spectrin to mitigate longi-
tudinal stresses along the axon length Dubey et al. (2020). This indicated
that the axonal membrane periodic skeleton (MPS) constituted by actin
rings spaced by spectrin tetramers may adapt dynamically to withstand
mechanical loads using a tension buffering mechanism. Additionally the
work suggests that in addition to the axonal network responding differ-
ently to loads and loading rates Bar-Kochba et al. (2016), it also exhibited
a softening behaviour reminiscent of its viscoelastic characteristics. To
further demonstrate the protective behaviour of the spectrin scaffold, a re-
cent study Kant et al. (2021) measured injury regimes for different tensile
loads and loading rates to the axon. A composite model of the axon was
constructed with proteins contributing as mechanical elements connected
together to mimic the neuronal microstructure. This mechanistic approach
incorporated additional structural proteins such as myelin, spectraplakin
and their linking behaviour with other subneuronal components. To sum-
marize, the description highlighted various loading conditions applied
to a structurally motivated network to evaluate mechanical metrics for
quantifying injury.

In the previous studies, the biophysics of proteins highlighted a qualita-
tive understanding of injury at the sub-neuronal scale using morphological
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abnormalities and damage metrics. However, despite the progress in con-
structing viscoelastic models resembling the neuronal microstructure for
injury prediction, the formulation is elementary, one dimensional and
lacks a rich spatio-temporal resolution of the axon. Besides, there is a
paucity of information on how tissue scale mechanical deformation con-
sisting of neuron clusters influence proteins constituting the single neuron
microstructure and quantifying degradation of critical axonal components
which causes an irreversible progression of injury.

In this work we enhance this understanding of sub-neuronal mechanics
using a three dimensional continuum viscoelastic model and a finite ele-
ment implementation along the length of the neuronal axon. We construct
a mechanical network of proteins resembling the cytoskeletal region of
the neuronal microstructure with each protein having their stiffness and
characteristic time scale. The qualitative behaviour of these proteins and
the network has been utilised from existing tensile loading and loading
rate experimental observations, quantitative estimates from experiments
and molecular dynamics (MD) data. Two different analytical strategies
have been developed, corresponding to a one dimensional (1D) and a
three dimensional (3D) mathematical formulation for evaluating kine-
matics and mechanical metrics. The 1D model is used to demonstrate
fidelity of the network in evaluating different measures of stresses/strain
across each component constituting the network. Even in its simplistic
representation the 1D model is used to obtain injury metrics for given
strains and strain-rates. The 3D model is an extension of its 1D counterpart
in which the domain considered is two dimensional and constitutes the
axon along the neuronal length. We employ the finite element method
(FEM) to discretize this domain and solve the underlying PDEs. The 3D
formulation allows us to capture a higher order spatio-temporal represen-
tation of the stress/strain evolution in the given domain. We subject the
domains to different BVPs for generic and more specific cases at different
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strain and strain rates. Additionally, since the PDEs corresponding to
the protein network is solved at each quadrature point, it is possible to
retrieve mechanical metrics for each protein within the network. This
allows comparing component stresses of the network and highlighting
proteins which have significant structural contribution.

Additionally, an important feature of our model is modularity. We
have constructed our existing network based on available data from litera-
ture and qualitative behaviour observed from experiments. However, it is
a simplification of a generalised viscoelastic model having the utility to
include additional proteins, its corresponding biophysics and interaction
dynamics with other components. While previous models have elucidated
on a detailed investigation of crucial proteins or larger protein networks
with elementary mathematical models, our network combines the poten-
tial of these two classes of analysis and presents an enriched methodology
to evaluate mechanical metrics at the sub-neuronal scale.

We develop a computational framework for modeling the mechanics
of single neuron at the sub-neuronal scale primarily due to assessment of
injury metrics during pathological grade loading. This injury manifests
itself in the form of elevated stress or strain in a certain region of the
brain leading to disruption or degeneration of proteins constituting the
neuronal microstructure. However, the affected region can accommodate
multiple neurons having morphological and functional differences post
impact. Therefore, we model an in-silico representation of neuron cluster
resembling a region of the brain tissue, embedded within an extracellular
matrix(ECM)-like substrate and construct a domain. Akin to the neuronal
microstructure, the ECM is composed of proteins which modulate neuron
functionally, structurally and during development. Using viscoelastic
elements to represent proteins a mechanical network is constructured to
mimic the ECM response which acts as a substrate for the neurons. We
use FEM to discretize the entire mesh (ECM and neurons), employ our 3D
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continuum framework and solve the underlying PDEs using different BVPs.
We obtain field distributions of injury-associated mechanical metrics over
the domain and assess neurons having elevated levels of the same. This is
the macro model and gives field information across a domain (globally).

Critical measures of field values such as strain, associated with a neu-
ron within the neuron cluster, is probed by tracking temporal evolution
of the field variables of interest across the different proteins constituting
the single neuron microstructure. The resulting strain obtained at the
point of interest is mapped to a single neuron BVP setup similar to the
original problem introduced earlier, using a transformation matrix. This
is the micro model and gives protein specific mechanical metrics. Together
with the previous multi-neuron setup, this top down approach of mod-
eling neuron clusters and the neuronal microstructure using one BVP to
simulate another at different length scales, is known as the macro-micro
approach and can be used as a computational injury assessment tool for
risk prediction during TBI.

Overall, here are the key things we present in this communication.
Initially, we construct a mechanical network of some structural proteins
constituting the axonal region and their connectivity with other members
in the network. Using a strain-driven formulation, this protein network is
subjected to different BVPs to capture the sub-neuronal and protein spe-
cific response. The underlying stress developed upon strain vs strain-rate
loading is derived using a 1D and 3D formulation. Using this the stress
equilibrium PDEs are solved with FEM to obtain field quantities in the
domain. Further a top down multiscale modeling approach is employed
to study loading effects on neuron clusters. Using specific BVPs on a do-
main composed of multiple neurons embedded within an ECM which
is modeled to exhibit a different mechanical response than the neuronal
microstructure. Specific neurons are probed from this neuron cluster do-
main and kinematic and mechanical metrics are evaluated for each protein
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constituting the chosen neuron. Using appropriate kinematic and mechan-
ical injury thresholds for single neuron and neuron clusters a strain vs
strain rate risk prediction phase space is obtained. Even though degrada-
tion of critical proteins due to mechanical deformation initiates necrotic
biochemical processes and molecular pathways leading to downstream
neurodegenerative processes due to injury progression, modeling such
phenomena will require inclusion of diffusive chemical fields, tracking
evolution of molecular pathways and mechano-chemical coupling. Ide-
ally, addition of chemical fields to the strain and strain rate phase space
will further enrich its predictive capabilities in gauging injury. However
the present work considers a deformation based injury model and builds
the numerical framework using an in-house C++ code (which can be
extended to include additional fields and physics), using the open source
deal.II Arndt et al. (2022) library, and is available to the general biophysics
community. To conclude, the current work is an enhancement of the pre-
vious studies both in terms of sub-structural analysis of neurons using a
rigorous 3D continuum framework along with a multi-scale approach of
quantifying injury.

3.2 Viscoelastic basis of neuron microstructure

Cytoskeleton

The neuron CSK houses a plethora of subcellular components which play
a foundational role in neuronal development and during injury. Broadly
these subcellular components can be classified into three types of pro-
tein filaments: neurofilaments, actin filaments and microtubules. During
physiological conditions these sub-structures integrate and respond to me-
chanical forces in a way that a stiffer component shields a weaker structure
thereby protecting the neuron interior. In pathological conditions however,
morphological and functional changes compromises with the structural
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integrity of the neuron. This work investigates into the individual contribu-
tion of these cytoskeletal proteins and mechanistically characterizes them
as load-sharing components. To capture the comprehensive mechanical
properties of the subcellular components, we construct a viscoelastic net-
work comprising fundamental neuronal proteins involved in load-sharing.
The network is presented in Fig.3.1 and the components of the network
are hereby discussed.

Figure 3.1: Viscoelastic representation of proteins constituting the CSK
region of the neuronal microstructure. In this illustration five different
proteins are shown namely myelin, short filament actin, spectrin, tau and
microtubules. A strain based formulation is used to obtain the constitutive
equation for the above network.
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Myelin Sheath

The myelin sheath, produced from oligodendrocytes and Schwann cells,
is a lipid bilayer which coats the axon along its length and is structurally
characterized by Schwann cells, myelin and Nodes of Ranvier. Its primary
function is to efficiently expedite electrical impulses across neurons and
provide electrical insulation to the nerve cell. Besides, it also provides
mechanical support and integrates with the axonal cortex to form a scaffold
around the microtubule-tau assembly. In order to capture the mechanical
properties, this load sharing capability of the myelin sheath has been
characterized as a standard viscoelastic Maxwell element.

Actin Filaments

The actin is an eukaryotic, globular 42kD protein and under sufficient
buffer condtions its monomeric isoform (G-actin) naturally aggregate into
actin filaments (F-actin). Actin generally operates in tandem with other
proteins called actin binding proteins (ABP) which exhibit specific roles
in axonal dynamics and organisation Letourneau (2009). In this work
we consider spectrin which anchors the actin rings and forms a support
skeleton around the tubular inner axonal cortex. Actin filaments along
with ABPs play a key role in withstanding a wide spectrum of strain and
strain rates by mechanically stabilizing the axolemma and the inner cortex.
Mechanistically, the actin filament has been represented as a Maxwell
element to capture the dynamical mechanical properties.

Spectrin

In the neuronal microstructure, spectrin forms tetramers and attaches with
actin rings to coaxially form a scaffold. Lack of spectrin has been shown
to produce morphological aberrations in the axon upon deformable loads
Krieg et al. (2014). Besides, one of the biochemical markers following
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stress induced activation of calpain (leading to calpain proteolysis) are αII
andβII spectrin breakdown products commonly known as SBDP Kant et al.
(2021). Degradation of spectrin has also been shown to affect structural
integrity of the neuronal microstructure. We estimate the contribution
and mechanical properties of spectrin by a Maxwell viscoelastic element
across actin which mimics the contribution of the actin-spectrin coaxial
skeleton.

Microtubules

Microtubules are slender cylindrical structures that arrange itself paraxi-
ally along the length of the neuronal CSK. Two types of dimers namely
αtubulin and βtubulin constitute these structures. Microtubules are highly
dynamic in nature and undergo constant remodelling in the form of
poylmerization and depolymerization. Morphologically they cluster them-
selves in a hexagonal configuration about the axonal length and con-
nect themselves via the tau protein. Microtubules play a key role in de-
termining neuronal fate during pathological conditions. For instance
long microtubules undergo swelling, undulations and disassembly of the
microtubule-tau core resulting in downstream effects Ahmadzadeh et al.
(2014). We model the microtubule as a linear elastic spring element to cap-
ture critical mechanical thresholds which affect the neuronal physiology.

Tau

Tau (tubulin associated unit) proteins are primarily composed of amino
acid chains and are microtubule binding proteins which confer structural
support to the neuronal CSK, promotes microtubule growth and mediates
axonal transport Weingarten et al. (1975). While tau phosphorylation plays
a key role during physiological processes such as neuronal development,
during pathological conditions such as TBI, there is an increased activity
of this phenomena referred to as hyperphosphorylation. Morphologically,
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the tau-microtubule bond starts to disintegrate and the axonal integrity
starts debilitating. In order to gain mechanistic insight into the behaviour
of tau proteins at certain injury thresholds we characterize it as another
linker protein with similar viscoelastic elements.

Membrane

The neuron membrane is a selectively permeable double layer of phospho-
lipid molecules with proteins embedded within, which serve a multitude
of functions such as ion channels, pumps, and receptors. Additionally,
this lipid bilayer plays a vital role in generating and transmitting elec-
trical signals, facilitating cell adhesion, communication, and shielding
the neuron from functional damage. The mechanical characteristics of
the neuronal lipid bilayer is attributed to the ion channels and receptors,
that are embedded within it. For instance, when a neuron is subjected
to mechanical stress, such as stretching or compression, the viscoelastic
properties of the membrane enable it to resist deformation and return to
its original configuration, allowing it to maintain structural integrity. The
mechanical network, illustrated in Fig.3.2, representing the membrane is
comprised of a spring and a dampener Rand (1964).

Figure 3.2: Maxwell model representating the mechanical network of a
membrane within the neuronal microstructure.
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Extracellular Matrix

The neuronal ECM comprises of proteins such as collagen, glycosaminogly-
cans (GAG), fibronectin, laminin, vitronectin and other molecules which
are secreted by the neuron itself and by neighboring cells such as astrocytes
and oligodendrocytes. This network of proteins form a scaffold and pro-
vide support and structural integrity to the neurons. During physiological
conditions, the ECM helps maintain shape and stability of neurons, mod-
ulate growth factors thereby regulating synaptic plasticity and provides
a substrate for enhanced neural migration. Nonfibrillar structures such
as proteoglycans(PG) and hyaluronic acid (HA) provide structural sup-
port in the ECM during physiological conditions while fibrillar structures
such as fibronectin, vitronectin and collagen increase during pathological
conditions Lam et al. (2019); Keating and Cullen (2021). The mechanical
network representing the ECM is illustrated in Fig.3.3, which is similar to
the work of Wang et al. (2022) primarily because of the mechanistic con-
sideration and availability of ECM specific data. Additionally, we discuss
features of one of these fundamental structural proteins which provide
support architecture to neurons, which is considered as a linear elastic
element within the viscoelastic network.

Type IV Collagen

Type IV Collagen provides a physical network of fibers that help anchor
neurons in place and maintain integrity of neural circuits. Collagen fibers
are long, thin, and highly ordered, providing resistance to tensile forces
and contributing to the overall stiffness of the ECM. Additionally, collagen
interacts with neuronal cell surface receptors and promotes adhesion of
neuron and their components to each other. During an injury, fibrillar
components such as collagen is recruited to mechanically support neurons,
suggesting a change in stiffness in ECM. While ECM is known to have a
low stiffness due to weak presence of non-fibrillar structures, an increase
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Figure 3.3: Multimode Maxwell model representing the viscoelastic model
underlying ECM. Collagen is modeled and a linear elastic spring and the
other ECM proteins conferring structural integrity are modeled as two
Maxwell elements in parallel. The structure and values considered for this
network have been derived from Wang et al. (2022)

in fibrillar composition naturally leads to an increase in ECM stiffness.

3.3 A representative viscoelastic network
The mechanical representation of the structural support provided by the
sub-neuronal proteins within the axonal CSK is illustrated in the follow-
ing figure. Individual proteins have distinctive viscoelastic properties as
investigated from literature which were either obtained from experiments
or estimated using MD simulations. Three different protein networks
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have been constructed to highlight the contribution of neuronal ECM,
membrane and CSK, underlying the difference in mechanical response
during loading conditions. For CSK, the mathematical formulation has
been presented initially for a single quadrature point using zeroth order
tensor to represent the mechanical properties of the structural elements,
eventually leading to a 1D representation of the mechanical response from
the network. In the second case, a three dimensional formulation is pre-
sented to model a spatio-temporal evolution of the mechanical metrics
across the domain length. The extension is patterned based on the earlier
formulation, using three dimensional nonlinear elasticity. The constitutive
relationship thus obtained in the latter case, is incorporated into the strong
form and subsequently transformed into the weak form using appropriate
boundary conditions. FE results are presented to demonstrate the fidelity
of the CSK network in tracking metrics for individual proteins in 1D and
3D cases respectively. The specific form of the strain energy functional
and 3D formulation used in this presentation is based on the generalised
theory of viscoelastic networks from the seminal work of Simo and Hughes
(2006).

Mathematical formulation - 1D

The 1D formulation developed for Fig. 3.4 is presented. The inelastic strain
developed in branches 1,2 across the damping element due to the applied
strain ϵ is given as:

Ei(ϵ− αi) = ηiα̇i αi = ϵ−

∫ t

−∞ ϵ̇(s)e(−(t−s)/τi)ds τi =
ηi

Ei

αi = ϵn+1 − (e−(∆t)/(τi)hi
n + e−(∆t)/(2τi)(ϵn+1 − ϵn))

hi
n+1 = (e−(∆t)/(τi)hi

n + e−(∆t)/(2τi)(ϵn+1 − ϵn)) for i = 1, 2
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Stress developed is obtained as:

σi = Ei(ϵ− αi) for i = 1, 2 (3.1)

For branches 3 and 5 the expression for inelastic strain is given as:

α3 = ϵn+1
1 − (e−(∆t)/(τ3)h3

n + e−(∆t)/(2τ3)(ϵn+1
1 − ϵn

1 ))

h3
n+1 = (e−(∆t)/(τ3)h3

n + e−(∆t)/(2τ3)(ϵn+1
1 − ϵn

1 ))

α5 = ϵn+1
2 − (e−(∆t)/(τ5)h5

n + e−(∆t)/(2τ5)(ϵn+1
2 − ϵn

2 ))

h5
n+1 = (e−(∆t)/(τ5)h5

n + e−(∆t)/(2τ5)(ϵn+1
2 − ϵn

2 ))

The stress obtained in the three branches is given as:

σ3 = E3(ϵ1 − α3), σ4 = E4ϵ2, σ5 = E5(ϵ2 − α4) (3.2)

where σ3 = σ4 + σ5 and ϵ = ϵ1 + ϵ2 as shown in Fig. 3.5.

Mathematical formulation - 3D

Constitutive relationship in nonlinear elasticity

The 3D formulation for the illustration in Fig. 3.4 is presented as follows.
The stress developed in branch 1, represented by mechanical elements
E1 and η1. τ1 represents the relaxation time given by the expression τ1 =
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Figure 3.4: Viscoelastic representation of proteins constituting the CSK
region of the neuronal microstructure. In this illustration five different
proteins are shown namely myelin-1, short filament actin-2, spectrin-3,
tau-4 and microtubules-5. A strain based formulation is used to obtain the
constitutive equation for the above network.

η1
E1

,γ = 1,µ1 = E1.

σ1(n+ 1) = γh1(n+ 1)

h1(n+ 1) = e
−∆t

τ1 h1(n) +
1 − e

−∆t
τ1

∆t
τ1

(s0
1(n+ 1) − s0

1(n))

s0
1(n+ 1) = 2µ1e(n+ 1)

e = dev(ε(n+ 1)) = ε(n+ 1) − 1
3trace(ε(n+ 1))1

Similarly the stress developed in branch 2, represented by mechanical ele-
ments E2 and η2. τ2 represents the relaxation time given by the expression
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τ2 =
η2
E2

,γ = 1,µ2 = E2.

σ2(n+ 1) = γh2(n+ 1)

h2(n+ 1) = e
−∆t

τ2 h2(n) +
1 − e

−∆t
τ2

∆t
τ2

(s0
2(n+ 1) − s0

2(n))

s0
2(n+ 1) = 2µ2e(n+ 1)

Stress developed in Branch 3, represented by mechanical elements E3 and

Figure 3.5: The applied strain profile ε is split into ε1 and ε2

η3. The formulation is driven on modified strain represented as ε1.γ =

1,µ3 = E3. The applied strain is split additively into two components as
mentioned in Fig. 3.5.

σ3(n+ 1) = γh3(n+ 1)

h3(n+ 1) = e
−∆t

τ3 h3(n) +
1 − e

−∆t
τ3

∆t
τ3

(s0
3(n+ 1) − s0

3(n))

s0
3(n+ 1) = 2µ3e1(n+ 1)

e1 = dev(ε1(n+ 1)) = ε1(n+ 1) − 1
3trace(ε1(n+ 1))1
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Stress developed in branch 3 is the same as that in the single linear solid(SLS)
comprising branch 4 and 5, which is given by the following expression.
Here γ0 =

E4
E4+E5

,γ∞ = E5
E4+E5

,µ4 = E4 + E5

σ4(n+ 1) = γ∞s0
4(n+ 1) + γ0h4(n+ 1)

h4(n+ 1) = e
−∆t

τ4 h4(n) +
1 − e

−∆t
τ4

∆t
τ4

(s0
4(n+ 1) − s0

4(n))

s0
4(n+ 1) = 2µ4e2(n+ 1)

e2 = dev(ε2(n+ 1)) = ε2(n+ 1) − 1
3trace(ε2(n+ 1))1

To obtain a relationship between ε, ε1 and ε2 the stresses in branch 3 and
network 4 are equated. The following relation is obtained.

h3(n+ 1) = γ∞s0
4(n+ 1) + γ0h4(n+ 1)

dev(ε1(n+ 1)) = dev(ε(n+ 1))C1 − C2

where,

C1 =
2µ4γ∞ + 2µ4γ0

1−e
−∆t

τ4
∆t
τ4

2µ3
1−e

−∆t
τ3

∆t
τ3

− 2µ3
1−e

−∆t
τ4

∆t
τ4

C2 =
D

2µ3
1−e

−∆t
τ3

∆t
τ3

− 2µ3
1−e

−∆t
τ4

∆t
τ4

D = 2µ4
1 − e

−∆t
τ4

∆t
τ4

dev(ε(n)) − γ0e
−∆t

τ4 h4(n) + 2µ4dev(ε1(n))
1 − e

−∆t
τ4

∆t
τ4

+

e
−∆t

τ3 h3(n) − 2µ3
1 − e

−∆t
τ3

∆t
τ3

dev(ε1(n))
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The total stress response σ is obtained from the above network by summa-
tion of the individual branch contributions :

σ = σ1 + σ2 + σ3 or σ = σ1 + σ2 + σ4 (3.3)

Material matrix for the network

The algorithmic tangent moduli (C) for each branch, is required in the
FE implementation during the construction of stiffness matrix (K) for
computing degrees of freedom of the global field variable at every node of
the discretized domain. For Branch 1 and 2 the deviatoric tensor of elastic
moduli in linear isotropic elasticity is given as:

∂s0
i(n+ 1)

∂ε(n+ 1) = C̄0
i = 2µi(I − 1 ⊗ 1) i = 1, 2

For Branch 3 the matrix is modified as:

C̄0
3 =

∂s0
3(n+ 1)

∂ε1(n+ 1) =
∂s0

3(n+ 1)
∂ε(n+ 1)

∂ε(n+ 1)
∂ε1(n+ 1) = 2µ3

C1
(I − 1 ⊗ 1)

followed by the algorithmic tangent moduli given as:

C =
∑
i

∂σ0
i(n+ 1)

∂ε(n+ 1) =
∑
i

1 − e
−∆t

τi

∆t
τi

C̄0
i (3.4)

FE Implementation

The domain used in our simulations is 2D and represents the axonal region
along the neuronal length. Additionally, we have obtained a constitutive
relationship for stress-strain in the previous section for network. The fol-
lowing algorithm 1 is presented to demonstrate a stress-update algorithm
in a strain-driven formulation. Once the constitutive equations have been
established, the governing equation (Conservation of Linear Momentum)



50

Algorithm 1 Stress update in a 3D formulation
Require: n ⩾ 0
Ensure: tn+1 ⩽ T , ϵn = given

e(tn+1) = dev(ϵ(tn+1))
s0
n+1 = dev(∂eW

0(e(tn+1)))

hn+1 = e(−∆tn/τ)hn + 1−e(−∆tn/τ)

∆tn/τ
(s0(tn+1) − s0(tn))

σn+1 = U0 ′
(Θ) + γ∞s0

n+1 + γhn+1

in the weak formulation suitable for a FEM implementation takes the form:

R =

∫
Ω

wi,jσijdV −

∫
∂Ωh

witidS = 0 (3.5)

where ∂Ωh denotes the Neumann boundary of the boundary value prob-
lem, and t is the corresponding boundary traction.

3.4 Results

Single axon loading

Using the mathematical formulation as described above, we perform nu-
merical simulations on a representative axon, which is characterized by
its three distinct regions: CSK, membrane and ECM. Fig.3.6 highlights the
axon and the underlying viscoelastic networks which govern the mechani-
cal response of each region considered. Using BVPs we obtain mechanical
metrics which are compared against each region and within each protein
of a particular region. This gives us a comprehensive ballpark of mechani-
cal estimates at specific loads and loading rates. Initially, we demonstrate
stress developed within the neuronal microstructure during strain rate
dependent loading followed by relaxation as plotted in Fig.3.7.

Additionally the mechanical stress developed within each region can
be split into individual protein contributions to distinguish their presence
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Table 3.1: Viscoelastic parameters constituting the neuronal microstructure

Parameter Protein Value Reference
E00 Collagen 3 MPa Wang et al. (2022)
E01 ECM Protein 1 130 MPa Wang et al. (2022)
E02 ECM Protein 2 1 MPa Wang et al. (2022)

τ01(
η01
E01

) ECM Protein 1 16s Wang et al. (2022)
τ02(

η02
E02

) ECM Protein 2 400s Wang et al. (2022)
E2 Membrane 1 MPa Rand (1964)

τ2(
η2
E2
) Membrane 1s Rand (1964)

E11 Myelin Sheath 10 MPa Shin et al. (2020)
E12 Actin 400 MPa Khan et al. (2021a)
E13 Spectrin 80 MPa (estimated)
E14 Tau 10 MPa Khan et al. (2021b)
E15 Microtubules 600 MPa Memet et al. (2018)

τ11(
η11
E11

) Myelin Sheath 1s (estimated)
τ12(

η12
E12

) Actin 0.2s Maxian et al. (2021)
τ13(

η13
E13

) Spectrin 20s (estimated)
τ14(

η14
E14

) Tau 0.35s Ahmadzadeh et al. (2014)

and impact on the neuronal microstructure. To demonstrate this, we have
resolved the stress values for individual proteins and illustrated in Fig 3.8.

Multi neuron cluster loading

A more realistic representation of neurons is achieved through neuron-
cluster loading. In this instance, we construct a computational domain
comprising of mechanistic version of axons, as demonstrated previously,
and orient them at random angles within the domain. This allows us to
obtain a spatially heterogeneous distribution of axons which is similar to
neuron-cluster experimental studies. Using a similar BVP for the larger
domain, we have been able to plot stress distributions for different neu-
rons within the domain. This enables us to understand the amount of
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Figure 3.6: (A) The axon is highlighted within a graphical illustration
of a neuron showing the different layers. (B) The chosen region, with
dimensions 10 µm X 5 µm, is discretized using a mesh which enables finite
element simulations. (C) Every Gaussian point of each region has an
underlying viscoelastic network which captures its mechanical behaviour
upon loading. The mechanical properties of the viscoelastic elements used
in the networks have been obtained or estimated from literature, and is
given in Table.3.1

stress localisation within each neuron within the cluster, upon mechanical
loading. We have illustrated this in Fig.3.9, consisting of a schematic and
some mechanics metrics obtained from the BVP simulations.

3.5 Conclusion
We have presented a three dimensional continuum based viscoelastic
model of the neuronal microstructure for single and multi-neuron cases.
The key highlight of this work is the consideration of different regions
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Figure 3.7: (A) The BVP shows one end of the axon is fixed while the other
end undergoes displacement based loading. A strain rate of 1e+2 s−1 is
applied up to a strain of 0.4, corresponding to a time of 40ms and held
at that value for another 40ms to enable relaxation. (B) The maximum
stress field distribution is plotted across the spatial region of the neuronal
microstructure. (C) A plot of strain against time is shown to highlight
loading behaviour (D) Stress against time plots are shown for (Left to
Right) ECM, Membrane and CSK respectively. As evident from the strain
plot, stresses increase according to the underlying viscoelastic networks
and eventually relaxes when the displacement load is held at the given
strain.

within the axonal sub-structure consisting of different proteins which con-
tribute towards structural integrity. These proteins are further expressed
as viscoelastic elements and investigated according to their specific con-
tributions towards mechanical strength of the axon. The computational
framework presented in this study captures the spatio-temporal evolution
of mechanical metrics within neuronal clusters.

This work is fundamental in understanding cellular and sub-cellular
scale mechanics of neurons during TBI. Using different strain rate de-
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Figure 3.8: Stress developed across individual proteins resolved from the
overall stress response of the regions: (A) ECM and (B) CSK
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Figure 3.9: (A) Graphical representation of neurons embedded within
a cluster. Additionally it also highlights a BVP with the left end fixed
and the right end subjected to displacement based loading condition. (B)
Computational estimation of neurons. As the figure indicates, the red
regions correspond to the CSK, green represents membrane and blue,
ECM. For simplicity the mechanical properties of all the neurons are
same. (C) Upon a strain-dependent loading rate of 1e+2 s−1 upto a strain
of 15 percent applied over 40 ms and held constant upto 350 ms, the
stress field distribution for the domain is obtained and plotted as shown.
The heterogeneity observed in the stress values for individual neurons is
captured in (D). For neurons marked A through E in sub figure (B), the
stresses developed in their respective CSK is plotted against time.
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pendent loading conditions and incorporating appropriate injury based
neuronal thresholds it is possible to construct injury maps which indicate
survivability of neurons and neuron clusters. Additionally our mathemat-
ical model can be extended to include additional CSK or ECM proteins,
having their characteristic viscoelastic descriptions which could improve
the fidelity of injury assessment. We extend this study to include chemical
fields in addition to mechanical fields in Chapter 4 to demonstrate the
multiphysics capabilities of our numerical framework.



57

4 spatio temporal modeling of biomarker
expression in neuronal clusters during traumatic
brain injury

4.1 Introduction
A broad classification of injuries caused due to an impact or concussion
to the head is referred as TBI. The difficulty in TBI diagnoses stems from
the heterogeneity of the brain, structural complexity of the neuronal mi-
crostructure and the complex interplay of proteins at different length and
time scales. TBI is generally manifested as primary and secondary, with
primary referring to the immediate mechanical response of the brain and
the secondary type culminating as a biochemical response. The initiation
of the secondary injury is triggered by a pathological grade of mechanical
load and as the initial trauma unfolds, a cascade of complex cellular and
molecular events follow, potentially exacerbating the damage inflicted
during the primary injury. The injury progression involves upregulation
of critical neurotransmitters, inflammasomes and prolonged activation of
ionic channels which are crucial to maintaining physiological homeostasis
within neurons and neuronal clusters. Identifying the cascade of these
molecular events in accelerating neurological degradation remains as a
fundamental challenge in post injury diagnoses. In this work we aim to
qualitatively and quantitatively demonstrate one of the many pathways
underlying secondary injury across the labyrinth of TBI to predict and
possibly mitigate its devastating consequences.

Previous studies have highlighted key biomarkers relevant to TBI which
are clinically calibrated as a metric for facilitating potential downstream
pathological pathways. Recent studies highlight activation of the trans-
membrane channel proteins Pannexin-1 (Panx1) Seo et al. (2021) present
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in neurons and glial cells, due to an increase in mechanical strain Albalawi
et al. (2017), which are key mediators of ATP (Adenosine Triphosphate)
release into the extracellular region, thereby facilitating neuroinflamma-
tion. An increase in extracellular ATP, which is widely known for its
role in energy metabolism, activates trimeric purinergic receptors P2X
which are ATP-sensitive ion channels present in the microglia Hattori and
Gouaux (2012). Xing et al. (2016) quantitatively highlighted the influence
of increasing extracellular ATP concentration on P2X and P2Y receptor sen-
sitivity and highlighted activation dynamics of the P2X7 receptor, whose
expression has been associated with inflammation Andrejew et al. (2020);
Rotondo et al. (2022). P2X7 receptor activation causes outflux of K+ ions
from the intra-cellular to the extra-cellular neuronal microenvironment
causing a deficit in ionic concentration, which assists in formation of the
nucleotide-binding domain, leucine-rich-containing family, pyrin domain-
containing 3 (NLRP3) inflammasome and activation of Caspase 1, also
known as Interleukin-1 converting enzyme (ICE)Pelegrin (2021). Addi-
tionally the P2X7 receptor also assists in production and release of TNF-
α (Tumor Necrosis Factor), another major pro-inflammatory cytokine,
responsible for triggering an inflammatory response You et al. (2021);
Barberà-Cremades et al. (2017). One aspect of its influence involves its po-
tential contribution to excitotoxicity, a process where excessive activation
of receptors for excitatory neurotransmitters like glutamate leads to cell
damage or death. TNF-α has been implicated in modulating glutamate
transmission and excitotoxicity in the brain and can increase the release of
glutamate, promoting excitotoxicity by several mechanisms Olmos et al.
(2014). It can enhance the expression and function of certain glutamate
receptors, such as the NMDA receptor, which is heavily involved in ex-
citotoxic processes Jara et al. (2007). Moreover, TNF-α can disrupt the
balance of glutamate and its clearance mechanisms in the brain, leading
to increased levels of this neurotransmitter and subsequent excitotoxic
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damage to neurons Takeuchi et al. (2006). The clinical consequences orig-
inating from the pathological response due to increased expression of
these molecules causes initiation of neuronal degradation in the form of
irregular signal transmission across neurons, initiation of necrotic path-
ways and uncontrolled inflammation in cells all of which eventually lead
to neurodegeneration.

To address this complexity in resolving and quantifying critical biomark-
ers involved in spatial and temporal regulation of the pathological down-
stream pathways, we propose a possible molecular cascade following
primary injury. While previous studies have investigated into the individ-
ual molecular contributions and expression within the sequence of events,
we aim to unify clinically identified biomarkers as an ensemble of chemical
species constituting secondary injury. Additionally, there is a paucity in
demonstrating spatial localisation behaviour of these species and their
downstream influence on associated elements within the pathway. There-
fore, our objective is to quantify the gap between isolated molecular events
at the cellular scale and neurodegeneration at the tissue scale using a
qualitative narrative.

Our approach of quantifying the mechanotransduction process un-
derlying TBI is structured into two components. Initially, we construct
a cascade of molecular biomarkers implicating necroptosis during sec-
ondary injury followed by numerical estimation of these species within
the chemical pathway. Firstly, we construct a mechano-chemical formula-
tion consisting of relevant chemical and mechanical fields which dictate the
multi-physics of secondary injury. Secondly, we numerically develop geo-
metrical domains resembling neurons, microglia and extracellular matrix
(ECM) to spatially represent localisation and evolution of chemical species
within a larger neuronal cluster domain. This enhances a comprehensive
visualisation of the interactions between mechanical and chemical fields
and their spatio-temporal resolution with single and multiple neuron-



60

microglia-ECM assembly. Finally, the mechano-chemical formulation is
mathematically modelled using partial differential equations (PDE) with
appropriate boundary conditions relevant to TBI. This first-of-a-kind study
provides useful insights into approximating molecular behaviour upon
deformation based injury at distinct spatial and temporal scales from
neuronal microstructure to system-level.

Underlying the multiphysics setup for approximating mechanotrans-
duction, the mechanical response has been modeled using a three dimen-
sional viscoelastic network consisting of proteins which confer structural
stability to the neuron-microglia-ECM assembly. The chemical response
has been modeled using advection-diffusion equations with chemical
fields representing molecular species (ATP, TNF-α, P2X7, glutamate) and
geometrical localisation accounting for the spatial heterogeneity of these
constituents across the domain. The finite element (FE) method has been
used to discretize the underlying coupled PDE formulation. Using appro-
priate sets of loading conditions across the domain, we demonstrate spatio-
temporal evolution of biomarkers and characterize mechano-chemical ba-
sis of injury thresholds. We also construct an enhanced description of an
injury curve considering critical chemical fields in addition to the existing
mechanical metrics.

To summarize we propose a multiphysics model of molecular mechan-
otransduction and capture the mechano-chemical dynamics arising out of
secondary injury. In Section 2 we provide a comprehensive description of
the chemical pathway proposed. In Section 3 we introduce the biomarkers
and quantify them using PDEs. This is followed by numerical formulation
of the multiphysics setup. In Section 4 we discuss about specific bound-
ary value problems (BVPs) similar to TBI conditions and demonstrate
mechano-chemical interactions. Additionally, we construct a computa-
tional injury curve and increase the phase spectrum for TBI diagnoses. We
conclude with Section 5 with a brief discussion and directions for future
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possibilities in the computational treatment of TBI.

4.2 Chemical pathway of necroptosis
TBI is often addressed as a "biphasic injury" having a primary and a
secondary component Ng and Lee (2019). While experimental studies
have addressed and clinical studies established treatment strategies for
primary injury, a detailed understanding of secondary injury remains
unclear. The paucity in injury resolution is often attributed to the myriad
of necrotic biochemical pathways which trigger and persist for days, weeks
to months Maas et al. (2008). Enhancing treatment strategies for the
biochemical irregularities associated with TBI necessitates identifiable
mechanisms and measurable biomarkers. This study aims to elucidate the
mechanisms driving secondary injury, focusing on identifying, quantifying
biomarkers, and spatio-temporally modeling the proposed pathway that
culminates in necroptosis Hu et al. (2022).

Cell death, traditionally categorized into three primary types namely
apoptosis, autophagy, and necrosis showcases distinct morphological and
biochemical transformations, each illuminating unique pathways in the
landscape of cellular degradation Healy et al. (1998). In the context of
TBI, cellular damage is characterized through apoptosis and necrosis Fink
and Cookson (2005). Apoptosis refers to an orchestrated cellular self-
deconstruction without instigating inflammation thereby preserving the
integrity of surrounding tissues Akamatsu and Hanafy (2020). Necro-
sis, on the other hand, unfolds as a passive and unintended fate for cells,
arising from external disruptions and environmental effects causing un-
controlled release of inflammatory cellular components. In the realm of
secondary injury, emerging research Nie et al. (2022); Hu et al. (2022) sug-
gests the presence of a meticulously regulated form of cell death, poised
as the governing mechanism regulating downstream pathways known



62

as necroptosis. The distinguishing feature of this programmed cell death
is in its controlled activation and orchestrated process by inflammatory
proteins compared to the uncontrolled and accidental nature of necrosis
Dhuriya and Sharma (2018). In this communication, our objective is to
intricately delineate and quantify a possible chemical pathway governing
necroptosis.

Following an insult, a cascade of downstream molecular pathways initi-
ate within the brain causing an upregulation of several critical biomarkers
responsible for modulating chemical and electrical signalling. Crucial to
biomarker expression is the activation of microglia, the resident immune
cells of the central nervous system. Microglia mediates the neuroinflam-
matory response and causes production and release of several molecules.
Recent findings have identified multi-protein complexes such as NLRP3
inflammasome O’Brien et al. (2020), pro-inflammatory cytokines such as
interleukins Yan et al. (1996), TNF-α Woodcock and Morganti-Kossmann
(2013); Longhi et al. (2013) and neurotransmitters such as glutamate Guer-
riero et al. (2015) most of which are expressed in varying degrees during
pathophysiological conditions. These biomarkers play a central role as
essential indicators in injury assessment and diagnosis, serving as foun-
dational elements for modeling the mechanisms underlying subsequent
downstream processes.

The principal challenges in formulating a hypothesis for a biochemical
pathway underlying secondary injury essentially revolve around the identi-
fication of relevant molecules integral to the pathway and the acquisition of
experimental evidence enabling precise quantification of specific biomark-
ers. To fulfill our primary aim, we have assembled a set of molecules
crucial in secondary injury, commonly recognized as biomarkers in clin-
ical diagnoses. Leveraging these, we’ve proposed a potential molecular
pathway, illustrated in Fig.4.1 as part of our hypothesis. In this section
we develop a qualitative understanding of the molecular pathway and
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describe how each component unfolds spatio-temporally in response to its
predecessor. The pathway begins with a concussion to the brain character-
ized by mechanical deformation within neurons and neuron clusters and
terminates with glutamate excitotoxicity, a classic indicator suggestive of
neuronal degeneration Armada-Moreira et al. (2020).

Initiating the molecular cascade upon concussion, mechanosensitive
receptor channels identified as Pannexins become activated as the first
elemental response in the pathway Bao et al. (2004). Pannexin proteins,
particularly pannexin-1 (Panx1), are transmembrane channels found in the
plasma membrane of many cell types, including neurons and astrocytes.
These channels play a crucial role in the exchange of ions, metabolites, and
signaling molecules between the intracellular and extracellular environ-
ments. Opening of pannexin channels in response to mechanical strain
represents a significant aspect of cellular communication and signaling in
various physiological and pathological conditions. Recent studies have
demonstrated the influence of mechanical deformation in prolonged ac-
tivation of pannexin channels which trigger excessive release of energy
molecules such as ATP from the intracellular to the extracellular milieu
Albalawi et al. (2017); Xia et al. (2012).

Excess extracellular ATP, beyond its normal physiological levels, can
trigger several detrimental effects including neuronal excitotoxicity Choi
et al. (2021), inflammation Cauwels et al. (2014), oxidative stress Cruz et al.
(2007) and impaired synaptic function Vroman et al. (2014). This surplus
ATP present in the extracellular space can overstimulate purinergic recep-
tors, leading to dysregulated signaling pathways. Purinergic receptors are
a class of cell surface receptors that are activated by purines, particularly
ATP, and are widely expressed in microglia Calovi et al. (2019). Of par-
ticular interest is the P2X7 receptor, a distinct member of the purinergic
receptor family of ligand-gated ion channels which plays multifaceted
roles in various physiological and pathological processes Andrejew et al.
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(2020). Xing et al. (2016) provided a comprehensive characterization of
P2X receptor responses across varying concentrations of ATP, examin-
ing both human and rodent receptors. Their findings not only provide
valuable insights into the intricacies of purinergic signaling but also serve
as a fundamental quantitative tool crucial for refining and constructing
our modeling processes. Activation of these receptors, typically at high
concentrations of ATP, leads to the opening of non-selective cation chan-
nels, allowing the influx of calcium and sodium ions and subsequent
efflux of potassium ions Piccini et al. (2008); Xu et al. (2020). Elevated
extracellular potassium concentration is known to cause a multitude of
events such as alteration of electrochemical homeostasis across neuronal
membrane Schaefer et al. (1995), hyperexcitability Florence et al. (2012), al-
tered synaptic activity Tagluk and Tekin (2014) and neuronal degradation
Muñoz-Planillo et al. (2013); Koumangoye (2022).

A reduction in intracellular potassium concentration is associated with
the activation of the NLRP3 inflammasome Muñoz-Planillo et al. (2013).
This drop in potassium levels serves as a signal for NLRP3 activation in
microglia, triggering the assembly and activating the inflammasome com-
plex Xu et al. (2020), consequently leading to the processing and release of
pro-inflammatory cytokines Blevins et al. (2022). These mature cytokines
are then released into the neuronal extracellular region, fostering an in-
flammatory response that exacerbates tissue damage which perpetuates
neuroinflammation. In addition to the molecular pathway under consid-
eration, numerous studies underscore a significant pathophysiological
occurrence subsequent to TBI, which is, heightened production of reac-
tive oxygen species (ROS) attributable to an increased post-injury oxygen
consumption rate in the brain Fesharaki-Zadeh (2022). The imbalance
between cellular ROS generation and the body’s antioxidant defenses re-
sults in oxidative stress, a crucial factor implicated in the development and
progression of numerous human diseases. Oxidative stress plays a signifi-
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cant role in modulating the transcription factor nuclear factor-κB (NF-κB)
pathway, a fundamental signaling cascade involved in the regulation of
inflammation and immune responses Lingappan (2018). ROS-induced
activation of the NF-κB pathway not only triggers the formation of the
NLRP3 inflammasome but also directly stimulates the production of in-
flammatory mediators such as TNF-α, pro-interleukins and various other
inflammatory factors Liang et al. (2017).

TNF-α is a pleiotropic pro-inflammatory cytokine which is primarily
released by activated microglia and other immune cells in the brain during
secondary injury. It’s production contributes significantly to the intricate
cascade of inflammatory processes observed in these conditions, a hall-
mark associated with various neurological disorders. Interestingly, despite
its predominantly recognized pro-inflammatory role, TNF-α also serves
various beneficial functions within the body such as immune defense,
tissue repair and regulation of immune cells Shohami et al. (1999); Fran-
cisco et al. (2015). In this study however, our focus remains constrained
to understanding the pathophysiological impacts of this cytokine and its
influence on other molecules within the specific chemical pathway under
investigation. Various inflammatory stimuli, like the cytokine interferon-
gamma Hanisch (2002), act as triggers for microglial activation during
neuroinflammation. These stimuli influence distinct signaling pathways,
including the p38 mitogen-activated protein kinase (p38 MAPK) and NF-
κB pathways Kim et al. (2013), orchestrating the upregulation of TNF-α
expression Olmos et al. (2014).

TNF-α’s detrimental impact within the molecular pathway manifests
notably through its influence on glutamate excitotoxicity. Glutamate, the
most abundant amino acid in the body, beyond its role as the primary
excitatory neurotransmitter of the brain, holds a multifaceted significance
in the physiology of the central nervous system. Often revered as the
"commander" of the brain Mattson (2023), glutamate orchestrates several
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pivotal functions crucial for neuronal signalling Reiner and Levitz (2018),
synaptic plasticity Nadler (2012), memory and cognition Pal (2021). Neu-
rons initiate the process of glutamate synthesis by transforming glutamine
into glutamate and subsequently releasing it to astrocytes which capture
the released amino acid, converting it back into glutamine before trans-
porting it back to neurons. During pathophysiological conditions, TNF-α
downregulates the expression and function of glutamate transporters
on astrocytes, such as excitatory amino acid transporters (EAATs). The
interference of the inflammatory cytokine with glutamate uptake by as-
trocytes leads to increased extracellular glutamate levels, contributing to
excitotoxicity and neuronal damage Olmos et al. (2014); Guerriero et al.
(2015).

Glutamate excitotoxicity unfolds through multiple layers, involving
interconnected mechanisms within the landscape of neurons and its mi-
croenvironment. Within glial cells, the activation of tumor necrosis factor
receptor 1 (TNFR1) by TNF-α elicits a dual effect. Firstly it stimulates
the process of glutamate removal from astrocytes and secondly it im-
pedes their ability to efficiently clear glutamate from the synaptic cleft. In
neurons, the TNF-α/TNFR1 interaction increases the excitatory synaptic
strength. This effect stems from the induction of heightened Ca2+ per-
meability in ionotropic glutamate receptors α-amino-3-hydroxy-5-methyl-
4-isoxazolepropionic acid (AMPA) and N-methyl-D-aspartate (NMDA)
receptors, intensifying excitatory transmission. Simultaneously, TNF-α
decreases the surface presence of inhibitory gamma aminobutyric acid
(GABA)-A receptors, further tipping the balance towards increased neu-
ronal excitability Pribiag and Stellwagen (2013).

The accumulation of excessive calcium, underlying glutamate excito-
toxicity, inside neurons emerges as a key process triggering necroptosis.
NMDA receptors, upon activation, facilitate the entry of extracellular cal-
cium through specialized channels. When these glutamate receptors are
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overly stimulated, it results in an overload of calcium within neurons,
setting the stage for cellular damage due to an overwhelming influx of this
essential yet potentially harmful ion. Stimulation of glutamate receptors
leads to the influx of calcium causing the neuronal cell membrane to de-
polarize. This depolarization triggers the activation of voltage-dependent
calcium channels which facilitate more calcium entry, compounding the
intracellular calcium overload initiated by the excessive stimulation of
glutamate receptors Mark et al. (2001).

In this envisioned molecular pathway illustrated in Fig.4.1, as we wit-
ness a sequence of pathophysiological occurrences including the genera-
tion of reactive oxygen species (ROS), heightened calcium levels, and the
activation of cellular degradation via TNF, we employ the term "necropto-
sis" to encapsulate and define the subsequent biochemical process. This
designation signifies a specific form of programmed cell death as described
and marked by these collective events within the pathway Arrazola et al.
(2019); Li et al. (2008). The consequences of glutamate excitotoxicity
commences at the molecular level, where dysregulated glutamate signal-
ing disrupts neuronal homeostasis and triggers a cascade of downstream
events. These molecular abnormalities, characterized by excessive cal-
cium influx, oxidative stress and neuronal damage, gradually evolves and
contributes to the progression of lifelong neurodegenerative disorders.
The sustained impact of excitotoxicity over time contributes to chronic
neurodegeneration, culminating in conditions such as Alzheimer’s disease
Wang and Reddy (2017), Parkinson’s disease Iovino et al. (2020), Hunt-
ington’s disease André et al. (2010), and others. These disorders manifest
progressively, characterized by the gradual loss of neuronal function and
structure, leading to long-term cognitive decline, motor impairments, and
various neurological deficits. Incorporating the qualitative insights from
the proposed pathway we have developed a PDE based multiphysics
(mechano-chemical) framework. This is used to capture and emulate the
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intricate chemical processes triggered by both initial molecular perturba-
tions and mechanical loading. We use our framework primarily to model
neurons, neuron clusters and their microenvironment to visualise and
resolve the spatio-temporal dynamics of the molecular biomarkers.

Reduced pathway considered for quantification of chemical
species

Given the challenges and complexities in mathematically modeling the
entire pathway in Fig.4.1, primarily due to insufficient quantifiable data
for every element, we suggest a more succinct approach. Our proposal
involves a reduced pathway focusing on major components within the
cascade, supported by substantial experimental validation found in the
literature. We aim to quantify the reduced envisioned pathway, presented
in Fig.4.2 into a set of governing equations motivated by evolution of
chemical species’ concentrations as primary field variables. The shortened
pathway consists of fundamental chemical elements, identified as critical
biomarkers during secondary TBI and modeled as diffusive fields.

As illustrated in Fig.4.2 the cascade initiates with mechanical deforma-
tion, manifested as strain within neurons and neuron clusters. Mathemati-
cally, the imposed boundary condition is treated as deformation while the
corresponding strain response is obtained from the viscoelastic constitu-
tive network of the underlying neuronal microstructure. Using this strain
field generated across the domain of interest (neurons or neuron clus-
ters), we use it as an input for driving ATP generation. This assumption is
hypothesized from the phenomena that mechanical deformation causes
activation of Panx1 channels leading to ATP release from the microglia to
the extracellular region.

Excess concentration of extracellular ATP causes activation of the
purinergic P2X7 receptors situated in the microglia. These receptors play a
fundamental role in facilitating formation of pro-inflammatory complexes
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and therefore has been modeled in the proposed pathway. Recent findings
Xing et al. (2016) have quantified the effect of ATP on members of the P2X
and P2Y receptor family. These studies play a pivotal role in correlating
the effect of ATP concentration with P2X7 receptor opening probability. In
the modeling process, the purinergic receptor channel has been estimated
numerically as a phase field. The consequences of this activation leads
to production of enzymes, formation of inflammasomes and release of
cytokines from the microglia. Among these one of the central molecules,
also recognised as a clinical biomarker, is TNF-α.

The release of this inflammatory cytokine is regulated heavily by mod-
ulation of the P2X7 receptor. Studies have indicated increase in concen-
tration of TNF-α due to receptor activation. This inflammatory molecule
is mathematically modeled as a diffusive chemical field and driven by a
function which depends on the P2X7 phase field. While there are a num-
ber of crucial elements preceding the formation and release of TNF−α,
they have not been considered in the reduced pathway due to a paucity in
quantifiable data relating intermediate molecules with any of the cascade
components considered.

TNF−α causes initiation of a number of downstream events following
its activation and release, primarily associated with excitotoxicity. Due to
the increased extracellular concentration of this inflammatory cytokine, the
microglial uptake of glutamate reduces in the glial cells and subsequently
increases in the post synaptic region. Since glutamate is the principal
excitatory neurotransmitter of the brain, an increase in its concentration
causes a spectrum of neurodegenerative disorders due to the disturbed
ionic homeostasis principal to neuronal signalling. In our reduced path-
way, glutamate is also modeled as a diffusive chemical field localised in
the neuronal synapses. Our modeling process is facilitated by data associ-
ating TNF−α with glutamate, where evolution of the latter is driven by a
function relating the former.
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We discuss the multiphysics of the functional dependencies of all of
the above chemical species’ and derive reaction terms which demonstrate
quantifiable relations between them. The shortened pathway brings to-
gether critical elements necessary for spatio-temporal resolution of the
necroptotic pathway while highlighting a strong correlation between the
chemical species. The idea is to present a novel mathematical framework
incorporating a first-of-its-kind necroptotic pathway modeled with a rigor-
ous numerical implementation using state-of-the-art scientific computing
tools in FEM and demonstrate mechanical and chemical metrics underly-
ing secondary injury. The computational framework is made available to
the wider research community as an open source library Git (2024).

4.3 Mathematical formulation
The first step in the multiphysics formulation is identifying the biological
species constituting the molecular mechanotransduction pathway and
characterizing their diffusive dynamics, sources and chemo-mechanical
interactions. We consider concentrations of the following chemical species
as the primary fields: ATP (ca), TNF-α (ct), Glutamate (cg) and ionic
channels represented as a phase field: P2X7 (ϕp). The idea behind a
phase field assumption of ionic channels is the appoximation of gating
probability (0-closed, 1-open) due to concentration sensitivity of certain
chemical species. The evolution of these chemical fields are modeled using
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the following advection-diffusion equations:

∂ca(x, t)
∂t

= ∇ · (Da∇ca) + f(ϵ, ϵ̇), x ∈ Ω (4.1)

∂ct(x, t)
∂t

= ∇ · (Dt∇ct) + f(ca,ϕp), x ∈ Ω (4.2)

∂cg(x, t)
∂t

= ∇ · (Dg∇cg) + f(ct), x ∈ Ω (4.3)

ϕp = Φ(ca) (4.4)

where the source terms are expressed as f(ϵ, ca, ct, . . . ) and Φ represents
receptor sensitivity as a function of concentration of ATP. The diffusiv-
ity terms are expressed as Dx where the subscript x refers to individual
species.

In order to model the mechanical response of the underlying neuronal
microstructure, a viscoelastic network consisting of three dimensional
springs and dampeners have been considered. The network illustrated
in Fig.4.3, capable of mimicing the extracellular matrix is similar to the
work of Wang et al. (2022) who have characterised the mechanical prop-
erties of the elements constituting the network. Finally, the governing
equation for the evolution of the deformation is the standard statement of
the conservation of linear momentum.

∇ · σ = 0 (4.5)

Variational Formulation

Casting the above governing equations in their variational (integral/weak)
form. This formulation is used to solve these equations within a standard
finite element method framework. We consider treatment of the chemical
species dynamics followed by the mechanical equilibrium equations.
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Find the primal concentration fields {ca, ct, cg,ϕp, u} where,

ci ∈ Sci
, Sci

= {ci ∈ H 1(Ω) |ci = c̄i ∀ X ∈ Γci
g } (4.6)

where i ∈ {ATP, TNF-α, Glutamate} and the phase field,

ϕp ∈ Sϕp
, Sϕp

= {ϕp ∈ H 1(Ω) |ϕp = ϕ̄p ∀ X ∈ Γ
ϕp
g } (4.7)

finally displacement,

u ∈ Su, Su = {u ∈ H 1(Ω) |u = ū ∀ X ∈ Γu
g} (4.8)

such that for all variations,

wci
∈ Vci

, Vci
= {wci

∈ H 1(Ω) |wci
= 0 ∀ X ∈ Γci

g } (4.9)

wϕp
∈ Vϕp

, Vϕp
= {wϕp

∈ H 1(Ω) |wϕp
= 0 ∀ X ∈ Γ

ϕp
g } (4.10)

wu ∈ Vu, Vu = {wu ∈ H 1(Ω) |wu = 0 ∀ X ∈ Γu
g} (4.11)

we have, ∫
Ω

wuσdV −

∫
Γu
h

wutdS = 0 (4.12)∫
Ω

wci

∂ci

∂t
dV +

∫
Ω

(Dci
∇wci

∇ci −wci
f(cj, ϵ))dV −

∫
Γ
ci
h

wci
(∇ci · n)dS = 0

(4.13)∫
Ω

wϕp
(Φ(ca) − 1.0)dV = 0 (4.14)

where wci
,wϕp

are the variations in chemical concentrations and phase
field respectively, wu is the variation in displacement and i ̸= j. Ω is the
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problem domain,{Γci
g , Γϕp

g , Γu
g} are the Dirichlet boundaries for the chemical

concentration fields, phase field and displacement vector respectively.
Similarly, Γci

h and Γu
h are the Newmann boundaries for the chemical fields

and displacment respectively and n is the unit normal vector. In this
formulation, we assume that there are traction boundary conditions t
for the displacement boundaries and no chemical species flux at all the
boundaries (∇ci · n = 0).

The mechanical and chemical properties which have been used from
literature are summarized in Table 4.1.

Table 4.1: Mechanical and chemical properties

Property Value References
E0 3 µN/µm2 Wang et al. (2022)
E1 1 µN/µm2 Wang et al. (2022)
E2 130 µN/µm2 Wang et al. (2022)
τ1 16 s Wang et al. (2022)
τ2 400 s Wang et al. (2022)

bulk 1000 µN/µm2 Konno et al. (2021)
Da 300 µm2/s Bennett et al. (1995),Zhang et al. (2018)
Dt 150 µm2/s Ross and Pompano (2018), Goodhill (1997)
Dg 460 µm2/s Rusakov et al. (2011),Moussawi et al. (2011)

Multiphysics of Reaction Terms

The equations representing evolution of the chemical species are driven by
source terms which depend on evolution characteristics of other chemical
fields. In our formulation, we have introduced four different chemical
species and a displacement variable, which are related to each other se-
quentially. Based on the quantitative evidence from recent literature, the
functional dependence of each primary field with others have been estab-
lished.
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ATP

As discussed earlier, when an injury manifests, it does so by activating
pannexin channels embedded in the microglia which causes excess en-
ergy molecules, ATP, to efflux. While we have established a qualitative
relationship between external mechanical deformation and spatial mod-
ulation of ATP concentration, there is a lack of quantitative evidence on
specific metrics which relates the two phenomena. Therefore, we propose
a linear relationship between the amount of mechanical strain and strain
rate obtained from the underlying constitutive framework and the amount
of ATP produced subsequently. The mathematical relation between the
source term in Eq.4.1 driving ATP evolution and mechanical deformation
is expressed as:

f(ϵ, ϵ̇) = K1f(ϵ) + K2f(ϵ̇) (4.15)

where K1 and K2 are fitting constants with units M and M-sec respectively.
The functions f(ϵ) and f(ϵ̇) are plotted in Fig.4.4. The evolution profile is
presented in Fig.4.5(A).

P2X7 Receptor

Xing et al. (2016) demonstrated a critical concentration of ATP beyond
which the purinergic P2X7 receptor activates leading to increased prob-
ability of inflammasome complex formation. Based on the quantitative
data provided in their experiments, a tan hyperbolic function has been
used to recreate the normalised response of the receptor. We have illus-
trated (Fig.4.5(B)) and compared the data with our proposed function
as a mathematical source term for P2X7 receptor channel properties. The
specific expression used in Eq.4.4 to quantify the phase field evolution
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representing the purinergic receptor is given as:

Φp = tanh(Af(ca)) (4.16)

where A = 102.25M−1 and f(ca) varies between 10−8 − 10−1 M, which is
considered keeping in view the typical ballpark of ATP produced during
pathological conditions.

TNF-α

Upon P2X7 receptor activation, a cascade of events unfolds, of which the
pivotal step involves release of pro-inflammatory molecules namely TNF-α.
Based on the work of Barberà-Cremades et al. (2017), a relationship be-
tween amount of this cytokine release upon P2X7 receptor activation over
time has been shown. We compare the experimental findings with another
tanh function tailored to incorporate contribution of the purinergic recep-
tor as illustrated in Fig.4.5(B). In this comparison, TNF-α accumulates as
a function of time and saturates at a certain concentration. We propose
a mathematical model which formulates a source term, as mentioned in
Eq.4.2 by associating the P2X7 receptor based on the experimental find-
ings and spatio-temporally resolving the maximum limits of this chemical
species.

f(ca,ϕp) = Bϕp (4.17)

where B = 0.1 and a critical concentration of ATP (ca) is considered as a
trigger for TNF-α evolution. The reaction profile is shown in Fig.4.5(C).

Glutamate

Once the concentration of TNF-α increases, glutamate uptake by nearby
astrocytes decreases and post synaptic presence increases. This leads to
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excitotoxicity of the primary neurotransmitter. We have identified a study
by Zou and Crews (2005) which presents some evidence of glutamate
uptake reduction due to increase in cytokine concentration. Since there is
no explicit data measuring excitotoxicity, we have hypothesized a metric
which states that the reduction in uptake is inversely proportional to the
increase in extracellular glutamate concentration. Using this principle we
have quantified the increase in glutamate as a function of TNF-α. The
specific mathematical form representing the source term for Eq.4.3 is
expressed as:

f(ct) = Cct (4.18)

where C = 100M−1 and is a fitting parameter. The reaction profile is
highlighted in Fig.4.5(D).

4.4 Results

Outline of BVPs

We proceed onto numerically implementing the multiphysics based varia-
tional formulation in a standard FE setting in two dimensions. In order to
achieve visualisation of the chemical species’ evolution firstly we need to
geometrically allocate regions within the given domain. These localised
domains will signify neurons, microglia and the ECM and will correspond
to presence of specific chemical fields in those regions. In order to con-
struct a geometry which resembles a neuron-microglia-ECM assembly
at single and multi-neuron length scale we subdivide a given domain
into realistic shapes highlighted by the Gaussian point. This approach
allow spatio-temporal visualisation of chemical species’ diffusion and
interaction with the underlying mechanics in a realistic morphological
setting, as observed in biological systems. Furthermore, simulation of
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boundary value problems enables a wide class of kinematics/mechanics
driven mechano-chemical phenomena to be analysed.

Single neuron-microglia-ECM morphology

We have illustrated a morphological representation of single neuron-glia-
ECM assembly (Fig.4.6). This consists of neuron synapses indicated by
red, padded on both sides by microglia painted in green. The microglia is
a pivotal region in numerical simulations, as it facilitates release of ATP
to the ECM, houses the P2X7 receptor and modulates channel sensitivity
and finally enables production of inflammatory cytokines. All the above
mentioned chemical fields are spatially localised in the microglial region
and the numerical framework allows diffusion across the ECM. For a single
neuron-glia-ECM assembly we observe the effects of various mechanical
loading conditions on this domain through evolution of the underlying
chemical and mechanical fields. Upon tensile loading, the biomarkers
represented by chemical fields diffuse across the illustrated domain.

Multiple neuron-microglia-ECM geometry

In a more realistic setting, the length scale of the domain is increased to ac-
commodate more number of neuron-glia-ECM assemblies which illustrate
a better representation of neuron clusters (Fig.4.7). As we observe from
this construction, more assemblies have been added at random orienta-
tions each having the characteristic spatial localisation as mentioned in the
single neuron setup. For simplicity we have considered all neuron assem-
blies of the same type, meaning, the chemical and mechanical properties
are the same for all assembly configurations. Primarily, this improvised
structure allows us to visualise the spatio-temporal heterogeneity of chem-
ical field evolution and capture essential chemical and mechanical injury
metrics across the domain. Similar to the previous setup, we perform
different BVPs on this domain and observe field evolution characteristics.
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Simulations

For single and multiple neuron-microglia-ECM assembly, we demonstrate
key results based on unaxial tension numerical simulations. For single
assembly, as shown in Fig.4.8(A), the domain is fixed at one end and a
displacement-type load is applied across a spectrum of strain and strain-
values. In this simulation we highlight results obtained at a strain rate
of 102s−1 upto 80% strain. A fundamental metric of deformation based
loading problems is strain; accordingly the axial strain field (ϵ11), obtained
from the underlying mechanical network is plotted for the domain as given
in Fig.4.8(B). Using a combination of strain and strain-rates, an array of
results are presented in Fig.4.8(C). The strain field induces ATP to release
from the microglia to the ECM. From left to right, field characteristics for
ATP due to the above mentioned strain field is shown. As observed, ATP
diffuses out of the microglia into the ECM demonstrating the heteroge-
neous nature of field distribution. The following sub-figure shows P2X7
characteristics which is operating at maximum potential as the critical
concentration of ATP, needed to trigger the receptor, has already reached.
To its right, TNF-α field plot is shown, which depends on P2X7 receptor
opening probability and diffuses out of the microglia. The final sub-plot
highlights glutamate concentration due to the influence of TNF-α. The
neurotransmitter is localised at the synaptic region and diffuses into the
ECM. While Fig.4.8(C) demonstrates full field profiles for each chemical
entity, Fig.4.8(D) illustrates field evolution characteristics for increasing
strain-rates from 10−3 up to 103 keeping the maximum strain fixed at 0.8
for each simulation. The following sub-plots (left to right) describe the
nature of evolution of ATP (near the microglia), P2X7 (within the mi-
croglia), TNF-α (near the microglia) and Glutamate (near the synapse).
The particular strain and strain-rate combination used for the full field
plots has been highlighted by an arrow in each sub-plot. The maximum
magnitude of the chemical species’ concentrations are comparable with
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pathological estimates and presented in Table.4.2.
A key highlight of the spatio-temporal resolution of these chemical

fields is the construction of an injury curve. Considering maximum ATP
concentration across the spatial domain at specific strain and strain-rates
a dataset is established. The data set is plotted against strain vs strain-rate
as illustrated in Fig.4.9 and allows visual representation of field values
at specific loading conditions. A cutoff for critical extracellular ATP is
chosen based on the concentration at which purinergic receptors (P2X7)
activate Browne (2013), which is about 6e − 3 mM Xing et al. (2016).
The proposition is, if the maximum concentration of ATP stays above
this number, the neuronal micro environment is susceptible to chemical
degradation, which is also how we define chemical injury. Using this
metric, two regions are shown representing pathway induced injury (red
boxes) and uninjured region (green boxes). It is a first order estimation of
how mechanical loading conditions can influence downstream pathways
and elevate critical molecular concentrations.

Unaxial tensile loading numerical simulations using rate-dependent
loading are performed for multi-neuron assemblies. Using variable orien-
tations for individual single neuron-microglia structures, a neuron cluster
is constructed and a boundary value problem is setup as illustrated in
Fig.4.10(A). We have chosen two essential field variables namely ATP
(Fig.4.10(B)) and glutamate (Fig.4.10(C)) to demonstrate the heterogene-
ity and interactions within this assembly. The results consisting of these
field profiles are generated using a strain rate of 102s−1, applied up to a
strain of 0.4.

A heterogeneous distribution of micro-glia and neurons has been pre-
sented in Fig.4.11. In this example the number of neuron synapses are
reduced and a more dense population of micro-glia has been shown. The
figure illustrates ATP release from the micro-glia throughout the ECM
upon mechanical deformation.
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Table 4.2: Comparison of chemical concentrations

Species Pathological estimate Numerical results
ATP 1e-2 M (Xing et al. (2016)) 7e-2 M
P2X7 0 - 1 (Xing et al. (2016)) 0 - 1

TNF-α 2.4 mM (Mogi et al. (1994)) 1.8 mM
Glutamate 1-2 µM (Mark et al. (2001)) 0.5 µM

4.5 Conclusion
We have proposed and quantified an injury based pathway beginning
with mechanical deformation and culminating in necroptosis. The pro-
posed pathway based model incorporates a finite element PDE oriented
multiphysics formulation for investigating mechano-chemical interactions
during TBI at the cellular scale. The fidelity of our numerical modeling
framework involves a first-of-its-kind representation of neuronal microen-
vironment as a viscoelastic network coupled with an ensemble of molecular
biomarkers represented as chemical fields. Using our modeling framework,
we have demonstrated field behaviour for single neuron-glia assembly
along with neuron-glia clusters highlighting localisation of biomarkers.
Our results agree closely with clinical estimates of molecular concentra-
tions during pathological conditions.

We believe that the idea of a mechano-chemical framework utilised to
capture pathway induced injury opens up avenues of research directions
in injury specific biomarker identification. Although our modeling ap-
proach relies on limited availability of biomarker datasets, experimental
quantification for injury metrics in human subjects and generic assump-
tions on field evolution characteristics, it provides a robust numerical and
computational base for further improvements. Additionally, our model
is capable of incorporating additional biophysics at the neuronal scale
including ionic conduction Gulati and Rudraraju (2023), nutrient trans-
port and inter-neuronal interactions which possess immense potential in
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understanding crucial neurodegenerative disorders.
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Figure 4.1: Proposed pathway of necroptosis underlying secondary injury
during TBI. The pathway begins with mechanical deformation manifested
as increased strain to the brain, which triggers opening of the pannexin
channels leading to massive ATP efflux into the extracellular region. In-
creased ATP causes purinergic receptors to activate, particularly the P2X7R,
which causes potassium efflux from the intra- to extracellular milieu. De-
crease in ionic concentration of potassium initiates formation of the NLRP3
inflammasome complex. Simultaneously there is a heightened increase in
the demand for oxygen causing oxidative stress and production of reactive
oxygen species. This causes the NFκB pathway to trigger, also leading to in-
tracellular formation of the NLRP3 inflammasome complex. This complex
is responsible for modulating formation of pro-inflammatory products
mainly cytokines such as TNF-α and ILs. TNF-α causes dysregulation in
neuronal signalling by blocking EAAT’s on astrocytes thereby reducing
glutamate uptake. It also intensifies excitatory transmission by increasing
permeability of the glutamate receptors to calcium ions. Increased gluta-
mate concentration in the post synaptic region causes excitotoxicity and is
considered as the pivotal step towards necroptosis.
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Figure 4.2: Representation of a reduced pathway consisting of quantifiable
elements which contribute towards necroptosis. Illustrated in this pathway
are ATP, TNF-α and glutamate classified as chemical concentration fields
and the P2X7 receptor mathematically as a phase field. This is attributed
qualitatively to the opening probability of the channel upon prolonged
activation by ATP. The shortened pathway enables formulation of diffusive
equations to spatio-temporally resolve the chemical species across the
inhomogenous neuronal landscape.
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Figure 4.3: Mechanical network representing the neuronal microenviron-
ment. The mechanical estimates of springs and dampeners are obtained
from Wang et al. (2022)

Figure 4.4: (Left) Dependence of f(ϵ) with ϵ. (Right) Dependence of f(ϵ̇)
with ϵ̇.
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Figure 4.5: (A) ATP evolution against increasing strain (upto 80 percent)
has been shown here with different strain rates. In particular, the strain
rate 102s−1 has been chosen to further illustrate correlations between the
chemical fields. (B) P2X7 receptor opening probability is plotted against
ATP evolution for the aforementioned strain rate. Furthermore, this data
suggests a positive agreement with the findings of Xing et al. (2016) for
estimating P2X7 receptor probability with change in ATP. (C) TNF-α
evolution with change in receptor opening characteristics has been demon-
strated in this plot. It is observed that at a relatively higher value of P2X7,
TNF-α diffuses out and continues evolving with time. (D) Glutamate
excitotoxicity in the extracellular region, influenced by increased presence
of inflammatory cytokines like TNF-α can be observed in this plot. These
results are compared with the findings of Zou et al. Zou and Crews (2005)
and show significant resemblance in the nature of glutamate evolution.
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Figure 4.6: The design of the computational domain has been adapted from
a realistic representation of the neurons and the surrounding microglia. As
illustrated in (A) a specific region consisting of neuron synapses and mi-
croglia has been considered which has been magnified in (B). A schematic
of pre-synaptic and post-synaptic neurons are shown flanged on both sides
by microglia. This design has been incorporated as our computational
domain (C) to facilitate localisation of chemical fields, visualization of
diffusive behaviour of fields and understand interactions between these
species at different length and time scales. A meshed version of the numer-
ical domain has been shown with colors (green: microglia,blue: ECM,red:
synapse) indicating distinct regions of interest.



87

Figure 4.7: Illustration of a meshed neuron cluster domain (single neuron
assembly) in a random spatial distribution of single neuron-microglia
assemblies at different orientations (multi-neuron assembly). The dimen-
sions of the single neuron domain are 12µm X 10µm and that of the larger
domain are 60µm X 72µm
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Figure 4.8: (A) Boundary value problem demonstrating simple tension
on a computational domain represented by neuron synapse (green), mi-
croglia (red) and ECM (blue). The domain is fixed at one end, while the
other end is displaced through a combination of strain and strain-rate load-
ing conditions. (B) Uniaxial strain (ϵ11) field profile obtained from the
underlying viscoelastic network by applying displacement through a strain
rate of 102s−1 upto a strain of 0.8. (C) Chemical field evolution profiles
representing (left to right) ATP (originating from microglia), P2X7 (lo-
calized in microglia), TNF-α (originating from microglia) and Glutamate
(originating from neuron synapses). (D) Field evolution plots against a
strain of 0.8 has been illustrated for increasing strain rates spanning over
six orders of magnitude (10−3 - 103). The strain rate measure for which
the field plots are highlighted is indicated in each subplot and mentioned
accordingly.
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Figure 4.9: Maximum concentration of ATP within the field distribution
is recorded for a spectrum of strain and strain-rates. The resulting data
set obtained is utilised to construct a computational injury curve. Using a
specific cut-off for ATP concentration (6e− 3M) two regions are obtained.
The red one represents pathway induced injury while the green one reflects
uninjured regimes.
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Figure 4.10: (A) Boundary value problem of multi neuron-microglia-ECM
assembly is shown. Similar to the single neuron assembly, the larger do-
main is fixed at one end and displacement based loading is applied at the
other end as indicated. (B) ATP evolution for multiple assemblies are
shown as induced by the underlying strain field. The heterogeneous na-
ture of field evolution is a hallmark characteristic for such larger domains
and can be spatio-temporally resolved to better understand neuron-cluster
based experiments. (C) Glutamate evolution is highlighted which is
localised near the neuron synapses. Cluster based spatio-temporal res-
olution of chemical fields such as glutamate serve as key indicators in
excitoxicity prediction.
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Figure 4.11: (A) Phase field demarcation of a heterogeneous distribution
indicating neuronal synapse and microglia (B) ATP evolution for multiple
assemblies are shown as induced by the underlying strain field.
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5 conclusion

In this dissertation, we have demonstrated three different biophysics prob-
lems which are computationally modeled using robust numerical frame-
works. Although a significant volume of the thesis is dedicated to under-
standing neuronal scale behaviour upon mechanical loading, we have also
described the structural and functional modifications which membranes
undergo during biophysical processes. Chapter 2 begins with a mathemat-
ical framework for modeling biological membranes using Kirchhoff Love
thin shell kinematics. Using state-of-the-art modeling techniques we have
been able to demonstrate two classical biomembrane problems: formation
of tubular shapes in biomembranes and Piezo1-induced membrane foot-
print generation. For each of these problems we are able to validate against
results and experimental observations for the simpler deformation modes,
and also predict the complex deformation profiles that are not accessible
by traditional analytical and numerical methods. The key highlight of our
work is the prediction of complex, three dimensional deformation profiles
in biomembranes which often lead to reduction in the load and energy
barriers to membrane deformation, and reveals numerically unexplored
deformation profiles and membrane morphologies.

In Chapter 3 we investigate into the neuronal microenvironment and
characterize neurons and neuronal clusters. In a first of its kind represen-
tation the neurons have been spatially localised into CSK, ECM and mem-
brane each having its characteristic viscoelastic network. These networks
are constructed based on physiological and experimental observations
of proteins which contribute towards the structural integrity of those re-
gions. For single neuron simulations we have demonstrated distribution
of mechanical loads for individual proteins within each spatial region. The
advantage of resolving cellular scale metrics into a sub-cellular scale re-
veals insights into vulnerability of proteins to damage or degradation. We
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have also extended the single neuron description into a multi-neuron clus-
ter numerical domain, which enables visualization of the spatio-temporal
evolution of essential field variables relevant to injury. Our computational
framework is able to capture protein specific information for tissue-scale
rate dependent loading, often used in injury assessment and diagnoses.

We improvise our understanding of the mechanical basis of injury in
the previous chapter by expanding our generalisation of the pathological
degradation to incorporate chemical fields in addition to mechanical fields.
In this mechano-chemical framework established in Chapter 4 we con-
sider the biochemical pathways which trigger due to induced deformation
within the neuronal microenvironment. Characterising these pathways of-
ten involve macromolecules, neurotransmitters and inflammasomes which
operate in tandem towards necrosis. In our study we identify a potential
chemical pathway, supported by biophysical arguments, which potentially
leads to necroptosis. Within this pathway we have quantified a couple
of biomarkers as chemical fields and constructed a numerical framework
taking into account neurons, microglia and ECM. Using spatial localisa-
tion, we have demonstrated spatio-temporal evolution of these biomarkers
upon strain and strain-rate based loading. Our results have been incor-
porated into an injury map which reveals a kinematic spectrum of injury
probability based on chemical concentrations of certain biomarkers. Our
numerical framework also extends towards multi neuron-glia-ECM as-
sembly and illustrates realistic evolution of chemical fields. In a first of its
kind study our mechano-chemical model demonstrates a chemical basis
of injury based on concentration thresholds of critical biomarkers. We
believe that this model can be extended to include additional relevant
chemical and mechanical fields backed by literature and experimental
observations which can enrich injury detection and diagnoses.
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