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Abstract 

Natural hazards are environmental events that pose significant risks to societies and human 

environments. In the Great Lakes region, natural hazards such as flooding, dangerous currents, and 

rapid shoreline changes are common concerns. These hazards have led to numerous incidents, 

resulting in fatalities, socio-economic losses, and ecological damage. Given the severe 

consequences of natural hazards, the Great Lakes region faces two primary challenges: effectively 

detecting these hazards with high spatial resolution while minimizing labor and time costs; and 

comprehensively characterizing their occurrence and features to support informed management 

and mitigation efforts. I hypothesize that combining remote sensing and deep learning techniques 

can enhance the detection and characterization of natural hazards in the Great Lakes region. To 

examine this hypothesis, the overall objective of this study is characterizing natural hazards using 

remote monitoring and deep learning methods. Specifically, the research investigates flood 

impacts on stream habitat quality, and flash rip currents and rapid shoreline changes in coastal 

areas. First, to assess flood impacts on stream habitat quality, a UAV-based toolkit was developed 

to characterize stream habitat quality conditions using multi-metric indices (MMIs). Applied 

before and after the August 2018 flood, this approach revealed patterns of loss and resilience in 

riparian vegetation, bank stability, and in-stream cover. Second, for flash rip currents, webcam 

imagery was analyzed with a refined Cascade R-CNN model, enabling reliable detection and 

classification of flash rips into three driving factors: water-level fluctuations, normal waves, and 

oblique waves. Their spatial, temporal, and kinematic features were then characterized to quantify 

differences among driving factors. Third, to detect and characterize rapid shoreline changes, a 

DeepLab-based segmentation framework was applied to aerial images for shoreline extraction and 

coupled with an improved Digital Shoreline Analysis System to compute change rates, identify 
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hotspots, and distinguish true morphological change from shoreline retreats driven by water-level 

fluctuations. Overall, this research contributes to improving detection methodologies and 

enriching the characterization of natural hazards in the Great Lakes region. The findings aim to 

reduce hazard-related risks and provide valuable insights into effective management and 

mitigation efforts. 
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Chapter 1: Introduction 

1.1 Background 

1.1.1 Natural hazards in the Great Lakes region 

Natural hazards, defined as environmental events that pose risks to societies and ecosystems 

(UNDRR, 2009), encompass a wide range of threats such as flooding and dangerous currents 

(Borden and Cutter, 2008). These events typically lead to three types of impacts: human casualties 

(injuries, illnesses, and deaths), damage to equipment, infrastructure, and property, and disruptions 

to ecological and environmental systems (Kappes et al., 2008; Marzocchi et al., 2012). In the North 

American Great Lakes region, natural hazards are a recurring issue (Jones and Corotis, 2012). 

Among all natural hazards occurring within this region, flooding in river and coastal areas, 

dangerous currents near lakeshore, and rapid shoreline changes are particularly common. Flooding 

in the Midwest could be caused by heavy rains, rapid snowmelt, lake water level fluctuation, or 

Figure 1-1 | Flood-related estimate damages and direct fatalities in the Great Lakes States. (a) shows 

the total estimated flood-associated damages of each state from 1996 to 2020 (Data Source: Zhi L. 

et al., United States Flood Database v1.1, https://zenodo.org/records/7545697); (b) presents the total 

reported direct flood-induced fatalities in each state from 2010 to 2023 (National Weather Service 

Preliminary US Flood Fatality Statistics, https://www.weather.gov/arx/usflood). 

(b) (a) 

https://zenodo.org/records/7545697
https://www.weather.gov/arx/usflood
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their compounds (Rasid et al., 1992; 

Kunkel et al., 1993; Velasquez et al., 

2023). As shown in Fig. 1-1, flood 

events caused approximately 20.76 

billion US dollars of estimated 

economic damage from 1996 to 2020 

(Li et al., 2021), and 187 direct fatalities 

from 2010 to 2023 in the Great Lakes 

states (National Weather Service, 

2024). Within this context, Wisconsin 

alone reported $1.98 billion in 

economic damage and 16 fatalities 

during the same period. Also, riverine 

floods incur some severe impacts on 

river and stream habitats, such as stream 

bank failure (Fig. 1-2a) and recessed 

riparian vegetation cover (Fig. 1-2b), thereby posing considerable challenges for freshwater 

species communities. According to an investigation in Minnesota, the August 2007 flood reduced 

invertebrate densities by 75–95% and taxa richness by 30–70% in some southeastern Minnesota 

streams, and assemblage structure was reduced to poor and very poor levels in first- and second-

order streams (Mundahl and Hunt, 2011). Dangerous currents, characterized as rapid seaward 

water jets, can unexpectedly sweep people in nearshore areas to deeper offshore zones (Garnier et 

al., 2008; McCarroll et al., 2014) and cause drownings (Castelle et al., 2016). Numerous drowning 

Bank Erosion 

Recessed Vegetation (b) 

Figure 1-2 | Flood-induced stream habitat health 

losses in Black Earth Creek. (a) shows the bank 

erosion with bare soil after the August-2018 flood 

event; (b) displays the riparian vegetation recession 

and exposed stream bank after the same flood event. 

(a) 
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incidents have occurred in the five 

Great Lakes and adjacent freshwater 

systems, as shown in Fig. 1-3. The 

Great Lakes Current Incident Database 

reports an average of 21 rescues and 12 

fatalities annually from 2002 to 2020, 

associated with these currents in the 

Great Lakes area (NOAA, 2024). 

Shoreline change refers to the loss or 

gain of land area, or alterations to the 

landscape along the water’s edge 

(Camfield and Morang, 1996). It 

represents a significant environmental 

threat to beaches, with the potential to 

degrade natural habitats, damage 

cultural resources, and endanger 

facilities, properties, and infrastructure 

(Jin et al., 2015; Porst et al., 2019). In 

the Great Lakes region, shoreline 

change has emerged as an urgent issue, 

driven by rapid water-level fluctuations and the widespread expansion of coastal structures 

(Mattheus et al., 2022). The risks are particularly acute during the fall and winter months, as 

highlighted by a case study from Muskegon County, Michigan (Acheampong et al., 2025). 

Figure 1-3 | Rip current incidents in the Great Lakes 

recorded in GLCID database  

(https://www.weather.gov/greatlakes/beachhazards_s

tats#) between 2002 and 2020  (red indicate incidents 

with fatalities, and yellow mean successful rescues).  

Figure 1-4 | Shoreline and bluff erosion in the Great 

Lakes. Image sources: 

https://web.s3.wisc.edu/shorelinephotos/2012_photos/

MW-0637.jpg 

https://www.weather.gov/greatlakes/beachhazards_stats
https://www.weather.gov/greatlakes/beachhazards_stats
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Between 2010 and 2020, some sites, such as Jeorse Park Beach, experienced shoreline recession 

exceeding 20 m (Abdelhady and Troy, 2023). Similar concerns have been reported in Kenosha 

County (Fig. 1-4), where shoreline retreat and bluff recession pose severe risks to homeowners. In 

addition to these property-related impacts, certain locations recorded habitat losses of more than 

10 m per year between 2010 and 2022 (Theuerkauf and Braun, 2021). Furthermore, the proportion 

of armored shoreline in Lake Michigan increased sharply from 3.9% in 2014 to 18.7% in 2021, 

leaving remaining unarmored areas increasingly vulnerable (Theuerkauf et al., 2025). In view of 

the consequences of natural hazards in the Great Lake region, effective monitoring and 

detection to characterize their occurrence and features are imperative. 

1.1.2 Monitoring  

Monitoring natural hazards, such as floods, dangerous currents, and rapid shoreline changes 

is important for acquiring data to characterize their features and impacts. There are three 

monitoring approaches. First, direct measurements and observation in the field provide 

foundational data on these hazards. Transects and quadrats are widely used to collect hydraulic, 

geomorphological, and ecological data in in-situ surveying (Pascoe et al., 1993; Simonson, 1994). 

This approach is labor-intensive, requiring significant manual effort to gather samples that 

accurately represent conditions across the entire area of interest. Second, sensors, such as gauges 

and buoys, are installed at strategic locations, offering continuous, real-time monitoring of 

environmental parameters such as temperature (Yao et al., 2015), wave patterns (Naffaa, 1995), 

flow rates (Kawanisi et al., 2012), and current speed (Lane et al., 1999). However, these devices 

allow for ongoing observation but are often restricted by their high cost and the complexity of their 

deployment, limiting their application to extensive areas. Given these limitations, achieving long-

term, real-time monitoring with high accuracy and broad coverage through in-situ or sensor-based 
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methods alone is challenging. Remote sensing is a technique used to gather information about 

objects, areas, or phenomena without making physical contact with them (Elachi and Van Zyl, 

2021). This technology, encompassing satellite and aerial imagery, web cameras, and unmanned 

aerial vehicles (UAVs), is increasingly incorporated into natural hazard monitoring. For instance, 

satellite data has been widely utilized for flood hazard management (Van Westen, 2000), webcams 

have been employed to monitor dangerous currents in coastal areas (Holman and Stanley, 2007), 

aerial images and UAV imagery have been used for observing coastal geomorphological changes 

(Ford, 2013; Troy et al., 2021). Despite advancements in remote sensing, manual efforts are still 

required to process the remote sensing data for monitoring natural hazards. Therefore, monitoring 

tools that automate remote sensing data processing and enhance the characterization of natural 

hazard features remain an area needing further exploration and development. 

1.1.3 Detection  

The detection of natural hazards through remote sensing data is critical for understanding 

their occurrence and impacts. Traditional detection techniques often rely on image processing 

methods such as Fast Fourier Transformation (FFT) and Otsu thresholding. For instance, FFT and 

other Fourier-based approaches have been employed to detect channel rip currents from velocity 

images (Trizna, 2017) and video monitoring systems (Stephens et al., 1997). However, these 

methods encounter limitations in detecting flash rips due to their transient and intermittent nature, 

as well as their inability to directly capture temporal and spatial rip features. Similarly, Otsu 

thresholding, Normalized Difference Water Index, Super Water Index, and their derivatives have 

been applied to detect water boundaries for river channels and coastal regions and further identify 

geomorphological changes (Otsu, 1975; Gao 1996; Sharma et al., 2015; Zhu et al., 2015). Despite 

their applications, thresholding techniques struggle to distinguish between sand and water surface 
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with bubbles, as well as between saturated wet soil and water (Fuse and Ohkura, 2018; Castelle et 

al, 2021). Furthermore, thresholding methods are susceptible to image noise (Jiao et al., 2006), 

making it difficult to deliver accurate detection outputs in less-than-ideal environmental conditions. 

Recent advancements of artificial intelligence (AI) facilitate the detection of natural hazards. There 

are two branches of AI approaches, traditional machine learning (ML) and deep learning (DL). 

Traditional ML approaches train models using training dataset, then make decisions based on 

trained models without being explicitly programmed for each specific task. For example, 

supported vector machine (SVM) and its variations have been implemented to monitor and map 

flood inundation from image data (Dandotiya et al., 2014, Chang et al., 2018), principal component 

analysis (PCA) has been used to detect rip channels from images (Maryan et al., 2019). Although 

traditional ML approaches have achieved notable successes in detecting natural hazards, their 

ability to generalize to larger datasets and more complex features presents significant challenges 

(Lai, 2019; Wang et al., 2021b). DL, with its multi-layered neural networks, offers a robust 

framework for natural hazard detection in complex datasets. For example, U-Net-based DL models 

have been crafted for flood extent mapping using remote sensing imagery (Zhao et al., 2022; Li 

and Demir, 2023), and Region-based Convolutional Neural Networks (R-CNN) have been 

deployed to detect rip currents from images and videos (de Silva et al., 2021). While these 

approaches are increasingly being developed and applied worldwide, their deployment for natural 

hazard detection in the Great Lakes region remains insufficient. Therefore, there is a critical need 

to advance and tailor deep learning–based detection methods for natural hazards in the Great 

Lakes, leveraging diverse remote sensing data to overcome the limitations of traditional 

approaches. 
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1.1.4 Characterization 

The characterization of natural hazards is crucial for understanding their patterns and 

associated mechanisms, thereby aiding in the management and mitigation of their consequences. 

Several studies have been conducted to characterize the features of natural hazards, such as 

temporal and spatial variations in flood magnitude, seasonality, and response time (Saharia et al., 

2017), as well as its impacts on erosion and inundation under different watershed settings (Casali 

and Heinimann, 2019; Rana and Suryanarayana, 2021). However, these studies often rely on gauge 

data or coarse satellite imagery to identify watershed-level features, overlooking finer spatial 

variations within the watershed, particularly ecological impacts that exhibit significant variability 

at micro-scales. In the context of dangerous currents, previous studies have summarized the shape, 

temporal, and spatial features of rip currents (Castelle et al., 2014; Liu and Wu, 2019; Kim, 2021). 

However, the characterization of more transient and intermittent rip currents, often referred to as 

flash rips, remains limited due to detection difficulties. Furthermore, existing studies are largely 

confined to a small number of cases, lacking the comprehensive information needed to summarize 

their characteristics with large datasets and integrate associated physical mechanisms. Similarly, 

studies of characterizing shoreline changes have often relied on manual delineation or thresholding 

methods, followed by DSAS-based calculations of annual shoreline movement (Peterson and Wu, 

2025; Williams et al., 2025). While useful, these approaches require substantial manual effort and 

are subject to digitizer bias in the case of manual delineation, or reduced accuracy when 

thresholding is applied. Moreover, they typically do not distinguish true shoreline change (erosion 

or accretion) from apparent retreat caused by water-level fluctuations. Although characterizing 

natural hazards is critical, existing methods for high-resolution, long-term, and scalable 

characterization remain constrained by the labor-intensive nature of fieldwork and the limitations 
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of traditional image-processing techniques. Therefore, there is a pressing need to leverage high-

resolution remote sensing data in combination with deep learning approaches to achieve more 

detailed, scalable, and systematic characterization of natural hazards. 

1.2 Research questions and objectives 

The background in Sec 1.1 leads to the following research questions: 

1. Deep Learning and Remote Sensing: How can deep learning and remote sensing be 

combined to improve natural hazard monitoring in the Great Lakes? 

2. Detection of Hazards: How can flood impacts, flash rip currents, and rapid shoreline 

changes be reliably detected using automated approaches? 

3. Characterization of Hazards: How can these hazards be systematically characterized to 

capture their driving factors, features, dynamics, and resilience patterns? 

Following the above research questions, the overall objective of this research is to 

characterize natural hazards in the Great Lakes using remote monitoring and deep learning 

approaches. The proposed research includes four chapters, each dedicated to addressing the critical 

yet underserved needs in the monitoring and detection of natural hazards. This study seeks not 

only to offer more effective monitoring and detection methods, but also to characterize their 

distinct features in ways that can guide future management. For each chapter, the specific research 

question, objective, and contribution are summarized in the following table: 
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1.3 Outline of proposed chapters 

 

Chapter 2 

Topic Characterization of stream habitat quality using UAV-based toolkit 

Question How can we evaluate stream habitat quality conditions using remote sensing 

methods? 

Objective To provide quantitative, automatic, and accurate evaluation on stream habitat 

quality condition. 

Contribution Develop a UAV-based toolkit for automatically and accurately evaluating 

stream habitat quality metrics. 

Chapter 3 

Topic Loss and resilience of stream habitat due to flooding 

Question How are different metrics of stream habitat quality affected by flood events? 

Objective To evaluate flood impacts, including loss and resilience, on stream habitat 

quality using remote sensing methods. 

Contribution Employ UAV-based technology to observe changes in stream habitat quality 

metrics and characterize the loss-resilience responses triggered by flood events. 

    

Chapter 4 

Topic Detection and characterization of flash rips in Lake Michigan 

Question What are the variations in flash rip currents induced by three different driving 

mechanisms? 
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Objective To identify flash rip mechanisms and compare flash rip features under different 

mechanisms. 

Contribution Develop a deep-learning-based tool for flash rip detection and compare the 

differences in flash rip features driven by waves and water level fluctuations. 

    

Chapter 5 

Topic Shoreline Change Estimation Toolkit (SCET): A Deep Learning Framework 

for Detecting and Characterizing Coastal Erosion and Accretion 

Question How can rapid shoreline changes be reliably detected and distinguished 

between true morphological change and apparent retreat driven by water level 

fluctuations? 

Objective To automate shoreline extraction, calculate shoreline change rates, and identify 

hotspots of rapid change while separating erosion/accretion from water-level-

driven fluctuations. 

Contribution Develop a deep-learning-based shoreline segmentation and analysis 

framework that rapidly detects shoreline change and distinguishes 

morphological change from water-level–driven shifts. 

   

 

Overall, the contribution of this research aims to enhance the monitoring and analysis 

approaches for natural hazards and provide more comprehensive understanding of natural hazard 

features in the Great Lakes region. 
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Chapter 2: Characterization of stream habitat quality using UAV-based toolkit 

2.1 Introduction 

Stream habitat quality, referred to the condition of places where fish and other aquatic 

organisms need for concealment, breeding and feeding (Karr, 1999; USEPA, 2022), plays an 

important role in determining the efficacy of aquatic communities (Maddock, 1999) in several 

ways. First, stream habitat quality is associated with the species density and community 

composition of riparian vegetation (Nilsson & Svedmark, 2002; Hough-Snee, et al., 2013), as well 

as aquatic organisms such as fish and macroinvertebrates (Sonkar et al., 2023; Zheng et al., 2023). 

Second, stream habitat quality is essential for providing ecosystem services, such as mitigate flood 

risk (Darby, 1999), soil conservation (Saad et al., 2018), pollutant assimilation (Dosskey et al., 

2010), and recreation (Hughes, 2015). Third, stream habitat quality is sensitive to anthropogenic 

alterations (Allan, 2004; Arthington et al, 2010) such as urbanization, dams, and pollutant 

discharge (Malmqvist & Rundle, 2002; Roni, et al., 2008) as well as other disturbances like 

invasive species (Scott & Helfman, 2001) and climate change (Null, et al., 2013). In view of the 

importance and vulnerabilities, characterization of stream habitat quality to address environmental 

concern or conservation relies on monitoring and scientific-based evaluation. 

The evaluation of stream habitat quality, in practice, relies on multi-metric indices (MMIs), 

which integrate a variety of attributes from streams and riparian zones to provide a holistic 

assessment. Early-stage MMIs, such as like an index of biotic integrity (IBI), focus on comparing 

fish population and species richness influenced by human activities to natural circumstances (Karr, 

1981). Revised MMIs incorporate more physical, chemical, and biological attributes for 

comprehensive assessments of regional stream habitat. Key attributes include physical habitat 

(Fausch et al., 1984), water quality (Karr, 1986), biological activity (Fore et al., 1996), and 
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sediment transport (Allan et al., 1997). These MMIs have become a cornerstone for monitoring 

programs conducted by local and national agencies, as summarized in an EPA report (Barbour et 

al, 1999). Recent advancements have expanded MMIs to account for human disturbances relative 

to unimpaired conditions (Oberdorff et al., 2002; Somerville, 2010) and to be applicable across a 

broader range of stream types (Bolding et al., 2020; Mamun & An, 2020). As MMIs continue to 

be developed and refined, their effectiveness hinges on the implementation of reliable and 

systematic monitoring systems. 

Conventional stream monitoring measures physical geometry data such as width, depth, and 

bed slope using a tape measurement (Simonson, 1994), and surveys ecological data like 

biodiversity of species, vegetation covers, and substrates by transect or quadrat sampling (Wang 

et al., 1996). However, these approaches have several limitations. First, assessments of some 

descriptors, such as riffles and pools, are subjective and could be affected by accessor bias 

(Woodget et al., 2016). Second, some locations are difficult to access due to deep or fast-flowing 

water (Cavanagh et al., 1997). Third, discrete sampling data with limited transects or quadrats can 

lead to misinterpret the spatial variation of highly diverse landscapes (Cooper et al., 1997). Finally, 

data collection is labor-intensive and time-consuming (Simonson et al., 1994), especially for larger 

streams. While traditional methods provide valuable ground truth data, these challenges 

underscore the need for alternative monitoring approaches that are reliable, safe, continuous, and 

efficient. 

Remote sensing techniques, such as satellite-based imagery, aerial photogrammetry, and 

Light Detection and Ranging (LiDAR), are widely applied in stream and river habitat monitoring 

nowadays (Marcus et al., 2003; Dietrich, 2016; Tompalski et al., 2017). For instance, satellite land 

cover metrics have been employed in ranking methods to assess stream habitat quality (Snyder et 
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al., 2005), and a combination of LiDAR and aerial photogrammetry has been developed to 

accurately delineate riparian terrains and monitor floodplain morphology changes (Lallias-Tacon 

et al., 2017). Nevertheless, these techniques face notable constraints. Spatial resolutions of remote 

sensing data, such as 30 m for LandSat 8 and 10 m for Sentinel-2, are challenging to capture fine-

scale in-stream and riparian habitat features (Marcus & Fonstad, 2008; Nagendra et al., 2013). 

Additionally, low revisit frequencies, ranging from weeks or months for satellite imagery to 

revisiting the same area, make it difficult to collect up-to-date information for rapid habitat changes 

caused by extreme weather events (Wulder et al., 2015). Furthermore, the high cost of advanced 

techniques, such as airborne LiDAR, as well as the complications of aligning data from multiple 

surveying tasks, can limit their practicality for achieving the required data quality (Okyay et al., 

2019). To date, developing cost-effective and efficient remote sensing methods for stream habitat 

monitoring remains an ongoing challenge. 

In recent years, drone-based surveying technologies, particularly unmanned aerial vehicles 

(UAVs), have rapidly advanced and been increasingly applied to monitor stream habitat quality 

(Flener et al., 2013; Langhammer, 2019). This growth is driven by several factors. Advances in 

optical sensors, hovering stabilization, and GPS integration now enable UAVs to capture high-

quality 4K images or 1080P videos with precise flight paths. Additionally, improvements in drone 

flight control applications, featuring autopilot capabilities for tasks such as takeoff, route-

following, image capture, and landing, allow for fully automated operation via mobile devices 

(Terry et al., 2021). Moreover, image processing algorithms, such as Structure from Motion (SfM), 

can reconstruct high-resolution three-dimensional terrains with mean horizontal errors below 0.1 

m and vertical errors under 0.3 m (Turner et al., 2013; Elkhrachy, 2021). Despite these 

technological advancements, the application of UAVs for stream habitat quality evaluation 
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remains rare. To date, there are no integrated UAV tools for multi-metric stream habitat quality 

evaluation, as far as the authors are aware. 

2.2 Objectives and research goals 

The objective of this chapter is to develop a suite of drone-based cost-effective monitoring 

toolkits that are applied to evaluate stream habitat quality. Currently, there are no comprehensive 

UAV-based tools available for evaluating stream habitat quality using Multi-metric Indices 

(MMIs). This study hypothesizes that UAV technology can provide automatic, continuous, and 

high-accuracy evaluations, yielding MMI results comparable to those obtained through traditional 

methods for reference transects. To achieve this, three specific research goals are outlined: 

1. Develop algorithms for automating UAV operations and subsequent image processing 

tasks for stream habitat surveys. 

2. Provide continuous evaluation of stream habitat quality based on MMIs. 

3. Validate the UAV-derived evaluation outcomes against traditional survey results from 

reference transects. 

2.3 Study site 

 The study site is the area between bridges B1 and B2 at the headwater of Black Earth Creek 

in the village of Cross Plains, Wisconsin (see Fig. 2-1). Black Earth Creek, a high-quality trout 

stream, is a 27-mile-long tributary flowing westward to Blue Mounds Creek, Dane County, WI in 

Fig. 2-1a. The main creek has an average width and water depth of 8.6 meters and 1.4 meters, 

respectively (Wisconsin DNR, 2019). The base flow is approximately 0.8 m3/s, based upon the 

two upstream gauges (USGS 05406457 and 05406469), denoted as G1 and G2. The stream is 
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classified as a Class 1 type with sufficient natural reproduction to sustain wild trout populations 

(Wisconsin DNR, 2017). The original straight channel between B1 and B2 (the dashed line in Fig. 

2-1b) was restored in 2014. The meandering stream, shown as the solid line in Fig. 2-1b, with 

riparian grasses and a sequence of riffles and pools in Fig. 2-1c built to enhance fish habitat 

(Wisconsin DNR, 2019). In the summer of 2018, an extreme rainfall storm event yielded a 

historically high flow rate of 29.73 m3/s that surpassed the previously recorded water level and 
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Figure 2-1 | Study area of Black Earth Creek in Dane County, WI. (a) Black Earth Creek 

Watershed. G1 and G2 are the two USGS stream gauges. (b) The 2010 straightened stream (dashed 

line) and the 2015 meandered stream (solid line) channel. B1 and B2 are the upstream and 

downstream bridges, respectively. (c) An oblique aerial photo of the study site. The symbol “W” 

represents the flowing direction of Black Earth creek toward the west. The vegetated riparian 

area, Aveg, is partly blocked by trees and shown as a white solid rectangle.   

(b)  

(a)  (c)  
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incurred severe floods. One vegetated riparian area, shown as a dashed rectangle Aveg in Fig. 2-1c, 

experienced degradation and severe erosion. 

2.4 Methods 

 The toolkits were developed as a suite of Python scripts designed to streamline three key 

tasks: flight route planning for stream surveys, image processing for generating terrain maps and 

digital elevation models (DEMs), and MMI computation for evaluating stream habitat quality, as 

Feature Delineation 

Boundary Identification 

Route Determination 

(i) - Flight Route 
Design 

  

Channel 
Gradient 

Sinuosity 
Channel 

Bed Form 
Stream 

Flow Status 

Bank Stability 

Coarse 
Woody 
Debris 

Riparian 
Vegetation Cover 

In-stream 
Cover 

Width / depth 
Ratio 

Stream Parameters Computation 

Structure 
from Motion 
Processing 

Geospatial 
Overlay 

(ii) – Image Processing 

Predefined 
Parameters 
Computation 

Integrated Quality Assessment 

(iii) – Stream Habitat Quality Assessment 

Figure 2-2 | A flowchart with (i) Toolkit I as flight route design, (ii) Toolkit II as 

image processing, and (iii) Toolkit III as stream habitat quality assessment.   
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illustrated in Fig. 2-2. Detailed descriptions of each toolkit are provided in the following 

subsections. 

 2.4.1 Flight route design 

 Toolkit I, shown in Fig. 2-2i, optimizes flight routes for stream surveys by minimizing flying 

time, avoiding obstacles, and achieving desired image resolution in three steps. First, feature 

delineation involves digitizing georeferenced aerial maps using ArcMap 10.8 to classify features 

such as trees, buildings, streams, and flight areas. Fig. 2-3a illustrates a sample map, where trees 

are marked as light green points, buildings as brown polygons, streams as blue polylines, and the 

flight area outlined in yellow. Second, 

boundary identification processes these 

features to establish buffer zones for 

obstacle avoidance and focusing areas that 

require greater attention. Buffer distances 

are set to 5 m for trees and buildings, while 

a 10 m from stream channel is set as the 

focusing area. Fig. 2-3b shows these buffer zones and focusing area, and the overlaid sketch for 

flight boundary is shown in Fig. 2-3c. Third, route determination generates two optimized flight 

routes for high-elevation (30 m above ground) and low-elevation (5 m above ground) surveys. The 

high-elevation route covers the overall study site, as illustrated in Fig. 2-3d. The routes are 

connected in an S-shaped pattern (e.g., A1 → A2 → A3 → A4 → B2 → B1 →C1 → C2 → D2 → D1). 

The interval between parallel flight boundaries (the two red lines, denoted as Fmax and Fmin) is set 

to ∆d to achieve at least a 75% image overlap, with a 90% overlap applied in focused areas. The 

low-elevation route addresses areas blocked or shaded by canopy in the high-elevation route. The 

Table 2-1 | The Modified D-Lite algorithm 
for route  𝑆 → 𝑇 
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Modified D-Lite (MDL) algorithm (Ramalingam & Reps, 1996; Koenig & Likhachev, 2002) is 

employed to generate detoured paths that avoid obstacles. Detailed MDL steps are provided in 

Table 2-1. Fig. 2-3e demonstrates an  example of an original route (N1 → N2 → N3 → N4 → N5 

→ N6 → N7 → N8 → N9 → N10). After applying the MDL algorithm, redundant nodes along the 

same straight line (e.g., node N2, N3, and N4) and unnecessary turning nodes that do not influence 

obstacle avoidance (such as N7) are removed, resulting in a smoother detoured route (N1 → N5 → 

N6 → N8 → N9 → N10). Fig. 2-3f compares the two routes: the original straight route blocked by 

obstacles (solid line) and the detoured route after applying the MDL algorithm (dashed line from 

D1’ to D1). Finally, the flight route designs are saved as shapefiles for UAV deployment, ensuring 

efficient and obstacle-free drone operation.   

 

Figure 2-3 | Illustration for Toolkit I. (a) Marked trees, buildings, the river and flying boundary. 

(b) Buffer distances for blocked buildings, trees, and surveyed streams. (c) Overlaid sketch of 

blocked areas, focusing areas, and flight boundaries. (d) An example of a high-elevation flying 

route in an S-shape pattern. (e) An example of a low-elevation flying route generated using the 

Modified D-Lite algorithm. (f) Two routes with the straight route blocked by obstacles (solid line) 

and the detoured route after the MDL algorithm (dashed line from D1’ to D1). 

(a) (b) 

(d) 

(c) 

(f) (e) 
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2.4.2 Image processing 

  Toolkit II, as shown in Fig. 2-2ii, processes UAV imagery to reconstruct three-dimensional 

georeferenced terrains using Agisoft Metashape, chosen for its compatibility with the Python 

application programming interface (API). To optimize processing time, the toolkit applies 

predefined output quality parameters (lowest, low, medium, high, ultra-high) based on two factors: 

computer hardware settings (e.g., CPU cores, frequency, GPU cores) and memory requirements 

determined by image number, size, and quality (Table 2-2 and Table 2-3). Fig. 2-4 depicts the 

workflow for Structure from Motion (SfM) and geospatial overlay, where imagery from high- and 

low-elevation flights (Fig. 2-4a) is processed in separate pipelines, represented by brown arrows 

Table 2-2 | An example of processing quality using computer hardware settings 
 

Code 
CPU 

Cores 

CPU 

Frequency 

(GHZ) 

GPU 

cuda 

cores 

Suggested Processing Quality 

Alignment Dense Point Cloud Mesh Orthomap 

A 4 2+ # GPU Lowest Lowest Lowest Lowest 

B 6 3+ 1000 Low Low Low Low 

C 8 3.5+ 2000 Medium Medium Medium Medium 

D 12 4+ 3600 High High Medium Medium 

E 16 4+ 7200 High High High High 

F 24 4+ 9600 Ultra High Ultra High High High 

G 32 4+ 10250 Ultra High Ultra High Ultra High Ultra High 

 Table 2-3 | Estimated memory requirement for point cloud and 3-D texture mesh computation 
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for high-elevation and green arrows for low-elevation images (Fig. 2-4b). The five key processing 

steps include feature detection to align images, bundle adjustment to identify drone camera 

positions and create sparse point clouds, pairwise depth mapping to generate dense point clouds, 

geospatial interpolation and color blending to produce textured terrain surfaces, and spatial overlay 

to merge high- and low-elevation surfaces into georeferenced terrain maps. Predefined parameters 

are applied at each step to optimize efficiency, and the final outputs are ortho-images and terrain 

maps (Fig. 2-4c).  

  

 

Figure 2-4 | Illustration for Toolkit II. (a) 

Drone images obtained from both high-

elevation flying and low-elevation flying 

routes. (b) Five image processing steps and 

in-situ ground control points (GCPs) 

surveyed using a total station. (c) Ortho-

images and terrain maps. 

(a) 

 

 

(c) 

(b) 
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2.4.3 Stream habitat quality assessment 

Toolkit III, illustrated in Fig. 2-2iii, computes MMIs to perform an integrative stream habitat 

quality assessment. The first step involves selecting relevant parameters based upon the definitions 

in the Wisconsin DNR guidelines (Wisconsin DNR, 2018), USDA guidelines (Simonson, 1994) 

and EPA reports (Somerville, 2010). Fig. 2-5a shows the schematic of a stream with various 

features such as bends (e.g., Be1 and Be2), erosion areas (e.g., E1 and E2), trees (T), and coarse 

woody debris (C). For each transect (Fig. 2-5b), we calculate a set of geometry parameters 

including stream width (W), eroded bank width (E), vegetation buffer width (B), fish cover width 

(F), bank top width (BT) between the left and right banks, and stream depth (D). Along the stream 

(Fig. 2-5c), additional parameters such as the meandered stream length (L0) and pool lengths (e.g., 

L1 and L2) are measured. These parameters are delineated from orthomaps generated by Toolkit II: 

stream banks represent the land-water interface, eroded zones are areas of bare soil or recessed 

vegetation, in-stream cover includes emergent vegetation near the land-water interface, and 

vegetation buffer zones are undisturbed vegetated areas adjacent to the stream. Once all geometry 

parameters were delineated, the medial axis transformation (MAT) algorithm (Lee, 1982; 

McAllister & Snoeyink, 2000) is applied to construct the stream centerline C, as depicted in Fig. 

2-5d. The stream width W at a centerline node is determined as the shortest segment length 

connecting the left (L) and right (R) banks through the node, as shown in Fig. 2-5e. The erosion 

width E, fish cover width F, and vegetation buffer width B can be obtained following similar ways. 

The bank top width (BT) is the distance between the left and right bank tops. Average stream depth 

(D) at each transect is estimated as the difference between the water surface elevation derived from 

the terrain map and the riverbed elevation obtained through field measurements. Bend locations 

are identified as points along the centerline (M) where the turning angle (θ) exceeds 30 degrees 
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(Fig. 2-5f). Pool lengths are computed by intersecting pool area polygons with centerline (M) 

based on three thresholds: an average stream depth above 70% of transects, an estimated velocity 

below 70% of transects, and a percentage of white surface water pixels below 10% (Fig. 2-5g). 

 

 The integrated stream habitat quality is then assessed based upon the MMIs with nine 

parameters out of 67 stream habitat assessment protocols (Somerville, 2010), based on their 

frequent usage and feasibility of assessment via UAV without additional sensors. Table 2-4 lists 

the nine MMIs: channel gradient M1; riparian vegetation buffer M2; bank stability M3; width / 

Figure 2-5 | Illustration for Toolkit III: stream habitat indices definition. (a) Schematic of a 

meandered stream with eroded bank E, coarse wood debris CWB, bends Be, and tree T. (b) 

Definition of eroded bank width E, stream width W, fish cover width F, buffer width B, bank top 

width BT, and average stream depth D. (c) Definition of pool length.  (d) Stream length 

calculation using the MAT algorithm. (e) Stream width calculation for a median axis point. (f) 

Bend identification. (g) Pool length calculation. 

(a) 
(b) 

(c) 

(d) (e) 

(g) (f) 
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depth ratio M4; sinuosity M5; stream flow status M6; coarse woody debris M7; in-stream cover M8; 

and channel bed forms M9. Detailed definitions and assessment criteria of each metric can refer to 

Simonson (1994), Somerville (2010), and Wisconsin DNR (2018). Except for the index M1 that is 

classified as a high- or mild-gradient stream, the rest of indices (i.e., from M2 to M9) are scored as 

10, 7.5, 5, and 2.5 for excellent, good, fair, and poor quality, respectively. The integrated 

assessment is by summing up the scores of scored indices. The overall stream habitat quality status 

is identified as excellent if the total score is greater than 60, good if greater than 50, fair if greater 

than 40, and poor if less than 40.  

 2.4.4 Field measurements 

Drone flight missions and an in-situ field survey were conducted in September 2019. The 

drone mission consisted of a high-elevation route covering the entire study site and a low-elevation 

route focused on a severely eroded vegetated riparian area, indicated by the dashed polygon in Fig. 

2-6a. The in-situ field survey provided independent elevation measurements and transect-based 

habitat health assessments to validate results from the toolkits, 46 ground control points (GCPs, 

Table 2-4 | Multi-metric indices (MMIs) for stream habitat quality assessment 
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yellow dots in Fig. 2-6a) were measured using a Nikon Nivo total station instrument, which has a 

stated accuracy of 3 mm ± 2 ppm. Two types of GCPs were employed: easily identifiable points 

visible from an aerial view, such as building corners, and points marked with 1-inch plates for 

those less distinguishable in aerial imagery. For each GCP, the x, y, and z coordinates 

corresponding to the instrument point (IP) were recorded. The z-coordinate data were transformed 

into elevation values using the North American Vertical Datum of 1988 (NAVD 88), with 

reference elevations (B1 and B2) derived from a 2017 LiDAR survey by Dane County, Wisconsin. 

Among the 46 GCPs, 25 were used to calibrate the reconstructed landscape generated by Toolkit 

(a) 

Figure 2-6 | The sampling methods of on-site validation. (a) Locations of ground control 

points (GCPs, yellow dots) and the instrument point (IP, blue star); (b) Locations of 14 

transects for tape-based measurements; (c) The way to select transects within a stream 

segment; (d) The way to equally sample within a transect side view.  

(b) 

(c) 

(d) 
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II, while the remaining 21 were used to validate the terrain output through root mean square error 

(RMSE) analysis between the reconstructed and measured elevations. For the transect-based health 

assessment, Fig. 2-6b shows the 14 surveyed transects across the study site. The first transect was 

conducted downstream of bridge B1, with the subsequent 13 transects spaced equally at intervals 

of ΔL until reaching bridge B2 (Fig. 2-6c). At each transect, stream width (W), vegetated buffer 

width (B), in-stream fish cover (F), bank top width (BT), and erosion width (E) were measured 

using measuring tapes. Additionally, coarse woody debris (C), riffle-pool sequences, tree shadows 

(T), and the number of bends (Be) were surveyed and recorded. Stream depth (D) was measured 

at five equally spaced points within each transect (Fig. 2-6d), and the average of these 

measurements was taken as the mean stream depth. 

2.5 Results 

2.5.1 Performance of flight routes  

Performance of the designed flight routes is evaluated in terms of obstacle avoidance 

capability and total flight time. Fig. 2-7 shows the effectiveness of avoiding obstacles for the 

design of a low-elevation route. The original design of an S-shape flight route with 90% 

overlapping ratio would hit the three obstacles, O1, O2, and O3, as shown in black solid lines in 

Fig. 2-7a. The Modified D-Lite (MDL) algorithm developed in the Toolkit I avoids obstacles by 

applying the strategic detours around O1, O2, and O3, as shown by the red boxes in Fig. 2-7b. 

Specifically, the MDL algorithm refines the detours near O2 and O3, removing 94% of unnecessary 

nodes (i.e., from 265 to 15) in the original flight route and maintaining a minimum drone-to-

tree/building obstacle distance of 5 meters. The flight time for the low-elevation flight route is 

800.94 seconds, based upon a 2 m/s flight speed for the transition (i.e., starting and ending) routes 

and 1 m/s for the S-shape flight route. Adding 30 seconds for liftoff and landing, the total flight 
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time falls within the allowable range (75%) of the maximum 20-minute (i.e., 1,200 seconds) 

battery capability. For the high-elevation route, the total flight time is 697.0 seconds, based upon 

an 8 m/s flight speed for the transition segments and a 4 m/s flight speed for the S-shape flight 

route. The time is also within the allowable range of batteries. Overall, the good performance on 

obstacle avoidance and flight time efficiency demonstrates the capability of Toolkit I. 

2.5.2 Ortho-terrain map  

Fig. 2-8a presents the ortho-terrain map generated using 253 high-elevation images for the 

entire site and 488 low-elevation images specifically for Aveg, a canopy-blocked area highlighted 

in pink squares. Structure-from-Motion (SfM) processing was performed at medium quality, 

requiring 4.7 hours for high-elevation images and 7.4 hours for low-elevation images, achieving 

(a) (b) 

Figure 2-7 | The low-elevation flight routes. (a) Flight route without obstacle avoidance. (b) 

Flight route with obstacle avoidance using the Modified D-Lite algorithm. Obstacles are 

denoted as O1, O2, and O3, while the take-off point is denoted by a purple triangle. The flight 

boundary is outlined by a thin orange polygon. The S flight route is depicted as a black dashed 

line with transition routes to the starting point and from the ending point marked as green and 

purple lines, respectively. The detours from the original route are highlighted by red boxes. 
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texture resolutions of 0.008 m for the overall site and 0.004 m for Aveg. Ground elevation is depicted 
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Figure 2-8 | Ortho-Terrain Map Generated from Toolkit II. (a) Reconstructed ortho-

terrain map combining high- and low-elevation flight missions, with yellow lines marking 

ground elevation contours and the pink area indicating overlaid low-elevation results. (b) 

and (c) compare stream bank delineations for high-elevation results and overlaid results in 

area Aveg. The blue solid line are stream banks detectable from high-elevation results, while 

the orange solid line indicates stream banks in shaded (SA) or blocked (BA) areas, which 

are only delineable in the overlaid results. 
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with 1-meter interval yellow contour lines. Validation against ground control points (GCPs) shows 

an RMSE of 0.04 m horizontally and 0.17 m vertically for the entire site (high elevation, excluding 

Aveg). However, for Aveg (low elevation), the RMSE increases to 0.09 m horizontally and 0.27 m 

vertically due to limited image overlaps near obstacles and low texture contrast caused by the 

reduced field of view (FOV). Fig. 2-8b and 2-8c underscore the critical role of integrating low-

elevation imagery to enhance resolution and clarify features in complex areas. As shown in Fig. 

6b, the high-elevation-only result struggles to delineate key features such as the water-land 

interface in shaded areas (SA) and blocked areas (BA) within Aveg (marked by dashed-line 

rectangles), even when magnified. In contrast, after overlaying with low-elevation results, these 

critical features, including the stream bank, are clearly delineated, as indicated by the red lines in 

Fig. 2-8c. This integration highlights the significant value of low-elevation imagery in overcoming 

limitations posed by obstructed views and ensuring accurate terrain mapping in challenging 

environments. 

2.5.3 Stream habitat parameters 

Values of stream habitat parameters (concepts illustrated in Fig. 2-5) are shown in Fig. 2-9 

and Fig. 2-10. The study examines a 389.59 m stream with an upstream elevation at B1 (263.36 m) 

and downstream elevation at B2 (262.09 m). Fig. 2-9 compares continuous drone-based 

measurements (lines) from our toolkit with transect-based ground truth measurements (blue, 

orange, and purple markers). The stream width (W) ranges from 2.68 m to 9.50 m after excluding 

the island width, with the widest section located 14.74 m downstream of B1 and the narrowest 

64.42 m downstream of B1 (Fig. 2-9a). Water depth (D) varies between 0.27 m and 1.60 m, with 

the deepest point 1.23 m downstream of B1 and the shallowest near the island at 41.38 m upstream 
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of B2 (Fig. 2-9b). Bank top width (BT) ranges from 3.14 m (64.42 m downstream of B1) to 15.64 

m (32.25 m upstream of B2)  (Fig. 2-9c). Vegetative buffer width (B) generally exceeds 1 m, with 
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Figure 2-9 | Parameter values for the stream habitat between Bridge B1 and B2. (a)-(c) show 

stream width, water depth, and bank top width (m), with solid lines as toolkit measurements and blue 

diamonds as ground-truth data for 14 transects. (d)-(f) present left- and right-bank vegetation buffer 

width, erosion width, and in-stream cover width (m), with solid and dashed lines for left- and right-

bank toolkit outputs and orange/purple markers for ground-truth results for the left and right banks, 

respectively. 
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maximums of 25.19 m (left bank) and 48.74 m (right bank). However, five zones along the banks 

have no buffer: three on the left bank and two on the right bank (Fig. 2-9d). Erosion width (E) 

peaks at 13.05 m (left bank) and 10.74 m (right bank), with significant erosion observed in five 

specific zones (Fig. 2-9e). In-stream fish cover width (F) ranges between 0 m and 0.58 m (left 

bank) and 0 m to 1.57 m (right bank) (Fig. 2-9f). Fig. 2-10 demonstrates the toolkit outputs of pool 

and bend positions. A total of six pools is characterized, located at 0.11 - 27.51 m, 31.44 - 33.46 

m, 47.14 -49.34 m, 187.41 - 192.62 m, 276.19 - 277.31 m, and 284.30 – 285.85 m, respectively. 

Additionally, eight bends are identified, located at 66.61 m, 168.52 m, 190.54 m, 225.68 m, 251.62 

m, 285.06 m, 331.76 m, and 364.14 m, respectively. The UAV-derived parameters were then 

compared against tape-based field measurements. The mean absolute difference (MAD) was 0.21 

m for stream width (W) and 0.29 m for bank top width (BT). For vegetative buffer width (B), 

MAD values were 0.57 m and 0.59 m for the left and right banks, respectively, corresponding to 

Figure 2-10 | Detected stream bend and pool positions between Bridge B1 and B2. Eight bends 

(Bend 1 to Bend 8, marked as orange triangle) and six pools (Pool 1 to Pool 6, marked as dark 

blue line) are identified. 
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relative differences of 6.54% and 4.91%. For erosion width (E), MAD was 0.12 m (left bank) and 

0.08 m (right bank), while for in-stream fish cover width (F), MAD was 0.06 m (left bank) and 

0.08 m (right bank). Water depth accuracy was assessed using five additional transects located 

approximately at 50 m, 120 m, 190 m, 260 m, and 330 m along the stream, yielding a mean absolute 

difference of 0.13 m. Overall, the close agreement between UAV-based and field-based 

measurements demonstrates the reliability of the proposed toolkits in assessing stream habitat 

parameters. 

2.5.4 Multi-metric indices (MMIs) assessment  

 MMIs assessment of stream habitat quality for the segment between B1 and B2 is shown in 

Fig. 2-11. This segment is characterized as a mild-gradient stream, with an average channel slope 

(M1) of 0.0023 and a maximum slope of 0.0052. Accordingly, the mild-gradient multi-metric 

system, encompassing M2–M9 indices, is applied. The riparian vegetation cover metric (M2, Fig. 

2-11a) indicates that most stream banks are in excellent or good condition, with undisturbed 

vegetation buffers exceeding 10 meters along 43.0% of the left bank and 56.3% of the right bank. 

Impaired conditions, spanning 5.8% of the left bank and 6.3% of the right bank (Fig. 2-11, M2-

Left and M2-Right), are primarily caused by vegetation and soil loss during the 2019 summer flood 

(e.g., L2 and L3 on the left bank, and R1 and R2 on the right bank) or human structures near the 

stream (e.g., L1). The bank stability (Fig. 2-11b, M3) reveals that 81.7% of the left bank and 87.4% 

of the right bank are stable (Fig. 2-11, M3-Left and M3-Right), while poor conditions are observed 

in zones with material loss (e.g., L4 and R3) or the presence of bare soil and/or exposed gravel (e.g., 

L5, L6, and R4). The width/depth ratio (Fig. 2-11c, M4) shows that over 90% of the stream is 

classified as excellent or good, except for the downstream segment near B2 (C1), which features 

wide and shallow channels. The sinuosity metric (M5), with a sinuosity ratio of 1.09:1, is rated fair, 



32 

 

 

as the meandering channel length (389.59 m) is slightly longer than the straight distance between 

B1 and B2 (357.98 m). The stream flow status metric (Fig. 2-11d, M6) indicates that 29.1% and 
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Figure 2-11 | MMI-based stream habitat quality assessment (spatially continuous 

indices: M2, M3, M4, M6, and M8). (a) Visualizes the quality of M2. (b) Highlights the 

quality of M3, (c) Displays the distribution of M4 conditions. (d) Maps the spatial 

distribution of M6. (e) depict the spatial distribution of M8. The right column includes 

histograms for each index, showing the percentages of categories: excellent, good, fair, and 

poor. 
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53.5% of the channel are rated as good and excellent, respectively, while 17.4% is under-saturated 

(i.e., less than 75% water coverage), primarily near the in-stream island. The coarse woody debris 

metric (M7) is poor due to the absence of wood logs. The in-stream cover metric (Fig. 2-11e, M8) 

shows good or excellent conditions in 46.1% and 27.0% of the stream, respectively, with poor 

conditions (1%) concentrated near the in-stream island. Lastly, the channel bed form metric (M9) 

is rated as fair, with pools comprising 10.68% of the stream length.  

The comparison of habitat health assessment results using our toolkits and in-situ transect 

measurements is shown on Fig. 2-12. Fig. 2-12a and 2-12b present results from 14 transects, 

showing consistent health conditions across metrics: excellent for right M2, good for left M2, M4, 

and M6, fair for M3, M5, and M8, and poor for M7 and M9. The overall MMI score is 43.75, 

indicating a fair condition consistent between the toolkit and in-situ methods, demonstrating the 

reliability of drone-based assessments. Fig. 2-12c shows integration of continuous results for the 

entire site, where conditions are excellent for left and right M2, good for M4 and M6, fair for left 

(a) Toolkit – Transects (b) On-site Method (c) Toolkit - Whole Site 

Figure 2-12 | Comparative analysis of stream habitat quality assessments using 

MMIs. (a) presents the MMI scores for 14 transects evaluated using our toolkits, (b) 

depicts the MMI scores using on-site methods for the same transects, and (c) displays the 

MMI scores of the entire study site (spatially continuous), obtained using our toolkits.  
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and right M3, M5, M8, and M9, and poor for M7. The overall score is 47.5, reflecting good habitat 

quality. While most MMI values match between transects and continuous measurements, transect-

based assessments underestimate conditions for left M2 (excellent to good) and M9 (fair to poor), 

probably due to uncaptured spatial variations.  

2.6 Discussion 

2.6.1 Flying parameters 

Flying parameters, such as buffering distance, overlap ratio, and flight height, are associated 

with toolkit performance factors, including time cost, flight safety, and data quality—characterized 

by blind area ratio, model accuracy, and image resolution. The relationship between buffering 

distance (assuming a 90% overlap ratio and 5 m flight height) and time cost is illustrated in the left 

section of Table 2-5. Increased buffering distance can lead to a slight reduction in flight time due 

to enlarged blocked positions in area Aveg, subsequently reducing the length of parallel routes. 

However, a larger buffering distance, while promoting flight safety, may contribute to a greater 

ratio of blind areas unattainable through drone imagery. In our study, blind areas occur when the 

buffering distance exceeds the flight height, given that the half of angular field of view (AFOV) is 

47.5 degrees. The impact of overlap ratio on time cost is presented in the central portion of Table 

2-5, assuming a 5 m buffering distance and 5 m flight height. As overlap ratio rises from 75% to 

90%, time cost increases from 356.00 to 800.94 seconds, continuing to 1580.33 seconds under a 

95% overlap setting, which necessitates battery replacements during the flight mission (denoted in 

italics). While a higher overlap ratio can enhance structure-from-motion model accuracy, 

increasing overlap ratio only has small marginal improvements are small at high values, but it will 

lead to significantly longer flight durations. The effect of flight height on time cost is demonstrated 

in the right part of Table 2-5. Increasing flight height from 3 m to 7 m reduces the flight duration 
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from 1319.94 seconds to 590.61 seconds. Nonetheless, the image resolution captured by the 

drone's camera declines from 0.82 mm/pixel to 1.91 mm/pixel owing to the increased distance 

between the camera lens and the object. In summary, flying parameters impact toolkit performance 

factors in various ways; hence, the selection of flight parameters for a specific surveying should 

be contingent upon the relative significance of time cost, flight safety, and data quality.  

2.6.2 Potential errors 

Errors are an inherent aspect of surveying. Although UAV-based assessment tools have 

demonstrated the capacity to provide accurate evaluations of stream habitats, potential errors may 

arise from the methodologies employed in Toolkit I, II, and III. Toolkit I: Minor errors can result 

from misalignments in drone positioning caused by strong winds or weak GPS signals (Wang et 

al., 2019). These inaccuracies are often exacerbated under tree canopies or near buildings, where 

GPS signals could be obstructed or interfered by multipath effects. While modern drones equipped 

with RTK or enhanced GPS systems can reduce such errors, some positional drift may still impact 

image overlap and route precision, especially in complex riparian settings. Toolkit II: The accuracy 

of 3D reconstruction depends on the number and quality of tie points among images, which are 

influenced by processing quality settings (e.g., low to ultra-high) and surface texture. High 

processing settings improve point-of-interest (POI) extraction in software like Agisoft Metashape 

Table 2-5 | Flight route Performance matrix with different flying 

height and buffer width Buffering 

Distance (m) 

Time 

Cost (s) 

Overlap 

Ratio (%) 

Time 

Cost (s) 

Flight 

Height 

(m) 

Time 

Cost (s) 

3 821.57 75 356.00 3 1319.94 

3.5 807.53 77.5 387.381 3.5 1145.56 

4 806.82 80 418.75 4 1011.52 

4.5 803.26 82.5 478.772 4.5 906.40 

5 800.94 85 559.23 5 800.94 

5.5 794.40 87.5 640.82 5.5 732.04 

6 790.53 90 800.94 6 690.28 

6.5 785.98 92.5 1076.16 6.5 632.71 

7 782.52 95 1580.33 7 590.61 
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but increase computational demand. Homogeneous textures—such as water surfaces, grasslands, 

tree shadow, and snow—can reduce the number of POIs, limiting effective image matching 

(Turner et al., 2012; Gebrehiwot & Hashemi-Beni, 2021). These challenges are illustrated in Fig. 

2-13, where water surfaces led to sparse tie-point generation and localized errors in alignment. 

Toolkit III: Errors primarily stem from streambed variation, in-stream vegetation, and running 

water surface. Streambed profiles with abrupt changes, such as pools, can be challenging. However, 

in our study site, this issue is minimal, as pools comprise only a small portion of the streambed 

(a) (b) 

(c) (d) 

(e) (f) 

Figure 2-13 | The decrease of tied points caused by water surface. (a) (c) (e) 

are images with different water body ratio, (b) (d) (f) show the ranked number of 

tie points we can extract from each image pair.  
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between B1 and B2. Ground truth measurements remain critical for transects with pools, especially 

in streams with abundant riffle-pool sequences. Additionally, during low-flow periods, tall 

vegetation may lack sufficient water saturation, requiring supplemental in-situ surveys or airborne 

humidity sensors for accurate assessment. Another source of error arises from estimating water 

surface elevation: because running water is rarely perfectly calm, averaging left, right, and mid-

channel elevations may not fully capture the true mean water surface level at a transect, and could 

lead to small variations. In summary, while UAV-based toolkits are efficient and accurate for 

stream habitat assessment, error mitigation through thoughtful planning, quality control, and 

selective ground validation is essential to ensure robust results. 

2.6.3 Alternative depth measurements 

Depth measurements using aerial-based techniques remain challenging due to factors such as 

stream bottom distortion from reflection (Partama et al., 2018), refraction (Woodget et al., 2019), 

and water turbidity (Acharya et al., 2021). In this study, water depth is estimated by calculating 

the difference between the water surface and the interpolated streambed profile, which proves 

accurate given the site’s gradually varied bedforms. Three alternative methods exist for estimating 

depth with commercial drones. The first method applies to manually dredged channels with regular 

transect shapes (e.g., trapezoidal or parabolic). By assuming normal flow, Manning's equation can 

estimate depth based on channel geometry. The second approach uses polarized filters mounted 

on the camera lens to reduce surface reflection (Dolin & Turlaev, 2020), enabling three-

dimensional reconstruction of riverbed textures after eliminating glints (Overstreet & Legleiter, 

2017). The third method leverages water surface velocity measurements obtained through particle 

image velocimetry (PIV) to infer bathymetry, assuming velocity profiles follow either an 

exponential function (Hauet & Daubagnan, 2018) or an entropy relationship (Moramarco et al., 
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2013) with depth. Moreover, for cases requiring higher accuracy and where budget permits, 

additional airborne sensors mounted on drones can provide improved depth measurements. In 

specific, two types of recent techniques have been employed for river bathymetry measurements 

including the use of a topo-bathymetric laser profiler (Mandlburger et al., 2016) for shallow gravel-

bed rivers and acoustic sensors (Bandini et al., 2018) for deep and turbid water. 

2.6.4 Cost-effectiveness of UAV-based toolkits 

The cost-effectiveness of the UAV-based monitoring toolkits becomes increasingly evident 

when applied to tasks involving broad spatial extents, repeated assessments, or complex terrains, 

where traditional in-situ methods—while long established and valuable—can be labor-intensive, 

time-consuming, and spatially limited. In our demonstration, the overall investment remained 

modest: drones with 30-minute flight durations and 1080P or 4K cameras are now commonly 

available for under USD 1,000, and commercial photogrammetry software—such as Agisoft 

Metashape with basic settings—can be obtained for a few hundred dollars, with open-source 

alternatives like OpenDroneMap also available. Similarly, while ArcMap was used for feature 

digitization and route planning, free and open-source platforms like QGIS offer comparable 

functionality and are increasingly adopted in geospatial workflows. Once the initial training is 

completed, the entire workflow from flight planning to habitat assessment can be conducted by a 

single person. In terms of time cost, surveying a 500-meter stream segment typically requires 20–

30 minutes for an S-shaped flight at high elevation. If certain areas are obstructed (e.g., by canopy 

cover or tall vegetation), low-elevation supplemental flights may be required to ensure adequate 

coverage. For example, collecting low-elevation drone images for areas with similar sizes as Aveg 

(approximately 25 m × 25 m) requires at most an extra 20 minutes. Manual delineation of stream 

features adds one to two hours of indoor efforts, regardless of the number of transects involved. 
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All remaining tasks, such as flight route generation, image processing, terrain reconstruction, and 

multi-metric index (MMI) assessment, are automated and can run independently without human 

supervision. As project workload increases—whether through longer reaches, denser transect 

coverage, or more frequent monitoring—the UAV-based approach becomes increasingly cost-

effective while offering high-resolution, spatially continuous outputs. These outputs not only 

complement but can enhance traditional transect-based methods by revealing habitat degradation 

patterns or localized impairments that may otherwise go undetected. For water depth estimation, 

if the streambed profile remains relatively stable over time, depth measurements can be collected 

once and reused across surveys, further improving efficiency. In cases where bedform changes are 

expected, alternative depth estimation methods, as discussed in Section 2.6.3, can be employed 

depending on precision needs and budget. Nevertheless, for short stream segments (e.g., <100 m), 

one-time assessments, or sites with UAV restrictions, conventional methods may remain more 

practical. Overall, these UAV-based toolkits are intended not as a replacement, but as a flexible 

and scalable complement to existing practices—particularly well suited for applications requiring 

broad spatial coverage, temporal repeatability, and high-resolution data to support informed stream 

habitat management. 

2.6.5 Toolkit limitation and future generalization 

The UAV-based toolkits developed in this study provide a comprehensive approach for 

assessing stream habitat quality, but several limitations must be acknowledged. First, depth 

measurements rely on the assumption of a gradually varying riverbed. While this does not affect 

metric scoring, the absolute depth values are subject to greater uncertainty compared to other 

physical parameters. Second, the MMI framework was designed following Wisconsin and EPA 

guidelines for trout streams in non-mountain regions; therefore, its applicability to mountain 
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streams is limited and would require revision. Third, the toolkits focus on physical habitat variables 

and cannot capture chemical and biological aspects of habitat quality, such as water quality, species 

richness, or the distribution of fish spawning areas, which are also critical for comprehensive 

assessments.  

 To generalize our toolkits for other study sites or stream habitat quality topics, four strategies 

are proposed. First, the toolkits allow for the exclusion or deemphasis of metrics with significant 

uncertainty or redundancy, enabling users to prioritize core metrics tailored to specific site 

conditions. For example, our study site is a restored, meandered channel with sparse vegetation, 

so metrics such as coarse woody debris are less critical, while vegetation buffer width and in-

stream cover are more significant. Second, stream habitat quality may exhibit high spatial 

heterogeneity (White & Walsh, 2020), the toolkits can incorporate vicinity-based assessments by 

modifying the computation of index values to focus on the poorest conditions within localized 

areas (ΔL/2 of each transect), improving the detection of worst impairments. For instance, at our 

site, this method identified poor conditions near transects 1, 9, 11, 13, and 14, such as M2 and M8, 

which may have been overlooked by traditional methods (see Fig. 2-14). Third, the toolkits can be 

expanded to integrate additional indices derived from orthophotos or terrain maps, such as bankfull 

width and rock and stone embeddedness (Somerville, 2010), using the same processes for 

parameter computation and quality characterization. Finally, the toolkits can be modified to 

support indices requiring specialized equipment, such as temperature measured with thermal 

cameras (Kuhn et al., 2021), and water quality detected via multispectral sensors (Kim et al., 2020). 
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By equipping UAVs with portable versions of these instruments, sediment particle size, 

temperature, and water quality can be processed, assessed, and incorporated into existing MMIs 

using corresponding function interfaces in our toolkits. 

2.7 Conclusions 

In this study, a suite of unmanned aerial vehicle (UAV)-based toolkits was developed to 

evaluate stream habitat quality using multi-metric indices (MMIs). The case study conducted at 

Black Earth Creek, WI, a region with a well-restored stream habitat impaired by a severe flood 

event, demonstrated the cost-effectiveness and accuracy of the toolkits in assessing MMIs. The 

toolkits streamline most processes, thereby significantly reducing labor associated with UAV data 

collection, processing, and assessment. The toolkits comprise three components. The first designs 

(a) 

(b) 

Figure 2-14 | Spatial variation of stream habitat health condition. (a) 

displays the health condition of each index at each transect, (b) indicates the 

stream segment's poorest health condition category for each index in the 

vicinity of each transect.  
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flight routes in a zig-zag pattern, optimizing flight duration while considering image quality, 

overlap ratio, obstacle avoidance, and smooth detouring. The second component processes UAV 

imagery to obtain topographic data, including orthophotos and terrain maps, with high texture 

resolution and accuracy by optimally configuring computer hardware settings. The third quantifies 

stream habitat parameters and evaluates habitat quality using MMIs, yielding results consistent 

with conventional transect-based ground truth assessments. A key advantage of the toolkits is their 

ability to provide continuous habitat quality evaluations, offering a comprehensive understanding 

of spatial heterogeneities in stream habitat quality. This approach addresses the limitations of 

transect-only methods, which may overlook critical features between adjacent transects. The 

toolkits also identify critical hotspots for each metric where habitat degradation is severe. Designed 

for flexibility and compatibility, the toolkits allow users to adjust metric weights, integrate new 

metrics from regional protocols, exclude redundant metrics, and embed additional geometrical 

measurements to accommodate diverse landscapes and habitat types. Given the demonstrated 

performance, future developments could expand the application to a broader range of stream 

habitats and integrate them with management and decision-making processes to enhance stream 

habitat restoration. 
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Chapter 3: Loss and resilience of stream habitat due to flooding  

3.1 Introduction 

Stream habitat, which provides the living space for in-stream biota, is highly dynamic across 

both temporal and spatial dimensions, varying in response to the stream's physical condition 

(Kozarek et al., 2010). Factors such as temperature, flow rate, discharge, and availability of 

suitable refugia are pivotal in determining stream habitat quality (Hynes, 1970; Aadland, 1993; 

Freeman et al., 2001) and can be disturbed and altered by climate change, extreme events, and 

anthropogenic activities (Isaak et al., 2010; Sievert et al., 2016; Liao et al., 2018). Among these 

disturbances, natural hazards—particularly extreme events like floods—are especially 

consequential, given their potential to induce abrupt and pronounced changes over short periods 

(Lake, 2000; Dawson et al., 2002). Floods can significantly reshape streambed morphology, 

destabilize banks, and degrade riparian zones (Lake et al., 2006), in addition to disrupting 

established biological communities (Jowett and Richardson, 1989; Pearsons, et al., 1992; Talbot 

et al., 2018). While previous studies have documented these impacts, they are primarily focused 

on post-flood assessments, limiting our capacity to observe immediate flood influence and long-

term ecological dynamics (Hajdukiewicz et al., 2016). Considering the frequency and severity of 

flood events, with approximately 6,518 occurrences resulting in annual damages of 3.35 billion 

USD (Zhou et al., 2019), there is an urgent need for comprehensive studies that assess the full 

spectrum of flood impacts on stream habitats. 

The full spectrum of flood impacts has two fundamental aspects: loss and resilience. Loss 

refers to the decline of values caused by flooding, which may include damage to physical assets, 

properties, and infrastructure, typically measured by market and non-market values, as well as 

degradation of ecological functions and habitat quality (Kliesen, 1994; Modica and Zoboli, 2016). 
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Resilience is the rate of the stream habitat to recover after a disturbance, reflecting the system's 

ability to adapt to disruptive events then bounce back to a steady state (Pimm, 1984; Platt et al., 

2016; Argyroudis et al., 2020). These concepts of loss and resilience have been widely employed 

in socio-economic assessments for flood events. For instance, the assessment of flood impacts on 

residential buildings often focuses on the economic damage and the time required for repairs to 

components such as roofs, exterior walls, and foundations (Dutta et al., 2003; Baradaranshoraka 

et al., 2019). Similarly, evaluations of urban infrastructure resilience examine both the loss and the 

expected time of recovery for critical assets, including bridges, tunnels, and networks for 

transportation, water, and energy systems (Kellermann et al., 2015; Argyroudis et al., 2020; 

Martínez-Gomariz et al., 2021). In ecological contexts, responses of stream habitats to flooding 

are more challenging to measure across space and time comparing to socio-economic perspectives. 

Although many studies have examined flood-induced habitat loss and subsequent recovery—such 

as impairments to riparian vegetation (Chia et al., 2020) and alterations in channel morphology 

(Su and Lu, 2016)—they often lack datasets that capture all three critical stages together: 

conditions shortly before flooding, conditions shortly after, and long-term trajectories of loss and 

resilience. Bridging this gap requires integrative, multi-year assessments that encompass both 

immediate impacts and extended recovery processes to fully characterize flood effects on stream 

habitat quality. 

The assessment of stream habitat quality relies on multi-metric indices (MMIs) that include 

physical, chemical, and biological indicators (Fausch et al., 1984). Among these, physical habitat 

variables are the most convenient to survey (Roper et al., 2002). They can be directly measured 

using basic surveying equipment like a total station or observed through images, without the need 

for specialized sensors or post-survey laboratory analysis (Walters et al., 2003). Specifically, 
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physical habitat variables include geomorphological attributes like channel shape, bank structure, 

and the condition of the riparian zone, as well as hydraulic settings such as depth and flow 

velocities (Jowett, 1993; Maddock, 1999). Several MMIs based on physical variables have been 

successfully implemented by government agencies for regular monitoring of stream habitat quality 

across various transects, including the EPA protocol (Barbour, 1999) and the Wisconsin fish 

habitat surveying guidelines (Simonson, 1994). Furthermore, the dynamics of physical habitat 

variables, which capture both their regular fluctuations and the abrupt changes due to disturbances 

such as inland flooding, are examined by certain transect-based MMI studies (Hajdukiewicz et al., 

2016). While transect-based MMI surveying provides a rough estimate of flood-induced losses, it 

may overlook, underestimate, or exaggerate localized impacts (Del Vecchio et al., 2019), such as 

bank erosion and riparian zone recession. Additionally, surveying dense transects for long periods 

to estimate resilience could be labor-intensive. To comprehensively assess flooding impacts 

against stream habitats, including both losses and resilience, acquiring continuous observation data 

with high resolution is essential. 

Recent advancement in remote sensing techniques, including satellites, aerial photography, 

and unmanned aerial vehicles (UAVs), enables the acquisition of high-resolution, continuous 

observation data for stream habitats. Satellite data, such as Landsat and Sentinel, have been widely 

used to monitor vegetation health conditions in stream habitats using indices such as the 

Normalized Difference Vegetation Index (NDVI) (Griffith et al., 2002; Pace et al., 2022). However, 

the resolution of satellite images can be insufficient for monitoring smaller streams, and image 

quality is sometimes compromised by dense cloud covers and atmospheric pollution. (Dias-Silva 

et al., 2021). Moreover, aerial imagery from sources like the National Agriculture Imagery 

Program (NAIP), offering image data with resolutions ranging from 0.6 to 1 meter and updated 
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approximately every two years, is utilized to measure stream habitat quality variables such as tree 

canopy and woody riparian vegetation (Dauwalter et al., 2015; Pitt et al., 2017). Nevertheless, the 

extended time intervals between samplings and complicated setups prevent the timely assessment 

of rapid habitat quality loss caused by severe flood events. The use of UAVs for assessing stream 

habitat conditions is on the rise, attributed to their easy deployment, low operational costs, and 

flexible scheduling (Wang et al., 2025a). In addition, several studies have employed UAV-based 

methods to determine stream habitat quality and track its dynamics, aiming to evaluate the 

effectiveness of stream habitat restoration programs (Langhammer, 2019; Roni et al., 2019). 

Nonetheless, despite recent advancements in UAVs, there are no known studies that have used 

UAVs to examine the impact of flood events on MMIs of stream habitats, particularly in terms of 

each index's loss and resilience, as far as the authors are aware. 

3.2 Objectives and research goals 

The objective of this chapter is to characterize habitat loss and resilience due to inland flooding 

using a UAV-based approach. I propose that UAVs can provide high-resolution continuous 

observation data to determine the loss and resilience for MMIs of stream habitat caused by flood 

events, also, different indices and different initial conditions could be associated with different 

impacts. Three specific research goals are:  

1. Track the changes of stream habitat MMIs before and after a severe flood event 

using UAV-based approach. 

2. Assess the loss and resilience of stream habitat MMIs associated with a severe flood 

event. 

3. Characterize the variation of loss and resilience among stream habitat indices. 
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3.3 Study Site 

In this study, we selected Black Earth Creek near the village of Cross Plains, Wisconsin, as 

our study site. Black Earth Creek, as shown in Fig. 3-1a, is located in the southern part of 

Wisconsin and flows 

northwest for 43.5 

kilometers before 

converging with the 

Wisconsin River.  This 

creek is recognized as a 

Class I trout stream, 

attracting fly-fishers 

and anglers from across 

the Midwest due to its 

high-quality aquatic 

habitat. The watershed 

of Black Earth Creek 

spans approximately 

264 square kilometers, 

with agricultural land 

being the major land 

use. Cross Plains is a 

village along Black Earth Creek where Brewery Creek joins. Between the two bridges B1 and B2 

in Cross Plains, a restoration project was completed in 2014. In this project, the historical straight 

Figure 3-1 | Study Site of Black Earth Creek. (a) depicts the Black 

Earth Creek watershed, featuring four USGS gauges (G1, G2, G3, 

and G4) that record gauge height and discharge data. (b) illustrates 

our surveying area located between two bridges, B1 and B2. The 

dashed purple line represents the straight stream in 2010, and it was 

meandered in 2015 following a habitat restoration program in 2012. 
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G4 
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stream channel (indicated by the dashed line in Fig. 3-1b) was meandered into an S-shape channel. 

The adjacent riparian zones were replanted with native flora, such as jewelweed, aster, reed canary 

grass, and various shrubs, replacing the former lawns to enhance biodiversity and habitat quality 

condition. There are four USGS gauges (marked as red rectangular dots in Fig. 3-1a), G1 (USGS 

05406457), G2 (USGS 05406469), G3 (USGS 05406479), and G4 (USGS 05406500), located at 

Black Earth Creek and its tributary, Brewery Creek. These gauges record gauge height and 

Figure 3-2 | Historical Observations from USGS Gauges Along Black Earth Creek. (a)-(d) 

correspond to gauge stations G1 (USGS 05406457), G2 (USGS 05406469), G3 (USGS 

05406479), and G4 (USGS 05406500) as shown in Figure 3-1. Red lines represent gauge height 

observations, while black lines indicate discharge values. The maximum discharge was recorded 

during the flood event on August 20-21, 2018, as marked by the black arrows. 

(d) 

(a) 

(b) 

(c) 
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discharge data at 15-minute intervals. According to the gauge data, the base flow for Black Earth 

Creek close to Cross Plains is approximately 0.8 m3/s. A record-breaking rainfall event occurred 

on August 20-21, 2018, when a low-pressure system delivered 11 to 15 inches of rain over 24 

hours (National Weather Service, 2021), leading to unprecedented flash flooding within the Black 

Earth Creek watershed. As illustrated in Figure 3-2, discharge values reached historical peaks at 

all four gauges during the event. The highest discharge was recorded at gauge G1, with a peak of 

29.73 m³/s at 22:30 on August 20th, and at gauge G3, with a peak of 78.72 m³/s at 23:40 on the 

same day. Based on the fitted Generalized Extreme Value (GEV) distribution using annual maxima, 

these peak discharges correspond to return periods of 53 years and 70 years, respectively. 

3.4 Methods 

3.4.1 UAV observation and MMI assessment 

Six UAV flights were conducted 

to assess stream habitat quality 

conditions related to the August 2018 

flood. The first flight, on August 9, 

2018, occurred before the flood, 

while the second, on September 29, 

2018, was conducted after discharge returned to base flow. Additional flights were performed on 

June 7, 2019, September 14, 2019, October 18, 2021, and October 31, 2022, all using consistent 

flight settings with a 75% forward and side overlapping ratio. The survey date was selected as a 

calm day following several consecutive non-rainy days after a rainfall event. This ensured that 

water surface elevation was close to baseflow rather than flood or drought extremes. Aerial images 

from each flight were processed into digital elevation models (DEMs) and orthophotos with 

Figure 3-3 | MMI Criteria for Assessing Health 

Condition. Green indicates excellent condition, light 

green represents good condition, orange denotes fair 

condition, and red corresponds to poor condition. 
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centimeter-level resolution. These high-resolution outputs were then used to compute the 

following MMI values associated with the vegetation disturbance and riverbed scouring: (1) 

riparian vegetation buffer (RVB) - The width of the riparian zone covered by continuous, 

undisturbed natural land; (2) bank stability (BS) - The average width of stream banks that have 

been eroded or are susceptible to erosion; and (3) In-stream cover (IC) - The percentage of the 

stream surface water with overhanging vegetated fish shelter. Thresholds for scoring stream habitat 

conditions as excellent, good, fair, or poor were taken from Wisconsin fish habitat survey guideline 

and listed in Figure 3-3, where green, light green, orange, and red color are associated with ranges 

of excellent, good, fair, and poor conditions, respectively (Simonson, 1994; Wisconsin DNR, 

2018). Other metrics, such as channel gradient, sinuosity, and bed forms, were excluded because 

they lack spatial variability and represent single values for the entire study site. Stream flow status 

was omitted due to its high temporal variability, which cannot be reliably captured in single-time 

surveys. Coarse woody debris was not included because large, saturated logs were absent from the 

site. Water-depth-dependent metrics such as width/depth ratio were also excluded, as they are 

highly sensitive to gage height at the time of sampling, especially in this shallow stream, making 

year-to-year comparisons unreliable. Single MMI values were computed for 1,000 evenly spaced 

transects (approximately 1-ft intervals) from the upstream bridge (B1) to the downstream bridge 

(B2), with the same set of transects established during the first survey reused for all subsequent 

surveys to maintain consistency and comparability. 

3.4.2 Loss and resilience assessment for MMIs 

The impacts of the above-mentioned flood event on each MMI within each transect were 

assessed from two perspectives, loss and resilience. Loss is defined as the relative change in the 

multi-metric index (MMI) before and after the flood (Eqn. 3-1): 
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𝐿𝑜𝑠𝑠 =  
𝑃𝑟𝑒 𝑀𝑀𝐼−𝑃𝑜𝑠𝑡 𝑀𝑀𝐼

𝑃𝑟𝑒 𝑀𝑀𝐼
× 100%     Eqn. 3-1 

In this study, the pre-flood MMI was derived from data collected on August 9, 2018, and the 

post-flood MMI was derived from data collected on September 29, 2018. If the post-flood MMI 

exceeded the pre-flood value (indicating no degradation or an improvement in habitat quality), or 

if the pre-flood value was zero, the loss was recorded as NaN to ensure that only negative impacts 

were captured. 

Resilience is defined as the relative recovery rate of MMI values toward pre-flood conditions 

and was calculated as Eqn. 3-2:  

𝑅𝑒𝑠𝑖𝑙𝑖𝑒𝑛𝑐𝑒𝑡 =
 𝑀𝑀𝐼𝑡−𝑃𝑜𝑠𝑡 𝑀𝑀𝐼

𝑃𝑟𝑒 𝑀𝑀𝐼∗(𝑡−𝑡0)
× 100%     Eqn. 3-2 

The 𝑀𝑀𝐼𝑡 indicate the MMI value at the timestamp t, which in our study, 1-yr, 3-yr, and 4-

yr were measured, the corresponding field surveying dates are: September 14, 2019, October 18, 

2021, and October 31, 2022. If the MMI in the recovery stage was lower than the post-flood MMI, 

or if the pre-flood MMI was zero, resilience at the associated timestamp was marked as NaN.  

The bank stability metric represents the length of stream bank with erosion potential, where 

smaller values indicate better conditions (zero is ideal). To align its interpretation with other 

metrics (i.e., higher values = better condition), the calculation was adjusted. Additionally, since a 

pre-flood value of zero would lead to division by zero, half of the stream width was used as the 

denominator. This adjustment makes the value dimensionless, consistent with the metric’s 

definition, and expresses changes in bank stability relative to stream width. The formulas are given 

in Eqn. 3-3 and Eqn. 3-4: 

𝐿𝑜𝑠𝑠𝐵𝑆 =
𝑃𝑜𝑠𝑡 𝑀𝑀𝐼−𝑃𝑟𝑒 𝑀𝑀𝐼

𝑃𝑟𝑒 𝑊𝑖𝑑𝑡ℎ

2

× 100%     Eqn. 3-3 

𝑅𝑒𝑠𝑖𝑙𝑖𝑒𝑛𝑐𝑒𝐵𝑆𝑡
=

𝑃𝑜𝑠𝑡 𝑀𝑀𝐼−𝑆𝑡𝑒𝑎𝑑𝑦 𝑀𝑀𝐼
𝑃𝑟𝑒 𝑊𝑖𝑑𝑡ℎ

2
∗(𝑡−𝑡0)

× 100%     Eqn. 3-4 
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As with the general case, if the post-flood value represented the best condition, the metric 

was marked as NaN.  

3.4.3 Loss and resilience characterization for MMIs 

 Three distinct types of stream habitat quality 

loss-resilience curves were characterized in this 

study to describe the response of stream habitat 

quality conditions to disturbances. Type I (Curve 

I, Fig. 3-4) represents scenarios where habitat 

quality remains stable or, in rare cases, improves 

following the disturbance, consistently 

maintaining a relatively good state throughout the 

observation period, indicating minimal impact from the disturbances. Type II (Curve II, Figure 3-

4) reflects situations where habitat quality experiences a significant initial decline, with at least 

one level falling below its original state (e.g. excellent to good), but recovers fully over time, 

eventually returning to at least pre-disturbance levels, demonstrating strong recovery capability. 

Type III (Curve III, Figure 3-4) describes cases where habitat quality initially declines and remains 

in a degraded state throughout the survey period, with only slight recovery and no return to pre-

disturbance conditions, highlighting limited resilience and prolonged impacts. To explore spatial 

variations in these habitat quality dynamics, this classification was applied to every 1-feet interval 

transect and compared with the integrated outcome for the entire study site, revealing both 

localized patterns and broader trends in resilience and recovery. 

 

Figure 3-4 | Different Types of Loss-

Resilience Curve 
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3.5 Results 

3.5.1 Orthophotos of flood damage and recovery 

The orthophotos of our study site at the pre-flood, post-flood, and recovery timestamps are 

shown in Figure 3-5, with data collected on 08/09/2018 in Fig. 3-5a, on 09/29/2018 in Fig. 3-5b, 

and on 10/31/2022 in Fig. 3-5c. By comparing the pre- and post-flood orthophotos, several signs 

of habitat quality decline can be observed. For instance, impaired vegetation—particularly the 

0 50 10025 Meters0 50 100 m 

08/09, 2018 

09/29, 2018 

10/31, 2022 

A 

B 

C 

D 

(a) 

(b) 

(c) 

±

Figure 3-5 | Orthophoto of the Study Site. 

(a), (b), and (c) show results collected on 

08/09/2018, 09/29/2018, and 10/31/2022, 

respectively. In (b), areas A, B, and C highlight 

visible flood damages, while area D serves as a 

comparison with minimal flood impacts. 
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vegetation near the water surface that provides in-stream cover—is evident in multiple locations. 

Additionally, increased areas of bare soil, receded vegetation, and exposed gravel indicate elevated 

bank instability. The impacts of the flood also varied spatially, with some areas experiencing 

significant habitat deterioration, while others exhibited minimal disturbance. Four spots, labeled 

A, B, C, and D, were selected to illustrate different patterns of flood impact. In spots A and B, the 

near-water tall grass was washed away by the flood, exposing the gravel-based surface. At spot C, 

the original stream banks were severely damaged, resulting in a nearly vertical slope, whereas at 

spot D, only minor damage, such as bent tall grass, was observed. By 10/31/2022, the majority of 

the stream habitat in our study site had recovered, demonstrating the overall high resilience of the 

stream habitat in returning to its original condition. 

(a) (b) (c) 

(e) 

(h) 

(d) 

(g) 

(f) 

(i) 

A 
B 

C 
D 

Figure 3-6 | Zoom-in views of the damage and recovery of stream habitat quality. The first 

row (a, b, and c) presents orthophotos taken on 08/09/2018, before the flood. The second row (d, 

e, and f) shows orthophotos from 09/29/2018, after the flood. The third row (g, h, and i) displays 

orthophotos from 10/31/2022, several years later. The loss-resilience patterns are illustrated for: 

Site A in the first column (a, d, g), Site B in the second column (b, e, h), Site C in the third column 

(c, f, i). 
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The detailed loss-resilience patterns for sites A, B, C, and D using orthophotos are illustrated 

in Figure 3-6. At site A (Fig. 3-6a), the original near-water vegetation was lost, and the ground 

surface was exposed with gravel deposits accumulating at the bend. By 10/31/2022, the vegetation 

had fully recovered, and the stream bank was once again covered with healthy vegetation. At site 

B (Fig. 3-6a), there was initially some minor exposed soil that had not been vegetated. During the 

flooding event, the site experienced significant damage, with all tall grass being swept away. The 

bare ground remained impaired through 2022, indicating limited resilience. Site C (Fig. 3-6b) 

experienced severe flood damage on both sides. The left bank (bottom side) had exposed soil with 

only sparse vegetation remaining, while the right bank (top side) collapsed entirely, losing all tall 

vegetation and grasses, resulting in a near-vertical slope. Despite this significant destruction, the 

site recovered by 2022, with fully functional vegetation restored and the stream bank slightly 

shifted in position. In contrast, site D (Fig. 3-6c) only experienced minor changes, with some tall 

vegetation bent and a small area of exposed soil. By 2022, the riparian area at site D had fully 

recovered. These patterns demonstrate variability in resilience across different sites, highlighting 

the importance of studying flood impacts on stream habitat at the local scale. 

3.5.2 Pre-flood MMIs 

The pre-flood MMI conditions at the study site are shown in Figures 3-7. For riparian 

vegetation buffer (RVB), most sections of both the left and right banks were categorized as good 

or excellent (Fig. 3-7a and Fig. 3-7d-e), indicating that over 90% of unimpaired sites had a buffer 

width of at least 5 m. However, 3.2% of the left bank (one site) was in fair condition due to a paved 

parking lot, and 6.9% of the right bank (two sites) was in fair condition due to rectangular gravel 

areas adjacent to the stream. For bank stability (BS), the entire left bank was classified as excellent, 

with no erosion sites or areas with erosion potential (Fig. 3-7b and Fig.. 3-7f-g). The right bank 
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was also predominantly excellent, but one site (2.6%) was classified as poor due to an exposed, 

unarmored surface lacking vegetation cover. For in-stream cover (IC), only 34.3% and 3.4% of 
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Figure 3-7 | Pre-flood stream habitat quality conditions. (a–c) Spatially continuous results for left 

and right riparian vegetation buffers, left and right bank stability, and in-stream cover. (d–h) 

Percentage distribution of habitat conditions (poor, fair, good, excellent) for left riparian vegetation 

buffer, right riparian vegetation buffer, left bank stability, right bank stability, and in-stream cover. 
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sites were classified as good and excellent, respectively (Fig. 3-7c and Fig. 3-7h). This was 

primarily because tall grasses were planted along the banks without extending into the water, and 

both emergent plants and coarse woody debris were largely absent. More than half of the sites 

(59.9%) were in fair condition, while 2.3% were in poor condition, indicating almost no in-stream 

cover. 

3.5.3 Post-flood MMIs 

The post-flood MMI conditions are shown in Figs. 3-8. For riparian vegetation buffer (RVB), 

both banks showed a marked decline compared to pre-flood conditions (Fig. 3-8a and Fig. 3-8d–

e). On the left bank, 20.8% of sites were classified as poor, 40.9% as fair, 21.3% as good, and only 

17.1% as excellent. On the right bank, 18.3% were poor, 29.4% fair, 30.6% good, and 21.8% 

excellent. In addition to the severely degraded sites A, B, C, and D described in Section 3.5.1, 

multiple other sites lost vegetation buffers as the original plants either died or were swept away. 

For bank stability (BS), extensive erosion was observed (Fig. 3-8b and Fig. 3-8f-g). On the left 

bank, 48.0% of sites were classified as poor, 9.9% as fair, 7.9% as good, and 34.2% as excellent. 

On the right bank, 28.5% were poor, 5.5% fair, 9.9% good, and 56.1% excellent. Compared to pre-

flood conditions, where both banks were largely stable, more than half of the left bank and about 

one-third of the right bank experienced severe instability, primarily due to exposed bare soil. For 

in-stream cover (IC), conditions also deteriorated substantially (Fig. 3-8c and Fig. 3-8h). After the 

flood, 21.4% of sites were classified as poor, 68.1% as fair, 9.9% as good, and only 0.6% as 

excellent. Since in-stream cover was already limited before the flood, this represents further 

degradation, with nearly 90% of sites falling into poor or fair categories. This decline was mainly 

due to tall grass being washed away, banks becoming more vertical following scouring, and the 

absence of vegetation in direct contact with the water. 



58 

 

 

3.5.4 Steady MMIs 
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Figure 3-8 | Post-flood stream habitat quality conditions. (a–c) Spatially continuous results for 

left and right riparian vegetation buffers, left and right bank stability, and in-stream cover. (d–h) 

Percentage distribution of habitat conditions (poor, fair, good, excellent) for left riparian vegetation 

buffer, right riparian vegetation buffer, left bank stability, right bank stability, and in-stream cover. 
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The steady MMI conditions are shown in Figs. 3-9. For riparian vegetation buffer (RVB), 

most sites showed recovery compared to post-flood conditions, although the distribution was not 
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Figure 3-9 | Steady stream habitat quality conditions. (a–c) Spatially continuous results for left 

and right riparian vegetation buffers, left and right bank stability, and in-stream cover. (d–h) 

Percentage distribution of habitat conditions (poor, fair, good, excellent) for left riparian vegetation 

buffer, right riparian vegetation buffer, left bank stability, right bank stability, and in-stream cover. 
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as favorable as the original pre-flood state (Fig. 3-9a and Fig. 3-9d–e). On the left bank, 1.1% of 

sites were classified as poor, 2.3% as fair, 38.6% as good, and 58.0% as excellent. On the right 

bank, 1.4% were poor, 9.7% fair, 46.0% good, and 42.9% excellent. Overall, the proportions of 

poor and fair sites were similar to pre-flood conditions, indicating relatively large recovery. For 

bank stability (BS), conditions values were also much closer to pre-flood conditions than to post-

flood conditions (Fig. 3-9b and Fig. 3-9f–g). On the left bank, 1.1% of sites were poor, 0.3% fair, 

2.0% good, and 96.7% excellent. On the right bank, 2.9% were poor, 0.2% fair, 0.1% good, and 

96.8% excellent. Although not fully restored to pre-flood levels, the majority of transects regained 

stability, with poor and fair sites occurring at proportions comparable to pre-flood and located at 

similar sites. For in-stream cover (IC), conditions improved considerably compared to both pre- 

and post-flood states (Fig. 3-9c and Fig. 3-9h). After recovery, 3.0% of sites were poor, 24.5% fair, 

and 71.6% good. This improvement was largely due to the establishment of emergent plants, which 

now cover a substantial portion of the channel and provide increased in-stream habitat. 

3.5.5 Loss and resilience of stream habitat quality 

The loss of the MMIs is shown in Fig. 3-10. For riparian vegetation buffer (RVB, Fig. 3-10a), 

2.62% of left-bank transects and 5.85% of right-bank transects were recorded as NaN, either 

because the pre-flood buffer width was zero or the post-flood condition was better than the pre-

flood condition. Relative losses for both banks ranged from 0% to 100%. On the right bank, more 

transects exhibited relatively low loss, particularly near the upstream bridge and around the island 

(both upstream and downstream). On the left bank, relatively low loss occurred in the upstream 

section but not at transects close to the upstream bridge. Both banks showed high losses in the 

meandered section and in the vicinity of the island. For bank stability (BS, Fig. 3-10b), no left-

bank transects and 4.04% of right-bank transects were recorded as NaN, indicating either pre-flood 
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high erosion widths or improved conditions after the flood. For most transects on both banks, the 

eroded width increased for less than 20% of the stream width at the same transect. However, severe  

losses were observed in the connection area between the first and second bend and from the last 
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Figure 3-10 | Loss of stream habitat quality. (a–c) Spatially continuous results for the 

relative loss of left and right riparian vegetation buffers, left and right bank stability, and in-

stream cover. (d–h) Percentage distribution of the relative loss of stream habitat quality for 

left riparian vegetation buffer, right riparian vegetation buffer, left bank stability, right bank 

stability, and in-stream cover. 
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bend to the island. The maximum relative loss reached 348.5% on the left bank (transect 739) and 

465.1% on the right bank (transect 758). For in-stream cover (IC, Fig. 3-10c), 13.22% of transects 
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Figure 3-11 | Resilience of stream habitat quality in year one. (a–c) Spatially continuous results 

for the relative resilience at year one of left and right riparian vegetation buffers, left and right 

bank stability, and in-stream cover. (d–h) Percentage distribution for the relative resilience at year 

one of stream habitat quality for left riparian vegetation buffer, right riparian vegetation buffer, left 

bank stability, right bank stability, and in-stream cover. 
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were recorded as NaN, either due to pre-flood zero values or improved conditions. Loss values 

were relatively low in upstream and downstream transects, while the section between the second 

bend and the island showed consistently high losses (>80%).  

(a) 

(b) 

(c) 

(d) (e) 

(f) (g) (h) 

(% / yr) 

  

B
2
 

B
1
 

B
2
 

B
2
 

B
1
 

B
1
 

(% / yr) 

  

(% / yr) 

  

20m 

  

Figure 3-12 | Resilience of stream habitat quality in year three. (a–c) Spatially continuous 

results for the relative resilience at year three of left and right riparian vegetation buffers, left 

and right bank stability, and in-stream cover. (d–h) Percentage distribution for the relative 

resilience at year three of stream habitat quality for left riparian vegetation buffer, right riparian 

vegetation buffer, left bank stability, right bank stability, and in-stream cover. 
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The resilience of the MMIs is shown in Fig. 3-11 to Fig. 3-13. In the first year after the 2018 

flood, a substantial proportion of riparian vegetation buffer (RVB) transects were recorded as 

NaN—30.07% on the left bank and 31.54% on the right bank—indicating either zero pre-flood 
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Figure 3-13 | Resilience of stream habitat quality in year four. (a–c) Spatially continuous 

results for the relative resilience at year four of left and right riparian vegetation buffers, left 

and right bank stability, and in-stream cover. (d–h) Percentage distribution for the relative 

resilience at year four of stream habitat quality for left riparian vegetation buffer, right riparian 

vegetation buffer, left bank stability, right bank stability, and in-stream cover. 
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conditions or stable values lower than post-flood conditions (Fig. 3-11a). In the following years, 

RVB continued improving, and by year four the NaN ratio had declined to 9.18% on the left bank 

and 25.23% on the right bank (Fig. 3-12a, Fig. 3-13a). At year one, 17.9% of left-bank transects 

and 16.0% of right-bank transects showed at least 50% recovery of pre-flood conditions (Fig. 3-

11d–e). By year three, 49.3% of left-bank transects and 33.6% of right-bank transects had 

recovered at least 60% of their initial condition (20% average annual rate), and by year four the 

proportions were 50.6% and 27.5%, respectively (15% annual rate; Fig. 3-12d–e, Fig. 3-13d–e). 

The maximum RVB resilience reached 134.0%/yr on the left bank (transect 432) and 71.7%/yr on 

the right bank (transect 798) in year four, confirming greater resilience on the left bank. For bank 

stability (BS) (Fig. 3-11b), 32.80% of left-bank transects and 40.57% of right-bank transects were 

NaN in year one. By year four, these ratios decreased to 4.14% and 0.10%, respectively (Fig. 3-

12b, Fig. 3-13b), showing substantial recovery across most sites, with 30–40% of transects 

recovering between years one and four. At year one, 26.3% of left-bank and 16.6% of right-bank 

transects had regained at least 50% of half-stream width (Fig. 3-11f–g). By year three, 35.3% of 

left-bank and 21.4% of right-bank transects reached 60% recovery (Fig. 3-12f–g), with similar 

levels by year four (35.9% and 22.7%, respectively; Fig. 3-13f–g). High-resilience areas on the 

left bank included the small upstream curve, the reach between the first and second bends, the 

section from the last bend to the island, and the downstream reach, while on the right bank they 

were mainly concentrated near the second bend, from the last bend to the island, and in the 

downstream area. Maximum BS resilience reached 87.1%/yr at left-bank transect 739 and 

116.8%/yr at right-bank transect 759, indicating erosion widths decreased by more than three times 

half the stream width at these locations. For in-stream cover (IC) (Fig. 3-11c), 41.27% of transects 

were recorded as NaN in year one, but this proportion dropped sharply to 1.01% by year four, 
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indicating widespread recovery (Fig. 3-12c, Fig. 3-13c). Only 5.8% of transects achieved at least 

50% recovery in year one (Fig. 3-11h), but by year three 96.8% had exceeded 60% recovery (20% 

annual rate; Fig. 3-12h), and by year four 87.3% still exceeded 60% (15% annual rate; Fig. 3-13h). 

High resilience in IC was observed in the upstream section near the bridge, the first bend, the 

segment between the second and last bends, and the island. The maximum resilience in year four 

reached 283.8%/yr at transect 905, highlighting significant improvement in in-stream cover due to 

the establishment of emergent vegetation. 

3.5.6 Loss-Resilience Types 

The loss–resilience types of each transect are shown in Fig. 3-14. For riparian vegetation 

buffer (RVB, Fig. 3-14a), the left bank was dominated by type II, where conditions first declined 

after the flood and then recovered to equal or better than pre-flood levels. Other types were mostly 

concentrated in the upstream area before the first bend. The right bank showed greater diversity, 

with less than half of the transects classified as type II and considerable proportions of type I   

(conditions never worse than pre-flood) and type III (conditions worsened and did not recover to 

pre-flood levels). These type I and type III transects were mainly distributed in the upstream reach 

before the first bend, around the third bend, from the last bend to the island, and near the 

downstream bridge. For bank stability (BS, Fig. 3-14b), the left bank was also dominated by type 

II, followed by type I, which was mainly concentrated in the upstream area before the first bend 

and between the second and third bends. On the right bank, both type II and type I were prevalent, 

with type I occurring primarily in the upstream reach, at the second bend, and upstream and 

downstream of the island. For in-stream cover (IC, Fig. 3-14c), type I and type II were both 

important. Type I occurred more frequently in the upstream and downstream sections, while type 

II was more common in the middle portion of the study site.  
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When further subdivided into subtypes (a–d) according to pre-flood condition (poor, fair, 

good, excellent), distinct patterns were observed (Fig. 3-14d-h). For left riparian vegetation buffer 
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Figure 3-14 | Loss–resilience types of stream habitat health based on six UAV survey outputs 

(2018–2022). (a–c) Spatially continuous results of relative resilience at year four for left and right 

riparian vegetation buffers, left and right bank stability, and in-stream cover. (d–h) Percentage 

distributions of loss–resilience types for the same metrics. Note: I, II, and III denote the three types 

of loss–resilience curves; a, b, c, and d represent the original conditions of poor, fair, good, and 

excellent, respectively.  
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(RVB) (Fig. 3-14d), the majority of transects were IIc (24.3%) and IId (47.8%), starting from good 

or excellent condition, declining after the flood, and later recovering to equal or better levels. 

Smaller shares included Ic (11.5%) and Id (6.5%), which remained good or excellent throughout, 

and IIb (1.9%). A few transects showed persistent decline, such as IIIb (1.0%), IIIc (1.4%), and 

IIId (5.2%). For the right RVB (Fig. 3-14e), IId (31.7%) was the largest group, but a substantial 

portion were IIId (21.5%), where transects started from excellent but did not return to that level. 

Other notable groups included Ic (14.4%), Id (10.5%), and Ib (5.3%), with smaller shares in other 

II and III categories. For bank stability (BS), most transects began in excellent condition. On the 

left bank (Fig. 3-14f), IId (76.2%) and Id (20.5%) dominated, while only IIId (3.3%) represented 

persistent decline. On the right bank (Fig. 3-14g), the pattern was similar, with IId (54.1%) and Id 

(40.9%) as the majority, and only minor fractions in Ia (2.6%), IIIb (0.1%), and IIId (2.3%). For 

in-stream cover (IC) (Fig. 3-14h), most transects started from fair conditions. The largest group 

was Ib (38.5%), which remained fair or better throughout, followed by IIb (21.4%) and IIc (25.8%), 

where conditions declined and later returned to fair or good states. Smaller fractions included Ic 

(7.2%), IId (3.4%), and Ia (2.3%), while only a few (IIIc: 1.3%) represented long-term decline.  

3.6 Discussion 

3.6.1 Limitation and future improvements 

This study provides new insights into flood impacts and recovery of stream habitat quality 

using UAV-based MMI assessment, but several limitations remain that highlight opportunities for 

future improvements. First, the temporal sampling interval was limited to six UAV surveys 

between June 2018 and October 2022. Although these surveys captured pre-flood, post-flood, and 

steady conditions, habitat changes can exhibit seasonal variation, and more frequent sampling 

would better resolve such dynamics. In addition, resilience is not only defined by whether a system 
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eventually returns to its unimpaired state but also by the duration required to do so (Greig et al., 

2022; Hua et al., 2025); higher-frequency sampling would therefore allow assessment of both 

recovery extent and recovery time, although this remains challenging given the low frequency and 

unpredictability of natural hazards. Complementary to UAV surveys, establishing on-site web-

cam networks could provide continuous visual records that help bridge temporal gaps, particularly 

when the image resolution requirement is not high (Sushmitha et al., 2024). Such networks would 

allow short-term or unexpected disturbances to be captured in real time, offering valuable context 

for UAV-based observations and supporting assessment of both recovery extent and recovery 

duration. Second, the current approach does not separate natural recovery from human intervention,  

(Serra-Llobet et al., 2022). For instance, emergent plants were introduced at the study site as part 

of restoration, making it difficult to attribute recovery solely to natural processes. Future studies 

could address this by surveying remote sites with minimal human activity to capture natural 

recovery, or by establishing controlled experiments that compare restored and unrestored reaches 

to evaluate the effectiveness of interventions. Third, while the 2018 flood was the most severe 

event at the study site, subsequent floods were much smaller and thus treated as background 

disturbances within the long-term recovery process. These baseline flood pulses may provide 

ecological benefits, such as enhancing biological productivity and transporting nutrients and 

organisms between river and floodplain (Heiler et al., 1995; Tockner and Ward, 2000; Doyle et 

al., 2005; Cluer and Thorne, 2013), potentially outweighing negative effects. Long-term 

monitoring would help calibrate the loss–resilience analysis against such baseline impacts. Fourth, 

only three key indicators were assessed (riparian vegetation buffer, bank stability, and in-stream 

cover), while other important metrics such as those related to water depth and water quality were 

not included. The integration of topo‐bathymetric green Lidar and drone-mounted hyperspectral 
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sensors would enable inclusion of additional metrics, thereby providing a more comprehensive 

view of habitat quality (Islam et al., 2022; Bai et al., 2024). In addition, the link between physical 

habitats and fish spawning success remains unknown at the study site. In-situ surveys to build 

stock–recruitment models could help establish MMI thresholds tied more directly to fish protection 

(Maunder and Deriso, 2013; Skoglund et al., 2022). Fifth, delineation of habitat features still 

requires human effort, as current segmentation models struggle to reliably distinguish vegetation 

types with subtle differences. Advances in visual–language foundation models, such as the 

Segment Anything Model (SAM), may help automate this step and reduce manual intervention 

(Kirillov et al., 2023). Finally, the loss–resilience classification (Types I–III) provides a useful 

overview but does not capture the magnitude of impairment within each type. For example, a site 

that dropped from excellent (4) to good (3) and later returned to excellent is treated the same as a 

site that dropped from excellent (4) to poor (1) and then recovered, although the ecological 

significance differs. Developing refined classifications that incorporate both loss–resilience type 

and severity would improve interpretation. Addressing these limitations would enhance the 

reliability, scalability, and applicability of UAV-based stream habitat monitoring, enabling more 

robust assessments of both natural recovery and restoration performance.  

3.6.2 Variations among transects 

The analysis revealed substantial variation among transects and across different habitat 

metrics, emphasizing the importance of spatially explicit assessment. For riparian vegetation 

buffer and bank stability, most transects followed type II loss–resilience classifications, where 

conditions declined after the flood and subsequently returned to pre-flood or better levels. 

However, localized differences were evident, with some transects exhibiting type I (never worse 

than pre-flood) and others showing type III (persistent impairment), particularly around bends and 
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areas with exposed soil. In-stream cover displayed a distinct pattern, as many transects began in 

only fair condition and either remained stable (Ib) or showed modest recovery (IIb, IIc), while very 

few experienced sustained decline. When transect-level results  were aggregated to the whole site 

(Fig. 3-15), the classifications simplified into type IId for both riparian vegetation buffer and bank 

stability, and Ib for in-stream cover, all representing eventual recovery to unimpaired levels. The 

integrated change sequences further illustrate this trend: both left and right riparian vegetation 

buffers followed excellent → good → good → excellent → excellent → excellent, ending as type 

IId; left bank stability showed excellent → poor → poor → excellent → excellent → excellent, 

and the right bank excellent → poor → fair → fair → excellent → excellent, both classified as IId. 

In contrast, in-stream cover followed fair → fair → fair → fair → excellent → excellent, reflecting 

a type Ib pathway of steady improvement. While this whole-site integration highlights dominant 

resilience patterns, it also masks the presence of type III classifications observed at individual 
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Figure 3-15 | Loss–resilience curves for MMIs at the whole study site. (a) Left riparian 

vegetation buffer, (b) right riparian vegetation buffer, (c) left bank stability, (d) right bank stability, 

and (e) in-stream cover. Surveying numbers 1–6 correspond to the dates 08/09/2018, 09/29/2018, 

06/07/2019, 09/14/2019, 10/18/2021, and 10/31/2022. 
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transects, where conditions deteriorated and failed to recover. Such persistent declines, though 

limited in extent, identify the most fragile portions of the stream and are ecologically critical for 

management. Thus, while site-level integration is useful for summarizing overall system behavior, 

transect-level variation could provide indispensable insights into localized vulnerabilities that 

would otherwise be overlooked, underscoring the need for monitoring strategies that capture both 

overall recovery and persistent local degradation. 

3.6.3 Potential generalization 

The patterns observed in this study highlight the broader potential of UAV-based MMI 

assessments for generalizing recovery status across different sites and hazard types. Although this 

work focused on a single stream impacted by flooding, the loss–resilience classifications and 

transect-level variation provide a transferable framework that could be applied to other fluvial 

systems with comparable geomorphic or ecological settings. More importantly, the approach is 

not restricted to flood disturbances. By tracking how habitat conditions move between impaired 

and unimpaired states, the same methodology could be extended to other hazard contexts such as 

nutrient enrichment, sediment loading, or contamination from industrial and agricultural pollution 

(Hughes et al., 2021; Ogidi and Akpan, 2022 Rios-Touma et al., 2022). In these cases, UAV-based 

observations of vegetation buffer integrity, bank conditions, or water-surface cover could serve as 

proxies for ecosystem recovery following stressor reduction or management interventions. The 

classification of sites into type I, II, or III pathways helps identify which areas are resistant, 

resilient, or persistently impaired, providing a common language for comparing loss-resilience 

patterns across disturbance types. Practically, this generalization means that restoration and 

monitoring strategies informed by UAV-based MMIs can be adapted for diverse hazard settings—
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whether floods, pollution, or land-use change—supporting decision-makers in prioritizing 

interventions at both local and regional scales.  

3.7 Conclusion 

This study demonstrates the utility of UAV-based MMI assessment for quantifying flood 

impacts and recovery of stream habitat quality. Six UAV flights conducted between August 2018 

and October 2022, including one before the August 2018 flood and five after, provided a unique 

multi-year dataset to track changes in riparian vegetation buffer, bank stability, and in-stream cover. 

Using the loss–resilience classification (Types I–III with subtypes), we identified how different 

habitat features responded to disturbance. Most transects showed type II behavior, with declines 

followed by recovery to pre-flood or better conditions, while some exhibited type I resilience, 

never falling below initial levels, and others displayed type III, where impairment persisted. The 

integrated whole-site results simplified to type IId for riparian vegetation and bank stability and Ib 

for in-stream cover, suggesting overall recovery but masking localized fragilities. This 

combination of transect-level and site-level perspectives illustrates both the resilience and the 

heterogeneity of stream habitats under flood stress. UAV-based surveys provided a cost-effective, 

repeatable, and spatially explicit way to capture these dynamics over multiple years. At the same 

time, challenges remain, such as limited temporal resolution and the difficulty of distinguishing 

natural recovery from human interventions, these can be partially addressed through higher-

frequency monitoring, complementary tools such as web-cam networks for continuous observation, 

and the integration of additional habitat indicators. More broadly, the framework developed here 

can be generalized to other streams and disturbances, including pollution and droughts, offering a 

practical path forward for resilience-based ecological assessment and restoration planning. 
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Chapter 4: Detection and characterization of flash rips in Lake Michigan using 

a deep learning framework 

4.1 Introduction 

Flash rips, episodic bursts of seaward water flows at featureless beaches (MacMahan et al., 

2006; Castelle et al., 2016), can unexpectedly sweep people in nearshore areas to deeper offshore 

zones (McCarroll et al., 2014). Different from bathymetrically-controlled (Dalrymple et al., 2011) 

and boundary-controlled rip currents (Castelle and Coco, 2013; Castelle et al., 2016), non-

stationary and intermittent flash rips can be caused by mechanisms including shear instability in 

longshore currents under oblique wave incidence (Özkan-Haller and Kirby, 1999; Feddersen, 

2014), or non-uniform wave breaking induced vortices evolving into large-scale surf zone eddies 

under shore-normal wave incidence (Castelle et al., 2016; Kirby and Derakhti, 2019), or vortices 

generated by rapid currents due to meteorologically-induced water level oscillations (Linares et 

al., 2019; Liu and Wu, 2022a). Owing to the transient and intermittent feature, flash rips pose 

unexpected hazards to beachgoers due to lack of awareness and the difficulty for timely detection 

(Fallon et al., 2018; Ménard et al., 2018). Flash rip-related drowning incidents have been reported 

globally, such as China (Zhang et al., 2021), Japan (Ishikawa et al., 2014), Europe (Basterretxea-

Iribar et al., 2022), and the U.S. (Slattery et al., 2011). In the Laurentian Great Lakes, flash rips 

were found to be associated with a series of drowning incidents between 2002 and 2019 

(Vlodarchyk et al., 2019; Liu and Wu, 2022a). For instance, on July 13, 2022, four individuals 

drowned in separate, unexpected rip incidents in South Haven and Ferrysburg, Michigan (Great 

Lakes Surf Rescue Project, 2024). In view of these consequences, detecting and characterizing 

dangerous flash rips is an urgent need for coastal communities.  
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Existing studies have characterized flash rip from several perspectives. Geometrically, flash 

rips display a “mushroom cloud” head shape with a narrow neck (Dalrymple et al., 2011; Castelle 

et al., 2016). Flash rips can reach beyond the surf zone, extending several hundred meters seaward 

(Floc’h et al., 2018; Liu and Wu, 2019). Compared to bathymetry- and boundary-controlled rips, 

flash rips generally exhibit a smaller offshore scale (Dalrymple et al., 2011). Kinematically, flash 

rips have smaller offshore flows than rip currents emerging from main rip channels in most cases 

(Johnson and Pattiaratchi, 2006; Austin et al., 2012). For instance, observations around West 

Africa showed that approximately 65% of flash rips had a velocity range of 0.2 m/s to 0.6 m/s 

offshore (Floc'h et al., 2018). Studies in Lake Michigan found maximum velocities of hidden flash 

rips reaching 0.5 m/s, attributed to either wind waves or water level oscillations (Liu and Wu, 

2022a). Temporally, flash rips have varying temporal scales (Schönhofer and Dudkowska, 2021). 

Durations of flash rips in general are relatively short, extending from a handful of seconds to 

several minutes (Murray et al., 2003; Liu and Wu, 2019; Kim, 2021). Spatially, occurrences of 

flash rips are not stationary, unlike fixed hotspots caused by other types of rip currents, such as 

pocket beaches (Carpi et al., 2021), coastal structures (Liu and Wu, 2022b; Xu et al., 2024), and 

nearshore bars or terraces (Smit et al., 2012). Flash rips were observed to relocate during the 

lifespan (Castelle et al., 2014; Liu and Wu, 2019) in morphologically featureless uniform beach 

areas. Despite the progress in characterizing flash rips in terms of geometric, kinematic, temporal, 

and spatial features, a comprehensive study of flash rip characteristics affected by different driving 

factors remains limited, as far as the authors are aware. To address this gap, accurate detection is 

a critical prerequisite and has become an active area of research in recent years.  

Previous methods to detect flash rips can be generally classified into three categories. First, 

trained lifeguards identify flash rips by utilizing observational information such as colour contrasts 
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and sediment-laden flows (Brannstrom et al., 2015; Brewster et al., 2019), which have been used 

to train lifeguards in several projects and agencies, such as United States Lifesaving Association 

(United States Lifesaving Association, 2024). While effective in reducing drowning incidents 

(Brander and MacMahan, 2011; Gilchrist and Branche, 2018), the dependency on lifeguard 

availability and the inability to provide quantitative descriptions have been of concerns (Sotés et 

al., 2020). Second, drone technology in recent years has been employed to detect rip currents, i.e. 

regions with seaward flows, through observed videos/images or estimated velocities using traced 

dye (Leatherman and Leatherman, 2017), debris flows (Fletemeyer, 2014), or mounted 

velocimeter (Dérian and Almar, 2017). Nevertheless, the limited flight duration of drones and the 

difficulty in operating drones to acquire data under heavy wind conditions (Gao et al., 2021) are 

bottlenecks. Third, remote optical cameras are commonly employed to continuously monitor 

nearshore water surface conditions (Holman and Stanley, 2007; Gallop et al., 2009; Abessolo et 

al., 2023). In 2019, an innovative cyberinfrastructure, the Lifeguarding Operational Camera Kiosk 

System (LOCKS), was developed for flash rip detection by applying HSV-based segmentation and 

an offshore length threshold for rip-induced sediment plumes (Liu and Wu, 2019). However, fine-

tuning thresholds can be tedious and case-dependent, limiting the effectiveness of detecting non-

stationary flash rips. The aforementioned concerns and limitations call for the development of 

quantitative, automated, and robust detection methods for flash rips.  

In recent years, deep learning techniques have become popular to detect rip currents. 

Generally, these techniques can be classified into three types. The basic convolutional neural 

network (CNN) is straightforward to implement and proficient to detect well-defined rip channels 

(Maryan et al., 2019). One-step regional CNN methods, such as YOLO (You Only Look Once), 

can quickly locate rip current objects from images without the need to extract regions of interest 
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(Zhu et al., 2022; Dumitriu et al., 2023). Two-step regional CNN methods, such as Faster R-CNN, 

by first identifying and then refining the potential regions of interest, have been validated to 

achieve higher accuracy than the one-step method (Ren et al., 2017). These methods have been 

used to detect channel rips from images and videos (de Silva et al., 2021). However, Faster R-

CNN relies on a fixed intersection-over-union (IoU) value, often leading to false detection when 

inferencing testing dataset (Tian et al., 2019), especially for various sizes of rip signage (e.g., 

bubbles or sediment plumes) or blurred boundaries between rips and the background water body. 

To resolve the false detection issue, the Cascade R-CNN was developed, introducing a series of 

gradually increasing IoU thresholds during the refinement stage (Cai and Vasconcelos, 2021; 

Hoeser et al., 2020). Despite that cascading structure has been shown to improve the inference 

performance, the Cascade R-CNN has not yet been applied to detect flash rips, to our best 

knowledge. 

4.2 Objectives and Research Goals 

The objective of this chapter is to detect and characterize flash rips using a Refined Cascade 

R-CNN approach. Particularly, flash rips induced by three driving factors, oblique wind waves, 

normal wind waves, and water level fluctuations, were examined. Features of flash rips due to 

different driving factors were characterized by several perspectives: spatial (offshore distance and 

alongshore position), temporal (duration), and kinematic (growing speed). I propose that variations 

exist among the three mechanisms across all perspectives. In particular, flash rips induced by 

normal waves are expected to travel farther offshore, while exhibiting shorter durations and faster 

growing speeds compared to those caused by oblique waves and water level fluctuations. Three 

specific research goals are: 

1. Develop deep-learning-based methods for automating flash rip detection. 
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2. Identify the driving factor associated with each flash rip event. 

3. Characterize flash rip features across spatial, temporal, and kinematic dimensions, and 

compare similarities and differences among driving factors. 

4.3 Materials and Methods 

4.3.1 Study site and data sources 

The study site is North Beach in Port Washington, Wisconsin, located on the western 

shoreline of Lake Michigan (Fig. 4-1a). The beach is aligned northeast, deviating approximately 

30° from true north. The bathymetry, shown by the white bottom contours, is characterized by a 

mild bottom slope of 0.028, with water depth gradually increasing to 12.5 m within 1 km. A 762-

meter breakwater is situated approximately 375 m south of the beach's starting point. Strong winds 

are often observed, as the meteorological data from the National Data Buoy Center’s PWAW3 

station recorded 37, 60, 56, and 63 days with wind gusts exceeding 20 mph in 2019, 2020, 2021, 

and 2022, respectively. The strong onshore winds can create complex wave conditions, making 

the site a hotspot for rip currents. Several drowning incidents and rescues have been reported  

(Great Lakes Surf Rescue Project, 2024), with at least two fatalities between 2016 and 2021. To 

address water safety concerns, a Real-Time Environmental Observation System (RTEOS) (Liu 

and Wu, 2019), denoted by the yellow dot in Fig. 4-1a, was installed in 2019 at this site. After the 

installation, four rescues were reported on 08/18/2021 (Great Lakes Surf Rescue Project, 2024), 

06/22/2022 (Ozaukee Press, 2022), 08/30/2022 (Fox6News, 2022a), and 09/08/2022 (Fox6News, 

2022b). This sequence of incidents highlights the improved safety measures but also the ongoing 

challenges posed by flash rip hazards at the site. 

To conduct this study, field observations were collected using the RTEOS and additional 

environmental datasets from 05/16/2019 to 09/14/2019. Water surface images were acquired 
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through the RTEOS, which consists of a webcam (Cam in Fig. 4-1b) and a remote-controlling 

system (Fig. 4-1c). The webcam is positioned 30 meters above ground on a pole (yellow dot in 

Fig. 4-1a) and is equipped with a 7.9 mm focal lens with a 45°×34° field of view (dashed triangle, 
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Figure 4-1 | Study site and remote camera systems. (a) illustrates the geographical location of Port 

Washington within Lake Michigan and pinpoints the positions of camera system within Port Washington 

by the yellow dot, respectively. The camera’s fields of view demarcated by dashed triangles, while the 

bathymetry of our study site is displayed using white contours. (b) provides a real-world image of the on-

site camera system. (c) shows the remote-control system used for image recording and processing. (d) – 

(f) present Examples of flash rips under three driving mechanisms. (d) an event occurred on 2019/08/08 

at 13:47 CST caused by water level fluctuations. (e) an event occurred on 2019/08/26 at 16:49 CST 

induced by normal wave incidents; (f) an event observed on 2019/09/03 at 12:23 CST triggered by oblique 

wave incidents. 
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Fig. 4-1a). The remote system continuously receives image streams via Power over Ethernet (PoE) 

and archives 1MP resolution images every 10 seconds into network-attached storage (NAS) from 

5:00 to 20:00 using a script running on local personal computer (PC). Screenshots from 

representative timestamps captured by the RTEOS are shown in Fig. 4-1d-f, where flash rip 

features associated with different driving factors are illustrated: water-level fluctuations (Fig. 4-

1d), normal wind waves (Fig. 4-1e), and oblique wind waves (Fig. 4-1f). In addition to RTEOS, 

the following data was collected from other sources. Nearby wind and sea level pressure data with 

1-min intervals were captured from ASOS’s MKE station (located at 43.11N, 88.03W). Water 

level data with 6-min sampling periods was acquired from NOAA National Ocean Service station 

9087057, which is located at 43.02N, 87.89W. Additionally, as no wind wave data observation 

was available during the study period, hourly wave statistics including significant wave height, 

wave mean direction, and wave period at a nearby Station ST94058 (located at 43.36N, 87.80W) 

from the hindcast model of U.S. Army Corps of Engineers (USACE) wave information study (WIS) 

was used. In short, RTEOS observation together with other meteorological and hydrodynamic 

observation and hindcast data provided the dataset to detect flash rips and characterize their 

features under different driving factors.  

4.3.2 Flash rip detection 

The overall workflow for flash rip detection within the area of interest (AOI, yellow boxes in 

Fig. 4-1d-f), is shown in Fig. 4-2, starting with image ortho-rectification, followed by image 

division, annotation, Cascade R-CNN training, and final detection with best-performed trained 

model and post-detection refinement. 
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4.3.2.1 Image preprocessing and preparation 

Image preprocessing involved three steps. First, we ortho-rectified the AOI in each input 

oblique image into an orthophoto in a geo-referenced coordinate (Fig. 4-2a). This was achieved by 

computing 3D real-world coordinates (X, Y, Z) from 2D image coordinates (x, y) via the Direct 

Linear Transform (DLT) equations (Holland et al., 1997) to output an orthophoto of 5001×551 

pixel dimension at a 0.1 m/pixel resolution. Second, we enhanced the orthophoto’s colour contrast 

by 25% to improve sediment plume labelling. Third, we divided the orthophoto into square images 

(551×551 pixels, Fig. 4-2b) following the recommended 1:1 aspect ratio for CNN-based object 

detection. 

To prepare the dataset for deep learning, 6,231 square images containing flash rip signatures 

were randomly selected from imagery captured between May 15 and September 13, 2019. This 

period ensured ice-free water surface conditions in Port Washington. Flash rips within each square 

image were identified using visual clues such as sediment plumes, which appears as narrow, 

seaward-flowing regions with a red or brown hue in contrast to the surrounding water (Floc'h et 

al., 2018).  To ensure consistency, a feature was labelled as a flash rip object in this study if the 

following two criteria are satisfied: (1) it extends more than 10 meters from the shoreline, 

corresponding to a water depth of 0.28 meters based on the nearshore slope of 0.028 during 

summer 2019; (2) the offshore-to-alongshore length ratio is at least 1:10, ensuring that the detected 

feature is not a purely muddy water. The boundary of each identified flash rip was annotated using 

the smallest bounding rectangular box that extends from the base (where the red or brown hue 

starts to move into surrounding water) to the front of the sediment plumes. Among the 6,231 
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annotated images, 60% were used for training (model fitting), 20% for validation (performance 

assessment and hyperparameter tuning), and 20% for testing (final model evaluation). 

4.3.2.2 Refined Cascade R-CNN 

A Refined Cascade R-CNN model comprised of a Cascade R-CNN module for processing 

input square images to detect flash rip objects through a two-stage architecture (Fig. 4-3a-b) and a 

post-detection refinement module (Fig. 4-3c). In the first stage of the Cascade R-CNN module 

(Fig. 4-3a), we employed ResNet50 as the pre-trained backbone model to extract feature maps 

from the input image. These feature maps captured essential visual elements such as edges, 

Figure 4-2 | Workflow for Flash Rip Detection. (a) is the sketch of 

orthophoto, sediment plumes are marked as orange, and the other parts 

are marked as blue; (b) demonstrates the division into square 

orthophotos; (c) shows the flash rip detection applied to each square 

orthophoto by cascade R-CNN; (d) presents the refinement for deep 

learning outputs, where purple boxes (A, B, C, D) would be eliminated; 

and finally, (e) displays the merging step to generate detection results for 

the whole orthophoto. 
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textures, and geometric patterns that are useful for distinguishing flash rips from the background. 

The extracted features were then passed to a Region Proposal Network (RPN), which generated 

candidate Regions of Interest (ROIs, red boxes in Fig. 4-3a) at three scales (128×128, 256×256, 

512×512) and aspect ratios (1:1, 1:2, 2:1) to cover different object sizes and shapes. Each ROI was 
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Figure 4-3 | Cascade R-CNN with Refinement Steps. (a) Initial detection employs ResNet to identify 

hotspots of potential objects and uses a Regional Proposal Network (RPN) to approximate the positions 

of likely flash rips. (b) Cascading adjustments modify these positions and refine the probability 

estimates for each flash rip using incremental Intersection over Union (IoU) thresholds. (c) Post-

detection refinement eliminates detections with low probability values, flat shapes, and boundary issues, 

while also optimizing overlapping flash rip detections. 
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associated with a preliminary classification (flash rip or background) and bounding box 

information: x (top-left x-coordinate), y (top-left y-coordinate), h (height), and w (width). In the 

second stage (Fig. 4-3b), we refined the ROIs using a cascade structure to improve both 

classification and localization of flash rips. This structure utilized a series of detection units trained 

with increasing IoU thresholds (0.45, 0.55, 0.65) to enhance bounding box accuracy. Within each 

detection unit, ROIs underwent ROI pooling, which normalized them to a uniform size. The 

pooling output was then imported into two modules: a classification module (C) that discriminated 

whether a specified ROI is a flash rip (object) or not (background), and a boundary regression 

module (B) focused on refining the bounding box coordinates. Each ROI processed by the 

cascading architecture produced six output variables: Class (flash rip or background), p(Class) 

(probability of being a flash rip), and refined bounding box coordinates (x*, y*, h*, w*). In this 

study, the Refined Cascade R-CNN model was trained for 25 epochs (learning rate: 0.0002) using 

training and validation datasets. During training, we monitored model performance, checked 

convergence, and saved the checkpoint that achieved the best validation accuracy. This optimal 

model was later applied to the entire image dataset to detect flash rips with the defined bounding 

boxes (x*, y*, h*, w*). 

The post-detection refinement process was applied after obtaining the initial detection results 

from the best-performing Cascade R-CNN model. This refinement step aimed to reduce false 

positives by filtering out unconfident and redundant detections and merging overlapping or 

adjacent boxes when appropriate (Fig. 4-2c-e, Fig. 4-3c). Specifically, flash rip bounding boxes 

with a classification probability p(Class)<0.6 were considered insufficiently confident to be 

distinguished from the background and were therefore discarded. Boxes with an extremely flat 

shape, defined by an aspect ratio h*/w* < 1:10, were also removed to avoid misidentification of 
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sediment plumes, consistent with our labeling criteria. Bounded boxes—where a flash rip box was 

entirely contained within another, or more than 90% of its area overlapped with another box—

were removed to eliminate duplicates. Intersected boxes with an Intersection-over-Union (IoU) 

greater than 70% were merged into a single detection. The new bounding box was adjusted to the 

minimum bounding rectangle (MBR) that enclosed both original boxes, and its classification 

probability, p(Class), was set to the mean value of the two. Lastly, adjacent boxes, defined as two 

flash rip boxes from neighboring square images that shared a common edge, were combined into 

one. The resulting bounding box was again expanded to the MBR of both, and the final p(Class) 

was assigned as the average of the two values. 

4.3.3 Identification and classification of flash rip events 

Using the Refined Cascade R-CNN, we applied the best-performed model to all orthophotos 

to detect flash rip objects. Detected flash rip objects were tracked over time based on their 

maximum offshore distance (MOD) within each orthophoto. To ensure consistency with the visual 

marking criteria, timestamps were excluded from analysis if no flash rip was detected or if the 

MOD was less than 10 meters offshore. A new flash rip event was considered to initiate when the 

MOD exceeded 10 meters for the first time following the termination of any previous event. From 

that point, the MOD was continuously monitored and updated as long as the flash rip remained 

active. The event was considered to terminate under either of the following two conditions: (1) the 

MOD decreased to less than half of the peak MOD observed during the event, or (2) the MOD 

consistently declined for five minutes without rebounding. If the MOD increased within five 

minutes, the flash rip event was treated as ongoing and therefore not separated into two events. 

Upon termination, an flash rip event was labeled as valid only if it met two criteria: (1) the duration 

from start to end was at least 45 seconds—corresponding to at least three timestamps based on the 
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10- to 15-second sampling interval—and (2) the starting timestamp was not the same as the 

timestamp with the peak MOD, to avoid including events that immediately decayed. This sequence 

of MOD growth, peak, and termination defined the life cycle of a single flash rip event. 

Flash rip events were classified into three types based on the driving factors: (I) high-

frequency water level fluctuations, such as meteotsunamis (2-minute to 2-hour periods) and 

seiches (lasting over 2 hours), where the water surface remains relatively calm with minimal wind 

wave activity, such as the example shown in Fig. 4-1d; (II) normal wind waves, characterized by 

waves breaking within the surf zone and moving perpendicular or nearly perpendicular to the 

shoreline, such as the example shown in Fig. 4-1e; (III) oblique wind waves, which also break 

within the surf zone but approach at an oblique angle to the shoreline, such as the example shown 

in Fig. 4-1f. To classify the identified rip currents into these three types, the water level data at the 

nearby NOAA station (9087057) and wave data from the nearby WIS station (ST94058) were pre-

processed. High-frequency water level fluctuations (∆WL) were extracted using a high-pass digital 

filter with a 6-hour cutoff frequency (Bechle and Wu, 2015) to isolate oscillations within the 

meteotsunami wave frequency band. Wave data corresponding to each event’s starting timestamp 

were processed using a wave routing method to track wave movement from the WIS station—

located approximately 6 km southeast of the study site—to the outer edge of the surf zone (defined 

here as a water depth of 2 m, or approximately 70 m offshore based on the local bottom slope of 

0.028). This method accounts for lake bathymetry and wave angle variations using Snell’s Law 

(Eqn. 4-1) and the Conservation of Wave Power (C.W.P., Eqn. 4-2) expressed as, 
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where L represents wavelength, α is the wave incident angle, H is wave height, and n is wave 

number. The subscripts 1 and 2 represent the two locations of routing. By using these equations 

iteratively, the wave height and angle at the next location (𝐇𝟐, 𝛂𝟐) were estimated by the wave 

height and angle at current location (𝐇𝟏, 𝛂𝟏). If waves were predicted to break—defined as the 

wave height, exceeding 0.78 times the local water depth (Dean, 1969)—before reaching the 2 m 

contour, the wave height was replaced with the calculated breaking wave height 𝐇𝐛 using Goda’s 

formula (Eqn. 4-3; Goda, 1970;  Rattanapitikon and Shibayama, 2000). 

Hb

L0
=

1

7
{1 − exp (

πdb

L0
(16.21m2 − 7.07m − 1.55))}      Eqn. 4-3 

where 𝐋𝟎 is offshore wavelengths, 𝐝𝐛 is water depth at breaking position, and m is the mean 

bottom slope.  

Following the above preprocessing procedures, flash rip events were classified based on their 

associated water level and wave conditions. Water-level-induced flash rips were identified when 

the fluctuating water level change (∆WL) prior to a flash rip event fell within the modest (0.1 m < 

∆WL < 0.3 m) or high (∆WL ≥ 0.3 m) range (Liu and Wu, 2022), and when the nearshore wave 

height (Hs) was smaller than both ∆WL and 0.3 m. Conversely, wave-induced flash rips were 

identified when Hs was greater than 0.3 m, or when it ranged between 0.1m and 0.3m but exceeded 

∆WL. Additionally, normal waves were defined as those with a nearshore incident wave angle (θ) 

between -30° and 30° while oblique waves were those with θ below -30° or above 30°. 

Additionally, a high-pass filter with a 2-hour cutoff frequency was applied to examine correlations 

between storm-related high-frequency atmospheric pressure fluctuations and water-level-induced 

flash rips. 
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4.3.4 Flash rip characterization 

To comprehensively characterize flash rip events, we analysed their spatial, temporal, and 

kinematic features across the three types associated with different main factors. Spatially, we 

recorded the peak maximum offshore distance (PMOD), which is the farthest offshore extent 

among all detected flash rip objects within an event, and identified the peak timestamp as the 

moment when the PMOD occurred. At this timestamp, we also documented the offshore distance 

(OD) of each individual flash rip object. Additionally, we assessed the alongshore position (AP) 

of each flash rip object at the peak timestamp, as well as the alongshore position of peak rips (APP), 

defined as the AP of flash rip objects with the greatest offshore distance. Temporally, we measured 

each event’s duration from initiation to termination, along with the growing time cost (GTC), 

defined as the time interval between the start of the event and the timestamp at which the PMOD 

was first reached. Kinematically, the growing speed of the front line (GSF) was calculated by 

dividing PMOD by GTC, representing the rate at which sediment plumes move offshore. To 

minimize the influence of low light conditions, tree shadows, structural rips, and other 

environmental disturbances, the characterization analysis was conducted to events that occurred 

between 8:00 a.m. and 6:00 p.m., travelled more than 10 meters offshore, and were located at least 

20 meters away from the alongshore starting boundary of the area of interest (AOI). 

4.4 Results 

4.4.1 Detection performance 

The refined Cascade R-CNN model's performance was demonstrated for the three types of 

flash rips (Fig. 4-4). On 08/08/2019, at 13:47 Central Standard Time (CST), under calm water 

conditions (Fig. 4-4a-b), the model initially detected 11 seaward sediment plumes. Refinement 

eliminated two bounding boxes (purple dashed), yielding a MOD of 20.8 m between 124.8 m and 
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148.4 m alongshore. On 08/26/2019, at 16:49 CST, during normal wave conditions (Fig. 4-4c-d), 

nine flash rip objects were detected. Refinement removed two overlapping boxes (purple dashed) 

while merging two high-IOU boxes (white dashed) and two adjacent boxes (white solid). The 

refined detection showed a MOD of 41.3 m between 61.9 m and 125.7 m alongshore. On 

09/03/2019, under oblique waves (Fig. 4-4e-f), nine objects were detected. Refinement removed 

one low-p-value box (yellow dashed), one bounding box (purple dashed), and one flat box (red 

dashed), merging three others (white solid and dashed lines). The final detection reached a MOD 

of 30.1 m offshore, spanning 57.5 m to 142.4 m alongshore. These cases illustrate that the refined 

Cascade R-CNN was able to detect flash rips generated under the three diverse water level and 

wave conditions.  

Quantitative analysis (Fig. 4-4g-i) further demonstrated the effectiveness of the refined 

Cascade R-CNN model. Two evaluation metrics were used: the false positive rate (defined as 100% 

– precision), which quantifies the incorrectly identified flash rips out of the total detected flash rips 

(Fig. 4-4g), and the missing detection rate (defined as 100% – recall), which quantifies the missed 

detection out of all ground true flash rips (Fig. 4-4h). The Cascade R-CNN (blue dashed line) 

converged after 25 epochs, with its optimal performance achieved at the 19th epoch, yielding a 

false positive rate of 11.3% and a missing detection rate of 5.9% on the validation dataset. In 

comparison, the Faster R-CNN (red solid line) achieved its best performance at the 20th epoch, 

with a higher false positive rate of 13.4% and a missing detection rate of 8.1%, confirming that the 

Cascade R-CNN structure outperformed Faster R-CNN in both metrics. Additional improvements 
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from the post- detection refinement are demonstrated in Fig. 4-4i which shows the two metrics 

evaluated using the testing dataset. Without refinement, the Cascade R-CNN yielded a false 

(c) (d) 

(e) (f) 

(a) (b) 

Figure 4-4 | Performance of Refined Cascade R-CNN model. (a)-(f) show examples of refined 

cascade R-CNN detection. The first row (a and b) represents water-level-induced conditions, 

the second row (c and d) corresponds to normal wave-induced conditions, and the third row (e 

and f) depicts oblique wave-induced conditions. The first column shows the raw outputs of the 

Cascade R-CNN, while the second column presents results after applying the refinement 

process. (g) False positive rate of Cascade R-CNN and Faster R-CNN across the first 25 

training epochs.(h) Missing rate trends for the same models over the same training period.(i) 

Model performance on the testing dataset: comparison between Cascade R-CNN with 

refinement, without refinement, and Faster R-CNN.   
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positive rate of 14.9% and a missing detection rate of 6.3%, with standard deviations of 0.5% and 

0.2%, respectively, under ten-fold testing. After refinement, the false positive rate dropped 

markedly to 4.3% (±0.3%), a reduction of over 10 percentage points, while the missing detection 

rate rose slightly to 7.2% (±0.2%), which remained lower than that of Faster R-CNN (8.6%). These 

results indicate that the refined Cascade R-CNN achieved a superior balance between false 

positives and missed detections, making it a more reliable and effective method for flash rip 

detection.  

4.4.2 Flash rip occurrence and associated environmental conditions 

Flash rip occurrences, along with associated environmental variables (water level changes, 

pressure variations, wind speed/direction, significant wave height, and wave direction), were 

summarized in Fig. 4-5. Between 05/16/2019 and 09/14/2019, a total of 1,897 flash rip events were 

detected (Fig. 4-5a): 607 (32.00%, blue) water level fluctuations (WLF)-induced, 578 (30.47%, 

orange) normal wave (NW)-induced, 598 (31.52%, green) oblique wave (OW)-induced, and 114 

(6.01%) could not be classified due to insufficient or missing environmental data. Flash rips were 

detected at least once each day when RTEOS operated, except during maintenance (gaps in Fig. 

4-5a), with a maximum daily occurrence of 58 events on 05/21. The filtered water level 

fluctuations (△WL. Fig. 4-5b) showed notable fluctuations multiple times, especially in the range 

of late May to early June (05/18 to 06/01), late June (06/21 to 07/20), middle July (07/18 to 07/22), 

middle August (08/18 to 08/21), and September (09/04 to 09/14). These high changes closely 

aligned with sea surface pressure variations (∆P; Fig. 4-5c), indicating a connection between 

atmospheric pressure and water level fluctuations at the study site. The wind speed (𝐯𝐰𝐢𝐧𝐝, Fig. 4-

5d) varied significantly throughout the monitoring period, with peaks exceeding 20 m/s. The wind 

direction (𝛉𝐰𝐢𝐧𝐝, Fig. 4-5e) was widespread across all directions, with gradual transitions among 
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all quadrants. The significant wave height (𝐇𝐬), as shown in Fig. 4-5f,  showed varied values, from 

relatively low to approximately 2m, some notable peaks occurred at 05/19, 05/21 to 05/23, 06/23 

to 06/24, 08/26 to 08/28, and 09/12 to 09/13, matched with the dates that wave-induced flash rip 

events dominate (the gray line in Fig. 4-5f). The wave direction (𝛉𝐰𝐚𝐯𝐞, Fig. 4-5g), showed random 
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Figure 4-5 | Flash rip occurrences and the associated environmental variables. (a) Daily 

flash rip counts from 05/16 to 09/14/2019. (b–c) High-pass filtered water level and air 

pressure. (d–e) Wind velocity and direction. (f–g) Routed significant wave height and 

direction. Colored lines indicate example cases: blue (08/08, water-level-induced), orange 

(08/26, normal wave-induced), green (09/03, oblique wave-induced). 
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patterns and unaligned with wind direction, partially because nearshore waves are comprised of 

both local wind waves and swells. Moreover, normal wave directions (i.e., −𝟑𝟎° ≤ 𝛉𝐰𝐚𝐯𝐞 ≤ 𝟑𝟎°,  

gray lines in Fig. 4-5g) did not exhibit apparent disproportion against oblique waves. Overall, 

WLF-induced rips dominated in 37 days, NW-induced rips dominated in 29 days, and OW-induced 

rips dominated in 33 days. Notably, the environmental conditions associated with three specific 

dates—August 8 (WLF), August 26 (NW), and September 3 (OW)—matched the representative 

cases shown in Fig. 4-4 (blue, orange, and green dashed lines in Fig. 4-5, respectively), further 

validating the classification of flash rip mechanisms into WLF-, NW-, and OW-induced types. 

4.4.3 Flash rip characteristics 

4.4.3.1 Offshore distance 

The distribution of offshore distances traveled by flash rip objects is illustrated in Fig. 4-6a–

c. Two aspects were analyzed: (1) the offshore distance (OD) of each individual flash rip object at 

the peak timestamp of a flash rip event (red lines), and (2) the peak maximum offshore distance 

(PMOD) of each event (blue lines), defined as the greatest OD among all detected flash rip objects 

at that timestamp. A common feature across all three flash rip types was the long-tailed distribution 

of OD, with the majority of rips traveling less than 20 meters offshore. In contrast, PMOD 

distributions showed broader variability, with more than half of the events exceeding the 20-meter 

mark. Among the three mechanisms, WLF-induced flash rips (Fig. 4-6a) exhibited a single-peaked 

OD distribution with an average OD of 13.4 m. The corresponding PMOD distribution was also 

long-tailed, with two moderate peaks around 12 m and 19 m, followed by a gradually declining 

trend with some fluctuations, and extended to the AOI offshore boundary (55.1 m), where a lower 

peak was observed. The average PMOD was 25.7 m, and the median was 22.7 m. NW-induced 

flash rips (Fig. 4-6b) showed a flatter, long-tailed OD distribution with the highest average OD of 
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13.6 m. Their PMOD distribution was more heavily skewed toward distances exceeding 20 m 

compared to the other two driving factors, with an average PMOD of 31.1 m, also the highest 

among the three. Notably, over 7% of NW-induced events reached the AOI boundary, indicating 

the greatest proportion of far-reaching flash rips. OW-induced flash rips (Fig. 4-6c) displayed a 

single-peaked but steeply tailed OD distribution, with the highest proportion of small rips (near 10 

m) and the lowest average OD of 11.7 m. The PMOD distribution for OW-induced rips was also 

single-peak long-tailed and had the lowest average PMOD of 22.6 m, with only fewer than 1% of 

events reaching the AOI boundary. In short, NW-induced flash rips tended to travel the furthest 

offshore, and OW-induced rips moved generally the shortest and were most constrained near the 

starting edge of the AOI offshore extent.   

(a) (b) (c) 

(d) (e) (f) 

WLF NW OW 

WLF NW OW 

Figure 4-6 | Distribution of flash rip offshore distance and alongshore position. 

(a–c) show offshore distance (OD, red) and peak maximum offshore distance 

(PMOD, blue) for WLF-, NW-, and OW-induced flash rip events. (d–f) show 

alongshore position (AP, red) and alongshore position of peak objects (APP, blue) 

for the same event types. 
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4.4.3.2 Alongshore position 

The distribution of alongshore distance was assessed from two perspectives (Fig. 4-6d–f): (1) 

the alongshore position (AP) of each individual flash rip object at the peak timestamp of a flash 

rip event (red lines), and (2) the alongshore position of peak rips (APP)—the location of the flash 

rip object with the maximum offshore distance during each event (blue lines). Overall, the AP 

distribution was less varied across the AOI compared to the APP distribution, which showed 

distinct clustering at three key zones: near the beginning, middle, and end of the AOI. This suggests 

that while flash rip occurrences alongshore were relatively widespread, those reaching the furthest 

offshore distances tended to occur at specific alongshore positions. The AP distribution was similar 

across three driving factors, with only minor differences: the mean AP values were 166.8 m for 

WLF-induced, 162.7 m for NW-induced, and 167.9 m for OW-induced rips—reflecting a relative 

difference of just 3.2%. In contrast, the APP distributions showed clearer variation among driving 

factors. WLF-induced rips (Fig. 4-6d) exhibited a saddle-shaped APP distribution, with two 

prominent peaks at both ends of the AOI and a smaller secondary peak between 80 and 100 m, 

resulting in the lowest average APP of 175.8 m. NW-induced rips (Fig. 4-6e) displayed three clear 

peaks: between 50 and 90 m, between 150 and 180 m, and near the AOI's alongshore boundary, 

which yields an average APP of 180.0 m. OW-induced rips (Fig. 4-6f) showed two peaks, with a 

modest one near 50 m and a dominant concentration at the AOI alongshore boundary, where more 

than 14% of events occurred, resulting in the highest average APP of 205.5 m. In short, while flash 

rips occurred across the entire alongshore extent, OW-induced rips were more likely to reach peak 

offshore distances near the alongshore boundary, whereas WLF- and NW-induced rips exhibited 

multiple peak positions with similar weights. 
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4.4.3.3 Duration and growing speed 

The temporal and kinematic characteristics of flash rip events were analyzed using three 

metrics—event duration, growing time cost (GTC), and growing speed of the sediment plume 

frontline (GSF)—as shown in Fig. 4-7. To enhance interpretability given the wide range of values 

and high concentration on the small values, the x-axis was log-scaled and the y-axis represented 

the cumulative distribution function (CDF). For event duration (Fig. 4-7a), most flash rip events 

reached their peak maximum offshore distance (PMOD) within 10 minutes and terminated within 

20 minutes, indicating a generally short lifespan. These durations were longer than those reported 

(a) 

(b) 

(c) 

Figure 4-7 | Cumulative distribution of flash rip temporal and kinematic 

features. (a), (b), and (c) represent the cumulative distributions of duration, 

growing time cost, and front-line growing speed, respectively. Blue, orange, 

and green correspond to water-level-fluctuation (WLF)-induced, normal 

wave (NW)-induced, and oblique wave (OW)-induced flash rips. 
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by Liu (2019), primarily due to our merging criteria that treated temporally proximate detections 

as a single event unless they exhibited a sustained decline in MOD for five minutes or a drop below 

half of PMOD. WLF-induced rips had the lowest proportion of short-lived events (under 3 

minutes), with a 25th percentile of 3.3 minutes and a mean duration of 11.3 minutes. NW-induced 

rips exhibited the shortest durations, with a 25th percentile of 2.4 minutes and a mean of 10.6 

minutes. OW-induced rips had a similar 25th percentile (2.6 minutes) with NW-induced ones but 

matched WLF-induced events in mean duration (11.4 minutes), due to a greater proportion of 

events exceeding 20 minutes. The GTC distributions (Fig. 4-7b) had similar patterns across three 

driving factors, particularly within the 0–20% and 80–100% CDF ranges, though WLF-induced 

rips showed a longer median GTC (3.8 minutes) compared to NW-induced rips (2.7 minutes). 

Greater variation was observed in growing speed (GS; Fig. 4-7c): most values were below 10 

m/min, but NW-induced rips advanced the fastest, followed by WLF- and OW-induced rips. At 

the 25th, 50th, and 75th percentiles, GSF for NW-induced rips was 1.0, 2.4, and 6.1 m/min; for 

WLF-induced rips, 0.7, 1.6, and 4.0 m/min; and for OW-induced rips, 0.6, 1.2, and 3.3 m/min, 

respectively. These results suggest NW-induced flash rips develop most rapidly but are short-lived, 

WLF-induced rips grow more gradually with longer durations, and OW-induced rips are the 

slowest to grow.  

4.5 Discussion 

4.5.1 Sensitivity Analysis 

Flash rip classification in this study was based on predefined parameter settings informed by 

field observations and prior studies, including a significant wave height threshold of 0.3 m to 

distinguish wave-dominated events, an incident wave angle range of –30° to 30° to define normal 

waves, and wave routing terminating at 2 m water depth. To evaluate the sensitivity of these 
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parameters, we tested alternative thresholds—one lower and one higher—for each setting (Fig. 4-

8). For significant wave height, thresholds of 0.25 m and 0.35 m were assessed. The proportion of 

WLF-induced rips (blue) shifted slightly from the default value of 34.16% to 30.41% (0.25 m) and 

32.47% (0.35 m), while corresponding changes in PMOD, APP, and event duration across all rip 

0.25m 
0.35m 

-25~25° 
-35~35° 

1.5 
2.5 

(a) (b) (c) (d) 

(e) (f) (g) (h) 

(i) (j) (k) (l) 

𝐻𝑠(m) 

Incident angle (°) 

Routing target depth 

(m) 

Figure 4-8 | Sensitivity test of characterization settings. The default settings include a 0.3 m threshold 

for significant wave height, an incident wave angle range of -30° to 30°, and a wave routing 

termination depth of 2 m. The first row (a, b, c, d) presents sensitivity results for significant wave 

height thresholds of 0.25m and 0.3m. The second row (e, f, g, h) shows sensitivity results for incident 

wave angle criteria of -25° to 25° and -35° to 35°. The third row (i, j, k, l) illustrates sensitivity results 

for wave routing termination depth of 1.5m and 2.5m. The first column (a, e, i) displays the ratio of 

water-level-fluctuation (WLF)-induced, normal wave (NW)-induced, and oblique wave (OW)-

induced flash rips. The second to fourth columns present the mean values of peak maximum offshore 

distance (PMOD), alongshore position for peak rips (APP), and duration, respectively.  

  

WLF NW OW Unclassified 
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types were minimal (Fig. 4-8a–d), suggesting the classification was relatively insensitive to modest 

variations in wave height threshold. For incident wave angle, narrowing the range to –25° to 25° 

increased the proportion of OW-induced rips (green) from 31.52% to 37.74% and decreased NW-

induced rips (orange) from 30.47% to 24.25% (Fig. 4-8e). The mean PMOD increased from 31.1 

m to 32.0 m for NW-induced rips and from 22.6 m to 23.4 m for OW-induced rips, indicating that 

near-threshold NW cases tended to move shorter than other NW events but further than OW events. 

APP and duration showed negligible changes (Fig. 4-8f–h).  Conversely, widening the angle range 

to –35° to 35° reduced the proportion of OW-induced rips to 25.83% and increased NW-induced 

rips to 36.16%, with corresponding decreases in mean PMOD for both NW-induced (from 31.1 m 

to 30.8 m) and OW-induced rips (from 22.6 m to 21.1 m). OW-induced rips also showed an 

increase in mean APP from 205.5 m to 213.7 m, while duration remained stable. For wave routing 

termination depth, reducing the depth to 1.5 m increased the proportion of WLF-induced rips from 

32.00% to 33.63% and NW-induced rips from 30.47% to 34.69%, while OW-induced rips 

decreased to 25.56% (Fig. 4-8i). The mean PMOD for OW-induced rips dropped to 21.5 m, with 

minimal changes in APP and duration. Increasing the routing depth to 2.5 m decreased the 

proportion of WLF-induced and NW-induced rips to 31.20% and 27.68%, respectively, while OW-

induced rips increased to 35.16%, again with only mild changes in PMOD, APP, and duration (Fig. 

4-8j-l). Overall, while classification proportions and event metrics varied under different 

thresholds, the relative ranking of driving factors (e.g., NW-induced rips generally exhibiting the 

greatest PMOD) remained unchanged, indicating that the default parameter settings are 

appropriate for flash rip characterization. Among the three driving factors, OW-induced rips 

exhibited the highest sensitivity, particularly to variations in incident wave angle, whereas among 
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event features, APP and duration remained relatively stable, with PMOD showing the greatest 

variability. 

4.5.2 Co-occurrence patterns of flash rip features 

While differences in the distributions of offshore distance, alongshore positions, durations, 

and growing speeds highlight unique characteristics among the three driving factors, their co-

occurrence patterns are also important, as these features are not independent but exhibit covariance 

in a two-dimensional space. To examine these relationships, we analyzed the two-variable co-
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(d) (e) (f) 

WLF NW OW 

WLF NW OW 

0 0.0015 0.003 
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Figure 4-9 | Probability density map for two characteristics across different flash rip 
driven factors. The first row (a,b,c) illustrates the relationship between alongshore position 
for peak rips (APP) and peak maximum offshore distance (PMOD): (a) for water-level-
fluctuation-induced (WLF) rips, (b) for normal-wave-induced (NW) rips, and (c) for 
oblique-wave-induced (OW) rips. The second row (d, e, f) shows the relationship between 
duration and PMOD: (d) for WLF-induced, (e) for NW-induced, and (f) for OW-induced flash 
rips. 
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distributions for each type (Fig. 4-9). For the relationship between alongshore APP and PMOD, 

both WLF-induced (Fig. 4-9a) and OW-induced (Fig. 4-9c) flash rips exhibit a saddle-shaped 

distribution at the low-PMOD end, with peaks at both low-APP and high-APP, while the mid-APP 

range is relatively low. However, a key difference between the two is that for WLF-induced rips, 

the highest peak occurs in the low-APP, low-PMOD region, followed by a second peak in the 

high-APP, low-PMOD region, whereas OW-induced rips, the highest peak appears in the high-

APP, low-PMOD region, with the second highest in the low-APP, low-PMOD region. In contrast, 

NW-induced (Fig. 4-9b) flash rips follow a different pattern, characterized by a diagonal ridge 

extending from low-APP, low-PMOD to high-APP, high-PMOD, along with an additional peak in 

the high-APP, low-PMOD region. Notably, peak probability values for OW-induced rips are much 

smaller than those for WLF- and NW-induced rips, suggesting a more even distribution for OW-

induced rips over the space of APP and PMOD. For the relationship between duration and PMOD, 

all three mechanisms exhibit a single peak in the short-duration, low-PMOD region. However, 

OW-induced (Fig. 4-9f) rips show the highest peak, followed by WLF-induced (Fig. 4-9d) rips 

with a slightly milder peak, while NW-induced (Fig. 4-9e) rips exhibit the mildest peak. This 

suggests that although short-duration, small-PMOD events dominate regardless of driving factors, 

NW-induced rips have a wider spread across both dimensions, indicating greater variability in their 

temporal and spatial characteristics.  

4.5.3 Suggestions for future improvements 

In this study, a deep learning framework was built to detect flash rips with high accuracy and 

improve the understanding of flash rip characteristics under three driving factors. To broaden the 

framework’s applicability to hazard management, the following areas are recommended for future 

improvement: First, adverse weather conditions such as haze, fog, and rain reduce image clarity 
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and affect detection. Haze and fog scatter light, lowering contrast and making wave patterns and 

rip currents harder to distinguish (Cai et al., 2016). Rain causes distortions due to raindrops on the 

lens and surface water disturbances, obscuring rip features. These conditions were not uncommon 

in our study, with seven rainy days, two days of heavy fog, and several other foggy days recorded. 

Future studies could apply image enhancement techniques, such as dehazing for haze-affected 

images (Cai et al., 2016; Ullah et al., 2021) and deraining for rainy conditions (Fu et al., 2017), to 

improve visibility. Second, nighttime detection remains a challenge due to low luminance. This 

limitation could be addressed by integrating infrared or thermal cameras, enabling detection in 

low-light environments. Third, this study does not address bathymetrically-controlled and 

boundary-controlled rip currents, which may exhibit similar sediment plumes or bubbleless areas 

as noted in previous studies (De Silva et al., 2021; Liu and Wu, 2022a). However, by applying the 

same image processing steps, orthorectifying images, and manually annotating data for training, 

validation, and testing, the current architecture could be adapted to detect these rip types as well. 

Fourth, the current system operates offline, analyzing a four-month dataset without real-time 

updates. Integrating this approach with real-time current monitoring platforms like LOCKS (Liu 

and Wu, 2019) could enable real-time warnings of flash rip locations while continuously tracking 

and updating long-term statistics to improve feature characterization. 

4.6 Conclusions 

This study developed a deep learning-based framework to detect and characterize flash rip 

events at a featureless beach in Lake Michigan using a Refined Cascade R-CNN. By leveraging a 

four-month dataset from North Beach, Port Washington, Wisconsin, we identified and classified 

1,897 flash rip events into three types based on their main driving factors: water-level fluctuations, 

normal wind waves, and oblique wind waves. The refined model significantly reduced false 
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positive rates from 14.9% to 4.3% while maintaining a low missing detection rate of 7.2%, 

outperforming both non-refined Cascade R-CNN and Faster R-CNN baselines. The 

characterization further offers new insights into flash rip characteristics, including their spatial, 

temporal, and kinematic differences across different driving factors. Flash rip events with different 

driving factors have similar occurrence percentages in our study site, with 32.00% of WLF-

induced, 30.47% of NW-induced, and 31.52% of OW-induced. Among the three driving factors, 

NW-induced flash rips exhibited the longest offshore distances, with an average peak maximum 

offshore distance of 31.1m. They also showed the shortest duration and fastest growing speed. In 

addition, differences between alongshore position (AP) and alongshore position of peak rips (APP) 

revealed that extreme values exhibited distinct spatial clustering patterns, whereas general flash 

rip occurrences were more evenly spread. Building upon the success of this framework, future 

work to address the remaining challenges in limited performance under haze, fog, and rain and 

nighttime monitoring conditions are suggested, including enhancing images and integrating 

infrared or thermal cameras for 24-hour detection. Incorporating real-time processing with 

platforms like LOCKS could further improve hazard mitigation and beach safety. Overall, this 

study advances automated flash rip detection, providing a foundation for future improvements in 

real-time monitoring and risk management strategies. 
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Chapter 5: Shoreline Change Estimation Toolkit (SCET): A Deep Learning 

Framework for Detecting and Characterizing Coastal Erosion and Accretion 

5.1 Introduction 

      The shoreline, referring to the area where land meets water, is one of the world's most 

populous and developed zones, with approximately 2.4 billion people living within 100 kilometers 

of these areas (Small and Nicholls, 2003; Rahman et al., 2022). Shoreline changes, including 

erosion and accretion, are driven by both natural forces such as waves, currents, tides, and 

meteotsunamis (Zacharioudaki and Reeve, 2011; Linares et al., 2018) and human activities like 

coastal infrastructure development (Ranasinghe and Turner, 2006). Over half of the world’s 

coastal zones are now affected by measurable shoreline changes (Bird, 1985; Luijendijk et al., 

2018), leading to substantial impacts on property values, land use, access to recreation, flood risk 

in estuaries, and the integrity of coastal ecosystems (Paterson et al., 2010; Pollard et al., 2019). In 

the United States, shoreline changes are widespread along both the East and West coasts, with 

rates of about -0.5 m/yr in New England and the Mid-Atlantic, up to -2.1 m/yr and -7.1 m/yr in the 

Gulf of Mexico states like Mississippi and Louisiana (Morton, 2008), and -0.9 meters annually in 

the Pacific Northwest (Ruggiero et al., 2013). The Great Lakes also see notable shoreline changes 

due to water level variations, wave actions, storms, and human interventions (Meadows et al., 1997; 

Theuerkauf et al., 2019; Lu et al., 2025). Recent years have witnessed an exacerbation in shoreline 

changes for the Great Lakes region, driven by augmented anthropogenic pressures (Anthony et al., 

2015; Foti et al., 2023), large inter-annual variation of surface water level (Troy et al., 2021), and 

global climate changes (Leatherman et al., 2000; Le Cozannet et al., 2014). Given the widespread 

and persistent consequences of shoreline changes, there is an urgent need for long-term, accurate, 
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and high-resolution shoreline monitoring systems that can efficiently track changes and inform 

natural hazard management strategies. 

Traditional methods for detecting shoreline changes, based on field surveys with images, 

videos, and tape measures, were time-consuming, labor-intensive, and limited in temporal and 

spatial coverage (El-Ashry and Wanless, 1968; Thieler and Young, 1991). These constraints hinder 

the applications to monitor coastal zones for decades with data of high spatial resolution (Nuyts et 

al., 2023). In contrast, the advent of remote sensing technologies has revolutionized the monitoring 

of shoreline changes. Technologies such as satellite imagery (Almeida et al., 2019; Vos et al., 2019; 

Pardo-Pascual et al., 2024), high-resolution aerial photography (Boak and Turner, 2005; Ford, 

2013), and web-cams (Turner and Anderson, 2007; Nuyts et al., 2023), have greatly increased data 

coverage and availability. For instance, the availability of satellite images from platforms like 

Landsat and Sentinel-2, offering resolutions between 10-30 meters, aerial photographs from the 

National Agriculture Imagery Program (NAIP) with a higher resolution of 0.6-1 meters, alongside 

open-source web-cam platform such as USGS Earth Explorer, provides extensive and regularly 

updated datasets. These resources have dramatically decreased the challenges associated with data 

collection, making it possible to conduct comprehensive studies for shoreline changes over large 

geographic areas and extended periods. Despite these advancements, the quantitative analysis of 

shoreline changes with high efficiency and accuracy remains a complex task. 

        Rapid advancements in the field of automatically outlining shorelines positions to 

quantify shoreline changes have been made in recent years. Image processing approaches involve 

edge detection algorithms, such as Canny edge detector and Snake algorithm, which extract coastal 

features via the distinct color gradient between land and water bodies (Niedermeier et al., 2000; 

Wu and Lee, 2007; Zhang et al., 2013), and the Hough transformation enhanced by a Gaussian 
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kernel to delineate coastlines with regular geometries (Jianhong and Arshad, 2013; Yousef et al., 

2014). Nevertheless, the accuracy of these techniques is compromised by the complexity of jagged 

shorelines and the presence of image noise (Nascimento et al., 2013; Ribas et al., 2020).  Machine 

learning (ML) approaches, such as decision trees, neural networks, and support vector machines 

(SVM), have been explored for their potential to discern water pixels in RGB or multi-spectral 

imagery (Ghorai and Mahapatra, 2020; Minghelli et al., 2020; McAllister et al., 2022). However, 

ML approaches still face difficulties in differentiating white sands from bubbles, and wet sands 

within the saturated intertidal domain (Fuse and Ohkura, 2018; Castelle et al., 2021), thereby 

resulting in inaccuracies or overlooked detections in coastal areas with sandy beaches. The 

aforementioned concerns and limitations highlight the imperative for the development and 

implementation of quantitative, automated, accurate, and robust detection methods, such as deep 

learning, to monitor and track changes along shorelines with high accuracy. 

Deep learning (DL) techniques, characterized by their use of multi-layered structures to 

process input data (LeCun et al., 2015), are recently introduced to the automated segmentation of 

bodies from images, subsequently facilitating the delineation of shoreline positions. Among these 

DL techniques, U-Net and its derivatives are adopted as the core framework in most studies. 

Notably, U-Net has been utilized to develop a global water edge dataset from Sentinel-2 imagery 

(Seale et al., 2022), while its advanced version, U-Net3+, has been adapted to extract shorelines 

from Google Earth Engine satellite images in Vietnam (Dang et al., 2022). Furthermore, WaterNet, 

inspired by U-Net's architecture, was specifically designed for segmenting water bodies across 

different beaches using Landsat 8 OLI data (Erdem et al., 2021). Another variant, WENet, was 

applied for mapping tidal flats with complex shapes in the South Yellow Sea using Sentinel-1 SAR 

imagery (Zhang et al., 2022). Despite the success of these U-Net-based models in satellite image-
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based shoreline detection, they encounter challenges such as limited capacity for capturing global 

contextual information, identifying remote dependencies, and handling large and varied datasets 

(Beeche et al, 2022; Su et al., 2022). These drawbacks may impede their application in 

comprehensively analyzing shoreline changes across extensive geospatial areas using high-

resolution data, like aerial imagery, which could lead to an inaccurate estimation of local shoreline 

changes. DeepLab-based DL methods, utilized a modified convolution method, named atrous 

Convolution, to capture multi-scale context more effectively in the encoding phase (Chen et al., 

2017), can improve the segmentation performance of complex shapes in high-resolution imagery 

with similar time cost (Ahmed et al., 2020; Wang et al., 2021a). Additionally, to the best of the 

authors’ knowledge, current DL-based toolkits are not yet integrated with the automatic tracking 

of shoreline changes, manual efforts are still required for selecting and drawing baselines and 

transferring data to third-party software, such as the Digital Shoreline Analysis System (DSAS), 

to obtain shoreline change rates (Dang et al., 2022; Fogarin et al., 2023). Therefore, developing a 

DL tool using DeepLab as the base model, and integrating it with the automatic shoreline change 

computation, is crucial for better understanding and management of shoreline changes, in both 

local scale and large geospatial coverage. 

5.2 Objectives and Research Goals 

The objective of this chapter is to develop a streamlined and automated toolkit for shoreline 

detection, change quantification, and hotspot identification in the Great Lakes. In particular, the 

chapter focuses on distinguishing shoreline changes driven by two mechanisms: true 

morphodynamical change (erosion or accretion) and apparent change caused by water-level 

fluctuations. I propose that combining deep learning–based segmentation with high-resolution 

remote sensing imagery enables more accurate shoreline extraction and mechanism-aware 
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interpretation of shoreline dynamics. I also hypothesize that shoreline response varies with setting: 

armored sections are primarily influenced by water-level fluctuations, whereas adjacent unarmored 

beaches remain sensitive to both erosion/accretion processes and water-level shifts. To address 

these hypothesis, three specific research goals are defined: 

1. Develop deep-learning–based methods for automating shoreline detection from high-

resolution remote sensing imagery. 

2. Establish an automatic transect-based framework to calculate shoreline change rates across 

time and space. 

3. Differentiate and characterize quick shoreline changes caused by distinct mechanisms 

(water-level fluctuations vs. erosion/accretion) and identify shoreline hotspots with high 

vulnerability. 

5.3 Methods 

5.3.1 Physical Settings 

5.3.1.1 Study Site 

Our research focuses on the Great Lakes region, a populous and ecologically diverse area 

characterized by its five interconnected freshwater lakes (Fig. 5-1a). This system includes Lake 

Superior, Michigan, Huron, Erie, and Ontario, forming the largest group of freshwater lakes on 

Earth by total surface area and serving as a critical resource for water, wildlife, commerce, and 

recreation. The combined watershed of the entire Great Lakes basin covers a drainage area of about 

513,394 km2 (Robertson and Saad, 2011), extending across both Canadian and American territories. 
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The cumulative shoreline of these lakes measures around 17,017 km, with Lake Superior 

contributing 4,385 km, Lake Michigan 2,633 km, Lake Huron 6,157 km, Lake Erie 1,402 km, and 

Lake Ontario 1,146 km (USEPA, 2023). The mean water surface elevation sequentially decreases 

from Lake Superior at 183 m, to Lake Michigan and Huron at 176 m, Lake Erie at 173 m, and 

Figure 5-1 | Study site for SCET toolkit development and case study. (a) The Great 

Lakes' location and bathymetry, with black dots indicating validation sites. The site 

outlined in red is used for visualizing validation delineations. (b) The case study site, 

Michigan City, Indiana, selected for in-depth shoreline change analysis using the 

SCET toolkit. The Michigan City Harbor is highlighted with a yellow dashed 

rectangle, and coastal defenses A, B, and C are marked within the harbor area. 

(a) 

(b) 
Michigan City Harbor 

C 

A 

B 
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Lake Ontario at 74 m above sea level (NOAA, 2023). The average shoreline change rate was 

estimated to be between -0.4 m/yr and -1.3 m/yr in each lake according to a field survey conducted 

in 1983 (May et al., 1983).  

In addition to the overall study site of the Great Lakes, we selected Michigan City as the case 

study location to present our results on a local scale (Fig. 5-1b, 41°44′04″N, 86°52′23″W). 

Michigan City is located in northern Indiana on the southern shore of Lake Michigan. The area’s 

shoreline includes Washington Park, a major recreational zone situated on the eastern side of the 

city, encompassing 140 acres and featuring two miles of sandy beach. To the west, the city borders 

Indiana Dunes National Park, which covers 15,349 acres and is notable for its varied ecological 

and geological characteristics (National Parks Zone, 2021). Central to Michigan City’s shoreline 

is the harbor at the outlet of Trail Creek. To safeguard the harbor and adjacent shoreline, three 

major coastal defense structures have been constructed (Fig. 5-1b), including the west breakwater 

(A, 258 m), the east breakwater (B, 682 m), and the offshore breakwater (C, 390 m). These coastal 

structures play a critical role in shaping the local shoreline and are important for ongoing shoreline 

management and erosion mitigation. Overall, the combination of natural features and engineered 

coastal defenses in Michigan City provides an ideal setting for evaluating shoreline segmentation 

and shoreline change detection methods.  

5.3.1.2 Data source and dataset preparation 

The primary data source for shoreline change identification is the National Agriculture 

Imagery Program (NAIP) dataset, which provides high-resolution, georeferenced aerial imagery 

of the continental U.S. during the agricultural growing season. For the Great Lakes region, NAIP 

imagery is available from 2005–2023, with a resolution of 1 m/pixel before 2011 and 0.6 m/pixel 

in recent years. Using NAIP, we created the Coastal Aerial Imagery Dataset (CAID) for shoreline 
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segmentation (Wang et al., 2025b). NAIP images were retrieved from 850 unique site IDs along 

the Great Lakes shoreline, with one image per site to avoid duplicates. Each NAIP image was 

divided into 500×500 pixel squares, retaining only those with center points within 500 meters of 

the shoreline, resulting in 20,689 images focused on coastal zones.  

Water body delineation followed these criteria: (1) Coastal structures were addressed based 

on their interaction with water. Fixed structures made of stone or concrete, such as groins, 

breakwaters, and harbors, were labeled as land (Fig. 5-2a), while floating docks or small piers built 

on pillars that allow water to flow underneath were classified as water (Fig. 5-2b). (2) For plants 

and algae, emergent plants, such as cattails and reeds, were labeled as land if they grow above 

water and are dense enough to obscure the water surface (Fig. 5-2c). In contrast, floating plants, 

such as Lemna minor (duckweed), and algae, were labeled as water since they remain on the water 

surface (Fig. 5-2d). (3) Boats and ships were marked based on their sizes and usages. Large 

transport ships, barges, and sand carriers were labeled as land to avoid confusion with land areas 

(e.g., construction areas) of similar texture (Fig. 5-2e), small recreational boats, such as kayaks, 

canoes, and family-sized motorboats, were labeled as water (Fig. 5-2f). (4) Sandbars were marked 

according to their submersion state. Submerged sandbars were labeled as water, while exposed 

ones were marked as land (Fig. 5-2g). (5) Islands, regardless of their size, were always marked as 

land (Fig. 5-2h). Once all the data are marked, 70% was used as the training dataset, 15% as the 

validation dataset, and the remaining 15% as the testing dataset. 
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Additionally, 6-minute water level data were obtained from NOAA’s National Ocean Service, 

and 1-meter resolution nearshore bathymetry data were acquired from the Coastal Topobathy Lidar 

(a) 

Water 

(b) (c) 

land 

(d) 

Water 

(h) 

land 

(g) 

land 

Water 

(f) 

Water 

(e) 

Land 

Figure 5-2 | Labeling examples for special cases. (a, b) structures labeled as land and water, 

respectively; (c, d) plants and algae labeled as land and water, respectively; (e, f) ships and 

boats labeled as land and water, respectively; (g) sandbars labeled as either land or water; (h) 

an island, always labeled as land. 
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Program, which is jointly collected by USACE, NOAA, and USGS. For this study, Great Lakes 

bathymetry data collected in 2020 were used. 

5.3.2 DeepLabV3-Plus 

The deep learning approach used in this study is DeepLabV3-Plus, a deep-learning network 

designed for image semantic segmentation. The architecture of DeepLabV3-Plus is shown in 

Figure 5-3. This network first uses DeepLabV3 as the encoder part for processing the input images 

to extract high-level semantic information. Then, these high-level features are combined with low-

level features from earlier layers of the network to decode and generate water body detection 

results. In specific, the encoding process (See Fig. 5-3a) imports NAIP image into a 1×1 

convolution followed by a 1×1 pooling layer. The output is fed into a deep convolutional neural 

network (DCNN), where the backbone model (B) is configured using ResNet50. In our study, the 

first two backbone models (B1 and B2) in DCNN utilize the standard ResNet50 architecture, while 

B
1
 B

2
 B

3
 

r 

Conv1 

Pool1 

Conv1 

Conv3 

r = 6 

Conv3 

r = 12 

Conv3 

r = 18 

Conv1 

Encoder 

Upsample4 

Conv1 

Concat Conv3 Upsample4 

Decoder 

DCNN 

ASPP (a) 

(b) 

r = 2 

Figure 5-3 | DeepLabV3-Plus Architecture. The encoder part (a) includes deep 

convolutional neural network (DCNN) contains two normal ResNet blocks (B1 and B2) and 

one ResNet block (B3) with Arous rate (r) of 2, and Atrous Spatial Pyramid Pooling (ASPP) 

with four different convolution and Atrous settings. The encoder part (b) combines the raw 

data with encoding outputs and upsamples to generate the detection outputs. 
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the third one (B3) is modified with Atrous convolution. Atrous convolution, also known as dilated 

convolution, is a technique used in DeepLab-based architectures. Instead of performing 

convolution using adjacent pixels, it introduces a parameter called the rate (r) to insert intervals 

(dilations) between the kernel elements. This allows the model to capture broader contextual 

information without increasing computational complexity. The output from the DCNN is then 

passed into a structure called Atrous Spatial Pyramid Pooling (ASPP). ASPP consists of multiple 

convolution layers with different kernel sizes and Atrous rates. The top layer in ASPP is a 1×1 

convolution, the second layer is a 3×3 convolution with r set to 6, the third layer is a 3×3 

convolution with r set to 12, and the bottom layer is a 3×3 convolution with r set to 18. The outputs 

of these four ASPP layers are stacked using a 1×1 convolution to merge features and reduce the 

number of channels back to one. Finally, the processed output is upsampled by four times and 

passed into the decoding section to generate water body segmentation results. Regarding the 

decoding part, DeepLabv3-Plus (See Fig. 5-3b) employs a series of upsampling and refinement 

operations to generate high-resolution water body segmentation results. Initially, the low-level 

features from earlier layers (before entering the DCNN) of the encoder are processed by a 1×1 

convolution layer. These are then concatenated with the upsampled high-level features from the 

ASPP module in order to provide detailed spatial and contextual information. The concatenated 

layers are subsequently passed through a 3×3 convolution, followed by an upsampling layer to 

progressively resize the layers to match the input dimensions. The decoding output is a mask image, 

where the water body is marked as 1 (red color in Fig. 5-3b), and the background is labeled as 0. 

The model was trained for 100 epochs, with each epoch consisting of 20,000 iterations and a 

learning rate of 0.0001. Every 2,000 iterations, the validation set was used to assess model 
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convergence. After convergence, the best-performing model was selected to segment water bodies 

on the test set and was subsequently used for shoreline calculation.  

5.3.3 Shoreline change calculation 

The Digital Shoreline Analysis System (DSAS) is a widely used GIS tool for quantifying 

shoreline change by analyzing historical shoreline positions and calculating erosion or accretion 

rates (Moussaid et al., 2015; Himmelstoss et al., 2018). However, the current version of DSAS 

requires users to manually define the shoreline baseline, which can be highly time-consuming, 

especially for large-scale analyses. To address this limitation and reduce manual effort, we 

developed a modified DSAS workflow that automatically generates shoreline delineations from 

model-inferenced results, establishes the baseline, and computes shoreline change rates. The 

workflow begins by merging model-inferenced segmentation results from all square image tiles 

for each NAIP siteID, ensuring continuous shoreline representation across the study area. 

Shorelines are then extracted using an edge detection algorithm (specifically, the Canny descriptor) 

to identify the boundaries of segmented water bodies (red areas in Fig. 5-4a). Shorelines are 

defined as the interface between open water and land (Fig. 5-4b). To ensure accurate detection, 

boundaries classified as shorelines must (1) not coincide with the image boundary (to avoid edge 

effects) and (2) touch at least one side of the image edge, which helps distinguish the shoreline 

(marked as a brown line) from inland water boundaries (blue line). To further refine shoreline 

delineation, if two vertices are spatially close (closer than 50 m) but separated by a long detour 

(detour length more than five times the direct distance), this pattern typically indicates the presence 

of a coastal structure (when the detour is seaward) or a river estuary (when the detour is landward). 

In such cases, the workflow connects these vertices directly and eliminates the unnecessary detour, 

resulting in a more accurate and continuous shoreline. The detected shoreline for 2020 is then 
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smoothed and uniformly shifted inland by ∆𝑑 = 500𝑚  using a homothetic transformation to 

generate the baseline (Fig. 5-4c). Along this baseline, transects are automatically created at 10-

meter intervals, oriented perpendicular to the baseline (Fig. 5-4d). For each year, intersection 

points between the detected shoreline and each transect are recorded (Fig. 5-4e). Outlier shoreline 

positions—those exceeding three standard errors from the multi-year mean—are excluded. The 

distance from these intersection points to the baseline is then regressed against time to estimate 

Water 

Land 

(a) 

Inner 

water 

body 

(b) (c) 

(d) 

Intersection

s 

(e) 

year 

(f) 

Figure 5-4 | Modified DSAS Workflow. (a) Segmented binary image generated by the deep 

learning model (red: water; white: land). (b) Edge detection to extract the land–water interface; 

the earthy line marks the shoreline, and the blue line indicates the boundary of the inner water 

body. (c) Shoreline translation to establish the baseline. (d) Generation of evenly spaced 

transects. (e) Intersection of transects with the shoreline for precise positioning. (f) Application 

of regression methods to calculate shoreline change rates. 
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the average shoreline movement rate, where a positive trend indicates accretion and a negative 

trend indicates erosion. 

To validate the accuracy of shoreline movement calculations, our automated results were 

compared with those obtained from DSAS. Several validation sites, indicated by black dots in Fig. 

5-1a, were selected across the Great Lakes. Specifically, we chose 25 sites each for Lake Superior 

and Lake Michigan, 21 for Lake Huron, 16 for Lake Erie, and 14 for Lake Ontario. These 

validation sites were randomly distributed to represent diverse coastal landscapes. At each site, 10 

consecutive transects were used for analysis. For each validation site, shorelines were manually 

delineated for the start and end years, covering the same time span as the automatic calculations. 

We then calculated the average distance between the manually delineated shoreline and the SCET 

output at each transect intersection point. Finally, we computed the shoreline change rate for each 

site by averaging the results of the ten transects and compared these rates between the traditional 

and modified DSAS methods. 

The calculated shoreline change rates were further calibrated using water level data. For each 

NAIP aerial image, we determined the corresponding water level by averaging measurements from 

the three nearest stations at the time of image acquisition. Bathymetric data were used to extract 

the local bottom profile and estimate the theoretical shoreline position (𝐷𝑊𝑖) for each year, 

assuming no shoreline erosion or accretion. Assuming a linear relationship between observed 

shoreline position, theoretical (water-level-adjusted) shoreline position, and year, we used the 

following equations (5-1 to 5-3), where 𝐷𝑖 is the observed distance from the shoreline to the 

baseline in year 𝑦𝑖, and 𝐷𝑊𝑖 is the theoretical shoreline position based solely on water level and 

bottom profile: 

𝐷𝑖 = 𝑘0𝑦𝑖 + 𝑏0             Eqn. 5-1 
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𝐷𝑊𝑖 = 𝑘1𝑦𝑖 + 𝑏1           Eqn. 5-2 

𝐷𝑖 − 𝐷𝑊𝑖 = 𝑘′𝑦𝑖 + 𝑏′        Eqn. 5-3  

Here, 𝐷𝑊𝑖  is independent of shoreline erosion or accretion processes and represents the 

shoreline position expected purely from water level variation. The calibrated shoreline change rate, 

𝑘′, is thus obtained by subtracting the water level-related rate (𝑘1) from the observed rate (𝑘0), 

effectively isolating the impact of actual shoreline movement from interannual water level 

fluctuations. Once this 𝑘′ is calculated, the shoreline is classified as accreting or eroding based on 

the NAIP image resolution. If 𝑘′ exceeds 1 m per two years for pre-2011 imagery or 0.6 m per two 

years for post-2011 imagery, the shoreline is considered accreted if it moves lakeward and eroded 

if it moves landward. 

5.4 Results 

5.4.1 Performance of aerial image segmentation 

The performance of the DeepLabV3+ 

model for water body segmentation is presented 

in Figure 5-5. The model’s accuracy converged 

within 15 epochs, as determined by validation 

set results after each epoch. Pixel-level mean 

accuracy, shown as orange lines in Figure 5-5a 

and 5-5b, measures the proportion of correctly 

identified pixels. The highest pixel accuracy 

achieved was 99.1% for water bodies at epoch 

69 and 99.0% for the background at epoch 75. 

Mean Intersection over Union (mIoU), 
Figure 5-5 | Training curves of DeepLabV3+ 

for water (a) and background (b) classes. 

(a) 

(b) 



119 

 

 

illustrated by the blue lines, assesses the overlap between predicted segmentation and the manually 

annotated ground truth. The optimal mIoU reached 97.1% for water and 97.0% for background, 

both at epoch 84. The rapid convergence, along with high pixel accuracy and mIoU values, 

(a) (b) (c) (d) 

(e) (f) (g) (h) 

(i) (j) (k) (l) 

TP 

FN 

FP 

Figure 5-6 | Water segmentation examples for DeepLabV3. (a)–(f) show water body 

segmentation results across various water hues, while (g)–(l) present results from 

different landscape types. Green pixels indicate true positives, blue pixels indicate false 

negatives, and yellow pixels indicate false positives. 
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demonstrates that DeepLabV3+ performs robustly during training. Based on both mIoU and pixel 

accuracy, the model from epoch 84 was selected for final evaluation using the held-out test dataset. 

On the test set, DeepLabV3+ achieved a water body mIoU of 91.5% and a pixel accuracy of 99.0%. 

The close agreement in pixel accuracy between the training and test sets indicates strong 

generalization. However, the slight decrease in mIoU on the test set suggests that some non-water 

pixels were misclassified as water, especially in challenging or ambiguous areas, as further 

discussed in the Discussion section. This finding underscores the importance of refining 

segmentation outputs, particularly through post-processing steps to remove non-shoreline water 

boundaries in the modified DSAS workflow. Model performance is further illustrated in Figure 5-

6, which presents segmentation results under a variety of water surface and landscape conditions. 

In these examples, green regions indicate correct agreement between model inference and manual 

annotation, blue pixels represent ground truth water missed by the model, and yellow pixels 

indicate false positives where non-water pixels were misclassified as water. For six representative 

water surface types (Fig. 5-6a–f: muddy, clear-deep, light green, brown, clear-shallow, wavy), 

DeepLabV3+ achieved high IoU values ranging from 0.990 to 0.999. The water boundaries closely 

aligned with the true shoreline, and both false positives and false negatives were minimal. For six 

different landscape types (Fig. 5-6g–l: rural area, wetland, narrow beach, vegetated shoreline, wide 

beach, and armored urban shoreline), IoU values ranged from 98.0% to 99.8%, demonstrating 

consistently strong performance across diverse settings. The model performed especially well in 

areas with regular shoreline shapes, such as beaches and armored urban shorelines. Overall, these 

results confirm that DeepLabV3+ delivers robust segmentation performance across a wide range 

of water and landscape conditions, supporting its use for further shoreline movement analysis. 
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5.4.2 Performance of shoreline movement tracking 

The performance of shoreline tracking using SCET is illustrated in Figure 5-7. At the local 

validation site (siteID: 4608633, 46°28'35"N, 86°56'54"W; Fig. 5-7a), the SCET output (blue line) 

closely matched the manual delineation (green line) for both 2010 and 2020, demonstrating strong 

spatial agreement. Across all validation sites, the mean shoreline positioning error for all transects 

was 0.92 m, with a median error of 0.57 m. We further summarized the results by lake and by state. 

For each lake (Fig. 5-7b), the mean errors were: Lake Superior, 1.06 m; Lake Michigan, 0.88 m; 

Lake Huron, 1.03 m; Lake Erie, 0.78 m; and Lake Ontario, 0.83 m. The corresponding median 

(a) (b) 

(c) 

Figure 5-7 | SCET performance for shoreline positioning. (a) Spatial proximity 

between SCET-derived shorelines and manual delineations. (b) Error distribution of 

shoreline positioning for each Great Lake. (c) Error distribution of shoreline 

positioning for each Great Lakes state. 
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errors were: Lake Superior, 0.64 m; Lake Michigan, 0.54 m; Lake Huron, 0.63 m; Lake Erie, 0.52 

m; and Lake Ontario, 0.55 m. Given the NAIP image resolution (1 m before 2011 and 0.6 m after), 

the mean error was less than two pixels, and the median error corresponds to, at most, a one-pixel 

mismatch. By state (Fig. 5-7c), Minnesota shorelines showed a mean error of 0.84 m and a median 

of 0.50 m; Wisconsin, 0.97 m mean and 0.57 m median; Illinois/Indiana, 0.98 m mean and 0.60 m 

median. Michigan shorelines showed mean errors of 1.09 m (Lake Superior), 0.99 m (Lake 

Michigan), and 1.03 m (Lake Huron), with median errors of 0.65 m, 0.55 m, and 0.64 m, 

respectively. For Pennsylvania, the mean and median errors were 0.47 m and 0.29 m; for New 

York, 0.86 m (Lake Erie) and 0.83 m (Lake Ontario) mean, with median errors of 0.69 m and 0.55 

m, respectively. In summary, the SCET toolkit consistently delivered sub-meter accuracy in 

shoreline positioning across different lakes and states. The mean error was typically less than two 

image pixels, and the median error was generally within a single pixel of the ground truth 

delineations. This high level of accuracy makes SCET a valuable tool for monitoring shoreline 

dynamics throughout the Great Lakes region. 

5.4.3 Performance of computation speed 

 The overall computation speed of SCET was evaluated on a system equipped with a 12-

core CPU and an RTX 3090 GPU. For each site ID, which typically includes aerial images sized 

4 × 9,000 × 12,000 pixels (post-2011, 0.6 m/pixel) or 4 × 5,000 × 7,000 pixels (pre-2011, 1 m/pixel) 

per sampling, it took approximately 2.5 minutes (pre-2011) and 6.5 minutes (post-2011) to unzip 

the images and divide them into 500 × 500 pixel tiles while preserving geoinformation. Image 

inference for segmentation required an additional 12 minutes (post-2011) or 5 minutes (pre-2011) 

per site, followed by 5 minutes (post-2011) or 2 minutes (pre-2011) for shoreline extraction, 

cleaning, and merging the results based on the geoinformation. This process was repeated roughly 
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eight times to cover the two-year sampling interval over a span of about 15 years. After all 

shorelines were extracted, the baseline translation, transect intersection, and shoreline change rate 

calculation using the modified DSAS workflow took approximately 1 minute per site ID (typically 

covering about 20 km of shoreline). Excluding the substantial time savings from automating 

manual delineation, the modified DSAS workflow implemented in SCET reduced processing time 

by more than 80% compared to the traditional DSAS tool in ArcMap. 

5.4.4 Case study: shoreline changes in Michigan City 

 The shoreline change rates for Michigan City are presented in Figures 5-8 and 5-9. The 

original shoreline change rates generated by the modified DSAS indicate widespread recession 

across most transects in Michigan City and the nearby Indiana Dunes National Park. The majority 

of sites displayed annual shoreline change rates ranging from –7.65 m/yr to 2.50 m/yr (Fig. 5-8). 

Figure 5-8 | Shoreline change rates calculated by modified DSAS. 
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In Michigan City, particularly at Washington Park to the right of the river outlet (site A0), the 

shoreline exhibited significant recession, with rates between –7.65 m/yr and –3.02 m/yr. The most 

severe erosion was concentrated near coastal defenses and at the far eastern end. On the left side 

of Michigan City, the shoreline remained relatively stable or exhibited slight changes close to 

coastal defenses and at the revetment, while recession was observed between these structures (sites 

B0 and C0). The Indiana Dunes area also showed overall recession, with rates ranging from –7.65 

m/yr to a relatively stable 0.21 m/yr. Notably, sites D0, E0, and F0 along Indiana Dunes experienced 

severe recession. After calibrating for water level fluctuations, the shoreline change rates became 

more diverse, as illustrated in Figure 5-9. The calibrated rates better distinguished between erosion, 

accretion, and stability. For example, Washington Park (right of the outlet, site A in Fig. 5-9) 

Figure 5-9 | Shoreline change rates calculated by modified DSAS with water level calibration. 
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shifted to a stable or accreting condition, indicating that previous recession in this area was largely 

driven by water level changes. This stable shoreline was also observed at sites B and D, which are 

armored sections to the right of the river outlet, consistent with their structural protection. In 

contrast, sites C and E exhibited severe erosion (less than –2.94 m/yr); these beaches are adjacent 

to armored shoreline, suggesting a flanking effect where alongshore protection leads to increased 

erosion next to structures. Sites F and H were identified as accretion areas with rates exceeding 

1.79 m/yr. However, the majority of Indiana Dunes continued to experience severe erosion, 

especially at site G and the extended area at site I to the west, both with rates below –2.94 m/yr. 

The persistence of severe retreat at G and I aligns with previous UAV LiDAR survey findings 

conducted at Indiana Dunes, further validating the observed patterns (Troy et al., 2021). Overall, 

these findings highlight the spatial variability in shoreline change dynamics and underscore the 

importance of both structural interventions and hydrological calibration for accurate shoreline 

management in the region. 

5.5 Discussion 

5.5.1 Limitation and future improvements 

Although our toolkit provides accurate water body segmentation and yields results 

comparable to traditional manual delineation and DSAS-based calculations, all while significantly 

reducing processing time, several limitations remain that point to areas for future improvement. 

First, the current evaluation metrics used for model training and validation are Intersection over 

Union (IoU) and pixel accuracy. They primarily reflect the accuracy over the entire water body, 

rather than the shoreline itself, which comprises only a small fraction of the total area. 

Consequently, these overall metrics can overestimate true accuracy at the land-water interface, as 

illustrated in Figure 5-10, where high IoU values are observed despite notable shoreline pixel 



126 

 

 

mismatches. In the present toolkit, since our main focus is on tracking shoreline movement over 

time rather than absolute shoreline positioning, these errors are treated as systematic. However, in 

applications where precise shoreline positioning is critical, metrics specifically targeting the 

shoreline—such as the shoreline coverage ratio (i.e., the proportion of ground truth shoreline pixels 

correctly predicted)—should be incorporated into both model training and evaluation. This would 

prevent shoreline accuracy from being overshadowed by the much larger water area. Second, the 

current version of SCET simplifies analysis by only tracking a single intersection point between 

each transect and each year’s shoreline. This approach is not suitable for areas with islands, where 

multiple intersection points may occur. In such cases, island shapefiles must be provided separately 

for the modified DSAS computation to ensure accurate shoreline tracking. Third, while the sub-

meter (0.6 m) resolution of NAIP aerial imagery is suitable for monitoring broad-scale shoreline 

changes, it may not be sufficient for detecting localized failures of engineered shoreline structures, 

such as revetments or seawalls. These failures can occur at scales of just a few meters. Detecting 

them would require higher-resolution imagery from commercial aerial sources or drones, along 

(a) (b) (c) (d) 
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Figure 5-10 | Water conditions and landscapes requiring further refinement. (a) 

Water body with severe eutrophication; (b) highly wavy water body; (c) complex harbor 

or pier area; (d) wetlands with floating plants and algae. Green pixels indicate true 

positives, blue pixels indicate false negatives, and yellow pixels indicate false positives. 
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with retraining the model to maintain segmentation accuracy. Fourth, NAIP’s biennial 

(approximately two-year) sampling interval works well for tracking long-term shoreline trends, 

but is not frequent enough to monitor short-term changes caused by events like coastal flooding or 

storm surges. To observe such events, more frequent imagery from commercial satellites or open-

access sources like Sentinel-2 could be used, though the model would also need retraining for these 

data types. 

5.5.2 Alternative shoreline change classification method using distance metrics 

In SCET, shoreline movement is calculated based on georeferenced shoreline positions by 

setting a series of transects and applying a regression method to estimate shoreline change rates. 

To improve accuracy, water level calibration is incorporated, adjusting shoreline positions 

according to concurrent water level data. While this approach is effective, it is subject to several 

constraints: first, bathymetry data are not always available for all locations; second, existing 

bathymetric datasets often have low spatial and temporal resolution, making it difficult to ensure 

that the bathymetry remains unchanged over time. Additionally, running sediment transport 

models to account for bathymetric changes can be computationally expensive (Papanicolaou et al., 

2008). As an alternative, the Fréchet distance offers a rigorous mathematical approach for 

quantifying the similarity between two curves, particularly useful for analyzing the evolution of 

shoreline positions over time (Eiter and Mannila, 1994; Mascret et al., 2006). Let 𝑃 =

(𝑝1, 𝑝2, ⋯ , 𝑝𝑛)  and 𝑄 = (𝑞1, 𝑞2, ⋯ , 𝑞𝑚)  denote the polylines representing the shoreline 

delineations for two different years, with each point corresponding to a spatial location along the 

shoreline. After aligning such that the start and end points of P with Q by linear transformation, 

the Fréchet distance 𝑑𝐹(𝑃, 𝑄) is formally defined as: 

𝑑𝐹(𝑃, 𝑄) = inf
𝛼,𝛽

max
𝑡∈[0,1]

‖𝑃(𝛼(𝑡)) − 𝑄(𝛽(𝑡))‖  Eqn. 5-4 
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where 𝛼 and 𝛽 are continuous non-decreasing reparameterizations of the interval [0,1] over 

Lake 

Land Fréchet distance: 

6.88 m 

Slight Accretion 

Lake 

Land 
Fréchet distance: 

1.51 m 

Stable 

Lake 

Land Fréchet distance: 

-20.41 m 

Heavy Erosion 

(a) 

(b) 

(c) 

Figure 5-11 | Distance metrics for shoreline change classification. (a) Shoreline 

accretion condition; (b) relatively stable shoreline; (c) shoreline erosion condition. 

Red indicates the shoreline position in 2008, green indicates the shoreline position 

in 2018, and the blue dashed line represents the 2018 shoreline aligned to match the 

start and end points of the 2008 shoreline. Blue arrows indicate land-to-water 

movement, while orange arrows indicate water-to-land movement. 
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the two curves, and ‖∙‖ denotes the Euclidean distance. This distance metric captures the greatest 

spatial deviation between shoreline positions from two different years after alignment, and thus 

can be used as an alternative method for classifying shoreline movement as accretion, stable, or 

erosion. While the Fréchet distance does not represent the exact magnitude of shoreline movement 

at every point, a higher Fréchet distance indicates more significant change—lakeward movement 

corresponds to greater accretion, while landward movement indicates greater erosion. This 

approach was applied at the Michigan City site and compared with the water level-calibrated 

regression method (Fig. 5-11). For the accretion site (Fig. 5-11a), the Fréchet distance between the 

2008 and aligned 2018 shorelines is 6.88 m in the lakeward direction, exceeding the NAIP pixel 

resolution and confirming detectable accretion. At the armored, stable site (Fig. 5-11b), the Fréchet 

distance is 1.51 m, within the pixel resolution and consistent with a stable shoreline. For the erosion 

site (Fig. 5-11c), the Fréchet distance is –20.41 m (negative, indicating landward movement), far 

exceeding the image resolution and indicating significant erosion, which is in agreement with the 

results obtained using the previous method. In summary, while the SCET approach with water 

level calibration provides detailed, quantitative estimates of shoreline movement, the Fréchet 

distance offers a practical and efficient alternative for shoreline change classification—particularly 

in the context of coastal management. For many management applications, it is often sufficient to 

identify areas experiencing severe erosion or accretion, rather than obtaining exact values of 

shoreline displacement. The Fréchet distance is especially valuable for rapid assessment and 

prioritization, as it enables the detection of significant shoreline changes even in locations with 

limited data availability. This allows coastal managers to quickly pinpoint and respond to high-

risk areas, supporting targeted interventions and resource allocation for shoreline protection and 

restoration. 
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5.5.3 General application to other sites 

While SCET was primarily developed for the Great Lakes region, its framework is adaptable 

to other regions with appropriate considerations. For sites with similar shoreline landscapes as 

those included in our dataset—such as beach, urban, rural, and vegetated shorelines—and where 

NAIP data or orthorectified aerial imagery of comparable resolution are available, SCET can be 

directly applied for shoreline dynamics analysis. However, the current dataset contains limited 

examples of rocky and wetland shorelines, which are not dominant in the Great Lakes. 

Additionally, other shoreline types, such as reef, mangrove, and polar environments (Elliff and 

Silva, 2017; Kaiser et al., 2021; Thakur et al., 2021), are found globally but are absent from our 

training data. For users interested in applying SCET to such regions, it is recommended to augment 

the training dataset with representative examples from these specific shoreline types. When adding 

new data, key considerations include: (1) Shoreline length ratio: The ratio of shoreline length to 

the average of image height and width should span the range from 0 to 6. (2) Water body area: The 

proportion of water pixels to total image pixels should be as evenly distributed as possible, 

covering the full range from 0% to 100%. After expanding the dataset and fine-tuning the model, 

performance benchmarks should be maintained—mean pixel accuracy above 98% and mean IoU 

above 90%—to ensure consistency with current results. Once these criteria are met, the full SCET 

workflow, from inference to the modified DSAS analysis, can be directly applied. It is also 

important to note that water level calibration in SCET was designed to account for the primary 

environmental variability in the Great Lakes: water level fluctuations. In other coastal regions, 

such as the U.S. East and West Coasts and the Gulf of Mexico, tidal and wave influences can be 

substantial, with tidal and wind wave reaching several meters (Larson and Kraus, 1994; Allan and 
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Komar, 2000; Atkinson et al., 2013). For these settings, calibration must incorporate more 

comprehensive water level and wave spectrum data to accurately capture shoreline dynamics. 

5.6 Conclusion 

This study introduces the Shoreline Change Estimation Toolkit (SCET), a deep learning–

based solution for efficient, high-resolution shoreline change analysis. By integrating 

DeepLabV3+ segmentation with a modified DSAS workflow, SCET achieves sub-meter shoreline 

positioning accuracy, with a mean error of 0.92 m and a median error of 0.57 m across validation 

sites. The model’s water segmentation performance exceeds 99.0% pixel accuracy and achieves a 

91.5% mean IoU, enabling robust shoreline delineation across diverse landscapes. Compared to 

traditional DSAS implementations, SCET accelerates shoreline change rate calculations by more 

than 80%, supporting practical, large-scale monitoring efforts. The toolkit’s ability to rapidly 

detect and quantify spatial patterns of shoreline erosion and accretion offers significant benefits 

for natural hazard monitoring and coastal risk management. SCET enables early identification of 

dynamic erosion hotspots, facilitating timely risk assessments and guiding mitigation strategies for 

at-risk communities and infrastructure. By distinguishing true shoreline erosion and accretion from 

water-level-driven fluctuations—as demonstrated in Michigan City case studies—SCET provides 

critical insights to support infrastructure vulnerability assessments, resilience planning, and 

adaptation initiatives. While this toolkit was developed and validated for the Great Lakes region, 

its workflow is highly adaptable to other coastal environments through the incorporation of 

expanded training datasets and site-specific environmental calibration. As climate change 

continues to intensify coastal hazards worldwide, SCET offers an accurate and efficient approach 

for shoreline monitoring and management, providing essential data for decision-makers tasked 

with reducing risk and enhancing coastal resilience. 
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Chapter 6: Summary and conclusion 

Natural hazards in the Great Lakes are common and have caused hundreds of fatalities, as 

well as serious socio-economic and ecological consequences. Currently, our understanding of the 

characterization of natural hazards and the effectiveness of detection in the Great Lakes region 

remains underexplored, partially due to the difficulty of data acquisition, the complexity of natural 

hazard patterns, and the limitations in the accuracy of automatic methods. To address this 

challenge, my hypothesis is that combining remote sensing and deep learning techniques with an 

understanding of physical processes can enhance the detection and characterization of natural 

hazards in the Great Lakes region. Based on this hypothesis, the study focuses on flooding, flash 

rip currents, and rapid shoreline changes, utilizing remote sensing and deep learning techniques 

for detection and characterization.  

Chapter 2 developed an integrated UAV-based toolkit to characterize stream habitat quality, 

addressing key limitations of conventional monitoring such as subjectivity, sparse transects, and 

labor-intensive fieldwork. The toolkit was organized into a three-part pipeline: Toolkit I for 

optimized flight route design (with obstacle avoidance and overlap controls), Toolkit II for 

automated photogrammetric processing (generating ortho- and terrain products via structure-from-

motion), and Toolkit III for multi-metric index (MMI) computation. The outputs were validated 

against field measurements, demonstrating continuous, high-resolution assessments of critical 

habitat attributes and MMI scores consistent with traditional transect surveys. Assessments of 

route efficiency, mapping accuracy, and agreement with ground truth confirmed the toolkit as a 

cost-effective, scalable, and repeatable approach for stream habitat quality monitoring. 

Chapter 3 then applied this UAV-based toolkit for a severe inland flood case in Black Earth 

Creek, and introduced a loss and resilience analysis to quantify both immediate impairment and 
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subsequent recovery of stream habitat. Using six flights spanning pre-flood and post-flood till the 

steady periods, the study computed transect-level MMI values (riparian vegetation buffer, bank 

stability, and in-stream cover) and quantified loss (pre-to-post relative decline) and resilience 

(relative recovery rate at subsequent years), with careful treatment of edge cases to ensure 

interpretable metrics. This approach revealed spatially heterogeneous responses: many transects 

declined and later returned to pre-flood or better conditions, while a subset showed persistent 

impairment, highlighting localized fragility that site-level aggregation can mask.  

Chapter 4 developed a deep learning framework to detect and characterize flash rip currents 

at a featureless beach in Lake Michigan. Using a refined Cascade R-CNN architecture, combined 

with post-processing steps to reduce false positives, the framework achieved high detection 

accuracy and outperformed baseline deep learning models. Applied to a four-month webcam 

dataset, the approach identified and classified nearly two thousand flash rip events into three 

driving factors: water-level fluctuations, normal waves, and oblique waves. Characterization 

showed that these factors generated distinct spatial, temporal, and kinematic patterns. For instance, 

normal-wave-driven rips tended to extend further offshore but lasted for shorter durations with 

faster growth speeds, while water-level- and oblique-wave-driven rips exhibited more moderate 

behaviors. Overall, the study demonstrated the potential of automated detection and 

characterization to advance both scientific understanding and practical beach safety monitoring. 

Chapter 5 introduced the Shoreline Change Estimation Toolkit (SCET), a deep learning–

based framework for automated shoreline detection and change analysis. Built on DeepLabV3+ 

segmentation and a modified DSAS workflow, SCET integrates shoreline extraction, transect-

based change computations, and water-level calibration into an end-to-end pipeline. This design 

enables rapid detection of shoreline positions, efficient calculation of change rates, and early 
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identification of erosion and accretion hotspots. A key contribution of SCET is its ability to 

separate true morphological change from shoreline shifts driven by lake-level fluctuations, 

improving interpretability and reducing false alarms. Case studies in Michigan City and Indiana 

Dunes National Park demonstrated how water-level calibration clarified site-specific dynamics: in 

some armored sections, apparent recession was reclassified as stability or accretion, while adjacent 

unarmored stretches showed severe erosion consistent with flanking effects. Together, these results 

show that integrating deep learning with water-level calibration improves the efficacy of shoreline 

change assessments, enabling more reliable and timely identification of at-risk shorelines. 

Overall, this dissertation validates the central hypothesis that remote sensing combined with 

deep learning can substantially improve the detection and characterization of natural hazards in 

the Great Lakes. Chapter 2 developed and validated a UAV-based toolkit for continuous, MMI-

based assessment of stream habitat quality. Chapter 3 extended this framework to quantify flood-

induced loss and resilience, revealing both overall recovery and localized transect-level 

vulnerabilities critical for restoration planning. Chapter 4 advanced operational beach-hazard 

monitoring by detecting flash rip currents, classifying them by driving factors, and characterizing 

their spatial, temporal, and kinematic differences. Chapter 5 introduced the Shoreline Change 

Estimation Toolkit (SCET), which integrates segmentation, transect analysis, and water-level 

calibration to distinguish true morphological change from water-level-driven variability and to 

rapidly flag erosion hotspots. Together, these contributions establish a cost-effective and scalable 

foundation for hazard monitoring across rivers, nearshore zones, and shorelines, providing new 

insights into the dynamics of natural hazards in the Great Lakes region. 

In addition, several avenues for future work could extend the impact and practical deployment 

of this research. (1) Flood impacts on stream habitats: Temporal continuity is essential for 
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capturing both the extent and timing of recovery. Coupling periodic UAV surveys with continuous 

camera networks would help bridge temporal gaps, capture short-lived disturbances, and provide 

context for UAV-based observations, particularly where high spatial resolution is not required. 

Expanding the range of indicators to include bathymetry (via UAV bathy-LiDAR), water quality 

(via hyperspectral sensors), and substrate metrics would also enrich ecological inference beyond 

the three indices used here, enabling a more comprehensive evaluation of flood-related loss and 

resilience in freshwater habitat. (2) Flash rip currents: Future work should focus on increasing 

the robustness and generality of the detection framework. This includes improving performance 

under adverse weather and low-light conditions, extending applicability to a wider range of rip 

types, and moving from offline analysis toward integration with real-time monitoring platforms. 

(3) Rapid shoreline change: Future work should focus on improving shoreline-specific accuracy 

metrics, extending applicability to complex settings such as islands, and adapting the toolkit to 

higher-resolution and higher-frequency imagery. These steps would increase the robustness of 

shoreline detection and broaden its utility for both long-term trend analysis and short-term event 

monitoring.  

Finally, beyond these three natural hazard examples, the frameworks developed in this study 

are broadly adaptable. The combination of high-resolution sensing and deep learning can also be 

applied to other freshwater hazards, including pollution events, algal blooms, drought-induced low 

water, ice-related impacts, and compound disturbances. Extending the approach in this way would 

support more comprehensive hazard mitigation and  adaptation strategies across the changing 

Great Lakes region. 
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