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Abstract 

Populations behave inherently differently than individuals. The features that arise when 

individuals aggregate and interact, such as population oscillations and stable age distributions, 

are called emergent properties. Ecologists have studies these properties for decades, especially 

when they pertain to sudden, dramatic shifts in population size. However, empirical studies are 

less common, because it is difficult to meet the assumptions of theoretical models in real 

systems. This dissertation applies ecological theories to several different aquatic systems to 

better understand and model characteristics of these ecosystems, many of which are the results of 

emergent properties. Chapter 2 examines how environmental disturbances affect the variability 

of diatom and bacteria populations within biofilms. I found that experimentally induced 

environmental stressors acted as deterministic, selective forces in these communities, thereby 

creating populations that were more similar to one another after being disturbed. Chapter 3 was 

prompted by the observation that the primary and secondary productivity of Lake Myvatn, a sub-

arctic lake in northeast Iceland, were extremely high, given its latitude. I hypothesized that the 

secondary producers, which are predominantly midges, were involved in a mutualism that 

enabled high growth rates of both algae and midge larvae. This study found that the midges were 

able to alleviate their own resource limitation by promoting the growth of their benthic algal 

resources, thereby increasing both primary and secondary production. Chapters 4 and 5 are 

paired chapters that develop a novel statistical workflow (Chapter 4) and implement this analysis 

on a variety of long-term microbial datasets (Chapter 5). One of the earliest questions in 

theoretical ecology asked how the complexity of food webs related to the stability of these 

systems. This question is often intractable due to the need to observe hundreds of taxa over many 

generations, but bacterial systems overcome this challenge. In Chapter 4, I address this question 
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by creating a method to quantify the connectedness of ecological communities, which is one 

aspect of community complexity. In Chapter 5, I applied this workflow to three long-term 

microbial datasets, and found that highly connected keystone taxa have disproportionate 

influence in predicting compositional turnover in the entire community.  
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Introduction 

Complex dynamics can arise even in simple systems (Lorenz 1963, May and Oster 1976). 

One of the distinguishing features of population and community ecology is the study of emergent 

properties, which arise from groups of interacting individuals (Odum and Barrett 1971). Many of 

these emergent properties at the population level pertain to population variability, such as the 

properties of population regulation or population oscillations (Berryman et al. 2002). 

Furthermore, when multiple populations interact to form ecological communities, additional 

phenomena are possible; although there are many emergent properties of ecological 

communities, one of the most well studied is community stability (May 1973). This concept, 

along with its implied notion of an equilibrium community, has been central to community 

ecology for over a century (Clements 1916, Whittaker 1953, MacArthur 1955, May 1972, 

McCann 2000). Although emergent properties are understood well through mathematical 

models, it is often difficult to test predictions of these models empirically, because few systems 

meet the assumptions of the theoretical models.  

This dissertation applies ecological theory to aquatic communities to investigate the 

emergent properties within these ecosystems. Chapters 2 and 3 explore causes of population 

variability and mechanisms contributing to population regulation. Specifically, Chapter 2 asks 

whether environmental stressors, acting as forces of natural selection, can alter the inherent level 

of variability present in natural populations. Chapter 3 investigates whether the positive 

interactions between two trophic levels might alter ecosystem productivity and increase 

population size of the species involved in the positive feedback. Chapters 4 and 5 are paired 

chapters that empirically investigate a decades-old hypothesis about how the interconnectedness 

of ecological communities relates to their rate of compositional change. Chapter 4 develops and 
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validates the workflow for this analysis, while Chapter 5 tests the hypothesis on several long-

term datasets and two case studies.  

Chapter 2 uses the framework of deterministic versus stochastic processes (Vellend 2010) 

to investigate whether environmental disturbances alter the amount of variability present in 

populations. All natural populations have inherent variability, both because they exist in dynamic 

environmental conditions (Lundberg et al. 2000) and because there is some degree of chance in 

forces such as dispersal and resource patchiness (Nemergut et al. 2013). This chapter asked 

whether environmental stress could alter population variability, because selection is presumed to 

be a deterministic force (Nemergut et al. 2013). During the summer of 2013, I conducted an 

experiment where I grew many biofilm communities under similar environmental conditions. 

Then, these “replicate” communities were randomly divided into nine treatments, each of which 

experienced a different disturbance regime. At the end of the experiment, I sampled both the 

diatom communities (through direct cell counts under a microscope) and the bacterial 

communities (using a fingerprinting technique that gave relative abundances of operational 

taxonomic units [OTUs]). I compared the variability of populations within the disturbed 

communities to the variability of populations in the undisturbed communities. In all instances 

where the treatment effect was significant, the experimental disturbances decreased population 

variability. Thus, this chapter suggests that environmental stress can create populations that are 

more predictable, in the sense that their composition might be more accurately forecasted due to 

lower population variability. Additional work is needed to uncover the mechanisms driving these 

patterns, which is discussed as Project 2 in Chapter 6.  

Chapter 3 began with the observation that the chironomid larvae of Lake Myvatn 

experienced exponential growth for a surprisingly long duration, increasing by an order of 
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magnitude for 5-6 consecutive generations (Einarsson et al. 2002). This observation indicated 

that the chironomid population was not experiencing population regulation during this 

exponential growth phase, which suggested that resources were not limiting to the population 

(Barryman et al. 2002). I hypothesized that the chironomid larvae, which are known to be 

ecosystem engineers (Holker et al. 2015), were acting as “farmers” and alleviating their own 

resource limitation by promoting algal growth. Thus, the ecological theory guiding this chapter 

was the effect of mutualisms on equilibrium population densities and realized population growth 

rates. The results of experiments in this chapter showed that chironomid larvae strongly 

increased both standing algal biomass and rates of primary production. The positive feedback 

between chironomid larvae and benthic algae was sufficiently strong that chironomids grew 

more quickly when stocked at higher initial densities. Thus, this empirical result supports the 

theoretical hypothesis that mutualisms can increase densities of both populations involved in the 

mutualism (Holland and DeAngelis 2010).  

The next two chapters, 4 and 5, developed from my longstanding fascination with using 

coupled differential equations to model ecological communities. One of the most famous 

empirical examples to validate this type of model was the demonstration of trophic cascades 

(Carpenter et al. 1985). As predicted from the equations, adding a top predator can alter the 

population sizes of species within lower trophic levels. The topic in this realm of community 

ecology that I have always found most interesting is how the complexity of communities relates 

to their stability. Historically, this question has been investigated by using linear stability 

analysis with differential equations that express the various growth rates of, and interactions 

between, species (May 1973). However, this approach has several limitations, as some of these 

mathematical quantities have no clear analog in real systems (i.e. the definition of stability as the 
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sign of the dominant eigenvalue of the Jacobian matrix). Furthermore, any study that seeks to 

model the connectedness of natural communities must analyze datasets that meet the following 

criteria: 1) a sufficiently long time series to span the range of environmental conditions several 

times 2) enough taxa to be able to characterize statistical properties of taxon populations 3) 

enough samples to have good resolution when inferring interactions between taxa. I believed that 

bacteria might be a good system to investigate this topic, because bacterial communities 

overcame these major initial hurdles. The question I asked was similar to the theoretical 

postulation, but not exactly the same; instead, I asked how the interconnectedness of microbial 

communities relates to their rate of compositional turnover through time. However, bacterial 

datasets have their own drawbacks (such as often being in the form of relativized data and being 

strongly zero-inflated), so I also invested a substantial amount of time in creating, testing, and 

validating the workflow for this analysis. The two components of this project, designing the 

workflow and analyzing several long-term datasets, became Chapters 4 and 5.   

Ecological theory suggests that the connectivity of communities should be related to their 

emergent properties, including their stability. However, quantifying this connectivity is difficult 

in real systems. Chapter 4 develops a method for calculating the connectedness of microbial taxa, 

which is then used to quantify the connectivity of microbial communities. A major strength of 

this workflow, as compared to other existing methods of analyzing community connectedness, is 

that it yields two values of connectivity for each sampled community. In contrast, other methods 

often result in large network models with many parameters, which are difficult to interpret. The 

benefit of having values of connectivity ascribed to each sample is that this workflow can be 

integrated with other analyses. For example, this chapter demonstrates how the values of 

connectivity can be used as predictors in multiple regressions. Thus, this workflow is compatible 
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with many other existing ways to analyze ecological data. To demonstrate the utility of this 

approach, this chapter uses 5 long-term datasets to show that the workflow shows a significant 

relationship between community connectivity and Bray-Curtis dissimilarity of phytoplankton 

communities. Finally, this chapter validates each step of the workflow to assess and account for 

potential pitfalls of working with microbial datasets.  

Recently, microbial ecologists have been applying the concept of keystone species to 

microbial communities to identify taxa that have a disproportionate influence in community 

dynamics (Vick-Majors et al. 2014, Agler et al. 2016). One proposed method for identifying 

keystone taxa is looking for taxa that are highly connected hubs in the milieu of microbial 

interactions (Banerjee et al. 2016). Chapter 5 uses the workflow I designed in Chapter 4 to first 

test whether my metrics of community cohesiveness relate to the rate of compositional turnover, 

and then analyze whether the highly connected taxa are most informative about pending 

compositional changes. I had hypothesized that a small subset of keystone taxa were responsible 

for driving community dynamics. I used three long-term microbial datasets to analyze how the 

cohesiveness of microbial communities related to their rate of compositional change, and found 

in each case that my metrics of cohesion were strong predictors of Bray-Curtis dissimilarity; 

communities that were more highly connected, especially if the connectivity arose from negative 

correlations between taxa, were much more compositionally stable through time. Surprisingly, 

these models, which included no environmental parameters, sometimes outperformed other 

analyses of these datasets that used dozens of supporting environmental datasets. Furthermore, I 

found that including only the most highly connected taxa (1-5% of richness) produced models 

that were as informative or more informative than including all taxa. Thus, these keystone 

microbes were particularly revealing about whole-community properties. One main practical 
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goal of this chapter was to identify the taxa that microbial ecologists should focus on in pursuit 

of understanding community dynamics. The high diversity of these communities often renders it 

overwhelming to choose individual taxa to study, but I am optimistic that this analysis might 

help direct researchers to taxa that have disproportionate importance in the community.     

The thread connecting these chapters is the use of conceptual models and ecological 

theory to investigate the distinguishing characteristics of empirical ecological communities. This 

work is based upon the premise that emergent properties only arise when particular mechanisms 

are operating in populations or communities. Thus, studying the connection between 

mechanisms and emergent properties can yield insights when beginning from either direction; 

knowing what mechanisms are present in a system lends predictive power to the long-term 

emergent dynamics of a community, and observing emergent properties of a community suggests 

that certain mechanisms are operating in that system.  
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Abstract 

 A central pursuit of microbial ecology is to accurately model changes in microbial 

community composition in response to environmental factors. This goal requires a thorough 

understanding of the drivers of variability in microbial populations. However, most microbial 

ecology studies focus on the effects of environmental factors on mean population abundances, 

rather than on population variability. Here, we imposed several experimental disturbances upon 

periphyton communities and analyzed the variability of populations within disturbed 

communities versus those in undisturbed communities. We analyzed both the bacterial and the 

diatom communities in the periphyton under nine different disturbance regimes, including 

regimes that contained multiple disturbances. We found several similarities in the responses of 

the two communities to disturbance; all significant treatment effects showed that populations 

became less variable as the result of environmental disturbances. Furthermore, multiple 

disturbances to these communities were often interactive, meaning that the effects of two 

disturbances could not have been predicted from studying single disturbances in isolation. These 

results suggest that environmental factors had repeatable effects on populations within microbial 

communities, thereby creating communities that were more similar as a result of disturbances. 

These experiments add to the predictive framework of microbial ecology by quantifying 

variability in microbial populations and by demonstrating that disturbances can place consistent 

constraints on the abundance of microbial populations. Although models will never be fully 

predictive due to stochastic forces, these results indicate that environmental stressors may 

increase the ability of models to capture microbial community dynamics because of their 

consistent effects on microbial populations. 
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Importance 

 There are many reasons why microbial community composition is difficult to model. For 

example, the high diversity and rapid rate of change of these communities make it challenging to 

identify causes of community turnover. Furthermore, the processes that shape community 

composition can be either deterministic, which cause communities to converge upon similar 

compositions, or stochastic, which increase variability in community composition. However, 

modeling microbial community composition is only possible if microbes show repeatable 

responses to extrinsic forcing. In this study, we hypothesized that environmental stress acts as a 

deterministic force that shapes microbial community composition. Other studies have 

investigated if disturbances can alter microbial community composition, but relatively few 

studies that ask about the repeatability of the effects of disturbances. Mechanistic models 

implicitly assume that communities show consistent responses to stressors; here, we define and 

quantify microbial variability to test this assumption. 
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Introduction 

Many central questions in ecology focus on the sources of variability in populations. 

Accuracy of predictions is highly valued in ecological studies, and population size is necessarily 

more predictable when populations are less variable (1, 2). Still, most ecological studies measure 

changes in the mean number of individuals within populations, rather than the variability of 

populations across time or space (3, 4). However, the variability of ecological communities is 

sensitive to environmental drivers, and is therefore expected to change in response to 

disturbances (5, 6). These responses can be observed both temporally, where the variance of a 

population is calculated over time (7), or spatially, across a landscape or between communities 

(8). Here, we analyze the variability of populations between replicated microbial communities 

after a series of experimental disturbances. Specifically, we ask whether this strong 

environmental forcing creates communities where taxon abundance is less variable than in 

undisturbed communities. Thus, we address whether disturbances have repeatable effects on 

ecological communities.   

Some variability naturally exists in all populations. Disturbances could either act to 

increase or decrease this level of variability (6, 7). The effect of the disturbance on population 

variability is dependent upon whether the disturbance acts as a deterministic or a stochastic force 

(9). For example, disturbance could act as a deterministic force to decrease variability by 

imposing a consistent selective pressure, creating communities that are more similar to one 

another (10). Conversely, disturbance could disrupt feedback loops formed by species 

interactions (11) and cause initially-similar communities to exhibit increased stochasticity. Under 

differing circumstances, both of these responses have been observed in microbial systems. For 
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example, bacterial communities within bioreactors showed variability in composition after being 

disturbed with glucose additions (12). Although there were consistent functional changes in the 

bioreactors, there was low replicability in bacterial community composition among reactors. 

However, disturbances can canalize community composition under other circumstances. Rolke et 

al. (13) demonstrated that nutrient pulses generated predictable succession in phytoplankton 

communities, whereas undisturbed communities diverged along chaotic compositional 

trajectories. However, because experiments studying the variability of microbial communities 

often use different disturbances and metrics of variation, it is difficult to draw general 

conclusions about the effect of environmental stress on community variability.    

Predicting the composition of microbial communities using environmental disturbances is 

a major objective of microbial ecology (14). Here, we define a disturbance as an external force 

that perturbs ecological communities in such a way that it selectively favors or disfavors specific 

populations or interferes with community processes (15). Several studies have stated that their 

goal was to understand how environmental disturbances change microbial community dynamics 

(16-19). However, this prediction is only possible if microbial responses to environmental 

forcing are repeatable. Thus, to predict microbial community responses, it is first necessary to 

understand how environmental drivers contribute to community variability (16). Therefore, the 

relationship between environmental disturbances and population-level variability is important to 

achieving applied goals, such as modeling microbial community composition.  

To address the strong interest in understanding drivers of variability in microbial 

community composition, some studies have analyzed the range of compositions observed in 

bacterial communities following novel disturbances. These experiments have found consistent 

changes in community composition due to the disturbance (20, 21). Thus, strong environmental 
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forcing induced a reproducible shift in bacterial community composition. However, experiments 

that analyze microbial population variability have only been conducted in a few systems, and 

results are often qualitative. Furthermore, these results are difficult to generalize because 

different ecological communities may show varied responses to the same environmental forcing 

(22, 23). For instance, resilient communities are characterized by a quick recovery time (24, 25), 

so the effects of disturbance on highly resilient communities may only be apparent for a brief 

period. The response to multiple disturbances is even more difficult to predict, because there are 

often interactive and unexpected effects of the compounded stressors (26, 27). Recognizing these 

challenges, our experiments were designed specifically to analyze responses of two communities 

experiencing the same disturbances and to examine the effects of multiple disturbances.   

In this study, we imposed several disturbance regimes upon periphyton communities in 

order to examine the effects of disturbances on the variability of populations within the 

periphyton. Our goal was to determine whether disturbances have repeatable effects on 

periphyton communities. After initially growing 108 periphyton communities on Plexiglass 

slides in a common environment, we then randomized each of these replicate communities into 

one of nine treatments, each corresponding to a different disturbance regime. To generate these 

nine treatments, we subjected periphyton communities to one of three possible conditions (water 

scouring disturbance, altered depth in the water column disturbance, or no disturbance) at two 

time points. These two disturbances were selected because they are both potential consequences 

of the high wind events that occur in our study system (28). This 3x3 factorial design generated 

treatments that included different numbers of disturbance (0, 1, or 2 disturbance events) and 

different combinations of disturbances.  
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We quantified the variability of populations between communities within each treatment 

using the coefficient of variation (CV) of each taxon. The coefficient of variation is calculated as 

the standard deviation of the populations divided by the mean abundance of the populations, and 

therefore has the advantage of accounting for variance-mean scaling (6). We transformed or 

detrended CVs as necessary to ensure that this metric was approximately normally distributed 

and was not biased by mean population size. Then, we used linear mixed models to compare the 

variability of taxa in undisturbed treatments to the variability of taxa that experienced 

disturbance. We separately analyzed the diatoms and bacteria found within the periphyton to 

compare the effects of the same disturbance regimes on these two different ecological 

communities.  

Results 

Periphyton colonized Plexiglas slides suspended in a shallow (maximum natural depth 

~4m, [28]) eutrophic lake over a period of 20 days. Experimental disturbances were then 

imposed at two time points (T1 and T2, corresponding to day 20 and day 25). At these two time 

points, communities were randomly assigned to conditions where they were either left 

undisturbed (Ambient), disturbed by relocating the communities at a different depth in the water 

column (Depth), or disturbed with water scouring (Scoured). In the altered depth disturbance, we 

suspended the Plexiglas slides at 0.5m depth, rather than 3m depth, for 5 days. In the water 

scouring manipulation, we dragged the Plexiglas slides through the water column for 10 minutes 

at a rate of 20-25cm/s. Both the Ambient slides and the Scoured slides were then replaced in the 

lake at 3m depth for 5 days. The combination of these three conditions at the first time point and 

three conditions at the second time point created nine treatments: Ambient/Ambient, 

Ambient/Depth Change, Ambient/Scoured, Depth Change/Ambient, Depth Change/Depth 
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Change, Depth Change/Scoured, Scoured/Ambient, Scoured/Depth Change, and 

Scoured/Scoured. We henceforth refer to these treatments as AA, AD, AS, DA, DD, DS, SA, 

SD, and SS.  

    

Diatom Communities 

Diatom taxa on slides were enumerated by light microscopy to measure the abundance of 

each taxon within the periphyton biofilm. We used linear mixed models to analyze how the 

variability of taxa in the disturbed treatments compared to the variability of taxa in the 

undisturbed treatment, AA. The fixed effects in the model were 4 binary variables corresponding 

to whether the community received the depth disturbance at T1, the scouring disturbance at T1, 

the depth disturbance at T2, or the scouring disturbance at T2. A random effect for taxon was 

included, under the assumption that taxa have differing amounts of inherent population 

variability. The response variable in the linear mixed models was the square root CV of the taxon 

populations, measured in density per cm2. A lower CV corresponded to lower variability of a 

taxon between communities in the same treatment. The estimated treatment effects from the 

mixed model represent the mean difference in square root CVs between a given treatment and 

the undisturbed treatment, AA.  

The treatment that had the highest mean taxon square root CV was the undisturbed 

treatment, AA. Thus, taxon populations in the AA treatment were most variable of any treatment. 

The four treatments that received one disturbance, SA, AS, DA, and AD, all had significantly 

lower square root CVs than the AA treatment (Table 1). These treatment estimates and the 

corresponding p values were obtained from the linear mixed model for the diatom taxa. The 

scouring disturbance reduced the square root CV of the diatom communities by a mean of 0.155 
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at Time 1 (p = 0.0343) and by 0.158 at Time 2 (p = 0.0307). The altered depth disturbance 

reduced the square root CV by 0.156 at Time 1 (p = 0.0330) and by 0.230 at Time 2 (p = 

0.0016). Thus, densities of diatom taxa became more consistent as a result of experiencing one 

disturbance, regardless of whether the disturbance was applied at Time 1 or Time 2.  

In both the DD and SS treatments, there were significant positive interactions between 

the disturbances at Time 1 and Time 2 (p = 0.0458 and p = 0.0363, respectively). In these 

treatments, which received the same type of disturbance at Time 1 and Time 2, the taxa were 

more variable than would be expected from the independent effects of the disturbances at Time 1 

and Time 2. However, there was no significant interaction between disturbances in communities 

that experienced different types of disturbances at Time 1 and Time 2 (corresponding to 

treatments DS and SD). Therefore, communities that received different disturbances at the two 

time points continued to become less variable as a result of experiencing another disturbance, 

whereas communities that experienced the same disturbance twice did not become as consistent.    

 We performed principal components analyses (PCAs) to determine if the community 

composition shifted as a result of the disturbances. We compared the undisturbed treatment, AA, 

to the disturbed treatments to identify whether the disturbed communities separated from the AA 

treatment in community composition. Strong separation of disturbed and undisturbed 

communities would indicate novel community development in the disturbed treatments. The 

PCA for the diatom communities captured 97.2% of community variability in the first two axes. 

The first axis, responsible for 92.8% of variability, represented the tradeoff between 

communities dominated by Gomphonema spp. and those dominated by Nitzschia holsatica. The 

loadings for these two taxa on the first axis were -0.650 and 0.757, respectively. The second 

eigenvector accounted for 4.4% of variability and corresponded to Cocconeis spp., colonial 
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Fragilaria, Gomphonema spp., and Nitzschia holsatica with loadings of -0.481, -0.428, 0.601, 

and 0.465, respectively.  

 The communities in the undisturbed treatment, AA, occupied a large area of the PCA 

space (Fig. 2A). Communities from the AA treatment spanned nearly the entire length of the first 

axis and had both the highest and lowest points on the second axis. This PCA indicates that 

communities within the AA treatment were highly variable, even in the context of the other, 

disturbed communities. Additionally, the majority of disturbed communities occur within the 

area spanned by the AA treatment, suggesting that there are no major differences in community 

composition between the AA treatment and the disturbed treatments.  

 

Bacterial Communities 

 Bacterial community composition in the periphyton was determined using a PCR-based 

DNA fingerprinting method called Automated Ribosomal Intergenic Spacer Analysis (ARISA) 

(35). This method generates a measure of the relative abundance of each population that was 

amplified by PCR, allowing for rapid comparisons of many samples. Each detected amplicon 

corresponds to an operational taxonomic unit (OTU). We used a linear mixed model analysis 

with the same structure as the mixed model for the diatoms, but using the normalized ARISA-

peak height as a measure of population relative abundance. Again, we used this analysis to 

compare the variability of taxa in communities experiencing disturbances to the variability of 

taxa in the undisturbed treatment, AA. The treatment effects and p values reported for the 

bacterial communities were obtained from this analysis.  

 The analyses for the bacterial communities used the residuals from detrended taxon CVs 

as the response variable. Detrending was performed because the CVs of the OTUs showed a 
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strong relationship with mean OTU abundances, whereby OTUs with higher mean abundances 

had lower CVs. To remove the effect of mean abundance, we fit an exponential model of the 

OTU CVs as a function of log(OTU mean abundances) (Fig. 1). We then used the residuals of 

this model as the metric of variability for each OTU, because OTUs with positive residuals were 

more variable than expected, whereas OTUs with negative residuals were less variable than 

expected. Because we used these model residuals instead of the OTU CVs, the effect sizes and 

standard errors are smaller in the bacterial analysis than in the diatom analysis.  

For the bacterial communities, AA had the median level of variability out of the nine 

treatments. However, no treatment was significantly more variable than the AA treatment. No 

single disturbance at either Time 1 or Time 2 had significant effects on the variability of OTUs 

(Table 2). Thus, the OTUs in the treatments SA, AS, DA, and AD did not strongly differ in 

variability from those in the undisturbed treatment, AA. However, three out of the four terms for 

interactions between disturbances at Time 1 and disturbances at Time 2 were significant and 

negative; the treatments DD, SD, and SS had lower CVs than would have been predicted by the 

additive effects of disturbances at Time 1 and Time 2.  Thus, the significant interaction terms 

show that the responses of the DD, SD, and SS treatments differed substantially from the 

independent effects of single disturbances. The effect sizes of these interactions show that DD, 

SD, and SS were the three least variable treatments (Table 2).  

 As with the diatom communities, we compared the bacterial community composition of 

the AA treatment to the disturbed treatments using a PCA. We evaluated whether the 

communities in the AA treatment separated from the communities in disturbed treatments to 

determine if there were consistent compositional differences between the undisturbed and 

disturbed communities. The PCA for the bacterial communities captured 51.2% of community 
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variability in the first two axes. The first axis accounted for 27.6% of community variability and 

the second axis accounted for 23.6% of the variability. The loadings on these two axes were 

primarily from the most abundant OTUs across all treatments.  

The communities in the undisturbed treatment, AA, occurred in close proximity to 

disturbed communities in PCA space (Fig. 2B). Furthermore, similar to the diatom ordination, 

the AA treatment polygon overlapped with every other treatment polygon (Figures S6 and S7). 

Additionally, communities in the AA treatment fell along a wide range of the first axis, 

indicating that communities in this treatment showed substantial variability in community 

composition. Although many disturbed communities lay outside of the area encompassed by the 

undisturbed treatment, there was no strong separation between disturbed communities and the 

AA communities. As with the diatom communities, these results suggest that the disturbed 

communities did not consistently differ from the AA communities in terms of community 

composition.  

Comparing the Two Communities 

 We used three different dissimilarity metrics (Sorensen, Euclidean, and Bray-Curtis) in 

Mantel tests to evaluate whether differences in the diatom communities were related to 

differences in the bacterial communities. There was no significant relationship between the 

bacterial and diatom communities for any of the three metrics used (p = 0.540, p = 0.554, and p = 

0.754 for Sorensen, Euclidean, and Bray-Curtis, respectively).  

We also compared the effects of the linear mixed models of the bacteria and diatom 

communities. We plotted the average treatment effects from the mixed models to compare how 

the same treatment affected the diatom communities and the bacterial communities that co-

occurred on the slides (Fig. 3). We divided the plot into four quadrants by overlaying the grand 
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mean response of all nine treatments for the diatom and bacterial communities. Treatments with 

a response that was greater than the mean were relatively more variable, while treatments that 

fell below the mean response were relatively less variable. Treatments in quadrant I were above 

average in variability in both the diatom and the bacteria communities. Treatments in quadrant II 

were low in variability in the diatom communities, but high in variability in the bacteria 

communities. The reverse was true of the treatments that fell in quadrant IV. Finally, treatments 

in quadrant III were less variable than average for both the diatom and the bacteria communities.  

The AA treatment was firmly inside quadrant I, the most variable quadrant. Conversely, 

the only two treatments to fall within the least variable quadrant were the doubly-disturbed 

treatments SD and DD. Furthermore, treatments experiencing the same disturbances, but in 

different orders, often appeared in different quadrants. The AD and DA disturbances experienced 

opposite effects, appearing in quadrants II and IV, respectively. Similarly, communities in the SD 

and DS treatments showed differing effects, particularly along the bacterial axis.  

Discussion 

 These experiments support the hypotheses that (i) disturbances decrease the variability of 

populations within diatom and bacteria communities and that (ii) multiple disturbances have 

interactive effects. For the diatom communities, every treatment that experienced a single 

disturbance had a significantly lower square root CV than the AA treatment. This consistent 

result shows that communities that were disturbed once became less variable than communities 

that were undisturbed. However, double disturbances did not necessarily cause the communities 

to become more consistent. Both the SS and the DD treatments had significant positive 

interactions, showing that these communities were more variable than would be expected based 

on the independent effects of the single disturbances. However, the treatments that experienced 
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different disturbances at the two time points (SD and DS) continued to become less variable as a 

result of the second disturbance. Thus, for the diatom communities, different disturbances 

continued to increase the consistency of the diatom communities, although the same recurring 

disturbance appeared to be saturating in effect. Therefore, the interactions between sequential 

disturbances were important to understanding community dynamics in treatments that were 

disturbed twice.  

 For the bacterial communities, no single disturbance had a significant effect on the 

variability of OTUs within the communities. However, three of the four treatments that 

experienced two disturbances had interactive effects, all of which led to lower population CVs. 

Thus, multiple disturbances to the bacterial communities generally created communities that 

were less variable than communities that were disturbed once. The strong interactions indicate 

that multiple disturbances had novel effects on the communities, such that the communities that 

experienced two disturbances demonstrated much different responses than the communities that 

only experienced one disturbance. Additionally, it appears that high levels of disturbance were 

necessary to generate changes in the bacterial communities, because the only treatments to show 

significant effects were disturbed twice. This was not surprising, as pelagic lake bacterial 

communities were previously found to be highly resilient to disturbances (25), and therefore may 

have recovered or experienced substantial turnover during the course of the experiment.  

 Despite differences in how the diatoms and the bacteria responded to individual 

treatments, there were several broad similarities between the diatom and bacterial responses to 

disturbances. For instance, none of the disturbed treatments in either the diatom or bacterial 

communities showed significantly greater variability than the undisturbed treatment, AA. 

Additionally, in both the diatom and the bacterial communities, at least two of the three least 
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variable treatments were highly disturbed, having experienced two disturbances (Fig. 3). These 

results suggest that the disturbances imposed on the periphyton communities acted as canalizing 

ecological drivers and constrained the variability of populations within the periphyton. However, 

there was no overall relationship between the response of the bacterial population variability and 

the response of the diatom population variability (Fig. 3). In several instances, treatments were 

more variable than average for either the diatom or bacterial community, but less variable than 

average in the other community. Thus, although disturbances generally decreased variability 

across all communities, there was no simple relationship between changes in the bacterial 

communities and the diatom communities on the same slides.    

 The differences in the diatoms and bacteria responses to individual disturbance 

treatments may be due to additional drivers of population variability within these two 

communities. For example, the strength and number of species interactions in a community can 

also be an important determinant of population variability (4). Although we have no estimates of 

species interactions in the diatom or bacterial communities, we note that the average strength and 

number of species interactions in these two communities may be different. This observation is 

based on the differing structure (richness, evenness) of the diatom and bacterial communities. 

Furthermore, we expect the rates of turnover to differ between the diatom and bacteria 

communities, with bacteria growing at a faster average rate. Thus, these varying growth rates 

could contribute to unequal rates of turnover between the two communities, which is an 

important factor mediating how quickly communities recover from disturbances (25). 

Understanding how these various drivers of population variability interact is necessary for 

predicting the variability of community processes, such as changes in biomass, production, or 

respiration (29).   
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 Prior work has suggested that disturbances may mediate stochastic community assembly 

by enforcing a niche-based environmental filter (30). Our results from the diatom communities 

agree with this hypothesis, as the dominant taxa in disturbed communities have traits that may 

confer an advantage under the disturbed conditions. For instance, some Gomphonema species 

have been found to be tolerant of turbulent conditions, showing high abundances in water 

currents (31). Thus, they may have been particularly resistant to the water scouring disturbance. 

Similarly, N. holsatica is a small diatom that can become highly abundant in Icelandic lakes 

during the spring and summer (32). One hypothesis for the dominance of N. holsatica under the 

altered depth disturbance is that the species reproduced rapidly in the conditions of higher light 

due to its small size, and, therefore, high growth rate (33). Thus, we find support for the 

hypothesis that the harsh environmental conditions imposed by our experimental disturbances 

created an environmental filter, wherein taxa with functional traits favored by the disturbance 

could thrive under these conditions.  

Although many microbial studies have demonstrated that community composition 

changes in response to environmental factors (e.g., 34-36), few have addressed the accuracy or 

repeatability of these results. However, studies that have evaluated the variability between 

disturbed microbial communities have found that there is often a high degree of similarity 

between strongly perturbed communities. Bell et al. (20) found that the bacterial communities 

following diesel contamination were similar in richness and composition following the 

disturbance. Similarly, Handley et al. (21) found that bacterial communities converged upon 

similar community compositions as a result of switching between acetate and lactate 

amendments. Therefore, these studies found that disturbances had repeatable effects on microbial 

systems, because disturbed communities were strikingly similar to one another. However, in 
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these two cases, the communities became more consistent partially as a result of novel 

communities developing under altered environmental conditions. In our study, populations 

became less variable in the absence of novel community development; in fact, the PCA polygons 

for the undisturbed bacterial and the diatom communities overlap substantially with every other 

treatment. In this case, disturbances increased the consistency of microbial communities by 

placing tighter constraints on community composition.  

Many studies in microbial ecology have sought to quantify the degree to which 

communities are shaped by stochastic versus deterministic processes (37, 38). The main 

deterministic process discussed is varying selection strength on microbial taxa, usually as the 

result of environmental or biotic stress (37, 39). Selection is named as a deterministic force under 

the assumption that consistent and differential selection will eventually lead to the same final 

community composition (40). Conversely, colonization and drift are two stochastic forces that 

are important in community assembly (9, 41). We find evidence in our experiments for the 

stochastic effects of colonization by observing the wide variability of populations in AA 

communities, which was presumably determined by the stochasticity of colonizers on the 

Plexiglas slides. Additionally, drift may be a particularly important force in communities if there 

is a high degree of functional redundancy (9), which can lead to communities that vary in the 

abundances of ecologically equivalent taxa (42). Bacterial communities, in particular, have been 

hypothesized to have relatively high functional redundancy of taxa due to their high species 

richness (43). Thus, if bacterial communities are predisposed to experience greater compositional 

drift due to the existence of ecologically equivalent taxa, then bacterial populations should be 

expected to be more variable than populations within communities with fewer ecological 

equivalents. This offers another explanation as to why the bacterial populations in our 
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experiment showed no significant decreased in variability after single experimental disturbances, 

whereas the diatom populations did show significant decreases in variability. 

Our study suggests that environmental stressors can indeed act as a deterministic force in 

microbial communities, because the communities stressed by our disturbances became less 

variable after experiencing the disturbances. These results were consistent across the two 

experimental disturbances imposed, despite the different nature and time scale of the two 

disturbances. Specifically, the water scouring disturbance was a perturbation of high impact over 

a short period of time (pulse disturbance), whereas the altered depth disturbance was a sustained 

perturbation (press disturbance). The similar response of the communities to both these 

disturbances is in line with a recent review showing that a high proportion of microbial 

communities are sensitive to both press and pulse disturbances; of the experiments reviewed, 92 

of 112 microbial communities showed a change in composition or function in response to a pulse 

disturbance, and 141 of 178 communities changed in response to a press disturbance (25). Thus, 

the variability of microbial communities may be a useful indicator of the degree to which the 

communities are influenced by stochastic or deterministic processes, because many microbial 

communities are sensitive to disturbance. However, studying the variability of populations 

requires a high degree of replication, which is often lacking in microbial ecology (44). Thus, 

characterizing the magnitude of microbial community variability, and of the forces contributing 

to this variability, requires an amount of replication that is seldom found in microbial studies.  

 In addition to the experimental disturbances, there are many other possible factors that 

could have influenced the variability of populations within the periphyton. For instance, the 

periphyton communities experienced environmental variability throughout the duration of the 

experiment due to natural weather conditions and small-scale variability in environmental forces. 



 

 

18 

Acknowledging this environmental stochasticity, we intentionally implemented experimental 

disturbances that were more extreme than the natural variability we observed during this time 

period. Additionally, we did not account for colonization of diatoms or bacteria after 

disturbances were implemented, which may have generated additional variability in these 

communities. However, because the Plexiglas slides were re-randomized between disturbances, 

we expect systematic bias from immigration to be minimal between treatments. Furthermore, the 

diatom and bacterial datasets are complimentary in their strengths; the diatom data were obtained 

through direct counts, meaning that there is high accuracy in identification, although only a 

subsample of the community was measured. Conversely, nearly the entire bacterial community 

was sampled, but with some degree of bias from using ARISA (45). Thus, because the two 

datasets were obtained using different methods, we are confident that the similarities in the 

results are not an artifact of our methodology.  

 Prediction of microbial communities is an oft-cited goal of microbial ecology. However, 

predictive models can only be accurate if the process they are describing is inherently repeatable. 

For instance, statistical models will only produce a good fit to microbial community composition 

data if these microbial communities show consistent responses to environmental drivers. The 

results of these experiments indicate that microbial communities do show repeatability in their 

response to environmental stress, because communities became more similar to one another after 

experiencing the same disturbance. This finding could be tested in other systems by examining 

whether predictive models of bacterial community composition (e.g. 14) have lower error when 

modeling disturbed communities. These results suggest that changes to microbial communities 

could be modeled using abiotic drivers as predictors. However, the diatom and bacterial 

communities varied in susceptibility to environmental forcing, as the effects of the same 
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treatment on the two communities often differed. Thus, the abiotic drivers that are the best 

predictors of community composition are likely to vary across different ecological communities 

and ecosystems, as might be expected from first principles.  

Materials and Methods 

Experimental Manipulations 

 These experiments were performed in Lake Myvatn, a shallow, eutrophic (external 

loading of 1.4 g · m-2 · y-1 of N and 1.5 g · m-2 · y-1 of P; net algal production of 222 g · m-2 · y-1 

of C, [46]) lake in northeast Iceland (65° 40’ N, 17° 00’ W, [28]). We allowed periphyton to 

colonize the Plexiglas substrate for 20 days before beginning the disturbance manipulations. 

During this period of colonization, 108 Plexiglas slides (6cm x 8 cm) were suspended in Lake 

Myvatn at 3m depth, which was approximately 0.3m from the sediment surface.  

Disturbances were implemented at two time points. At the first time point, day 20, we 

randomly assigned 36 of the 108 slides to each of the following conditions: ambient (no 

disturbance), altered depth disturbance (relocation to 0.5m depth), or water scouring disturbance. 

Weekly water column profiles showed that Secchi depth during the summer of 2013 varied 

between 1.5m and 3.3m, with 11-33% of surface photosynthetically active radiation (PAR) 

reaching 3m depth. We chose these two disturbances (altered depth and water scouring) because 

they mimic natural disturbances to periphyton communities in the lake due to the high wind 

events that are common at our study site (28, 47). During these high wind events, periphyton 

communities may experience a change in depth due to resuspension in the water column, or 

individuals might be scoured from biofilms due to fast water currents.  

Similarly, on day 25, we again randomized the slides into three groups and manipulated 

the slides with the disturbances described above, incubating the slides for another 5 days. On day 



 

 

20 

30 of the experiment, we retrieved the Plexiglas slides from the lake and froze the slides at -20C 

until further processing. Additional details about the experimental manipulations are provided in 

the Supplementary Materials (Figure S1). 

 

Community composition analysis 

Slides were removed briefly from the freezer to obtain diatom counts on a microscope 

before being frozen again. Diatoms were identified to the lowest taxonomic resolution possible, 

which was genus or species. A minimum of 500 individuals per slide were identified by counting 

half transects across slides. The mean number of individuals identified per sample was 1 063, for 

a total of 114 843 individuals across the 108 Plexiglas slides. We then transported the slides to 

Madison, Wisconsin, USA, for analysis of the bacterial communities in the periphyton using 

Automated Ribosomal Intergenic Spacer Analysis (ARISA) (48, 49). Briefly, DNA was extracted 

from periphyton biomass that was scraped from the slides and this DNA was used as template for 

PCR to amplify the intergenic region between the 16S and 23S rRNA genes in bacteria. 

Amplicons were separated by capillary electrophoresis and used to define operational taxonomic 

units (OTUs). Additional details about community composition analysis are provided in the 

Supplementary Materials. 

 

Statistical Methods 

Diatom Communities 

 Because some taxa were rare, and therefore were inconsistently present in samples, we 

analyzed only the 8 most common diatom taxa (Nitschia holsatica, Cymbella spp., Synedra spp., 

Gomphonema spp., Rhoicosphenia spp., Cocconeis spp., colonial Fragilaria spp. and singular 
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Fragilaria spp.). Together, these 8 taxa accounted for 99.4% of all individuals counted. We 

standardized all data to densities of each taxon per cm2. For each of the nine treatments, we 

calculated the coefficient of variation (CV) for each of the 8 taxa across the 12 slides in that 

treatment. We chose the CV as the indicator of population variability because it did not change 

in response to the mean abundance of the taxa and because it showed homogeneity in variance 

between treatments. Additionally, the CV integrates across all 12 slides within a treatment and 

mitigates the effects of any single anomalous communities. We transformed the CVs by taking 

their square root because the distribution of CVs was slightly skewed toward larger values. 

We analyzed square root CVs using a linear mixed effects model. The four predictor 

variables ( , , , and ) were binary vectors corresponding to whether or not the 

taxon was in a treatment that received the depth disturbance at Time 1, the scouring disturbance 

at Time 1, the depth disturbance at Time 2, or the scouring disturbance at Time 2 (Eq. 1). We 

also included all interactions between these four predictor variables to assess the interactive 

effects of multiple disturbances. We recognized that the taxa may have different inherent levels 

of population variability, and so we included a random intercept by taxon, denoted by . 

This term assumes that the square root CVs of taxa are normally distributed, but only estimates 

the distribution from which the square root CVs are drawn, rather than an effect for each taxon.

 Eq. 1  

 

 

XD1 XS1 XD2 XS2

α taxon

 

CV = β0 + β1XD1 + β 2 XS1 + β 3XD2 + β 4 XS2

+ β 5 (XD1 i XD2 )+ β 6 (XD1 i XS2 )+ β 7 (XS1 i XD2 )+ β 8 (XS1 i XS2 )
+α taxon + ε

α taxon ~ N(0,σ intercept
2 )

ε ~ N(0,σ error
2 )
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Bacterial Communities 

 We removed two bacterial samples from our analyses due to their anomalously low 

diversities, resulting in 106 bacterial samples. When evaluating population variability, we 

analyzed OTUs that were present in at least 30 samples, which included 55 OTUs. For each of 

the 9 treatments, we calculated the CV for each OTU within that treatment. However, the CVs of 

the OTUs were correlated with mean OTU abundance, with highly abundant OTUs generally 

having lower CVs. This is a common pattern when data are relativized, due to the 

heteroskedasticity of binomial data (50). To account for this expected pattern, we detrended the 

data by fitting the CVs as a negative exponential function of the log(OTU mean relative 

abundance) (Fig. 1). We then used the residuals of this function as the response variable in our 

analyses. Points above the fitted relationship (positive residuals) are OTUs that were more 

variable than would be expected, after the effect of abundance was removed, whereas points 

below the line (negative residuals) were less variable than would be expected. We then analyzed 

the residuals using an analogous statistical model as was used with the diatom data (Eq. 2).

 

  Eq. 2 

Prior to fitting the statistical model, we removed the 6 outliers that were greater than 3 

standard deviations from the mean of the residuals. However, the model was robust to these 

outliers and identified the same treatments as significant when the outliers were included. The 

results were also robust to changes in the frequency cutoff used to determine the number of 

OTUs included; the model identified the same treatments as significant when varying the cutoff 

 

Residuals = β0 + β1XD1 + β 2 XS1 + β 3XD2 + β 4 XS2

+ β 5 (XD1 i XD2 )+ β 6 (XD1 i XS2 )+ β 7 (XS1 i XD2 )+ β 8 (XS1 i XS2 )
+αOTU + ε

αOTU ~ N(0,σ intercept
2 )

ε ~ N(0,σ error
2 )
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for inclusion in the analysis between presence in at least 20 samples and presence in at least 40 

samples. Additional information on statistical methods and diagnostics can be found in the 

Supplementary Online Materials (Figs. S2 – S5).  

Principal Components Analysis of Communities  

 We performed Principal Components Analyses (PCAs) on the diatom and the bacterial 

communities. Our main goal for these analyses was to evaluate whether the composition of the 

disturbed communities consistently differed from the composition of undisturbed communities.  

Because there was a wide range in the mean densities of diatoms on the slides, we transformed 

the diatom counts into relative abundances before running this analysis. Again, we used only the 

8 most common taxa in the diatom PCA. Similarly, in the PCA of the bacterial communities, we 

removed all OTUs present in fewer than 30 samples.  

Comparing the Two Communities 

 To assess whether there were correlations between the diatom communities and the 

bacterial communities, we performed Mantel tests on the 106 slides for which we had data on 

both the diatom and bacterial communities. We used these tests to determine if changes to either 

the diatom or the bacterial community on a slide could predict changes in the other community.  
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Table 1: Mixed Model Results for Diatoms 

Results of the linear mixed model using disturbances at Time 1 and Time 2 as predictors of the 

taxon-level variability (as given by the square root of the taxon CVs) of diatom communities 

from the nine experimental treatments. Disturbance effect estimates are given in comparison to 

the undisturbed treatment, AA, which is why there is no p value estimate for the AA treatment. 

Each of the single disturbances at Time 1 and Time 2 significantly reduced the average taxon 

square root CV. There were significant positive interactions for communities that received the 

same disturbance at Time 1 and Time 2, corresponding to the DD and SS treatments. No p value 

was calculated for the random effect, because we were not interested in testing how much 

variability was explained by differences between taxa.  

 
Disturbance Estimated Effect p value 
Intercept (AA) 1.251 n/a 
Time 1: D -0.156 0.0330    *  
Time 1: S -0.155 0.0343    * 
Time 2: D -0.230 0.0016  ** 
Time 2: S -0.158 0.0307    * 
Time 1: D * Time 2: D 0.207 0.0458    * 
Time 1: S * Time 2: D 0.102 0.3220      
Time 1: D * Time 2: S 0.109 0.2899 
Time 1: S * Time 2: S 0.217 0.0363    * 
Random Effect Estimated Effect p value 
Taxon 0.0240 n/a 
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Table 2: Mixed Model Results for Bacteria 

Results of the linear mixed model using disturbances at Time 1 and Time 2 as predictors of the 

OTU-level variability (as given by the residuals of OTU CVs) of bacterial communities from the 

nine experimental treatments. As in Table 1, disturbance effect estimates are given in 

comparison to the undisturbed treatment, AA. There were no significant effects of single 

disturbances on the variability of OTUs at Time 1 or Time 2. However, there were significant 

negative interactions between three doubly-disturbed treatments, such that treatments DD, SD, 

and SS were less variable than would have been expected. No p value was calculated for the 

random effect, because we were not interested in testing how much variability was explained by 

differences between taxa. 

 
Disturbance Estimated Effect p value 
Intercept (AA) 0.0163 n/a 
Time 1: D -0.0450 0.3262 
Time 1: S 0.0565 0.2159 
Time 2: D 0.0276 0.1510 
Time 2: S 0.0116 0.5472 
Time 1: D * Time 2: D -0.143 0.0282     * 
Time 1: S * Time 2: D -0.228 <0.001 *** 
Time 1: D * Time 2: S 0.022 0.7350 
Time 1: S * Time 2: S -0.176 0.0065   ** 
Random Effect Estimated Effect p value 
OTU 0.0459 n/a 
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Figure 1: 
 

 
Figure 1: We detrended the CVs of OTUs from the ARISA data because the CVs were strongly 

related to mean OTU relative abundance. We expected the CVs of the OTUs to decrease as 

OTUs became more abundant. Thus, we fit an exponential function to the data and used the 

residuals of this relationship in the subsequent mixed model.   



 

 

34 

Figure 2: 
 
 

 
Figure 2: A) Principal components analysis of the diatom communities showed that the 

undisturbed treatment, AA, spanned most of the space occupied by the communities in the nine 

treatments. The majority of disturbed communities fell within the bounds of the AA 

communities, showing a lack of separation between the AA treatment and the disturbed 

treatments. The first and second axes together account for 97.2% of community variation. The 

polygon depicted shows the convex hull of the AA points, which is constructed by drawing the 

minimum number of connections between points to encapsulate the entire set of AA points.    

B) Results from the principal components analysis of the bacterial communities show that there 

is no strong differentiation between the community composition of the undisturbed treatment, 

AA, and that of the disturbed treatments. Additionally, the AA treatment covers a wide range of 

the PC 1 axis, which is the axis that explains the most variability between bacterial communities. 
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The first and second axes together account for 51.2% of community variation. As above, the 

polygon depicted shows the convex hull of the AA points.  
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Figure 3: 
 

 
Figure 3: This plot shows the average variability of each treatment in the diatom and bacteria 

communities, as obtained from the mixed models. The dashed lines show the overall mean 

responses for the diatom and the bacteria treatments, such that treatments with a value higher 

than the mean are comparatively more variable. The AA treatment falls in the most variable 

portion of the plot (quadrant I), whereas the two communities that were least variable (quadrant 

III) were disturbed twice.  

  
 



 

 

37 

Supplementary Online Material  
 

 

Title: Environmental disturbances increase the predictability of microbial communities within 

periphyton   

 

Authors: Cristina M. Herren1, Kyle C. Webert2, and Katherine D. McMahon3 

 

Author affiliations:  

1Freshwater and Marine Sciences Program, University of Wisconsin - Madison, Madison, 

Wisconsin, USA  

cherren@wisc.edu 

2Department of Zoology, University of Wisconsin - Madison, Madison, Wisconsin, USA  

3Departments of Bacteriology and Civil and Environmental Engineering, University of 

Wisconsin - Madison, Madison, Wisconsin, USA 

 



 

 

38 

Additional Materials and Methods 

Experimental Manipulations 

 Periphyton was chosen as a study system because of the high species diversity of benthic 

algae in periphyton and the ability to analyze the co-occurring algal and bacterial communities. 

Additionally, diatoms at Lake Myvatn are particularly important to the lake food web. Lake 

Myvatn is a shallow, eutrophic lake that has high diatom production due to elevated 

concentrations of nutrients in the lake’s groundwater inputs (Einarsson et al 2004). 

 Plexiglas slides (6cm x 8cm) were used as the substrate for periphyton growth. Two 

holes were drilled in the Plexiglas in order to attach slides to metal racks. Twelve replicates of 

each of the 9 treatments (108 total slides) were uniquely labeled and distributed randomly among 

six metal racks (18 slides per rack). Slides were randomized before the start of the experiment 

and before each of the two disturbances (Fig. S1). The bottom of the rack was attached to an 

anchor that sank into the lake sediment, and a line with a buoy was attached to the top of the rack 

to suspend the rack vertically. On this top line, there was also a smaller stabilization buoy 

secured 0.5m above the rack. All racks were deployed within a 5m radius.  

 We took care to minimally perturb the periphyton communities aside from the two 

disturbance treatments described. During disturbance manipulations, we retrieved all 6 racks and 

placed the slides on new racks corresponding to the treatment they were designated to receive at 

the next time point. In the time between removal from the initial rack and attachment to the next 

rack, each slide was stored individually in a covered container filled with lake water. The 36 

slides receiving no disturbance were distributed across 2 racks and were simply replaced back 

into the water column at 3m depth. The 36 slides receiving the water scouring disturbance were 

distributed across 2 racks that were dragged through the water at 20-25cm/s for 10 minutes, 
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simulating a strong current in the lake due to a high wind event. After this disturbance, these 

racks were also replaced into the lake at a depth of 3m. The last set of 36 slides, which received 

the altered depth disturbance, were distributed across 2 racks and were replaced in the water 

column at a depth of 0.5m. These two racks remained at this shallower depth for 5 days, until the 

time of the second disturbance.  

  

Diatom Counts  

 Slide counts were performed with a Leica compound microscope at 400x magnification. 

The vast majority (>99%) of algae on the slides were diatoms. In order to account for potential 

effects of spatial heterogeneity within each slide, half transects were counted across the Plexiglas 

slide, and only the center 6cm x 6cm area was counted. Diatoms were identified to the lowest 

taxonomic resolution possible, which was genus or species. Half transects were counted 

completely until a minimum of 500 individuals were identified. The mean number of individuals 

counted per sample was 1063, with 114,843 total individuals counted in the 108 samples. 

Seventeen taxonomic groupings were differentiated, and fewer than 1% of cells were not 

identifiable. Slides were again frozen after counting.  

 

Bacteria Analysis Using ARISA  

 Slides were transported back to Madison, Wisconsin, USA, for analysis of the bacterial 

communities in the periphyton using Automated Ribosomal Intergenic Spacer Analysis (ARISA). 

The same 6cm x 6cm area of the slide that was counted for periphyton was scraped with a sterile 

razor blade and transferred to a microcentrifuge tube. DNA from these samples was extracted 

using a xanthogenate-phenol-chloroform protocol described elsewhere by Miller and McMahon 
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(2011). We then used PCR with universal bacterial primers 1406f (5’-

TGYACACACCGCCCGT-3’) and 23Sr (5’-GGGTTBCCCCATTCRG-3’) to amplify the 

intergenic spacer region between 16S and 23S of the bacteria in these samples. PCR reactions 

used 5uL of 10x buffer, 2uL MgCl2, 1.25uL of dNTPs, 1uL of each primer, 1uL of template 

DNA, 0.25uL of DNA polymerase, and 13.5uL of water. Samples were analyzed using 

denaturing capillary electrophoresis using an ABI 3730 at the University of Wisconsin 

Biotechnology Center. ARISA output was calibrated against a 100-2000bp standard 

(Bioventures) and was analyzed using the GeneMarker v 1.5 software (SoftGenetics LLC) and 

custom R scripts (Jones and McMahon 2009). The output of this software resulted in relative 

abundance tables of the operational taxonomic units (OTUs) present in the samples.  
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Additional Statistical Methods and Diagnostics 

Diagnostics for Mixed Models  

 In order to validate that the mixed model approach was appropriate for these data, we ran 

several diagnostic tests on the diatom data. First, we ensured that the measure of variability (the 

taxon CV) was not biased by mean taxon abundance. Using a linear regression, we found no 

effect of mean abundance on the CV of these populations (t = .34, p = 0.74, Fig. S2). 

 

 

Similarly, we plotted the random effects estimated in the mixed model to identify whether these 

fitted effects were biased by the mean abundances of the taxa. We found no relationship between 

the estimated random effects and the average log mean abundance of the diatoms (Fig. S3). 

Thus, rare taxa were not more variable than common taxa, suggesting that sample sizes of the 

taxa were sufficiently large that the variability of taxa was not substantially influenced by 

sampling error.  

Additionally, we checked that the residuals from the mixed model were not biased by 

treatment and were approximately normally distributed (Fig. S4).  

 

Additional Statistical Methods and Validation   

  In order to assess whether the results of our analyses were robust to statistical 

methodology, we validated our results using a secondary analysis. Here, we present the results of 

this supplementary analysis conducted on the diatom data. This test gave similar results to the 

mixed model shown in the main text, as it also showed that the disturbed treatments were 

significantly lower in variability than the control treatment, AA.   
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In this second analysis, we bootstrap a mixed model similar to the one presented in the 

main text in order to obtain empirical p values for treatment effects, rather than relying upon p 

values obtained directly from the mixed model. We used this approach to verify that the 

significant treatment effects were not the result of a violation of the assumptions of a mixed 

model. Specifically, we were concerned that using taxon CVs as the statistical unit may inflate 

the probability of finding spurious statistical significance; the taxa were all part of the same 

communities on the Plexiglas slides, which could lead to interdependence among taxon CVs. 

Thus, to address this concern, we used a bootstrapping approach to account for any effect the co-

occurrence of taxa on the same slide might have on the estimated treatment effects. We used this 

null model obtained from the bootstrap to discern significance, rather than relying upon the 

theoretical distribution of treatment effects.  

To validate our statistical methods, we compared the p values for treatment effects that 

were obtained from the two methodologies described above. For ease of comparison, the model 

that we used for this validation was the simplest possible mixed model for our diatom data; we 

analyzed the square root CVs of the diatom taxa as a function of the 9 disturbance treatments 

with a random effect for taxon (Eq. S1). This model structure avoids the use of interaction terms. 

Thus, the treatment effects from this model give the estimated differences between of the square 

root CVs of the ambient treatment, AA, and each of the 8 disturbed treatments.  

CV = β 0+ β 1XAD + β 2 XAS + β 3XDA + β 4 XSA

+ β 5 XDD + β 6 XDS + β 7 XSD + β 8 XSS

+α taxon + ε

α taxon ~ N(0, σ intercept
2 )

ε ~ N(0, σ error
2 )

    (Eq. S1) 

P values obtained from the theoretical distribution   
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As in the main text, the p values obtained directly from the mixed model are the result of 

calculating the z score of the observed treatment effect in order to find the proportion of 

theoretical treatment effects that were more extreme than the observed treatment effect. 

P values obtained using bootstrapping 

In the bootstrapping approach, we obtained an empirical null distribution of treatment 

effects by randomizing the data before running the mixed model. We randomly assigned the 108 

slides to the 9 treatments before calculating the square root CVs of the diatom taxa. In this 

approach, taxa remain associated by slide, but there is no true effect of treatment, because slides 

are randomly assigned to treatments. Then, we ran the mixed model on these square root CVs 

obtained from the randomized data and recorded the treatment estimates. Thus, the treatment 

estimates should include any effects of the interdependence of the taxa on the same slide. We 

repeated this workflow 1000 times to obtain a distribution of 1000 sets of treatment estimates. 

These 1000 sets of treatment estimates were then used as the null distribution of treatment 

effects, as they were all obtained under the condition where there was no real difference between 

treatments. Finally, we compared the treatment effects from the real, non-randomized dataset to 

the treatment effects obtained when slides were randomized into treatments. We obtained pseudo 

p values by calculating the proportion of treatment estimates in the null distribution that were 

more extreme (lower) than treatment estimates from the real dataset. This proportion gives the 

fraction of random slide assignments that led to a more negative estimated treatment effect than 

was observed in the true data. 

We found that, similar to the mixed model, the overall trend was for populations to 

become more predictable (have a lower square root CV) after the experimental disturbances (Fig. 

S5). The associated pseudo p values are given in Table S1. The similarity of the results of this 
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analysis and the analysis presented in the main text suggests that the observed decrease in 

population variability in disturbed treatments is a result that is robust to various statistical 

methodologies.  

 

Table S1: For each treatment, we calculated a pseudo p value, which was the fraction of the null 

distribution of mixed model coefficients that was lower than the observed mixed model 

coefficient. * indicates p < 0.05; ** indicates p < 0.01.  

 

Table S1: Comparison between theoretical and pseudo P values 
Treatment AD AS DA DD DS SA SD SS 
Theoretical 

P-Value 
0.0016 

** 
0.031 

* 
0.033 

* 
0.014 

* 
0.0052 

** 
0.034 

* 
0.0001 

** 
0.19 

Pseudo  
P-Value 

0.008 
** 

0.037 
* 

0.044 
* 

0.023 
* 

0.006 
** 

0.038 
* 

0.000 
** 

0.158 
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Fig. S1: At the start of the experiment, the 108 Plexiglas slides were distributed across 6 

identical metal racks. All 6 racks were deployed side by side on buoy lines in Lake Myvatn and 

were suspended 0.3m from the sediment surface. After 20 days of periphyton colonization (T1), 

slides were again randomized before experiencing the first disturbance. Again, on day 25, slides 

were randomized onto new racks corresponding to the disturbance experienced at T2.  

Fig. S2: We plotted the CVs of each diatom taxon within each treatment (72 total populations) 

against the mean abundance of that population. We found that the population CV was not biased 

by the mean population abundance.  

Fig. S3: We plotted the estimated random effect from the mixed model against the log of the 

mean abundance of each diatom taxon. We found no relationship between the fitted random 

effects and the mean abundances of the diatom taxa. Abbreviations refer to Cocconeis spp., 

Rhoicoshpenia spp., Cymbella spp., Synedra spp., Gomphonema spp., Nitzschia holsatica, single 

Fragilaria spp., and colonial Fragilaria spp. 

Fig. S4: Mixed model residuals were not biased by treatment and were approximately normally 

distributed.  

Fig. S5: We ran mixed models with our data randomly assigned to treatment to obtain a null 

distribution of treatment coefficients to compare to the true treatment coefficients. The mixed 

models estimated the effect of the 8 disturbance regimes on the square root CV of taxa within 

that treatment. Grey points show the 1000 coefficients obtained for each disturbance regime from 

mixed models run with samples that were randomly assigned to the 9 treatments. Black points 

show the observed coefficients (from the true data) from the same mixed model. 

Fig. S6: A principal component analysis for the diatom communities shows that the AA 

treatment polygon overlaps strongly with every other treatment polygon. The AA treatment 
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polygon (red) spans a large portion of the first axis (PC 1), as well as the entire length of the 

second axis (PC 2).  

Fig. S7: A principal component analysis for the bacterial communities shows that the AA 

treatment polygon (red) overlaps strongly with every other treatment polygon.  
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Fig. S1 
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Fig. S2 
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Fig. S3 
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Fig. S4 
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Fig. S5 
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Fig. S6 
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Fig. S7 
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Abstract: 

The chironomids of Lake Mývatn show extreme population fluctuations that affect most aspects 

of the lake ecosystem. During periods of high chironomid densities, chironomid larvae comprise 

over 90% of aquatic secondary production. Here, we show that chironomid larvae substantially 

stimulate benthic gross primary production (GPP) and net primary production (NPP), despite 

consuming benthic algae. Benthic GPP in experimental mesocosms with 140,000 larvae/m2 was 

71% higher than in mesocosms with no larvae. Similarly, chlorophyll a concentrations in 

mesocosms increased significantly over the range of larval densities. Furthermore, larvae showed 

increased growth rates at higher densities, possibly due to greater benthic algal availability in 

these treatments. We investigated the hypothesis that larvae promote benthic algal growth by 

alleviating nutrient limitation, and found that 1) larvae have the potential to cycle the entire 

yearly external loadings of nitrogen and phosphorus during the growing season and 2) 

chlorophyll a concentrations were significantly greater in close proximity to larvae (on larval 

tubes). The positive feedback between chironomid larvae and benthic algae generated a net 

mutualism between the primary consumer and primary producer trophic levels in the benthic 

ecosystem. Thus, our results give an example in which unexpected positive feedbacks can lead to 

both high primary and high secondary production. 

 

Keywords: consumer-resource dynamics; positive feedback; facilitation; benthic primary 

production; nutrient cycling 

 



 

 

56 

Introduction 

Predation is classically defined as an interaction where a consumer species exerts a net 

negative effect on a resource’s per-capita growth rate, while receiving a net benefit from 

exploiting the resource population (Gotelli 2001). However, these long-term emergent effects on 

population growth rates are the result of many discrete, short-term interactions (Vázquez et al. 

2015). During these short-term interactions, one species can exert either positive or negative 

effects on another species (Chamberlain and Holland 2009). For example, individuals from two 

species may experience a range of different interactions based on environmental factors (Juliano 

2009), the abundance of other species (Paine 1969), or life stage (Pimm and Rice 1987). Thus, 

although consumers generally suppress resource abundance (Sih et al. 1985), they may also have 

short-term positive interactions with their resources. 

Several studies have shown that consumers can have positive effects on their resources, 

often in the form of increased resource productivity (e.g. per-capita birth rate). Instances where 

this positive effect has been demonstrated include consumer-driven nutrient availability 

(McNaughton 1983, McIntyre et al. 2008, Knoll et al. 2009) compensatory plant growth 

following herbivore browsing (Petelle 1982), and in the context of optimum sustainable yield of 

fisheries (Beverton and Holt 1957). Examples where consumers might increase resource 

abundance are less common, but have been shown when predation shifts the resource age 

structure to have fewer adults and more juveniles (Zipkin et al. 2008). Still, empirical cases of 

positive feedbacks between consumers and food resources are scarce in comparison to the range 

of circumstances where they are predicted from theoretical models (Abrams 2009). Additionally, 

given the relatively little conceptual development of mutualistic interactions (Vázquez et al. 



 

 

57 

2015), it is unclear how this positive feedback within consumer-resource interactions might 

influence emergent properties such as population dynamics or ecosystem productivity.    

Lake Mývatn is an anomaly for a subarctic lake, with an abundant and diverse food web 

(Einarsson et al. 2004). Despite a short growing season and cool temperatures, the lake has 

surprisingly high primary and secondary productivity for its high latitude (Lindegaard and 

Jónasson 1979). The most striking example of this high productivity are the chironomids 

(Diptera: Chironomidae) that can occur at densities > 500,000/m2 in the benthos (Thorbergsdóttir 

et al. 2004). Chironomid populations at Mývatn fluctuate over 3-4 orders of magnitude but 

routinely reach very high densities, comprising > 90% of secondary production (Einarsson et al. 

2002, Ives et al. 2008). It is evident that, in supporting this amount of chironomid biomass, algal 

growth rates are able to keep pace with the grazing pressure of these primary consumers.  

We hypothesize that chironomid larvae, in addition to being consumers of the benthic 

algae in Lake Mývatn, also have a strong positive effect on algal productivity. We hypothesize 

that primary production and algal biomass increase in response to high larval densities, creating a 

positive feedback within this consumer-resource system. Furthermore, we hypothesize that the 

positive feedback might be sufficiently strong as to increase secondary production due to a 

higher short-term growth rate of chironomid larvae (i.e. body size increases) as their resource 

availability increases. We investigate two related mechanisms that could lead to this positive 

effect of primary consumers on primary producers: larval tubes provide a superior substrate for 

benthic algal growth (Pringle 1985), and larval excretion increases the availability of limiting 

nutrients (Atkinson et al. 2013). We hypothesize that the positive effect of chironomid larvae on 

their food resources is one factor that contributes to the high primary and secondary productivity 

of the Lake Mývatn system.  
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Methods  

Lake Mesocosms Across a Range of Larval Densities 

 If chironomid larvae facilitate algal production, then we would expect that as larval 

densities increase, so would benthic gross primary production (hereafter, benthic GPP). This 

experiment was designed to determine how varying densities of chironomid larvae affect benthic 

algal productivity, chlorophyll a concentration, and growth rates of chironomid larvae. We 

collected chironomid larvae and sediment from Lake Mývatn using an Ekman grab on 11-14 July 

2014. We identified and sorted 23,450 live chironomid larvae for this experiment. Larvae were 

identified to tribe, and chironomini and tanytarsini were collected for the experiment. At the 

collection location, almost all chironomini were Chironomus islandicus (Kieffer) larvae, and 

almost all of the tanytarsini were Tanytarsus gracilentus (Holmgren) larvae; therefore, we will 

refer to the chironomini as C. islandicus and the tanytarsini as T. gracilentus. 

On 15 July 2014, we set up 55 mesocosms stocked with sieved (125 µm) lake sediments 

and with 8 levels of chironomid densities. Mesocosms consisted of 1-L clear polypropylene deli 

cups (10.4 cm diameter and 16 cm height) filled to a depth of 10 cm with sieved sediment and 

left uncovered at the top. We filled mesocosms with assemblages of 75% C. islandicus larvae 

and 25% T. gracilentus larvae, as that was the ratio of larvae recovered from Ekman grabs. 

These two taxa comprised the overwhelming majority (>95%) of organisms recovered from 

Ekman grabs. Both C. islandicus and T. gracilentus are vertical tube-building chironomids that 

feed non-selectively on detritus and diatoms present at the sediment surface and on their larval 

tubes (Einarsson et al. 2004). The two species are primarily differentiated in their ecology by 

size (C. islandicus is the larger species, averaging 9 times the mass of T. gracilentus larvae 

during this study) and depth of burrows; T. gracilentus often builds tubes that are 2-3 cm in 
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length near the sediment surface (Ólafsson and Paterson 2004), but we often observed C. 

islandicus building vertical burrows that extended to between 10-15 cm depth. The bioturbation 

activities of both species include ventilation of their blind-end burrows and particle reworking 

that results in biodiffusion (sensu Kristensen et al. 2012). We used the following larval densities 

for experimental mesocosms: 0, 50, 100, 200, 400, 600, 800, and 1200 per mesocosm. These 

numbers correspond to the following densities of larvae/m2: 0, 5 886, 11 772, 23 544, 47 087, 70 

631, 94 174, and 141 262. The amount of biomass introduced in the mesocosms with 1200 larvae 

was intended to exceed the maximum larval biomass that has been observed in lake sediments 

(Thorbergsdottir et al. 2004). There were six replicates of the treatment with 0 larvae and seven 

replicates of all other treatments. We randomly distributed the mesocosms across 11 metal racks 

and set them on the lake bottom in an area of the lake that was 3.5 m deep, almost the maximum 

natural lake depth.  

 On 27 July 2014 (12 days later), we retrieved the mesocosms and performed incubations 

to analyze benthic GPP and benthic NPP of algae in the mesocosm sediments. Two mesocosms 

of each treatment were incubated in dark conditions (by wrapping mesocosms with shading tarp), 

and the remaining mesocosms were incubated under light conditions, which consisted of placing 

racks at a depth of 1-2 m in the lake to prevent light limitation of photosynthesis. During the 

incubations, we sealed mesocosms with Parafilm for a duration of 4 hours. We measured the 

dissolved oxygen concentration in the water column of each mesocosm (mean height and volume 

of water column = 6.3cm, 535mL) before and after the sealed incubation using a YSI ProODO 

probe (Yellow Springs, Ohio, USA). We gently mixed the water column with the probe to 

homogenize any potential vertical gradients in dissolved oxygen. Benthic NPP was measured as 

the net oxygen change in light-incubated mesocosms. Benthic GPP was estimated using the net 
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change in oxygen concentrations in light-incubated mesocosms plus the average oxygen 

consumption in the dark-incubated mesocosms of the same larval density (Vander Zanden et al. 

2006). More of the mesocosms were incubated under light conditions than dark conditions 

because pilot studies indicated that light-incubated mesocosms had more variable oxygen 

measurements than dark mesocosms. We used linear mixed models (using fixed and random 

effects) to analyze benthic GPP and NPP of the mesocosms. The fixed effect was the number of 

larvae in the mesocosms, and the random effect was the rack where the mesocosm was situated. 

The fixed effect was the number of larvae in the mesocosms, and the random effect was the rack 

where the mesocosm was situated.  

 Immediately after benthic GPP incubations were completed, we took sediment samples 

of the top 0-1 cm of the mesocosms and froze them at -20 ºC. Within 3 weeks, sediments were 

analyzed for chlorophyll a content. We analyzed chlorophyll a concentration by extracting 1 mL 

of sediment in methanol for 24 hours before quantifying fluorescence using standard protocols 

(Welschmeyer 1994) with a tabletop fluorometer (Turner Designs, Sunnyvale, CA, USA). We 

used a linear model to analyze the chlorophyll a content of the mesocosms as a function of the 

number of larvae in the mesocosms. Additionally, we used a linear model to analyze how 

chlorophyll-specific GPP (defined as the GPP of a mesocosm divided by the chlorophyll a 

concentration in the mesocosm) changed in response to larval density. 

After chlorophyll a samples were taken, we then collected the chironomid larvae from the 

mesocosms to obtain the average dry weight of larvae in each mesocosm. The majority of 

remaining larvae were C. islandicus, because most T. gracilentus had pupated and emerged 

during the experiment. We placed these larvae in tap water at 4 ºC for 36 hours to allow them to 

void their gut contents. Then, we haphazardly sampled 30 C. islandicus larvae from each 
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mesocosm (or, all remaining C. islandicus, in the case of some of the mesocosms beginning with 

50 larvae) and dried the larvae at 60 ºC for a minimum of 24 hours to obtain an average larval 

dry weight for each mesocosm (Dermott and Paterson 1974). Prior to the beginning of this 

experiment, we had weighed a random subsample of 100 C. islandicus individuals to estimate 

initial larval weight. We used a linear model to analyze the dry weight of C. islandicus larvae as 

a function of the number of larvae stocked in the mesocosms.  

Lake Mesocosms for Larval Tubes 

 We hypothesized that the silken protective tubes spun by the larvae would contain 

elevated levels of chlorophyll a, as compared to loose sediments, because of the high substrate 

quality of larval tubes (Pringle 1985). On 12 July 2014, we used similar protocols as described 

above (larval density experiment) to establish mesocosms with chironomid larvae separated to 

species. These mesocosms were constructed using 400 mL containers (7.0 cm diameter) filled 

with approximately 275 mL of sieved sediment to a depth of 8 cm. We filled 8 mesocosms with 

175 larvae of Chironomus islandicus, 8 mesocosms with 175 larvae of Tanytarsus gracilentus, 

and 10 mesocosms with no larvae. We placed mesocosms on racks and submerged them at 3.5 m 

depth in Lake Mývatn. On 21 July 2014 (9 days), we retrieved the mesocosms and sampled the 

top 1cm of all mesocosms for chlorophyll a content. We sampled chironomid tubes from the two 

species by collecting 0.5 mL of larval tubes. To collect the tubes, we used forceps to remove 

adjacent sediments and extracted the top 1 cm of the tube. We compared chlorophyll a content in 

larval tubes of each species to the chlorophyll a content in adjacent loose sediments. 

Quantification of Larval Excretion  

 A hypothesis regarding the mechanism of the positive feedback between chironomid 

larvae and benthic algae was that the larvae increase nutrient availability to the algae. To 
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investigate the magnitude of the soluble nutrient flux, we conducted incubations of chironomid 

larvae to quantify the amount of nitrogen and phosphorus in larval excretions.  

We collected larvae with Ekman grabs on 22 July 2014. We transported the larvae back 

to the lab, where groups of 100 larvae were collected and immediately placed into 100 mL of 

distilled water in new, amber Nalgene bottles. We incubated these larvae in the shade outside for 

4 hours. Temperatures during the incubations were between 15.8-18.0 ºC, which is within the 

range of observed summer water temperatures in Lake Mývatn. Immediately afterwards, we 

sieved the contents of the bottles through 63 µm mesh to remove chironomid larvae and any 

fecal material they had passed before obtaining larval dry weight (Dermott and Paterson 1974). 

The water samples from these incubation experiments were then frozen at -20 ºC and were 

transported on dry ice to Madison, Wisconsin, USA, where samples were analyzed for soluble 

nitrogen (combined NH4, NO3
-
, NO2

-) and soluble reactive phosphorus (SRP) following protocols 

used by the North Temperate Lakes Long Term Ecological Research program 

(www.lter.limnology.wisc.edu). All statistical analyses in this study were performed with the R 

programming environment (v. 3.1.3), using the base and stats packages for data handling and 

linear regression, the lme4 package for linear mixed models, and the outliers packages for 

detecting anomalous data points. 

Results 

Lake Mesocosms Across a Gradient of Larval Densities 

 Benthic GPP in mesocosms responded strongly and positively to the presence of 

chironomid larvae (n = 39, t = 17.8; p < 0.001, conditional R2 = 0.93, Fig. 1a). Furthermore, there 

was also an increase in NPP with increasing numbers of chironomid larvae (n = 39, t = 7.64; p < 

0.001, Fig. 1b). Thus, there were greater absolute oxygen concentrations in mesocosms with high 
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densities of chironomid larvae, despite the increased oxygen consumption by microbes that are 

stimulated by larval activity and, to a lesser extent, respiration of the larvae themselves (Baranov 

et al. 2016). We assumed that mortality of larvae among treatments was small and not 

substantially different by treatment, as differences in larval densities across treatments were still 

visually obvious when the mesocosms were retrieved.    

 Chlorophyll a concentrations increased linearly in response to higher densities of 

chironomid larvae (F1, 53 = 15.4, p < 0.001, Fig. 1c). For every 100 larvae added to a mesocosm, 

chlorophyll a concentrations increased by 1.5% relative to mesocosms with no larvae, with no 

apparent saturation over the densities used in this study. 

 The average individual mass of C. islandicus larvae increased significantly in response to 

higher densities of larvae stocked in the mesocosms (F1, 47 = 8.23, p = 0.0062). That is, larvae 

stocked at high densities had grown more than larvae stocked at lower densities (Fig. 1d). 

Furthermore, average mass of larvae stocked at low densities decreased from the average starting 

mass (Δ dry weight = - 0.052 mg for the lowest density of 50 larvae), whereas larvae stocked at 

high densities increased in average mass (Δ dry weight = + 0.053 mg DW for the highest density 

of 1200 larvae, approximately + 6% increase).  

 Chlorophyll-specific GPP strongly increased (F1, 37 = 53.0, p < 0.001) in response to 

larval density (Fig. 1e). Thus, benthic GPP increased at a faster rate than chlorophyll a 

concentration with increasing larval densities. 

Lake Mesocosms for Larval Tubes 

 Chironomid tubes of both species had more than double the chlorophyll a concentrations 

of adjacent loose sediments. For mesocosms containing T. gracilentus, larval tubes had 

significantly greater chlorophyll a concentrations (mean ± standard error = 51.2 mg/L ± 2.63 
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mg/L), than loose sediments (mean = 22.8 mg/L ± 1.75 mg/L, F1, 16 = 117, p < 0.001). Similarly, 

C. islandicus tubes had a mean chlorophyll a concentration of 47.0 mg/L (± 2.38 mg/L) and 

sediments had 21.8 mg/L (±1.58 mg/L, F1, 16 = 112, p < 0.001). However, tubes of the two 

species did not have significantly different chlorophyll a concentrations (F1, 14 = 1.38, p = 0.26).  

Quantification of Larval Excretion 

 We obtained measurements of soluble nitrogen (combined NH4
+, NO3

-, and NO2
-) and 

soluble reactive phosphorus (SRP) for five incubations of T. gracilentus and four incubations of 

C. islandicus, after removing 1 outlier sample. Of the soluble N, 94% was in the form of NH4
+. 

For soluble N, C. islandicus individuals excreted 1.05 µg/d (± 0.19 SEM), whereas T. 

gracilentus individuals excreted 0.38 µg/d (± 0.17). However, when standardized by dry weight, 

C. islandicus excreted 1.54 µg·d-1·mg-1 (± 0.82) and T. gracilentus excreted 4.94 µg·d-1·mg-1 (± 

0.73). For SRP, these values were 0.26 µg/d (± 0.020) for C. islandicus individuals and 0.10 

µg/d (± 0.018) for T. gracilentus individuals. By dry weight, the equivalent excretion rates were 

0.37 µg·d-1·mg-1 (± 0.055) for C. islandicus and 1.32 µg·d-1·mg-1 (± 0.050) for T. gracilentus.  

Discussion 

 Our results indicate that chironomid larvae can generate a net positive effect on their 

algal resources. Despite the fact that benthic algae are a primary food source for chironomid 

larvae (Ingvason et al. 2004), benthic algae were more abundant and more productive with 

higher numbers of chironomid larvae stocked in our mesocosms. In mesocosms with 1 200 

larvae, benthic GPP was, on average, 71% greater than in mesocosms with no larvae. 

Additionally, benthic algal biomass (assessed by chlorophyll a) was greater in mesocosms that 

had been stocked with more chironomid larvae, despite the ongoing grazing of algae by the 

larvae. More critically, however, benthic GPP increased faster than chlorophyll a, indicating that 
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productivity per unit of algal biomass increased as more chironomid larvae were present. 

Furthermore, C. islandicus larvae also grew faster when stocked at higher densities; the 

increased mass of C. islandicus larvae at high densities suggests that the consumer-resource 

positive feedback is sufficiently strong to generate positive density-dependence of the growth of 

chironomid larvae. Thus, these experiments show that, at high larval densities, chironomid 

resource limitation was alleviated by their stimulation of benthic algae. Furthermore, Fig. 1e 

shows that chlorophyll-specific GPP increased at high consumer biomass; similarly, Fig. 1d 

shows that C. islandicus also reached greater individual mass at high densities. This chironomid-

algal positive feedback is one potential mechanism that may explain how the chironomids can 

reach such extreme densities in the benthos of Lake Mývatn.  

Magnitude of consumer-driven nutrient cycling 

Alleviation of nutrient limitation by larval activity could play a role in generating the 

observed positive feedback, especially because internal nutrient cycling is the largest contributor 

to the nitrogen and phosphorus budgets in Lake Mývatn (Ólafsson 1979) and many other 

freshwater systems (Vanni 2002). We found that larval excretions provide concentrated nutrients 

in the close proximity of benthic algae, which could account for the high quality of larval tubes 

as a substrate for algae (Hershey et al. 1988). Another possible positive effect of tube building on 

algal growth rates is the change in physical structure the tubes create. The three-dimensional silk 

tubes of C. islandicus and T. gracilentus larvae increase surface area for algal growth, while 

altering physical characteristics of surface sediments due to the binding properties of larval silk 

(Ólafsson and Paterson, 2004). Furthermore, because the chironomid larvae also consume 

detritus as 30-50% of their diet (Einarsson et al. 2004, Ingvason et al. 2004), the larvae also 

mobilize nutrients stored in decaying organic matter and diatom fragments. Thus, the larvae 
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likely increase nutrient availability by both increasing the rate of nutrient cycling and by adding 

to the pool of biologically available nitrogen and phosphorus through their digestion of detritus.  

For illustrative purposes, we can examine the potential significance of nutrient 

mobilization by larvae relative to other sources in the lake. By multiplying chironomid excretion 

rates (for nitrogen, 1.05 and 0.38 µg/d for C. islandicus and T. gracilentus, respectively) by an 

estimate of larval density from 19 Aug 2014 from one location in the lake (7,500 C. islandicus 

per m2 and 431,000 T. gracilentus), we find that chironomids could move in 8 days the 

equivalent of the yearly external input of nitrogen (1.4 g N/m2 y-1, Ólafsson 1979), which is often 

the limiting nutrient in the lake (Ólafsson 1979, Einarsson et al. 2004). We can similarly estimate 

that chironomid larvae could cycle the yearly input of phosphorus (1.5 g P/m2 y-1) in 30 days. 

This is based on several simplifying assumptions, including constant excretion and flux rates, as 

estimated from the excretion assay, that chironomid densities (and size structure) remain 

relatively constant, and that excretion was the sole source of nutrients in the incubation water 

samples. Still, these estimates further demonstrate the potential for chironomids to influence 

whole-ecosystem processes (Hölker et al. 2015). Similarly, prior research has found that 

chironomids may have a substantial impact on benthic nutrient cycling above densities of 1 000 

individuals/m2 (Tátrai 1988). Additionally, chironomid behavior may also affect nutrient 

availability in the benthos, because chironomid bioturbation stimulates NH4
+ release from 

sediments (Tátrai 1988, Hölker et al. 2015). In a prior study, another Chironomus species 

liberated NH4
+ from sediments down to at least 15 cm depth (Lewandowski et al. 2007). In Lake 

Mývatn, NH4
+ concentrations are very high in deep sediments, reaching > 1 000 µg/L by 20 cm 

depth (Gíslason et al. 2004). These results also suggest that the rates of nutrient cycling in Lake 

Mývatn could vary dramatically from year to year, based on larval densities.  
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Implications for rates of ecosystem productivity  

The magnitude of the consumer-resource positive feedback suggests that variability in 

chironomid abundance could be a strong determinant of primary production in Lake Mývatn.  

Additionally, the net mutualism in this consumer-resource system is sufficiently strong as to 

increase secondary production. It is evident that the positive feedback can generate positive 

density-dependence in the chironomids, as the C. islandicus larvae grew more quickly in 

mesocosms where they were at high densities. One hypothesis to explain the positive density-

dependence in C. islandicus is that larvae feed both on and around their tubes, meaning that these 

chironomids could increase algal availability to neighboring larvae if individuals are sufficiently 

close. Previous studies of chironomid larval behavior have found evidence of spatial aggregation 

(Titmus and Badcock 1981, Drake 1983), and we propose that the positive feedback observed in 

this study may promote behavioral aggregation due to greater local resource availability. 

Interestingly, the chironomids from treatments with comparatively low larval densities lost mass 

during the experiment. We hypothesize that all larvae in our mesocosms likely experienced a 

decrease in their resource availability as a result of establishment of mesocosms. Homogenizing 

the sediments would have reduced the algal availability in mesocosms, as compared to the 

original lake sediments. This is because it disrupted the high-quality periphyton resources that 

were present on sediment surfaces and on larval tubes. Furthermore, larvae could have lost body 

mass due to metabolic costs incurred as a result of building new tubes and burrows in the 

mesocosms. For these reasons, we expect that the mass of all larvae would have declined initially 

upon being relocated to mesocosms. However, larvae in higher density treatments may have 

regained body mass more quickly due to the higher primary production of these mesocosms. 
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We also hypothesize that mutualisms between consumers and resources, such as the 

positive feedback described here, could ultimately translate to population-level effects in these 

systems. For example, for chironomids at Lake Myvatn, this positive feedback might explain the 

prolonged period of exponential growth experienced by the chironomids during the upswings in 

their population fluctuations; the mutualism between the chironomid consumers and the algal 

resources may be sufficiently strong as to allow for several generations of exponential growth 

due to a lack of resource limitation. However, it is obvious that at some point, the positive 

feedback between the chironomid community and the benthic algae breaks down, because the 

chironomid populations eventually crash. As such, we hypothesize that the relationship between 

density of chironomid larvae and the rate of benthic algal production may be dependent on other 

factors not considered in this study, which could lead to a non-linear relationship under different 

conditions. For example, the proportion of detritus in sediments could be an important 

modulating factor in the positive feedback (de Mazancourt et al. 1998), as it represents a source 

of nutrients that are added to the nutrient pool, rather than only recycled within the nutrient pool. 

Additionally, the stage structure of the chironomid larvae could be another factor determining the 

strength of this mutualism. The biomass of larvae in the lake changes substantially throughout 

the growing season as a result of larvae progressing through stages of development, which could 

alter the relative rates of consumption and stimulation of benthic algae. Because the chironomids 

in Lake Mývatn have a finite population size, the linear relationship between chironomid density 

and chironomid growth must plateau under some circumstances. 

Although we have highlighted several reasons to believe that the positive relationship 

between chironomids and their food resources must break down under different conditions in our 

study system, it is worthwhile to consider the theoretical case where this effect is uniform across 
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space and time. In the case that all else is held constant, a positive feedback that leads to 

differential consumer growth rates would be expected to influence population dynamics. 

Integrating positive feedbacks in consumer-resource systems with the existing theoretical 

frameworks of consumer-resource population dynamics suggests that systems with consumer-

resource mutualisms may have specific population-level characteristics. For example, increased 

population-level growth rates in the consumer as a result of a mutualism could be considered a 

type of Allee effect (Allee 1931). Following this framework, a region of positive density-

dependence in the consumer should generate a stable equilibrium at a higher density than would 

occur without the positive feedback (Stephens et al. 1999). In the context of the Lake Mývatn 

system, this means that the lake benthos might exhibit a tendency to support higher densities of 

larvae than would occur in the absence of the positive feedback. Furthermore, positive feedbacks 

within consumer-resource systems often tend to increase the birth rate of the resource (Bianchi et 

al. 1989). This scenario of variable resource birth rates has been long-studied by theoretical 

ecologists because it generates the “Paradox of Enrichment,” which occurs when an increase in 

the per-capita birth rate of a resource destabilizes the population dynamics of a consumer-

resource system (Rosenzweig 1971). This well-known result suggests that a positive feedback in 

a consumer-resource system might predispose the system to instability or cyclic dynamics. Thus, 

including positive feedbacks into models of consumer-resource systems may have predictable 

consequences for population dynamics.  

Positive feedbacks in consumer-resource interactions 

Although chironomid larvae could generate a net positive effect on primary production, 

these larvae are still consumers of the benthic algae. Thus, the interaction between the larvae and 

the benthic algae was a combination of facilitation and consumption. Because the larvae 



 

 

70 

stimulated algal growth to a greater extent than they suppressed it through consumption, the 

larvae and the algal showed a net mutualistic interaction, whereby both taxa had a greater growth 

rate when the other was highly abundant. Whereas combinations of species interactions such as 

competition and predation have been considered simultaneously (e.g. intraguild predation), a 

similar framework for understanding mutualism in the context of predation is lacking (Vázquez 

et al. 2015). This study suggests that strong consumer-resource positive feedbacks can affect 

ecosystem-level properties, such as primary production and producer-to-consumer ratios.  

This consumer-resource positive feedback may be important in other systems where 

grazers are the primary consumers. We investigated here two mechanisms that may contribute to 

the positive effects of grazers on their resources: nutrient cycling through excretion and 

ecosystem engineering providing enhanced substrate for growth. However, another contributing 

factor here might be that benthic bioturbators increase the flux of soluble nutrients out of 

sediment pore water, making these nutrients available to primary producers (Lewandowski & 

Hupfer 2005). More generally, there are several other mechanisms whereby grazers could 

promote the growth of their resources. These mechanisms include increased growth due to a 

release from shading following grazing, hormone secretions in grazer saliva that induce growth, 

removal of senescing tissue, release from intraspecific competition, and greater efficiency in 

resource distribution within the remaining population (McNaughton 1983). Given the myriad 

mechanisms by which grazers could increase the growth rate of their resources, it would be 

interesting to look for this positive feedback in other systems, especially investigating whether 

background nutrient availability influences the strength of the positive feedback.  

A recent review of the effect of tube-dwelling invertebrates as ecosystem engineers 

concluded that it is difficult to determine the importance of tube-dwelling invertebrates at the 
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lake-wide scale (Hölker et al. 2015). However, this study supports the hypothesis that 

chironomids can be drivers of lake primary production by altering critical feedback loops. This 

study demonstrates that the positive feedback between tube-dwelling invertebrates and benthic 

primary producers can significantly affect lake-wide productivity, as benthic GPP can account 

for upwards of 80% of total aquatic GPP in this system (Jónasson 1979, Thorbergsdóttir et al. 

2004). Although the effects of tube-dwelling invertebrates on pelagic primary production have 

been well studied (Hölker et al. 2015), the critical role these ecosystem engineers play in the 

benthos has not been documented as thoroughly, even though benthic primary production may be 

greater than pelagic primary production in shallow lakes (Vadeboncoeur et al. 2008). Finally, 

this positive feedback may be particularly important in regions where chironomids are used as 

indicators of water quality, if the chironomid larvae modify their environment by stimulating 

algal production.  

Several previous studies have shown that consumers can have marginal positive effects 

on resources (McNaughton 1983, Holland and DeAngelis 2010), even if the net effect of 

consumers is generally negative (Sih et al. 1985). Despite this observation, positive feedbacks 

have often been ignored in conceptual models of consumer-resource interactions (Vázquez et al. 

2015). However, in this instance, the consumer-resource facilitation was stronger than the effect 

of consumption; the benthic primary consumer trophic level exerted a net positive effect on their 

resources. Thus, contrary to the paradigm that aquatic primary consumers are particularly 

effective at suppressing primary producer biomass (Hairston and Hairston 1993, Shurin et al. 

2006), we found that increasing the density of primary consumers could substantially increase 

benthic NPP and primary producer biomass. These results also highlight the importance of 

considering the rates of turnover of resources, in addition to standing biomass. Facilitation in 
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consumer-resource interactions, which is often overlooked when net interaction strengths are 

negative, has the potential to substantially alter traditional consumer-resource dynamics. In the 

Mývatn system, positive consumer-resource feedbacks can be sufficiently strong as to create a 

net mutualism between the primary producer and primary consumer trophic levels in the benthos. 
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Figure 1 (a) Benthic gross primary production (estimated from O2 production) in 55 

experimental mesocosms (39 light and 16 dark) increases across the range of initial chironomid 

larval densities. Each point represents the oxygen production in a light-incubated mesocosm, 

measured on day 13 of the study. The solid line shows the linear relationship from the mixed 

model fitting the oxygen production of each mesocosm as a function of the initial number of 

chironomid larvae in a mesocosm. (b) Net oxygen change in the light-incubated mesocosms was 

used to estimate NPP in the mesocosms. These rates of change in oxygen concentrations were 

plotted against the number of larvae originally in each mesocosm. The solid line shows the linear 

fit of the mixed model predicting net oxygen change as a function of the number of chironomid 

larvae. (c) We obtained chlorophyll a concentrations from the top 0-1cm of sediments from the 

55 experimental mesocosms. A linear model shows that chlorophyll a concentrations from 

experimental mesocosms increased significantly in response to higher numbers of chironomid 

larvae in the mesocosms (solid line). (d) We calculated the average dry mass of C. islandicus 

individuals (based on 30 haphazardly selected larvae) from each mesocosm containing 

chironomid larvae (n = 49 mesocosms). The dashed line shows the average initial dry weight of 

larvae before the start of the experiment (0.82 mg/individual). The solid line shows the fit of the 

linear model using the initial number of larvae as the predictor of C. islandicus final larval mass. 

(e) The rate of oxygen production per gram chlorophyll a in the light-incubated mesocosms 

increases as a function of the initial number of chironomid larvae in the mesocosm. The solid 

line shows the fit of the linear model using the number of chironomid larvae in each mesocosm 

as a predictor of oxygen production per gram of chlorophyll a.  
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Abstract  

 The ability to predict microbial community dynamics lags behind the quantity of data 

available in these systems. Most predictive models use only environmental parameters, although 

a long history of ecological literature suggests that community complexity should also be an 

informative parameter. Thus, we hypothesize that incorporating information about a 

community’s complexity might improve predictive power in microbial models. Here, we present 

a new metric, called community “cohesion,” that quantifies the degree of connectivity of a 

microbial community. Here, we analyze six long-term (10+ year) microbial datasets using the 

cohesion metrics and validate our approach using datasets where absolute abundances of taxa are 

available. As a case study of our metrics’ utility, we show that community cohesion is a strong 

predictor of Bray-Curtis dissimilarity (R2 = 0.47) between phytoplankton communities in Lake 

Mendota, WI, USA. Our cohesion metrics outperform a model built using all available 

environmental data collected during a long-term sampling program. The result that cohesion 

corresponds strongly to Bray-Curtis dissimilarity is consistent across the six long-term time 

series, including five phytoplankton datasets and one bacterial 16S rRNA gene sequencing 

dataset. We explain here the calculation of our cohesion metrics and their potential uses in 

microbial ecology.   
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Introduction 

Most efforts to model microbial communities primarily use environmental drivers as 

predictors of community dynamics (Patterson 2009, Hambright et al. 2015). However, despite 

the vast quantities of data becoming available about microbial communities, predictive power in 

microbial models is often surprisingly poor (Blaser et al. 2016). Even in one of most well-studied 

microbial systems, the San Pedro Ocean Time Series (SPOT), there are sampling sites where 

none of the 33 environmental variables measured are highly significant (P < 0.01) predictors of 

community similarity (Cram et al. 2015). Thus, there may be room to improve predictive models 

by adding new parameters; ecological literature has long suggested that the degree of complexity 

in a community should inform community dynamics (MacArthur 1955, Cohen and Newman. 

1985, Wootton and Stouffer 2016). We use the term “complexity” as defined in the theoretical 

ecology literature, which refers to the number and strength of connections in a food web (May 

1974). We hypothesize that incorporating information about the complexity of microbial 

communities could improve predictive power in these communities. 

Here, we present a workflow to generate metrics quantifying the connectivity of a 

microbial community, which we call “cohesion.” We demonstrate how our cohesion metrics can 

be used to predict community dynamics by showing that cohesion is significantly related to the 

rate of compositional turnover (Bray-Curtis dissimilarity) in microbial communities. As an 

application of our metrics, we present a case study using our newly developed cohesion variables 

as predictors of the compositional turnover rate (a common response variable in microbial 

ecology) in phytoplankton communities. Prior modeling efforts have indicated that incorporating 

taxon traits and interactions improved models of phytoplankton community assembly (Litchman 

and Klausmeier 2008, Thomas et al. 2012). However, even basic traits such as taxonomy are still 
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often unknown for other microbial taxa, such as bacteria (Newton et al. 2011). Thus, taxon 

interactions and community connectivity must be inferred statistically. 

Our cohesion metrics overcome two barriers that often preclude using information about 

community complexity in microbial analyses. First, the large number of taxa in microbial 

datasets makes it difficult to use information about all taxa in statistical analyses. Although 

methods exist to analyze microbial community interconnectedness (e.g. Local Similarity 

Analysis, artificial neural networks), this often involves constructing networks with many 

parameters that are difficult to interpret. Second, microbial community data are often 

“relativized” or “compositional” datasets, where the abundance of each taxon represents the 

fraction of the community it comprises. This creates several problems in downstream analysis 

(Weiss et al. 2016). For example, taxon correlation values are different in absolute versus 

relative datasets (Faust and Raes 2012, Friedman and Alm 2012), and it is unclear how using 

relative abundances influences the apparent population dynamics of individual taxa (Lovell et al. 

2015). Thus, these two features (many taxa and relative abundance) have previously proven 

problematic when analyzing microbial community connectivity. The methods used to account for 

these biases influence the results of the analyses. For instance, the proportion of positive versus 

negative pairwise interactions identified in a single dataset varied widely when using different 

correlation detection methods (Weiss et al. 2016). Additionally, the power to detect significant 

relationships between taxa declines steeply when taxa are less persistent and as relationships 

become non-linear (Weiss et al. 2016). In contrast to existing correlation detection methods, 

which aim to identify significant pairwise interactions, our cohesion metrics evaluate 

connectivity at the community level.       
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Here, we describe and test a method to quantify one aspect of microbial community 

complexity. Our resulting “cohesion” metrics quantify the connectivity of each sampled 

community. Thus, our cohesion metrics integrate easily with other statistical analyses and can be 

used by any microbial ecologist interested in asking whether community interconnectedness is 

important in their study system. We demonstrate how to obtain these cohesion metrics from time 

series data and, as a case study, show how cohesion relates to rates of compositional turnover in 

long-term microbial datasets. We develop this workflow with datasets where raw abundance data 

are available and use these raw abundances to validate our methods when working with 

relativized datasets. Thus, our approach was designed to overcome known challenges of 

analyzing microbial datasets.     

 

Methods and Results  

Description of datasets 

The North Temperate Lakes Long Term Ecological Research (NTL LTER) database 

hosts many long-term time ecological series. We used five long-term phytoplankton datasets 

(two from the NTL LTER and three from the Cascade research group) to validate the cohesion 

workflow. These datasets met a number of criteria that made them good candidates for the 

validation: samples were collected regularly, sampling spanned multiple years and many 

environmental gradients, and taxa were counted in absolute abundance. The term 

“phytoplankton” refers to the polyphyletic assemblage of photosynthetic aquatic microbes 

(Litchman and Klausmeier 2008). The datasets are from the following lakes in Wisconsin, USA:  

Lake Mendota (293 samples with 410 taxa over 19 years), Lake Monona (264 samples with 382 

taxa over 19 years), Paul Lake (197 samples with 209 taxa over 12 years), Peter Lake (197 
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samples with 237 taxa over 12 years), and Tuesday Lake (115 samples with 121 taxa over 12 

years). These lakes vary in size, productivity, and food web structure. Lake Mendota and Lake 

Monona are large (39.4km2 and 13.8km2), urban, eutrophic lakes (Brock 2012). Peter, Paul, and 

Tuesday lakes are small (each < 0.03km2) lakes surrounded by forest (Carpenter and Kitchell 

1996). Peter Lake and Tuesday Lake were also subjected to whole-lake food web manipulations 

during the sampling timeframe (detailed in Elser and Carpenter 1988 and Cottingham et al. 

1998). After validating our workflow using the phytoplankton datasets, we tested the cohesion 

metrics on a bacterial dataset obtained using 16S rRNA gene amplicon sequencing. These types 

of datasets often contain thousands of taxa, most of them rare, which may influence the results of 

correlation-based analyses (Faust and Raes 2012). We used the Lake Mendota bacterial 16S 

rRNA gene sequencing time series (91 samples with 7081 taxa over 11 years) for this analysis 

(Hall et al in review).  Sample processing, sequencing and core amplicon data analysis were 

performed by the Earth Microbiome Project (EMP) (www.earthmicrobiome.org) (Gilbert et al 

2014), and all amplicon sequence data and metadata have been made public through the data 

portal (qiita.microbio.me/emp). Briefly, community DNA (Kara et al 2013) was used to amplify 

partial 16S rRNA genes using the 515F-806R primer pair (Caporaso et al 2011) and an Illumina 

MiSeq, with standard EMP protocols.  

We present the workflow using results from the Lake Mendota phytoplankton dataset, as 

it is the largest (longest duration and most taxa) dataset available in absolute abundance. The 

dominant taxa in the Lake Mendota phytoplankton dataset change throughout the year, with 

diatoms most abundant during the spring bloom and cyanobacteria most abundant in summer. 

Details about phytoplankton datasets can be found at https://lter.limnology.wisc.edu/. Further 

details about the Lake Mendota 16S rRNA gene dataset are included in the SOM.   
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Data curation 

 Phytoplankton densities in Lake Mendota varied by more than 2 orders of magnitude 

between sample dates. Densities of cells in these samples ranged from 956 cells/mL to 272 281 

cells/mL. We removed individuals that were not identified at any level (e.g. categorized as 

Miscellaneous). For each sample date, we converted the raw abundances to relative abundances 

by dividing each taxon abundance by the total number of individuals in the community, such that 

all rows summed to 1. Relative abundances indicate the fraction of a community comprised by 

the taxon. We removed taxa that were not present in at least 5% of samples, as we were not 

confident that we could recover robust connectedness estimates for very rare taxa. This cutoff 

retained an average of 98.9% of the identified cells in each sample. Results of our analyses using 

other cutoff values can be found in the supplementary online material (SOM).   

Overview 

The input of our workflow is the taxon relative abundance table, and the outputs are 

measurements of the connectivity of each sampled community, which we call community 

“cohesion” (Fig. 1). In the process, our workflow also produces metrics of the connectedness of 

each taxon. Briefly, our workflow begins by calculating the pairwise correlation matrix between 

taxa, using all samples. We use a null model to account for bias in these correlations due to the 

skewed distribution of taxon abundances (i.e. many small values and a few large values) and 

relativized nature of the dataset (i.e. all rows sum to 1). We subtract off these “expected” 

correlations generated from the null model to obtain a matrix of corrected correlations. For each 

taxon, the average positive corrected correlation and average negative corrected correlation are 

recorded as the connectedness values. As previously noted, our goal was to create a metric of 

connectivity for each community; thus, the next step in the workflow calculates cohesion values 
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for each sample. Cohesion is calculated by multiplying the abundance of each taxon in a sample 

by its associated connectedness values, then summing the products of all taxa in a sample. There 

are two metrics of cohesion, because we separately calculate metrics based on the positive and 

negative relationships between taxa. Within each section (1, 2, and 3), we alternate between 

presenting an analysis step and showing a validation of these techniques.   

 

1. CONNECTEDNESS METRIC 

Analysis 

Null Models 

It is difficult to directly observe interactions within microbial communities, so 

correlations are often used to infer relationships between taxa or between a taxon and the 

environment. Thus, we used a correlation-based approach for determining the connectedness of 

taxa. However, when using correlation-based approaches with relativized microbial datasets, it is 

necessary to use a null model to evaluate how the features of the dataset (skewed abundances and 

the fact that all rows sum to 1) contribute to correlations between taxa (Weiss et al. 2016). The 

purpose of a null model is to assess the expected strengths of correlations when there are no true 

relationships between taxa (Ulrich and Gotelli 2010).  

The null model was used to calculate how strongly the features common to microbial 

datasets contribute to taxon connectedness estimates, so that this structural effect could be 

subtracted from the connectedness metrics. Of the several dozen null models tested, we have 

selected two for inclusion in the cohesion R script. We discuss both null models here and in the 

SOM. The SOM and readme document should assist in choosing the null model appropriate for a 

given dataset. While testing various null models, it became clear that a taxon’s pairwise 
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correlation values were strongly related to its persistence (fraction of samples when present) 

across the dataset. Thus, taxon persistence was preserved in both null models.  

The objective of the null model was to calculate the strength of pairwise correlations that 

would be observed if there were no true relationship between taxa. This paragraph describes the 

“taxon/column shuffling” null model used for the phytoplankton dataset analyses. During each 

iteration, one taxon was designated as the “focal taxon” (Fig. 2). For each taxon besides the focal 

taxon, abundances in the null matrix were permuted (i.e. randomly sampled without 

replacement) from their abundance distribution across all samples. Then, we calculated Pearson 

correlations between the focal taxon and the randomized other taxa. We iterated through this 

process of calculating pairwise correlations between the focal taxon and all other taxa 200 times. 

The median correlations from these 200 randomizations were called the “expected” correlations 

for the focal taxon. We recorded the median value as the “expected” correlation, rather than the 

mean value, because distributions were skewed toward larger values. Thus, a greater proportion 

of the distribution fell within one standard deviation of the median, as compared to within one 

standard deviation of the mean. We repeated this process for each taxon as the focal taxon, which 

resulted in a matrix of expected taxon correlations. Finally, we subtracted the expected taxon 

correlations from their paired observed taxon correlations, thereby producing a matrix where 

each value was an observed minus expected correlation for the given pair of taxa.  

The second null model uses the same workflow as described above, where the dataset is 

iteratively randomized and median correlations are used as the “expected” pairwise correlations. 

However, the method of randomization is different; instead, the abundances of all taxa present 

within one sample were randomized. We refer to this null model as the “row shuffling” model. 

The benefit of this null model is that row sums are maintained. Thus, negative dependencies 
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between taxa within the same sample are accounted for in this model. The drawback of this null 

model is that a taxon might be assigned an abundance value that is implausible (i.e. larger than 

its maximum observed abundance). In the online script to calculate cohesion, we have included 

the option to choose between these two null models (taxon shuffle and row shuffle).  

We have included an additional option to input a pre-determined correlation matrix, 

thereby bypassing the null model. Using a pre-determined correlation matrix allows researchers 

to use a different correlation detection strategy to generate the correlation matrix. This option to 

import a custom correlation matrix makes our cohesion workflow compatible with other software 

packages designed for detecting pairwise relationships in microbial communities.  

Calculating Connectedness  

We calculated taxon connectedness values from the corrected (observed minus expected) 

correlation matrix. For each taxon, we separately averaged its positive and negative correlations 

with other taxa to produce a value of positive connectedness and a value of negative 

connectedness. We kept positive and negative values separate for both mathematical and 

biological reasons. First, we had hypothesized that positive and negative correlations may 

capture different ecological relationships between taxa. Furthermore, positive correlations were 

stronger (an average of 2.5 times larger in magnitude) than negative correlations. And, 

correlation distributions were generally skewed toward positive values. Thus, a small number of 

positive correlations could mute the signal of negative correlations, if positive and negative 

correlations were averaged together.   

The averaging step in this workflow was intended to overcome the issue that individual 

correlations between taxa can be influenced by many factors and may be spurious (Fisher and 

Mehta 2014). However, assuming that correlations often (but not always) reflect complexity in a 
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community, the average of many correlations should be a more robust metric of complexity than 

any single correlation. In other words, we assume only that highly connected taxa have stronger 

correlations on average. Invoking the law of large numbers, these average correlations should be 

increasingly accurate measures of a taxon’s connectedness as the number of pairwise correlations 

increases (i.e. as the number of taxa in the dataset increases). Similarly, applying the Central 

Limit Theorem, each mean correlation should be normally distributed with low variance due to 

the large number of pairwise correlations.  

 

Validation 

As discussed previously, there are inherent limitations of using correlation-based 

methods with relative abundance data instead of absolute counts (Fisher and Mehta 2014). Thus, 

we examined whether a measure of connectedness based on absolute abundance would show the 

same pattern observed using the relativized data. However, we needed a different approach for 

calculating correlations in order to account for the following properties of count data: 1) 

variance-mean scaling, which results in very large population variances of abundant taxa (Taylor 

1961) and 2) the fact that individual population sizes are strongly related to overall community 

densities, which causes positive correlations among all taxa (Doak et al. 1998). As noted 

previously, phytoplankton densities in Lake Mendota samples varied by more than 2 orders of 

magnitude among sample dates. Therefore, using correlations between raw abundances would 

inflate the positive relationships between taxa as a result of changing overall community density. 

Thus, we first detrended the count data to account for changing community density (on different 

sampling dates) and drastically different variances of taxon populations (which are expected as a 

result of mean-variance scaling).  
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We used a hierarchical linear model to estimate the effects of overall community density 

and mean taxon abundance on individual taxon observations (sensu Jackson et al. 2012), so that 

these effects could be removed when calculating correlations. We modeled the abundance of 

each taxon at each time point as a function of sample date and taxon, assuming a quasipoisson 

distribution (which accounts for increases in population variances when population means 

increase). The model estimates a mean abundance effect for each sample, based on the 

abundances of each taxon in the sample. Similarly, the model estimates mean abundances for 

each taxon, based on the distribution of taxon abundances across all samples. Thus, the residuals 

of this analysis represent the normalized (transformed) deviations of taxon abundances after 

accounting for overall community density on the sample date and taxon abundance/variance. We 

created a pairwise correlation matrix for the phytoplankton taxa using the correlations between 

these residuals. We calculated connectedness metrics from the pairwise correlation matrix using 

the same technique that we applied to the corrected correlation matrix from the relativized data: 

we used the average positive and negative taxon correlations as their connectedness values. 

We validated our workflow for the relative abundance dataset using the estimates of 

taxon connectedness obtained from the absolute abundance dataset. Comparing the 

connectedness values from these two methods shows strong agreement between the two sets of 

connectedness metrics (correlation for positive connectedness metrics  = 0.820; correlation for 

negative connectedness metrics = 0.741, Fig. 3). Although two taxa deviate from the linear 

relationship between the negative connectedness metrics (appearing as outliers in Fig. 3B), both 

metrics rate these taxa as having strong connectedness arising from negative correlations. Thus, 

the two methods are qualitatively consistent for these two anomalous points. Furthermore, using 

the null model improved the correspondence between absolute and relative connectedness 
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metrics, as measured by their proportionality. The variance in the proportions (relative metric / 

absolute metric) decreased after the null model correction was implemented (variance in 

proportions for positive metrics: uncorrected = 0.25, corrected = 0.065; variance in proportions 

for negative metrics: uncorrected = 0.047, corrected = 0.035).   

 

2. COHESION METRIC 

Analysis 

Many researchers seek to detect differences in community connectivity across time, 

space, or treatments. Thus, it would be useful to have a metric that quantifies, for each 

community, the degree to which its component taxa are connected. The aim of our cohesion 

metric is to quantify the instantaneous connectivity of a community, where connectivity 

increases when highly connected taxa become more abundant in the community. We used a 

simple algorithm to collapse the connectedness values of individual taxa into two parameters 

representing the connectivity of the entire sampled community, termed “cohesion.” Again, one 

metric of cohesion stems from positive correlations, and one metric stems from negative 

correlations. To calculate each cohesion metric, we multiplied the relative abundance of taxa in a 

sample by their associated connectedness values and summed these products. This cohesion 

index can be represented mathematically as the sum of the contribution of each of the n taxa in 

the community, after removing rare taxa (Eq. 1). Thus, communities with high relative 

abundances of strongly connected taxa would have a high score of community cohesion. We 

note that this index is bounded by -1 to 0 for negative cohesion or from 0 to 1 for positive 

cohesion. 
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cohesion = abundancei * connectednessii=1

n
∑       Eq. 1 

 

Validation 

 We had hypothesized that our cohesion metrics could be significant predictors of 

microbial community dynamics. Thus, a natural question to ask was whether our metrics of 

cohesion outperform environmental variables when analyzing the Lake Mendota phytoplankton 

data. Fortunately, the NTL LTER program has collected paired environmental data for the Lake 

Mendota phytoplankton samples. We obtained these environmental datasets to use as alternative 

predictors of phytoplankton community dynamics in Lake Mendota. The environmental datasets 

available (11 variables) were: water temperature, air temperature, dissolved oxygen 

concentration, dissolved oxygen saturation, Secchi depth, combined NO3 + NO2 concentrations, 

NH4 concentration, total nitrogen concentration, dissolved reactive phosphorus concentration, 

total phosphorus concentration, and dissolved silica concentrations. Protocols, data, and 

associated metadata can be found at https://lter.limnology.wisc.edu/. We use these environmental 

data to build an alternate model in our case study below. 

 

3. CASE STUDY OF UTILITY 

Analysis 

To demonstrate their utility, we applied our new metrics to the Lake Mendota 

phytoplankton dataset. We tested whether community cohesion could predict compositional 

turnover, a common response variable in microbial ecology. We used multiple regression to 

model compositional turnover (Bray-Curtis dissimilarity between time points) as a function of 

community cohesion at the initial time point. That is, Bray-Curis dissimilarity was the dependent 
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variable, while positive and negative cohesion were the independent variables. Because time 

between samples influences Bray-Curtis dissimilarity (Nekola and White 1999, Shade et al. 

2013), we only included pairs of samples taken within 36 to 48 days of each other. These criteria 

included 186 paired communities across the 19 years. Cohesion values (both positive and 

negative) were calculated at the first time point for each sample pair. We chose this timeframe 

because it was sufficiently long for multiple phytoplankton generations to have occurred, and 

because this timeframe was compatible with the sampling frequency. 

Community cohesion was a strong predictor of compositional turnover (Fig. 4). The 

regression using our cohesion metrics explained 46.5% of variability (adjusted R2 = 0.465) in 

Bray-Curtis dissimilarity. Cohesion arising from negative correlations was a highly significant 

predictor, whereas cohesion arising from positive correlations was not significant (negative 

cohesion: F1, 183 = 6.81, p < 1* 10 -20; positive cohesion: F1, 183 = 0.735, p = 0.405).  

For the purpose of model comparison, we used the associated environmental data to 

model Bray-Curtis dissimilarity as a function of environmental drivers. We included as 

predictors the 11 variables previously mentioned, as well as 11 additional predictors that 

measured the change in each of these variables between the two sample dates. Finally, because 

many chemical and biological processes are dependent on temperature (Brown et al. 2004), we 

included first order interactions between water temperature and the 21 other variables. We first 

included all 43 terms in the model, then used backward selection (which iteratively removes the 

least significant term in the model, beginning with interaction terms) until all remaining terms in 

the model were significant at p < 0.1, as to maximize the adjusted R2 value. Although this 

analysis does not represent an exhaustive list of possible environmental drivers, it includes all 

available paired environmental data from the long-term monitoring program. Twenty-nine values 
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of Bray-Curtis dissimilarity were excluded from this analysis (leaving 157 of the 186 values), 

because they lacked one or more associated environmental variables. Additional details about 

this analysis can be found in the SOM.  

In the final model after backward selection, 16 variables were retained as significant 

predictors (see SOM). Significance was determined using type III sums of squares. Using the 

guideline that each variable should have approximately 10 additional data points to prevent 

overparameterization (Peduzzi et al. 1995), we were not concerned about overfitting. The 

adjusted R2 of this model was 0.229. The non-adjusted R2 value of the full model (all 43 

variables) was 0.393. When adding negative cohesion as a parameter into the final environmental 

model, negative cohesion was highly significant (p < 1*10-13) and 12 environmental variables 

remained significant at p < 0.1. 

To address the generality of the relationship between cohesion and community turnover, 

we calculated cohesion metrics and Bray-Curtis dissimilarity for the four other phytoplankton 

datasets (Monona, Peter, Paul, and Tuesday lakes) and for the Lake Mendota bacterial 16S rRNA 

gene sequencing dataset. Community cohesion was a significant predictor of Bray-Curtis 

dissimilarity in all datasets. In each instance, stronger cohesion resulting from negative 

correlations was related to lower compositional turnover. Table 1 presents the results of these 

analyses and associated workflow parameters. Additional information about the sensitivity of 

model performance to varying parameters can be found in the SOM.  

Validation 

Strong correlations between predictor variables are known to influence the results of 

statistical analyses (Neter et al. 1996). Thus, we wondered whether strong correlations between 

taxa would necessarily generate the observed relationship where greater cohesion is related to 
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lower compositional turnover. We conducted simulation studies to investigate whether our 

significant results might be simply an artifact of strong inter-taxon correlations. We generated 

datasets where taxa were highly correlated in abundance, as if they were synchronously 

responding to exogenous forces. We calculated cohesion metrics and Bray-Curtis dissimilarities 

for the simulated datasets to analyze whether strong taxon correlations was sufficient to produce 

results similar to those we observed in the real data.  

Here, we briefly describe the process used to simulate datasets, while additional details 

can be found in SOM. First, we generated four autocorrelated vectors to represent exogenous 

forces, such as environmental drivers. Taxa were artificially correlated to these external vectors, 

thereby also producing strong correlations between taxa. We manipulated the taxon abundances 

to mimic other important features of the microbial datasets, including skewed taxon mean 

abundances and a large proportion of zeroes in the dataset. We calculated cohesion metrics and 

Bray-Curtis dissimilarities for the simulated datasets, and we used a multiple regression to model 

Bray-Curtis dissimilarity as a function of positive cohesion and negative cohesion. We recorded 

the R2 value and parameter estimates of this multiple regression. We repeated this simulation 

process 500 times to generate distributions of these results.  

Our cohesion metrics had a very low ability to explain compositional turnover (Bray-

Curtis dissimilarity) in the simulated datasets. The median model adjusted R2 value was 0.022, 

with 95% of adjusted R2 values below 0.088 (Fig. 5). Although the community cohesion metrics 

were highly significant predictors (p < 0.001) of community turnover more commonly than 

would be expected by chance (1.0% of simulations for positive cohesion and 8.6% for negative 

cohesion), the proportion of variance explained by these metrics was comparatively very low. 

For comparison, across the six long-term datasets from Wisconsin lakes, model adjusted R2 
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values ranged from 0.36 to 0.50. Thus, there was comparatively little ability to explain 

compositional turnover in the simulated datasets using our cohesion metrics. 

 

Discussion 

 The ability to predict microbial community dynamics lags behind the amount of data 

collected in these systems (Blaser et al. 2016). Here, we present new metrics, called “cohesion,” 

which can be used as additional predictor variables in microbial models. The cohesion metrics 

contain information about the connectivity of microbial communities, which has been previously 

hypothesized to influence community dynamics (MacArthur 1955, May 1972, Nilsson and 

McCann 2016). Our cohesion metrics are easily calculated from a relative abundance table (R 

script provided online) and might be of interest to a variety of microbial ecologists and modelers.  

 In the Lake Mendota phytoplankton example, our two cohesion parameters outperformed 

the available environmental data at predicting phytoplankton community changes. The two 

cohesion parameters explained 46.5% of variability (adjusted R2 = 0.465) in community turnover 

over 19 years of phytoplankton sampling, in comparison to the final environmental model using 

16 predictors, which explained 22.9% of community turnover (adjusted R2 = 0.229). The 

simultaneous significance of negative cohesion and 12 environmental variables when all 

predictors were included in a single model indicates that environmental variables and negative 

cohesion explained different sources of variability in Bray-Curtis dissimilarity. Although there 

are almost certainly important predictors missing from the environmental model (e.g. 

photosynthetically active radiation, three-way interactions), the environmental model represents 

a commonly applied approach to explaining microbial compositional turnover (Tripathi et al. 

2012, Chow et al. 2013) that uses all associated environmental data from a long-term sampling 
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program. Although we still strongly advocate for the collection of environmental data, we note 

that cohesion was a much better predictor of compositional turnover than any available 

environmental variable.   

 Our workflow overcomes many challenges associated with using correlation-based 

techniques in microbial datasets. The validations we conducted indicated that our connectedness 

metrics are appropriate for relativized datasets, because connectedness metrics from relative and 

absolute datasets showed strong correspondence. Most DNA sequencing datasets are only 

available in relative abundance. Previous methods for analyzing relative abundance datasets have 

identified potential pitfalls of calculating correlations for these data (Friedman and Alm 2012, 

Weiss et al. 2016); however, the extent to which these biases influence analysis results is often 

unknown, because paired absolute abundance datasets do not exist. The validations of our 

cohesion workflow with absolute abundance data indicate that the steps taken to account for 

biases (using a null model and averaging pairwise correlations) make the cohesion metrics robust 

for relative abundance datasets.   

Our cohesion metrics address a common problem of techniques describing community 

complexity (such as network analyses), which is that they do not quantify the connectivity of 

individual communities. For instance, the “hairball” generated from a network analysis is 

generated from many samples; there are no parameters specific to each sample, and therefore the 

network cannot be used as a predictor variable. Thus, existing methods to quantify connectivity 

do not pair easily with other analyses. Furthermore, in contrast to many other network analyses, 

we did not attempt to calculate significance values for pairwise correlations as a part of the 

cohesion workflow. Based on our a priori hypothesis that weak interactions are ecologically 

important (McCann et al. 1998), we included all pairwise correlations in the connectedness 
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metrics. Our cohesion metrics quantify sample connectivity using only two parameters, which 

can be used as predictors in a variety of further analyses (linear regression, ordinations, time 

series, etc.). Finally, our simulations showed that strong inter-taxon correlations were not 

sufficient to reproduce the observed result that cohesion was a strong predictor of Bray-Curtis 

dissimilarity. In the simulations, cohesion had low explanatory power, even though taxa were 

highly correlated. From this result, we infer that correlations between taxa in real communities 

are an important aspect of complexity that is captured by our cohesion metrics. 

 Our cohesion metrics explain a significant amount of compositional change in all six 

datasets (five phytoplankton and one bacterial 16S rRNA gene dataset). Yet, it is not 

immediately clear what cohesion is measuring. There are two broad factors that could cause 

correlations between taxa: biotic interactions and environmental drivers. Thus, at least one of 

these two factors must underlie our connectedness and cohesion metrics. Here, we discuss the 

evidence supporting either of these interpretations: 

 Cohesion as a Measure of Biotic Interactions 

 Even if shared responses to environmental drivers underlie most pairwise taxon 

correlations, cohesion could still indicate biotic interaction strength in a community. This would 

occur if taxa were influenced to the same degree by environmental drivers, but differentially 

influenced by species interactions. In this case, averaging over all correlations would give larger 

connectedness values for strong interactors and smaller connectedness values for weak 

interactors. Many studies have indicated that microbial taxa have differential interaction 

strengths. For example, some microbial communities contain keystone taxa, which have 

disproportionate effects on community dynamics through their strong taxon interactions (Trosvik 

and de Muinck 2015, Banerjee et al. 2016). Similarly, recent work suggests that many taxa 
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within candidate phyla are obligate symbionts, meaning they must interact strongly with other 

taxa for their survival and reproduction (Kantor et al. 2013, Hug et al. 2016). Conversely, there 

are many taxa that can be modeled adequately as a function of environmental drivers; this is true 

for some bloom forming cyanobacteria, which are known to respond strongly to nutrient 

concentrations and temperature (McQueen and Lean 1987, Beaulieu et al. 2013). Taken together, 

these studies suggest that there is a wide spectrum of how strongly taxa interact with one 

another. These differences in interaction strength would be detected by our connectedness metric 

due to averaging over the large number of pairwise correlations. Thus, it is plausible that 

connectedness and cohesion are reflecting biotic interactions in communities.   

We now examine results from the long-term dataset analyses under the assumption that 

cohesion measures biotic interactions. The Bray-Curtis dissimilarity regression results would 

mean that communities with many strong interactors have lower rates of change, especially when 

the interactions create negative correlations between taxon abundances. This finding is in line 

with prior work showing that biotic interactions affect microbial community stability (Coyte et 

al. 2016). Thus, the interpretation that stronger biotic interactions lead to lower compositional 

turnover is a plausible explanation for our observed results. However, we specifically refrain 

from interpreting positive or negative connectedness values as indications of specific biotic 

interactions, such as predation, competition, or mutualism. For example, a positive correlation 

between two taxa could be the result of a mutualism between the taxa, or it could be the result of 

a shared predator declining in abundance. Further work, both empirical and theoretical, is 

necessary to identify what these positive and negative correlations signify in the context of the 

ecology of these organisms.  
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Cohesion as a Measure of Environmental Synchrony  

We now consider the possibility that connectedness and cohesion are simply detecting 

environmental synchrony. If a subset of taxa respond to a changing environmental driver, then 

these taxa will have strong pairwise correlations. For example, correlations between 

phytoplankton species of the same genus (and, therefore, with similar niches) can be upwards of 

0.9, indicating strong similarity in abundance patterns. In this case, connectedness would 

measure the degree of environmentally-driven population synchrony that a taxon has with other 

taxa. A high cohesion value would indicate that a community has many taxa that respond 

simultaneously to external forces; then, cohesion would quantify overall community 

responsiveness to one or more environmental drivers. Under this assumption, cohesion should 

correlate with environmental drivers (e.g. cohesion is high because many taxa are positively 

correlated to warm temperatures, but cohesion drops when it gets colder and these taxa senesce). 

We tested this prediction with 22 variables from the environmental model (11 for the 

environmental variables and 11 for the changes in environmental variables) and found that 

negative cohesion in the Lake Mendota phytoplankton dataset generally had weak correlations 

with these predictors (absolute correlations < 0.25, SOM). We also looked for a seasonal trend in 

cohesion, but found no significant correlation between cohesion (positive or negative) and Julian 

Day, or a quadratic term for Julian Day. Thus, we do not find any evidence that cohesion is 

simply reproducing the information contained in environmental data. Finally, our simulations 

show one example where taxon abundances could be driven exclusively by external factors (such 

as the environment), but this does not necessarily lead to strong predictive power of 

compositional turnover. However, our simulations omitted many features of real ecological 
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communities, and so we cannot completely rule out the possibility that environmental drivers 

contributed to our cohesion metrics in the phytoplankton datasets.  

Under the assumption that cohesion measures environmentally driven population 

synchrony, we examine our result that stronger negative cohesion was related to lower Bray-

Curtis dissimilarity. In this scenario, communities that have strong cohesion contain high 

abundances of taxa that respond simultaneously to environmental forces. Then, communities 

with many synchronous taxa would turn over more slowly than communities with taxa whose 

abundances are independent of the environment. This conclusion is counterintuitive, but 

possible. This pattern could occur if taxa that are strongly influenced by the environment have 

lower variability than taxa that are weakly influenced by the environment; in that case, highly 

correlated taxa would have their abundances more tightly regulated than other taxa. Although 

possible, this explanation disagrees with many studies that have found that environmental 

gradients regulate which taxa can persist in communities (Fierer and Jackson 2006, Walter and 

Ley 2011, Freedman and Zak 2015).  

Comparing the two possible signals that cohesion might be detecting, we believe the 

evidence points to biotic interaction as the larger contributor. However, we expect that 

environmental synchrony is captured to some extent, with the relative importance of 

environmental factors depending on the particular communities and ecosystem. In instances 

where synchronous responses to environmental drivers cause positive correlations between taxa, 

we would expect this environmentally-driven signal to affect positive cohesion values more than 

negative cohesion values. Regardless of the ecological force measured by cohesion, there is a 

clear result in the six datasets analyzed that stronger negative cohesion is related to lower 

compositional turnover. This result suggests that negative correlations between taxa are arranged 
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non-randomly to counteract one another, thereby stabilizing community composition. In other 

words, relationships between taxa appear to buffer, rather than amplify, changes to community 

composition. This result agrees with prior theoretical models that propose that feedback loops 

originating from taxon interactions are integral to modulating food web stability (Neutel et al. 

2007, Brose 2008). Although stronger negative cohesion was related to lower compositional 

turnover, negative pairwise correlations were, on average, weak. The negative connectedness 

values ranged from -0.004 to -0.12, and the mean negative correlation was -0.022. Thus, our 

results are not inconsistent with the hypothesis that weak interactions are stabilizing to 

communities (McCann et al. 1998). The finding that negative cohesion was stabilizing was not 

easily replicated in our simulations, where positive and negative correlations were interspersed 

with random magnitude throughout the dataset. Thus, the arrangement of correlations between 

taxa in the dataset appears to be an important feature of real communities that may contribute to 

their stability (Worm and Duffy 2003).  

 Guidelines for Using Our Metrics  

Although we used long-term time series datasets for the analyses presented here, our 

cohesion metrics can be used to predict community dynamics in a variety of datasets. For 

example, cohesion could be used with a spatially explicit dataset, where samples were collected 

from different locations across a landscape. In the context of phytoplankton samples, this could 

be a dataset consisting of samples from different locations in a lake or watershed. Then, the 

cohesion metrics could be used to predict community composition change at one location over 

time, or to predict differences in community composition between locations. It would also be 

interesting to investigate how cohesion is affected by experimental perturbations. Finally, 

cohesion could be used as a predictor in of many response variables. Additional applications of 
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the cohesion metrics could include identifying communities susceptible to major compositional 

change (e.g. cyanobacterial blooms, infection in the human microbiome), relating community 

cohesion to spatial structure (e.g. how taxon connectedness relates to the dispersal abilities of 

different microbial taxa), and investigating how disturbance influences cohesion (e.g. how illness 

influences the cohesion of communities in a host-associated microbiome, how oil spills affect 

cohesion of marine microbial communities). The consistent results between the phytoplankton 

datasets and the bacterial 16S rRNA gene dataset indicates that our cohesion metrics are robust 

for DNA sequencing datasets.  

   The critical step in the cohesion workflow is calculating reliable correlations between 

taxa. Thus, some datasets will be more suitable for our cohesion metric than others. For example, 

a dataset consisting of 20 samples from five lakes over multiple years might be a poor candidate 

for the cohesion metrics. In this case, correlations between taxa might be driven mainly by 

environmental differences or location, and the sample number would be too low to calculate 

robust correlations. Based on the phytoplankton datasets analyzed here, we suggest a lower limit 

of 40-50 samples when calculating cohesion metrics, with more samples necessary with more 

heterogeneous datasets. We also suggest including environmental variables as covariates when 

analyzing heterogeneous datasets. Finally, the persistence cutoff for including taxa should be 

adjusted based on the dataset being analyzed. For example, in datasets obtained by DNA 

sequencing, the sequencing depth affects taxon persistence (Smith and Peay 2014). Thus, for 

DNA sequencing datasets, we also recommend implementing a cutoff by mean abundance, 

where very rare taxa are omitted from the cohesion metrics.  
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Conclusion 

 Our cohesion metrics provide a method to incorporate information about microbial 

community complexity into predictive models. These metrics are easy to calculate, needing only 

a relative abundance table. Furthermore, across all datasets analyzed in this study, negative 

cohesion was strongly related to compositional turnover. In systems where cohesion is a 

significant predictor of community properties (e.g. nutrient flux, rates of photosynthesis), this 

result could guide further investigation into the effects of microbial interactions in mediating 

community function. In this case, researchers might focus their efforts on understanding the role 

of highly connected taxa, which are identified in our workflow. We aim to eventually determine 

the features that distinguish systems in which cohesion is important versus systems in which 

cohesion does not predict community properties.   
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Figure 1: This diagram shows an overview of how our cohesion metrics are calculated, 

beginning with the relative abundance table and ending with the cohesion values. The relative 

abundance table shows six samples (S1 indicating “Sample 1”, etc.) and a subset of taxa (A, B, 

C, and Z). First, pairwise correlations are calculated between all taxa, which are entered into the 

correlation matrix. We then used a null model to account for how the features of microbial 

datasets might affect correlations, and we subtracted off these values (null model detailed in Fig. 

2). For each taxon, we averaged the positive and negative corrected correlations separately and 

recorded these values as the positive and negative connectedness values. Cohesion values were 

obtained by multiplying the relative abundance table by the connectedness values. Thus, there 

are two metrics of cohesion, corresponding to positive and negative values.  

 

Figure 2: Microbial data are in the form of relative abundance, and some taxa are much more 

abundant than others, which are factors that may cause taxa to be spuriously correlated. Thus, we 

devised a null model to account for the bias that these data features introduce into our metrics. 

We repeated this process with each taxon as the “focal taxon,” which is A in this figure. For each 

of 200 iterations, we randomized all taxon abundances besides the focal taxon. We then 

calculated correlations between the focal taxon and all other taxa. We recorded the median value 

of the 200 correlations calculated for each pair of taxa in the median correlation matrix.  

 

Figure 3: Comparing the metrics of connectedness obtained from the absolute abundance dataset 

(x-axes) and the relative abundance dataset (y-axes) shows agreement between the two methods 

of generating these metrics. Correlations between the metrics are 0.810 (panel A) and 0.741 

(panel B). We used separate variables for positive and negative metrics because relativizing the 
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dataset is expected to differentially affect positive and negative correlations. Solid lines show the 

fit of linear models.  

 

Figure 4: We used our metrics of community cohesion as predictors of the rate of compositional 

turnover (Bray-Curtis dissimilarity) in the Mendota phytoplankton communities. Negative 

cohesion was a significant predictor (p < 1*10-20) of Bray-Curtis dissimilarity, and the regression 

explained 46.5% of variation in compositional turnover.  

 

Figure 5: We simulated datasets where correlations between taxa were artificially produced by 

forced correlation to external factors. We calculated cohesion values for the simulated 

communities to test whether cohesion and Bray-Curtis dissimilarity were strongly related in 

simulated datasets. The histogram of model adjusted R2 values from our simulations shows that 

the median adjusted R2 was 0.022 (dashed line), with 95% of values falling below 0.088. For 

comparison, observed adjusted R2 values ranged from 0.36 to 0.50.  
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Figure 2:  
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Figure 4: 
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Figure 5: 
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Table 1: Cohesion predicts community turnover in six long-term time series 
 

Lake Taxon 
Pers. 
Cutoff * 

Model 
Adjusted 
R2 

Positive 
Cohesion 
P value 

Negative 
Cohesion 
P value 

Positive 
Cohesion 
Direction + 

Negative 
Cohesion 
Direction + 

Days 
Between
Samples 

Number 
of 
Samples 

Mendota 
(phyto) 

5% 0.465 0.405 < 1*10-20 n.s. Stronger is 
stabilizing  

36-48 186 

Monona 5% 0.355 0.413 < 1*10-15 n.s. Stronger is 
stabilizing 

36-48 166 

Peter 10% 0.357 0.062 < 1*10-3 n.s. Stronger is 
stabilizing 

39-45 121 

Paul 10% 0.500 < 1*10-11 < 1*10-19 Weaker is 
stabilizing 

Stronger is 
stabilizing 

39-45 125 

Tuesday 10% 0.374 0.355 < 1*10-8 n.s. Stronger is 
stabilizing 

39-45 72 

Mendota 
(16S) 

5% 0.378 0.0039 < 1*10-5 Weaker is 
stabilizing 

Stronger is 
stabilizing 

25-41 54 

* Stands for “taxon persistence cutoff,” which was the minimum proportion of presences across 

the dataset that we used as a cutoff for including taxa in the connectedness and cohesion metrics. 

Other cutoffs may give higher model adjusted R2 values (see SOM), but we wanted to use the 

same cutoff for datasets collected within the same sampling program. We also applied a mean 

abundance cutoff to the Lake Mendota 16S rRNA gene dataset, where we removed taxa with a 

mean abundance < 1*10-7. 

+ These columns indicate the direction of a significant relationship between cohesion and Bray-

Curtis dissimilarity. For example, “stronger is stabilizing” means that greater cohesion is related 

to lower Bray-Curtis dissimilarity. Non-significant relationships are denoted “n.s.”. 
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Appendix 1: Cohesion R Script 

# Online script to generate cohesion metrics for a set of samples  
# CMH 26Apr17; cherren@wisc.edu 
 
# User instructions: read in a sample table (in absolute or relative abundance) as object "b". 
# If using a custom correlation matrix, read in that matrix at the designated line. 
# Run the entire script, and the 4 vectors (2 of connectedness and 2 of cohesion) are generated 
for each sample at the end. 
# Parameters that can be adjusted include pers.cutoff (persistence cutoff for retaining taxa in 
analysis), iter (number of iterations for the null model), tax.shuffle (whether to use taxon shuffle 
or row shuffle randomization), and use.custom.cors (whether to use a pre-determined correlation 
matrix) 
 
####################create necessary functions###################### 
 
#find the number of zeroes in a vector 
zero <- function(vec){ 
  num.zero <- length(which(vec == 0)) 
  return(num.zero) 
} 
 
#create function that averages only negative values in a vector 
neg.mean <- function(vector){ 
  neg.vals <- vector[which(vector < 0)] 
  n.mean <- mean(neg.vals) 
  if(length(neg.vals) == 0) n.mean <- 0 
  return(n.mean) 
} 
 
#create function that averages only positive values in a vector 
pos.mean <- function(vector){ 
  pos.vals <- vector[which(vector > 0)] 
  p.mean <- mean(pos.vals) 
  if(length(pos.vals) == 0) p.mean <- 0 
  return(p.mean) 
} 
 
################################################################### 
################################################################### 
### Workflow options #### 
################################################################### 
################################################################### 
 
## Choose a persistence cutoff (min. fraction of taxon presence) for retaining taxa in the analysis 
pers.cutoff <- 0.10 
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## Decide the number of iterations to run for each taxon. (>= 200 is recommended) 
# Larger values of iter mean the script takes longer to run 
iter <- 200 
## Decide whether to use taxon/column shuffle (tax.shuffle = T) or row shuffle algorithm 
(tax.shuffle = F) 
tax.shuffle <- T 
## Option to input your own correlation table 
# Note that your correlation table MUST have the same number of taxa as the abundance table. 
There should be no empty (all zero) taxon vectors in the abundance table.  
# Even if you input your own correlation table, the persistence cutoff will be applied 
use.custom.cors <- F 
 
################################################################### 
################################################################### 
 
# Read in dataset 
## Data should be in a matrix where each row is a sample.  
b <- read.csv("your_path_here.csv", header = T, row.names = 1) 
 
# Read in custom correlation matrix, if desired. Must set "use.custom.cors" to TRUE 
if(use.custom.cors == T) { 
  custom.cor.mat <- read.csv("your_path_here.csv", header = T, row.names = 1) 
  custom.cor.mat <- as.matrix(custom.cor.mat) 
  #Check that correlation matrix and abundance matrix have the same dimension 
  print(dim(b)[2] == dim(custom.cor.mat)[2]) 
} 
 
 
# Suggested steps to re-format data. At the end of these steps, the data should be in a matrix "c" 
where there are no empty samples or blank taxon columns.  
c <- as.matrix(b) 
c <- c[rowSums(c) > 0, colSums(c) > 0] 
 
# Optionally re-order dataset to be in chronological order. Change date format for your data.  
#c <- c[order(as.Date(rownames(c), format = "%m/%d/%Y")), ] 
 
# Save total number of individuals in each sample in the original matrix. This will be 1 if data are 
in relative abundance, but not if matrix c is count data 
rowsums.orig <- rowSums(c) 
 
# Based on persistence cutoff, define a cutoff for the number of zeroes allowed in a taxon's 
distribution 
zero.cutoff <- ceiling(pers.cutoff * dim(c)[1]) 
   
# Remove taxa that are below the persistence cutoff 
d <- c[ , apply(c, 2, zero) < (dim(c)[1]-zero.cutoff) ] 
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# Remove any samples that no longer have any individuals, due to removing taxa 
d <- d[rowSums(d) > 0, ] 
 
#If using custom correlation matrix, need to remove rows/columns corresponding to the taxa 
below persistence cutoff 
if(use.custom.cors == T){ 
  custom.cor.mat.sub <- custom.cor.mat[apply(c, 2, zero) < (dim(c)[1]-zero.cutoff), apply(c, 2, 
zero) < (dim(c)[1]-zero.cutoff)] 
} 
 
# Create relative abundance matrix.   
rel.d <- d / rowsums.orig 
# Optionally, check to see what proportion of the community is retained after cutting out taxa 
hist(rowSums(rel.d)) 
 
# Create observed correlation matrix 
cor.mat.true <- cor(rel.d) 
 
# Create vector to hold median otu-otu correlations for initial otu 
med.tax.cors <- vector() 
 
# Run this loop for the null model to get expected pairwise correlations 
# Bypass null model if the option to input custom correlation matrix is TRUE 
if(use.custom.cors == F) { 
ifelse(tax.shuffle, { 
  for(which.taxon in 1:dim(rel.d)[2]){ 
     
    #create vector to hold correlations from every permutation for each single otu 
    ## perm.cor.vec.mat stands for permuted correlations vector matrix 
    perm.cor.vec.mat <- vector() 
     
    for(i in 1:iter){ 
      #Create empty matrix of same dimension as rel.d 
      perm.rel.d <- matrix(numeric(0), dim(rel.d)[1], dim(rel.d)[2]) 
      rownames(perm.rel.d) <- rownames(rel.d) 
      colnames(perm.rel.d) <- colnames(rel.d) 
       
      #For each otu 
      for(j in 1:dim(rel.d)[2]){  
        # Replace the original taxon vector with a permuted taxon vector 
        perm.rel.d[, j ] <- sample(rel.d[ ,j ])  
      } 
       
      # Do not randomize focal column  
      perm.rel.d[, which.taxon] <- rel.d[ , which.taxon] 
       



 

 

123 

      # Calculate correlation matrix of permuted matrix 
      cor.mat.null <- cor(perm.rel.d) 
       
      # For each iteration, save the vector of null matrix correlations between focal taxon and other 
taxa 
      perm.cor.vec.mat <- cbind(perm.cor.vec.mat, cor.mat.null[, which.taxon]) 
       
    } 
    # Save the median correlations between the focal taxon and all other taxa   
    med.tax.cors <- cbind(med.tax.cors, apply(perm.cor.vec.mat, 1, median)) 
     
    # For large datasets, this can be helpful to know how long this loop will run 
    if(which.taxon %% 20 == 0){print(which.taxon)} 
  } 
} , { 
  for(which.taxon in 1:dim(rel.d)[2]){ 
     
    #create vector to hold correlations from every permutation for each single otu 
    ## perm.cor.vec.mat stands for permuted correlations vector matrix 
    perm.cor.vec.mat <- vector() 
     
    for(i in 1:iter){ 
      #Create duplicate matrix to shuffle abundances 
      perm.rel.d <- rel.d  
       
      #For each taxon 
      for(j in 1:dim(rel.d)[1]){  
        which.replace <- which(rel.d[j, ] > 0 )  
        # if the focal taxon is greater than zero, take it out of the replacement vector, so the focal 
abundance stays the same 
        which.replace.nonfocal <- which.replace[!(which.replace %in% which.taxon)] 
         
        #Replace the original taxon vector with a vector where the values greater than 0 have been 
randomly permuted  
        perm.rel.d[j, which.replace.nonfocal] <- sample(rel.d[ j, which.replace.nonfocal])  
      } 
 
      # Calculate correlation matrix of permuted matrix 
      cor.mat.null <- cor(perm.rel.d) 
       
      # For each iteration, save the vector of null matrix correlations between focal taxon and other 
taxa 
      perm.cor.vec.mat <- cbind(perm.cor.vec.mat, cor.mat.null[, which.taxon]) 
       
    } 
    # Save the median correlations between the focal taxon and all other taxa   
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    med.tax.cors <- cbind(med.tax.cors, apply(perm.cor.vec.mat, 1, median)) 
     
    # For large datasets, this can be helpful to know how long this loop will run 
    if(which.taxon %% 20 == 0){print(which.taxon)} 
  } 
 } 
) 
} 
   
# Save observed minus expected correlations. Use custom correlations if use.custom.cors = 
TRUE 
ifelse(use.custom.cors == T, { 
  obs.exp.cors.mat <- custom.cor.mat.sub}, { 
    obs.exp.cors.mat <- cor.mat.true - med.tax.cors 
  } 
) 
   
diag(obs.exp.cors.mat) <- 0 
 
####  
#### Produce desired vectors of connectedness and cohesion  
 
# Calculate connectedness by averaging positive and negative observed - expected correlations 
connectedness.pos <- apply(obs.exp.cors.mat, 2, pos.mean) 
connectedness.neg <- apply(obs.exp.cors.mat, 2, neg.mean) 
 
# Calculate cohesion by multiplying the relative abundance dataset by associated connectedness 
cohesion.pos <- rel.d %*% connectedness.pos 
cohesion.neg <- rel.d %*% connectedness.neg 
 
#### 
#### Combine vectors into one list and print  
output <- list(connectedness.neg, connectedness.pos, cohesion.neg, cohesion.pos) 
names(output) <- c("Negative Connectedness", "Positive Connectedness", "Negative Cohesion", 
"Positive Cohesion") 
 
print(output) 
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Appendix 2: readme for Cohesion R Script 

script maintainer: Cristina Herren, cristina.herren@gmail.com 

 

While developing the cohesion analysis, we tested our workflow on many different datasets. 

These are some suggested best practices and diagnostics for using the cohesion metrics.  

 

Suggestions for setting abundance and persistence thresholds: 

• The cohesion R script includes a parameter (pers.cutoff) to exclude taxa from the analysis 

if they are present in fewer than a specified proportion of samples. The purpose of this 

parameter is to exclude taxa for which reliable correlations cannot be calculated. As a 

guideline, taxa should be present in at least 5-10 samples to be included in the analysis. 

Thus, if your dataset has 50 samples, the pers.cutoff parameter might initially be set to 

0.1, as to exclude taxa present in fewer than 5 samples.   

• For samples with deep sequencing, rare taxa (taxa with very low abundances) are present 

in a large proportion of samples. In this case, it may be optimal to cut out taxa from the 

analysis based on mean abundance. As a guideline, the abundance threshold might be 

initially set to exclude, on average, 5-10% of the community. In our analyses, this 

approach dramatically reduced the number of taxa included (thereby also making the 

script run faster) while retaining the vast majority of the community.  

• When using cohesion as a predictor variable in analyses, we found that analysis results 

were often qualitatively similar across a range of abundance and persistence thresholds 

(see sensitivity analysis SOM). Thus, we suggest trying various thresholds and selecting 

final parameter values within the range of values where results are stable.  
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Suggestions for correcting or importing the correlation matrix: 

• While creating the cohesion workflow, we tested dozens of null models for correcting 

correlations between taxa. We selected a final version based on what worked well for a 

variety of different datasets. However, we imagine that the default null models included 

in the script might not be ideal for every dataset, because microbial datasets vary in 

richness and evenness. You can test the influence of the null model on the cohesion 

metrics by importing the true (uncorrected) correlation matrix as a custom correlation 

matrix. This will bypass the null model and calculate connectedness on the uncorrected 

correlation matrix.  

• We found that the row shuffle null model worked better as sample evenness increased. 

Conversely, the column shuffle null model worked better when there were taxa that 

consistently comprised > 20% of the community. In these cases, it was important to 

maintain taxon mean abundances in the null model, which only occurs in the column 

shuffle null model.  

• If importing a custom correlation matrix, we urge users to consider the aim of the 

analysis used to generate the custom matrix. Correlation methods that are intended to 

determine significance may not yield appropriate correlation matrices. For example, in 

Local Similarity Analysis (LSA), LS scores do not equate to significance; a lower LS 

score can be more significant than a higher LS score. This is not a deficit of the Local 

Similarity method, because the aim of LSA is to identify significant pairwise correlations. 

However, the differing objectives of these two analyses (LSA and cohesion) mean that 

the matrix produced from LSA may not be an appropriate custom matrix.    
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Types of datasets appropriate for the cohesion metrics 

• Time series datasets from a single location 

• Time series datasets from multiple similar locations (e.g. water samples from across a 

watershed or from many groundwater wells) 

• Spatial datasets (e.g. soil samples across a landscape) 

• Host-associated microbiome samples from a single individual/organism (e.g. stool 

samples from a single human subject) 

• Host-associated microbiome samples from multiple individuals/organisms within the 

same population (e.g. stool samples from many human subjects) 

• Experimental datasets (e.g. calculating cohesion metrics or the relationship between 

cohesion and a response variable in two or more experimental treatments) 

 

Types of datasets that may be problematic for the cohesion metrics 

• Time series collected at high frequencies (such as a daily time scale) 

o An implicit assumption of this analysis is that there is sufficient time between 

samples for populations to change enough in relative abundance such that the real 

population change can be distinguished from background/methodological noise in 

the data. This assumption may not be met at a daily sampling interval.  

o Another problem that may arise in time series at high frequency is 

autocorrelation. Autocorrelation may inflate correlations between taxa. One 

possible way to account for autocorrelation would be to calculate connectedness 

using the first differences of the dataset. Correlations on the first differences 

would indicate whether changes in two populations are synchronous.   
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• Datasets containing samples from different sites where most OTUs are not shared.  

o OTUs being present at one site but absent at others may generate spurious 

correlations between taxa.  

 

Diagnostic tests when cohesion is used as a predictor in a regression 

• Test for autocorrelation in residuals. As a simple diagnostic, plot sequential residuals 

against one another. Test for significant correlation between sequential residuals.  

• If analyzing a time series, test for trends in residuals over time. 

• If analyzing a time series, split the dataset into two parts corresponding the first half 

of the time series and the second half of the time series. Fit separate regressions for 

the two halves, and test whether the slope estimates for cohesion are significantly 

different.  

• Cross validation: randomly split dataset into two halves many times. Use one half to 

train the model, and the other half to calculate the error in predicted values from the 

linear model. Compare the residual error in the fitted model to the error in the 

predicted values.  

• Test the significance and model R2 value of cohesion metrics when cohesion metrics 

are used to predict dynamics of random samples. To do this, randomize the order of 

your samples. Conduct the same analysis (such as a regression of cohesion predicting 

Bray-Curtis dissimilarity) using randomly ordered samples. Repeat many times to get 

a distribution of results. Cohesion should be more significant when used to predict 

dynamics in ordered samples, versus randomized samples.  
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• The most abundant taxon in microbial communities can comprise more than 10% of 

the entire community. To test how strongly the most abundant taxon contributes to 

cohesion values, manually set the connectedness values of the most abundant taxon to 

zero. Re-calculate cohesion, and re-run the analysis using these new cohesion metrics.  

 

We suggest not rarefying datasets before calculating cohesion 

• We found that rarefying decreases the strength of pairwise correlations. We tested the 

effects of rarefying on pairwise correlations using a dataset of bacterial samples from 

bog lakes in northern Wisconsin (available at the Earth Microbiome Project, study ID 

1288). This dataset contained replicate samples at many time points. We calculated 

correlations between the same OTU in replicated samples in the non-rarefied dataset 

and in a rarefied dataset. These correlations should be close to 1. We found that 

rarefying consistently decreased the magnitude of these strong correlations. We also 

found that rarefying increased the standard deviation of OTUs due to the stochasticity 

of rarefying. In the equation for Pearson correlations, the denominator is the product 

of the standard deviations of the two populations. Thus, the mathematical reason for 

the decreased correlations is the increase in the standard deviations of the OTUs 

without a compensating increase in the covariance of the two populations.  

 

Miscellaneous 

• The null models implemented in the cohesion R script are stochastic due to random 

sampling. To generate reproducible results, manually set a seed from a predetermined 

vector before each randomization.   
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• When running the script on a datasets where correlations for 500 taxa were 

calculated, the script took 30-60 minutes to run. The run time is directly proportional 

to the number of iterations (iter). We found that using iter = 40 was sufficient during 

parameter optimization (i.e. while determining the persistence cutoff and type of null 

model to use), but that a larger value (iter = 200) was best to generate final results.  

• If using DNA sequencing data, try clustering the sequences based on different percent 

similarity cutoffs.  
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Appendix 3: R Script Used for Simulations of Correlated Taxa 
 
# Make script to artificially correlate taxa to one another to investigate whether results of 
workflow and analysis are an artifact of correlated datasets 
# CMH 30Nov16 
 
library(reshape) 
library(Hmisc) 
library(plyr) 
library(vegan) 
library(AICcmodavg) 
library(car) 
 
########create necessary functions ########## 
 
zero <- function(vec){ 
  num.zero <- length(which(vec == 0)) 
  return(num.zero) 
} 
 
#create function that averages only negative values in a vector 
neg.mean <- function(vector){ 
  neg.vals <- vector[which(vector < 0)] 
  n.mean <- sum(neg.vals) / length(neg.vals) 
  ifelse(length(neg.vals) == 0, return(0), return(n.mean) ) 
} 
 
#create function that averages only positive values in a vector 
pos.mean <- function(vector){ 
  pos.vals <- vector[which(vector > 0 & vector < 1)] 
  p.mean <- sum(pos.vals) / length(pos.vals) 
  ifelse(length(pos.vals) == 0, return(0), return(p.mean) ) 
} 
 
#Import code that creates a vector with desired correlation to other vector 
## Found on Stack Exchange by user caracal 
gen.cor.vec <- function(vec.orig, cor){ 
  n     <- length(vec.orig)      # length of vector 
  rho   <- cor                   # desired correlation = cos(angle) 
  theta <- acos(rho)             # corresponding angle 
  x1    <- vec.orig       # fixed given data 
  x2    <- rnorm(n, 2, 1)      # new random data 
  X     <- cbind(x1, x2)         # matrix 
  Xctr  <- scale(X, center=TRUE, scale=FALSE)   # centered columns (mean 0) 
   
  Id   <- diag(n)                               # identity matrix 
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  Q    <- qr.Q(qr(Xctr[ , 1, drop=FALSE]))      # QR-decomposition, just matrix Q 
  P    <- tcrossprod(Q)          # = Q Q'       # projection onto space defined by x1 
  x2o  <- (Id-P) %*% Xctr[ , 2]                 # x2ctr made orthogonal to x1ctr 
  Xc2  <- cbind(Xctr[ , 1], x2o)                # bind to matrix 
  Y    <- Xc2 %*% diag(1/sqrt(colSums(Xc2^2)))  # scale columns to length 1 
   
  x <- Y[ , 2] + (1 / tan(theta)) * Y[ , 1]     # final new vector 
  cor(x1, x)  
  return(x) 
} 
 
######################################################### 
### Parameter Inputs #### 
######################################################### 
 
#how many samples in matrix 
num.samples <- 187 
#choose uniform or t distribution for correlations 
uniform <- F 
#choose a cutoff for presence for simulating a taxon's abundance in the generated dataset.  
## It's computationally intensive to generate many rare taxa that get cut in the pipeline anyway 
zero.prop <- .015  
## Choose a persistence cutoff for taxa in the workflow with simulated datsets 
zero.prop.sim <- .05 
#set a proportion of the simulated dataset to 0, as detection limit 
det.limit <- .5 
 
#Read in dataset to use as template as p 
## For example: 
#p <- read.csv("~/Desktop/MendotaPhytoTable.csv", header = T, row.names = 1) 
 
c <- as.matrix(p) 
c <- c[rowSums(c) > 0, colSums(c) > 0] 
c <- c[order(as.Date(rownames(c), format = "%m/%d/%Y")), ] 
 
#define zero cutoff based on rows of c 
zero.cutoff <- ceiling(zero.prop * dim(c)[1]) 
 
c <- c[ , apply(c, 2, zero) < (dim(c)[1]-zero.cutoff) ] 
c <- c[rowSums(c) > 0, ] 
 
#Save curated count and relative datasets 
orig.count <- c 
orig.rel <- sweep(orig.count, 1, rowSums(orig.count), "/") 
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############################################################################## 
## Run a loop to simulate run analysis on 1000 datasets  
############################################################################## 
loop.iter <- 500 
 
#Create a matrix to hold coefficient estimates for regression modeling Bray-Curtis Dissimilarity 
sim.loop.results <- matrix(numeric(0), 5, loop.iter) 
rownames(sim.loop.results) <- c("pos.cohesion est", "pos.cohesion t val", "neg.cohesion est", 
"neg.cohesion t val", "model.R2") 
 
for(loop in 1:loop.iter){ 
 
#Specify number of time steps for environmental vectors by number of samples 
time.vec <- seq(1, num.samples, 1) 
 
#Define 4 environmental driver vectors 
envs1 <- arima.sim(list(order = c(1,1,0), ar = 0.9), n = max(time.vec-1), sd = 1) 
envs2 <- arima.sim(list(order = c(1,1,0), ar = 0.9), n = max(time.vec-1), sd = 1) 
envs3 <- arima.sim(list(order = c(1,1,0), ar = 0.9), n = max(time.vec -1), sd = 1) 
envs4 <- arima.sim(list(order = c(1,0,0), ar = 0.1), n = max(time.vec), sd = 1) 
 
envs.mat <- rbind(envs1, envs2, envs3, envs4) 
cor(t(envs.mat)) 
 
#Define means of taxa. Use means of original dataset 
otu.means <- 1 * apply(orig.count, 2, mean) 
 
#Create a loop to generate a matrix of OTU abundances  
#First, choose what environmental drivers each OTU will be correlated with  
num.otus <- length(otu.means) 
otu.env.drivers <- sample(c(1, 2, 3, 4), num.otus, replace = T) 
 
#Create a vector to determine how strongly taxa will be correlated with drivers 
t.cors <- rt(num.otus, 4, 0) #use a t distribution because correlations are fat-tailed 
t.cors <- t.cors / max(abs(t.cors) + .1) #bound correlations by -1 and 1 
ifelse(uniform, otu.env.cors <- runif(num.otus, -.8, .8), otu.env.cors <- t.cors) 
 
#Create vectors to hold OTU abundances 
gen.cors <- vector() 
otu.abun <- vector() 
 
for(i in 1:num.otus){ 
  #generate a vector that is correlated with the randomly designated environmental driver 
  cor.abun <- gen.cor.vec(envs.mat[otu.env.drivers[i], ], otu.env.cors[i]) 
   
  #make generated values positive  
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  cor.abun.pos <- cor.abun + abs(min(cor.abun)) 
  #give the abundance vector a standard deviation of 1 
  cor.abun.pos.sd1 <- cor.abun.pos / ( sd(cor.abun.pos) )  
   
  #multiply by mean value 
  scaled.abun.pos <- cor.abun.pos.sd1 * otu.means[i]  
 
  #draw individual abundances from lognormal distribution 
  ## add 1 to mean parameter before taking log, so it cannot be negative.  
  ## introuce between-taxon variability by drawing sd parameter from a normal distribution 
  log.abun <- rlnorm(length(scaled.abun.pos), log(scaled.abun.pos + 1), sd = rnorm(1, 1, .2)) 
   
  #Save vectors generated from correlation function  
  gen.cors <- cbind(gen.cors, cor.abun) 
  sd1.abun <- cor.abun / sd(cor.abun)  
  otu.abun <- cbind(otu.abun, log.abun) 
} 
 
## Find 50% quantile for current matrix and set to zero, as detection limit 
quant.zero <- sort(otu.abun)[length(sort(otu.abun)) * det.limit] 
 
## Replace all abundance values below "detection limit" with 0 
otu.abun.noise <- otu.abun 
otu.abun.noise[otu.abun < quant.zero] <- 0 
otu.abun.noise <- otu.abun.noise[rowSums(otu.abun.noise) > 0, colSums(otu.abun.noise) > 0] 
 
#Relativize datasets 
otu.rel <- sweep(otu.abun.noise, 1, rowSums(otu.abun.noise), "/") 
colnames(otu.rel) <- seq(1, dim(otu.rel)[2], 1) 
 
############################################################################## 
## Start analysis pipeline 
############################################################################## 
 
ab.raw <- otu.rel[rowSums(otu.rel) > 0, colSums(otu.rel) > 0] 
ab.raw <- as.matrix(ab.raw) 
 
######################################################### 
#create new matrix so original input is saved 
d.sub <- ab.raw 
 
#take out OTUs with fewer occurrences than the presence cutoff  
zero.cutoff.sim <- ceiling(zero.prop.sim*dim(d.sub)[1]) 
d.sub <- d.sub[, apply(d.sub, 2, zero) < (dim(d.sub)[1]-zero.cutoff.sim) ] 
d.sub <- as.matrix(d.sub) 
d.sub <- d.sub[rowSums(d.sub) > 0, colSums(d.sub) > 0] 



 

 

135 

 
cor.mat.dsub <- cor(d.sub) 
hist(cor.mat.dsub) 
 
#define number of randomizations from which to get expected cors  
perm.cor <- 100 
 
med.otu.cors <- vector() 
 
  for(m in 1:dim(d.sub)[2]){ 
    which.otu <- m 
     
    #create vector to hold correlations from every permutation for each single otu 
    perm.cor.vec.mat <- vector() 
     
    for(i in 1:perm.cor){ 
      d.sub2 <- d.sub 
      for(j in 1:dim(d.sub)[2]){  
        d.sub2[, j ] <- sample(d.sub[ ,j ])  
      } 
      #replace focal column with original column 
      d.sub2[, which.otu] <- d.sub[ , which.otu] 
       
      cor.mat.dsub.null <- cor(d.sub2) 
       
      perm.cor.vec.mat <- cbind(perm.cor.vec.mat, cor.mat.dsub.null[,m]) 
       
    } 
    med.otu.cors <- cbind(med.otu.cors, apply(perm.cor.vec.mat, 1, median)) 
     
    #if(m %% 20 == 0){print(m)} 
  } 
 
 
#the vector med.otu.cors holds the median null model otu-otu correlations  
diag(med.otu.cors) <- 0 
#get observed - expected individual correlations 
obs.exp.cors.each <- cor.mat.dsub - med.otu.cors 
diag(obs.exp.cors.each) <- 0 
 
#Calculate positive and negative connectedness 
connectedness.pos <- apply(obs.exp.cors.each, 2, pos.mean) 
connectedness.neg <- apply(obs.exp.cors.each, 2, neg.mean)  
 
 
############################################################################## 
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############################################################################## 
     
#look at distribution of BC dissimilarities of samples 
bc.diss <- as.matrix(vegdist(ab.raw, method = "bray")) 
 
#test turnover in WHOLE community, not just those included in the subset 
#pull out turnover from time t to t+1 
  bc.vec <- vector() 
  for(i in 1:dim(ab.raw)[1]-1){ 
    bc.vec[i] <- bc.diss[i, i+1] 
  } 
     
cohesion.pos <- as.matrix(d.sub) %*% connectedness.pos 
cohesion.neg <- as.matrix(d.sub) %*% connectedness.neg 
 
cohesion.summary <- summary(lm(bc.vec ~ cohesion.pos[-length(cohesion.pos)] + 
cohesion.neg[-length(cohesion.neg)])) 
 
#Save results of multiple regression 
sim.loop.results[1, loop] <- coef(cohesion.summary)[2, 1] 
sim.loop.results[2, loop] <- coef(cohesion.summary)[2, 3] 
sim.loop.results[3, loop] <- coef(cohesion.summary)[3, 1] 
sim.loop.results[4, loop] <- coef(cohesion.summary)[3, 3] 
sim.loop.results[5, loop] <- cohesion.summary$adj.r.squared 
 
#This can be useful to estimate how long the program will run 
if(loop %% 50 == 0)(print(loop)) 
 
} 
 
sim.loop.results.mat <- sim.loop.results 
sim.loop.results <- sim.loop.results.mat[, !is.na(colSums(sim.loop.results.mat))] 
 
#Look at distribution of significance values (t values) for pos and neg cohesion 
par(mfrow = c(2,1)) 
hist(sim.loop.results[2,], main = rownames(sim.loop.results)[2]) 
mean(sim.loop.results[2,] > 3.35 | sim.loop.results[2,] < -3.35 ) 
hist(sim.loop.results[4,], main = rownames(sim.loop.results)[4]) 
mean(sim.loop.results[4,] > 3.35 | sim.loop.results[4,] < -3.35 ) 
 
#plot r2 observed and theoretical R2 
par(mfrow = c(1, 1)) 
hist(sim.loop.results[5,], breaks = 20, xlab = expression("Adjusted R"^2), main = 
expression("Compositional Turnover Model R" ^2 )) 
abline(v = median(sim.loop.results[5,]) , lwd = 3, lty = 2) 
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#Report median simulation R2 value and 95% boundary 
median(sim.loop.results[5,])  
sort(sim.loop.results[5,])[.95*dim(sim.loop.results)[2]] 
 
 
#write.csv(sim.loop.results, "~/Desktop/MethodsSimTable.csv") 
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Appendix 4: Sensitivity Analysis and Alternate Null Models 

Sensitivity Analysis Metadata 

Interpretation of column headers in sensitivity analysis spreadsheet: 

LakeID ! name of lake analyzed 

PersCutoff ! taxa below this persistence cutoff (defined as the proportion of samples present 

across the entire dataset) were not included in calculating connectedness or cohesion metrics 

ColShuffle !this variable is TRUE or FALSE, based on which null model was used. If TRUE, 

the null model described in the main text was used (i.e. abundance values were shuffled by 

taxon, which appear as columns in the dataset). If FALSE, abundance values were shuffled by 

sample (appearing as rows in the datset); abundance values of all present taxa were randomized.  

DaysElapseMin ! minimum number of days between paired samples for which Bray-Curtis 

dissimilarities were calculated 

DaysElapseMax ! maximum number of days between paired samples for which Bray-Curtis 

dissimilarities were calculated 

ModelR2 ! model R2 value of the multiple regression predicting Bray-Curtis dissimilarity as a 

function of positive cohesion and negative cohesion 

PosCohEst ! model coefficient estimated for positive cohesion in the multiple regression 

PosCohPval ! p value for positive cohesion from the multiple regression 

NegCohEst ! model coefficient estimated for negative cohesion in the multiple regression 

NegCohPval ! p value for negative cohesion from the multiple regression 

NumSamples ! number of pairs of samples (and associated Bray-Curtis dissimilarity values) 

included in the analysis, based on the minimum and maximum numbers of days elapsed  

Description of alternate null models investigated 
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As described in the main text, we found that taxon connectedness values were related to 

taxon average abundance and persistence across the dataset.  This was particularly true for 

negative correlations, with more abundant taxa having stronger negative correlations. When 

developing null models, we tried approaches that maintained either taxon distributions (column 

sums) or sample distributions (row sums).  

The benefit of models that maintain column sums (such as the null model presented in the 

text) is that no taxon would be assigned an abundance value in the null model that was not 

possible for them to attain. Furthermore, it would keep mean taxon abundances the same, which 

we identified as one possible contributor to average taxon correlations. The benefit of models 

that maintain row sums is that negative dependencies between taxa still exist in this null model. 

Thus, if one taxon “bloomed” in a certain sample, and all other taxa decreased in relative 

abundance, this effect would be captured in the null model.  

The alternative model implemented in the cohesion R script maintains row sums and 

taxon persistence (fraction of presences across the dataset) during the randomization step. The 

sensitivity analysis shows results of the analyses presented in the main text when the row-shuffle 

model is used instead of the taxon/column shuffle null model. In the row-shuffle null model, 

abundances of taxa that are present in a given sample are randomly assigned. In some instances, 

this null model performed better than the model used in the main text; this occurred when the 

model R2 of the cohesion variables in the multiple regression was higher when using the row-

shuffling null model versus the column-shuffling null model. However, these instances were 

uncommon across the five datasets, and the improvement in predictive power when using the 

row-shuffling null model was often not statistically significant (as determined by comparing 

model AICc values). Additionally, there were many times where the row-shuffling null model 
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performed much worse than the column-shuffling null model, particularly in Peter, Paul, and 

Tuesday lakes. However, the row-shuffling null model gave a higher model R2 in the Bray-Curtis 

dissimilarity analysis than the column-shuffling null model (see Lake Mendota 16S analysis 

supplementary material).  

We tried many variations on these two broad null model types (row shuffling and 

column/taxon shuffling) but rejected many options based on poor preliminary results. Here we 

give a list of alternate algorithms tested while developing this workflow. Many of these options 

were tried in combination, leading to several dozen null models tested. 

• Instead of recording median correlations between each pair of taxa in the null model, we 

recorded median connectedness values for each taxon. We then subtracted the null model 

estimates of connectedness from the observed values of connectedness to arrive at the 

“corrected” connectedness values.  

• We tried using the mean of the null model correlations as the “expected” correlation, 

instead of the median. This option gave very similar results to the final models used.  

• We tried an alternate method of calculating connectedness metrics from the correlation 

matrix; instead of using the average positive or negative correlations, we divided the sum 

of all positive or negative correlations by the total number of pairwise correlations.  

• We tried a variation on the column-shuffling null model, where only abundance values 

greater than zero were randomized (i.e. only values of present taxa were sampled).  

• We tried a variation on the row-shuffling null model where all abundance values were 

randomized (not just present taxa).   

• We tried using raw (uncorrected) correlations when calculating connectedness values. In 

many instances, there was no strong difference in outcome when using either uncorrected 
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or corrected correlations. However, we expect that using uncorrected correlations would 

be problematic in more uneven datasets.  

• We tried randomizing abundance values of the focal taxon, rather than all other taxa. 

With enough iterations, there was no difference between this null model and the one 

described in the main text.  

• We tried many alternative algorithms for calculating correlations between taxa. These 

included Spearman correlations, calculating the log variance of the proportions of the two 

taxa, and transforming the abundances (log transform or square root transform) before 

calculating Pearson correlations.  

• Our connectedness metrics average all positive or negative correlations, regardless of 

strength. We instead tried implementing a correlation cutoff value, such that only 

correlations stronger than the cutoff would be included in the connectedness metrics. 

However, we found that this method gave lower explanatory power in the regression of 

Bray-Curtis dissimilarity vs. cohesion. 
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Appendix 5: Environmental Model of Lake Mendota Phytoplankton 
 
 The purpose of this model was to assess how well the available environmental data can 

model the rate of compositional turnover in Lake Mendota phytoplankton. Although this analysis 

almost certainly excludes important variables (either unmeasured, or interactions not included), it 

gives an estimate of the predictive power of a moderately well-informed model using 

environmental data. Furthermore, the North Temperate Lakes LTER is rare in its scope and 

length of data collection; the quality and regularity of sampling of these data likely enables 

greater explanatory power than in other phytoplankton datasets.   

 We downloaded environmental data from the North Temperate Lakes LTER website 

(https://lter.limnology.wisc.edu/datacatalog/search). The available datasets for Lake Mendota 

that span the years 1995 – 2013 are: major ion concentrations, nutrient concentrations (nitrogen, 

phosphorus, silica), carbon concentrations, pH, alkalinity, chlorophyll and phaeophytin 

concentrations, Secchi depth, air temperature, water temperature, dissolved oxygen 

concentration, dissolved oxygen saturation, and instantaneous wind speed, wave height, and 

cloud cover.  

 Several variables were excluded from our analysis because they were not appropriate for 

this model. We chose not to analyze instantaneous wind speed, wave height, or cloud cover, 

reasoning that these variables would not influence turnover in phytoplankton communities on the 

scale of 5-7 weeks. There were a large number of missing values in the pH, alkalinity, and 

carbon datasets, which is why these variables were excluded. Major ion concentrations were 

measured too infrequently to be included in the model. Chlorophyll and phaeophytin data were 

missing from early 2002 through the end of 2004, and so were excluded as variables. The 

following variables were measured with sufficient regularity as to be used as predictors in the 
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model: water temperature, air temperature, NO3 + NO2 concentrations, NH4 concentrations, total 

nitrogen concentrations, dissolved reactive phosphorus concentrations, total phosphorus 

concentrations, dissolved silica concentrations, Secchi depth, dissolved oxygen concentration, 

dissolved oxygen saturation. These variables were all measured on the same dates as 

phytoplankton community samples were taken.  

 The metadata of the Lake Mendota phytoplankton samples indicates that water samples 

were pooled from the top 0-8m of the water column. Thus, for variables where depth was 

indicated (e.g. water temperature, dissolved oxygen concentrations), we removed values from 

depths below 8m. Then, if multiple values were still present, we averaged the values across 

depths 0-8m. These averages were used as the predictor for that sample date.  

 The dependent variable in this model was the Bray-Curtis dissimilarity between each of 

the 186 pairs of communities where the time elapsed between sample dates was 36-48 days. 

These are the same 186 paired communities used in the regression where cohesion was the 

predictor. We matched each Bray-Curtis dissimilarity value with the environmental variables 

taken on the same date as the first of the paired communities. Thus, each environmental variable 

lad a length of 186, although values were missing for some variables. We created vectors for the 

change in the environmental drivers by subtracting the value of the environmental driver on the 

first sample date from the value of the environmental driver on the second sample date.  

 The backward selection process resulted in the following variables being identified as 

significant predictors (p < 0.1) of Bray-Curtis dissimilarity: Secchi depth, water temperature, 

change in water temperature, dissolved oxygen concentration, change in dissolved oxygen 

concentration, dissolved oxygen saturation, change in dissolved oxygen saturation, NO3 + NO2 

concentration, change in NO3 + NO2 concentration, NH4 concentration, change in NH4 
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concentration, total phosphorus concentration, change in total phosphorus concentration, change 

in dissolved reactive phosphorus, the interaction between water temperature and Secchi depth, 

and the interaction between water temperature and dissolved oxygen concentration. The adjusted 

R2 value of this model was 0.229. See table below for associated significance values.  

 

 Estimate Std. Error t value p value  
(Intercept) 0.130915 0.584248 0.224 0.823026  
secchi -0.057016 0.01867 -3.054 0.002705 ** 
wtemp 0.014433 0.026594 0.543 0.588196  
wtemp.change 0.057769 0.019769 2.922 0.004054 ** 
o2 -0.825094 0.383033 -2.154 0.032944 * 
o2.change 0.192872 0.0795 2.426 0.016536 * 
o2sat 0.121762 0.050084 2.431 0.016314 * 
o2sat.change -0.016267 0.006772 -2.402 0.017611 * 
no3no2.change -0.245014 0.137362 -1.784 0.076638 . 
no3no2 -0.306475 0.11621 -2.637 0.009303 ** 
nh4 -0.625507 0.305741 -2.046 0.042641 * 
nh4.change 0.726915 0.346381 2.099 0.037648 * 
totp 2.537219 1.011803 2.508 0.013297 * 
totp.change 2.69869 1.125084 2.399 0.017772 * 
drp.change -2.409117 1.223509 -1.969 0.050925 . 
wtemp:secchi 0.00439 0.001242 3.534 0.000554 *** 
wtemp:o2 -0.031129 0.010366 -3.003 0.003169 ** 

  
legend: p < 0.1:      . 
  p < 0.05:    *  
  p < 0.01:    ** 
  p < 0.001:  *** 
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Appendix 6: Lake Mendota 16S rRNA Gene Sequencing Time Series Analysis 
 
Sample Collection 

We used the Lake Mendota bacterial 16S rRNA gene sequencing time series (96 samples 

with > 7000 taxa over 11 years) for this analysis. Microbial cells were collected on 0.2 um filters 

from 12-m integrated water column samples as previously described (Kara et al 2013). 

 

Data Processing 

 Sample processing, sequencing and core amplicon data analysis were performed by the 

Earth Microbiome Project (EMP) (www.earthmicrobiome.org) (Gilbert et al 2014), and all 

amplicon sequence data and metadata have been made public through the data portal 

(qiita.microbio.me/emp). Briefly, community DNA was used to amplify partial 16S rRNA genes 

using the 515F-806R primer pair (Caporaso et al 2011) and an Illumina MiSeq, with standard 

EMP protocols. Processed data were obtained from the data portal (study ID 1242) and included 

45,094,125 total and 3,058,149 unique sequences. These were grouped into 7,081 OTUs using de 

novo picking in QIIME version 2.0.6 with the deblur workflow. Three samples with fewer than 

100 reads were removed (06 October 2006, 13 July 2006, and 04 December 2009) prior to 

deblurring. 

 

Analysis 

 We removed two additional failed samples (08 July 2004 and 10 May 2008) that had 

fewer than 100 reads after deblurring. All other samples had > 10,000 reads. Despite different 

sequencing depths across samples, we did not rarefy the dataset. We suggest that the cohesion 
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workflow be used with non-rarefied datasets, because rarefying introduces additional bias into 

pairwise correlations (see readme).  

 Before beginning the connectedness calculations, we removed all taxa with a mean 

abundance lower than 10-7. This removed an average of 17.5% of the relative abundance of each 

sample. We repeated the analysis with mean abundance thresholds of 10-8, 10-8.5, and 10-9, and 

we found qualitatively consistent results among these different thresholds. We set the persistence 

cutoff for inclusion of taxa at presence in at least 5 samples. However, due to the high 

sequencing depth of this dataset, only two additional OTUs were removed due to the persistence 

cutoff. We note that the values of Bray-Curtis dissimilarity used in the regression were 

calculated on the full dataset prior to removing any taxa due to these cutoffs.  

 We included samples in the Bray-Curtis dissimilarity regression if another sample was 

taken within 25 to 41 days. Samples were taken approximately monthly during the ice-free 

season, so this range encompassed the majority of samples (54 of 91). We calculated cohesion 

using both the taxon shuffle null model and the row shuffle null model. Both options showed that 

cohesion was a significant predictor of Bray-Curtis dissimilarity; for both null models, weaker 

positive cohesion and stronger negative cohesion significantly related to lower Bray-Curtis 

dissimilarity. In both cases, negative cohesion was the much stronger predictor, although both 

variables were significant. The model fit was slightly better for the row shuffle null model 

(adjusted R2 = 0.35 for taxon shuffle and adjusted R2 = 0.38 for row shuffle), so we present the 

analyses using the row shuffle null model in the main text.  
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Abstract 

For decades, ecological theory has predicted that the complexity of communities should 

be related to their stability. However, this prediction has rarely been tested empirically, because 

of both the difficulty of finding suitable systems where the question is tractable and the trouble 

of defining “stability” in real systems. Microbial communities provide the opportunity to 

investigate a related question: how does community connectivity relate to the rate of 

compositional turnover? We used a newly developed metric called community “cohesion” to test 

how microbial community connectivity relates to Bray-Curtis dissimilarity through time. In three 

long-term datasets, we found that stronger connectivity corresponded to lower rates of 

compositional turnover. Using two case studies of disturbed and reference communities, we 

found that the predictive power of community connectivity was diminished by external 

disturbance. Finally, we tested whether the highly connected taxa were disproportionately 

important in explaining compositional turnover. We found that subsets of highly connected 

“keystone” taxa, generally comprising 1-5% of community richness, explained community 

turnover better than using all taxa. Our results suggest that stronger biotic interactions within 

microbial community dynamics are stabilizing to community composition, and that highly 

connected taxa are good indicators of pending community shifts. 
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Introduction 

Theoretical ecologists have studied the relationship between community complexity and 

stability for decades (MacArthur 1955, May 1972, Pimm 1979, Neutel et al. 2007). Initial results 

suggesting that complex communities should be unstable (May 1972) prompted a rich literature 

aimed at understanding how complex communities persist in nature. The primary source of 

“complexity” considered in these studies is the strength of species interactions (May 2001). 

These theoretical studies consistently find that connectivity arising from species interactions is a 

major contributor to community stability (McCann et al. 1998, Ives et al. 2000, Neutel et al. 

2002, Wiliams and Martinez 2004). Depending on the configuration and strength of species 

interactions within a community, greater connectivity can lead to increased or diminished 

stability (Allesina and Tang 2012). 

Despite the substantial theoretical literature on how complexity influences stability, 

comparatively few studies have investigated this question empirically (but see Kondoh 2008, 

Neutel and Thorne 2014, Jacquet et al. 2016). This is partly due to the logistical challenges of 

addressing this question in real systems; such challenges include the difficulty in quantifying 

species interactions (Laska and Wootton 1998), the need to observe many taxa to satisfy model 

assumptions (Allesina and Tang 2012), the difficulty of sampling communities completely (Polis 

1991), and the need to collect data spanning many generations of the study organisms (Morin 

and Lawler 1995). Another practical hurdle is defining the terms “complexity” and “stability” for 

real communities (Connell and Sousa 1983, Neubert and Caswell 1997). Studies that have tested 

how community complexity relates to community stability have found mixed results. Recently, 

an analysis of 116 food webs found no consistent pattern between complexity and stability 

(Jacquet et al. 2016). However, prior studies have found evidence of positive (Polis and Strong 
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1996, Fagan 1997, Dunne et al. 2002) and negative (Pimm and Lawton 1978, Stouffer and 

Bascompte 2011) relationships. Thus, relatively little of the ecological theory regarding the 

complexity-stability debate has been tested empirically, and results of these empirical studies are 

mixed. 

Microbial communities are promising systems for investigating the relationship between 

community structure and community stability. Several characteristics of microbial communities 

make it possible to overcome the previously described challenges of testing theoretical 

hypotheses in empirical systems; microbial communities are sufficiently diverse as to meet the 

richness assumptions of theoretical models, hundreds of generations can be observed within one 

dataset, and the resolution of next generation sequencing datasets means that even rare taxa (< 

0.01% of communities) are sampled. However, one prominent challenge of testing ecological 

hypotheses in microbial communities is that interactions between taxa are difficult to observe 

and therefore must be inferred from observed population dynamics. For this reason, we 

previously created a robust metric, called “cohesion,” that quantifies the instantaneous 

connectivity of microbial communities (Herren and McMahon in press).  Briefly, this method 

quantifies connectedness values for each taxon in a dataset based on its average correlations with 

other taxa. Cohesion metrics are calculated from the abundance and connectedness of the taxa 

present in each community. When many highly connected taxa are present, the cohesion values 

for a community are larger in magnitude. There are two cohesion values for each sample, 

corresponding to connectivity arising from positive taxon relationships and connectivity arising 

from negative taxon relationships.  

Recent studies have hypothesized that biotic interactions are important for mediating 

compositional stability in microbial communities. For example, Zelezniak et al. (2015) found 
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that persistent sub-networks within microbial communities often included a high degree of 

facilitation among taxa. This result suggested that facilitation reinforces existing community 

composition, leading to lower rates of compositional change. Furthermore, several microbial 

studies have found evidence of “keystone taxa,” which are highly interactive and have a 

disproportionate effect on their communities (Vick-Majors et al. 2014, Agler et al. 2016, 

Banerjee et al. 2016). Changes in the abundance of keystone taxa lead to shifts in community 

composition due to cascading effects on other taxa (Mills et al. 1993). Finally, viruses and 

protists constitute a major source of mortality in marine bacterial communities (Fuhrman and 

Noble 1995, Suttle 2007), indicating the importance of predation in shaping community 

composition. Thus, multiple lines of evidence suggest that the strength of biotic interactions 

within microbial communities should be related to the rate of compositional change.  

In this study, we use three long-term microbial datasets (each spanning 10+ years) to test 

the hypothesis that higher connectivity in microbial communities is related to greater 

compositional stability through time. As mentioned previously, it is difficult to quantify stability 

for empirical systems. Instead, we use a related metric as our response variable, which is 

compositional turnover through time (Bray-Curtis dissimilarity). Modeling Bray-Curtis 

dissimilarity is a major aim of microbial ecology (Larsen et al. 2012), because the function of 

microbial communities is expected to change in parallel with changes in community composition 

(Urich et al. 2008, Sekirov et al. 2010). We also asked whether highly connected “keystone” taxa 

are disproportionally important for explaining compositional turnover (Power et al. 1996, Jordán 

et al. 1999). To answer this question, we repeated our analyses of community connectivity versus 

compositional stability using only the highly connected taxa. Finally, we reasoned that the 

influence of biotic interactions on compositional change would be diminished when external 
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disturbance to a community was high (Dai et al. 2017). To test this hypothesis, we analyzed two 

case studies where communities experienced different levels of disturbances. We hypothesized 

that connectivity would be a better predictor of compositional change when external forcing, and 

disturbance, was lower. Together, these analyses aimed to identify the conditions under which 

connectivity is related to compositional turnover and to investigate which taxa are most 

informative about overall community changes.   

 

Methods 

Datasets 

 To test our hypotheses about 1) the relationship between connectivity and compositional 

turnover and 2) the influence of highly connected taxa, we obtained three long-term, publicly 

available microbial datasets. These included the San Pedro Ocean Time Series bacterial dataset 

(SPOT) from the coastal ocean near southern California (described in detail in Cram et al. 

2015a), the Lake Mendota (Wisconsin, USA) phytoplankton dataset (ME-phyto, described in 

detail at https://lter.limnology.wisc.edu), and the Lake Mendota bacterial dataset (ME-bact, 

described in detail at https://lter.limnology.wisc.edu). Additional information and references for 

datasets can be found in the Supplementary Online Materials (SOM). We chose these datasets 

because of their long duration (SPOT: 10 years, ME-phyto: 19 years, ME-bact: 11 years), their 

large number of samples (SPOT: 274 samples with 437 taxa, ME-phyto: 293 samples with 409 

taxa, ME-bact: 91 samples with 7081 taxa), and the variety of technologies used to obtain the 

datasets (SPOT: automated ribosomal intergenic spacer analysis [ARISA], ME-phyto: cell 

counts under microscope, ME-bact: 16S rRNA gene amplicon sequencing).  
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 We identified two case studies where comparable microbial communities experienced 

differing levels of external disturbance. The first case study is the comparison of the 

phytoplankton communities in Peter Lake and Paul Lake in northern Wisconsin, USA (described 

in Elser and Carpenter 1988, Cottingham et al. 1998). These lakes were originally one water 

body, but were artificially divided into two lakes for the purpose of conducting ecological 

disturbance experiments. Paul Lake served as the undisturbed reference system, while Peter Lake 

was experimentally disturbed using nutrient supplementation and fish additions over the course 

of the time series (see SOM). Each lake was sampled 197 times over 12 years. Phytoplankton 

taxa were enumerated using direct cell counts under a microscope.  

The second disturbance case study is a comparison between two types of plaque 

communities sampled as a part of the Human Microbiome Project (HMP). Briefly, samples were 

collected from 242 human volunteers at up to 18 body sites at two sample collection dates with a 

maximum interval of 14 days. We compared the bacterial communities from the highly 

disturbed, exposed plaque site (supragingival plaque) to the protected plaque site beneath the 

gums (subgingival plaque). For both sites, we evaluated the relationship between community 

cohesion and compositional turnover (Bray-Curtis dissimilarity) in an individual’s microbiome 

between the two sampling times. 

Hypotheses: Long-Term Datasets 

 Following the result that persistent microbial sub-networks are enriched in taxon 

interactions (Zelezniak et al. 2015), we expected that greater connectivity would be related to 

lower compositional change. Additionally, we hypothesized that the highly connected taxa 

would have a disproportionate influence on community dynamics. Thus, we expected that 
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subsets of highly connected taxa would be better predictors of community turnover (Bray-Curtis 

dissimilarity) than randomly chosen subsets of taxa.  

Hypotheses: Case Study Comparisons 

 For Peter Lake and Paul Lake, we reasoned that the experimental perturbations would be 

a cause of community composition change in Peter Lake, but not in the undisturbed Paul Lake. 

Therefore, we expected that biotic interactions would contribute less to compositional turnover 

in the disturbed lake, Peter Lake. Thus, we hypothesized that community cohesion would be a 

better predictor of Bray-Curtis dissimilarity in the undisturbed Paul Lake than in Peter Lake.  

 For the two plaque bacterial communities, we reasoned that compositional change at the 

exposed site (supragingival plaque) would be influenced more strongly by immigration and 

dispersal than by biotic interactions. Conversely, we expected that the protected plaque 

communities (subgingval plaque) would be influenced by biotic interactions, because taxa are 

contained in close proximity for long periods of time. Thus, we hypothesized that cohesion 

would be a significant predictor of Bray-Curtis dissimilarity for the protected plaque site 

(subgingival plaque), but not at the exposed site (supragingival plaque).  

Statistical Methods 

We used cohesion metrics (Herren and McMahon in press) as a measure of the 

connectivity of the microbial communities (see SOM). We calculated cohesion metrics for the 

five datasets (three long-term time series and two case studies). Briefly, this workflow calculates 

two metrics for each sample quantifying the connectivity due to positive correlations between 

taxa and connectivity due to negative correlations between taxa. Cohesion metrics are calculated 

for each sample by taking the sum of every taxon’s connectedness score (also calculated within 

the cohesion workflow) multiplied by its abundance in the sample.  
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For each dataset, we conducted linear regressions modeling the compositional turnover 

(Bray-Curtis dissimilarity) between time points as a function of the cohesion metrics. Stated 

another way, we asked whether cohesion metrics predict Bray-Curtis dissimilarity. For the SPOT 

dataset, we analyzed the bacterial communities from the chlorophyll maximum site, reasoning 

that the cholorophyll maximum site represented a discrete ecological community. For taxa in the 

HMP plaque datasets, we calculated taxon connectedness values using correlations between taxa 

among individuals at the first sampling timepoint. Additional methods and the parameter values 

used in the workflow for each dataset can be found in Supplementary Table 1.  

 To test the hypothesis that highly connected taxa are disproportionately influential in 

determining community dynamics, we iteratively repeated the regression analysis (modeling 

Bray-Curtis dissimilarity as a function of community cohesion), each time calculating cohesion 

from different subsets of taxa. We excluded taxa based on their connectedness values, where we 

removed the least connected taxa first. For example, when 40 taxa were included in the analysis, 

the negative cohesion metric was calculated from the 40 taxa with the strongest negative 

connectedness, and the positive cohesion metric was calculated from the 40 taxa with the 

strongest positive connectedness. We recorded the R2 value from the linear model (Bray-Curtis 

dissimilarity vs. cohesion) for each subset of taxa.  

We then repeated the workflow described above (removing taxa and running the linear 

regression) using random subsets of taxa, rather than using the most highly connected taxa. Thus, 

when 40 taxa were included, we randomly selected 40 taxa from which to calculate the positive 

and negative cohesion values. We recorded the model R2 value of the linear regression when taxa 

were randomly included in the workflow. Then, we repeated this process 500 times, as to 

generate a distribution of model R2 values when 40 random taxa were selected. We ran 500 
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models for each possible number of taxa included in the workflow. We had hypothesized that the 

highly connected taxa would be more informative about overall community changes than 

randomly chosen taxa; thus, we expected that the model using the highly connected taxa would 

have a larger R2 value.  

 

Results 

Long-Term Datasets 

 For each of the three long-term datasets (SPOT, ME-phyto, and ME-bact), we used linear 

regression to analyze the amount of variability in community composition turnover (Bray-Curtis 

Dissimilarity) that could be explained by community connectivity (cohesion metrics). 

Representative results from all datasets analyzed are presented in Table 1.  

 Cohesion was a significant predictor of Bray-Curtis dissimilarity in all three long-term 

datasets. Stronger cohesion, whether positive or negative, was consistently related to lower rates 

of compositional change (Table 1).  Stronger negative cohesion was significantly related to lower 

Bray-Curtis dissimilarity in all three datasets (Fig. 1B, D, F). In the ME-bact dataset, stronger 

positive cohesion was also significantly related to lower compositional turnover (Table 1). 

Maximum adjusted model R2 values were 0.485 for ME-phyto, 0.428 for ME-bact, and 0.478 for 

SPOT chlorophyll maximum.  

We re-calculated cohesion metrics from subsets of highly connected taxa in order to 

evaluate whether highly connected taxa were disproportionately informative about compositional 

turnover (black line, Fig. 1A, C, E). We also calculated cohesion metrics using random subsets 

of taxa to evaluate whether highly connected taxa modeled Bray-Curtis dissimilarity better than 

randomly chosen taxa (grey lines, Fig. 1A, C, E). In the models containing random subsets of 
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taxa, model R2 values declined as fewer taxa were included in cohesion calculations (solid grey 

line indicates the median). Conversely, in models using the most highly connected taxa, the 

adjusted R2 values remained stable as the least-connected taxa were removed (black line). In all 

three long-term datasets, adjusted R2 values increased when small subsets (< 5% total richness) 

of highly connected taxa were included (Table 1). Maximum R2 values occurred when using 15 

taxa in ME-phyto, 33 taxa in ME-bact, and 15 taxa in SPOT (Fig. 1A, C, E).  

In all three datasets, models based on the most highly connected taxa to calculate 

cohesion significantly outperformed the models using random subsets of taxa when small 

proportions of taxa were included. Significance was determined as instances when the model R2 

value using highly connected taxa was above the 95th percentile of R2 values from models using 

random taxa. For the SPOT dataset, the model using highly connected taxa performed 

significantly better than the model using randomly selected taxa when fewer than 25 taxa were 

included. For the ME-phyto dataset, it was when fewer than 35 taxa were included. For the ME-

bact dataset, it was fewer than 105 taxa.  

 

Identities of Highly Connected Taxa 

 We were curious about the identities of the most highly connected taxa in the three long-

term datasets. We focused on taxa that had the strongest negative associations with other taxa, 

because negative cohesion was highly significant in all long-term datasets (Fig. 1, Table 1). In 

the ME-phyto dataset, eight of the ten taxa with the largest negative connectedness values were 

cyanobacteria (see SOM for list). For the ME-bact dataset, we compared the lists of the fifty 

most abundant taxa and the fifty taxa with largest negative connectedness values (see SOM). 

Twenty-two taxa were on both these lists. Twenty-eight taxa were among the fifty most 
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connected but not the fifty most abundant. These included three of the four recognized clades in 

the acIV Actinobacteria lineage, a member of the Chloroflexi phylum, and two members of the 

Planctomycetes phylum, all of which are relatively understudied by freshwater microbial 

ecologists. Among the Proteobacteria in this list were PnecD, a relatively rare member of the 

genus Polynucleobacter, and several members of the order Rhizobiales. Although these 

organisms are not among the most ubiquitous or abundant taxa found in freshwater lakes, the 

results obtained here motivate us to study their ecology more intently, particularly with genome-

based methods. 

 

Case Study: Peter Lake and Paul Lake 

 As with the long-term datasets, we used cohesion metrics as predictors of Bray-Curtis 

dissimilarity for phytoplankton communities in Peter and Paul Lakes. We had hypothesized that 

cohesion metrics would be better predictors of compositional change in the reference system, 

Paul Lake. We conducted separate analyses for the two lakes.   

 As expected, cohesion metrics were better predictors for Paul Lake than for the disturbed 

system, Peter Lake. We evaluated this prediction by comparing model R2 values for the two 

lakes (Fig. 2). Across nearly the entire range of taxa included, models analyzing the Bray-Curtis 

dissimilarity of phytoplankton communities in Paul Lake had a higher R2 value than similar 

models for Peter Lake. The exception was when very few (< 10) taxa were included in the 

cohesion calculations. In both lakes, model R2 values dropped significantly when fewer than 10 

taxa were used to calculate cohesion. The best model fit in Paul Lake occurred when 13 taxa 

were included (adjusted R2 = 0.487), whereas for Peter Lake it was 57 taxa (adjusted R2 = 

0.374). In Paul Lake, stronger negative cohesion and weaker positive cohesion was both 
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significantly related to lower Bray-Curtis dissimilarity (Table 1). In Peter Lake, stronger negative 

cohesion and stronger positive cohesion were both significantly related to lower Bray-Curtis 

dissimilarity (Table 1).  

  

Case Study: Exposed and Protected Plaque Communities 

 We tested whether cohesion could explain community composition turnover in plaque 

communities in the human-associated microbiome. We expected that cohesion would be a 

significant predictor of compositional turnover at the protected plaque site (subgingival plaque), 

but not at the exposed plaque site (supragingival plaque). In this analysis, we calculated Bray-

Curtis dissimilarities from two communities sampled from the same individual host, collected at 

two different time points. 

 In the exposed plaque communities (supragingival plaque), we found that there was no 

significant relationship between either cohesion metric and Bray-Curtis dissimilarity (Fig. 3). 

However, in the protected plaque communities (subgingival plaque), cohesion was significantly 

related to Bray-Curtis dissimilarity. The model fit was best (adjusted R2  = 0.207) when 13 

OTUs were included (Fig. 3). Stronger positive cohesion and weaker negative cohesion were 

both significantly related to lower Bray-Curtis dissimilarity (Table 1).   

We conducted this same analysis using the other 16 body sites sampled as a part of the 

Human Microbiome Project (see SOM for results). Most sites (11 of 16) showed highly 

significant relationships (p < 0.001) between cohesion and the rate of compositional turnover 

(Bray-Curtis dissimilarity). At all 11 sites, stronger negative cohesion was related to lower Bray-

Curtis dissimilarity. Positive cohesion was highly significant at 6 of the 11 sites, but showed 

mixed relationships with Bray-Curtis dissimilarity.  
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Discussion 

 The consistent results from the three long-term (10+ year) microbial time series showed 

that stronger connectivity within aquatic microbial communities was related to greater 

compositional stability. In all three cases, stronger cohesion values were significantly related to 

lower Bray-Curtis dissimilarity over time (Fig. 1B, D, F). Moreover, models using information 

from small subsets of highly connected taxa predicted compositional turnover performed better 

than models using all taxa (Fig. 1A, C, E). Therefore, the most highly connected taxa had the 

strongest relationship with compositional change, and their presence corresponded to increased 

compositional stability. In all three long-term datasets, highly connected taxa performed 

significantly better than models built using random assemblages of taxa. Only a small fraction of 

taxa, generally comprising 1-5% of total richness, were necessary to model compositional 

turnover. These qualitatively consistent results show support for the hypotheses that 1) 

community connectivity is a strong mediator of compositional stability and 2) highly connected 

taxa have disproportionate influence on observed community dynamics.  

The predictive power of our models in the long-term datasets was striking, given that no 

environmental factors were included in these analyses. For the three long-term datasets, the 

model R2 values ranged between 0.4 and 0.5. For comparison, previous analyses modeling the 

community similarity between time points in the SPOT dataset obtained maximum R2 values of 

approximately 0.2, even when using over 30 environmental parameters (Cram et al. 2015a). 

Similarly, a model explaining compositional turnover in the ME-phyto dataset using 

environmental variables had an adjusted R2 value of 0.23 (Herren and McMahon in press).  
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Our result that stronger negative cohesion was related to lower compositional turnover in 

the long-term time series was consistent across a variety of ecosystems, sampling methods, and 

sample dates. The three datasets were obtained using different techniques for determining 

abundance, including direct cell counts (ME-phyto), 16S rRNA gene tag sequencing (ME-bact), 

and ARISA (SPOT). These methods all differ in their sensitivity and bias. Thus, the consistency 

of our results suggest that including cohesion as a predictor variable might improve models of 

compositional turnover in many microbial systems. 

 

Disturbance Decreases the Importance of Connectivity 

The case studies of disturbed systems showed that community cohesion had less 

explanatory power when communities experienced external disturbance. The Peter Lake vs. Paul 

Lake comparison showed that cohesion metrics were better predictors of Bray-Curtis 

dissimilarity in the undisturbed system, Paul Lake (Fig. 2). In Peter Lake, experimental 

perturbations caused shifts in the phytoplankton community (Carpenter et al. 1987, Carpenter et 

al. 1996, Cottingham and Carpenter 1998). Thus, some of the compositional change in Peter 

Lake was due to experimental disturbances. Our results agree with these previous conclusions, 

suggesting that connectivity had decreased influence on compositional change in the perturbed 

lake, Peter Lake.  

Analyses of the protected and exposed plaque sites showed that community cohesion was 

only an important explanatory factor in compositional turnover at the protected plaque site (Fig. 

3). Many of the same OTUs were present in the protected and exposed plaque communities, but 

their connectedness and power to predict compositional change were different at the two sites. 
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These results suggest that high levels of disturbance and dispersal can disrupt the relationship 

between biotic interactions and community stability. 

There are two main ways in which disturbance can alter the relationship between biotic 

interactions and compositional change. First, disturbances causing high immigration or 

emigration of taxa disrupt established species interactions. Biotic interactions drive population 

dynamics by influencing taxon growth and death rates (Gotelli 2001); thus, the effects of biotic 

interactions will be most apparent when taxa interact consistently over many generations. 

Second, disturbances cause compositional change that is not linked to biotic interactions. For 

example, compositional change at the exposed plaque site may have resulted from tooth brushing 

or from consuming food. Thus, the proportion of total compositional change due to biotic 

interactions would be diminished in this case. The lower predictive power of cohesion when 

applied to highly disturbed communities suggests that the importance of biotic interactions in 

community assembly and turnover is context dependent.  

 

Highly Connected Taxa as Keystone Taxa 

By calculating cohesion using different subsets of taxa, we identified the taxa that 

contributed most to the relationship between connectivity and turnover. In all three long-term 

datasets, the maximum model fit occurred when a small number (15-33) of taxa were included. 

Similarly, in the two reference systems in the case study analyses, the optimal number of taxa to 

include was 13 for both datasets (Table 1). Thus, focusing on these highly connected taxa may be 

a useful strategy for researchers seeking to understand microbial community assembly. Including 

taxa with lower connectedness values in our models often obscured the signal of connectivity 

captured by the cohesion metrics. These results support the hypothesis that these highly 
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connected taxa may function as “keystone taxa” within microbial communities; the relatively 

small subsets of highly connected taxa had outsized explanatory power of overall community 

dynamics. Additionally, although some of the datasets contained the same phytoplankton taxa 

(ME-phyto, Peter Lake, Paul Lake), the same taxon received different scores of connectedness in 

the various datasets. This result suggests that the ecological context of the microbial 

communities is important for determining which taxa will act as keystone taxa in various 

environments.  

Using fewer taxa in the cohesion calculations often improved the fit of our models. We 

propose that this approach of evaluating model fit using different subsets of taxa could be 

generalized to other analyses with different response variables. Model fit should be best when 

the most informative taxa are selected. One strategy for identifying taxa with disproportionate 

influence would be to include the taxa where the model R2 values spike in Fig. 1. Although 

model R2 values remained high when small numbers of taxa were included, we would caution 

against building predictive models with fewer than 5-10 taxa. In this case, cohesion values 

obtained from a training set of communities may be prone to high variability when applied to 

new communities, especially if there are directional trends in taxon abundances over time.   

 

Ecological Interpretation of Connectivity and Compositional Turnover  

  In the majority of instances where cohesion metrics were significant predictors of Bray-

Curtis dissimilarity, stronger connectivity was related to greater compositional stability. 

However, there were cases that deviated from this norm, where stronger connectivity was related 

to more rapid change. We hypothesize that these anomalies are mediated by the ecology of the 

different study sites. For example, the result from Paul Lake that stronger positive cohesion was 
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destabilizing was driven by samples from the summer of 1993, when a large and persistent 

cyanobacterial bloom disrupted normal seasonal dynamics. Similarly, following the result that 

cohesion had lower explanatory power in disturbed systems, it would be interesting to investigate 

how the strength of deterministic versus stochastic forces alters the relationship between 

community connectivity and community stability. This might be done with the Human 

Microbiome Project dataset, as immigration and selective pressure likely differ between body 

sites (Li and Ma 2016). Our preliminary analysis of this dataset showed that 12 of the 18 sites 

had a strong relationship between cohesion values and compositional turnover rate, but the 

explanatory power of the models varied. Quantifying dispersal and selection rates at different 

sites may shed light on the variability of the observed relationships and the degree to which 

community connectivity can explain compositional change.  

 Under the assumption that cohesion measures biotic interactions (Herren and McMahon 

in press), our results support the hypothesis that biotic interactions are stabilizing to microbial 

community composition. Several recent studies have concluded that biotic interactions can be 

strong drivers of microbial population dynamics, on par with or exceeding the influence of 

environmental factors (Cram et al. 2015b, Lima-Mendez et al. 2015, Weitz et al. 2016, Cabello 

et al. 2016, Trivedi et al. 2017). For example, many OTUs are more strongly related to other 

OTUs than to habitat variables (Cram et al. 2015b). However, few studies have tested the 

relationship between connectivity and compositional change, primarily because the methods to 

quantify connectivity have only been recently developed. Initial theoretical studies indicated that 

stronger biotic linkages would be destabilizing to ecological communities (May 1972, Pimm 

1979). However, these initial studies also made several simplifying assumptions about the 

organization of ecological food webs. The ensuing literature has discovered several possible 
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mechanisms that allow diverse and complex communities to persist in nature (e.g. McCann et al. 

1998, Brose et al. 2006, Kondoh 2006). Future work might consider how the attributes of 

microbial communities, including spatial structuring (Long and Azam 2001), dispersal rates 

(Finlay 2002), and the possibility of dormancy (Lennon and Jones 2011) influence the 

relationship between connectivity and compositional stability.   

Biotic interactions create feedback loops within ecological communities that can amplify 

or dampen the effects of external perturbations (Berryman and Millstein 1989). One mechanistic 

hypothesis for the result that stronger connectivity is related to lower compositional change is 

that the taxon interactions in microbial communities are arranged to form negative feedback 

loops, thereby mitigating the effects of disturbance (Konopka et al. 2015, Coyte et al. 2015). 

Thus, stronger interactions would lead to stronger negative feedback loops that buffer 

communities from compositional change. Our findings also agree with recent work showing that 

persistent modules of taxa are enriched in taxon interactions (Zelezniak et al. 2015). Thus, 

another interpretation is that biotic interactions create self-reinforcing modules within bacterial 

communities, which leads to lower turnover. One possible mechanism generating these self-

reinforcing subunits is metabolite exchange between taxa (Morris et al. 2013, Levy and 

Borenstein 2013). Finally, our work agrees with recent studies that hypothesize that microbial 

communities contain keystone taxa, which shape community assembly due to their strong 

interactions with other taxa (Vick-Majors et al. 2014, Agler et al. 2016, Banerjee et al. 2016). We 

propose that studying these keystone taxa might allow researchers to prioritize organism-centric 

studies to learn why and how specific taxa have such a strong influence on communities.  

Ecological theory offers some insight into why negative cohesion was often more 

strongly related to compositional stability than positive cohesion. Under some circumstances, 
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pairwise correlations may be indicative of pairwise taxon interactions; we make this simplifying 

assumption to investigate our results in the context of classical ecological theory. Mathematical 

models using local stability analysis with simple communities have indicated that stable 

equilibria are common when negative interactions (e.g. competition, predation) are present. For 

instance, scenarios with stable eqiulibria include: two or more competitors (May and Leonard 

1975), one predator and one prey (Rosenzweig and MacArthur 1963), one predator with multiple 

prey (Holt 1977), and multiple predators with one or more prey (McPeek 2012). Conversely, 

stability is rare in food webs with exclusively positive pairwise interactions (May 1981). 

However, recent theoretical literature has indicated that mutualism within the context of other, 

negative interactions can be stabilizing (Mougi and Kondoh 2012). Thus, ecological theory 

indicates that the placement and strength of negative interactions within communities is critical 

to maintaining stable composition. The traits of the most highly connected Mendota 

phytoplankton taxa further support this line of reasoning. Most of the taxa associated with low 

compositional turnover were cyanobacteria, which often have a competitive relationship with 

other phytoplankton (Fong et al. 1993). Several studies have documented the self-reinforcing 

effect of competition for light in aquatic environments, showing that high cyanobacterial 

abundance can be a stable state in eutrophic lakes (Scheffer et al. 1997, Schröder et al. 2005). 

Thus, our results align with existing theoretical explanations of phytoplankton community 

transitions, and suggest that similar dynamics may be present in other systems. Although the 

knowledge of traits and interactions is scarce for taxa in the other two long-term datasets (SPOT 

and Mendota-bact), the lists of highly connected taxa provided here (available in SOM) may be 

useful starting places for trait-based studies.  
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We encourage future studies to examine traits of highly connected taxa using modeling or 

experimental approaches. Strong correlations between taxa are often construed as interactions 

between taxa. Although this assumption can be useful for invoking ecological theory, there are 

several conditions where this assumption would be false. For example, two competing taxa 

might show a negative correlation in their abundances through time due to competitive 

exclusion; conversely, two competing taxa may have similar niches, and therefore might show a 

positive correlation due to simultaneous responses to environmental drivers. Finally, other 

trophic levels likely influence the correlations and connectedness metrics observed in these 

microbial communities, although these factors are not explicitly included in these analyses. Thus, 

mechanistic models would greatly benefit further studies of the role of highly connected taxa in 

community dynamics.  

Our results show several empirical instances where stronger connectivity is related to 

greater compositional stability, contrary to the initial theoretical finding that highly connected 

communities should be unstable. Empirical food webs have many non-random attributes, which 

may explain why our results differ from theoretical expectations and analyses of simulated 

datasets (Pimm 1980, Polis 1991, Neutel et al. 2007). Our consistent finding that greater 

community connectivity (especially from negative connections between taxa) results in lower 

compositional turnover suggests that either evolutionary or community assembly processes 

arrange biotic interactions to form stabilizing feedback loops.  
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Figure 1: Analyses of the three long-term microbial datasets show that stronger cohesion is 

related to lower compositional turnover in all three long-term datasets. Left-hand panels (A, C, 

E) show the how the adjusted model R2 values of the regression analysis changed as taxa were 

excluded from cohesion calculations. For each number of taxa on the x-axis, cohesion values 

were calculated from the most highly connected taxa (black line) and from a random subset of 

taxa (grey lines). The solid grey line shows the median adjusted model R2 for randomly selected 

subsets, while the dashed grey lines give the 5% and 95% intervals. Median R2 values from 

models using random subsets of taxa declined as fewer taxa were included in the cohesion 

metrics. When 1-5% of taxa within a community were used to calculate cohesion, models using 

highly connected taxa generally had higher model R2 values than models using random taxa. The 

red stars in left-hand panels identify the regression model with the highest adjusted R2, which is 

displayed in the paired right-hand panel. Right-hand panels (A, C, E) show the best-fitting linear 

regressions modeling compositional turnover (Bray-Curtis dissimilarity) as a function of 

cohesion from negative connections between taxa. Points indicate Bray-Curtis dissimilarity 

between sequential samples. Solid lines show the fit of linear models. All three datasets showed 

that cohesion arising from negative correlations between taxa was a strong predictor of Bray-

Curtis dissimilarity (Table 1).  

 

Figure 2: Cohesion explained a greater amount of variability in phytoplankton community 

turnover in the undisturbed Paul Lake, as compared to an experimentally disturbed system, Peter 

Lake. The model R2 values predicting Bray-Curtis dissimilarity in Paul Lake were generally 

higher than for models predicting Bray-Curtis dissimilarity in Peter Lake. The exception was 

when models used very few (< 10) taxa to calculate cohesion metrics. As in Figure 1, taxa were 
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sequentially removed from the analysis in reverse order of their connectedness (i.e. least 

connected taxon removed first). 

 

Figure 3: The adjusted model R2 values for plaque communities sampled as part of the Human 

Microbiome Project show that cohesion was a significant predictor of Bray-Curtis dissimilarity 

in the protected plaque site (subgingival plaque, solid line), but not at the exposed plaque site 

(supragingival plaque, dashed line). Icons above the solid line indicate when positive cohesion 

was significant at p < 0.001 (+) and when negative cohesion was significant at p < 0.001 (-). At 

the exposed plaque site, cohesion was never a significant (p < 0.05) predictor of Bray-Curtis 

dissimilarity.  
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Figure 1: 
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Table 1: Representative Results of Cohesion as a Predictor of Bray-Curtis Dissimilarity 

Dataset Total # 
of Taxa 

Optimal # 
of Taxa* 

Maximum 
Adjusted 
R2 

Positive 
Cohesion 
P value 

Negative 
Cohesion 
P value 

Positive 
Cohesion 
Direction + 

Negative 
Cohesion 
Direction + 

Data 
Points in 
Analysis # 

ME - 
phyto 

409 15 0.485 n.s. < 1*10-27 NA Stronger is 
stabilizing 

186 

ME - 
bact 

7081 33 0.428 < 1*10-3 < 1*10-7 Stronger is 
stabilizing 

Stronger is 
stabilizing 

54 

SPOT – 
Chl. Max. 

392 15 0.478 n.s. < 1*10-4 NA Stronger is 
stabilizing 

36 

Protected 
Plaque 

2190 13 0.207 < 1*10-4 0.014 Stronger is 
stabilizing 

Weaker is 
stabilizing 

93 

Exposed 
Plaque 

2124 79 0.018 n.s. n.s. NA NA 95 

Paul - 
Reference 

209 13 0.487 < 1*10-5 < 1*10-18 Weaker is 
stabilizing 

Stronger is 
stabilizing 

123 

Peter -  
Disturbed 

237 57 0.374 0.009 < 1*10-6 Stronger is 
stabilizing 

Stronger is 
stabilizing 

121 

* Indicates the number of taxa where the maximum adjusted R2 value occurred 

+ These columns indicate the direction of a significant relationship between cohesion and Bray-

Curtis dissimilarity. For example, “stronger is stabilizing” means that greater cohesion is related 

to lower Bray-Curtis dissimilarity. Non-significant relationships are denoted “n.s.”. 

# Because the time elapsed between samples is strongly related to Bray-Curtis dissimilarity, we 

only included paired sampled with similar time separation (see Supplementary Table 1 for 

further information). This reduced the number of data points available for our analyses.    
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Appendix 1: Supplementary Table 1: Data Processing and Cohesion Workflow Parameters 

 
Dataset Presence 

Cutoff 
Abundance 

Cutoff 
# Taxa 
(Total) 

# Taxa 
Meeting 
Cutoffs 

# Samples 
for 

Correlations 

Range of 
Days 

Elapsed 

Null 
Model 

Algorithm 
ME - 
phyto 

15 None 409 83 293 36 – 48 Column 
Shuffle 

ME - 
bact 

5 1* 10-9 7081 503 91 25 – 41 Row 
Shuffle 

SPOT – 
Chl. Max. 

5 1* 10-3 392 122 65 20 – 35 Row 
Shuffle 

Protected 
Plaque 

18 1* 10-8 2190 111 171 max. of 14 Row 
Shuffle 

Exposed 
Plaque 

18 1* 10-8 2124 91 174 max. of 14 Row 
Shuffle 

Paul - 
Reference 

18 None 209 62 196 39 - 45 Column 
Shuffle 

Peter -  
Disturbed 

18 None 237 65 195 39 - 45 Column 
Shuffle 

 
Column Descriptions 
 
Presence Cutoff: The minimum number of samples in which a taxon must be present in order to 

be included in the cohesion calculation  

Abundance Cutoff: The minimum mean abundance for a taxon across all samples in order for the 

taxon to be included in the cohesion calculation 

# Taxa (Total): The total number of taxa observed in the dataset 

# Taxa Meeting Cutoffs: The number of taxa that satisfied the presence cutoff and the abundance 

cutoff, and therefore were included in the cohesion calculations 

# Samples for Correlations: The number of samples used to calculate pairwise taxon correlations 

Range of Days Elapsed: Time between samples affects the observed dissimilarity between 

samples. Thus, we only calculated Bray-Curtis dissimilarity for samples within a given time 

frame. The time frames were based primarily on sampling frequency. 

Null Model Algorithm: There are two possible randomization algorithms implemented in null 

model within the cohesion workflow. The benefits of each algorithm are outlined in the readme 
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file in the SOM of Herren and McMahon 2017. This variable indicates whether the column 

randomization or row randomization was used in the null model. 
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Appendix 2: Supplementary Material and Methods 
 
Dataset Descriptions and References 
 

Lake Mendota Phytoplankton:  

 We obtained these data from the North Temperate Lakes Long Term Ecological Research 

(NTL-LTER) data portal, https://lter.limnology.wisc.edu/data. Associated protocols can also be 

located there. Briefly, whole water samples were collected from a central location in Lake 

Mendota. The top 0-8m of the water column was collected, and a sample was preserved for 

analysis by PhycoTech Inc. Phytoplankton counts were obtained by mounting samples on slides 

and enumerating the cells using a microscope. Samples were taken approximately every 2 weeks 

during the open water (ice-free) season spanning the years 1995 – 2013. We removed counts not 

identified at any level (e.g. categorized as “Miscellaneous”). We did not alter or combine 

identifications from those presented in the dataset.  For each sample, we transformed 

phytoplankton counts to relative abundances by dividing the count for each taxon by the total 

number of counts for the entire sample.  

 

San Pedro Ocean Time Series:  

 We obtained these data from the following data repository: http://www.bco-

dmo.org/dataset/535915. Additional protocols and information about the San Pedro Ocean time 

series can be found at the following webpage, hosted by the University of Southern California: 

https://dornsife.usc.edu/spot/data/. Further description of bacterial community dynamics and 

environmental conditions can be found in Fuhrman et al. 2006, Chow et al. 2013, and Cram et al. 

2015. Briefly, water samples from five depths were taken at the same location in the San Pedro 

ocean channel (off the coast of southern California) from the years 2000 - 2011. Bacterial 
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community composition was determined using automated ribosomal interspacer analysis 

(ARISA). We decided to analyze the samples from the chlorophyll maximum (CMAX) because 

we hypothesized that this site would represent a coherent community; the other sites were 

sampled at constant depths. There were 65 samples at the CMAX site that spanned the years 

2000 – 2009.  

 

Lake Mendota 16S rRNA gene sequencing: 

 We obtained these data from the Earth Microbiome Project data portal, study ID 1242. 

During quality control processing, we removed five samples with fewer than 100 reads. Details 

on sample collection and data processing can be found in the Supplementary Online Material of 

Herren and McMahon, in press. Taxonomy assignment was conducted using a custom workflow 

available at https://github.com/McMahonLab/TaxAss.  

 

Peter Lake Phytoplankton and Paul Lake Phytoplankton: 

 We obtained these data from the NTL-LTER data portal, but data were generated by the 

Cascade research group (https://cascade.limnology.wisc.edu/). Phytoplankton counting protocols 

are detailed in Cottingham et al. 1998.  

Briefly, three water samples were drawn from different depths in the epilimnion at a 

central station in each lake. Water samples were pooled and preserved for later identification. 

Phytoplankton were filtered from the water and mounted on slides to be enumerated under a 

microscope. Samples were collected approximately weekly during the summer stratified season 

(May – September) from the years 1984 – 1995. For each sample, we transformed phytoplankton 
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counts to relative abundances by dividing the count for each taxon by the total number of counts 

for the entire sample. 

 Peter Lake was disturbed using a number of experimental perturbations over the course 

of the time series. These disturbances targeted multiple aspects of the lake food web. Initial 

disturbances focused on the trophic cascade induced by changing the top predators in an 

ecosystem (Carpenter et al. 1985). In 1985, researchers removed most piscivorous fish from 

Peter Lake, replacing them with zooplanktivorous fish (Carpenter et al. 1987). Then, in the 

springs of 1988 and 1989, trout were added to Peter Lake. Manipulations of the fish community 

continued through 1990, including the addition and removal of various species (Carpenter and 

Kitchell 1996). Later manipulations evaluated the influence of bottom-up dynamics by 

introducing additional nutrients. In 1993 and 1994, Peter Lake received daily additions of 

nitrogen and phosphorus (Cottingham et al. 1998).  

 

Human Microbiome Plaque 16S rRNA gene sequencing: 

We obtained the HMP data from the associated website, http://hmpdacc.org. The version 

of the data downloaded was the 16S variable region 3-5 (V35) clustered with mothur. 

Information about sample collection, processing, and data generation can also be found at 

http://hmpdacc.org. We removed pilot samples from the dataset before conducting our analyses. 

We removed all samples lacking a second time point. For each body site, we calculated 

correlations between taxa using samples from the first of the two time points. The lowest number 

of reads in a sample of these two plaque communities was 783, and all other samples had >1000 

reads. Thus, we did not remove any samples from our analyses due to low sequencing depth.  
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Appendix 3: Human Microbiome Project Supplementary Analysis 
 
We applied the same workflow as described for the Supragingival Plaque and Subgingival 

Plaque communities to the other 16 body sites sampled as a part of the Human Microbiome 

Project. Briefly, we calculated cohesion values using subsets of highly connected taxa at each 

body site. We recorded the adjusted model R2 values for the multiple regressions predicting 

Bray-Curtis dissimilarity within a single host as a function of positive and negative cohesion. 

The parameters used in the cohesion workflow were the same as for the plaque communities.  

 

Here, we report the body sites for which positive and negative cohesion were highly significant 

(P < 0.001) predictors for any of the regression models. To evaluate the influence of the null 

model used to correct pairwise correlations, we conducted this analysis using either 1) the row 

shuffle null model or 2) the column shuffle null model. We found that the choice of null model 

had little influence on the results of these analyses; the body sites where positive and negative 

cohesion were significant were identical when using the two different null models. Icons above 

the plotted lines in the top panels of supplementary figures indicate when positive (+) or negative 

(-) cohesion was significant at P < 0.001. Plotted lines in the bottom panels of supplementary 

figures show slope estimates for the cohesion variables for different numbers of included taxa. 

When the slope estimate for negative cohesion was positive, stronger negative cohesion was 

related to lower compositional change. Conversely, when the slope estimate for positive 

cohesion was negative, stronger positive cohesion was related to lower compositional change.  

 

Positive Cohesion Significant (6): Hard palate, Left antecubital fossa, Right retroauricular crease, 

Saliva, Stool, Throat 
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Negative Cohesion Significant (11): Hard palate, Left antecubital fossa, Left retroauricular 

crease, Mid vagina, Posterior fornix, Right antecubital fossa, Right retroauricular crease, Saliva, 

Stool, Throat, Vaginal Introitus  



 

 

192 

Appendix 4: Highly Connected Taxa  
 
Mendota Phytoplankton Dataset: 
 

 
Negative 
Connectedness 

Chroococcaceae -0.116147747 
Synechococcus.sp1 -0.100280376 
Microcystis.aeruginosa.1 -0.068239572 
Rhodomonas.minuta.var..nannoplanctica -0.067932942 
Aphanothece.1 -0.05249947 
Cryptomonas.erosa.1 -0.048318822 
Aphanothece.nidulans.1 -0.043411415 
Phormidium.mucicola -0.041645258 
Synechocystis -0.041562774 
Synechocystis.1 -0.039788644 
Rhodomonas.minuta -0.034053018 
Aphanocapsa.delicatissima.1 -0.033701429 
Chlamydomonas.1 -0.032959032 
Chlamydomonas.globosa -0.030972652 
Oscillatoria.limnetica.1 -0.030632259 
Cryptomonas.erosa -0.030095405 
Monoraphidium.capricornutum -0.028807359 
Cryptomonas.rostratiformis.1 -0.026791256 
Aphanizomenon.flos.aquae -0.026421031 
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Mendota 16S Bacterial Dataset: 

V3 V4 V5 V6 V7 V8 

p__Actinobacteria c__Actinobacteria o__Actinomycetales(100) acI(100) acI-B(100) acI-B1(100) 

p__Proteobacteria c__Alphaproteobacteria o__Rickettsiales(100) alfV(100) alfV-A(100) LD12(100) 

p__Actinobacteria c__Actinobacteria o__Actinomycetales(100) acI(100) acI-A(99) Phila(97) 

p__Actinobacteria c__Actinobacteria o__Actinomycetales(100) acTH1(100) acTH1-A(100) acTH1-A1(100) 

p__Bacteroidetes c__Saprospirae o__[Saprospirales](100) bacI(100) bacI-A(100) bacI-A1(99) 

p__Proteobacteria c__Betaproteobacteria o__Burkholderiales(100) betII(96) Pnec(96) PnecC(74) 

p__Actinobacteria c__Acidimicrobiia o__Acidimicrobiales(100) acIV(100) acIV-C(100) Iluma-C1(99) 

p__Actinobacteria c__Actinobacteria o__Actinomycetales(100) acI(100) acI-A(100) acI-A6(100) 

p__Bacteroidetes c__Saprospirae o__[Saprospirales](100) bacI(100) bacI-A(100) bacI-A1(99) 

p__Actinobacteria c__Actinobacteria o__Actinomycetales(100) acI(100) acI-A(98) acI-A4(97) 

p__Actinobacteria c__Actinobacteria o__Actinomycetales(100) acI(100) acI-A(100) acI-A5(97) 

p__Proteobacteria c__Betaproteobacteria o__Burkholderiales(100) betI(100) betI-A(100) Lhab-A3(54) 

p__Actinobacteria c__Actinobacteria o__Actinomycetales(100) acI(100) acI-A(100) acI-A7(59) 

p__Proteobacteria c__Betaproteobacteria o__Methylophilales(96) betIV(96) betIV-A(96) LD28(96) 

p__Proteobacteria c__Betaproteobacteria o__Burkholderiales(96) betIII(90) betIII-A(90) betIII-A1(87) 

p__Actinobacteria c__Actinobacteria o__Actinomycetales(100) acI(100) acI-A(90) acI-A3(77) 

p__Proteobacteria c__Betaproteobacteria o__Burkholderiales(100) betI(100) betI-A(100) Lhab-A1(89) 

p__Proteobacteria c__Betaproteobacteria o__Burkholderiales(100) betIII(100) betIII-A(100) betIII-A1(98) 

p__Bacteroidetes c__Cytophagia o__Cytophagales(100) bacIII(100) bacIII-A(100) 

p__Actinobacteria c__Acidimicrobiia o__Acidimicrobiales(100) acIV(100) acIV-B(94) Iluma-B1(93) 
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SPOT Chlorophyll Maximum: 

nodeIDs Phylum Class Order 
CMAX_ARISA_686.9 Proteobacteria Alphaproteobacteria Rickettsiales 
CMAX_ARISA_666.4 Proteobacteria Alphaproteobacteria Rickettsiales 
CMAX_ARISA_435.5 Actinobacteria Actinobacteria koll13 
CMAX_ARISA_682.4 Proteobacteria Alphaproteobacteria Rickettsiales 
CMAX_ARISA_662 Proteobacteria Alphaproteobacteria Rickettsiales 
CMAX_ARISA_538.9 Proteobacteria Gammaproteobacteria Oceanospirillales 
CMAX_ARISA_570.1 Cyanobacteria Chloroplast Chlorophyta 
CMAX_ARISA_674.2 Proteobacteria Alphaproteobacteria Rickettsiales 
CMAX_ARISA_671.2 NA NA NA 
CMAX_ARISA_424.4 Actinobacteria Actinobacteria koll13 
CMAX_ARISA_721.2 Proteobacteria Gammaproteobacteria Chromatiales 
CMAX_ARISA_421.5 Actinobacteria Actinobacteria koll13 
CMAX_ARISA_679.4 Proteobacteria Alphaproteobacteria Rickettsiales 
CMAX_ARISA_561.8 Cyanobacteria Chloroplast Chlorophyta 
CMAX_ARISA_478.8 Proteobacteria Deltaproteobacteria Bdellovibrionales 
CMAX_ARISA_741.8 Proteobacteria Deltaproteobacteria Desulfobacterales 
CMAX_ARISA_670.5 Proteobacteria Alphaproteobacteria Rickettsiales 
CMAX_ARISA_653.1 SAR406 AB16 ZA3648c 
CMAX_ARISA_729.4 Proteobacteria Deltaproteobacteria Desulfobacterales 
CMAX_ARISA_423.3 Actinobacteria Actinobacteria koll13 
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Appendix 5: R Script Used in Keystone Taxa Analysis 

#This script shows our analysis of the Lake Mendota phytoplankton dataset.  

#It also generates the figure showing the Model R2 value predicting Bray-Curtis dissimilarity 

using different numbers of taxa.  

# CMH 23-June-2017 

 
library(reshape) 
library(lme4) 
library(vegan) 
 
## create necessary functions ## 
#This function counts the number of zeroes in a vector 
zero <- function(vec){ 
  num.zero <- length(which(vec == 0)) 
  return(num.zero) 
} 
 
#This function averages only negative values in a vector 
neg.mean <- function(vector){ 
  neg.vals <- vector[which(vector < 0)] 
  n.mean <- mean(neg.vals) 
  if(length(neg.vals) == 0) {n.mean <- 0} 
  return(n.mean) 
} 
 
#create function that averages only positive values in a vector 
pos.mean <- function(vector){ 
  pos.vals <- vector[which(vector > 0)] 
  p.mean <- mean(pos.vals) 
  if(length(pos.vals) == 0) {p.mean <- 0} 
  return(p.mean) 
} 
 
#This function pulls out a quantile from each vector in a matrix 
prop.vec <- function(mat, prop){ 
  prop.number <- round(prop*dim(mat)[1]) 
  sort.mat <- apply(mat, 2, sort) 
  prop.vector <- sort.mat[prop.number, ] 
  return(prop.vector) 
} 
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## Parameter inputs ## 
#decide whether to do row or col shuffle 
col.shuffle <- T 
#pick a proportion of presence to analyze taxon 
zero.prop <- .05 
#Set days elapsed options for paired samples (for calculating Bray-Curtis dissimilarity) 
elapse.min <- 36 
elapse.max <- 48 
 
## Read in phyto data 
p <- 

read.csv("~/Desktop/UWMadison/McMahonLab/Var_and_R2/MethodsManuscript/Thesi
sRevisions/FilesForUpload/SOM/OnlineCSV/MendotaPhytoTable.csv", header = T, 
row.names = 1) 

 
#Convert to matrix 
b <- as.matrix(p) 
#Take out blank rows and columns 
b <- b[rowSums(b) > 0, colSums(b) > 0] 
#order by date 
b <- b[order(as.Date(rownames(b), format = "%m/%d/%Y")), ] 
 
#save a copy of original dataset before further manipulation 
orig <- b 
orig.rel <- orig / rowSums(orig) 
 
#define persistence cutoff for retaining a taxon in the analysis 
zero.cutoff <- ceiling(zero.prop * dim(b)[1]) 
 
#cut out low persistence taxa 
c <- b[ , apply(b, 2, zero) < (dim(b)[1]-zero.cutoff) ] 
#Take out any rows that are now blank 
c <- c[rowSums(c) > 0, ] 
 
#convert to relative abundance 
rel.c <- c / rowSums(orig)  
#optionally, check to see what proportion of community was removed  
#hist(rowSums(rel.c))  
 
#create observed - expected correlations in relative data to compare to res.cor  
d.sub <- as.matrix(rel.c) 
 
#create relative abundance correlation matrix 
cor.mat.true <- cor(d.sub) 
 
otu.cors.true.pos <- apply(cor.mat.true, 1, pos.mean) 
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otu.cors.true.neg <- apply(cor.mat.true, 1, neg.mean) 
 
#define number of permutations for null model  
perm.cor <- 200 
 
#create vector to hold median otu-otu correlations for each otu 
med.otu.cors <- vector() 
 
#create random number vector to hold seeds for randomization 
#set seed here to create same seeds in each run 
set.seed(888) 
seeds <- sample(seq(1:100000000), size = (dim(d.sub)[2] * perm.cor * dim(d.sub)[1])) 
 
if(!col.shuffle){ 
  #This is the row-shuffle null model 
  for(m in 1:dim(d.sub)[2]){ 
    which.otu <- m 
     
    #create vector to hold correlations from every permutation for each single otu 
    perm.cor.vec.mat <- vector() 
     
    #Run this loop as many times as specified by perm.cor 
    for(i in 1:perm.cor){ 
      #Duplicate the d.sub matrix, and then replace entries with randomized numbers 
      d.sub2 <- d.sub 
      for(j in 1:dim(d.sub)[1]){  
        #Randomize only taxa present in sample (i.e. abundance > 0) 
        which.replace <- which(d.sub2[j, ] > 0 )  
        #Do not randomize abundance of focal taxon 
        if(d.sub2[j, m] > 0) {which.replace <- which.replace[!which.replace == m]} 
        which.replace.minus <- which.replace[!(which.replace %in% m)] 
        #Set new seed for upcoming randomization 
        set.seed(seeds[j + (i-1)*(dim(d.sub)[1]) + (m-1)*dim(d.sub)[2] ]) 
        #Replace original values with randomized values 
        d.sub2[j, which.replace.minus ] <- sample(d.sub[ j, which.replace.minus])  
 
      } 
      #replace focal column with original column, just to be sure it stays the same 
      d.sub2[, which.otu] <- d.sub[ , which.otu] 
       
      #calculate correlations between randomized taxon vectors 
      cor.mat.true.null <- cor(d.sub2) 
       
      #save the vector corresponding to the focal taxon, m 
      perm.cor.vec.mat <- cbind(perm.cor.vec.mat, cor.mat.true.null[,m]) 
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    } 
    #Take the median of the correlations produced by the null model 
    med.otu.cors <- cbind(med.otu.cors, apply(perm.cor.vec.mat, 1, median)) 
     
    if(m %% 20 == 0){print(m)} 
  } 
   
} else { 
  #This is the column shuffle null model 
  for(m in 1:dim(d.sub)[2]){ 
    which.otu <- m 
     
    #create vector to hold correlations from every permutation for each single otu 
    perm.cor.vec.mat <- vector() 
     
    #Run this loop as many times as specified by perm.cor 
    for(i in 1:perm.cor){ 
      #Duplicate the d.sub matrix, and then replace entries with randomized numbers 
      d.sub2 <- d.sub 
      for(j in 1:dim(d.sub)[2]){  
        #Set new seed for upcoming randomization 
        set.seed(seeds[j + (i-1)*(dim(d.sub)[1]) + (m-1)*dim(d.sub)[2] ]) 
         
        #randomize each taxon's abundance vector 
        d.sub2[, j ] <- sample(d.sub[ ,j ])  
      } 
      #replace focal column with original column 
      d.sub2[, which.otu] <- d.sub[ , which.otu] 
       
      #calculate correlations between randomized taxon vectors 
      cor.mat.true.null <- cor(d.sub2) 
       
      #save the vector corresponding to the focal taxon, m 
      perm.cor.vec.mat <- cbind(perm.cor.vec.mat, cor.mat.true.null[,m]) 
       
    } 
    #Take the median of the correlations produced by the null model 
    med.otu.cors <- cbind(med.otu.cors, apply(perm.cor.vec.mat, 1, median)) 
     
    if(m %% 20 == 0){print(m)} 
  } 
} 
 
#get observed - expected individual correlations 
obs.exp.cors.each <- cor.mat.true - med.otu.cors 
diag(obs.exp.cors.each) <- 0 
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#calculate connectedness values 
conn.pos <- apply(obs.exp.cors.each, 2, pos.mean) 
conn.neg <- apply(obs.exp.cors.each, 2, neg.mean)  
 
#calculate cohesion values 
#coh.pos <- rel.c %*% conn.pos 
#coh.neg <- rel.c %*% conn.neg 
 
 
##############################################################################

################## 
##############################################################################

################## 
 
##Start of analysis for analysing Bray-Curtis dissimilarity as a function of cohesion, calculated 

from different subsets of taxa 
 
#Save original vectors of connectedness values 
conn.pos.all <- conn.pos 
conn.neg.all <- conn.neg 
 
#create vectors to hold R2 values, p values, and parameter estimates for the regression model 
coh.both.r2 <- vector() 
pos.coh.p <- vector() 
neg.coh.p <- vector() 
pos.coh.sign <- vector() 
neg.coh.sign <- vector() 
 
 
##Calculate Bray-Curtis dissimilarity 
#Use full abundance matrix (orig.rel) 
bc <- as.matrix(vegdist(orig.rel)) 
 
#Take only samples within the specified boundaries of days between samples 
days.elapsed.mat <- as.matrix(dist(as.numeric(as.Date(rownames(orig.rel), format = 

"%m/%d/%Y")))) 
days.elapsed.mat[lower.tri(days.elapsed.mat)] <- 0 
bc.diss <- bc[which(days.elapsed.mat >= elapse.min & days.elapsed.mat <= elapse.max, arr.ind 

= T)] 
#find the samples that started off the gap 
first <- rel.c[which(days.elapsed.mat >= elapse.min & days.elapsed.mat <= elapse.max, arr.ind = 

T)[,1], ] 
 
par(mfrow = c(1,1)) 
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#Make a vector with different numbers of taxa to keep 
  how.many.keep <- ceiling(seq(dim(d.sub)[2], 4, by = -2)) 
 
  #Start loop to conduct the regression while keeping different numbers of taxa   
  for(f in 1:length(how.many.keep)){ 
     
    #Repeat this portion for both positive and negative connectedness 
    for(j in c( "positive", "negative")){ 
      #define the number of taxa to keep 
      num.keep <- how.many.keep[f] 
      #define whether working with positive connectedness or negative connectedness 
      ifelse(j == "positive", conn.all <- conn.pos.all, conn.all <- conn.neg.all) 
      #choose taxa to keep based on largest (by magnitude) connectedness values 
     which.keep <- which(rank(abs(conn.all)) %in% seq(length(conn.all), length(conn.all) - 

num.keep + 1, -1) ) 
 
      #Create a new matrix "h" that contains only most connected taxa 
      h <- first[, match( names(apply(d.sub, 2, mean)[which.keep]), colnames(first))] 
      #Pull out connectedness values from only the most connected taxa 
      conn <- conn.all[which.keep] 
      #generate positive or negative cohesion vector 
      ifelse(j == "positive", cohesion.pos <- as.matrix(h) %*% conn, cohesion.neg <- as.matrix(h) 

%*% conn) 
    } 
 
      #Save model R2 value, p values, and coefficient estimates 
      coh.both.r2[f] <- summary(lm(bc.diss ~ cohesion.pos + cohesion.neg ))$adj.r.squared 
      pos.coh.p[f] <- coef(summary(lm(bc.diss ~ cohesion.pos + cohesion.neg )  ))[2, 4] 
      neg.coh.p[f] <- coef(summary(lm(bc.diss ~ cohesion.pos + cohesion.neg )  ))[3, 4] 
      pos.coh.sign[f] <- coef(summary(lm(bc.diss ~ cohesion.pos + cohesion.neg )  ))[2, 1] 
      neg.coh.sign[f] <- coef(summary(lm(bc.diss ~ cohesion.pos + cohesion.neg )  ))[3, 1] 
     
  } 
   
#Plot the adjusted R2 value of the model against the number of taxa included 
par(mar = c(5, 5, 2, 2)) 
plot(coh.both.r2 ~ how.many.keep, ylim = c(0, .50),  ylab = expression("Model R"  ^ 2), xlab = 

"Number of Taxa Included", type = "l", lwd = 3, lty = 1, cex.axis = 1.2, cex.lab = 1.5) 
 
#Find the maximum adjusted R2 value 
max(coh.both.r2) 
#Find the number of taxa included at the max R2 value 
how.many.keep[coh.both.r2 == max(coh.both.r2)] 
 
##############################################################################

################## 
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##############################################################################
################## 

 
##Make a loop to run iterations of the above analysis with random taxa selected 
 
#Make a vector to hold the R2 values of the model using different numbers of random taxa 
coh.both.loop.r2 <- vector() 
 
#determine number of iterations to run 
iter <- 500 
 
#create a matrix to hold the R2 values associated with each number of OTUs keps in each 

iteration 
iter.r2.mat <- matrix(numeric(0), iter, length(how.many.keep)) 
 
for(runs in seq(1, iter, 1)){ 
   
  for(f in 1:length(how.many.keep)){ 
     
    #create a shuffled vector corresponding to the order of OTUs in the matrix 
    rand.order <- sample(seq(1, length(conn.pos.all), 1)) 
     
    #decide how many OTUs to keep for the analysis 
    for(j in c( "positive", "negative")){ 
      num.keep.rand <- how.many.keep[f] 
       
      ifelse(j == "positive", conn.all <- conn.pos.all, conn.all <- conn.neg.all) 
       
      #Select which taxa to keep in the analysis from the randomized vector 
      which.keep.rand <- rand.order[1:num.keep.rand] 
       
      #repeat subsetting of matrix and connectedness values using random taxa  
      h.rand <- first[, match( names(apply(d.sub, 2, mean)[which.keep.rand]), colnames(first))] 
      conn.rand <- conn.all[which.keep.rand] 
      #generate cohesion vectors  
      ifelse(j == "positive", cohesion.pos.rand <- as.matrix(h.rand) %*% conn.rand, 

cohesion.neg.rand <- as.matrix(h.rand) %*% conn.rand) 
    } 
     
    #save R2 of analysis using positive and negative cohesion to model BC dissimilarity 
    #the vector represents one run using each different number of taxa (given in how.many.keep) 
    coh.both.loop.r2[f] <- summary(lm(bc.diss ~ cohesion.pos.rand + cohesion.neg.rand )  

)$adj.r.squared 
     
  } 
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  #save the vector of R2 values in a matrix 
  iter.r2.mat[runs, ] <- coh.both.loop.r2 
   
  if(runs %% 10 == 0){print(runs)} 
} 
 
#Run these lines to add in null model lines for mean and 5th / 95th quantiles 
quant05 <- prop.vec(iter.r2.mat, .05) 
quant95 <- prop.vec(iter.r2.mat, .95) 
 
points(quant05 ~ how.many.keep, type = "l", lty = 3, lwd = 3, col = "red") 
points(apply(iter.r2.mat, 2, median) ~ how.many.keep, type = "l", lty = 1, lwd = 3, col = "red") 
points(quant95 ~ how.many.keep, type = "l", lty = 3, lwd = 3, col = "red") 
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Appendix 6: Results of Human Microbiome Project Analyses (Column Shuffle) 
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Chapter 6: Perspectives and Future Work 
 
Preface 

 This thesis had two related objectives: apply ecological theory to varied empirical 

ecosystems, and use the insights learned from these studies to create more accurate models. This 

integration of ecological theory and microbial datasets appears to be particularly fruitful, because 

the theory provides a way to navigate the analysis of large, complex datasets. This chapter 

highlights intersections between microbial ecology and theoretical ecology, and it suggests some 

experiments and analyses that could build off of this dissertation.  

 

Introduction 

A major goal of microbial ecology is to predict microbial community dynamics, 

including rates of community turnover and eventual community composition (Fierer and Ladau 

2012, Larsen et al. 2012). The hurdles to achieving this goal are both conceptual, such as 

identifying the drivers of community composition (Dini-Andreote et al. 2015), and statistical, 

such as developing methods to identify signals in high-dimensional, relative abundance data 

(Friedman and Alm 2012). Theoretical ecology has, as a field, dedicated substantial effort to 

quantifying and predicting community turnover, but little of this theory or statistical 

methodology has been used to model microbes. However, ecological theory has recently been 

applied in microbial systems as varied as the human microbiome (Morris et al. 2013) and the 

ocean (Fuhrman et al. 2015) to aid in the understanding of microbial community dynamics. 

Furthermore, several prominent ideas in theoretical ecology and microbial ecology address 

similar topics; for example, the microbial concept of identifying deterministic and stochastic 



 

 

222 

community processes has many parallels to the theoretical framework for analyzing the strength 

of stability in communities. 

Partitioning the relative importance of deterministic vs. stochastic forces in microbial 

communities has been a topic of particular interest in recent years (Zhang et al. 2016). This idea 

is important to forecasting microbial community dynamics because it provides a framework for 

understanding when communities should be predictable and when communities are predisposed 

to erratic dynamics (Dini-Andreote et al. 2015). Some essential components of this research 

include quantifying inherent population variability in microbial systems, identifying factors that 

increase or decrease population variability, and determining the relative contribution of various 

drivers of variability (Bissett et al. 2013). These drivers of variability include both biotic (e.g. 

resource competition or predation) and abiotic (e.g. environmental disturbance or nutrient 

availability) forces (Stegen et al. 2015). However, these drivers of variability are often operating 

simultaneously, meaning that it is difficult to partition the influence of these forces. 

The projects outlined here attempt to better partition the sources of community and 

population variability by 1) proposing analyses of existing samples to investigate the role that 

phylogenetic relatedness plays in regulating community turnover and 2) suggesting experiments 

that would separate the influence of biotic and abiotic forces.  

 
Proposed Future Projects  

Project 1: Identifying keystone OTUs that indicate impending community shifts 

 One practical application of Chapters 4 and 5 of this dissertation could be to help 

researchers identify key taxa that might indicate that microbial communities are going to either 

remain fairly compositionally stable through time or are prone to rapid compositional changes. 

For example, part of a water quality monitoring program might be to conduct weekly tests for the 
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abundance of 5 key OTUs that indicate the rate of compositional change in the microbial 

community. However, it would be optimal to test as few OTUs as possible. Thus, Project 1 

would focus on ways to include information about phylogenetic relatedness to improve the 

workflow developed in Chapter 4. It would be expected that highly related taxa might also have 

respond similarly to environmental cues, which would cause correlations between taxa that do 

not reflect taxon interactions. Weeding out these environmentally-driven correlations would 

improve the signal of biotic interactions in the dataset, which could improve the results of the 

workflow. I formed this hypothesis from the observation that turnover in the Lake Mendota 

bacterial time series (temperate location) was not captured as well as in the San Pedro Ocean 

Time Series (subtropical location). Thus, the higher degree of seasonality in the Lake Mendota 

time series may contribute to spurious correlations between OTUs with similar niches due to 

stronger environmental forcing. 

In the summer of 2015, I conducted fieldwork at Trout Lake to experimentally test the 

hypothesis (based on results from Chapter 5) that keystone taxa could predict major 

compositional changes before they occurred. I transplanted biofilm communities between the 

epilimnion and hypolimnion of Trout Lake and took samples every 2 days. There were 

treatments where communities permanently remained in the epilimnion (Epi) or hypolimnion 

(Hypo) of Trout Lake, as well as treatments where the communities were temporarily (Pulse) or 

permanently (Press) relocated from the hypolimnion to the epilimnion (Fig 1). I took a highly 

replicated time series (at least 9 samples per treatment at 9 time points) before, during, and after 

the experimental manipulations to be able to build microbial community networks of each 

treatment at each time point. Because of the strong differences in temperature, light, and 

dissolved oxygen between the epilimnion and hypolimnion, I would expect that the microbial 
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communities in the transplanted treatments changed substantially in community composition as a 

result of moving locations in the water column. 

 

         

Figure 1: Experimental design of the transplant disturbance experiment conducted in summer 

2015. “E” represents communities located in the epilimnion of Trout Lake, and “H” represents 

communities located in the hypolimnion. Samples were collected every 48 hours.  

 

Due to time limitations, these samples have not been analyzed. However, it would be 

very interesting to analyze them with 16S tag sequencing because of the phylogenetic 

information that would accompany these data. A first step would be to identify the OTUs that are 

most highly connected in the bacterial communities prior to the experimental disturbance (using 

the workflow in Chapter 4). Then, it would be interesting to test whether highly-related taxa 

show similar patterns of connectedness, with the expectation that closely-related OTUs would 

show more similar connectedness values than phylogenetically distant OTUs. Relatedness could 

be calculated using several different metrics of phylogenetic distance to assess which metric is 

best for the analyses. These values of relatedness could be incorporated into the existing 

workflow to produce an improved algorithm for identifying keystone taxa.   
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The experimental design employed in this project was specifically intended to answer 

questions about the resilience and recovery of communities. The post-disturbance time points 

could be used to determine whether 1) the abundances of these highly connected OTUs 

correspond to the rate of community composition change after the disturbance has been 

implemented and 2) whether these highly connected OTUs recover more or less quickly than the 

remainder of the OTUs when the communities are replaced in their original conditions. Under 

the hypothesis that the highly connected OTUs are important drivers of bacterial community 

turnover, I would expect these OTUs to exhibit changes in abundance before the rest of the 

bacterial OTUs begin to experience changes.   

 

Project 2: Partitioning biotic vs. abiotic forces in shaping community and population response to 

disturbance 

 Prior work in my dissertation (Chapter 

2) showed that environmental stressors 

decreased the OTU-level population 

variability within bacterial communities. One 

hypothesis for this pattern is that the 

environmental stress imposed a strong 

selective pressure on the taxa within the 

communities, thereby creating similar 

community composition by consistently 

favoring the same set of taxa. However, 

environmental stress can also alter 
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interactions between OTUs, meaning that biotic interactions could also contribute to the 

observed pattern. Currently, there are few methods to disentangle biotic vs. abiotic drivers of 

community composition in ecological communities. Again, the ability to obtain phylogenetic 

information from bacteria might make this question tractable in this system. Phylogenetic 

information would be an informative response variable in this case, because I would expect that 

closely related taxa would show similar responses to environmental selective forces, such that 

phylogenetic diversity would decrease following a disturbance (Helmus et al. 2010, Banks et al. 

2013). Similarly, recent work has indicated that phylogenetic diversity changes in bacterial 

communities over successional trajectories (Brown and Jumpponen 2015). Thus, I would expect 

that, if selective pressure from abiotic stressors decreases OTU-level variability, phylogenetic 

diversity should show decreases at the same time points where OTU-level variability shows 

decreases (Fig. 2A). Conversely, if the drivers of OTU variability are the biotic interactions that 

occur after the phylogenetic restructuring, then OTU variability should decrease after 

phylogenetic diversity (Fig. 2B).  
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