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i 

Abstract 

This dissertation develops a public-domain approach for evaluating and selecting patient 

tissues to use for deriving densitometric computed tomography calibration (DCTC). This 

method enables the evaluation of patient computed tomography (CT) scans captured 

without a densitometric calibration phantom in the scan field of view. Unlike other methods 

for estimating density from CT scans, this method can be applied in the context of CT-

based patient-specific finite element (CTPSFE) models and analyses. CTPSFE analyses 

have been shown useful in a variety of applications including identifying patients at risk 

of imminent femoral fragility fracture. This dissertation aims to demonstrate, verify, and 

validate an approach to selecting patient tissues to use as the basis for deriving a 

phantomless DCTC equation. My analysis shows the demonstrated phantomless method 

was comparable with current clinical and orthopaedic research gold standard phantom-

based calibration methods. The developed method shows promise as a public domain 

DCTC method capable of enabling further development of CTPSFE methods and 

broadening the clinical accessibility to quantitative CT analyses. 
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1 Executive summary and motivation 

Osteoporosis, a metabolic disease, is a known leading cause of femoral fragility fracture 

and has been widely studied. Femoral fragility fracture widely impacts the quality of life of 

people from a diverse range of backgrounds at-risk for reasons that may include aging, 

metabolic disease, traumatic injury, cancer, or space travel. Bone researchers with 

engineering backgrounds have proposed computed tomography-based patient-specific 

finite element (CTPSFE) modelling and analyses to identify patients at risk of femoral 

fracture. The first clinically implemented biomechanical computed tomography (BCT) 

product VirtuOst software (O.N. Diagnostics, Berkeley, CA) is newly available in the clinic 

in the USA as of 2020 after approval from the FDA. Despite this, universally identifying 

patients at risk of femoral fragility fracture and preventing fractures remain clinical 

challenges. 

Mechanically, femoral fragility fracture is known to be a function of macro- and micro-

architecture, density, loading conditions and the interactions of the bone with the 

environment during impact. Input variables for CTPSFE analyses include geometry, 

material properties, and loading and boundary conditions. Geometry and loading and 

boundary conditions can be defined using free-body diagrams and available 

instrumentation. Through medical image segmentation, digital patient-specific geometries 

are created from computed tomography (CT) scans. Loading and boundary conditions 

are commonly defined from either the stance phase of walking or a side fall scenario. For 

loading that represents the stance phase of walking, joint forces from instrumented hip 

implants provide the best currently available data on loading angles and forces. The 
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stress gradient in the combined loading that exists in either the walking or falling loading 

cases makes CTPSFE analyses sensitive to material properties. Defining bone material 

properties for CTPSFE analyses remains challenging. 

Bone material properties are the most challenging aspect of CTPSFE analyses. 

Bone mineral density, a bone material property, can be measured using CT scanners. CT 

scanners measure X‑ray attenuation and density after densitometric CT calibration 

(DCTC) is performed. With calibration and empirical material mapping equations, bone 

mineral density can define material properties for CTPSFE analyses. The empirical 

material mapping equations amplify the impacts of different methods of DCTC, due to a 

power-law relationship. Therefore, the CTPSFE analyses are sensitive to the DCTC.  

Capturing bone specific DCTC data is not a universal clinical practice, and 

retrospectively may not be feasible due to clinics routinely upgrading CT scanners. 

VirtuOst overcame this limitation by developing and applying internal tissue-based 

(phantomless) DCTC. Their proprietary approach leverages deep learning to segment the 

ischioanal fossa and derive a DCTC equation from the ischioanal fossa and theoretical 

air, as defined by the Hounsfield Scale. The continued development of CTPSFE methods 

and broad clinical accessibility of quantitative CT analyses require a public domain 

method for deriving a DCTC equation. 

This dissertation develops a public-domain approach for evaluating and selecting 

patient tissues to use for deriving DCTC. This method enables the evaluation of patient 

CT scans captured without a densitometric calibration phantom in the scan field of view. 

Unlike other methods for estimating density from CT scans, this method can be applied 

in the context of CTPSFE models and analyses. This dissertation aims to demonstrate, 
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verify, and validate a method for selecting patient tissues to use as the basis for deriving 

a phantomless DCTC equation.  

The method for selecting tissues was applied to assess 258 CT scans of 211 

patients. Tissue density assumptions were based on available data tables from the 

National Institute of Standards and Technology (NIST). Standardized DCTC and 

measurement methods were applied from the standard for calibrating and measuring CT 

density published by the American Standards for the Testing of Materials (ASTM). The 

phantomless calibration equation from air, aortic blood, and skeletal muscle demonstrated 

the least error across patients. 

My analysis shows the demonstrated phantomless method was comparable with 

current clinical and orthopaedic research gold standard phantom-based calibration 

methods. Of the 211 patients, 5 were scanned with a clinical Mindways Model 3 BMD 

phantom in the scan field of view. The derived phantomless calibration equations for the 

258 CT scans all fell within the range of the 5 available phantom-based calibration 

equations. A femoral density phantom (FDP) designed in accordance with the ASTM 

standard served as our orthopaedic research gold standard phantom. Notably, density 

measurements from the phantomless DCTCs for the 258 CT scans showed low overshoot 

when compared against density measurements from the FDP.  

Together these results showed phantomless calibration is valid to serve as a basis 

for defining bone mineral density in the context of CTPSFE. The included analysis verified 

and validated the air, aortic blood, and skeletal muscle combination as the basis for 

phantomless calibration. Bias across patients was minimal indicating these methods may 

be suitable for analysing patient CT scans without a phantom in the scan field of view. 
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The developed method shows promise as a public domain DCTC method capable of 

enabling further development of CTPSFE methods and broadening the clinical 

accessibility to quantitative CT (QCT) analyses.  
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2 Dissertation navigation 

This dissertation describes a method for predicting femoral fracture risk (FFR) based on 

densitometric CT calibration (DCTC) and CT-based patient-specific finite element 

(CTPSFE) analysis. This framework is designed to be accessible to a technical lay 

audience, researchers who have taken a break from this area, and students pursuing this 

area of research. After this chapter, this dissertation includes seven chapters. Chapter 3 

defines terms and explains assumptions and limitations of X-ray-based clinical imaging. 

Chapter 4 identifies and discusses definitions, assumptions, and limitations of CTPSFE 

modelling. Chapter 5 demonstrates, verifies, and validates a method for selecting patient 

tissues from which to derive phantomless DCTC data for use in CTPSFE analyses of the 

femur. Chapter 6 presents error measurement as a comparison of phantomless DCTC 

methods to a femoral density phantom (FDP). Chapter 7 discusses research conclusions 

and limitations. Chapter 8 outlines the scientific knowledge generated by this work. 

Chapter 9 previews future research directions. 

This dissertation is modular. Following the table of contents, readers may cherry-pick 

the sections they want to read to understand various terms from Chapters 3 and 4. Of 

note are the sections in Chapter 3 on determining the density calibration of a CT system 

and Chapter 4 on material mapping, as these sections present groundwork for 

understanding the rest of the dissertation. Further, the example in Chapter 3’s section 

3.2.10 includes an illustration that will be expanded in Chapter 6. This scaffolded 

approach builds on the concepts presented and allows readers to interact with simple 

applications of these concepts before encountering more complicated versions.  
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2.1 Objectives  

Demonstrate, verify, and validate a method of estimating densitometric CT 

calibration (DCTC) data for quantitative CT-based analyses of the femur. 

Objective 1:  Identify and characterize relevant and available patient tissues with the 

potential to serve as the basis for estimating DCTC data. 

Objective 2:  Devise quality checks for tissue segmentation.  

Objective 3:  Determine reasonable assumptions for tissue densities. 

Objective 4:  Demonstrate a repeatable and objective method for tissue combination 

selection. 

Objective 5:  Devise guidance for calibration equation quality checks. 

Objective 6:  Verify that patient-specific phantomless DCTC equations fall within the 

boundaries of available representative inline phantom-based DCTC 

measurements. 

Objective 7:  Validate patient-specific phantomless DCTC equations for patients whose 

CT scans contain inline densitometric phantoms.  
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2.2 Summary of original contributions 

To form a cohesive narrative, I have added some original contributions throughout my 

dissertation (Table 2-1). Although not yet published, these contributions will be iterated 

and expanded upon for future publications.  

Table 2-1: Summary of original contributions throughout this dissertation. 

Section Number Section Original Contribution 

3.3.9 Illustrative 
comparison of 
densitometric CT 
calibration methods 

Clinically relevant demonstration of 
whether an attenuation calibration 
approach is more accurate than a density 
calibration approach when including the 
femur as an internal tissue reference. 

5 Evaluation of patient 
tissue selection 
methods for deriving 
equivalent density 
calibration for femoral 
bone quantitative CT 
analyses 

Demonstrated a repeatable and unbiased 
method for selecting patient tissues to 
serve as the basis for internal tissue-
based phantomless DCTC.  
Verified patient-specific internal tissue-
based phantomless DCTC equations 
results for 258 CT scans and 211 patients 
against sparse inline phantom-based 
DCTC data as representative field 
boundary measurements. 
Validated resulting patient-specific 
clinically relevant outcomes derived from 
internal tissue-based phantomless DCTC 
and phantom-based DCTC. 

6 Comparison of 
Internal Tissue-
Based Phantomless 
DCTCs and Error 
Assessment 

Clinically relevant demonstration of 
whether an attenuation calibration 
approach is more accurate than a density 
calibration approach when excluding the 
femur as an internal tissue reference. 
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3 Clinical X-ray imaging: Definitions, 
assumptions, and limitations 

In this chapter, we begin by constructing a mental model of how X-ray-based CT scans 

are captured by describing relevant mathematical principles. New CT scanners are 

constantly being introduced to the clinic, but a mental model of the fundamentals of CT 

scanning equips researchers to identify potentially statistically significant factors before 

analysing patient data even as the details of CT technology in practice evolve. The 

remainder of the chapter surveys existing methods for CT density calibration and 

measurement. Historically, the details of CT density calibration and measurement have 

been kept proprietary or within specific lab groups. The recent interest in phantomless 

densitometric CT calibration (DCTC) has meant more details are readily available in 

dissertations, so a survey of differing approaches is newly possible.  

3.1 Factors of X-ray based clinical imaging  

X-rays have been used to evaluate bone in the clinic for over a century1. Because their 

index of refraction is close to one, X-rays are neither bent nor reflected as they pass 

through matter. X-ray intensity is the product of power [kilovolt power, kVp] and current 

[milliAmp, mA]. X-ray absorption follows Beer’s Law, equation I = I0e‑αx(3.1), with 𝐼 as 

the final X-ray intensity [kW/m2], 𝐼0 as the initial X-ray intensity [kW/m2], 𝛼 is the absorption 

coefficient, and 𝑥 is the thickness [m].  

 𝐼 = 𝐼0𝑒−𝛼𝑥 (3.1) 

In the context of X-ray-based clinical imaging, 𝛼 is the product of the mass attenuation 
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coefficient [m2/g] and density [g/m3]. The energy-specific mass attenuation coefficient, 
𝜇

𝜌
 , 

is the ratio of the linear attenuation, 𝜇 [1/m], and density, 𝜌 [g/m3]. Energy-dependent 

linear attenuation, 𝜇 [1/m], after the X-ray passes through the examination object, is 

shown in equation (3.2). 𝑃𝐸 and 𝐶𝑆 are the basis functions of the photoelectric effect and 

the Compton scatter effect, respectively2. Note that 𝑎1, 𝑎2, 𝑚1, and 𝑚2 are material-

specific constants, and 𝜇1 and 𝜇2 are the X-ray attenuations of any two independent 

materials.  

 𝜇(𝐸) = 𝑎1𝑃𝐸(𝐸) + 𝑎2𝐶𝑆(𝐸) = 𝑚1𝜇1(𝐸) + 𝑚2𝜇2(𝐸) (3.3) 

The definition of linear attenuation can be logarithmically transformed and 

rearranged to take the alternate form shown in equation (3.4). In this form, 𝜇 is the energy- 

specific linear attenuation [1/cm], 
𝜇

𝜌
 is the energy-specific mass attenuation coefficient 

[cm2/mg], and 𝜌 is density [mg/cm3].   

 𝜇 =
𝜇

𝜌
∗  𝜌 (3.4) 

One advantage of the formulation shown in equation (3.4) for linear attenuation is the 

ease of rearranging to solve for density, as shown in equation (3.5).   

 𝜌 =
𝜇

(
𝜇

𝜌
)
 (3.5) 

Together, these relationships demonstrate that X-ray-based density measurements are 

sensitive to energy [kVp], current [mA], and thickness [m].  

In conventional radiography, X-rays travel from the X-ray source through the 

examination object and are recorded on film expressed as a 2D planar image. If the X-ray 

measurements are recorded on film, the power and current are independently controlled 
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variables that must be selected before taking the measurement. When capturing X-ray 

measurements of bone, too much power can result in a brighter image with qualitatively 

higher bone density measurements and some loss of clarity. Similarly, too little current 

can produce an overly bright image, or too much current can produce a darker and 

shadowed image.  

3.1.1 X-ray-based method for the measurement of in vivo bone 

mineral 

In the 1960s, an improved method for measuring in vivo bone mineral was proposed by 

John Cameron and James Sorenson from the University of Wisconsin–Madison 

Departments of Radiology and Physics3. Cameron and Sorenson demonstrated an 

approach for using X-rays to measure areal bone mineral density (aBMD) by using Beer’s 

Law, reproduced here in equations (3.6)–(3.9).   

Let:  

𝐼0 = X-ray intensity of unobstructed photon beam 

𝑇𝑏 = equivalent bone thickness of compact bone mineral at density 𝜌𝑏 

𝑇𝑚 = thickness of soft tissue 

𝑇 = 𝑇𝑏 + 𝑇𝑚 = thickness of tissues 

𝐼0
∗ = X-ray intensity after passage of the beam through a thickness of tissue 

𝐼 = X-ray intensity after passage of the beam through an equal thickness of bone 

mineral plus tissue 

𝜇𝑏 = mass absorption coefficient of bone 

𝜇𝑚 = mass absorption coefficient of tissue 
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Then, let X-ray intensity after passage through a thickness of tissue be:  

 𝐼0
∗ = 𝐼0𝑒−𝜇𝑚𝜌𝑚𝑡 (3.6) 

Equation (3.7) is rewritten such that the X-ray is attenuated by two tissues, and 

rearranging X-ray intensity to allow for equation (3.6) to be substituted in:  

 𝐼 = 𝐼0𝑒−𝜇𝑚𝜌𝑚𝑇𝑚−𝜇𝑏𝜌𝑏𝑇𝑏  

    = 𝐼0𝑒−𝜇𝑚𝜌𝑚(𝑇−𝑇𝑏)−𝜇𝑏𝜌𝑏𝑇𝑏  

    = 𝐼0𝑒−𝜇𝑚𝜌𝑚𝑇𝑒−𝜇𝑏𝜌𝑏𝑇𝑏+𝜇𝑚𝜌𝑚𝑇𝑏 (3.7) 

Then substituting equation (3.6) into the final form of equation (3.7) yields:  

 𝐼 = 𝐼0
∗𝑒−𝜇𝑏𝜌𝑏𝑇𝑏+𝜇𝑚𝜌𝑚𝑇𝑏  (3.8) 

Rearranging equation (3.8) to solve for bone thickness yields:  

 
𝐼

𝐼0
∗ =  𝑒−𝜇𝑏𝜌𝑏𝑇𝑏+𝜇𝑚𝜌𝑚𝑇𝑏   

 ln (
𝐼

𝐼0
∗) =  −𝜇𝑏𝜌𝑏𝑇𝑏 + 𝜇𝑚𝜌𝑚𝑇𝑏  

 𝑇𝑏 =
[ln(

𝐼

𝐼0
∗ )]

𝜇𝑏𝜌𝑏−𝜇𝑚𝜌𝑚
 (3.9) 

The practical application is that X-ray intensity measurements can be used to 

determine the cross-sectional area of compact bone mineral in a volume of interest. An 

equally spaced grid of X-rays travel through the tissue and bone in the specimen and the 

reduction in X-ray measurements is recorded at the grid locations. The cross-sectional 

area can then be found using the series of measurements across the intervals. This proof 

assumes a standard composition of bone, and equal thicknesses of bone and tissue. It 

also assumes that all non-bone mineral substances absorb radiation in a similar manner 



 
 

 

12 

to muscle tissue. Their proof clearly demonstrates that X-ray-based density 

measurements are sensitive to object thickness. As an illustration, Cameron and 

Sorenson provided a comparison of aBMD measurements for a 28-year-old normal 

woman (74.1 cm2) and for an osteoporotic woman (30 cm2). This approach is limited to a 

2D measurement, while CT-based techniques discussed later involve 3D measurements.  

Dual-energy X-ray absorptiometry (DXA) scanners were introduced in 19874, 

applying the theory proposed by Cameron and Sorenson, and entered clinical practice 

shortly thereafter. One limitation to DXA is its sensitivity to tissue thickness as just 

discussed. In 2012, Yu et al. demonstrated this limitation empirically by showing that 

simulated increases in body fat increased variations in DXA measurements5. Their study 

found that increasing layers of fat around a phantom increased the BMD measured while 

increasing layers of fat around patients decreased the BMD measured. The same study 

also used CT scans as the basis for DXA measurements and found that this approach 

was less variable. Building on these methods, another improved approach, now called 

computed tomography X-ray absorptiometry (CTXA), is available in the clinic as an off-

the-shelf solution from Mindways Software, Inc6.  

CTXA serves several important functions. First, patients who are receiving routine 

virtual colonoscopies by CT examination can be screened for osteoporosis based on the 

same CT, with no additional scans. Second, CTXA allows for continuity of care because 

it is comparable with DXA measurements. The comparability provides clinicians with a 

consistent patient assessment over time regardless of which measurement was captured. 

Clinicians are also provided with data at a higher standard of care without needing 

continuing education to interpret measurement results.  
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Further, CTXA works seamlessly with the frameworks already in place to gain clinical 

meaning from DXA, such as the Fracture Risk Assessment Tool (FRAX). CTXA is an 

incremental step towards a CT-based clinical densitometric assessment on the way to the 

clinical adoption of CTPSFE-analysis-based techniques. Notably, following a similar 

scaffolded approach, VirtuOst’s Biomechanical Computed Tomography tool provides both 

a CT-based, DXA-style analysis and a CTPSFE analysis7. Therefore, CTXA plays a vital 

role as a bridge for incremental clinical technology updates and for continuity of patient 

care over time.  

3.1.2 Computed Tomography 

A clinical CT scanner directs X-rays through a patient, detects changes in energy 

measured as X-ray attenuation, and generates cross-sectional images of the patient for 

the region of interest. Each cross-sectional CT image (Figure 3-1) is called a slice, and 

the collective group of images captured in one scan is referred to as a stack. Clinical CT 

scans are represented in greyscale (CT Number) on the Hounsfield Scale [Hounsfield 

Units, HU], where 𝜇 is the measured X-ray attenuation, 
𝑤𝑎𝑡𝑒𝑟

 is the X-ray attenuation of 

distilled water at standard temperature and pressure, and 
𝑎𝑖𝑟

 is the X-ray attenuation of 

air: 

 𝐶𝑇 𝑁𝑢𝑚𝑏𝑒𝑟 [𝐻𝑈] = (
𝜇− 𝜇𝑤𝑎𝑡𝑒𝑟

𝜇𝑤𝑎𝑡𝑒𝑟− 𝜇𝑎𝑖𝑟
) ∗ 1000. (3.10) 

As evident from this definition, CT Numbers [HU] are a relative quantitative measurement 

of X-ray attenuation, normalized against water. Notably, substances less dense than 

water will have negative CT Numbers [HU]. By convention, CT images are rendered such 

that denser tissues display closer to white and less-dense tissues display closer to black. 
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Importantly, CT Numbers [HU] are roughly linearly proportional to density, due to Compton 

scatter effects8. 

 
Figure 3-1: Representative transverse or axial CT slice showing a 71-year-old patient at 
the proximal femur level. The patient is lying supine. 
 

Unlike conventional radiographic X-ray film-based images, CT images are digital, so 

image contrast and density can be adjusted at the display console after the image has 

been made. A CT image slice is composed of a finite collection of elements called pixels, 

each of which is assigned one of 4000 different CT Numbers [HU] based on their 

measured X-ray attenuation and the Hounsfield Scale. Since the X-rays only pass through 

the plane being imaged, each 2D pixel represents a 3D volume element called a voxel. 

The voxel’s three dimensions are the length and width of the pixel and the depth of the 

slice. Slice thickness, or depth, is a variable prescribed at time of acquisition and is 

Transverse Plane Anterior 

Posterior 

Femurs 

Pelvic Bone 
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constrained by the CT scanner’s hardware capabilities. Example slice thicknesses include 

1.25 mm, 2.5 mm, or 5 mm. Slice increment is the distance moved between image 

acquisitions. The minimum slice increment for a GE CT scanner is typically 0.3125 mm, 

for example.  

Slice increment and slice thickness are not necessarily equal. When the slice 

increment and slice thickness are equal, the CT Number [HU] measurement may be 

around 106% of the actual density value (Figure 3-2). When the slice increment is less 

than the thickness so that slices overlap, it is possible to compute volumetric averages, 

which reduces CT Number [HU] measurement to around 107% of the actual density value 

(Figure 3-2). When it is desirable to limit patient exposure to radiation, larger slice 

increments can be used, leaving gaps between successive images.  

 

Figure 3-2: Comparison of measured CT density for densitometric standards scanned 
with (Blue) and without (Red) 50% overlap between CT slices. Note the overlap results in 
a lower CT density measurement for lower densities and a higher CT density for higher 
densities.  
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Once images have been constructed, image stacks can be resliced to a lower 

resolution by removing some slices. For CT images, reslicing cannot result in higher 

resolution, unlike magnetic resonance images (MRI). Depending on the size of voxels 

and the position of the patient or subject, some voxels may contain materials of very 

different densities and the resulting measured CT Number [HU] is an average. The 

averaged value may introduce error into the analysis and is referred to as a partial volume 

artifact. These artifacts frequently occur on the edges between bones and surrounding 

softer tissues.  

3.1.3 Acquiring the measurements and creating a CT image 

A CT measurement passes X-rays through objects. Depending on the CT scanner, 

different geometries may be applied, such as parallel beam or fan beam. In parallel beam 

geometry, the X-rays travel in parallel beams and detectors are arranged in a plane. In a 

fan beam geometry, the X-rays travel radially outward from a point to detectors arranged 

in an arc. This dissertation is limited to data collected on multidetector CT scanners 

(MDCT) which have multiple rows of parallel beam X-ray detectors.  

A CT image is a visualization constructed from a matrix of X-ray attenuation 

measurements. Four terms are relevant to creating this matrix: ray, ray sum, view, and 

projection. A ray is a linear path through the examination object which may be represented 

as a vector. A ray sum is the sum of two or more rays (i.e., vector addition). In the context 

of CT, an X-ray attenuation measurement, or CT Number [HU], is a sum of linear 

attenuation coefficients along a ray through the examination object (e.g., tissues, in the 

case of a patient). A view is a complete set of rays captured for one departure of X-rays 
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from the X-ray source. A projection is a mathematical function describing the ray sums in 

a view.  

3.1.4 Image reconstruction methods 

Image reconstruction, performed by an algorithm, computes attenuation coefficients from 

different ray sums obtained as a projection. The algorithm, or kernel, manages image 

sharpness and noise, and can be used to create a sharper image of specific anatomical 

features. There are three kinds of image reconstruction algorithms used in clinical 

practice: (1) an iterative algorithm without statistical modelling, (2) an iterative algorithm 

with statistical modelling, and (3) a filtered back-projection. In an iterative algorithm, the 

algorithm assumes data, compares the assumption with measured data, and iterates until 

the two agree. When statistical modelling is included, the algorithm also considers several 

variables such as the X-ray source, image voxels, the detector, noise, data acquisition, 

and radiation attenuation. Since these variables vary by manufacturer, reconstruction 

algorithms tend to be proprietary.  

Modern CT scanners reconstruct CT images using filtered back-projection, which 

was discovered by Cormack in 19639–11 and is the most widely used clinical reconstruction 

algorithm today. In this method, each projection undergoes filtering, which includes 

adding extra negative numbers at the surrounding points. To achieve the required filtering 

effect, these negative numbers are proportional to the value of the projection and 

inversely proportional to the distance from the point. Once filtered, the projection values 

are projected back onto the reconstructed image. The resultant value at any point in the 



 
 

 

18 

image is the sum of the values from one point of the filtered and reversed projection. 

Repeating this for all projections results in a theoretically perfect reconstruction.  

A filtered back-projection may also be called the convolution method. In modern CT 

scanners, the kernel may be labelled as reconstruction or convolution. Comparing results 

across patient CT scan images captured with different reconstruction kernels may not be 

straightforward because reconstruction kernels may generate statistically significantly 

different results12–14. Examples of reconstruction kernel names relevant to GE scanners 

and this dissertation include “Standard”, “Bone”, “BonePlus”, and “BonePlus2”. 

3.2 Densitometric calibration of X-ray CT systems and 
measurement of material densities from CT images 

An exact in vivo measurement of bone mineral density from a clinical X-ray CT system 

may not be possible; but, there are several approaches that can provide good 

approximations. Notably, there is not yet a consensus among research labs or in the 

published literature on one method for DCTC which is necessary for approximation. One 

barrier to arriving at a consensus is the lack of publicly available details on the methods 

applied in the literature. This section explains different approaches based on the 

information available. Chapter 5 demonstrates ways to modify existing methods for 

different applications. 

Before discussing densitometric CT calibration, equation (3.11) presents an alternate 

formulation of CT Numbers [HU] which more clearly demonstrates the dependence on 

energy, density, and chemical composition15. Here 𝜇(𝐸) is linear attenuation as a function 

of energy, 
𝜇(𝐸)

𝜌
 represents the mass attenuation coefficient, and 𝑐 represents the 
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concentration.   

𝐶𝑇 𝑁𝑢𝑚𝑏𝑒𝑟(𝐸) = 1000 ∗ 
(

𝜇(𝐸)

𝜌
)

𝑚𝑖𝑛𝑒𝑟𝑎𝑙
∗𝑐𝑚𝑖𝑛𝑒𝑟𝑎𝑙+(

𝜇(𝐸)

𝜌
)

𝐻2𝑂
∗𝑐𝐻2𝑂− 𝜇(𝐸)𝐻2𝑂

𝜇(𝐸)𝐻2𝑂
 (3.11) 

3.2.1 Existing densitometric CT calibration standardized terms 

DCTC approximations depend on having either specific scans for DCTC or tables of 

energy-specific mass attenuation coefficients. The clinical gold standard for DCTC is to 

scan a BMD-specific densitometric reference16–24. A densitometric reference is an object 

of known density or density that can be measured. Frequently the densitometric reference 

is made up of individual density references, called standards. A phantom contains multiple 

density references to quantify a range of densities. ASTM Standard E1935-97 

recommends that phantoms include density standards bracketing the densities of 

interest25. For example, femoral cortical bone would include 1000 mg/cm3 and 1750 

mg/cm3 to bracket the densitometric range of interest26,27.  

In DCTC, segmentation is applied to identify the region or volume of interest within 

the individual density standards in the phantom. Segmentation is the creation of a digital 

region of interest. Each region of interest is summarized by a mean CT Number [HU] 

measurement to use in the derivation of a DCTC equation.  

3.2.2 Existing databases of X-ray mass attenuation coefficient tables 

Two databases have been created by the National Institute of Standards and Technology 

(NIST)28,29: (1) the X-ray Attenuation and Absorption for Materials of Dosimetric Interest 

(XAAMDI), and (2) the XCOM: Photon Cross Sections Database. XAAMDI includes 

nominal densities of selected tissues and their accompanying relevant values, including 
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energy and mass attenuation coefficients28. These tables build on prior work from the 

International Commission on Radiation Units (ICRU)30. In them, each tissue density 

comes from a detailed review of the available literature, including averaged data-driven 

measurements when possible. Perhaps the best detailed in ICRU 44 is cortical bone, 

1920 mg/cm3, which came from data for 24 adults (20—74 years old) and considered 

bones including the skull, vertebral column, pelvis, humerus, and femur30. The XCOM 

database expands on the selected tissues from the XAAMDI database by interpolating 

and combining X-ray mass attenuation values, based on photon cross section, for user-

specified chemical compositions to provide data tables. 𝐾2𝐻𝑃𝑂4 is an example of a 

material for which the XCOM database can provide energy-specific mass attenuation 

coefficients outside of the scope of the XAAMDI database.  

The versions of the tables from NIST examine the range of energies used in clinical 

practice at a finer resolution than the tables from ICRU. The mass attenuation coefficients 

can be plotted as a function of energy on a log—log plot. The NIST tables identify the 

discontinuities in these curves within the range of energies relevant to the clinic, such as 

cortical bone. One challenge with off-the-shelf densitometric reference phantoms is the 

proprietary nature of the materials used as density references, which limits the ability of 

XAAMDI to provide tables for the densitometric reference phantoms. 

3.2.3 Determining theoretical effective energy 

In CT imaging, the X-ray source is a polychromatic beam consisting of multiple X-ray 

wavelengths. Accurate measurement of CT density is dependent on identifying the single 

X-ray wavelength, or monochromatic energy, equivalent to the combined X-ray 

wavelengths present in the polychromatic beam. The monochromatic energy, or effective 
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energy, is difficult to measure directly31. Some approaches to DCTC are dependent on 

determining the theoretical effective energy. Slice effective energy describes the effective 

energy specific to one axial CT slice. Scan effective energy describes the effective energy 

averaged over multiple slices or potentially the entire stack.  

Several factors may affect effective energy by reducing X-ray intensity between the 

X-ray source and the X-ray detector, including (1) the examination object the X-ray passes 

through, (2) the X-ray current, and (3) the volumetric overlap and averaging of collected 

X-ray attenuation measurements. High-density anatomical features, such as cortical 

bone, may act as a high-pass filter, with higher mass absorption rates preventing lower-

energy X-rays from passing through and increasing the effective energy. Variable current 

algorithms minimize patient exposure to unnecessary radiation in routine clinical practice. 

Introducing a different current for each CT image slice also creates slice-specific scan 

effective energies, and increases the difficulty of estimating effective energy. Section 3.1.2 

mentioned measurement overshoot can be reduced by selecting the slice increment and 

slice thickness to capture overlapping CT measurements. This approach may also impact 

the estimation of scan effective energy. Two different methods for determining theoretical 

scan effective energy will be presented later in this chapter as the first step in the relevant 

approach to DCTC.  

3.2.4 Phantom-based density approach to DCTC for equivalent BMD 

In phantom-based DCTC, a CT scan of a densitometric reference is captured and a 

calibration relationship is derived. Mean CT Number [HU] measurements of regions of 

interest within the densitometric standards are captured from the CT calibration scan, to 

derive a CT Number-to-density relationship. Then a linear regression is performed 
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between the nominal density values of the individual densitometric standards (x-axis) and 

the mean CT Number [HU] measurements (y-axis). The resulting equation is then 

rearranged to express density [g/cm3] in terms of CT Number [HU].   

 𝐶𝑇 𝑁𝑢𝑚𝑏𝑒𝑟 [𝐻𝑈] = 𝑚 ∗ 𝜌 + 𝑏 (3.12) 

 𝐶𝑇 𝑁𝑢𝑚𝑏𝑒𝑟 [𝐻𝑈] − 𝑏 = 𝑚 ∗ 𝜌 + 𝑏 − 𝑏 (3.13) 

 
𝐶𝑇 𝑁𝑢𝑚𝑏𝑒𝑟 [𝐻𝑈]−𝑏

𝑚
=

𝑚∗𝜌

𝑚
 (3.14) 

 𝜌 =
1

𝑚
∗ 𝐶𝑇 𝑁𝑢𝑚𝑏𝑒𝑟 [𝐻𝑈] −

𝑏

𝑚
 (3.15) 

In this method, the CT scan of the densitometric reference is assumed to have the 

same scan effective energy as the examination object. Ideally, the CT scan of the patient 

or examination object and the CT scan of the phantom are processed, reconstructed, and 

post-processed using the same hardware, acquisition parameters, correction algorithms, 

reconstruction kernels, and post-processing steps25.  

3.2.5 Example phantom-based density approach to DCTC 

The ASTM standard E1935-97 provides guidance on the design of a phantom for use in 

DCTC. Consistent with this standard, a custom femoral density phantom (FDP) was 

created from four calcium hydroxyapatite (𝐶𝑎10(𝑃𝑂4)6(𝑂𝐻)2, abbreviated HA) 

densitometric standards (CIRS Inc, Norfolk, VA). These standards were selected to 

bracket the range of apparent densities relevant to human femoral trabecular (100–

400 mg/cm3) and cortical (1000–1750 mg/cm3) bone32,33. For this densitometric phantom 

the 100 and 400 mg/cm3 plugs were custom manufactured (parts RDH 357 Y-23 and RDH 
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362 Y-24) and the 1000 and 1750 mg/cm3 plugs were off-the-shelf (parts 06217 and 

06221).  

This phantom has been designed to be scanned offline, or separate from the patient. 

Therefore, a CT examination of the phantom submerged in deionized water was captured 

offline with CT scan acquisition and reconstruction parameters consistent with the UW—

Madison Hospital clinical protocol for virtual colonoscopies. The densitometric standards 

were segmented in Mimics v.23 (Materialise, Leuven, Belgium). The mean 

CT Number [HU] of each segment was recorded in a table with the nominal density 

[mg/cm3] of the densitometric standard (Table 3-1).  

Table 3-1: Example segmentation measurements from a CT examination of the femoral 
density phantom by densitometric standard. 

Known HA Density  
[mg/cm3] 

Mean  
CT Number [HU] 

Standard Deviation  
CT Number [HU] 

100 120.17 21.38 

400 491.57 33.81 

1000 1212.19 81.26 

1750 1959.26 188.51 

 

A linear regression was performed for these data with mean CT Number [HU] on the 

y-axis and nominal density [mg/cm3] on the x-axis (Figure 3-3). The calibration curve is 

then derived following the process in equations (3.12)–(3.15). Depending on the material 

used in the densitometric phantom, this relationship calculates bone mineral density 

equivalent to the reference material, typically calcium hydroxyapatite (𝐶𝑎10(𝑃𝑂4)6(𝑂𝐻)2, 

abbreviated HA), or dipotassium phosphate (𝐾2𝐻𝑃𝑂4).  
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Figure 3-3: Example of a calibration curve for a calcium hydroxyapatite phantom. The 

resulting linear regression equation was 𝐶𝑇 𝑁𝑢𝑚𝑏𝑒𝑟 [𝐻𝑈] = 1.1155 ∗ 𝜌 [
𝑚𝑔

𝑐𝑚3] + 39.473. 

The error bars represent the standard deviation for each densitometric standard 
segmentation mask CT Number [HU]. 

3.2.6 Phantomless density approach to DCTC for equivalent BMD 

In the absence of a phantom as a densitometric reference, the nominal tissue densities 

from NIST’s XAAMDI database Table 2 may be assumed. Patient tissues can be identified 

near the anatomy of interest and segmented to determine mean CT Number [HU] for a 

region of interest. The same process can then be followed to determine the DCTC 

equation by constructing a linear regression between nominal density [mg/cm3] (x-axis) 
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and internal tissue segment mean CT Number [HU] (y-axis) and rearranging as 

demonstrated in equations (3.12)–(3.15). Depending on the CT scanner, the resulting 

intercept may need to be horizontally adjusted by the rescale intercept from the image 

metadata.  

3.2.7 Attenuation approach to DCTC method for equivalent BMD 

Attenuation-based DCTC has 2 steps: (1) simultaneously the effective energy and a linear 

attenuation to CT Number [HU] relationship are determined and (2) density is determined 

by multiplying the linear attenuation by theoretical mass attenuation coefficients. One 

approach to determining CT scan effective energy is described by ASTM E1935-9725. In 

this approach, energy-specific semi-empirical linear attenuation values are found by 

multiplying the measured density by the energy-specific theoretical mass attenuation 

coefficients from the tables. A least-squares fit between the linear attenuation values and 

CT Number [HU] is then computed for at least three materials for each energy shown in 

equation (3.16), and the coefficient of determination for each fit is recorded.   

 𝜇 = 𝑚 ∗ 𝐶𝑇 𝑁𝑢𝑚𝑏𝑒𝑟 [𝐻𝑈] + 𝑏 (3.16) 

The effective energy is assumed to align with the maximum observed coefficient of 

determination31. Once the maximum coefficient of determination is identified and the scan 

effective energy is determined, the energy-specific linear relationship between CT 

Number [HU] and linear attenuation coefficients, 𝜇, is also determined. Density can then 

be determined by using the relationship between linear attenuation, 𝜇, and mass 

attenuation coefficients, 
𝜇

𝜌
 repeated from equation (3.5).   

 𝜌 =
𝜇

(
𝜇

𝜌
)
 (3.17) 



 
 

 

26 

3.2.8 Comparison of the density and attenuation DCTC methods  

ASTM E1935-97 presents an illustrative example comparing two methods for density 

calibration, referred to here as the density approach and attenuation approach, 

respectively, to DCTC25. This example illustrates that the two methods result in density 

calibrations that differ by a small amount (Table 3-2). 

Table 3-2: Example CT density measurement comparison of the density and attenuation 
methods for polyamide and polycarbonate from ASTM E1935-97. Observe that the results 
for the attenuation method could be rounded to the same values resulting from the density 
method, indicating that the extra work of the attenuation method may not be worth the 
increase in accuracy. Additionally, the attenuation method is precise to within 1%, and the 
density method is precise to within 5% relative to the published density. Note that (1) 
polyamide and polycarbonate have densities that fall within the range of human cortical 
femoral bone which makes this example relevant to this dissertation, and (2) this example 
was derived on an industrial CT scanner, which may differ from clinical CT scanners, 
particularly in terms of resolution. 

 

CT Value 

Density  
Method 

𝜌 [g/cm3] 

Attenuation 
Method 

𝜌 [g/cm3] 
Published 
𝜌 [g/cm3] 

Polyamide 1272 1.20 1.15 1.14 

Polycarbonate 1273 1.20 1.23 1.21 

 

In this illustration, the attenuation method is accurate to within 1%, and the density 

method is accurate to within 5%. Rounding the results from the attenuation method by 

one significant figure would yield the same result as the density method. This illustration 

may be relevant to DCTC for bone mineral density because the densities of polyamide 

and polycarbonate fall within the density range of femoral cortical bone (1 g/cm3 to 1.75 

g/cm3). This illustration may not be relevant due to the difference in scale of the industrial 

CT scanner used in the example, which may be substantially different from clinical CT 

scanners. Following the format of this illustration from ASTM E1935-97, this dissertation 

includes illustrations more relevant to the clinic in subsection 3.2.10 and chapter 6. 
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3.2.9 Mass-fraction-model approach to DCTC for integral BMD 

A mass fraction expresses each component of a mixture as a ratio between the mass of 

that component and the total mass of the mixture, equation (3.23). In a 

mass-fraction-model (MFM) the sum of mass fractions is set equal to 1, equation (3.25). 

Andrew Michalski described a mass fraction model approach to DCTC in his appendix34 

using the following steps: (1) determine both the effective energy and the energy-specific 

CT Number-to-mass attenuation relationship, (2) determine the CT Number-to-material 

density relationship, and (3) establishing a MFM that includes bone mineral density and 

bone marrow. This section describes these steps in detail.  

A process for determining slice effective energy has been described previously31,34. 

Inputs for the method include (1) mean CT Number [HU] measurements for regions of 

interest for a minimum of three materials and (2) tabulated energy specific mass 

attenuation coefficients associated with each material for scanner-relevant X-ray 

energies. To determine the effective energy, iterative linear regressions are constructed 

between the mean CT Number [HU] measurements (x-axis) and energy-specific mass 

attenuation coefficients for each energy (equation (3.18)). A vector of the coefficient of 

determination (R2) for each regression is then constructed across energies.   

 
𝜇

𝜌
= 𝑚 ∗ 𝐶𝑇 𝑁𝑢𝑚𝑏𝑒𝑟 [𝐻𝑈] + 𝑏 (3.18) 

The determined effective energy is assumed to have the coefficient of determination 

closest to one in the vector. The resulting linear regression at the determined effective 

energy is also the CT Number-to-mass attenuation coefficient relationship.  
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In this semi-empirical method for DCTC, determining the CT Number-to-material 

density relationship requires several equations presented earlier in this. Recall the 

relationship between linear attenuation, mass attenuation coefficients, and density, which 

was introduced as equation (3.4):  

 𝜇 =
𝜇

𝜌
∗  𝜌 (3.19) 

and the definition of the Hounsfield Scale, previously shown in equation (3.10).   

 𝐶𝑇 𝑁𝑢𝑚𝑏𝑒𝑟 [𝐻𝑈] =  
𝜇𝑚− 𝜇𝑤𝑎𝑡𝑒𝑟

𝜇𝑤𝑎𝑡𝑒𝑟− 𝜇𝑎𝑖𝑟
∗ 1000 (3.20) 

Substituting the relationship between linear attenuation, mass attenuation coefficients, 

and density into the Hounsfield Scale creates a relationship between CT Number [HU] 

and material density:  

 𝐶𝑇 𝑁𝑢𝑚𝑏𝑒𝑟𝑚[𝐻𝑈] =
(

𝜇

𝜌𝑚
∗𝜌𝑚−

𝜇

𝜌𝑤𝑎𝑡𝑒𝑟
∗𝜌𝑤𝑎𝑡𝑒𝑟)

𝜇

𝜌𝑤𝑎𝑡𝑒𝑟
∗𝜌𝑤𝑎𝑡𝑒𝑟

 (3.21) 

Rearranging to solve for material density in terms of CT Number yields:  

 𝜌𝑚 =

𝐶𝑇 𝑁𝑢𝑚𝑏𝑒𝑟𝑚
1000

∗
𝜇

𝜌𝑤𝑎𝑡𝑒𝑟
∗𝜌𝑤𝑎𝑡𝑒𝑟+

𝜇

𝜌𝑤𝑎𝑡𝑒𝑟
∗𝜌𝑤𝑎𝑡𝑒𝑟

𝜇

𝜌𝑚

 (3.22) 

Here, 
𝜇

𝜌
 are energy- and material-specific mass attenuation coefficients and 𝜌𝑤𝑎𝑡𝑒𝑟 is the 

density of liquid water at standard temperature and pressure. 

The MFM requires several inputs: the effective energy, the linear attenuation-to-CT 

Number relationship, and the material density-to-CT Number relationship. With these 

values, a MFM can be set up to differentiate between integral BMD and bone marrow, 

also known as triglyceride. Let a mass fraction be set up between the mass of the material 

and the mass of the voxel as shown in equation (3.23).   
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 𝑤𝑖 =
𝑚𝑎𝑠𝑠𝑚𝑎𝑡𝑒𝑟𝑖𝑎𝑙

𝑚𝑎𝑠𝑠𝑣𝑜𝑥𝑒𝑙
 (3.23) 

Then two equations can be set up to form a system, equations (3.24)–(3.25).  

 
𝜇

𝜌𝑣𝑜𝑥𝑒𝑙
=  ∑ 𝑤𝑖

𝜇

𝜌𝑖
𝑖  (3.24) 

 ∑ 𝑤𝑖𝑖 = 1 (3.25) 

Filling in these two equations yields:   

 
𝜇

𝜌𝑣𝑜𝑥𝑒𝑙
=  𝑤𝐾2𝐻𝑃𝑂4

𝜇

𝜌𝐾2𝐻𝑃𝑂4

+ 𝑤𝑡𝑟𝑖𝑔𝑙𝑦𝑐𝑒𝑟𝑖𝑑𝑒
𝜇

𝜌𝑡𝑟𝑖𝑔𝑙𝑦𝑐𝑒𝑟𝑖𝑑𝑒
 (3.26) 

 𝑤𝐾2𝐻𝑃𝑂4
+ 𝑤𝑡𝑟𝑖𝑔𝑙𝑦𝑐𝑒𝑟𝑖𝑑𝑒 = 1 (3.27) 

Substituting the mass fraction into these two equations yields:   

 
𝜇

𝜌𝑣𝑜𝑥𝑒𝑙
=

𝑚𝑎𝑠𝑠𝐾2𝐻𝑃𝑂4

𝑚𝑎𝑠𝑠𝑣𝑜𝑥𝑒𝑙
 
𝜇

𝜌𝐾2𝐻𝑃𝑂4

+
𝑚𝑎𝑠𝑠𝑡𝑟𝑖𝑔𝑙𝑦𝑐𝑒𝑟𝑖𝑑𝑒

𝑚𝑎𝑠𝑠𝑣𝑜𝑥𝑒𝑙
 
𝜇

𝜌𝑡𝑟𝑖𝑔𝑙𝑦𝑐𝑒𝑟𝑖𝑑𝑒
 (3.28) 

 
𝑚𝑎𝑠𝑠𝐾2𝐻𝑃𝑂4

𝑚𝑎𝑠𝑠𝑣𝑜𝑥𝑒𝑙
+

𝑚𝑎𝑠𝑠𝑡𝑟𝑖𝑔𝑙𝑦𝑐𝑒𝑟𝑖𝑑𝑒

𝑚𝑎𝑠𝑠𝑣𝑜𝑥𝑒𝑙
= 1 (3.29) 

Rearranging equation (3.30) to isolate the mass ratio for triglyceride or bone marrow:   

 
𝑚𝑎𝑠𝑠𝑡𝑟𝑖𝑔𝑙𝑦𝑐𝑒𝑟𝑖𝑑𝑒

𝑚𝑎𝑠𝑠𝑣𝑜𝑥𝑒𝑙
= 1 − 

𝑚𝑎𝑠𝑠𝐾2𝐻𝑃𝑂4

𝑚𝑎𝑠𝑠𝑣𝑜𝑥𝑒𝑙
 (3.31) 

And substituting into equation (3.32):  

 
𝜇

𝜌𝑣𝑜𝑥𝑒𝑙
=

𝑚𝑎𝑠𝑠𝐾2𝐻𝑃𝑂4

𝑚𝑎𝑠𝑠𝑣𝑜𝑥𝑒𝑙
 
𝜇

𝜌𝐾2𝐻𝑃𝑂4

+ (1 − 
𝑚𝑎𝑠𝑠𝐾2𝐻𝑃𝑂4

𝑚𝑎𝑠𝑠𝑣𝑜𝑥𝑒𝑙
)

𝜇

𝜌𝑡𝑟𝑖𝑔𝑙𝑦𝑐𝑒𝑟𝑖𝑑𝑒
 (3.33) 

Then distribute:   

 
𝜇

𝜌𝑣𝑜𝑥𝑒𝑙
=

𝑚𝑎𝑠𝑠𝐾2𝐻𝑃𝑂4

𝑚𝑎𝑠𝑠𝑣𝑜𝑥𝑒𝑙
 
𝜇

𝜌𝐾2𝐻𝑃𝑂4

+
𝜇

𝜌𝑡𝑟𝑖𝑔𝑙𝑦𝑐𝑒𝑟𝑖𝑑𝑒
− 

𝑚𝑎𝑠𝑠𝐾2𝐻𝑃𝑂4

𝑚𝑎𝑠𝑠𝑣𝑜𝑥𝑒𝑙
 

𝜇

𝜌𝑡𝑟𝑖𝑔𝑙𝑦𝑐𝑒𝑟𝑖𝑑𝑒
  

  (3.34) 

Rearranging to solve for 𝑚𝑎𝑠𝑠𝐾2𝐻𝑃𝑂4
, or integral BMD:  
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𝜇

𝜌𝑣𝑜𝑥𝑒𝑙
− 

𝜇

𝜌𝑡𝑟𝑖𝑔𝑙𝑦𝑐𝑒𝑟𝑖𝑑𝑒
=  

𝑚𝑎𝑠𝑠𝐾2𝐻𝑃𝑂4

𝑚𝑎𝑠𝑠𝑣𝑜𝑥𝑒𝑙
 (

𝜇

𝜌𝐾2𝐻𝑃𝑂4

−
𝜇

𝜌𝑡𝑟𝑖𝑔𝑙𝑦𝑐𝑒𝑟𝑖𝑑𝑒
) (3.35) 

 𝑚𝑎𝑠𝑠𝐾2𝐻𝑃𝑂4
= 𝑚𝑎𝑠𝑠𝑣𝑜𝑥𝑒𝑙

(
𝜇

𝜌𝑣𝑜𝑥𝑒𝑙
− 

𝜇

𝜌𝑡𝑟𝑖𝑔𝑙𝑦𝑐𝑒𝑟𝑖𝑑𝑒
)

(
𝜇

𝜌𝐾2𝐻𝑃𝑂4

−
𝜇

𝜌𝑡𝑟𝑖𝑔𝑙𝑦𝑐𝑒𝑟𝑖𝑑𝑒
)

 (3.36) 

Applying the definition of density:  

 𝜌𝐾2𝐻𝑃𝑂4
=

𝑚𝑎𝑠𝑠𝐾2𝐻𝑃𝑂4

𝑣𝑜𝑙𝑢𝑚𝑒𝑣𝑜𝑥𝑒𝑙
 (3.37) 

It is shown that:  

 𝜌𝐾2𝐻𝑃𝑂4
= (

𝑚𝑎𝑠𝑠𝑣𝑜𝑥𝑒𝑙

𝑣𝑜𝑙𝑢𝑚𝑒𝑣𝑜𝑥𝑒𝑙
) ∗

(
𝜇

𝜌𝑣𝑜𝑥𝑒𝑙
− 

𝜇

𝜌𝑡𝑟𝑖𝑔𝑙𝑦𝑐𝑒𝑟𝑖𝑑𝑒
)

(
𝜇

𝜌𝐾2𝐻𝑃𝑂4

−
𝜇

𝜌𝑡𝑟𝑖𝑔𝑙𝑦𝑐𝑒𝑟𝑖𝑑𝑒
)

 (3.38) 

Where:   

 
𝜇

𝜌𝑣𝑜𝑥𝑒𝑙
=  𝑚 ∗ 𝐶𝑇 𝑁𝑢𝑚𝑏𝑒𝑟 [𝐻𝑈] + 𝑏 (3.39) 

Since two linear equations are multiplied together, this DCTC method yields a calibration 

curve. In this example, integral BMD is derived in terms of dipotassium phosphate, 

𝜌𝐾2𝐻𝑃𝑂4
. Alternately, DCTC could be derived in terms of calcium hydroxyapatite, 𝜌𝐻𝐴. Also 

note that the CT Number-to-density [mg/cm3] relationship in this derivation is specific to 

the Hounsfield Scale, and therefore this relationship may need to be modified if the CT 

scanner being calibrated does not use the Hounsfield Scale.  

3.2.10 Comparison of DCTC methods 

The four methods for DCTC presented in this chapter have not yet been compared 

against each other in a clinical context. In this example, the femoral density phantom 
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(FDP) is the gold standard to compare against. This example uses the standards as the 

examination object and applies phantomless DCTC methods to calibrate the scan of the 

FDP. The standards have a known density. Once calibrated, the measurements can be 

compared to the density and the error can be quantified.  

A phantom-based DCTC equation was derived based on mean CT Number [HU] 

measurements (y-axis) of a CT scan of a femoral density phantom (FDP). A linear 

regression was performed for known densities [g/cm3] (x-axis) and mean segment CT 

Number [HU] measurements. The resulting equation was then rearranged as described 

previously, equations (3.12)–(3.15). Note that CT scanner, scan acquisition, and 

reconstruction parameters were kept constant between the scans of the patient and the 

FDP.  

For illustrative purposes, phantomless mean CT Number [HU] measurements were 

captured for regions of interest within an axial slice of a patient CT scan, including air, 

adipose, aortic blood, skeletal muscle, and cortical bone. The slice effective energy was 

determined using both methods previously described. In the top row, semi-empirical linear 

attenuation coefficients of the tissue segmentations are iteratively correlated with the CT 

Numbers [HU], Figure 3-4. In the bottom row, tissue segmentations were iteratively 

correlated with tabulated energy-specific mass attenuation coefficients, Figure 3-4, and 

the coefficient of determination (R2) was calculated. In both approaches, the slice effective 

energy was taken to be the maximum coefficient of determination. Using the slice effective 

energy, DCTC equations were found following three of the previously described 

approaches: the density method, the attenuation method, and the MFM method.  
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Table 3-3: Representative region-of-interest tissue segmentations from a CT scan of a 
79-year-old patient at the proximal femur level. 

Region of Interest/ 
Tissue Reference 

CT Value Assumed NIST 
Nominal Density 

Air −956.79 1.205 

Adipose −96.34 950 

Aortic Blood 30.43 1060 

Skeletal Muscle 19.82 1050 

Cortical Bone 1215.01 1920 

 

To assess accuracy, I assumed longitudinal X-ray tube stability and similar calibration 

equations between LightSpeed Model GE CT scanners. Then I applied phantomless 

calibration equations to calibrate a CT examination of densitometric standards in the FDP. 

Figure 3-5 shows the resulting density measurements for several calibration methods. 

None of the methods was a close match for all four femoral bone density standards. 

Accuracy was assessed across the femoral density range by averaging the normalised 

percent difference between the known density and measured density across plugs, as 

shown in equation (3.40).  

 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  ∑ ((
𝜌𝑘𝑛𝑜𝑤𝑛−𝜌𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑

𝜌𝑘𝑛𝑜𝑤𝑛
) ∗ 100)𝑛

1  (3.40) 
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Figure 3-4: Representative slice effective energy calculations for tissue segmentations 
from the CT-scan of a 79-year-old patient. The top row presents the effective energy 
calculations for linear attenuation coefficients and the bottom row presents the effective 
energy calculations for the mass attenuation coefficients. In the left two plots, the blue 
dots represent different tissue segmentation measurements with mean CT Number [HU] 
on the x-axis and linear or mass attenuation coefficients respectively on the y-axis. In the 
right two plots, the blue dot identifies the maximum coefficient of determination across the 
slice effective energy [keV] range.  
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Figure 3-5: Representative density [mg/cm3] measurements for bracketing trabecular and 
cortical femoral bone standards for multiple calibration methods: femoral density phantom 
(FDP), phantomless density (ASTM DCM), phantomless attenuation (ASTM ACM–80, 
97), and phantomless mass fraction model (MFM–80, 97). Where applicable, calculations 
were repeated for both effective energies respectively. Observe that the measured 
accuracy for the FDP results are within the 5% precision expected based on the example 
provided by ASTM E1935-97. Tissue-based calibration equations are based on the 
segmentation values for a 79-year-old patient from Table 3-3. This figure shows the most 
direct approach of performing a linear regression on nominal densities [mg/cm3] (x-axis) 
and mean CT Number [HU] measurements is the least likely to introduce error, although 
not the most precise approach available.  
 

Note the FDP calibration had the best accuracy, 5.7%. In this analysis, the MFM 

calibration method had the highest overshoot in densitometric measurements. Using 
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linear or mass attenuation coefficients did noticeably impact the effective energy 

assumed. The MFM calibration method is more sensitive to the effective energy than the 

attenuation calibration method. Overall, the most direct approach of constructing a linear 

regression between nominal densities [mg/cm3] (x-axis) and mean CT Number [HU] (y-

axis). In the example presented in this section, this approach was also the least likely to 

introduce error. However, the attenuation methods may still be more precise.  

3.3 Phantomless calibration facilitates QCT analyses 

Phantomless DCTC shows promise for bringing quantitative CT-based measurements 

into clinical practice. Because they are capable of volumetric density measurements, CT 

scanners present an excellent foundation for physics-based modelling. DCTC remains an 

ongoing challenge limiting QCT analyses of the femoral bone. This chapter compared the 

“Standard Test Method for Calibrating and Measuring CT Density” from the ASTM to a 

MFM applied for DCTC. The most direct approach of performing a linear regression of 

nominal densities [mg/cm3] (x-axis) against mean CT Number [HU] measurements is the 

least likely to introduce error but not the most precise approach available. The examples 

created for this section included segmented regions of interest limited to one CT slice for 

one patient, captured on only one CT scanner. However, the findings are likely relevant 

beyond the scope of the illustration. Later examples in this dissertation will consider 

additional patients. In any case, conducting similar benchmark evaluations across more 

patients and clinics may broaden the foundation of support for quantitative CT analyses.  

Notably, ASTM’s “Standard Test Method for Calibrating and Measuring CT Density” 

has not been referenced in much of the literature in this area. The absence of this key 

reference may be due to the lack of awareness in the field, the cost associated with 
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accessing the standard, or a lack of clinical trust in this standard. Many of the guidelines 

recommended in the standard agree with the recommendations and observations from 

recent literature35,36, including those in Troy et al.’s “Practical considerations for obtaining 

high quality quantitative computed tomography data of the skeletal system” and 

Brunnquell et al.’s “Sources of error in bone mineral density estimates from quantitative 

CT”. By referencing this standard and providing a clinically relevant benchmark example, 

this dissertation aims to provide fundamental terminology to support further development 

of DCTC and CTPSFE.  
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4 CTPSFE analysis 

Today, the best non-invasive methods for predicting risk of femoral fracture are derived 

from CTPSFE analyses. These methods are reasonably mature37, and one existing 

implementation of these methods is currently the most accurate diagnostic for 

osteoporosis available in the clinic38. Notably, CTPSFE analysis derived femoral strength 

predictions can consider all relevant variables to predicting fracture risk: femur geometry, 

bone mineral density, microarchitecture, the applied loads, and external interactions with 

the environment39. Resolutions insufficient to capture microarchitecture are one limitation 

of patient CT scans captured during routine clinical practice. Despite this limitation, 

Verhulp et al. showed good agreement between CT scans of cadaveric femurs captured 

on both clinical- and micro-CT scanners40. Further, Adams et al. showed that CTPSFE 

analysis conducted on routine clinical CT scans can yield fracture predictions at least as 

accurate as the current gold-standard diagnostic, DXA38.  

The simplest description of finite element analysis (FEA) includes 3 inputs: (1) 

geometry, (2) material properties, and (3) boundary and loading conditions. Clinical 

meaning is derived from the results through post-processing. This chapter discusses 

these three inputs and post-processing to survey CTPSFE analysis techniques specific 

to femoral fracture risk prediction. I also introduce terminology and details relevant to 

CTPSFE analyses and describe an example pipeline for retrospectively assessing 

deidentified patient cohorts (Figure 4-1). The steps in this pipeline are (1) capture patient 

CT scans, (2) extract patient geometry through image segmentation, (3) discretize the 

geometry for FEA, (4) spatially map material properties from CT scan data to the 
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discretized patient model, (5) define boundary and loading conditions to simulate the 

stance phase in walking or sideways fall loading, and (6) estimate the minimum force 

likely to result in fracture. Within each of these steps, differing software packages and 

research labs implement varying methods. As there is not yet a consensus across 

research labs, this chapter focuses on describing the details available in the literature 

relevant to two specific implementations7,17,41. 

 

Figure 4-1: A visualization of computed tomography-based patient-specific finite 
element modelling pipeline steps. Statistical shape modelling is an optional step 
conducted for some data sets as indicated by the dashed outline. 
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4.1 Geometry 

This section discusses three aspects of generating patient-specific femoral geometry. 

First, anatomical planes provide geometric reference terms for geospatially identifying 

locations specific to the patient (Figure 4-2). Second, image segmentation describes the 

process for manually generating a digital patient-specific geometry from CT data. Third, 

discretization and mesh generation describe the process of breaking up the patient-

specific geometry into smaller sections to facilitate the simulations. The patient-specific 

geometry is the first step in building a CTPSFE model. 

CTPSFE analyses are sensitive to geometry indicating the importance of accurately 

representing patient-specific anatomy such as the femur. Taddei et al. showed that errors 

in the geometric representation of the bone were 

always the dominant variable in resulting stress 

predictions42. Their study also showed that the 

variation in variable output from their method for 

building CTPSFE models of a femur from clinical CT 

data never exceeded 9%. Increasingly accurate 

representations of patient-specific anatomy are 

facilitated by increases in the fidelity of CT scanners 

and computational tools for creating geometry from 

CT data.  

4.1.1 Anatomical planes 

When considering anatomy, there are three planes of the body: (1) the Coronal or Frontal 

plane; (2) the Sagittal or Longitudinal plane; and (3) the Transverse, axial, or Horizontal 

Figure 4-2: Representative 
example of the anatomical planes 
applied to a human. 
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plane (Figure 4-2). The Coronal plane divides the body into the anterior (front side) and 

posterior (back side) portions. The Sagittal plane divides the body into right and left 

portions. The transverse plane divides the body into upper and lower halves. Medial refers 

to the side of the anatomy closest to the central Sagittal plane, and lateral refers to the 

side of the anatomy further from the central Sagittal plane. Proximal implies close to the 

centre of the body. The proximal femur refers to the part of the femur near the hip joint. 

Conversely, distal refers to the direction away from the centre of mass. The distal femur 

being the part of the femur near the knee.  

4.1.2 Image segmentation 

Image segmentation is the process of identifying a region of interest on an image stack 

and creating a corresponding digital geometry. The segmented region of interest is 

typically called a mask (Figure 4-3). There are several different approaches to creating a 

digital patient-specific femoral geometry, depending on the availability of resources and 

expertise.  

Figure 4-3: Representative axial CT slice and segmented proximal femur for a 71-year-
old patient.  
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One semi-automatic segmentation approach, called thresholding, begins by isolating 

a specific range of CT Numbers [HU] for inclusion in a mask. The mask is refined by 

isolating the region of interest from the rest of the areas within the full density range. 

Finally, the mask edges are manually checked slice by slice in at least two planes until a 

closed volume is created. The closed volume can be checked automatically by “filling” in 

the centre, with failure resulting in the entire image becoming part of the mask and 

success resulting in only the femoral mask becoming filled in. One software package that 

supports this approach is Mimics (Materialise, Leuven, Belgium).  

Region growing is an alternative semi-automatic segmentation approach, with the 

potential to reduce the time required to segment a femur. This approach begins by 

manually planting starter “seeds” within the patient femur. The user then iteratively steps 

through growing those seeds, with automated sets of user-specific iteration advances, 

until as much of the femur as possible is cleanly included in the mask. The mask is then 

updated to form a closed volume by manually editing the mask in each slice in at least 

two planes. One software package that uses this approach is ITK-Snap (ITK-Snap, 

University of Pennsylvania). In ITK-Snap, the mask is always displayed as hollow. When 

the full patient femur is not captured within the image stack, the bottom of the femoral 

mask is represented as open, and ITK-Snap will not allow it to be filled. To form a closed 

geometry required for later steps, the second to bottom slice can be filled in.  

These two methods produce results of comparable accuracy. In general, the time 

required to segment a patient's femur is dependent on the disease state of the patient, 

the distance between the acetabulum and the femoral head, and the expertise of the 

operator. Mimics has created a built-in tool for automatically segmenting a patient's femur. 
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This tool may not yet be able to accurately segment the femur of a patient with 

osteoporosis, which limits its utility in the application of these methods to the cohort 

described in Chapter 5. 

4.1.3 Mesh generation 

Once the segmentation is exported from the image analysis software, the next step is to 

discretize the patient-specific femoral geometry into discrete finite elements connected 

by nodes. This process outputs a mesh or a collection of elements with nodes that 

represents the shape of the geometry. Automated mesh generators are widely available, 

both in commercial off the shelf software applications (ANSYS, Abaqus, HyperWorks, 

etc.) and open-source software applications (TetGen, etc.). There are several options for 

element geometry when creating a mesh, including tetrahedral elements (tets), 

hexahedral elements (hexes), wedges, and shells. Tetrahedral elements are frequently 

chosen because they can more accurately cover arbitrary geometries (Figure 4-4).  

 

Four- and ten-node tetrahedral elements are displayed in Figure 4-4. In FEA, one 

potential source of error when using tetrahedral elements is shear locking. Four node 

Figure 4-4: Examples of representative tetrahedral elements, tet-4 on the left, tet-10 in 
the middle and a patient femur with an applied tetrahedral mesh on the right. 
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tetrahedral elements have linear shape functions which cannot accurately model the 

curvature present when a material experiences the shear stress associated with bending. 

To avoid this source of error, ten-node tetrahedral elements are recommended due to 

their accompanying quadratic shape functions. After creating a tet-10 mesh for the 

CTPSFE model, the material properties can be derived and geospatially assigned 

throughout the mesh as described in the next section. 

4.2 Material properties 

The ability of CTPSFE analyses to simulate the results of cadaveric experiments may be 

sensitive to an accurate definition of the material properties of bone. Schileo et al. showed 

that accurately defining heterogeneous material properties reduced the measure 

element-by-element strain field error between specimen-specific finite element model 

results and cadaveric experimental results used for validation for a quasi-static side fall 

loading study of three specimen43. Their method for accurately defining material 

properties relies on several empirically derived densitometric relationships. This section 

discusses the definitions of these densitometric relationships, and the methods used to 

find them. 

4.2.1 Deriving phantom-based effective BMD 

Two examples of deriving calibration equations are presented below. The first and simpler 

method was derived for use with plastic densitometric phantoms designed to mimic the 

radiodensity of calcium hydroxyapatite (𝐶𝑎10(𝑃𝑂4)6(𝑂𝐻)2, abbreviated HA). In this 

method, an examination of the phantom is captured using a CT scanner, and 

densitometric standards are segmented. The mean CT Number [HU] of each segment is 
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recorded in a table with the nominal density [mg/cm3] of the densitometric standard 

(Table 4-1). A linear regression is constructed from these data, with mean CT Number 

[HU] on the y-axis and nominal density [mg/cm3] on the x-axis (Figure 4-5). The resulting 

equation is called the linear calibration curve.  

Table 4-1: Example segmentation measurements for each densitometric standard in a CT 
examination of the CIRS Model 004 CT Simulator for Bone Mineral Analyses, a vertebral 
density phantom. 

Known HA Density  
[mg/cm3] 

Mean  
CT Number [HU] 

Standard Deviation  
CT Number [HU] 

50 37.48 49.93 

100 87.74 35.34 

150 147.49 31.09 

 

 

Figure 4-5: Example of a calibration curve linear regression for a calcium hydroxyapatite 
densitometric phantom. In this example, the resulting linear regression equation was 

𝐶𝑇 𝑁𝑢𝑚𝑏𝑒𝑟 [𝐻𝑈] = 1.10 ∗ 𝜌 [
𝑚𝑔

𝑐𝑚3] − 19.11. Note that error bars represent standard 

deviations of the CT Number [HU]. 
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The second method was designed for use with a liquid phantom, before K2HPO4 

equivalent plastic was available. For consistency, the same method is now used with 

plastic densitometric phantoms designed to mimic the radiodensity of K2HPO4. First, an 

examination of the phantom is captured using a CT scanner, and densitometric standards 

are segmented. Second, the mean CT Number [HU] of each segment is recorded in a 

table with both water-equivalent densities and K2HPO4-equivalent densities (Table 4-2). 

The water-equivalent density values are then subtracted from the CT Numbers [HU] to 

obtain the radiological density of the K2HPO4 (Table 4-2). The linear regression is then 

constructed with the radiological density of K2HPO4 on the y-axis and the nominal density 

of the K2HPO4 standards on the x-axis (Figure 4-6). The result of the linear regression 

still requires a correction to account for the physical consideration of the volume of water 

displaced by the addition of K2HPO4. Provided in the QCTPro Software manual, these 

offset values for the Mindways Model 3 are a slope correction of −0.2174 and an intercept 

correction of +999.6. Once these offsets have been applied, the BMD calibration curve 

has been derived.  

Table 4-2: Representative segmentation mean CT Number [HU] measurements for a 
71-year-old patient with accompanying phantom-specific water and K2HPO4 density 
tabulated values. The far-right column presents the CT Number [HU] minus water as a 
prerequisite for plotting.  

Water Density K2HPO4 Density CT Number [HU] CT Number-Water 

1012.2 −51.8 −53.3 −1065.5 

1057 −53.4 −0.6 −1057.6 

1103.6 58.9 205.2 −898.4 

1119.5 157 350.9 −768.6 

923.2 375.8 459.6 −463.6 
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For both methods, the calibration equation needs to be rearranged to solve for QCT 

density as a function of CT Number [HU], which will be used in the material mapping 

process. The correct algebra is shown in equations (4.1)–(4.4) below.   

 𝐶𝑇 𝑁𝑢𝑚𝑏𝑒𝑟 = 𝑚 ∗ 𝜌𝑄𝐶𝑇 + 𝑏 (4.1) 

 𝐶𝑇 𝑁𝑢𝑚𝑏𝑒𝑟 − 𝑏 = 𝑚 ∗ 𝜌𝑄𝐶𝑇 + 𝑏 − 𝑏 (4.2) 

 (𝐶𝑇 𝑁𝑢𝑚𝑏𝑒𝑟 − 𝑏)/𝑚 =
𝑚∗𝜌𝑄𝐶𝑇

𝑚
 (4.3) 

 𝜌𝑄𝐶𝑇 =
1

𝑚
(𝐶𝑇 𝑁𝑢𝑚𝑏𝑒𝑟 − 𝑏) (4.4) 

4.2.2 Empirically derived density-elasticity relationships  

To accurately apply nonhomogeneous material properties, a density-elasticity relationship 

or a series of density-elasticity relationships is used to map measured CT Number [HU] 

values to the patient-specific finite element mesh. Specific to the methods used in this 

Figure 4-5: Example plots demonstrating why water CT Number [HU] measurements must 
be subtracted in order to regain linearity to find the linear calibration curve for the inline 
Mindways Model 3 BMD phantom.  
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dissertation, a series of densitometric empirical relationships was derived. This 

subsection (1) explains the terms necessary to understand these relationships; 

(2) presents the densitometric relationships defined in the literature that are relevant to 

this CTPSFE method; and (3) discusses the experimental process for finding these 

densitometric relationships. Several of the densitometric relationships described here 

were proposed by Schileo et al.43. 

There are different ways to measure density depending on the application. 

Radiological density, 𝜌𝑄𝐶𝑇, refers to the quantitative CT measurement relative to a 

reference density from a phantom. For example, Schileo et al. scanned a European Spine 

phantom (ESP) on a GE Brightspeed CT scanner in helical mode at a peak voltage of 

120 kVp, and a tube current of 160 mA with a slice spacing and slice reconstruction of 

0.625 mm and pixel dimensions of 0.3125 mm ∗ 0.3125 mm. Their measured radiological 

density relationship was 𝜌𝑄𝐶𝑇  [
𝑔

𝑐𝑚3
] = 0.007764 ∗ 𝐶𝑇 𝑁𝑢𝑚𝑏𝑒𝑟 [𝐻𝑈] − 0.056148.  

According to Morgan et al., apparent density, 𝜌𝑎𝑝𝑝, is a measurement of wet mass 

divided by bulk volume44. Following a previously published method44, Schileo et al. 

calculated the bulk volume of a bone core, 𝑉 =  𝜋 ∗
𝐷

2

2
∗ 𝐿, using averages of the values 

from six measurements of diameter and length43. The diameter and length measurements 

were assumed to be captured using calipers. Wet mass was found following a multi-step 

process. First, the marrow was removed by washing the specimens in a 10% bleach 

ultrasound bath at 37C for three periods of ten minutes, rinsed with water between baths. 

Second, specimens were repeatedly dried and weighed, taking measures after 60 

seconds under air jets until consecutive readings differed by less than 0.5%. 
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According to Schileo et al., ash density, 𝜌𝑎𝑠ℎ, is a measurement of the ash weight of 

a bone specimen divided by the same specimen’s bulk volume. The same bulk volume 

measurement was used to calculate both apparent density and ash density. The ash 

weight of each bone specimen was found by burning each specimen at 650C for 24 

hours in a muffle furnace, letting the specimens cool in the furnace for 24 hours, and 

weighing the resulting ash for each specimen.  

The elastic modulus, E, is a measure of the bone’s ability to resist elastic deformation 

under load and is expressed in terms of density in this context. To find this relationship, 

Morgan et al. used experimental, computational, and analytical methods to identify a 

femoral-neck-specific density-elastic modulus. In their study, tissue specimens came from 

61 donors with no medical history of either metabolic bone disease or cancer. Specimens 

were also examined radiologically to rule out evidence of damage or bone pathologies. 

Specialized protocols were used to obtain 8 mm diameter on-axis bone specimens 

parallel to the trabecular orientation from specific anatomic sites, including the proximal 

femur45–47. Apparent elastic moduli were found using both uniaxial tension testing and 

compression testing of bone cores. For tension testing, the apparent elastic modulus was 

defined as the slope at zero strain of a quadratic curve fit to the stress—strain curve from 

0 to 0.2% strain44. For compression, an extensometer captured four apparent elastic 

modulus measurements at four different positions around the specimen circumference, 

approximately 90 degrees apart, and averaged to find the specimen’s apparent elastic 

modulus44. After mechanical testing, six specimens from the femoral neck were micro-CT 

scanned at a resolution of 22 µm. CT-based linear FEA with a tissue modulus equal to 

1.0 GPa for all elements was conducted on a voxel mesh of each specimen44. To find the 
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finite element computed apparent elastic modulus, the ratio of the experimental apparent 

elastic modulus to the apparent modulus was calculated from the FEA44.  

Two theoretical relationships already derived provided the starting point for the 

analytical portion of Morgan’s investigation. The first, by Cowin et al.48, incorporates 

specimen-specific architectural information and consists of three orthotropic stiffness 

matrix entries of the form:  

 𝐶𝑖𝑖𝑖𝑖 =  𝑐̂𝑖𝑖𝑖𝑖(𝐸𝑡, 𝜙, 𝜆𝑖, 𝐼𝐼) (4.5) 

 𝐶𝑖𝑖𝑗𝑗 =  𝑐̂𝑖𝑖𝑗𝑗(𝐸𝑡, 𝜙, 𝜆𝑖, 𝜆𝑗 , 𝐼𝐼) (4.6) 

 𝐶𝑖𝑗𝑖𝑗 =  𝑐̂𝑖𝑗𝑖𝑗(𝐸𝑡, 𝜙, 𝜆𝑖, 𝜆𝑗 , 𝐼𝐼) (4.7) 

In these entries, i and j are the indices 1, 2, 3 with the limitation that i cannot equal j (note 

1, 2, 3 are the principal axes of an orthogonal coordinate system), Et is the tissue apparent 

elastic modulus, i is the normalized mean intercept length eigenvalue associated with 

the ith direction (describes anisotropy), and II  = 12 + 13 + 23. Morgan et al. noted 

that Et is merely a scaling factor44. These relationships were further developed and 

simplified by Kabel et al.49, who determined dependence on volume fraction is a power 

law, 1.6, and that i and Et are both contained in the leading coefficient.  

The second theoretical relationship that Morgan et al. used50 does not incorporate 

specimen-specific architectural information:  

 𝐸 = 1240𝐸𝑡𝜙1.8 (4.8) 

with E as the predicted, on-axis elastic modulus. Morgan et al. calculated Et by setting 

the predicted theoretical elastic modulus equal to the experimentally measured elastic 

modulus and solving for Et given either i and  for the first relationship or only  for the 

second relationship. In their study of these relationships, Morgan et al. demonstrated 
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these density-elasticity relationships are specific to anatomic site, which is critical to keep 

in mind when applying these methods to differing anatomic sites. Schileo et al. applied 

Morgan et al.’s previously derived relationship between the elastic modulus and apparent 

density44: E [GPa] = 6.850*𝜌𝑎𝑝𝑝
1.49 [g/cm3]. 

Three additional relationships are required to define material properties: (1) a 

relationship between radiological density and ash density, (2) a relationship between ash 

density and apparent density, and (3) a Poisson’s ratio for bone. Previously, some studies 

assumed radiological density is equal to ash density43. However, several studies have 

reported the need for a linear correction to find ash density from radiological density43. 

There may be several reasons this linear correction is needed. Schileo et al. suggested 

two potential reasons: (1) phantoms cannot perfectly mimic bone attenuation coefficients, 

and (2) phantom inserts are homogeneous, while bone is non-homogeneous at the 

resolution of clinical CT scanners43. Not noted by Schileo et al. in their paper, another 

potential reason is the spatial inhomogeneity inherent in CT physics25.  

In their 2008 study, Schileo et al. found the following empirical relationship between 

radiological density and ash density, based on pooled trabecular and cortical femoral 

bone results from 60 cylindrical core specimens:  

 𝜌𝑄𝐶𝑇  [
𝑚𝑔

𝑚𝑚3] = 1.14 ∗ 𝜌𝑎𝑝𝑝 [
𝑚𝑔

𝑚𝑚3] − 0.09. (4.9) 

Additionally, Schileo et al. found a constant ratio, 0.598 ± 0.036, between ash density and 

apparent density43. Wirtz et al. review literature on known bone material properties and 

found the average value, 0.3, for the Poisson’s ratio of cortical bone51. Schileo et al. used 

this value for Poisson’s ratio in their study. 
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Rearranging the density-elasticity relationships to summarize the equations needed 

for the next section on material mapping, equations (4.10)-(4.11) show the example 

empirical relationships between radiological density and CT Number [HU] derived from 

the ESP; radiological density and ash density; ash density and apparent density; and 

apparent density and elastic modulus  

 𝜌𝑄𝐶𝑇  [
g

cm3
] =  0.007764 CT Number [HU] −  0.056148 (4.12) 

 𝜌𝑎𝑠ℎ = 0.8772𝜌𝑄𝐶𝑇 + 0.07895 (4.13) 

 𝜌𝑎𝑝𝑝 = (
1

0.6
) 𝜌𝑎𝑠ℎ (4.14) 

 𝐸 = 6850𝜌𝑎𝑝𝑝
1.49 (4.15) 

Recall that the application of these equations are limited based on the agreement of 

specific details including CT scanner, CT scan acquisition protocols, calcium 

hydroxyapatite reference phantoms, femoral neck material properties, pooled femoral 

trabecular and cortical bone material properties. 

4.2.3 Assignment of apparent elastic moduli onto the FE mesh 

The ability of CTPSFE models to predict stress and strain measurements, when 

compared to experimental results on the surface, is also dependent upon how the 

material properties are assigned throughout the model52. Taddei et al. developed and 

made available in the public domain a software application, Bonemat v.3.2. This software 

application is capable of geospatially mapping CT Number [HU] values onto an FE mesh, 

in terms of nonhomogeneous tissue apparent elastic moduli. Their method transforms the 

CT Numbers [HU] into a Young’s modulus continuum field before performing the 
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numerical integration over each element’s volume52. Note that Bonemat requires a 

tetrahedral or hexahedral finite element mesh. 

4.3 Boundary and loading conditions 

This section discusses how to formulate real-life scenarios likely to cause femoral fragility 

fracture, such as standing, walking, or a sideways fall. The process of walking, or gait 

cycle, is divided into two movements: the stance phase and the swing phase. The gait 

cycle includes heel contact, foot-flat, midstance, heel-off, toe-off, midswing, and heel 

contact. In the midstance position, the patient is supporting their entire body weight on 

one leg, placing increased stress on that femur. A sideways fall scenario, also routinely 

considered, includes the patient falling with their thigh against the ground and their 

bodyweight loading the femur in a direction that does not typically occur. Boundary and 

loading conditions relevant to the stance phase of walking and the sideways fall scenarios 

are shown in Figure 4-7. The following subsections describe literature relevant to specific 

boundary and loading conditions, the experiments that have been conducted to validate 

CTPSFE results, and the development of CTPSFE simulation methods. 

4.3.1 Stance phase of walking loading 

Instrumented femoral hip implants provide the best data available to understand the gait 

patterns and ground reaction forces within the femur during standing and walking. In the 

early 2000s, Bergmann et al. designed and surgically placed instrumented femoral hip 

implants in four patients (3 men, 1 woman)53. The hip contact forces from routine activities 

identified by Bergmann et al. have been applied as loading conditions in CTPSFE 

analyses of stance loading17,24.  
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Figure 4-7: Representative stance (left) and sideways fall (right) loading conditions for a 
71-year-old patient. Note that the load is applied to the node closest to the geometrical 
centre of the femoral head. 

4.3.2 Sideways fall loading 

The forces within the femur during a sideways fall have not been measured. In a sideways 

fall, the patient falls landing with their hip against the ground. The combined force of 

impact and bodyweight creates a combined loading on the femoral neck, including 

compression and bending. This can be simulated by applying loading and boundary 

conditions. A loading force is applied as a point force to the centre of the femoral head or 

as a distributed load to the surface of the femoral head, to simulate the force of 

bodyweight. The lateral side of the patient’s femur can land anywhere on the ground. This 

can be simulated by imposing a contact constraint that does not allow the femur to move 

through the ground. A no-friction slider, that allows the femur to translate along the ground 

without experiencing friction and without passing through the ground, is one example of 
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how to apply this boundary condition. The knee joint is constrained against translation 

and rotation in all directions. This final boundary condition prevents rigid-body motion in 

the simulation and creates a statically determinate problem.  

Qasim et al. showed that the sideways fall loading condition resulted in a higher 

fracture-control case stratification accuracy when using CTPSFE analysis towards 

femoral fracture risk prediction17. In a follow-up study, Altai et al. looked at differing 

boundary conditions with additional sideways fall loading angles beyond those applied by 

Qasim and found similar accuracy regardless of loading conditions, with a maximum 

improvement in stratification accuracy of 3% above the results found by Qasim et al.17,41.  

4.3.3 Experimental validation of sideways fall loading 

An example cadaveric experiment is provided by Helgason et al. in 201654. Fresh frozen 

proximal femoral specimens were prepared by potting their shaft in an aluminium cylinder 

using polymethylmethacrylate (PMMA). The distal end of the specimen was placed in a 

hinge constraint such that the distal end of the specimen was free to rotate in the frontal 

plane. The trochanter was placed under the upper material testing machine platen and 

the femoral head was placed on top of the lower material testing machine platen. PMMA 

pads were formed to the femur and were placed between the material testing machine 

platens and the trochanter and femoral head respectively. The no-friction slider was 

created by placing ball bearing plates under the lower platen. Strain field measurements 

can be captured either by strain gages or by digital image correlation.  

There are several limitations to cadaveric experiments. The specimens are typically 

fresh frozen to preserve the femoral specimens until the experiment, which can affect the 
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mechanical properties. For example, if stored improperly (not in saline-soaked gauze, not 

sealed, etc.) or left too long in the freezer, the mechanical properties of the femur can 

become compromised. As these cadaveric tests are destructive, each specimen can only 

be tested once.  

4.3.4 Specimen-specific numerical simulation of a sideways fall 

Verification and validation are critical to extracting clinically relevant data from finite 

element simulations55. Conceptually, verification confirms numerical accuracy or that the 

applied method for solving the equations is correct. Verifying finite element software 

packages is typically accomplished by confirming results against a series of benchmark 

problems, such as a beam in bending. Validation checks the numerical prediction 

accuracy with respect to the physical phenomenon being replicated. Cadaveric 

experiments, such as those discussed in the previous section, can serve as validation for 

numerical modelling methods.  

To compare strain field results between the cadaveric experiments and the numerical 

simulations, the numerical simulations need to replicate the experiments. CT scanning 

the specimens submerged in deionized water before the experiments allows for CT-based 

specimen-specific finite element models to be generated. Note that in this context the 

requirement to submerge the specimens comes from the prevalence of water within the 

living patients these methods seek to characterize. The CT scans provide the basis for 

extracting geometry, meshing, and assigning inhomogeneous material properties. Setting 

up the loading and boundary conditions is a multi-step process that begins with defining 

a coordinate system. Wu et al., as representatives of the standardization and terminology 



 
 

 

56 

committee of the International Society of Biomechanics, proposed a standard 

femur-specific coordinate system with the origin placed at the centre of the femoral head 

in 200256. In their coordinate system, the x-axis points forward from the femoral head 

perpendicular to the Frontal plane, the y-axis points up normal to the Axial plane, and the 

z axis points lateral (right femur) normal to the Longitudinal plane. 

The coordinates and the node closest to the centre of the femoral head must be 

identified in order to both place the origin and apply loading at the centre of the femoral 

head. From the geometry, the coordinates of the centre of the femoral head can be found 

by performing an analytical spherical fit to the surface model of the femoral head. One 

software application that can facilitate an analytical spherical fit is 3-Matic (Materialise, 

Leuven, Belgium). The node at the centre of the femoral head can be identified by first 

isolating the number and coordinates of the nodes in the femoral head and then using the 

distance equation to identify which of those nodes is closest to the coordinates of the 

centre of the femoral head from the analytical spherical fit. Creating the list of nodes and 

their coordinates in the femoral head can be accomplished in programs such as 

Mechanical APDL (Ansys Inc, PA, USA). Using the distance formula to identify the node 

with the closest coordinates to the coordinates of the centre of the femoral head can be 

automated in programs such as MATLAB (v.2018b, The MathWorks, Inc., Natick, MA, 

US).   

Once the coordinate system is defined, the loading and boundary conditions are 

applied, and the simulation is run. A no-friction slider may be simulated by applying a 

constraint to the most lateral node on the y-z plane. Typically, the digital femoral geometry 

is cut off just above where the cement for the hinge would end in the experimental setup. 
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Thus, the fixed boundary conditions at the distal end of the femur are simulated by 

identifying the nodes in the elements on the distal end of the femoral model and 

constraining them against translation and rotation in all directions. A load may be applied 

at the centre of the femoral head at the same angle the load was applied during the 

experiments used to validate the numerical simulations. Once the CTPSFE analyses 

methods are validated in comparison to the results from cadaveric experiments, these 

methods can then be adapted for use in subject- or patient-specific finite element 

modelling.  

4.3.5 Patient-specific numerical simulations of sideways fall loads 

One advantage to CTPSFE analyses is the ability to run more than one simulation. For 

example, several previous studies showed that including multiple loading conditions in 

the CTPSFE analyses improves the stratification accuracy over aBMD for a cohort of 

female femoral fracture and control patients17,24,41. Typical ranges of sideways fall loading 

angles include 0°(lateral)-30°(medial), 0°(posterior)-30°(anterior)17,24; or 

0°(lateral)-30°(medial) and 30°(posterior)-30°(anterior)41. Other advantages include the 

ability to examine the effects of differing boundary conditions41 and methodological 

determinants17. 

Each patient cohort collected has a differing level of detail available to be included 

in the analyses and a differing variety of missing information that may need to be filled in 

to conduct the analyses. For example, patient CT scans included in femoral fracture and 

control cohorts may or may not include the full femur. The cohort studied by Falcinelli et 

al. included CT scans of the full femur24. The cohort studied by Qasim et al. included CT 
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scans of the proximal femur17,41. Opportunistically gathered patient cohorts include scans 

collected for other reasons, such as virtual colonoscopies. Due to the retrospective nature 

of these cohorts, each patient CT scan includes a different amount of the femur. An 

example of this kind of cohort is that studied by Winsor et al. where many of the CT scans 

end near patient’s trochanter57. Having coordinates for the knee centre is 

methodologically important for two reasons: (1) Qasim et al. have shown that using the 

knee centre to derive the coordinate system increases the stratification accuracy of 

CTPSFE analyses derived femoral strength17, and (2) Altai et al. have shown that applying 

boundary conditions at the knee centre instead of at the cut-off distal end below the 

proximal femur increases stratification accuracy41. 

If a CT scan of the full femur is not available, statistical shape modelling may be 

applied to estimate full femur geometry. A statistical shape modelling software application, 

publicly available as MAPClient, uses a three-step process to create full femur 

estimates58,59 (Figure 4-8). First an iterative closest point algorithm60 aligns via a rigid-

body transformation the centre of the patient femoral mesh with an averaged statistical 

shape model of a proximal femur from a cadaveric database. The statistical shape model 

of the proximal femur from the cadaver database is replaced with the full femur statistical 

shape model of the same femur from the cadaver database. Next, the full femur statistical 

shape model is deformed along the principal components to create a fitted whole femur 

that accurately represents the patient proximal femur geometry and has a realistic overall 

shape. The patient estimate full femur statistical shape model can then be exported and 

used to generate a knee centre coordinate and a coordinate system (Figure 4-9). While 

this method has been demonstrated to improve the accuracy of existing methods for 
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CTPSFE derived femoral fracture risk prediction, an examination of the accuracy found 

surface errors of over 1.5 mm in the proximal region and concluded the reconstruction is 

likely unsuitable for patient specific finite element modelling61. 

 
Figure 4-8: Representative images demonstrating the method for estimating the full femur 
using the statistical shape modelling software, MapClient. For demonstration purposes, 
(a) a cadaveric femur with data for the full femur (b) was cut to the top third of the femur, 
(c) the cadaveric specimen (yellow) aligned with the partial femur (red) from the MapClient 
cadaver database, (d) keeping the cadaveric specimen in place (green) the MapClient 
partial femur was replaced with the MapClient full femur (red), (e) principal component 
analysis was applied to estimate the full femur (yellow), and (f) the exported full femur 
estimate (pink) is compared to the original full cadaveric femur (grey). 
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Figure 4-9: Representative image demonstrating the process of deriving a coordinate 
system using anatomical mapping. (a) The centre of the femoral head is identified using 
analytical spherical fitting. (b) The points where the condyles would touch the table if the 
femur were laid on the table are identified. (c) A plane is created using the centre of the 
femoral head and the two points on the condyles, a grid is overlaid, and the grid guides 
the identification of the midpoint between the two condyle points or the estimated knee 
centre. (d) A new plane is created using the centre of the femoral head, the estimated 
knee centre and one of the condyles. On this plane, a point in the lateral direction is 
identified to define the boundary conditions’ coordinate system with the centre of the 
femoral head and the estimated knee centre. 

4.4 Post-processing 

This section describes CTPSFE simulation results post-processing. In FEA, post-

processing follows a paradigm to transform highly detailed and complex outputs into a 

format both meaningful and easily understood by the user. In the context of femoral 

fracture prediction, the paradigm is related to what can be shown experimentally. This 

section describes one paradigm and the experiments it was based on.  

4.4.1 Estimating the femoral fracture load and minimum fall strength 

In addition to being a heterogeneous, anisotropic material, bone is also a load rate-

dependent (viscoelastic) material62. These complexities complicate identifying an 

appropriate failure criterion for bone in general and specifically for the femoral bone. 

Continuing to place an emphasis on being able to validate the numerical model, Schileo 
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et al. investigated failure criteria to reproduce the elastic limit behaviour observed during 

their quasi-static, cadaveric experiments63. Several aspects of their study supported the 

use of a strain-based failure criterion.  

Schileo et al. proposed using a tensile strain elastic limit of 0.73% and a compressive 

strain elastic limit of 1.04%, based on experimental results from Bayraktar et al.63,64. In 

their 2008 study, Schileo et al. compared three failure criteria: the maximum principal 

strain failure criterion, the von Mises stress failure criterion, and the maximum principal 

stress failure criterion. This study showed the maximum principal strain failure criterion 

defined a failure risk level more consistent with the experimental findings. Prior to Schileo 

et al. proposing the maximum principal strain failure criterion which models the elastic 

limit characteristics of bone63, several studies contributed support towards using the 

maximum principal strain failure criterion. Chang et al. demonstrated that bone strength 

displays isotropy under mono-axial loading conditions65. Keaveny et al. demonstrated 

femoral bone strength is invariant with respect to density45,47,66. Two studies noted the 

tensile/compressive asymmetry of bone strength66,67.  

Schileo et al. implemented the maximum principal strain criterion using a three-step 

process63. First each element is assigned a tensile or compressive predominance based 

on the absolute values of the first and third principal strain. Next, the corresponding tensile 

or compressive elastic limiting value is selected. Finally, the femoral failure risk factor 

(safety factor) is calculated as the strain limit over the maximum strain. If one static load 

is applied in the simulation, then there is one resulting femoral failure risk factor. In the 

case that multiple simulations are run for varying static loads17,24,41, additional post-

processing steps are required to determine the most critical load condition. For example, 
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Altai et al. found the minimum femoral failure risk factor across the loading conditions 

simulated and called this value the Minimum Fall Strength (MFS)41.  

4.5 CTPSFE limitations 

Understanding the methodological limitations of CTPSFE analyses is critical for their 

development, maintenance, and successful application. With such detailed and complex 

methodologies, limitations manifest in a variety of ways. Experimental limitations are 

critical to keep in mind due to the need for model validation. Examples of experimental 

limitations are: freezing and preparing cadaveric specimens for experiments; MTS 

machines are limited to applying loading in one direction while maintaining continuous 

contact throughout the test; and the inability to destructively test each specimen more 

than once. Experimental limitations will impact empirical relationships both those in the 

material mapping process and those in the previously proposed failure criterion. Morgan 

et al. demonstrated that the material mapping empirical relationships are specific to a 

variety of variables including anatomic site, and direction of loading44. Similarly, the 

limitations on failure criterion related empirical relationships are one reason why there is 

not yet a universally accepted researcher consensus on a failure criterion for bone.  

Outside of the need for model validation, there are also limitations arising from the 

clinical context. Patient data available for research are limited. Due to the radiation 

exposure, CT scans are not typically captured of healthy individuals. The individuals 

currently undergoing routine CT scans include patients at risk for cancer68–76, subjects of 

clinical trials77–90, and astronauts undergoing osteoporosis monitoring91. From an 

osteoporosis monitoring perspective, the lack of a large data set of patients, both healthy 

and affected, has so far prevented using FEA-based methods to diagnose osteoporosis 
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related fracture risk in the clinic in a parallel way to the current DXA diagnostic 

framework92. Additionally, the studies that have been done were conducted on limited 

cohorts with population specific details. The limited number of available patients makes it 

challenging both to meet power requirements for assessing particular research questions 

and to assess the ability of the methods to accurately diagnose a diverse group of 

patients.  

When considering CT scans themselves, there are a variety of limitations. CT scans 

have multiple sources of potential error36. Studies facilitated by the capture of CT scans 

frequently do not report relevant scanning acquisition and reconstruction parameters. 

This may be due to researchers not knowing certain scanning acquisition and 

reconstruction parameters were relevant at the time of their study. For example, the 

discussion of the relevance of reconstruction kernels only recently became a frequent 

topic in the literature12,13,93. It is unclear from the literature both if the empirical material 

mapping relationships are specific to CT scan acquisition and reconstruction kernels or if 

the empirical material mapping relationships can be more generally applied to CT scan 

data regardless of acquisition and reconstruction parameters. Additionally, whether the 

CT scan data, were gathered prospectively or retrospectively impacts whether or not 

DCTC data specific to BMD may be available. Approaches to estimate CT calibration data 

specific to BMD will be discussed in greater detail later in this dissertation.  

Software applications may temporarily impose limitations that can be overcome with 

time and continued development. Deep learning methods are continuing to develop and 

are increasingly applied to medical image segmentation. These methods were not yet at 

a point where they could be utilized to segment patient femurs for geriatric patients with 
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advanced stages of osteoporosis when the fracture cohort for this dissertation was being 

segmented.  

4.6 CTPSFE shows promise for diagnosing patient femoral 
fracture risk 

CTPSFE analyses continue to show promise for a variety of applications, including the 

assessment of femoral fragility fracture risk. Future developments to improve CTPSFE 

methods may come from a variety of imaging, experimental, or computational technical 

developments. CTPSFE methods are dependent on BMD specific DCTC data, which 

continues to be a challenge in this area of research. Prior to 2019, the discussion of 

phantomless or internal tissue-based DCTC in the literature was limited to proprietary 

methods. While contributing to developing phantomless or internal tissue-based DCTC 

methods, this dissertation initiates a discussion in the literature of design decisions 

relevant to the design of phantomless or internal-tissue based DCTC as a framework for 

the future development of site-specific methods. 
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5 Evaluation of patient tissue selection methods 
for deriving equivalent density calibration for 
femoral bone quantitative CT analyses 

Please note Chapter 5 is already available as a published manuscript57. 

5.1 Introduction 

Over 300,000 people experience an osteoporotic femoral fracture in the U.S. every year94. 

Despite available treatments, osteoporosis remains underdiagnosed95, inspiring research 

towards a better understanding of osteoporotic fracture. In addition, the stratification 

accuracy of the prognostic standard of care (bone densitometry) is too low to reliably 

diagnose osteopenic patients, and to decide when to adopt second-line treatments such 

as Denosumab or Teriparatide37,95. This calls for more accurate prognostic 

methodologies. Various groups proposed quantitative computed tomography (QCT) 

based patient specific finite element analyses (FEAs) for improved osteoporotic hip 

fracture risk assessment7,17,96. These FEAs have been shown to predict risk of hip fracture 

more accurately than areal bone mineral density (BMD)17. Retrospective reanalysis of 

patient computed tomography (CT) scans will further assist in the development of 

techniques to predict risk of osteoporotic fracture, potentially leading to improved 

prognostic accuracy. However, these models depend on the estimation of bone material 

properties, derived from CT X-ray attenuation. In phantom-based calibration, this is 

achieved by placing an inline calibration phantom under the patient or by scanning offline 

a calibration phantom immediately after the patient, using the same CT scan settings. 

Phantom-based calibration is the gold standard in the development of patient-specific 
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FEAs. However, scanning the patient with an inline phantom is not a standard clinical 

practice, and delayed offline retrospective calibration is not always possible due to clinics 

regularly purchasing new CT scanners. Phantomless CT scan calibration, derived from 

patient tissues, may be a feasible alternative. 

Before considering literature on existing phantomless methods, several variables 

should be identified and defined. There are several points in the process of capturing a 

CT scan that affect density assessment including: underlying theory and definitions, the 

chemical composition of the object being scanned, the acquisition settings, and the 

reconstruction algorithms. Considering underlying theory, clinical CT images describe 

materials’ X-ray attenuation in greyscale in terms of the Hounsfield Scale (in units HU),  

 𝐶𝑇 𝑁𝑢𝑚𝑏𝑒𝑟 =  ((𝜇𝑇 − 𝜇𝑤𝑎𝑡𝑒𝑟)/(𝜇𝑤𝑎𝑡𝑒𝑟 −  𝜇𝑎𝑖𝑟)) ∗ 1000 [𝐻𝑈]. (5.1) 

Here 𝜇, X-ray attenuation from the object, represents  

 𝜇(𝐸) =  𝑎1𝑃𝐸(𝐸) + 𝑎2𝐶𝑆(𝐸) =  𝑚1𝜇1(𝐸) + 𝑚2𝜇2(𝐸) (5.2) 

where E is the X-ray energy level, PE is the photoelectric basis function, CS is the 

Compton scattering effect basis function, and 𝜇1, 𝜇2 are any two independent materials2. 

Compton scatter affects the definition of the Hounsfield scale such that X-ray attenuation 

measurements are roughly linearly proportional to density8. By definition this provides the 

basis for a linear estimate of the relationship between X-ray attenuation measurements 

and BMD8. CT Numbers are not numerically unique and thus a plastic-composite 

mimicking BMD results in a similar measurement to scanning actual bone. The variables 

can be simplified so that density can be calculated from X-ray attenuation measurements, 

by scanning a phantom of known chemical composition at a single energy. After initial 

X-ray attenuation measurements have been captured, reconstruction algorithms 
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generate an image of a specific density range with a particular anatomy of interest 

(i.e. soft tissue or bone). All of these variables impact the derivation of a conversion, 

between BMD and CT X-ray attenuation, that can be derived from CT X-ray attenuation 

measurements of a calibration phantom scanned in line with the patient97,98. Recently, 

some studies have begun to discuss how specific details of clinical CT scan protocols 

affect density estimates by examining repeatability26, patient positioning99, and 

reconstruction kernel93,100,101.  

Different inline calibration phantoms have appeared in previous studies13,102–108. 

These phantoms contain either calcium hydroxyapatite13,107,108 (𝐶𝑎10(𝑃𝑂4)6(𝑂𝐻)2, 

abbreviated HA), or dipotassium phosphate102–106 (K2HPO4). When these phantoms are 

CT scanned, HA or K2HPO4 equivalent density is generally 𝜌𝑄𝐶𝑇 for an inline phantom or 

𝜌𝐶𝑇 for an offline phantom. The material specific abbreviations are 𝜌𝐻𝐴 or 𝜌𝐾2𝐻𝑃𝑂4
, 

respectively98. Each phantom contains inserts with different known densities, such as 0, 

50, 100 and 200 mg/cm3 of HA107,108. After scanning the phantom and segmenting the 

density references, both a calibration factor and a calibration equation can be calculated. 

The calibration equation for a HA phantom can be calculated using a linear regression 

with CT Number [HU] on the y-axis and known density [mg/cm3] on the x-axis and then 

algebraically rearranging the equation to result in:  

 𝜌𝐻𝐴 = (𝐶𝑇 𝑁𝑢𝑚𝑏𝑒𝑟 − 𝑏)/𝑚 (5.3) 

where m [HU/(mg/cm3)] and b [HU] are the slope and intercept, respectively, from the 

linear regression. When density-reference phantoms are used, the derivation of the 

calibration equation naturally characterizes and accounts for CT number variations due 

to factors including manufacturer, model and protocol109. The use of stable, standardized 
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references in modern density phantoms can provide a comparison for analyses across 

clinics. However, in the case of an inline phantom that is externally located under the 

patient, the phantom will be subjected to patient-moderated spectra variable with patient 

composition, size, and geometric position110. While scanning an offline phantom removes 

this variation, this calibration method does not capture differences, such as those created 

by dosage-reducing variable current algorithms. Initially intended to create a standardized 

reference to characterize variations in CT number, differences in phantoms now introduce 

additional variances and limitations into the comparison of clinical assessment 

techniques. For example, Cann et al. used K2HPO4 in place of HA and argued K2HPO4 

results in a slightly lower calibration slope than HA at equivalent densities6,15, 

underestimating cortical bone density. They specifically pointed out that this difference is 

more pronounced at higher densities, visually demonstrated by Knowles et al.98. 

Phantomless calibration, by definition, removes the variations created by scanning a 

phantom, retains the potential to create a scan-specific calibration equation, and 

increases accuracy over an inline phantom by using patient tissues as the density 

reference which are closer to the bone than a phantom could be placed.  

To enable density assessment of patient scans where phantom-based calibration 

data were not captured, three approaches to phantomless calibration have been used in 

clinical research111: (1) using CT Numbers [HU] directly69,112–114; (2) using a calibration 

factor107,108,115,116; and, (3) substituting tissues as a calibration reference15,16,32–38,18–

23,26,31,32–38. The first approach, using CT Numbers [HU] directly, is most accessible 

within the limitations of current clinical practice. Unfortunately, in order to be considered 

quantitative, the relevant BMD thresholds would have to be specific to each CT scanner 
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and protocol specific. Trying to derive relevant FEAs based thresholds in terms of CT 

Numbers poses challenges, such as requiring incalculable amounts of patient case 

studies. In the second approach, using a calibration factor, a general calibration factor 

(GCF) is calculated as the ratio of QCT-derived BMD divided by CT Numbers [HU] and 

then rearranged to extrapolate phantomless BMD through multiplying CT Number [HU] 

by GCF107. While this approach is CT-scanner and -protocol specific, it is neither scan-

specific nor precise enough for FEAs. The third approach, substituting tissues as 

calibration references is scan specific, and has been applied in FEAs of the 

femur13,90,92,103,118. This method is limited by the assumption that internal patient tissues 

have the same density in every patient92. Previously, a variety of tissues served as the 

basis for deriving phantomless calibration: fat and muscle105,106,110,120–123; air and 

blood90,103,118; air and fat90,103,118; air, fat, and muscle13; and air, fat, blood, muscle, and 

cortical bone13,92. Many factors are known to influence the ability of CT Numbers [HU] to 

measure tissues: hydration levels106, patient pathologies124, heterogeneous distributions 

of muscle and fat106, and IV contrast105,125. Further, CT is unable to assess some 

pathologies known to affect CT Number, such as fatty atrophy of muscle120.  

While there is no standard method for determining which tissues to use as the basis 

for phantomless calibration, the literature provides some rationale for choosing specific 

tissues. Boden et al. showed that fat and muscle offer reliable internal reference 

standards for measuring vertebral bone density with QCT using tabulated reference 

densities from White110,126. More recently, Michalski et al. used tabulated and 

standardised mass attenuation coefficients from the National Institute of Standards and 

Technology (NIST)28,92. Some researchers have attempted to determine their own ground 
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truth values using a system-of-equations approach, finding: −69 mg/cm3 for fat and 

77 mg/cm3 for muscle121; or −840 mg/cm3 for air, −80 mg/cm3 for fat, and 30 mg/cm3 for 

muscle13. The limitation to deriving ground truth values, in lieu of using the standardized 

tables, is the unknown amount of pathological variation in the base cohort. 

In the absence of phantom-based calibration data, computational researchers 

commonly estimate a linear relationship between a specific density and CT Number, 

based on available literature. Two such densities include ash density, ash mass divided 

by bulk sample volume, and apparent density, wet mass without marrow divided by bulk 

sample volume98. Several studies are available where researchers empirically derived 

linear relationships between either ash density or apparent density measurements of 

bone and CT number27,43,127–132. Ford et al. demonstrated a method for estimating a linear 

relationship between apparent density and CT Number for trabecular bone and cortical 

bone in mg/cm3,  

 𝜌𝑎𝑝𝑝 = 1.106𝐻𝑈 + 68.4, (5.4) 

before using the relationship in a computational study133. Though not demonstrated in 

literature, another approach would be to estimate soft tissue density by estimating a 

theoretical calibration slope 𝐶𝑇𝑡ℎ𝑒𝑜𝑟𝑒𝑡𝑖𝑐𝑎𝑙 = 1.025
𝐻𝑈
𝑚𝑔

𝑐𝑚3

 derived from theoretical air (1.205 

mg/cm3, −1024 HU) and theoretical water (1000 mg/cm3, 0 HU). Both of these density 

estimation methods do not take into consideration CT scanner performance parameters 

or the anatomical area, as phantom-based or tissue-based phantomless calibration 

estimates do. 

The method for deriving Young’s modulus (E), a measurement of material stiffness, 

from CT data for use in patient-specific FEAs is sensitive to the relationship between a 
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specific density and CT Number due to a power-law relationship98. CT data are converted 

to 𝜌𝑎𝑠ℎ using equation (5.5) depending on the equivalent density, then to 𝜌𝑎𝑝𝑝 using 

equation (5.6), and finally to Young’s modulus using equation (5.7)43.   

 𝜌𝑎𝑠ℎ = 0.8772 ∗ 𝜌𝐶𝑇 + 0.07895 (5.5) 

 𝜌𝑎𝑝𝑝 = 0.598 ∗  𝜌𝑎𝑠ℎ (5.6) 

 𝐸 = 6850 ∗ 𝜌𝑎𝑝𝑝
1.49 (5.7) 

In addition to being specific to the phantom’s reference material, these relationships are 

also specific to anatomic site, in this case the femur44. This suggests a need for a method 

flexible enough to consider anatomic site when selecting reference tissues for 

phantomless calibration.  

The aim of this retrospective study was to demonstrate, verify, and validate a method 

for selecting patient tissues from which to derive density for use in femur strength 

prediction. Using the selected tissue combinations, we present a method for using 

phantomless calibration to estimate bone material properties for predictions of femoral 

fracture risk. Using a 22-factorial design, we tested repeatability with and without 

theoretical data points and with and without including multiple scans for each patient. For 

verification, we compared patient-specific results against a custom offline CIRS BMD 

phantom and an inline Mindways Model 3 BMD calibration phantom. For validation, we 

compared patient-specific results against the inline Mindways Model 3 BMD phantom for 

the patients whose scans included the phantom. 

5.2 Materials and methods 

Patient scans were selected for a density-related sensitivity analysis from data gathered 

previously related to a cohort of 408 patients gathered at the University of Wisconsin–
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Madison hospital. Scans from this cohort were previously identified to examine femoral 

fracture in an age-matched, case-control study. Full details of that study are available in 

Lee et al. 201774 . Retrospective CT scan analysis was compliant with Health Insurance 

Portability and Accountability Act and approved by the UW-Madison Institutional Review 

Board (protocol number 2016-0168).  

The pre-fracture cases analysed comprised 43 patients, with 26 female patients 

(ages 50–93 years) and 16 male patients (ages 56–95 years). The average time to 

fracture after CT scan was 1 year, with the minimum occurring the same year and the 

maximum occurring within 4 years. The control cases analysed consisted of 168 patients, 

with 108 female patients (ages 50–90 years) and 60 male patients (ages 50–91 years).  

5.2.1 Method of selecting patient scans for analysis 

Scans analysed were limited to those captured on a GE Lightspeed family CT scanner 

(Table 5-1). All scans analysed were captured at 120 kVp, and 1.25 mm slice thickness. 

The 258 scans analysed (Table 5-1) included images of 211 individual patients, both male 

and female (aged 50 to 95 years). Patients with surgical hardware were excluded from 

the study. Our goal in this selection was to cover a broad range of data so that the 

phantomless calibration to be broadly applicable, so we processed all data that met our 

inclusion criteria.  
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Table 5-1: The analysed cohort considered 211 distinct patients (bottom), with up to 258 
scans (top). These scans were captured on nine different GE CT scanner models at the 
University of Wisconsin—Madison hospital.  

GE CT scanner 
model 

Number 
of 

scans 

Number of 
patients with 

multiple scans 

Pre-
Fracture 
(Control) 

Male 
(Female) 

LightSpeed 16 45 14 4 (41) 13 (32) 

LightSpeed Pro 16 22 5 9 (13) 7 (15) 

LightSpeed Pro 32 1 0 1 (0) 1 (0) 

LightSpeed Ultra 139 49 3 (136) 56 (83) 

LightSpeed VCT 35 10 26 (9) 12 (23) 

Discovery CT750 HD 8 4 5 (3) 3 (5) 

Optima 580 1 1 1 (0) 1 (0) 

Optima 660HD 6 4 2 (4) 1 (5) 

Revolution GSI 1 1 0 (1) 1 (0) 

Totals 258 88 52 (206) 95 (163) 

 

LightSpeed 16 39 - 2 (37) 12 (27) 

LightSpeed Pro 16 19 - 7 (12) 7 (12) 

LightSpeed Pro 32 1 - 1 (0) 1 (0) 

LightSpeed Ultra 108 - 3 (105) 41 (67) 

LightSpeed VCT 30 - 23 (7) 12 (18) 

Discovery CT750 HD 8 - 5 (3) 3 (5) 

Optima 660HD 6 - 2 (4) 1 (5) 

Totals 211 - 43 (168) 77 (134) 
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5.2.2 CT scanning protocol 

Images were collected during routine abdominopelvic CT scans performed using 16- to 

64-Multi-Detector CT scanners (LightSpeed Series, GE Healthcare). Hospital routine 

includes daily calibration scans on each machine to ensure the accuracy of the CT 

attenuation values. Standard scanning parameters for routine abdominopelvic CT scans 

are 120 kVp tube voltage, 1.25 mm slice thickness, 0.625 mm slice spacing, a medium 

or body type filter, a standard convolution kernel, and low doses of current, either static 

(50-100 mA) or modulated (noise index, 50; range 30-300 mA).  

5.2.3 Inline quantitative equivalent density calibration using the Mindways Model 

3 BMD calibration phantom 

Eight out of the 408 patient scans included an inline effective K2HPO4 density calibration 

phantom (Model 3 phantom, Mindways Software, Inc., Austin, TX). Of those eight, three 

patients had existing surgical hardware and could not be analysed. Therefore, the 

analyses in this paper were limited to five patients. The calibration process for this 

phantom is described in detail by Mindways134. Manual calculation of the calibration 

slopes for the five patients scanned with the inline calibration phantom was conducted 

(Table 5-2). A power analysis for a two-sample pooled t-test was conducted in MATLAB 

and the necessary sample size to meet 99% power ranged between 2 and 5 for the 

majority of the 40 phantomless slope combinations considered, with 3 outliers requiring 

a sample size of 8. 
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Table 5-2: BMD [mg/cm3] from equivalent density [mg/cm3] equations for the five patients 
scanned with the inline K2HPO4 Mindways Model 3 BMD calibration phantom.  

Patien
t 

CT Scanner Calibration 
Slope  

[HU/(mg/cm3)
] 

Calibratio
n  
Y-

Intercept 
[HU] 

Conversion 
Slope 

[(mg/cm3)/HU
] 

Conversio
n  
Y-

Intercept 
[mg/cm3] 

1 LightSpeed VCT 1.03 5.59 0.97 -5.43 

2 LightSpeed Pro 16 1.06 3.32 0.94 -3.12 

3 LightSpeed Pro 16 1.05 13.54 0.95 -12.88 

4 LightSpeed Pro 16 0.99 5.87 1.01 -5.93 

5 Discovery CT750HD 1.06 -8.5 0.94 8.00 

 Average values 1.04 3.96 0.96 -3.87 

5.2.4 Offline equivalent density calibration using a custom BMD phantom 

Retrospectively, we scanned offline a custom phantom with four HA density plugs at 100, 

400, 1000 (part: 06217), and 1750 (part: 06221) mg/cm3 (CIRS Inc, Norfolk, VA) 

submerged in water. Scan settings were 120 kVp, 1.25 mm slice thickness, 0.625 mm 

slice spacing, 100 mA, and a standard reconstruction kernel on the Discovery 750HD. HA 

plug densities were selected to be representative of human femoral bone26. Plugs were 

segmented by creating a virtual cylinder with a 10-pixel diameter across 10 slices in the 

centre of the plug using Mimics v. 21 (Materialise, Leuven, Belgium). Linear regressions 

were calculated for CT Number (HU) as a function of known density, HA. Resulting 

equations were:   

 𝐶𝑇 𝑁𝑢𝑚𝑏𝑒𝑟 [𝐻𝑈] = 1.100 ∗ 𝜌𝐻𝐴 + 26.29. (5.8) 

 (CT Number –  26.29)/1.100 = (1.100 ∗ 𝜌𝐻𝐴 + 26.29 − 26.29)/1.100 (5.9) 

 𝜌𝐶𝑇 = 0.9091 ∗ 𝐻𝑈 − 23.90 (5.10) 
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5.2.5 Identify most consistent reference densities across patients 

We analysed phantomless calibration on 258 scans and considered five patients’ nominal 

density references, including adipose tissue, aortic blood, skeletal muscle, urine, and air. 

Tissue segmentations were captured as virtual cylinders, with a diameter of 10 pixels and 

a depth of 10 slices, using Mimics v21.0 (Materialise, Leuven, Belgium). Due to the small 

size of the femoral artery, the virtual cylinder captured was reduced to a diameter of 8 

pixels. For consistency, all virtual cylinders were created such that the centre of the virtual 

cylinder was around the same axial slices as the centre of the femoral head. An example 

of the virtual cylinder placement is shown in Figure 5-1. Quality checks were conducted 

to ensure each virtual cylinder contained a volume of at least 100 voxels (ASTM E1935 

2019). We were unable to segment urine in the patient’s bladder for 167 out of the 258 

scans due to empty bladders. Blood was also difficult to segment due to their small sizes, 

resulting in measured values outside of 40 ± 20 HU for 46/258 left patient arteries and 

47/258 right patient arteries. Table 5-3 shows the nominal density values assumed for the 

linear regression of HU and tissue density28. The 258 patients included in this study were 

segmented by a single operator. To assess the precision of results at the segmentation, 

BMD and FEAs levels, the five patients with inline phantoms were also segmented by 

three different operators. Inter- and intra-operator repeatability were calculated135.  
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Figure 5-1: Representative axial slice of a CT scan of an 85-year-old patient at the 
proximal femur level. The patient is lying supine. A Mindways Model 3 BMD calibration 
phantom is visible underneath the patient. 
 

Table 5-3: Nominal density values from NIST28 

Reference Material 
Nominal Density 

[mg/cm3] 

 Theoretical Air (not segmented) 1.205  

Adipose Tissue 950  

Aortic Blood 1060  

Theoretical Water (not segmented) 1000  

Skeletal Muscle 1050  

 

Each patient had up to nine potential data points that could be used for line fitting: 

theoretical air, segmented air, adipose tissue (right and left), aortic blood (right and left), 

skeletal muscle (right and left), and theoretical water. Any combination of at least two and 
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up to nine data points could be used to derive a linear regression for the HU versus 

nominal density relationship, 502 possible combinations for each of the 258 scans. A 

custom MATLAB (v.2018b, The MathWorks, Inc., Natick, MA, US) script was developed 

to: (1) calculate all possible linear regressions, (2) discard all ill-conditioned calibration 

slope results, and (3) conduct a numerical analysis to sort density combination calibration 

slope results across patients. Ill-conditioned calibration slopes occurred when the 

algorithm fit a line with two values for the same tissue (i.e. right and left adipose). Sorting 

was accomplished by minimizing the sum of the squared error between the density 

calibration slope and a theoretical calibration slope, as in equation (5.11) below:  

 ∑ (𝑚 − 1.025)2𝑛
1 . (5.11) 

Recall from the introduction that the theoretical calibration slope [1.025 HU/(mg/cm3)] is 

derived from theoretical air (1.205 mg/cm3, -1024 HU) and theoretical water 

(1000 mg/cm3, 0 HU). After discarding over-constrained combinations, the best 10 

combinations and the worst combination were identified for further analysis.  

5.2.6 Experimental design to test repeatability of tissue identification 

Patient tissue segmentations were organized to form two groups: “Scans” included all 

scans eligible for processing for all patients, and “Patients” included only one scan for 

each patient. To form the Patients group, results from duplicate scans for patients were 

removed, such that the results for CT scanners with fewer patient scans were kept, except 

in the case of the Optima 580 and Revolution GSI, each of which only had one patient 

scan. A 22 factorial designed experiment was conducted by running the MATLAB script 

used to identify the most consistent reference densities across patient populations, with 
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two levels for each group including and excluding values for theoretical air and water in 

the combinatorial analysis. 

5.2.7 Finite element model BMD and Femur Strength 

Five finite element models were developed for each patient to investigate the impact of 

different calibration equations on BMD and femoral strength (FS) calculations model I: 

patient specific inline K2HPO4 calibration; model II: the average of the patient specific 

inline K2HPO4 calibrations; model III: the offline HA calibration; model IV: phantomless 

calibration derived from air, aortic blood, and skeletal muscle (AABSM); and, model V: 

phantomless calibration derived from air and adipose (AA). One femur was segmented 

for each patient: four were segmented in Mimics v19.0 or 21 (Materialise, Leuven, 

Belgium) and one was segmented in ITK-Snap (ITK-Snap 3.6.0, University of 

Pennsylvania). Each geometry was discretized into ten-node tetrahedral elements using 

ICEM CFD 16.2 (ICEM CFD 16.2, Ansys Inc., PA, USA) with a maximum edge length of 

3 mm based on a previous mesh convergence study136. Note that each patient had the 

same mesh for all models.  

Elastic moduli were mapped onto the meshed bone using the equations described 

in the introduction and Bonemat (V3.2, Istituto Ortopedico Rizzoli, Bologna, Italy). BMD 

was calculated for each model as the summation across groups of the density in each 

material group, multiplied by the number of elements with that material group. Femur 

strength was calculated using a sideways fall loading scenario with fixed boundary 

constraints at the estimated knee centre and a simulated planar bearing at the lateral 

coordinate on the trochanter17,41. A concentrated point load, 1000 N, was applied to the 

centre of the femoral head in thirty-three different force directions from -30ᵒ to 30ᵒ 
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(posteriorly to anteriorly directed) in the transverse plane and 0ᵒ to 30ᵒ (x-axis to medially 

directed) in the frontal plane41. FEAs strain results were post-analysed using a maximum 

principal strain failure criterion, with limiting values at 0.73% for tensile and 1.04% for 

compressive strains as previously defined by Bayraktar et al.64. FS was defined as the 

minimum force (N) at failure across all 33 side-fall loading conditions. All FEAs were 

conducted in ANSYS 16.2 (Ansys Inc, PA, USA).  

5.2.8 Statistical analysis 

The mean and standard deviation were calculated for patient tissue segmentation 

measurement results in HU for both the “Scans” and “Patients” groups. Once patient 

specific density calibration slopes were calculated, statistical measurements were mean, 

standard deviation, and 95% confidence interval. Bland-Altman analyses were conducted 

for the five patients with inline Mindways Model 3 BMD phantoms included in their scans. 

The hypotheses that no statistically significant difference exists between calibration 

methods were tested using a students’ t-test (𝛼 =  0.01) for the calibration slopes, the 

calibration intercepts, BMD, and FS. Normality was tested using the Shapiro-Wilk test in 

IBM SPSS Statistics for Windows, version 26 (IBM Corp., Armonk, N.Y., USA); however, 

all other statistics were calculated in MATLAB 2018b.  

5.3 Results 

Phantomless calibration was valid when compared against inline phantom calibration for 

FS, BMD, calibration equation (Figure 5-2, Figure 5-3, Figure 5-4). The algorithm 

produced calibration equation results consistent with those from inline phantom 

calibration (Figure 5-5). Intra- and inter-operator repeatability found the method highly 



 
 

 

81 

repeatable for FS, BMD, and calibration equations (Table 5-4). Adipose was the most 

repeatable tissue segmented, and the bladder was the least repeatable (Table 5-4).  

The AABSM combination produced the best slope result for 3 of the 4 categories in 

the 22 factorial designed experiment. The 4th category, excluding multiple scans per 

patient and theoretical air and water, found the AA combination produced the best slope. 

The first category, including theoretical air and theoretical water for all scans (n = 258), 

found AABSM scan specific slope values [HU/(mg/cm3)] of mean ± std dev (lower – upper) 

= 1.021 ± 0.006 (1.008 – 1.034) and found measured air and theoretical water produced 

the worst combination, with slope values of 1.379 ± 6.185 (-10.99 – 13.75). The second 

category, including theoretical air and theoretical water for 1 scan per patient (n = 211), 

found AABSM scan specific slope values of mean ± std dev (lower – upper) = 1.021 ± 

0.006 (1.009 – 1.034) for the best combination and found measured air and theoretical 

water produced the worst combination, with slope values of 1.468 ± 6.856 (-12.24 – 

15.18). The third category, excluding theoretical air and theoretical water for all scans (n 

= 258), found AABSM scan specific slope values of mean ± std dev (lower – upper) = 

1.017 ± 0.010 (0.998 – 1.037) for the best combination and found aortic blood and skeletal 

muscle produced the worst result, with values of 0.893 ± 2.151 (-3.458 – 5.195). The final 

category, excluding theoretical air and water for 1 scan per patient (n = 211), found AA 

scan specific slope values of mean ± std dev (lower – upper) = 0.975 ± 0.010 (0.956 – 

0.994) and found aortic blood and skeletal muscle produced the worst result, with values 

of 0.839 ± 2.149 (-3.458 – 5.137).  

For FS results, the AABSM calibration resulted in a 6.9% bias over scan specific 

inline calibration, a 7.3% bias over averaged inline calibration, and a 22% bias over offline 
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calibration; and the AA calibration resulted in a 9.9% bias over scan specific inline 

calibration, a 10% bias over averaged inline calibration, and a 25% bias over offline 

calibration (Figure 5-2). For BMD results, the AABSM calibration resulted in a 3.9% bias 

over scan specific inline calibration, a 3.7% bias over averaged inline calibration, and a 

17% bias over offline calibration; and the AA calibration resulted in a 6.1% bias over scan 

specific inline calibration, a 6.0% bias over averaged inline calibration, and a 19% bias 

over offline calibration (Figure 5-3). When considering the calibration slopes directly, the 

AABSM and AA combinations resulted in biases of 2.6% and 6.3% over scan specific 

inline calibration, respectively (Figure 5-4). For the calibration intercepts, the AABSM and 

AA combinations resulted in biases of 110% and 110% over scan specific inline 

calibration, respectively (Figure 5-4). When comparing scan specific results for all 211 

patient scans against the scan specific inline calibration, the ten best AABSM slope 

combinations all resulted in the majority of patients falling within the range demonstrated 

by the inline calibration (Figure 5-5). The three best AA slope combinations did not fall 

within the range demonstrated by the inline calibration; however, the inter-quartile range 

for the next seven best did fall within the range demonstrated by the inline calibration 

(Figure 5-5). All intercepts for the ten best combinations for both AABSM and AA fell within 

the range demonstrated by the inline calibration (Figure 5-5). Biases for the best ten tissue 

combination results for all four categories, compared with the inline calibration slope, were 

found to be less than or equal to 0.068 ± 0.064 HU/(mg/cm3) for the five patients with 

inline calibration available. The resulting 40 calibration slopes and the scan specific inline 

calibration slopes were found to be normally distributed using a Shapiro-Wilk test.  
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Differences in FS between calibration methods were only statistically significant for 

AABSM versus the average of the inline calibrations (p < 0.01). Differences in BMD 

between calibration methods were not statistically significant for either phantomless 

calibration combination (AABSM and AA) and the inline phantom calibration (p = 0.03, 

0.10). However, differences in BMD between calibration methods were statistically 

significant for both phantomless calibration combinations (AABSM and AA) versus the 

average of the inline calibrations (p = 0.003, 0.002) and the offline phantom (p = 0.004, 

0.003). Differences in calibration equation followed the same trend. For the slopes, 

differences were not statistically significant between either phantomless calibration 

combination (AABSM and AA) and the inline phantom (p = 0.04, 0.17). Conversely, 

differences were statistically significant between both phantomless calibration 

combinations (AABSM and AA) versus the average of the inline calibrations (p < 0.001, 

0.001) and the offline phantom (p < 0.001, 0.001). For the intercepts, differences were 

not statistically significant between either phantomless calibration combination (AABSM 

and AA) and the inline phantom (p = 0.08, 0.26). Continuing with the trend, differences 

were statistically significant between both phantomless calibration combinations (AABSM 

and AA) versus the average of the inline calibrations (p < 0.001, 0.001) and the offline 

phantom (p < 0.001, 0.001). 

Both average intra-operator and inter-operator repeatability were better for AABSM 

than for AA when analysing FS, BMD, or calibration equation (Table 4). Segmentation CT 

Number [HU] results found similar means and standard deviations for tissues compared 

between the “all scans” and “one scan per patient” categories, respectively: adipose -
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99.12 ± 9.44 and -98.98 ± 9.62; aortic blood 52.42 ± 17.28 and 51.83 ± 17.41; and muscle 

43.58 ± 13.42 and 44.01 ± 14.05.  
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Figure 5-2: FS results derived using phantomless calibration displayed the least bias 
when compared against results derived using the average of the patient and scan-specific 
K2HPO4 calibration as shown by Bland-Altman analyses. Overall results using 
phantomless calibration were more consistent with results from the K2HPO4 phantom than 
the HA phantom. The blue lines are the means and the red lines are the 95% confidence 
interval. 
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BMD Validation 
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Figure 5-3: BMD results derived using phantomless calibration displayed the least bias 
when compared against results derived using the average of the patient and scan specific 
K2HPO4 calibration as shown by Bland-Altman analyses. Overall results using 
phantomless calibration were more consistent with results from the K2HPO4 phantom than 
the HA phantom. The blue lines are the means and the red lines are the 95% confidence 
interval. 
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 Calibration Equation Validation 
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Figure 5-4: Phantomless calibration slopes derived from air, aortic blood and skeletal 
muscle segmentations displayed less bias than those derived from air and adipose when 
compared with patient and scan specific K2HPO4 calibration as shown by Bland-Altman 
analyses. While both sets of phantomless calibration intercepts displayed similar and 
large bias, all averages were within the performance expectations for a GE CT scanner 
(0 ± 7 HU)109. The blue lines are the mean and the red lines are the 95% confidence 
interval. 
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 Calibration Equation Verification 
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      Different Tissue Combinations    Different Tissue Combinations 
Figure 5-5: These plots compare the ten best combinations of tissues in terms of 
calibration slopes and intercepts. Boxplots are overlaid on scatter plots of the patient 
specific calibration slopes and intercepts (purple points). For the slopes plots, the three 
blue lines include: the dashed lines for the minimum (0.99 HU/(mg/cm3)) and maximum 
(1.06 HU/(mg/cm3)) slopes across patients from the K2HPO4 calibration phantom, and the 
dash-dot line is for the calibration slope for the custom phantom scanned offline in water 
(1.10 HU/(mg/cm3)). All slopes are in HU/(mg/cm3). For the intercept plots, the three blue 
lines include: the dashed lines for the minimum (-0.0085 HU) and maximum (0.0135 HU) 
patient specific results for the K2HPO4 phantom, and the dash-dot line is calibration 
intercept for the custom phantom scanned in water (-0.0239 HU).  
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Table 5-4: Intra- and Inter-operator reanalysis precision error (root-mean-square) for FS, 
BMD, calibration equation, and tissue segmentations at the femur for n = 5. Coefficients 
of variation (CVRMS, in %) and standard deviations (SDRMS, in absolute units) are 
presented.  
  Intra-operator Inter-operator 

Measurement  CVRMS (%) SDRMS CVRMS (%) SDRMS 

Femoral Strength [N]     
AABSM 0.28 9.67 0.42 13.27 
AA 1.27 63.85 4.14 224.44 
Inline 0.37 11.68   

Bone Mineral Density 
[kg/cm3] 

    

AABSM 0.22 0.13 0.39 0.20 
AA 0.65 0.48 1.52 1.28 
Inline 0.57 0.57   

Slope [HU/(mg/cm3)]     

AABSM 0.22 0.00 0.41 0.01 
AA 0.41 0.01 1.01 0.02 
Inline 0.60 0.01   

Intercept [HU]     
AABSM 2.70 0.08 4.56 0.14 
AA 6.20 7.45 17.03 20.12 
Inline 9.31 2.22   

Segment [HU]     
Adipose 1.68 3.77 1.78 3.98 
Air 0.35 7.44 0.93 20.10 
Aortic Blood 10.09 10.67 13.93 15.99 
Skeletal Muscle 10.25 7.19 11.24 8.12 
Bladder 50.82 3.67 68.11 12.21 

 

5.4 Discussion 

The main aim of this study was to demonstrate, verify, and validate a method for selecting 

basis patient tissues for deriving an equivalent density equation in femoral bone QCT 

analyses. As an example, this method identified AABSM as the best combination of 

tissues for phantomless calibration. This method was shown to be valid for FS, BMD, and 

calibration equation results. The validity of phantomless calibration for FEAs of the femur 

is consistent with other studies92,103,118. To verify this method, results for 258 scans were 
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shown to be within the range of those from the inline calibration of five scans. This method 

shows promise for use in the retrospective analysis of patient cohorts without available 

calibration data and can be applied opportunistically to any CT scan. 

This study differs from previous studies in several ways, including different CT 

scanners, CT scan protocols, tissues used as the basis for phantomless calibration, 

assumed tissue densities, methods of segmentation, and FEA pipelines. Focusing in on 

which tissues are used as the basis for phantomless calibration, this study’s selection of 

the AABSM combination of tissues is different from prior combinations in literature for 

FEAs of the femur, including: fat and muscle120; air and fat90,103,118; air, fat, and muscle13; 

and air, fat, blood, muscle, and cortical bone13,92. The variety of different combinations 

shows the need for a universally accessible objective method, such as that presented in 

this study, for identifying the best tissues for use as the basis for phantomless calibration 

within the existing constraints of CT scanners and CT scan protocols for the application 

specific anatomic site. Algorithms for decision making, such as that presented in the 

current study, can be more robust than correlation approaches, such as those presented 

by Eggermont et al.13.  

Despite the differences in FEA pipelines, the bias introduced by phantomless 

calibration is comparable across studies, with all other variables held constant within the 

respective studies. This study’s calculated FS mean absolute difference, 90 N (6.9%), 

was similar to recent studies, such as Lee et al. 30 N (0.8%)103, and Michalski et al. -40 

N (17%)39. The calculated BMD biases 0.92 kg/cm3 (0.04%) were larger than a recent 

study on a more developed method presented by Lee et al., 2 mg/cm3 (0.9%)103. Note 

that differences observed in FS measurements were expected to be greater than 
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differences observed in BMD measurements for two reasons. First, differences that 

appear small when examining preliminary results (i.e. segmentation, calibration equation, 

BMD) are amplified by the power-law component of the density-elastic modulus 

relationship (equation (5.7)), making FEAs sensitive to changes in the calibration 

equation. Second, the sideways fall load case is more sensitive to changes in mechanical 

properties of materials due to the stress gradient from bending in the combined-loading. 

Both the results of this study and the results from literature show greater differences in 

FS biases than BMD biases. From a clinical perspective, this drives the reasonable 

assumption that variables known to affect CT Number [HU] or BMD measurement would 

have an amplified effect on FS.  

Recent studies have proposed the use of QCT derived FEAs for improved 

osteoporotic hip fracture risk prediction7,17,96 and the use of phantomless calibration in 

this context92,103. Limited studies have been conducted to identify and quantify the impact 

of relevant factors. Michalski et al., who conducted part of their analysis on ten full body 

cadavers, iteratively correlated ROI specific CT Numbers across energy levels, setting 

the example of taking these factors into account during the development of their 

phantomless calibration method92. Several authors have noted the improvements in 

phantomless calibration results, due to the decreased distance between the patient and 

the reference103,106,110. The current study controlled for some factors known to create 

variations in CT Number [HU] by limiting data analysed to scans captured on GE 

LightSpeed CT Scanners with 120 kVp, variable mA, slice thickness of 1.25 mm, slice 

increments of 0.625 mm, and a standard reconstruction kernel. Lee et al. used similar 

inclusion criteria, identifying 120 kVp and a standard reconstruction kernel as the most 
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important imaging technique factors and their decision to analyse a single protocol as a 

limitation103. Although attempting to work with a standardized protocol, Eggermont et al. 

found that a small number of their patients were scanned with a different reconstruction 

kernel, allowing them to make relevant observations (1) changing reconstruction kernel 

had no significant effect on phantom-based or air-fat-muscle calibration, and (2) changing 

reconstruction kernel resulted in significantly higher failure loads when using their non-

patient specific calibration13. Michalski et al. observed that by using consistent imaging 

acquisition and a single imaging protocol, there were fewer confounding variables when 

measuring methodological precision92. Beyond the limitation of only considering one 

clinical protocol, this study was also limited to pre-fracture cases that went on to 

experience femoral fragility fracture.  

The current study’s segmentation method may be less repeatable than the 

segmentation methods presented in other studies. Where this study conducted manual 

segmentation using the mean CT Number [HU] over the digital volume, other studies used 

higher fidelity segmentation methods. Examples relevant to multiple studies include: Lee 

et al., who have automated their segmentation using gradient-profile algorithms 

independent of absolute attenuation90,103,118, or the popular histogram and peak fitting 

approach13,92,106,110,122. Boden et al. designed the histogram and peak fitting approach 

specifically to overcome the challenge of reliably locating a conventional ROI to calculate 

the mean CT Number [HU] of the digital volume110. This implies that methods using this 

approach would naturally account for the heterogeneity included in patient tissues and 

improving the precision of phantomless calibration. The differences in segmentation 

methods are a major reason why this method was less repeatable than those presented 
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previously in literature (Table 5-5). This comparison shows using a higher fidelity 

segmentation method may improve the repeatability of the current study’s phantomless 

calibration method. 

Table 5-5: Comparison of precision errors between the current study and literature. 
  Intra-operator Inter-operator 

Measurement  CVRMS (%) SDRMS CVRMS (%) SDRMS 

Femoral Strength     
Lee103 [N]   0.4 20 

Michalski92 [N]   6.0 84 
Current Study [N] 0.28 9.67 0.42 13 

Bone Mineral Density      
Lee103 [mg/cm3]   < 0.3 < 1 

Michalski92 [mg/cm3] 4.3 12 5.3 11 

Current Study [kg/cm3] 0.22 0.13 0.39 0.20 

This study showed phantomless calibration results were close to results derived from 

the Mindways Model 3 BMD inline phantom, which relies on K2HPO4 as a reference 

material. Further, the phantomless calibration derived results were not significantly 

different from the inline calibration derived results and were significantly different from 

both the averaged inline calibration and the offline calibration. Both the inline phantom, 

which ranges from -53.4 to 375.8 of equivalent K2HPO4, and this phantomless calibration 

technique, require extrapolation in order to define in vivo BMD134. The potential for 

extrapolation errors has been raised as a concern in several studies13,106,122. In their 

phantomless study, Lee et al. demonstrated their method to calibrate CT scans was 

equivalent to traditional phantom-based calibration103. If assumptions are made about the 

density of bone and included when deriving phantomless calibration, the results become 

less accurate, as shown by the correlation analysis in the pilot study written by Eggermont 

et al.13.  

There were several limitations to this study. CT scans of the proximal femur region 

include a limited choice of tissues to segment: adipose tissue, skeletal muscle, aortic 
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blood, and in some cases the bladder is empty. In addition to population variance across 

patients, tissues also depend on a variety of patient specific variables such as: hydration 

level106, patient pathologies124, heterogenous distributions of muscle and fat106, i.v. 

contrast105,125, exercise habits, and body mass index. The cohort studied here did not 

include patient details about exercise habits, body mass index or comorbidities. Future 

studies should consider a more detailed examination of factors known to cause variance 

across patients and a larger sample size to further develop the phantomless calibration 

methodology. In this study, GE LightSpeed family CT scanners were used to demonstrate 

the calibration process. CT scanners from other manufacturers were not analysed due to 

lack of available data. Future work should consider a multi-centre study comparing the 

same model of CT scanner across different hospitals and consider CT scanners from 

other manufacturers. Also of note was the small sample size of available calibration 

curves for comparison.  

This study did not examine several potential confounding variables. When 

reassigning pre-fracture/control pairings, researchers were not blind to CTXA, a method 

for measuring areal BMD from CT data, mathematically equivalent to dual-energy X-ray 

absorptiometry, density measurements. Stratification accuracy between pre-fracture and 

control cases when using phantomless calibration was not examined. Additional 

confounding factors may have been present such as: other diseases, routine exercise 

habits, differences in body-mass index/height/weight, comorbidities, or different 

pathologies. These were not considered due to lack of readily available cohort 

information. Several of these variables could be considered in a prospective study or in a 

reanalysis of retrospective data prospectively gathered. A more systemic method of 
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randomly assigning controls to pre-fracture cases could be developed and implemented 

to mitigate the potential alignment of CTXA density measurements between pre-fracture 

and control cases. Future studies could be designed to fully test stratification accuracy 

between pre-fracture and control cases when using phantomless calibration. 

Overall, results derived from the phantomless calibration slopes were a valid 

substitute for those derived from the inline calibration. When considering FS, the 

phantomless calibration resulted in a small 7% increase over inline calibration. For BMD, 

the phantomless calibration resulted in a small 4% increase over inline calibration. The 

phantomless calibration slopes were consistently comparable with the range 

demonstrated by the patient specific Mindways Model 3 BMD phantom calibration slopes, 

with our best method displaying a small bias of 0.028 ± 0.054 HU/(mg/cm3). The study 

shows the proposed method for phantomless calibration is valid for FEA studies of 

retrospective cohorts lacking calibration data. This method can be applied 

opportunistically to CT scans captured for analyses other than hip fracture. Further 

examination of the error introduced when the proposed method for phantomless 

calibration is applied in patient specific FEA derived FS should be conducted.  
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6 Comparison of internal tissue-based 
phantomless densitometric CT calibrations 
and error assessment 

As shown in Chapter 5, the proposed approach to tissue-based phantomless DCTC has 

the potential to enable both opportunistic evaluation of osteoporosis and retrospective 

analysis of patient CT scans lacking phantom-based densitometric calibration data. As 

published, this method is available in the public domain and remains recommended for 

use. The previous chapter thoroughly discussed the limitations of tissue-based 

phantomless calibration in general and of that study in particular. This chapter will broaden 

the discussion by examining the proposed method in the context presented in Subsection 

3.2.10.  

As noted previously, ASTM E1935-97 recommends selecting densitometric 

standards that bracket the range of densities being measured. In the case of tissue-based 

phantomless calibration, including femoral bone as a reference tissue will likely increase 

the error introduced for several reasons. ICRU 44 and NIST28,30 assume a cortical bone 

nominal density of 1920 mg/cm3. The data this is based on comes from 24 adults (20–74 

years old) and may not be a reasonable assumption for either a geriatric population or a 

predominately female population30. In any case, assuming a density for cortical bone 

increases the risk of analysing the assumption instead of the actual patient bone.  

Since the previous illustration from Chapter 3 was created including cortical bone 

tissue in all calculations, a follow-up illustration is included here to repeat all the same 

calculations, excluding cortical bone as an internal reference tissue. First, slice effective 

energy is calculated following both approaches described in Chapter 3: iteratively linearly 
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regressing CT Number [HU] and linear attenuation coefficients as recommended by 

ASTM E1935-9725, and iteratively linearly regressing CT Number [HU] and mass 

attenuation coefficients as recommended by Michalski et al.34. Note that the iterative 

linear regressions include segmentations for air, adipose, aortic blood, and skeletal 

muscle. The resulting plots are included in Figure 6-1.  

 

Figure 6-1: Slice effective energy calculations for tissue segmentations from the CT-
scan of a 79-year-old patient. 
 

After calculation of slice effective energy, nine densitometric calibration equations 

were derived for three different combinations of internal patient tissues: (1) air, adipose, 

aortic blood, and skeletal muscle; (2) air, aortic blood, and skeletal muscle; and (3) air, 



 
 

 

99 

and adipose. For each of these combinations, three calibration equations were derived 

following the density and attenuation approaches for each slice effective energy 

described previously. Then to compare densitometric results, each DCTC equation was 

applied to estimate the bracketing densities of femoral trabecular and cortical bone 

(Figure 6-2). Consistent with the results in the previous chapter, the air, aortic blood, and 

skeletal muscle combination introduced the least amount of error across the range of 

densities relevant to human femoral bone. Similar to the example from Chapter 3, this 

analysis shows that the corrections based on slice-specific energy improves accuracy 

(Figure 6-3). Whether this difference is clinically significant depends on the application.  

The prior illustrations have been limited to regions of interest on one CT slice of one 

patient. Another useful illustration is conducting the same analyses for the segmentation 

data from Chapter 5 (Figure 6-4). In this illustration, measured BMD from both tissue-

based phantomless DCTCs result in higher measured BMD than the measurement from 

the FDP for three out of four densities. Overall, the results in this chapter continue to 

support the use of tissue-based phantomless DCTC, and the proposed method continues 

to show promise for facilitating QCT analyses.  
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Figure 6-2: Representative density [mg/cm3] measurements for bracketing trabecular and 
cortical femoral bone standards for multiple calibration references: femoral density 
phantom (FDP); density and attenuation calibration methods for internal tissue-based 
phantomless calibration derived from air, adipose, aortic blood, and skeletal muscle; 
density and attenuation calibration methods for internal tissue-based phantomless 
calibration derived from air, aortic blood, and skeletal muscle; and density and attenuation 
calibration methods for internal tissue-based phantomless calibration derived from air, 
and adipose. When relevant, attenuation approaches were calculated two for differing 
slice effective energies. 
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Figure 6-3: Percent difference calculations between the femoral density phantom (FDP) 
and phantomless density measurements for bracketing trabecular and cortical femoral 
densities. Phantomless measurements include density and attenuation calibration 
methods derived from air, adipose, aortic blood, and skeletal muscle; density and 
attenuation calibration methods derived from air, aortic blood, and skeletal muscle; and 
density and attenuation calibration methods derived from air, and adipose. When relevant, 
attenuation approaches were calculated two for differing slice effective energies. Note 
that differences range from -21% to 17%.  
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Figure 6-4: Representative densitometric CT measurements for trabecular and cortical 
human femoral bone bracketing densities. The light blue bars represent measurements 
derived from the femoral density phantom. The red and dark blue bars represent internal 
tissue-based phantomless DCTC derived measurements, for 258 CT scans of 211 
patients, from the air, aortic blood, and skeletal muscle (AABSM); and air, and adipose 
(AA) combinations respectively. Note that the phantom-based measurements slightly 
underpredict the nominal density [mg/cm3] and that the AABSM measurements are closer 
to them than the AA measurements.  
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7 Discussion 

Two CTPSFE pipelines to predict femoral fragility fracture are available as clinical 

services. The first, VirtuOst software (O.N. Diagnostics, Berkeley, CA), is FDA approved 

and is clinically available in the USA. The second, “CT to Strength” Service non-invasive 

bone strength estimation from INSIGEO Institute for in silico Medicine and the University 

of Sheffield, can return an accurate assessment within 48 hours. To overcome the need 

for phantom-based DCTC data, Lee et al. validated an approach to phantomless DCTC 

in their 2017 study103. This method is proprietary and therefore the clinical accessibility of 

this method is limited to clients of VirtuOst. A public-domain method allows for widespread 

collaboration across clinics, and potentially greater accessibility to patients. The objective 

of this dissertation was to demonstrate, verify, and validate a public domain method for 

selecting tissues to use as the basis for tissue-based phantomless DCTC for use in 

femoral QCT analyses.  

A thorough understanding of the relevant definitions, limitations, and assumptions of 

both X-ray-based clinical imagining and CTPSFE was required. Chapter 3 presented the 

definitions, limitations, and assumptions of X-ray-based clinical imagining. X-rays were 

shown to be sensitive to energy [kVp], current [mA], and thickness [cm]. DXA is known to 

be sensitive to thickness of tissue present around the bone. Clinical CT scanners were 

shown to measure density relative to water using the Hounsfield Scale. The impacts of 

slice thickness, slice overlap, and differing reconstruction kernels were discussed.  

Several approaches to approximating DCTC were described and illustrated in the 

examples in Chapter 3. Using the same structure as the examples in ASTM E1935-97 
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“Standard Test Method for Calibrating and Measuring CT Density”, an illustration in this 

dissertation compared and contrasted densitometric results from a variety of calibration 

approaches: a femoral density phantom; a density approach with phantomless DCTC 

derived from air, adipose, aortic blood, skeletal muscle and cortical bone; and an 

attenuation approach with internal tissue-based phantomless DCTC derived from air, 

adipose, aortic blood, skeletal muscle and cortical bone. The illustration showed that two 

different approaches to estimating the slice effective energy found 80 keV and 97 keV 

respectively, almost 20% difference in results. As expected, the femoral density phantom 

yielded the most accurate results across the range of densities relevant to human 

trabecular and cortical femoral bone. The density approach was more accurate than the 

MFM approach but less accurate than the attenuation approaches, regardless of which 

effective energy was assumed. Overall, the benefits from assuming an effective energy 

were uncertain and did not meaningfully reduce the potential error introduced by these 

approaches.  

The final example in Chapter 6 showed a strong correlation between left and right 

adipose and a weaker correlation between left and right skeletal muscle tissue 

segmentation measurements when paired within the patient. The strong correlation in 

adipose makes sense and agrees with the Chapter 5 finding that adipose is the most 

consistent tissue across patients. The weaker correlation for skeletal muscle also makes 

sense given that most people experience a muscle imbalance. The corresponding 

Bland-Altman analysis showed zero bias between right and left adipose and skeletal 

muscle tissue segmentation measurements across patients.  
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Chapter 4 presented the relevant definitions, limitations, and assumptions for 

CTPSFE analyses. Medical image software applications show medical image data in 

three planes–the coronal, sagittal, and axial planes. A representative segmented patient 

femur was shown with the description of how various software applications support 

segmentation of patient femurs and what approaches are sufficiently accurate to yield 

trustworthy results. The empirical relationships that form the foundation of the material 

property mapping were explored, starting with scanning a densitometric reference 

phantom and deriving the CT Number-to-radiological-density relationship. The 

experiments conducted to derive the relationships between radiological density and ash 

density, ash density and apparent density, and apparent density and Young’s modulus 

were explored in detail. Many of the methodological details in these experiments may 

vary from lab to lab; however, the ones discussed in this dissertation not only serve as 

the foundation for the VirtuOst software (O.N. Diagnostics, Berkely, CA) but have also 

been agreed upon by two other leading research groups in the field43,137. Importantly, the 

material mapping strategy applied in the study was shown to bring the results of CT-based 

specimen-specific finite element analyses closer to the experimental results43.  

The stance phase during walking and sideways fall loading are two loading 

conditions identified as relevant to assessing femoral fracture risk. The most commonly 

applied loading conditions for the stance phase during walking come from a study by 

Bergmann et al.53. Although empirical data are not available for sideways fall loading, 33 

loading angles worth considering have been identified41. An advantage of applying FEA 

methods to study femoral fracture risk is the ability to simulate more than one loading 

condition, considering experimental specimens can only be broken once. 3D-printed 
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patient-specific femur geometries could be printed and leveraged in a variety of ways, 

including testing the experimental setup or assessing precision of results through the 

repetition of experiments. Whether stance phase during walking or sideways fall loading 

is being simulated, experimental validation is important and has been conducted on 

human femoral specimens in several studies. Some examples were discussed. A 

limitation of this dissertation is the lack of researcher experience with conducting 

validation experiments with cadaveric specimens; however, early on in graduate training 

some experimentation with 3D printed versions of the cadaveric specimens was 

conducted and observed.  

CTPSFE analyses have been shown to be more accurate if boundary conditions are 

applied at the knee centre rather than making a cut and applying them close to the bottom 

of the trochanter. In prospectively captured data, the entire patient femur can be included 

in the CT scan by design and protocol. However, in retrospective case studies, patient CT 

scans frequently contained limited amounts of the femur. To overcome this gap in 

information, Ju Zhang created MapClient, which employs statistical shape modelling and 

customizable pipelines to extrapolate the missing portion of the femur. Using the 

estimated full femur from statistical shape modelling based on the available part of the 

patient femur and a database of 200 cadavers, MapClient can provide an estimated full 

femur capable of facilitating anatomical mapping to establish a coordinate system. While 

using this coordinate system has been shown to result in higher femoral fracture-control 

case stratification accuracy, after further studies the authors have reported that the 

accuracy of the statistical shape mapping tool is not sufficient to be used for CTPSFE 

analyses61.  
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The ability to derive clinically meaningful outcomes from the models is as important 

as being able to set up and run the models. Chapter 4 summarized the research behind 

applying a maximum principal strain failure criterion and the different approaches towards 

identifying a strong fracture status classifier. The best classifier to identify patients at risk 

for femoral fragility fracture prior to fracture is still an open question. Minimum Fall 

Strength (MFS) shows promise, especially when applying the recent stochastic modelling 

approaches138–140.  

The CTPSFE analyses methods described in Chapter 4 lacked a method for internal 

tissue-based phantomless DCTC, limiting the ability to retrospectively analyse patient 

cohorts without available phantom-based DCTC data. Designed for use in industry rather 

than clinical use, ASTM E1935-97 “Standard Test Method for Calibrating and Measuring 

CT Density” provides a good foundation for estimating DCTC. The National Institute of 

Standards and Technology provides reasonable assumptions for nominal human tissue 

densities. The outstanding question in this puzzle was what combination of internal 

tissues should be used as the basis for estimating DCTC.  

The demonstrated method for segmenting internal tissues, quality-checking tissue 

segment mean CT Number [HU] measurements and optimizing with the Hounsfield Scale 

as the gold standard, resulted in a reasonable estimate for a DCTC equation. When the 

sparsely available cohort-specific phantom-based DCTC measurements were treated as 

representative boundary measurements, the tissue-based phantomless DCTC equations 

were not only verified but also were shown to produce smaller measurement variance 

across patients and CT scanners than the representative boundary measurements. This 

makes sense because both the patient and the inline phantom are in the path of the X-ray 
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when capturing DCTC data from an inline phantom. The resulting phantom-based 

measurement has higher density measurements, due to the distance from CT scanner 

isocentre in the field of view and due to the increase in thickness the X-rays travel through. 

The bias measured between the demonstrated tissue-based phantomless DCTC and the 

inline phantom-based DCTC-derived clinical outcomes were comparable with other 

studies in the field.  

Chapter 6 presents an updated version of the example from Chapter 3; however, in 

Chapter 6, internal tissue-based phantomless DCTC-based measurements were derived 

without including cortical tissue segmentation measurements. The error in measured 

density across the range relevant to human trabecular and cortical femoral bone only 

came down slightly when excluding the cortical tissue segmentation measurements 

(Figure 7-1). The finding that the attenuation method did not result in an increase in 

accuracy large enough to be clinically meaningful remained consistent.  

While the error introduced by tissue-based phantomless DCTC-based density 

measurements is larger than measurements from the FDP-based DCTC, there are 

several advantages to tissue-based phantomless DCTC. First, the reduction in variation 

of tissue-based phantomless DCTC equations result in a more consistent measurement 

and potential data for patient evaluation. Second, patient tissues will always be present 

in patient CT scans. Tissue-based phantomless DCTC adds data to the CTPSFE 

analyses and may improve the stratification accuracy of clinical assessments. 

Additionally, the quality checks presented in Chapter 5 facilitate the public-domain use of 

this method.  
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Figure 7-1: Percent difference calculations for phantomless density measurements with 
femoral density phantom (FDP) based density measurements as the gold standard. 
Cortical (C) and No Cortical (NC) are compared for the Density and Attenuation 
Calibration Method percent difference phantomless density measurements. Note that the 
No Cortical Attenuation Method with the Mass-Absorption Coefficient assumed effective 
energy has the least percent difference across the trabecular and cortical femoral 
bracketing densities.  
 

Limitations to tissue-based phantomless DCTC are the dependency of the quality 

checks on the NIST tissue nominal density tables and the available information about the 

CT scanners. Internal tissues are dependent on a variety of patient-specific factors such 

as health status, hydration, and the presence of a contrast agent. The validations 
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conducted in Chapter 5 were limited to LightSpeed family CT scanners from GE, a single 

clinical protocol of CT scan acquisition and reconstruction parameters, and a small 

number of patients. All patients included in the study in Chapter 5 were undergoing routine 

abdominopelvic CT examinations due to cancer risk.  

Tissue-based phantomless DCTC shows promise for application in CTPSFE and 

other quantitative CT-based analyses. The method demonstrated, verified, and validated 

in Chapter 5 is the first public-domain method. This method enables the retrospective 

evaluation of patient CT data and the opportunistic assessment of osteoporosis. 
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8 Scientific knowledge generated 

Several new pieces of scientific knowledge were generated. At a high level, the first 

public-domain method for tissue-based phantomless DCTC was demonstrated, verified, 

and validated. Tissue segmentation measurements of air, adipose, aortic blood, and 

skeletal muscle were captured. Through statistical analyses, these measurements 

provide a basis for quality-checking future patient-specific tissue segmentation 

measurements for the broadest representation possible with the patient cohort. Through 

combinatorics and optimization, combinations of patient tissues were identified to serve 

as a basis for tissue-based phantomless DCTC. While this work recommended two 

specific combinations, the verification space showed that a wide variety of combinations 

may be valid. Making the segmentation measurements publicly available upon request 

allows for future researchers to test a specific combination with these data and then apply 

that combination to another patient cohort57. The breadth of these results can further 

enable the development and application of tissue-based phantomless DCTC in clinically 

relevant quantitative CT analyses.  

In addition to the patient tissue segmentation measurements, the work in this 

dissertation may be the only comparison of tissue-based phantomless DCTC to a FDP-

based DCTC. By reversing the assumption that offline phantom-based DCTC data is 

relevant to patient CT scans, this work could also apply the patient-specific, tissue-based 

phantomless DCTC data to the measured mean CT Numbers [HU] for the four 

densitometric standards in the FDP. Through this approach, measured density could be 
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compared between the phantom-based and phantomless results, and accuracy could be 

quantified. 
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9 Future work 

There are several directions of future research relevant to tissue-based phantomless 

DCTC. The data available for the development of this tissue-based phantomless DCTC 

were collected using machines from only one manufacturer. Since the method proposed 

is general to CT systems with the expectation that any manufacturer-specific CT rescale 

intercept may need to be corrected for and the tissues are chosen to align with the 

Hounsfield Scale, the method is presumed to be applicable to any clinical CT scanner 

operating on the Hounsfield Scale. As a public-domain method, global researchers can 

work together to test this presumption by applying the proposed method in their own 

clinical contexts, gradually widening the validation space and building clinical confidence 

in the methods.  

Patients with surgical implants have not yet been considered in the studies on tissue-

based phantomless DCTC methods. One reason for this is the X-ray scatter created by 

the implanted hardware. One advantage to the proposed method is that segmentation is 

performed manually, and specific tissue CT Number [HU] segmentation thresholds are 

provided. Through careful segmentation, it may be possible to apply this tissue-based 

phantomless method to characterize and analyse CT scans of patients with surgical 

implants (Figure 9-1). Initial research would need to assess the tissue-based phantomless 

method result in comparison to a phantom, ideally the femoral density phantom, which 

was designed to support CTPSFE models of femurs to aid in analyses surrounding 

surgical implants. Follow-on research could include CTPSFE analyses of the contralateral 
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femur and may be comparable to the Sheffield cohort which looks at the contralateral 

femur17,39,140,141. 

 

Figure 9-1: Representative CT slice of internal tissue segmentations for a 93-year-old 
patient with a surgical implant. Note that three adipose segmentations were necessary to 
get a result consistent with the thresholds established in Chapter 5, and that a result within 
that framework was possible.  
 

There are still several research questions that may be answered with further 

analyses on the femoral fracture cohort for which the method was developed. A age- and 

sex-matched pre-fracture cohort was selected for a FEA study from the full fracture cohort 

of patient data retrospectively identified at UW-Madison. Of the 43 pre-fracture patients, 

40 patient CT scans met the following inclusion criteria. First the scan contained the 

femur. Second the scan was captured at the prescribed clinical CT scan acquisition 
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protocol and reconstructed with a standard kernel. An additional sub-cohort of 40 patients 

were identified as age and sex matched controls.  

Table 9-1: Breakdown of prefracture and control patients segmented from the Madison 
fracture cohort for later CTPSFE analyses.  

Pre-fracture Control Total 

Female 26 26 52 
Male 14 14 28 
Total 40 40 80 

 

The Madison cohort differs from the Sheffield cohort in at least two ways: the 

Sheffield cohort was captured on a GE Lightspeed CT scanner with a BonePlus 

reconstruction kernel, and the CTPSFE analyses were conducted on the contralateral 

femur16,17. The Madison cohort includes femoral CT scans of patients up to 5 years prior 

to fracture, although most are within a year of fracture. This offers a unique opportunity to 

assess the stratification accuracy of CTPSFE derived MFS developed with the Sheffield 

cohort on the femur known to go on to fracture. 

Phantomless DCTC continues to show promise for femoral QCT analyses. Pursuing 

future studies on additional patient cohorts has the potential to broaden the applicability 

of the methods. Additional studies assessing pre-fracture cohorts may yield insights 

relevant to our understanding of femoral fragility fracture. Phantomless DCTC has the 

potential to facilitate QCT analyses.  
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Appendix – Clinical handout for phantomless 
calibration 

This document is intended to highlight specific details from “Evaluation of patient tissue 

selection methods for deriving equivalent density calibration for femoral bone quantitative 

CT analyses” (Winsor et al. 2021). Please note some reference in here that are relevant 

may also come from Lee/Keaveny et al. 2017 or Michalski/Boyd et al. 2020.  

 

When forming a cohort, results will be more precise if patients are grouped by specific CT 

scan acquisition and reconstruction parameters (Bligh 2009). Further to this, I also 

recommend stratifying according to variables known to impact the calibration equation so 

that  

 

Variables known to impact the calibration equation in general include scan voltage, slice 

thickness, and reconstruction kernel. Note that my cohort only had sufficient validation 

data for 120 kVp, 1.25 mm slice thickness with 50% overlap, and a standard 

reconstruction kernel. (Other lurking currently unknown impactful variables may appear.) 

 

Once you’ve identified your desired study cohort, the next step is segmentation. 

Segmentation can be challenging, for this method, I recommend finding the approximate 

centre of the femoral head and trying to keep the area of interest in the same places for 

5 slices in each direction. For air, urine, skeletal muscle, and adipose tissue, I recommend 

a diameter of about 10 pixels. Aortic Blood is a bit harder, and I found a diameter of 8 

pixels led to a better measurement.  
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To create scan-specific calibration measurements, I linearly regressed the tissue-specific 

segmentation measurements [HU] (dependent variable) against the nominal density from 

the National Institute of Standards and Technology Tables of X-Ray Mass Attenuation 

Coefficients and Mass Energy Absorption Coefficients Table 2. This density calibration 

approach is discussed in ASTM E1935-97: Standard Test Method for Calibrating and 

Measuring CT Density.  

 

Theoretical air (not segmented) 1.205 
Adipose tissue 950 
Aortic blood 1060 
Theoretical water (not segmented) 1000 
Skeletal muscle 1050 

 

I ran this for one patient with air, aortic blood and skeletal muscle to get an example 

equation: 

Y = 0.974*x-984.859 

 

At this point, I recommend modifying the intercept by adding the values of the Rescale 

Intercept from the Dicom header. For GE LightSpeed scanners, this value is typically 

1024. So my updated equation would be: 

 

Y = 0.974*x+39.15.  

 

For the ability to process many patients at a time, I have set up the accompanying matlab 

script. In the event that the rescale slope changes, the script may need to be tweaked.  
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Appendix – Matlab function for calibration 
equation derivation 

 

function [slope intercept r2] = mycalibrationequation(x, y); 

 

[curve, G] = fit(x,y,'poly1'); 

slope = curve.p1; 

intercept = curve.p2+1024; 

r2 = G.rsquare; 

 

end 


