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Abstract

This dissertation develops a public-domain approach for evaluating and selecting patient
tissues to use for deriving densitometric computed tomography calibration (DCTC). This
method enables the evaluation of patient computed tomography (CT) scans captured
without a densitometric calibration phantom in the scan field of view. Unlike other methods
for estimating density from CT scans, this method can be applied in the context of CT-
based patient-specific finite element (CTPSFE) models and analyses. CTPSFE analyses
have been shown useful in a variety of applications including identifying patients at risk
of imminent femoral fragility fracture. This dissertation aims to demonstrate, verify, and
validate an approach to selecting patient tissues to use as the basis for deriving a
phantomless DCTC equation. My analysis shows the demonstrated phantomless method
was comparable with current clinical and orthopaedic research gold standard phantom-
based calibration methods. The developed method shows promise as a public domain
DCTC method capable of enabling further development of CTPSFE methods and

broadening the clinical accessibility to quantitative CT analyses.
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1 Executive summary and motivation

Osteoporosis, a metabolic disease, is a known leading cause of femoral fragility fracture
and has been widely studied. Femoral fragility fracture widely impacts the quality of life of
people from a diverse range of backgrounds at-risk for reasons that may include aging,
metabolic disease, traumatic injury, cancer, or space travel. Bone researchers with
engineering backgrounds have proposed computed tomography-based patient-specific
finite element (CTPSFE) modelling and analyses to identify patients at risk of femoral
fracture. The first clinically implemented biomechanical computed tomography (BCT)
product VirtuOst software (O.N. Diagnostics, Berkeley, CA) is newly available in the clinic
in the USA as of 2020 after approval from the FDA. Despite this, universally identifying
patients at risk of femoral fragility fracture and preventing fractures remain clinical
challenges.

Mechanically, femoral fragility fracture is known to be a function of macro- and micro-
architecture, density, loading conditions and the interactions of the bone with the
environment during impact. Input variables for CTPSFE analyses include geometry,
material properties, and loading and boundary conditions. Geometry and loading and
boundary conditions can be defined using free-body diagrams and available
instrumentation. Through medical image segmentation, digital patient-specific geometries
are created from computed tomography (CT) scans. Loading and boundary conditions
are commonly defined from either the stance phase of walking or a side fall scenario. For
loading that represents the stance phase of walking, joint forces from instrumented hip

implants provide the best currently available data on loading angles and forces. The



stress gradient in the combined loading that exists in either the walking or falling loading
cases makes CTPSFE analyses sensitive to material properties. Defining bone material
properties for CTPSFE analyses remains challenging.

Bone material properties are the most challenging aspect of CTPSFE analyses.
Bone mineral density, a bone material property, can be measured using CT scanners. CT
scanners measure X-ray attenuation and density after densitometric CT calibration
(DCTC) is performed. With calibration and empirical material mapping equations, bone
mineral density can define material properties for CTPSFE analyses. The empirical
material mapping equations amplify the impacts of different methods of DCTC, due to a
power-law relationship. Therefore, the CTPSFE analyses are sensitive to the DCTC.

Capturing bone specific DCTC data is not a universal clinical practice, and
retrospectively may not be feasible due to clinics routinely upgrading CT scanners.
VirtuOst overcame this limitation by developing and applying internal tissue-based
(phantomless) DCTC. Their proprietary approach leverages deep learning to segment the
ischioanal fossa and derive a DCTC equation from the ischioanal fossa and theoretical
air, as defined by the Hounsfield Scale. The continued development of CTPSFE methods
and broad clinical accessibility of quantitative CT analyses require a public domain
method for deriving a DCTC equation.

This dissertation develops a public-domain approach for evaluating and selecting
patient tissues to use for deriving DCTC. This method enables the evaluation of patient
CT scans captured without a densitometric calibration phantom in the scan field of view.
Unlike other methods for estimating density from CT scans, this method can be applied

in the context of CTPSFE models and analyses. This dissertation aims to demonstrate,



verify, and validate a method for selecting patient tissues to use as the basis for deriving
a phantomless DCTC equation.

The method for selecting tissues was applied to assess 258 CT scans of 211
patients. Tissue density assumptions were based on available data tables from the
National Institute of Standards and Technology (NIST). Standardized DCTC and
measurement methods were applied from the standard for calibrating and measuring CT
density published by the American Standards for the Testing of Materials (ASTM). The
phantomless calibration equation from air, aortic blood, and skeletal muscle demonstrated
the least error across patients.

My analysis shows the demonstrated phantomless method was comparable with
current clinical and orthopaedic research gold standard phantom-based calibration
methods. Of the 211 patients, 5 were scanned with a clinical Mindways Model 3 BMD
phantom in the scan field of view. The derived phantomless calibration equations for the
258 CT scans all fell within the range of the 5 available phantom-based calibration
equations. A femoral density phantom (FDP) designed in accordance with the ASTM
standard served as our orthopaedic research gold standard phantom. Notably, density
measurements from the phantomless DCTCs for the 258 CT scans showed low overshoot
when compared against density measurements from the FDP.

Together these results showed phantomless calibration is valid to serve as a basis
for defining bone mineral density in the context of CTPSFE. The included analysis verified
and validated the air, aortic blood, and skeletal muscle combination as the basis for
phantomless calibration. Bias across patients was minimal indicating these methods may

be suitable for analysing patient CT scans without a phantom in the scan field of view.



The developed method shows promise as a public domain DCTC method capable of
enabling further development of CTPSFE methods and broadening the clinical

accessibility to quantitative CT (QCT) analyses.



2 Dissertation navigation

This dissertation describes a method for predicting femoral fracture risk (FFR) based on
densitometric CT calibration (DCTC) and CT-based patient-specific finite element
(CTPSFE) analysis. This framework is designed to be accessible to a technical lay
audience, researchers who have taken a break from this area, and students pursuing this
area of research. After this chapter, this dissertation includes seven chapters. Chapter 3
defines terms and explains assumptions and limitations of X-ray-based clinical imaging.
Chapter 4 identifies and discusses definitions, assumptions, and limitations of CTPSFE
modelling. Chapter 5 demonstrates, verifies, and validates a method for selecting patient
tissues from which to derive phantomless DCTC data for use in CTPSFE analyses of the
femur. Chapter 6 presents error measurement as a comparison of phantomless DCTC
methods to a femoral density phantom (FDP). Chapter 7 discusses research conclusions
and limitations. Chapter 8 outlines the scientific knowledge generated by this work.
Chapter 9 previews future research directions.

This dissertation is modular. Following the table of contents, readers may cherry-pick
the sections they want to read to understand various terms from Chapters 3 and 4. Of
note are the sections in Chapter 3 on determining the density calibration of a CT system
and Chapter 4 on material mapping, as these sections present groundwork for
understanding the rest of the dissertation. Further, the example in Chapter 3’s section
3.2.10 includes an illustration that will be expanded in Chapter 6. This scaffolded
approach builds on the concepts presented and allows readers to interact with simple

applications of these concepts before encountering more complicated versions.



2.1 Objectives

Demonstrate, verify, and validate a method of estimating densitometric CT

calibration (DCTC) data for quantitative CT-based analyses of the femur.

Objective 1: Identify and characterize relevant and available patient tissues with the
potential to serve as the basis for estimating DCTC data.

Objective 2: Devise quality checks for tissue segmentation.

Objective 3: Determine reasonable assumptions for tissue densities.

Objective 4: Demonstrate a repeatable and objective method for tissue combination
selection.

Objective 5: Devise guidance for calibration equation quality checks.

Objective 6: Verify that patient-specific phantomless DCTC equations fall within the
boundaries of available representative inline phantom-based DCTC
measurements.

Objective 7: Validate patient-specific phantomless DCTC equations for patients whose

CT scans contain inline densitometric phantoms.



2.2 Summary of original contributions

To form a cohesive narrative, | have added some original contributions throughout my
dissertation (Table 2-1). Although not yet published, these contributions will be iterated

and expanded upon for future publications.

Table 2-1: Summary of original contributions throughout this dissertation.

Section Number

Section

Original Contribution

3.3.9

[llustrative
comparison of
densitometric CT
calibration methods

Clinically relevant demonstration of
whether an attenuation calibration
approach is more accurate than a density
calibration approach when including the
femur as an internal tissue reference.

Internal Tissue-
Based Phantomless
DCTCs and Error
Assessment

5 Evaluation of patient | Demonstrated a repeatable and unbiased
tissue selection method for selecting patient tissues to
methods for deriving | serve as the basis for internal tissue-
equivalent density based phantomless DCTC.
calibration for femoral | Verified patient-specific internal tissue-
bone quantitative CT | based phantomless DCTC equations
analyses results for 258 CT scans and 211 patients

against sparse inline phantom-based
DCTC data as representative field
boundary measurements.

Validated resulting patient-specific
clinically relevant outcomes derived from
internal tissue-based phantomless DCTC
and phantom-based DCTC.

6 Comparison of Clinically relevant demonstration of

whether an attenuation calibration
approach is more accurate than a density
calibration approach when excluding the
femur as an internal tissue reference.




3 Clinical X-ray imaging: Definitions,
assumptions, and limitations

In this chapter, we begin by constructing a mental model of how X-ray-based CT scans
are captured by describing relevant mathematical principles. New CT scanners are
constantly being introduced to the clinic, but a mental model of the fundamentals of CT
scanning equips researchers to identify potentially statistically significant factors before
analysing patient data even as the details of CT technology in practice evolve. The
remainder of the chapter surveys existing methods for CT density calibration and
measurement. Historically, the details of CT density calibration and measurement have
been kept proprietary or within specific lab groups. The recent interest in phantomless
densitometric CT calibration (DCTC) has meant more details are readily available in

dissertations, so a survey of differing approaches is newly possible.

3.1 Factors of X-ray based clinical imaging

X-rays have been used to evaluate bone in the clinic for over a century'. Because their
index of refraction is close to one, X-rays are neither bent nor reflected as they pass

through matter. X-ray intensity is the product of power [kilovolt power, kVp] and current
[milliAmp, mA]. X-ray absorption follows Beer’s Law, equation I = [,e™**(3.1), with I as

the final X-ray intensity [kKW/m?], I, as the initial X-ray intensity [KW/m?], « is the absorption
coefficient, and x is the thickness [m].
[ =le (3.1)

In the context of X-ray-based clinical imaging, « is the product of the mass attenuation



coefficient [m?/g] and density [g/m?]. The energy-specific mass attenuation coefficient, % ,

is the ratio of the linear attenuation, u [1/m], and density, p [g/m3]. Energy-dependent
linear attenuation, u [1/m], after the X-ray passes through the examination object, is
shown in equation (3.2). PE and CS are the basis functions of the photoelectric effect and
the Compton scatter effect, respectively?. Note that a,, a,, m;, and m, are material-
specific constants, and u; and u, are the X-ray attenuations of any two independent

materials.
u(E) = aPE(E) + a,CS(E) = myuq (E) + myuy (E) (3.3)
The definition of linear attenuation can be logarithmically transformed and

rearranged to take the alternate form shown in equation (3.4). In this form, u is the energy-

specific linear attenuation [1/cm], % is the energy-specific mass attenuation coefficient
[cm?/mg], and p is density [mg/cm3].
u
u=5xp (3.4)

One advantage of the formulation shown in equation (3.4) for linear attenuation is the

ease of rearranging to solve for density, as shown in equation (3.5).

u
p=7 (3.5)
(%)

P
Together, these relationships demonstrate that X-ray-based density measurements are
sensitive to energy [kVp], current [mA], and thickness [m].

In conventional radiography, X-rays travel from the X-ray source through the
examination object and are recorded on film expressed as a 2D planar image. If the X-ray

measurements are recorded on film, the power and current are independently controlled
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variables that must be selected before taking the measurement. When capturing X-ray
measurements of bone, too much power can result in a brighter image with qualitatively
higher bone density measurements and some loss of clarity. Similarly, too little current
can produce an overly bright image, or too much current can produce a darker and

shadowed image.

3.1.1 X-ray-based method for the measurement of in vivo bone

mineral

In the 1960s, an improved method for measuring in vivo bone mineral was proposed by
John Cameron and James Sorenson from the University of Wisconsin—Madison
Departments of Radiology and Physics3. Cameron and Sorenson demonstrated an
approach for using X-rays to measure areal bone mineral density (aBMD) by using Beer’s
Law, reproduced here in equations (3.6)—(3.9).
Let:

I, = X-ray intensity of unobstructed photon beam

T, = equivalent bone thickness of compact bone mineral at density p,,

T,, = thickness of soft tissue

T =T, + T,, =thickness of tissues

Iy = X-ray intensity after passage of the beam through a thickness of tissue

I = X-ray intensity after passage of the beam through an equal thickness of bone

mineral plus tissue
up = mass absorption coefficient of bone

Um = mass absorption coefficient of tissue
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Then, let X-ray intensity after passage through a thickness of tissue be:
Iy = Ije~HmPmt (3.6)
Equation (3.7) is rewritten such that the X-ray is attenuated by two tissues, and

rearranging X-ray intensity to allow for equation (3.6) to be substituted in:

I = IOe_ﬂmmem_ﬂbeTb
= [ye ~HmPm(T=Tp)=1pPpTp
= [Oe_#umTe_P‘beTb+P‘umTb (3.7)

Then substituting equation (3.6) into the final form of equation (3.7) yields:

| = ]Se—ﬂbeTﬁﬂumTb (3.8)

Rearranging equation (3.8) to solve for bone thickness yields:

I = e HPpTotimPmTh
Iy

I
In (1—) = —UpPpTp + P Ty
0

In(=

The practical application is that X-ray intensity measurements can be used to
determine the cross-sectional area of compact bone mineral in a volume of interest. An
equally spaced grid of X-rays travel through the tissue and bone in the specimen and the
reduction in X-ray measurements is recorded at the grid locations. The cross-sectional
area can then be found using the series of measurements across the intervals. This proof
assumes a standard composition of bone, and equal thicknesses of bone and tissue. It

also assumes that all non-bone mineral substances absorb radiation in a similar manner
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to muscle tissue. Their proof clearly demonstrates that X-ray-based density
measurements are sensitive to object thickness. As an illustration, Cameron and
Sorenson provided a comparison of aBMD measurements for a 28-year-old normal
woman (74.1 cm?) and for an osteoporotic woman (30 cm?). This approach is limited to a
2D measurement, while CT-based techniques discussed later involve 3D measurements.

Dual-energy X-ray absorptiometry (DXA) scanners were introduced in 19874
applying the theory proposed by Cameron and Sorenson, and entered clinical practice
shortly thereafter. One limitation to DXA is its sensitivity to tissue thickness as just
discussed. In 2012, Yu et al. demonstrated this limitation empirically by showing that
simulated increases in body fat increased variations in DXA measurements®. Their study
found that increasing layers of fat around a phantom increased the BMD measured while
increasing layers of fat around patients decreased the BMD measured. The same study
also used CT scans as the basis for DXA measurements and found that this approach
was less variable. Building on these methods, another improved approach, now called
computed tomography X-ray absorptiometry (CTXA), is available in the clinic as an off-
the-shelf solution from Mindways Software, IncS.

CTXA serves several important functions. First, patients who are receiving routine
virtual colonoscopies by CT examination can be screened for osteoporosis based on the
same CT, with no additional scans. Second, CTXA allows for continuity of care because
it is comparable with DXA measurements. The comparability provides clinicians with a
consistent patient assessment over time regardless of which measurement was captured.
Clinicians are also provided with data at a higher standard of care without needing

continuing education to interpret measurement results.
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Further, CTXA works seamlessly with the frameworks already in place to gain clinical
meaning from DXA, such as the Fracture Risk Assessment Tool (FRAX). CTXA is an
incremental step towards a CT-based clinical densitometric assessment on the way to the
clinical adoption of CTPSFE-analysis-based techniques. Notably, following a similar
scaffolded approach, VirtuOst’s Biomechanical Computed Tomography tool provides both
a CT-based, DXA-style analysis and a CTPSFE analysis’. Therefore, CTXA plays a vital
role as a bridge for incremental clinical technology updates and for continuity of patient

care over time.

3.1.2 Computed Tomography

A clinical CT scanner directs X-rays through a patient, detects changes in energy
measured as X-ray attenuation, and generates cross-sectional images of the patient for
the region of interest. Each cross-sectional CT image (Figure 3-1) is called a slice, and
the collective group of images captured in one scan is referred to as a stack. Clinical CT
scans are represented in greyscale (CT Number) on the Hounsfield Scale [Hounsfield

Units, HU], where p is the measured X-ray attenuation, x, is the X-ray attenuation of

ater
distilled water at standard temperature and pressure, and y,.. is the X-ray attenuation of
air:

CT Number [HU] = (m) * 1000. (3.10)

Hwater— Hair
As evident from this definition, CT Numbers [HU] are a relative quantitative measurement
of X-ray attenuation, normalized against water. Notably, substances less dense than
water will have negative CT Numbers [HU]. By convention, CT images are rendered such

that denser tissues display closer to white and less-dense tissues display closer to black.
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Importantly, CT Numbers [HU] are roughly linearly proportional to density, due to Compton

scatter effects?.

Figure 3-1: Representative transverse or axial CT slice showing a 71-year-old patient at
the proximal femur level. The patient is lying supine.

Unlike conventional radiographic X-ray film-based images, CT images are digital, so
image contrast and density can be adjusted at the display console after the image has
been made. A CT image slice is composed of a finite collection of elements called pixels,
each of which is assigned one of 4000 different CT Numbers [HU] based on their
measured X-ray attenuation and the Hounsfield Scale. Since the X-rays only pass through
the plane being imaged, each 2D pixel represents a 3D volume element called a voxel.
The voxel’'s three dimensions are the length and width of the pixel and the depth of the

slice. Slice thickness, or depth, is a variable prescribed at time of acquisition and is
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constrained by the CT scanner’s hardware capabilities. Example slice thicknesses include
1.25 mm, 2.5 mm, or 5 mm. Slice increment is the distance moved between image
acquisitions. The minimum slice increment for a GE CT scanner is typically 0.3125 mm,
for example.

Slice increment and slice thickness are not necessarily equal. When the slice
increment and slice thickness are equal, the CT Number [HU] measurement may be
around 106% of the actual density value (Figure 3-2). When the slice increment is less
than the thickness so that slices overlap, it is possible to compute volumetric averages,
which reduces CT Number [HU] measurement to around 107% of the actual density value
(Figure 3-2). When it is desirable to limit patient exposure to radiation, larger slice

increments can be used, leaving gaps between successive images.
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Figure 3-2: Comparison of measured CT density for densitometric standards scanned
with (Blue) and without (Red) 50% overlap between CT slices. Note the overlap results in
a lower CT density measurement for lower densities and a higher CT density for higher
densities.
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Once images have been constructed, image stacks can be resliced to a lower
resolution by removing some slices. For CT images, reslicing cannot result in higher
resolution, unlike magnetic resonance images (MRI). Depending on the size of voxels
and the position of the patient or subject, some voxels may contain materials of very
different densities and the resulting measured CT Number [HU] is an average. The
averaged value may introduce error into the analysis and is referred to as a partial volume
artifact. These artifacts frequently occur on the edges between bones and surrounding

softer tissues.

3.1.3 Acquiring the measurements and creating a CT image

A CT measurement passes X-rays through objects. Depending on the CT scanner,
different geometries may be applied, such as parallel beam or fan beam. In parallel beam
geometry, the X-rays travel in parallel beams and detectors are arranged in a plane. In a
fan beam geometry, the X-rays travel radially outward from a point to detectors arranged
in an arc. This dissertation is limited to data collected on multidetector CT scanners
(MDCT) which have multiple rows of parallel beam X-ray detectors.

A CT image is a visualization constructed from a matrix of X-ray attenuation
measurements. Four terms are relevant to creating this matrix: ray, ray sum, view, and
projection. A ray is a linear path through the examination object which may be represented
as a vector. A ray sum is the sum of two or more rays (i.e., vector addition). In the context
of CT, an X-ray attenuation measurement, or CT Number [HU], is a sum of linear
attenuation coefficients along a ray through the examination object (e.g., tissues, in the

case of a patient). A view is a complete set of rays captured for one departure of X-rays
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from the X-ray source. A projection is a mathematical function describing the ray sums in

a view.

3.1.4 Image reconstruction methods

Image reconstruction, performed by an algorithm, computes attenuation coefficients from
different ray sums obtained as a projection. The algorithm, or kernel, manages image
sharpness and noise, and can be used to create a sharper image of specific anatomical
features. There are three kinds of image reconstruction algorithms used in clinical
practice: (1) an iterative algorithm without statistical modelling, (2) an iterative algorithm
with statistical modelling, and (3) a filtered back-projection. In an iterative algorithm, the
algorithm assumes data, compares the assumption with measured data, and iterates until
the two agree. When statistical modelling is included, the algorithm also considers several
variables such as the X-ray source, image voxels, the detector, noise, data acquisition,
and radiation attenuation. Since these variables vary by manufacturer, reconstruction
algorithms tend to be proprietary.

Modern CT scanners reconstruct CT images using filtered back-projection, which
was discovered by Cormack in 1963°% " and is the most widely used clinical reconstruction
algorithm today. In this method, each projection undergoes filtering, which includes
adding extra negative numbers at the surrounding points. To achieve the required filtering
effect, these negative numbers are proportional to the value of the projection and
inversely proportional to the distance from the point. Once filtered, the projection values

are projected back onto the reconstructed image. The resultant value at any point in the
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image is the sum of the values from one point of the filtered and reversed projection.
Repeating this for all projections results in a theoretically perfect reconstruction.

A filtered back-projection may also be called the convolution method. In modern CT
scanners, the kernel may be labelled as reconstruction or convolution. Comparing results
across patient CT scan images captured with different reconstruction kernels may not be
straightforward because reconstruction kernels may generate statistically significantly
different results'?>-'4. Examples of reconstruction kernel names relevant to GE scanners

” o« LE 11

and this dissertation include “Standard”, “Bone”, “BonePlus”, and “BonePlus2”.

3.2 Densitometric calibration of X-ray CT systems and
measurement of material densities from CT images

An exact in vivo measurement of bone mineral density from a clinical X-ray CT system
may not be possible; but, there are several approaches that can provide good
approximations. Notably, there is not yet a consensus among research labs or in the
published literature on one method for DCTC which is necessary for approximation. One
barrier to arriving at a consensus is the lack of publicly available details on the methods
applied in the literature. This section explains different approaches based on the
information available. Chapter 5 demonstrates ways to modify existing methods for
different applications.

Before discussing densitometric CT calibration, equation (3.11) presents an alternate
formulation of CT Numbers [HU] which more clearly demonstrates the dependence on
energy, density, and chemical composition’. Here u(E) is linear attenuation as a function

of energy, %E) represents the mass attenuation coefficient, and ¢ represents the
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concentration.

E
EE) *Cmineral+(¥) O*CHZO_H(E)HZO

CT Number(E) = 1000 » ——mineral Ho (3.11)
/i(E)HZO

3.2.1 Existing densitometric CT calibration standardized terms

DCTC approximations depend on having either specific scans for DCTC or tables of
energy-specific mass attenuation coefficients. The clinical gold standard for DCTC is to
scan a BMD-specific densitometric reference'®-24. A densitometric reference is an object
of known density or density that can be measured. Frequently the densitometric reference
is made up of individual density references, called standards. A phantom contains multiple
density references to quantify a range of densities. ASTM Standard E1935-97
recommends that phantoms include density standards bracketing the densities of
interest?®. For example, femoral cortical bone would include 1000 mg/cm® and 1750
mg/cm? to bracket the densitometric range of interest?627.

In DCTC, segmentation is applied to identify the region or volume of interest within
the individual density standards in the phantom. Segmentation is the creation of a digital
region of interest. Each region of interest is summarized by a mean CT Number [HU]

measurement to use in the derivation of a DCTC equation.

3.2.2 Existing databases of X-ray mass attenuation coefficient tables

Two databases have been created by the National Institute of Standards and Technology
(NIST)?82%: (1) the X-ray Attenuation and Absorption for Materials of Dosimetric Interest
(XAAMDI), and (2) the XCOM: Photon Cross Sections Database. XAAMDI includes

nominal densities of selected tissues and their accompanying relevant values, including
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energy and mass attenuation coefficients?®. These tables build on prior work from the
International Commission on Radiation Units (ICRU)¥®. In them, each tissue density
comes from a detailed review of the available literature, including averaged data-driven
measurements when possible. Perhaps the best detailed in ICRU 44 is cortical bone,
1920 mg/cm?, which came from data for 24 adults (20—74 years old) and considered
bones including the skull, vertebral column, pelvis, humerus, and femur3®. The XCOM
database expands on the selected tissues from the XAAMDI database by interpolating
and combining X-ray mass attenuation values, based on photon cross section, for user-
specified chemical compositions to provide data tables. K,HPO, is an example of a
material for which the XCOM database can provide energy-specific mass attenuation
coefficients outside of the scope of the XAAMDI database.

The versions of the tables from NIST examine the range of energies used in clinical
practice at a finer resolution than the tables from ICRU. The mass attenuation coefficients
can be plotted as a function of energy on a log—Ilog plot. The NIST tables identify the
discontinuities in these curves within the range of energies relevant to the clinic, such as
cortical bone. One challenge with off-the-shelf densitometric reference phantoms is the
proprietary nature of the materials used as density references, which limits the ability of

XAAMDI to provide tables for the densitometric reference phantoms.

3.2.3 Determining theoretical effective energy

In CT imaging, the X-ray source is a polychromatic beam consisting of multiple X-ray
wavelengths. Accurate measurement of CT density is dependent on identifying the single
X-ray wavelength, or monochromatic energy, equivalent to the combined X-ray

wavelengths present in the polychromatic beam. The monochromatic energy, or effective
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energy, is difficult to measure directly3'. Some approaches to DCTC are dependent on
determining the theoretical effective energy. Slice effective energy describes the effective
energy specific to one axial CT slice. Scan effective energy describes the effective energy
averaged over multiple slices or potentially the entire stack.

Several factors may affect effective energy by reducing X-ray intensity between the
X-ray source and the X-ray detector, including (1) the examination object the X-ray passes
through, (2) the X-ray current, and (3) the volumetric overlap and averaging of collected
X-ray attenuation measurements. High-density anatomical features, such as cortical
bone, may act as a high-pass filter, with higher mass absorption rates preventing lower-
energy X-rays from passing through and increasing the effective energy. Variable current
algorithms minimize patient exposure to unnecessary radiation in routine clinical practice.
Introducing a different current for each CT image slice also creates slice-specific scan
effective energies, and increases the difficulty of estimating effective energy. Section 3.1.2
mentioned measurement overshoot can be reduced by selecting the slice increment and
slice thickness to capture overlapping CT measurements. This approach may also impact
the estimation of scan effective energy. Two different methods for determining theoretical
scan effective energy will be presented later in this chapter as the first step in the relevant

approach to DCTC.

3.2.4 Phantom-based density approach to DCTC for equivalent BMD

In phantom-based DCTC, a CT scan of a densitometric reference is captured and a
calibration relationship is derived. Mean CT Number [HU] measurements of regions of
interest within the densitometric standards are captured from the CT calibration scan, to

derive a CT Number-to-density relationship. Then a linear regression is performed
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between the nominal density values of the individual densitometric standards (x-axis) and
the mean CT Number [HU] measurements (y-axis). The resulting equation is then

rearranged to express density [g/cm?] in terms of CT Number [HU].

CT Number [HU]=m=*p+ b (3.12)
CT Number [HU]|—b=mx*p+b—b (3.13)
cT Numb:lr [HUl-b _ mn»;p (3.14)
p =i*CTNumber [HU]—£ (3.15)

In this method, the CT scan of the densitometric reference is assumed to have the
same scan effective energy as the examination object. Ideally, the CT scan of the patient
or examination object and the CT scan of the phantom are processed, reconstructed, and
post-processed using the same hardware, acquisition parameters, correction algorithms,

reconstruction kernels, and post-processing steps?.

3.2.5 Example phantom-based density approach to DCTC

The ASTM standard E1935-97 provides guidance on the design of a phantom for use in
DCTC. Consistent with this standard, a custom femoral density phantom (FDP) was
created from four calcium hydroxyapatite (Ca,,(P0,)¢s(OH),, abbreviated HA)
densitometric standards (CIRS Inc, Norfolk, VA). These standards were selected to
bracket the range of apparent densities relevant to human femoral trabecular (100—
400 mg/cm3) and cortical (1000—-1750 mg/cm?3) bone3233, For this densitometric phantom

the 100 and 400 mg/cm? plugs were custom manufactured (parts RDH 357 Y-23 and RDH
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362 Y-24) and the 1000 and 1750 mg/cm? plugs were off-the-shelf (parts 06217 and
06221).

This phantom has been designed to be scanned offline, or separate from the patient.
Therefore, a CT examination of the phantom submerged in deionized water was captured
offline with CT scan acquisition and reconstruction parameters consistent with the UW—
Madison Hospital clinical protocol for virtual colonoscopies. The densitometric standards
were segmented in Mimics v.23 (Materialise, Leuven, Belgium). The mean
CT Number [HU] of each segment was recorded in a table with the nominal density
[mg/cm?] of the densitometric standard (Table 3-1).

Table 3-1: Example segmentation measurements from a CT examination of the femoral
density phantom by densitometric standard.

Known HA Density Mean Standard Deviation
[mg/cm3] CT Number [HU] | CT Number [HU]

100 120.17 21.38

400 491.57 33.81

1000 1212.19 81.26

1750 1959.26 188.51

A linear regression was performed for these data with mean CT Number [HU] on the
y-axis and nominal density [mg/cm?®] on the x-axis (Figure 3-3). The calibration curve is
then derived following the process in equations (3.12)—(3.15). Depending on the material
used in the densitometric phantom, this relationship calculates bone mineral density
equivalent to the reference material, typically calcium hydroxyapatite (Ca,o(P0,)s(0H),,

abbreviated HA), or dipotassium phosphate (K,HPO,).
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Figure 3-3: Example of a calibration curve for a calcium hydroxyapatite phantom. The
resulting linear regression equation was CT Number [HU] = 1.1155 = p[ gs] + 39.473.
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The error bars represent the standard deviation for each densitometric standard
segmentation mask CT Number [HU].

3.2.6 Phantomless density approach to DCTC for equivalent BMD

In the absence of a phantom as a densitometric reference, the nominal tissue densities
from NIST’s XAAMDI database Table 2 may be assumed. Patient tissues can be identified
near the anatomy of interest and segmented to determine mean CT Number [HU] for a
region of interest. The same process can then be followed to determine the DCTC

equation by constructing a linear regression between nominal density [mg/cm?3] (x-axis)
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and internal tissue segment mean CT Number [HU] (y-axis) and rearranging as
demonstrated in equations (3.12)—(3.15). Depending on the CT scanner, the resulting
intercept may need to be horizontally adjusted by the rescale intercept from the image

metadata.

3.2.7 Attenuation approach to DCTC method for equivalent BMD

Attenuation-based DCTC has 2 steps: (1) simultaneously the effective energy and a linear
attenuation to CT Number [HU] relationship are determined and (2) density is determined
by multiplying the linear attenuation by theoretical mass attenuation coefficients. One
approach to determining CT scan effective energy is described by ASTM E1935-97%°, In
this approach, energy-specific semi-empirical linear attenuation values are found by
multiplying the measured density by the energy-specific theoretical mass attenuation
coefficients from the tables. A least-squares fit between the linear attenuation values and
CT Number [HU] is then computed for at least three materials for each energy shown in
equation (3.16), and the coefficient of determination for each fit is recorded.
u=m=CT Number [HU] + b (3.16)
The effective energy is assumed to align with the maximum observed coefficient of
determination®'. Once the maximum coefficient of determination is identified and the scan
effective energy is determined, the energy-specific linear relationship between CT
Number [HU] and linear attenuation coefficients, u, is also determined. Density can then
be determined by using the relationship between linear attenuation, y, and mass

attenuation coefficients, % repeated from equation (3.5).

=2 3.17
p (%) ( )
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3.2.8 Comparison of the density and attenuation DCTC methods

ASTM E1935-97 presents an illustrative example comparing two methods for density
calibration, referred to here as the density approach and attenuation approach,
respectively, to DCTC?5. This example illustrates that the two methods result in density
calibrations that differ by a small amount (Table 3-2).

Table 3-2: Example CT density measurement comparison of the density and attenuation
methods for polyamide and polycarbonate from ASTM E1935-97. Observe that the results
for the attenuation method could be rounded to the same values resulting from the density
method, indicating that the extra work of the attenuation method may not be worth the
increase in accuracy. Additionally, the attenuation method is precise to within 1%, and the
density method is precise to within 5% relative to the published density. Note that (1)
polyamide and polycarbonate have densities that fall within the range of human cortical
femoral bone which makes this example relevant to this dissertation, and (2) this example
was derived on an industrial CT scanner, which may differ from clinical CT scanners,
articularly in terms of resolution.

Density Attenuation
Method Method Published
CT Value p [g/cm?] p [g/cm?] p [g/cm?]
Polyamide 1272 1.20 1.15 1.14
Polycarbonate 1273 1.20 1.23 1.21

In this illustration, the attenuation method is accurate to within 1%, and the density
method is accurate to within 5%. Rounding the results from the attenuation method by
one significant figure would yield the same result as the density method. This illustration
may be relevant to DCTC for bone mineral density because the densities of polyamide
and polycarbonate fall within the density range of femoral cortical bone (1 g/cm? to 1.75
g/cm?3). This illustration may not be relevant due to the difference in scale of the industrial
CT scanner used in the example, which may be substantially different from clinical CT
scanners. Following the format of this illustration from ASTM E1935-97, this dissertation

includes illustrations more relevant to the clinic in subsection 3.2.10 and chapter 6.
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3.2.9 Mass-fraction-model approach to DCTC for integral BMD

A mass fraction expresses each component of a mixture as a ratio between the mass of
that component and the total mass of the mixture, equation (3.23). In a
mass-fraction-model (MFM) the sum of mass fractions is set equal to 1, equation (3.25).
Andrew Michalski described a mass fraction model approach to DCTC in his appendix3*
using the following steps: (1) determine both the effective energy and the energy-specific
CT Number-to-mass attenuation relationship, (2) determine the CT Number-to-material
density relationship, and (3) establishing a MFM that includes bone mineral density and
bone marrow. This section describes these steps in detail.

A process for determining slice effective energy has been described previously3'34,
Inputs for the method include (1) mean CT Number [HU] measurements for regions of
interest for a minimum of three materials and (2) tabulated energy specific mass
attenuation coefficients associated with each material for scanner-relevant X-ray
energies. To determine the effective energy, iterative linear regressions are constructed
between the mean CT Number [HU] measurements (x-axis) and energy-specific mass
attenuation coefficients for each energy (equation (3.18)). A vector of the coefficient of

determination (R?) for each regression is then constructed across energies.

% = m % CT Number [HU] + b (3.18)

The determined effective energy is assumed to have the coefficient of determination
closest to one in the vector. The resulting linear regression at the determined effective

energy is also the CT Number-to-mass attenuation coefficient relationship.
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In this semi-empirical method for DCTC, determining the CT Number-to-material
density relationship requires several equations presented earlier in this. Recall the
relationship between linear attenuation, mass attenuation coefficients, and density, which

was introduced as equation (3.4):
p==xp (3.19)
p
and the definition of the Hounsfield Scale, previously shown in equation (3.10).

CT Number [HU] = £m—Bwater . 1000 (3.20)

Uwater— Hair
Substituting the relationship between linear attenuation, mass attenuation coefficients,
and density into the Hounsfield Scale creates a relationship between CT Number [HU]

and material density:

(% *Pm_% *Pwater)
CT Number,,[HU]| = —B—ater (3.21)

= *Pwater
Pwater

Rearranging to solve for material density in terms of CT Number yields:

CT Numberm u u
1000 *= *Pwatert— *Pwater
— Pwater Pwater (3 22)
Pm = 3 -
Pm

Here, % are energy- and material-specific mass attenuation coefficients and p,, ;¢ is the

density of liquid water at standard temperature and pressure.

The MFM requires several inputs: the effective energy, the linear attenuation-to-CT
Number relationship, and the material density-to-CT Number relationship. With these
values, a MFM can be set up to differentiate between integral BMD and bone marrow,
also known as triglyceride. Let a mass fraction be set up between the mass of the material

and the mass of the voxel as shown in equation (3.23).
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— masSmaterial (3 23)

Wi
masSyoxel

Then two equations can be set up to form a system, equations (3.24)—(3.25).

u u
- = Z-W-— (3.24)
Pyoxel P

Zi W; = 1 (3.25)

Filling in these two equations yields:

U _ U U
- = Wk, HPO, ;K + Wtriglyceride (3.26)

Pvoxel 2HPO, Ptriglyceride

Wk, npo, T Wtriglyceride = 1 (3.27)

Substituting the mass fraction into these two equations yields:

U __ MAasSK,HPO, u MmasStriglyceride 4

© _ IMaSSKHPO, + (3.28)

Pvoxel masSvoxel PK,HPO, masSyoxel Ptriglyceride

MAasSK,HPO, + MAasStriglyceride __ 1

(3.29)

masSyoxel masSyoxel

Rearranging equation (3.30) to isolate the mass ratio for triglyceride or bone marrow:

MAasStriglyceride —1— MASSK,HPO, (331)
masSyoxel masSyoxel

And substituting into equation (3.32):
I _ Massk,HPO, K n (1 . maSSKZHP04) u (3.33)
Pyoxel masSyoxel PK,HPO, masSyoxel / Ptriglyceride

Then distribute:
U _ MasSg,HPO4 U u __ MasSSK,;HPO4 2
Pyoxel massyvoxel Pg,HP0, Ptriglyceride masSyoxel Ptriglyceride

(3.34)

Rearranging to solve for massg,ypo,, Or integral BMD:



U M _ MASSK,HPO, (u U

massSyoxel

Pvoxel ptriglyceride pKzHP04 ptriglyceride

_ Pyoxel Ptriglyceride
Massk,ypo, = MASSyoxel <” ; )

PK,HPO,4 Ptriglyceride

Applying the definition of density:

MAasSSK,HPO,

pKZHPO4 - volumeyoxel

It is shown that:

] _k
MasSyoxel <pvoxel ptriglyceride)

Pk,HPO, = *

volumeyoyel (ﬁ u )
PK,HPO, Ptriglyceride

Where:

U

- = m * CT Number [HU] + b

Pyoxel

Since two linear equations are multiplied together, this DCTC method yields
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> (3.35)

(3.36)
(3.37)

(3.38)

(3.39)

a calibration

curve. In this example, integral BMD is derived in terms of dipotassium phosphate,

Pk,upo,- Alternately, DCTC could be derived in terms of calcium hydroxyapatite, py 4. Also

note that the CT Number-to-density [mg/cm?3] relationship in this derivation is specific to

the Hounsfield Scale, and therefore this relationship may need to be modified if the CT

scanner being calibrated does not use the Hounsfield Scale.

3.2.10 Comparison of DCTC methods

The four methods for DCTC presented in this chapter have not yet been compared

against each other in a clinical context. In this example, the femoral density phantom
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(FDP) is the gold standard to compare against. This example uses the standards as the
examination object and applies phantomless DCTC methods to calibrate the scan of the
FDP. The standards have a known density. Once calibrated, the measurements can be
compared to the density and the error can be quantified.

A phantom-based DCTC equation was derived based on mean CT Number [HU]
measurements (y-axis) of a CT scan of a femoral density phantom (FDP). A linear
regression was performed for known densities [g/cm?] (x-axis) and mean segment CT
Number [HU] measurements. The resulting equation was then rearranged as described
previously, equations (3.12)—(3.15). Note that CT scanner, scan acquisition, and
reconstruction parameters were kept constant between the scans of the patient and the
FDP.

For illustrative purposes, phantomless mean CT Number [HU] measurements were
captured for regions of interest within an axial slice of a patient CT scan, including air,
adipose, aortic blood, skeletal muscle, and cortical bone. The slice effective energy was
determined using both methods previously described. In the top row, semi-empirical linear
attenuation coefficients of the tissue segmentations are iteratively correlated with the CT
Numbers [HU], Figure 3-4. In the bottom row, tissue segmentations were iteratively
correlated with tabulated energy-specific mass attenuation coefficients, Figure 3-4, and
the coefficient of determination (R?) was calculated. In both approaches, the slice effective
energy was taken to be the maximum coefficient of determination. Using the slice effective
energy, DCTC equations were found following three of the previously described

approaches: the density method, the attenuation method, and the MFM method.
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Table 3-3: Representative region-of-interest tissue segmentations from a CT scan of a
79-year-old patient at the proximal femur level.

Region of Interest/ CT Value Assumed NIST
Tissue Reference Nominal Density
Air —956.79 1.205
Adipose —96.34 950
Aortic Blood 30.43 1060
Skeletal Muscle 19.82 1050
Cortical Bone 1215.01 1920

To assess accuracy, | assumed longitudinal X-ray tube stability and similar calibration

equations between LightSpeed Model GE CT scanners. Then | applied phantomless

calibration equations to calibrate a CT examination of densitometric standards in the FDP.

Figure 3-5 shows the resulting density measurements for several calibration methods.

None of the methods was a close match for all four femoral bone density standards.

Accuracy was assessed across the femoral density range by averaging the normalised

percent difference between the known density and measured density across plugs, as

shown in equation (3.40).

ACCU,T'CLC)/ - Z"il <(pkn0wn_9meagured

Pknown

)+ 100)

(3.40)
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Figure 3-4: Representative slice effective energy calculations for tissue segmentations
from the CT-scan of a 79-year-old patient. The top row presents the effective energy
calculations for linear attenuation coefficients and the bottom row presents the effective
energy calculations for the mass attenuation coefficients. In the left two plots, the blue
dots represent different tissue segmentation measurements with mean CT Number [HU]
on the x-axis and linear or mass attenuation coefficients respectively on the y-axis. In the
right two plots, the blue dot identifies the maximum coefficient of determination across the
slice effective energy [keV] range.
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Figure 3-5: Representative density [mg/cm3] measurements for bracketing trabecular and
cortical femoral bone standards for multiple calibration methods: femoral density phantom
(FDP), phantomless density (ASTM DCM), phantomless attenuation (ASTM ACM-80,
97), and phantomless mass fraction model (MFM—-80, 97). Where applicable, calculations
were repeated for both effective energies respectively. Observe that the measured
accuracy for the FDP results are within the 5% precision expected based on the example
provided by ASTM E1935-97. Tissue-based calibration equations are based on the
segmentation values for a 79-year-old patient from Table 3-3. This figure shows the most
direct approach of performing a linear regression on nominal densities [mg/cm?] (x-axis)
and mean CT Number [HU] measurements is the least likely to introduce error, although
not the most precise approach available.

Note the FDP calibration had the best accuracy, 5.7%. In this analysis, the MFM

calibration method had the highest overshoot in densitometric measurements. Using
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linear or mass attenuation coefficients did noticeably impact the effective energy
assumed. The MFM calibration method is more sensitive to the effective energy than the
attenuation calibration method. Overall, the most direct approach of constructing a linear
regression between nominal densities [mg/cm3] (x-axis) and mean CT Number [HU] (y-
axis). In the example presented in this section, this approach was also the least likely to

introduce error. However, the attenuation methods may still be more precise.

3.3 Phantomless calibration facilitates QCT analyses

Phantomless DCTC shows promise for bringing quantitative CT-based measurements
into clinical practice. Because they are capable of volumetric density measurements, CT
scanners present an excellent foundation for physics-based modelling. DCTC remains an
ongoing challenge limiting QCT analyses of the femoral bone. This chapter compared the
“Standard Test Method for Calibrating and Measuring CT Density” from the ASTM to a
MFM applied for DCTC. The most direct approach of performing a linear regression of
nominal densities [mg/cm?3] (x-axis) against mean CT Number [HU] measurements is the
least likely to introduce error but not the most precise approach available. The examples
created for this section included segmented regions of interest limited to one CT slice for
one patient, captured on only one CT scanner. However, the findings are likely relevant
beyond the scope of the illustration. Later examples in this dissertation will consider
additional patients. In any case, conducting similar benchmark evaluations across more
patients and clinics may broaden the foundation of support for quantitative CT analyses.

Notably, ASTM’s “Standard Test Method for Calibrating and Measuring CT Density”
has not been referenced in much of the literature in this area. The absence of this key

reference may be due to the lack of awareness in the field, the cost associated with



36

accessing the standard, or a lack of clinical trust in this standard. Many of the guidelines
recommended in the standard agree with the recommendations and observations from

recent literature353%, including those in Troy et al.’s “Practical considerations for obtaining
high quality quantitative computed tomography data of the skeletal system” and
Brunnquell et al.’s “Sources of error in bone mineral density estimates from quantitative
CT”. By referencing this standard and providing a clinically relevant benchmark example,

this dissertation aims to provide fundamental terminology to support further development

of DCTC and CTPSFE.
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4 CTPSFE analysis

Today, the best non-invasive methods for predicting risk of femoral fracture are derived
from CTPSFE analyses. These methods are reasonably mature®, and one existing
implementation of these methods is currently the most accurate diagnostic for
osteoporosis available in the clinic®. Notably, CTPSFE analysis derived femoral strength
predictions can consider all relevant variables to predicting fracture risk: femur geometry,
bone mineral density, microarchitecture, the applied loads, and external interactions with
the environment®®. Resolutions insufficient to capture microarchitecture are one limitation
of patient CT scans captured during routine clinical practice. Despite this limitation,
Verhulp et al. showed good agreement between CT scans of cadaveric femurs captured
on both clinical- and micro-CT scanners*’. Further, Adams et al. showed that CTPSFE
analysis conducted on routine clinical CT scans can yield fracture predictions at least as
accurate as the current gold-standard diagnostic, DXA38,

The simplest description of finite element analysis (FEA) includes 3 inputs: (1)
geometry, (2) material properties, and (3) boundary and loading conditions. Clinical
meaning is derived from the results through post-processing. This chapter discusses
these three inputs and post-processing to survey CTPSFE analysis techniques specific
to femoral fracture risk prediction. | also introduce terminology and details relevant to
CTPSFE analyses and describe an example pipeline for retrospectively assessing
deidentified patient cohorts (Figure 4-1). The steps in this pipeline are (1) capture patient
CT scans, (2) extract patient geometry through image segmentation, (3) discretize the

geometry for FEA, (4) spatially map material properties from CT scan data to the
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discretized patient model, (5) define boundary and loading conditions to simulate the
stance phase in walking or sideways fall loading, and (6) estimate the minimum force
likely to result in fracture. Within each of these steps, differing software packages and
research labs implement varying methods. As there is not yet a consensus across
research labs, this chapter focuses on describing the details available in the literature

relevant to two specific implementations”17:41,

Image

Segmentation

v

Volume
Meshing — — —
Statistical Shape
¢ | Modelling |

Material Mapping I

v

Loading and Boundary i )
. Anatomical Landmarking
Conditions

v

Finite Element

Simulation

v

Estimated Force at Fracture

Figure 4-1: A visualization of computed tomography-based patient-specific finite
element modelling pipeline steps. Statistical shape modelling is an optional step
conducted for some data sets as indicated by the dashed outline.
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4.1 Geometry

This section discusses three aspects of generating patient-specific femoral geometry.
First, anatomical planes provide geometric reference terms for geospatially identifying
locations specific to the patient (Figure 4-2). Second, image segmentation describes the
process for manually generating a digital patient-specific geometry from CT data. Third,
discretization and mesh generation describe the process of breaking up the patient-
specific geometry into smaller sections to facilitate the simulations. The patient-specific
geometry is the first step in building a CTPSFE model.

CTPSFE analyses are sensitive to geometry indicating the importance of accurately
representing patient-specific anatomy such as the femur. Taddei et al. showed that errors
in the geometric representation of the bone were

always the dominant variable in resulting stress

predictions#?. Their study also showed that the Sagittal/
Longitudinal

variation in variable output from their method for Plane

building CTPSFE models of a femur from clinical CT Frontal/ 8 L’
. Coronal : ' Transverse/
data never exceeded 9%. Increasingly accurate Plane ¥ Axial Plane

representations of patient-specific anatomy are
facilitated by increases in the fidelity of CT scanners
and computational tools for creating geometry from
CT data.

Figure 4-2: Representative

example of the anatomical planes

4.1.1 Anatomical planes applied to a human.

When considering anatomy, there are three planes of the body: (1) the Coronal or Frontal

plane; (2) the Sagittal or Longitudinal plane; and (3) the Transverse, axial, or Horizontal
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plane (Figure 4-2). The Coronal plane divides the body into the anterior (front side) and
posterior (back side) portions. The Sagittal plane divides the body into right and left
portions. The transverse plane divides the body into upper and lower halves. Medial refers
to the side of the anatomy closest to the central Sagittal plane, and lateral refers to the
side of the anatomy further from the central Sagittal plane. Proximal implies close to the
centre of the body. The proximal femur refers to the part of the femur near the hip joint.
Conversely, distal refers to the direction away from the centre of mass. The distal femur

being the part of the femur near the knee.

4.1.2 Image segmentation

Image segmentation is the process of identifying a region of interest on an image stack
and creating a corresponding digital geometry. The segmented region of interest is
typically called a mask (Figure 4-3). There are several different approaches to creating a

digital patient-specific femoral geometry, depending on the availability of resources and

expertise.

Figure 4-3: Representative axial CT slice and segmented proximal femur for a 71-year-
old patient.
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One semi-automatic segmentation approach, called thresholding, begins by isolating
a specific range of CT Numbers [HU] for inclusion in a mask. The mask is refined by
isolating the region of interest from the rest of the areas within the full density range.
Finally, the mask edges are manually checked slice by slice in at least two planes until a
closed volume is created. The closed volume can be checked automatically by “filling” in
the centre, with failure resulting in the entire image becoming part of the mask and
success resulting in only the femoral mask becoming filled in. One software package that
supports this approach is Mimics (Materialise, Leuven, Belgium).

Region growing is an alternative semi-automatic segmentation approach, with the
potential to reduce the time required to segment a femur. This approach begins by
manually planting starter “seeds” within the patient femur. The user then iteratively steps
through growing those seeds, with automated sets of user-specific iteration advances,
until as much of the femur as possible is cleanly included in the mask. The mask is then
updated to form a closed volume by manually editing the mask in each slice in at least
two planes. One software package that uses this approach is ITK-Snap (ITK-Snap,
University of Pennsylvania). In ITK-Snap, the mask is always displayed as hollow. When
the full patient femur is not captured within the image stack, the bottom of the femoral
mask is represented as open, and ITK-Snap will not allow it to be filled. To form a closed
geometry required for later steps, the second to bottom slice can be filled in.

These two methods produce results of comparable accuracy. In general, the time
required to segment a patient's femur is dependent on the disease state of the patient,
the distance between the acetabulum and the femoral head, and the expertise of the

operator. Mimics has created a built-in tool for automatically segmenting a patient's femur.
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This tool may not yet be able to accurately segment the femur of a patient with
osteoporosis, which limits its utility in the application of these methods to the cohort

described in Chapter 5.

4.1.3 Mesh generation

Once the segmentation is exported from the image analysis software, the next step is to
discretize the patient-specific femoral geometry into discrete finite elements connected
by nodes. This process outputs a mesh or a collection of elements with nodes that
represents the shape of the geometry. Automated mesh generators are widely available,
both in commercial off the shelf software applications (ANSYS, Abaqus, HyperWorks,
etc.) and open-source software applications (TetGen, etc.). There are several options for
element geometry when creating a mesh, including tetrahedral elements (tets),
hexahedral elements (hexes), wedges, and shells. Tetrahedral elements are frequently

chosen because they can more accurately cover arbitrary geometries (Figure 4-4).

z
2|4 4
10 9
2 3 2 8.
\/
X Yy X

Figure 4-4: Examples of representative tetrahedral elements, tet-4 on the left, tet-10 in
the middle and a patient femur with an applied tetrahedral mesh on the right.

Four- and ten-node tetrahedral elements are displayed in Figure 4-4. In FEA, one

potential source of error when using tetrahedral elements is shear locking. Four node
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tetrahedral elements have linear shape functions which cannot accurately model the
curvature present when a material experiences the shear stress associated with bending.
To avoid this source of error, ten-node tetrahedral elements are recommended due to
their accompanying quadratic shape functions. After creating a tet-10 mesh for the
CTPSFE model, the material properties can be derived and geospatially assigned

throughout the mesh as described in the next section.

4.2 Material properties

The ability of CTPSFE analyses to simulate the results of cadaveric experiments may be
sensitive to an accurate definition of the material properties of bone. Schileo et al. showed
that accurately defining heterogeneous material properties reduced the measure
element-by-element strain field error between specimen-specific finite element model
results and cadaveric experimental results used for validation for a quasi-static side fall
loading study of three specimen*. Their method for accurately defining material
properties relies on several empirically derived densitometric relationships. This section
discusses the definitions of these densitometric relationships, and the methods used to

find them.

4.2.1 Deriving phantom-based effective BMD

Two examples of deriving calibration equations are presented below. The first and simpler
method was derived for use with plastic densitometric phantoms designed to mimic the
radiodensity of calcium hydroxyapatite (Ca,,(P0,)¢(OH),, abbreviated HA). In this
method, an examination of the phantom is captured using a CT scanner, and

densitometric standards are segmented. The mean CT Number [HU] of each segment is
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recorded in a table with the nominal density [mg/cm?®] of the densitometric standard
(Table 4-1). A linear regression is constructed from these data, with mean CT Number
[HU] on the y-axis and nominal density [mg/cm?®] on the x-axis (Figure 4-5). The resulting
equation is called the linear calibration curve.

Table 4-1: Example segmentation measurements for each densitometric standardina CT

examination of the CIRS Model 004 CT Simulator for Bone Mineral Analyses, a vertebral
density phantom.

Known HA Density Mean Standard Deviation
[mg/cm?] CT Number [HU] | CT Number [HU]
50 37.48 49.93
100 87.74 35.34
150 147.49 31.09
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Figure 4-5: Example of a calibration curve linear regression for a calcium hydroxyapatite
densitometric phantom. In this example, the resulting linear regression equation was

CT Number [HU] = 1.10 * p [%] —19.11. Note that error bars represent standard
deviations of the CT Number [HU].
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The second method was designed for use with a liquid phantom, before K2HPO4
equivalent plastic was available. For consistency, the same method is now used with
plastic densitometric phantoms designed to mimic the radiodensity of K2HPOa. First, an
examination of the phantom is captured using a CT scanner, and densitometric standards
are segmented. Second, the mean CT Number [HU] of each segment is recorded in a
table with both water-equivalent densities and K2HPOas-equivalent densities (Table 4-2).
The water-equivalent density values are then subtracted from the CT Numbers [HU] to
obtain the radiological density of the K2HPO4 (Table 4-2). The linear regression is then
constructed with the radiological density of K2HPO4 on the y-axis and the nominal density
of the K2HPO4 standards on the x-axis (Figure 4-6). The result of the linear regression
still requires a correction to account for the physical consideration of the volume of water
displaced by the addition of K2HPOa4. Provided in the QCTPro Software manual, these
offset values for the Mindways Model 3 are a slope correction of —0.2174 and an intercept
correction of +999.6. Once these offsets have been applied, the BMD calibration curve
has been derived.

Table 4-2: Representative segmentation mean CT Number [HU] measurements for a
71-year-old patient with accompanying phantom-specific water and K2HPO4 density

tabulated values. The far-right column presents the CT Number [HU] minus water as a
rerequisite for plotting.

Water Density K2HPO4 Density CT Number [HU] CT Number-Water

1012.2 -51.8 -53.3 —1065.5
1057 -53.4 -0.6 —1057.6
1103.6 58.9 205.2 —898.4
1119.5 157 350.9 —768.6

923.2 375.8 459.6 —463.6
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Figure 4-5: Example plots demonstrating why water CT Number [HU] measurements must
be subtracted in order to regain linearity to find the linear calibration curve for the inline
Mindways Model 3 BMD phantom.

For both methods, the calibration equation needs to be rearranged to solve for QCT

density as a function of CT Number [HU], which will be used in the material mapping

process. The correct algebra is shown in equations (4.1)—(4.4) below.

CT Number = m * pocr + b (4.1)

CT Number —b =mxpoer + b — b (4.2)
mx*pqcr

(CT Number — b)/m = — (4.3)

pocr = — (CT Number — b) (4.4)

4.2.2 Empirically derived density-elasticity relationships

To accurately apply nonhomogeneous material properties, a density-elasticity relationship
or a series of density-elasticity relationships is used to map measured CT Number [HU]

values to the patient-specific finite element mesh. Specific to the methods used in this
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dissertation, a series of densitometric empirical relationships was derived. This
subsection (1) explains the terms necessary to understand these relationships;
(2) presents the densitometric relationships defined in the literature that are relevant to
this CTPSFE method; and (3) discusses the experimental process for finding these
densitometric relationships. Several of the densitometric relationships described here
were proposed by Schileo et al.*3.

There are different ways to measure density depending on the application.
Radiological density, pocr, refers to the quantitative CT measurement relative to a
reference density from a phantom. For example, Schileo et al. scanned a European Spine
phantom (ESP) on a GE Brightspeed CT scanner in helical mode at a peak voltage of
120 kVp, and a tube current of 160 mA with a slice spacing and slice reconstruction of

0.625 mm and pixel dimensions of 0.3125 mm * 0.3125 mm. Their measured radiological
density relationship was pocr [-Z;| = 0.007764 « CT Number [HU] - 0.056148.

According to Morgan et al., apparent density, p,,,, is @ measurement of wet mass

divided by bulk volume**. Following a previously published method*4, Schileo et al.

2
calculated the bulk volume of a bone core, V = & *% * L, using averages of the values

from six measurements of diameter and length*3. The diameter and length measurements
were assumed to be captured using calipers. Wet mass was found following a multi-step
process. First, the marrow was removed by washing the specimens in a 10% bleach
ultrasound bath at 37°C for three periods of ten minutes, rinsed with water between baths.
Second, specimens were repeatedly dried and weighed, taking measures after 60

seconds under air jets until consecutive readings differed by less than 0.5%.
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According to Schileo et al., ash density, p,n, is @ measurement of the ash weight of
a bone specimen divided by the same specimen’s bulk volume. The same bulk volume
measurement was used to calculate both apparent density and ash density. The ash
weight of each bone specimen was found by burning each specimen at 650°C for 24
hours in a muffle furnace, letting the specimens cool in the furnace for 24 hours, and
weighing the resulting ash for each specimen.

The elastic modulus, E, is a measure of the bone’s ability to resist elastic deformation
under load and is expressed in terms of density in this context. To find this relationship,
Morgan et al. used experimental, computational, and analytical methods to identify a
femoral-neck-specific density-elastic modulus. In their study, tissue specimens came from
61 donors with no medical history of either metabolic bone disease or cancer. Specimens
were also examined radiologically to rule out evidence of damage or bone pathologies.
Specialized protocols were used to obtain 8 mm diameter on-axis bone specimens
parallel to the trabecular orientation from specific anatomic sites, including the proximal
femur*>4’. Apparent elastic moduli were found using both uniaxial tension testing and
compression testing of bone cores. For tension testing, the apparent elastic modulus was
defined as the slope at zero strain of a quadratic curve fit to the stress—strain curve from
0 to 0.2% strain**. For compression, an extensometer captured four apparent elastic
modulus measurements at four different positions around the specimen circumference,
approximately 90 degrees apart, and averaged to find the specimen’s apparent elastic
modulus**. After mechanical testing, six specimens from the femoral neck were micro-CT
scanned at a resolution of 22 ym. CT-based linear FEA with a tissue modulus equal to

1.0 GPa for all elements was conducted on a voxel mesh of each specimen#4. To find the
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finite element computed apparent elastic modulus, the ratio of the experimental apparent
elastic modulus to the apparent modulus was calculated from the FEA*4.

Two theoretical relationships already derived provided the starting point for the
analytical portion of Morgan’s investigation. The first, by Cowin et al.*®, incorporates
specimen-specific architectural information and consists of three orthotropic stiffness

matrix entries of the form:

Ciiti = Ciiii(E, @, 44, 11) (4.5)
Ciijj = Cuijj(Ee, b, A, A, 1) (4.6)
Cijij = Cijij(Ee, §, 44, A, 1T) 4.7)

In these entries, i and j are the indices 1, 2, 3 with the limitation that i cannot equal j (note
1, 2, 3 are the principal axes of an orthogonal coordinate system), Et is the tissue apparent
elastic modulus, Ai is the normalized mean intercept length eigenvalue associated with
the ith direction (describes anisotropy), and Il = A1k2 + A1A3 + A2h3. Morgan et al. noted
that Et is merely a scaling factor**. These relationships were further developed and
simplified by Kabel et al.*°, who determined dependence on volume fraction is a power
law, ¢'-, and that Ai and E: are both contained in the leading coefficient.

The second theoretical relationship that Morgan et al. used®® does not incorporate
specimen-specific architectural information:

E = 1240E,¢'8 (4.8)
with E as the predicted, on-axis elastic modulus. Morgan et al. calculated E: by setting
the predicted theoretical elastic modulus equal to the experimentally measured elastic
modulus and solving for Et given either Ai and ¢ for the first relationship or only ¢ for the

second relationship. In their study of these relationships, Morgan et al. demonstrated
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these density-elasticity relationships are specific to anatomic site, which is critical to keep
in mind when applying these methods to differing anatomic sites. Schileo et al. applied
Morgan et al.’s previously derived relationship between the elastic modulus and apparent
density*: E [GPa] = 6.850*p,,,,"° [g/cm?].

Three additional relationships are required to define material properties: (1) a
relationship between radiological density and ash density, (2) a relationship between ash
density and apparent density, and (3) a Poisson’s ratio for bone. Previously, some studies
assumed radiological density is equal to ash density*3. However, several studies have
reported the need for a linear correction to find ash density from radiological density*3.
There may be several reasons this linear correction is needed. Schileo et al. suggested
two potential reasons: (1) phantoms cannot perfectly mimic bone attenuation coefficients,
and (2) phantom inserts are homogeneous, while bone is non-homogeneous at the
resolution of clinical CT scanners*3. Not noted by Schileo et al. in their paper, another
potential reason is the spatial inhomogeneity inherent in CT physics?®.

In their 2008 study, Schileo et al. found the following empirical relationship between
radiological density and ash density, based on pooled trabecular and cortical femoral

bone results from 60 cylindrical core specimens:

pocr [1:353] = 1.14 * payp [%] —~ 0.00. (4.9)
Additionally, Schileo et al. found a constant ratio, 0.598 + 0.036, between ash density and
apparent density*3. Wirtz et al. review literature on known bone material properties and
found the average value, 0.3, for the Poisson’s ratio of cortical bone®'. Schileo et al. used

this value for Poisson’s ratio in their study.
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Rearranging the density-elasticity relationships to summarize the equations needed
for the next section on material mapping, equations (4.10)-(4.11) show the example
empirical relationships between radiological density and CT Number [HU] derived from
the ESP; radiological density and ash density; ash density and apparent density; and

apparent density and elastic modulus

pocr |-25| = 0.007764 CT Number [HU] — 0.056148 (4.12)
Pash = 0.8772pgcr + 0.07895 (4.13)
Papp = (5=) Pasn (4.14)
E = 6850p% (4.15)

Recall that the application of these equations are limited based on the agreement of
specific details including CT scanner, CT scan acquisition protocols, calcium
hydroxyapatite reference phantoms, femoral neck material properties, pooled femoral

trabecular and cortical bone material properties.

4.2.3 Assignment of apparent elastic moduli onto the FE mesh

The ability of CTPSFE models to predict stress and strain measurements, when
compared to experimental results on the surface, is also dependent upon how the
material properties are assigned throughout the model®2. Taddei et al. developed and
made available in the public domain a software application, Bonemat v.3.2. This software
application is capable of geospatially mapping CT Number [HU] values onto an FE mesh,
in terms of nonhomogeneous tissue apparent elastic moduli. Their method transforms the

CT Numbers [HU] into a Young’s modulus continuum field before performing the
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numerical integration over each element’s volume®. Note that Bonemat requires a

tetrahedral or hexahedral finite element mesh.

4.3 Boundary and loading conditions

This section discusses how to formulate real-life scenarios likely to cause femoral fragility
fracture, such as standing, walking, or a sideways fall. The process of walking, or gait
cycle, is divided into two movements: the stance phase and the swing phase. The gait
cycle includes heel contact, foot-flat, midstance, heel-off, toe-off, midswing, and heel
contact. In the midstance position, the patient is supporting their entire body weight on
one leg, placing increased stress on that femur. A sideways fall scenario, also routinely
considered, includes the patient falling with their thigh against the ground and their
bodyweight loading the femur in a direction that does not typically occur. Boundary and
loading conditions relevant to the stance phase of walking and the sideways fall scenarios
are shown in Figure 4-7. The following subsections describe literature relevant to specific
boundary and loading conditions, the experiments that have been conducted to validate

CTPSFE results, and the development of CTPSFE simulation methods.

4.3.1 Stance phase of walking loading

Instrumented femoral hip implants provide the best data available to understand the gait
patterns and ground reaction forces within the femur during standing and walking. In the
early 2000s, Bergmann et al. designed and surgically placed instrumented femoral hip
implants in four patients (3 men, 1 woman)®3. The hip contact forces from routine activities
identified by Bergmann et al. have been applied as loading conditions in CTPSFE

analyses of stance loading’”%*.
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Figure 4-7: Representative stance (left) and sideways fall (right) loading conditions for a
71-year-old patient. Note that the load is applied to the node closest to the geometrical
centre of the femoral head.

4.3.2 Sideways fall loading

The forces within the femur during a sideways fall have not been measured. In a sideways
fall, the patient falls landing with their hip against the ground. The combined force of
impact and bodyweight creates a combined loading on the femoral neck, including
compression and bending. This can be simulated by applying loading and boundary
conditions. A loading force is applied as a point force to the centre of the femoral head or
as a distributed load to the surface of the femoral head, to simulate the force of
bodyweight. The lateral side of the patient’s femur can land anywhere on the ground. This
can be simulated by imposing a contact constraint that does not allow the femur to move
through the ground. A no-friction slider, that allows the femur to translate along the ground

without experiencing friction and without passing through the ground, is one example of
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how to apply this boundary condition. The knee joint is constrained against translation
and rotation in all directions. This final boundary condition prevents rigid-body motion in
the simulation and creates a statically determinate problem.

Qasim et al. showed that the sideways fall loading condition resulted in a higher
fracture-control case stratification accuracy when using CTPSFE analysis towards
femoral fracture risk prediction'. In a follow-up study, Altai et al. looked at differing
boundary conditions with additional sideways fall loading angles beyond those applied by
Qasim and found similar accuracy regardless of loading conditions, with a maximum

improvement in stratification accuracy of 3% above the results found by Qasim et al.’741.

4.3.3 Experimental validation of sideways fall loading

An example cadaveric experiment is provided by Helgason et al. in 2016°%4. Fresh frozen
proximal femoral specimens were prepared by potting their shaft in an aluminium cylinder
using polymethylmethacrylate (PMMA). The distal end of the specimen was placed in a
hinge constraint such that the distal end of the specimen was free to rotate in the frontal
plane. The trochanter was placed under the upper material testing machine platen and
the femoral head was placed on top of the lower material testing machine platen. PMMA
pads were formed to the femur and were placed between the material testing machine
platens and the trochanter and femoral head respectively. The no-friction slider was
created by placing ball bearing plates under the lower platen. Strain field measurements
can be captured either by strain gages or by digital image correlation.

There are several limitations to cadaveric experiments. The specimens are typically

fresh frozen to preserve the femoral specimens until the experiment, which can affect the
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mechanical properties. For example, if stored improperly (not in saline-soaked gauze, not
sealed, etc.) or left too long in the freezer, the mechanical properties of the femur can
become compromised. As these cadaveric tests are destructive, each specimen can only

be tested once.

4.3.4 Specimen-specific numerical simulation of a sideways fall

Verification and validation are critical to extracting clinically relevant data from finite
element simulations®®. Conceptually, verification confirms numerical accuracy or that the
applied method for solving the equations is correct. Verifying finite element software
packages is typically accomplished by confirming results against a series of benchmark
problems, such as a beam in bending. Validation checks the numerical prediction
accuracy with respect to the physical phenomenon being replicated. Cadaveric
experiments, such as those discussed in the previous section, can serve as validation for
numerical modelling methods.

To compare strain field results between the cadaveric experiments and the numerical
simulations, the numerical simulations need to replicate the experiments. CT scanning
the specimens submerged in deionized water before the experiments allows for CT-based
specimen-specific finite element models to be generated. Note that in this context the
requirement to submerge the specimens comes from the prevalence of water within the
living patients these methods seek to characterize. The CT scans provide the basis for
extracting geometry, meshing, and assigning inhomogeneous material properties. Setting
up the loading and boundary conditions is a multi-step process that begins with defining

a coordinate system. Wu et al., as representatives of the standardization and terminology
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committee of the International Society of Biomechanics, proposed a standard
femur-specific coordinate system with the origin placed at the centre of the femoral head
in 2002%. In their coordinate system, the x-axis points forward from the femoral head
perpendicular to the Frontal plane, the y-axis points up normal to the Axial plane, and the
z axis points lateral (right femur) normal to the Longitudinal plane.

The coordinates and the node closest to the centre of the femoral head must be
identified in order to both place the origin and apply loading at the centre of the femoral
head. From the geometry, the coordinates of the centre of the femoral head can be found
by performing an analytical spherical fit to the surface model of the femoral head. One
software application that can facilitate an analytical spherical fit is 3-Matic (Materialise,
Leuven, Belgium). The node at the centre of the femoral head can be identified by first
isolating the number and coordinates of the nodes in the femoral head and then using the
distance equation to identify which of those nodes is closest to the coordinates of the
centre of the femoral head from the analytical spherical fit. Creating the list of nodes and
their coordinates in the femoral head can be accomplished in programs such as
Mechanical APDL (Ansys Inc, PA, USA). Using the distance formula to identify the node
with the closest coordinates to the coordinates of the centre of the femoral head can be
automated in programs such as MATLAB (v.2018b, The MathWorks, Inc., Natick, MA,
us).

Once the coordinate system is defined, the loading and boundary conditions are
applied, and the simulation is run. A no-friction slider may be simulated by applying a
constraint to the most lateral node on the y-z plane. Typically, the digital femoral geometry

is cut off just above where the cement for the hinge would end in the experimental setup.
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Thus, the fixed boundary conditions at the distal end of the femur are simulated by
identifying the nodes in the elements on the distal end of the femoral model and
constraining them against translation and rotation in all directions. A load may be applied
at the centre of the femoral head at the same angle the load was applied during the
experiments used to validate the numerical simulations. Once the CTPSFE analyses
methods are validated in comparison to the results from cadaveric experiments, these
methods can then be adapted for use in subject- or patient-specific finite element

modelling.

4.3.5 Patient-specific numerical simulations of sideways fall loads

One advantage to CTPSFE analyses is the ability to run more than one simulation. For
example, several previous studies showed that including multiple loading conditions in
the CTPSFE analyses improves the stratification accuracy over aBMD for a cohort of
female femoral fracture and control patients'”-?441, Typical ranges of sideways fall loading
angles include 0°(lateral)-30°(medial), 0°(posterior)-30°(anterior)'”24; or
0°(lateral)-30°(medial) and 30°(posterior)-30°(anterior)*'. Other advantages include the
ability to examine the effects of differing boundary conditions*' and methodological
determinants™’.

Each patient cohort collected has a differing level of detail available to be included
in the analyses and a differing variety of missing information that may need to be filled in
to conduct the analyses. For example, patient CT scans included in femoral fracture and
control cohorts may or may not include the full femur. The cohort studied by Falcinelli et

al. included CT scans of the full femur?4. The cohort studied by Qasim et al. included CT
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scans of the proximal femur'”#'. Opportunistically gathered patient cohorts include scans
collected for other reasons, such as virtual colonoscopies. Due to the retrospective nature
of these cohorts, each patient CT scan includes a different amount of the femur. An
example of this kind of cohort is that studied by Winsor et al. where many of the CT scans
end near patient's trochanter®’. Having coordinates for the knee centre is
methodologically important for two reasons: (1) Qasim et al. have shown that using the
knee centre to derive the coordinate system increases the stratification accuracy of
CTPSFE analyses derived femoral strength'”, and (2) Altai et al. have shown that applying
boundary conditions at the knee centre instead of at the cut-off distal end below the
proximal femur increases stratification accuracy*'.

If a CT scan of the full femur is not available, statistical shape modelling may be
applied to estimate full femur geometry. A statistical shape modelling software application,
publicly available as MAPClient, uses a three-step process to create full femur
estimates®%° (Figure 4-8). First an iterative closest point algorithm® aligns via a rigid-
body transformation the centre of the patient femoral mesh with an averaged statistical
shape model of a proximal femur from a cadaveric database. The statistical shape model
of the proximal femur from the cadaver database is replaced with the full femur statistical
shape model of the same femur from the cadaver database. Next, the full femur statistical
shape model is deformed along the principal components to create a fitted whole femur
that accurately represents the patient proximal femur geometry and has a realistic overall
shape. The patient estimate full femur statistical shape model can then be exported and
used to generate a knee centre coordinate and a coordinate system (Figure 4-9). While

this method has been demonstrated to improve the accuracy of existing methods for
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CTPSFE derived femoral fracture risk prediction, an examination of the accuracy found
surface errors of over 1.5 mm in the proximal region and concluded the reconstruction is

likely unsuitable for patient specific finite element modelling®.

@  (®) (c) ()

(d) (e)
\}z ] ) v
WA s ‘

Figure 4-8: Representative images demonstrating the method for estimating the full femur
using the statistical shape modelling software, MapClient. For demonstration purposes,
(a) a cadaveric femur with data for the full femur (b) was cut to the top third of the femur,
(c) the cadaveric specimen (yellow) aligned with the partial femur (red) from the MapClient
cadaver database, (d) keeping the cadaveric specimen in place (green) the MapClient
partial femur was replaced with the MapClient full femur (red), (e) principal component
analysis was applied to estimate the full femur (yellow), and (f) the exported full femur
estimate (pink) is compared to the original full cadaveric femur (grey).
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(a)
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Figure 4-9: Representative image demonstrating the process of deriving a coordinate
system using anatomical mapping. (a) The centre of the femoral head is identified using
analytical spherical fitting. (b) The points where the condyles would touch the table if the
femur were laid on the table are identified. (c) A plane is created using the centre of the
femoral head and the two points on the condyles, a grid is overlaid, and the grid guides
the identification of the midpoint between the two condyle points or the estimated knee
centre. (d) A new plane is created using the centre of the femoral head, the estimated
knee centre and one of the condyles. On this plane, a point in the lateral direction is
identified to define the boundary conditions’ coordinate system with the centre of the
femoral head and the estimated knee centre.

4.4 Post-processing

This section describes CTPSFE simulation results post-processing. In FEA, post-
processing follows a paradigm to transform highly detailed and complex outputs into a
format both meaningful and easily understood by the user. In the context of femoral
fracture prediction, the paradigm is related to what can be shown experimentally. This

section describes one paradigm and the experiments it was based on.

4.41 Estimating the femoral fracture load and minimum fall strength

In addition to being a heterogeneous, anisotropic material, bone is also a load rate-
dependent (viscoelastic) material®?. These complexities complicate identifying an
appropriate failure criterion for bone in general and specifically for the femoral bone.

Continuing to place an emphasis on being able to validate the numerical model, Schileo
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et al. investigated failure criteria to reproduce the elastic limit behaviour observed during
their quasi-static, cadaveric experiments®. Several aspects of their study supported the
use of a strain-based failure criterion.

Schileo et al. proposed using a tensile strain elastic limit of 0.73% and a compressive
strain elastic limit of 1.04%, based on experimental results from Bayraktar et al.6364, In
their 2008 study, Schileo et al. compared three failure criteria: the maximum principal
strain failure criterion, the von Mises stress failure criterion, and the maximum principal
stress failure criterion. This study showed the maximum principal strain failure criterion
defined a failure risk level more consistent with the experimental findings. Prior to Schileo
et al. proposing the maximum principal strain failure criterion which models the elastic
limit characteristics of bone®3, several studies contributed support towards using the
maximum principal strain failure criterion. Chang et al. demonstrated that bone strength
displays isotropy under mono-axial loading conditions®®. Keaveny et al. demonstrated
femoral bone strength is invariant with respect to density*>4766. Two studies noted the
tensile/compressive asymmetry of bone strength®6.67.

Schileo et al. implemented the maximum principal strain criterion using a three-step
process®. First each element is assigned a tensile or compressive predominance based
on the absolute values of the first and third principal strain. Next, the corresponding tensile
or compressive elastic limiting value is selected. Finally, the femoral failure risk factor
(safety factor) is calculated as the strain limit over the maximum strain. If one static load
is applied in the simulation, then there is one resulting femoral failure risk factor. In the
case that multiple simulations are run for varying static loads'"2441, additional post-

processing steps are required to determine the most critical load condition. For example,
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Altai et al. found the minimum femoral failure risk factor across the loading conditions

simulated and called this value the Minimum Fall Strength (MFS)*".

4.5 CTPSFE limitations

Understanding the methodological limitations of CTPSFE analyses is critical for their
development, maintenance, and successful application. With such detailed and complex
methodologies, limitations manifest in a variety of ways. Experimental limitations are
critical to keep in mind due to the need for model validation. Examples of experimental
limitations are: freezing and preparing cadaveric specimens for experiments; MTS
machines are limited to applying loading in one direction while maintaining continuous
contact throughout the test; and the inability to destructively test each specimen more
than once. Experimental limitations will impact empirical relationships both those in the
material mapping process and those in the previously proposed failure criterion. Morgan
et al. demonstrated that the material mapping empirical relationships are specific to a
variety of variables including anatomic site, and direction of loading**. Similarly, the
limitations on failure criterion related empirical relationships are one reason why there is
not yet a universally accepted researcher consensus on a failure criterion for bone.
Outside of the need for model validation, there are also limitations arising from the
clinical context. Patient data available for research are limited. Due to the radiation
exposure, CT scans are not typically captured of healthy individuals. The individuals
currently undergoing routine CT scans include patients at risk for cancer®-76, subjects of
clinical trials’’-®, and astronauts undergoing osteoporosis monitoring®'. From an
osteoporosis monitoring perspective, the lack of a large data set of patients, both healthy

and affected, has so far prevented using FEA-based methods to diagnose osteoporosis



63

related fracture risk in the clinic in a parallel way to the current DXA diagnostic
framework®?. Additionally, the studies that have been done were conducted on limited
cohorts with population specific details. The limited number of available patients makes it
challenging both to meet power requirements for assessing particular research questions
and to assess the ability of the methods to accurately diagnose a diverse group of
patients.

When considering CT scans themselves, there are a variety of limitations. CT scans
have multiple sources of potential error3®. Studies facilitated by the capture of CT scans
frequently do not report relevant scanning acquisition and reconstruction parameters.
This may be due to researchers not knowing certain scanning acquisition and
reconstruction parameters were relevant at the time of their study. For example, the
discussion of the relevance of reconstruction kernels only recently became a frequent
topic in the literature'?13.93_ |t is unclear from the literature both if the empirical material
mapping relationships are specific to CT scan acquisition and reconstruction kernels or if
the empirical material mapping relationships can be more generally applied to CT scan
data regardless of acquisition and reconstruction parameters. Additionally, whether the
CT scan data, were gathered prospectively or retrospectively impacts whether or not
DCTC data specific to BMD may be available. Approaches to estimate CT calibration data
specific to BMD will be discussed in greater detail later in this dissertation.

Software applications may temporarily impose limitations that can be overcome with
time and continued development. Deep learning methods are continuing to develop and
are increasingly applied to medical image segmentation. These methods were not yet at

a point where they could be utilized to segment patient femurs for geriatric patients with
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advanced stages of osteoporosis when the fracture cohort for this dissertation was being

segmented.

4.6 CTPSFE shows promise for diagnosing patient femoral
fracture risk

CTPSFE analyses continue to show promise for a variety of applications, including the
assessment of femoral fragility fracture risk. Future developments to improve CTPSFE
methods may come from a variety of imaging, experimental, or computational technical
developments. CTPSFE methods are dependent on BMD specific DCTC data, which
continues to be a challenge in this area of research. Prior to 2019, the discussion of
phantomless or internal tissue-based DCTC in the literature was limited to proprietary
methods. While contributing to developing phantomless or internal tissue-based DCTC
methods, this dissertation initiates a discussion in the literature of design decisions
relevant to the design of phantomless or internal-tissue based DCTC as a framework for

the future development of site-specific methods.
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5 Evaluation of patient tissue selection methods
for deriving equivalent density calibration for
femoral bone quantitative CT analyses

Please note Chapter 5 is already available as a published manuscript®’.

5.1 Introduction

Over 300,000 people experience an osteoporotic femoral fracture in the U.S. every year®.
Despite available treatments, osteoporosis remains underdiagnosed®, inspiring research
towards a better understanding of osteoporotic fracture. In addition, the stratification
accuracy of the prognostic standard of care (bone densitometry) is too low to reliably
diagnose osteopenic patients, and to decide when to adopt second-line treatments such
as Denosumab or Teriparatide® . This calls for more accurate prognostic
methodologies. Various groups proposed quantitative computed tomography (QCT)
based patient specific finite element analyses (FEAs) for improved osteoporotic hip
fracture risk assessment’-'7:9%_ These FEAs have been shown to predict risk of hip fracture
more accurately than areal bone mineral density (BMD)'’. Retrospective reanalysis of
patient computed tomography (CT) scans will further assist in the development of
techniques to predict risk of osteoporotic fracture, potentially leading to improved
prognostic accuracy. However, these models depend on the estimation of bone material
properties, derived from CT X-ray attenuation. In phantom-based calibration, this is
achieved by placing an inline calibration phantom under the patient or by scanning offline
a calibration phantom immediately after the patient, using the same CT scan settings.

Phantom-based calibration is the gold standard in the development of patient-specific
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FEAs. However, scanning the patient with an inline phantom is not a standard clinical
practice, and delayed offline retrospective calibration is not always possible due to clinics
regularly purchasing new CT scanners. Phantomless CT scan calibration, derived from
patient tissues, may be a feasible alternative.

Before considering literature on existing phantomless methods, several variables
should be identified and defined. There are several points in the process of capturing a
CT scan that affect density assessment including: underlying theory and definitions, the
chemical composition of the object being scanned, the acquisition settings, and the
reconstruction algorithms. Considering underlying theory, clinical CT images describe
materials’ X-ray attenuation in greyscale in terms of the Hounsfield Scale (in units HU),

CT Number = ((ur — Uwater)/ (Hwater — Hair)) * 1000 [HU]. (5.1)
Here u, X-ray attenuation from the object, represents

u(E) = ayPE(E) + a,CS(E) = myuy (E) + mypy(E) (5.2)
where E is the X-ray energy level, PE is the photoelectric basis function, CS is the
Compton scattering effect basis function, and u,, u, are any two independent materials?.
Compton scatter affects the definition of the Hounsfield scale such that X-ray attenuation
measurements are roughly linearly proportional to density®. By definition this provides the
basis for a linear estimate of the relationship between X-ray attenuation measurements
and BMD8. CT Numbers are not numerically unique and thus a plastic-composite
mimicking BMD results in a similar measurement to scanning actual bone. The variables
can be simplified so that density can be calculated from X-ray attenuation measurements,
by scanning a phantom of known chemical composition at a single energy. After initial

X-ray attenuation measurements have been captured, reconstruction algorithms



67

generate an image of a specific density range with a particular anatomy of interest
(i.e. soft tissue or bone). All of these variables impact the derivation of a conversion,
between BMD and CT X-ray attenuation, that can be derived from CT X-ray attenuation
measurements of a calibration phantom scanned in line with the patient®”-%. Recently,
some studies have begun to discuss how specific details of clinical CT scan protocols
affect density estimates by examining repeatability?®, patient positioning®®, and
reconstruction kerne[93.100.101,

Different inline calibration phantoms have appeared in previous studies'3102-108,
These phantoms contain either calcium hydroxyapatite'®197.19% (Ca,,(P0,)s(0OH),,
abbreviated HA), or dipotassium phosphate'0?-1% (K2HPQ4). When these phantoms are
CT scanned, HA or K2HPO4 equivalent density is generally p,cr for an inline phantom or
pcr for an offline phantom. The material specific abbreviations are py, or pg,upo,.
respectively®®. Each phantom contains inserts with different known densities, such as 0,
50, 100 and 200 mg/cm?® of HA'07.108 After scanning the phantom and segmenting the
density references, both a calibration factor and a calibration equation can be calculated.
The calibration equation for a HA phantom can be calculated using a linear regression
with CT Number [HU] on the y-axis and known density [mg/cm?] on the x-axis and then
algebraically rearranging the equation to result in:

Pua = (CT Number — b)/m (5.3)
where m [HU/(mg/cm3)] and b [HU] are the slope and intercept, respectively, from the
linear regression. When density-reference phantoms are used, the derivation of the
calibration equation naturally characterizes and accounts for CT number variations due

to factors including manufacturer, model and protocol'®. The use of stable, standardized



68

references in modern density phantoms can provide a comparison for analyses across
clinics. However, in the case of an inline phantom that is externally located under the
patient, the phantom will be subjected to patient-moderated spectra variable with patient
composition, size, and geometric position''%. While scanning an offline phantom removes
this variation, this calibration method does not capture differences, such as those created
by dosage-reducing variable current algorithms. Initially intended to create a standardized
reference to characterize variations in CT number, differences in phantoms now introduce
additional variances and limitations into the comparison of clinical assessment
techniques. For example, Cann et al. used K2HPOs4 in place of HA and argued K2HPO4
results in a slightly lower calibration slope than HA at equivalent densities®®,
underestimating cortical bone density. They specifically pointed out that this difference is
more pronounced at higher densities, visually demonstrated by Knowles et al.%,
Phantomless calibration, by definition, removes the variations created by scanning a
phantom, retains the potential to create a scan-specific calibration equation, and
increases accuracy over an inline phantom by using patient tissues as the density
reference which are closer to the bone than a phantom could be placed.

To enable density assessment of patient scans where phantom-based calibration
data were not captured, three approaches to phantomless calibration have been used in
clinical research': (1) using CT Numbers [HU] directly®®.112-114: (2) using a calibration
factor'07.108.115,116: gnd, (3) substituting tissues as a calibration reference15,16,32—-38,18-
23,26,31,32-38. The first approach, using CT Numbers [HU] directly, is most accessible
within the limitations of current clinical practice. Unfortunately, in order to be considered

quantitative, the relevant BMD thresholds would have to be specific to each CT scanner
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and protocol specific. Trying to derive relevant FEAs based thresholds in terms of CT
Numbers poses challenges, such as requiring incalculable amounts of patient case
studies. In the second approach, using a calibration factor, a general calibration factor
(GCF) is calculated as the ratio of QCT-derived BMD divided by CT Numbers [HU] and
then rearranged to extrapolate phantomless BMD through multiplying CT Number [HU]
by GCF'%7. While this approach is CT-scanner and -protocol specific, it is neither scan-
specific nor precise enough for FEAs. The third approach, substituting tissues as
calibration references is scan specific, and has been applied in FEAs of the
femur?3.90.92,103118 This method is limited by the assumption that internal patient tissues
have the same density in every patient®2. Previously, a variety of tissues served as the
basis for deriving phantomless calibration: fat and muscle!0%106.110,120-123.  gjr gnd
blood®0:103.118: ajr and fat®0.103.118: 4jr, fat, and muscle'3; and air, fat, blood, muscle, and
cortical bone'392, Many factors are known to influence the ability of CT Numbers [HU] to
measure tissues: hydration levels'%, patient pathologies'?*, heterogeneous distributions
of muscle and fat'%, and IV contrast'9%125, Further, CT is unable to assess some
pathologies known to affect CT Number, such as fatty atrophy of muscle'%°.

While there is no standard method for determining which tissues to use as the basis
for phantomless calibration, the literature provides some rationale for choosing specific
tissues. Boden et al. showed that fat and muscle offer reliable internal reference
standards for measuring vertebral bone density with QCT using tabulated reference
densities from White'%126, More recently, Michalski et al. used tabulated and
standardised mass attenuation coefficients from the National Institute of Standards and

Technology (NIST)?892. Some researchers have attempted to determine their own ground
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truth values using a system-of-equations approach, finding: —69 mg/cm?® for fat and
77 mg/cm? for muscle'?'; or —840 mg/cm? for air, —80 mg/cm? for fat, and 30 mg/cm? for
muscle'3. The limitation to deriving ground truth values, in lieu of using the standardized
tables, is the unknown amount of pathological variation in the base cohort.

In the absence of phantom-based calibration data, computational researchers
commonly estimate a linear relationship between a specific density and CT Number,
based on available literature. Two such densities include ash density, ash mass divided
by bulk sample volume, and apparent density, wet mass without marrow divided by bulk
sample volume®. Several studies are available where researchers empirically derived
linear relationships between either ash density or apparent density measurements of
bone and CT number?’43.127-132 Ford et al. demonstrated a method for estimating a linear
relationship between apparent density and CT Number for trabecular bone and cortical
bone in mg/cm3,

Papp = 1.106HU + 68.4, (5.4)
before using the relationship in a computational study'33. Though not demonstrated in

literature, another approach would be to estimate soft tissue density by estimating a

theoretical calibration slope CTineoreticar = 1.025i_—Z derived from theoretical air (1.205

cm3

mg/cm3, —1024 HU) and theoretical water (1000 mg/cm?3, 0 HU). Both of these density
estimation methods do not take into consideration CT scanner performance parameters
or the anatomical area, as phantom-based or tissue-based phantomless calibration
estimates do.

The method for deriving Young’s modulus (E), a measurement of material stiffness,

from CT data for use in patient-specific FEAs is sensitive to the relationship between a
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specific density and CT Number due to a power-law relationship®. CT data are converted
to pgsn Using equation (5.5) depending on the equivalent density, then to pg,, using

equation (5.6), and finally to Young’s modulus using equation (5.7)*.

Pash = 0.8772 x pcr + 0.07895 (5.5)
Papp = 0.598 * pasn (5.6)
E = 6850 * pcllgl»g (5.7)

In addition to being specific to the phantom’s reference material, these relationships are
also specific to anatomic site, in this case the femur*4. This suggests a need for a method
flexible enough to consider anatomic site when selecting reference tissues for
phantomless calibration.

The aim of this retrospective study was to demonstrate, verify, and validate a method
for selecting patient tissues from which to derive density for use in femur strength
prediction. Using the selected tissue combinations, we present a method for using
phantomless calibration to estimate bone material properties for predictions of femoral
fracture risk. Using a 22-factorial design, we tested repeatability with and without
theoretical data points and with and without including multiple scans for each patient. For
verification, we compared patient-specific results against a custom offline CIRS BMD
phantom and an inline Mindways Model 3 BMD calibration phantom. For validation, we
compared patient-specific results against the inline Mindways Model 3 BMD phantom for

the patients whose scans included the phantom.

5.2 Materials and methods

Patient scans were selected for a density-related sensitivity analysis from data gathered

previously related to a cohort of 408 patients gathered at the University of Wisconsin—
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Madison hospital. Scans from this cohort were previously identified to examine femoral
fracture in an age-matched, case-control study. Full details of that study are available in
Lee et al. 201774 . Retrospective CT scan analysis was compliant with Health Insurance
Portability and Accountability Act and approved by the UW-Madison Institutional Review
Board (protocol number 2016-0168).

The pre-fracture cases analysed comprised 43 patients, with 26 female patients
(ages 50-93 years) and 16 male patients (ages 56-95 years). The average time to
fracture after CT scan was 1 year, with the minimum occurring the same year and the
maximum occurring within 4 years. The control cases analysed consisted of 168 patients,

with 108 female patients (ages 50-90 years) and 60 male patients (ages 50-91 years).

5.2.1 Method of selecting patient scans for analysis

Scans analysed were limited to those captured on a GE Lightspeed family CT scanner
(Table 5-1). All scans analysed were captured at 120 kVp, and 1.25 mm slice thickness.
The 258 scans analysed (Table 5-1) included images of 211 individual patients, both male
and female (aged 50 to 95 years). Patients with surgical hardware were excluded from
the study. Our goal in this selection was to cover a broad range of data so that the
phantomless calibration to be broadly applicable, so we processed all data that met our

inclusion criteria.
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Table 5-1: The analysed cohort considered 211 distinct patients (bottom), with up to 258
scans (top). These scans were captured on nine different GE CT scanner models at the
University of Wisconsin—Madison hospital.

GE CT scanner Number Number of Pre- Male
of patients with Fracture
model . (Female)
scans multiple scans (Control)
LightSpeed 16 45 14 4 (41) 13 (32)
LightSpeed Pro 16 22 5 9(13) 7 (15)
LightSpeed Pro 32 1 0 1(0) 1(0)
LightSpeed Ultra 139 49 3(136) 56 (83)
LightSpeed VCT 35 10 26 (9) 12 (23)
Discovery CT750 HD 8 4 5 (3) 3 (5)
Optima 580 1 1 1 (0) 1 (0)
Optima 660HD 6 4 2 (4) 1(5)
Revolution GSI 1 1 0 (1) 1(0)
Totals 258 88 52 (206) 95 (163)
LightSpeed 16 39 - 2 (37) 12 (27)
LightSpeed Pro 16 19 - 7(12) 7(12)
LightSpeed Pro 32 1 - 1(0) 1(0)
LightSpeed Ultra 108 - 3 (105) 41 (67)
LightSpeed VCT 30 - 23 (7) 12 (18)
Discovery CT750 HD 8 - 5(3) 3(5)
Optima 660HD 6 - 2 (4) 1(5)
Totals 21 - 43 (168) 77 (134)
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5.2.2 CT scanning protocol

Images were collected during routine abdominopelvic CT scans performed using 16- to
64-Multi-Detector CT scanners (LightSpeed Series, GE Healthcare). Hospital routine
includes daily calibration scans on each machine to ensure the accuracy of the CT
attenuation values. Standard scanning parameters for routine abdominopelvic CT scans
are 120 kVp tube voltage, 1.25 mm slice thickness, 0.625 mm slice spacing, a medium
or body type filter, a standard convolution kernel, and low doses of current, either static

(50-100 mA) or modulated (noise index, 50; range 30-300 mA).

5.2.3 Inline quantitative equivalent density calibration using the Mindways Model

3 BMD calibration phantom

Eight out of the 408 patient scans included an inline effective K2HPO4 density calibration
phantom (Model 3 phantom, Mindways Software, Inc., Austin, TX). Of those eight, three
patients had existing surgical hardware and could not be analysed. Therefore, the
analyses in this paper were limited to five patients. The calibration process for this
phantom is described in detail by Mindways'*. Manual calculation of the calibration
slopes for the five patients scanned with the inline calibration phantom was conducted
(Table 5-2). A power analysis for a two-sample pooled t-test was conducted in MATLAB
and the necessary sample size to meet 99% power ranged between 2 and 5 for the
majority of the 40 phantomless slope combinations considered, with 3 outliers requiring

a sample size of 8.
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Table 5-2: BMD [mg/cm?] from equivalent density [mg/cm3] equations for the five patients

scanned with the inline K2HPO4 Mindways Model 3 BMD calibration phantom.

Patien CT Scanner Calibration Calibratio | Conversion | Conversio
t Slope n Slope n
[HU/(mg/cm3) Y- [(mg/cm3)/HU Y-
| Intercept ] Intercept
[HU] [mg/cm?]
1 LightSpeed VCT 1.03 5.59 0.97 -5.43
2 LightSpeed Pro 16 1.06 3.32 0.94 -3.12
3 LightSpeed Pro 16 1.05 13.54 0.95 -12.88
4 LightSpeed Pro 16 0.99 5.87 1.01 -5.93
5 Discovery CT750HD 1.06 -8.5 0.94 8.00
Average values 1.04 3.96 0.96 -3.87

5.2.4 Offline equivalent density calibration using a custom BMD phantom

Retrospectively, we scanned offline a custom phantom with four HA density plugs at 100,

400, 1000 (part: 06217), and 1750 (part: 06221) mg/cm® (CIRS Inc, Norfolk, VA)

submerged in water. Scan settings were 120 kVp, 1.25 mm slice thickness, 0.625 mm

slice spacing, 100 mA, and a standard reconstruction kernel on the Discovery 750HD. HA

plug densities were selected to be representative of human femoral bone?®. Plugs were

segmented by creating a virtual cylinder with a 10-pixel diameter across 10 slices in the

centre of the plug using Mimics v. 21 (Materialise, Leuven, Belgium). Linear regressions

were calculated for CT Number (HU) as a function of known density, pxa. Resulting

equations were:

CT Number [HU] = 1.100 * py4 + 26.29.

(CT Number - 26.29)/1.100 = (1.100 * py4 + 26.29 — 26.29)/1.100

per = 0.9091 * HU — 23.90

(5.8)
(5.9)

(5.10)




76

5.2.5 Identify most consistent reference densities across patients

We analysed phantomless calibration on 258 scans and considered five patients’ nominal
density references, including adipose tissue, aortic blood, skeletal muscle, urine, and air.
Tissue segmentations were captured as virtual cylinders, with a diameter of 10 pixels and
a depth of 10 slices, using Mimics v21.0 (Materialise, Leuven, Belgium). Due to the small
size of the femoral artery, the virtual cylinder captured was reduced to a diameter of 8
pixels. For consistency, all virtual cylinders were created such that the centre of the virtual
cylinder was around the same axial slices as the centre of the femoral head. An example
of the virtual cylinder placement is shown in Figure 5-1. Quality checks were conducted
to ensure each virtual cylinder contained a volume of at least 100 voxels (ASTM E1935
2019). We were unable to segment urine in the patient’s bladder for 167 out of the 258
scans due to empty bladders. Blood was also difficult to segment due to their small sizes,
resulting in measured values outside of 40 + 20 HU for 46/258 left patient arteries and
47/258 right patient arteries. Table 5-3 shows the nominal density values assumed for the
linear regression of HU and tissue density?®. The 258 patients included in this study were
segmented by a single operator. To assess the precision of results at the segmentation,
BMD and FEAs levels, the five patients with inline phantoms were also segmented by

three different operators. Inter- and intra-operator repeatability were calculated’.
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Figure 5-1: Representative axial slice of a CT scan of an 85-year-old patient at the
proximal femur level. The patient is lying supine. A Mindways Model 3 BMD calibration

phantom is visible underneath the patient.

Table 5-3: Nominal density values from NIST?®

Reference Material Nominal De3n3|ty
[mg/cm°’]

Theoretical Air (not segmented) 1.205

Adipose Tissue 950

Aortic Blood 1060

Theoretical Water (not segmented) 1000

Skeletal Muscle 1050

Each patient had up to nine potential data points that could be used for line fitting:

theoretical air, segmented air, adipose tissue (right and left), aortic blood (right and left),

skeletal muscle (right and left), and theoretical water. Any combination of at least two and
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up to nine data points could be used to derive a linear regression for the HU versus
nominal density relationship, 502 possible combinations for each of the 258 scans. A
custom MATLAB (v.2018b, The MathWorks, Inc., Natick, MA, US) script was developed
to: (1) calculate all possible linear regressions, (2) discard all ill-conditioned calibration
slope results, and (3) conduct a numerical analysis to sort density combination calibration
slope results across patients. lll-conditioned calibration slopes occurred when the
algorithm fit a line with two values for the same tissue (i.e. right and left adipose). Sorting
was accomplished by minimizing the sum of the squared error between the density
calibration slope and a theoretical calibration slope, as in equation (5.11) below:
Y (m — 1.025)2. (5.11)

Recall from the introduction that the theoretical calibration slope [1.025 HU/(mg/cm3)] is
derived from theoretical air (1.205 mg/cm3, -1024 HU) and theoretical water
(1000 mg/cm3, 0 HU). After discarding over-constrained combinations, the best 10

combinations and the worst combination were identified for further analysis.

5.2.6 Experimental design to test repeatability of tissue identification

Patient tissue segmentations were organized to form two groups: “Scans” included all
scans eligible for processing for all patients, and “Patients” included only one scan for
each patient. To form the Patients group, results from duplicate scans for patients were
removed, such that the results for CT scanners with fewer patient scans were kept, except
in the case of the Optima 580 and Revolution GSI, each of which only had one patient
scan. A 22 factorial designed experiment was conducted by running the MATLAB script

used to identify the most consistent reference densities across patient populations, with
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two levels for each group including and excluding values for theoretical air and water in

the combinatorial analysis.

5.2.7 Finite element model BMD and Femur Strength

Five finite element models were developed for each patient to investigate the impact of
different calibration equations on BMD and femoral strength (FS) calculations model I:
patient specific inline K2HPO4 calibration; model Il: the average of the patient specific
inline K2HPO4 calibrations; model llI: the offline HA calibration; model IV: phantomless
calibration derived from air, aortic blood, and skeletal muscle (AABSM); and, model V:
phantomless calibration derived from air and adipose (AA). One femur was segmented
for each patient: four were segmented in Mimics v19.0 or 21 (Materialise, Leuven,
Belgium) and one was segmented in ITK-Snap (ITK-Snap 3.6.0, University of
Pennsylvania). Each geometry was discretized into ten-node tetrahedral elements using
ICEM CFD 16.2 (ICEM CFD 16.2, Ansys Inc., PA, USA) with a maximum edge length of
3 mm based on a previous mesh convergence study'3. Note that each patient had the
same mesh for all models.

Elastic moduli were mapped onto the meshed bone using the equations described
in the introduction and Bonemat (V3.2, Istituto Ortopedico Rizzoli, Bologna, Italy). BMD
was calculated for each model as the summation across groups of the density in each
material group, multiplied by the number of elements with that material group. Femur
strength was calculated using a sideways fall loading scenario with fixed boundary
constraints at the estimated knee centre and a simulated planar bearing at the lateral
coordinate on the trochanter'”4'. A concentrated point load, 1000 N, was applied to the

centre of the femoral head in thirty-three different force directions from -30° to 30°
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(posteriorly to anteriorly directed) in the transverse plane and 0° to 30° (x-axis to medially
directed) in the frontal plane*!. FEAs strain results were post-analysed using a maximum
principal strain failure criterion, with limiting values at 0.73% for tensile and 1.04% for
compressive strains as previously defined by Bayraktar et al.?*. FS was defined as the
minimum force (N) at failure across all 33 side-fall loading conditions. All FEAs were

conducted in ANSYS 16.2 (Ansys Inc, PA, USA).

5.2.8 Statistical analysis

The mean and standard deviation were calculated for patient tissue segmentation
measurement results in HU for both the “Scans” and “Patients” groups. Once patient
specific density calibration slopes were calculated, statistical measurements were mean,
standard deviation, and 95% confidence interval. Bland-Altman analyses were conducted
for the five patients with inline Mindways Model 3 BMD phantoms included in their scans.
The hypotheses that no statistically significant difference exists between calibration
methods were tested using a students’ t-test (¢ = 0.01) for the calibration slopes, the
calibration intercepts, BMD, and FS. Normality was tested using the Shapiro-Wilk test in
IBM SPSS Statistics for Windows, version 26 (IBM Corp., Armonk, N.Y., USA); however,

all other statistics were calculated in MATLAB 2018b.

5.3 Results

Phantomless calibration was valid when compared against inline phantom calibration for
FS, BMD, calibration equation (Figure 5-2, Figure 5-3, Figure 5-4). The algorithm
produced calibration equation results consistent with those from inline phantom

calibration (Figure 5-5). Intra- and inter-operator repeatability found the method highly
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repeatable for FS, BMD, and calibration equations (Table 5-4). Adipose was the most
repeatable tissue segmented, and the bladder was the least repeatable (Table 5-4).

The AABSM combination produced the best slope result for 3 of the 4 categories in
the 22 factorial designed experiment. The 4" category, excluding multiple scans per
patient and theoretical air and water, found the AA combination produced the best slope.
The first category, including theoretical air and theoretical water for all scans (n = 258),
found AABSM scan specific slope values [HU/(mg/cm?3)] of mean + std dev (lower — upper)
=1.021 £ 0.006 (1.008 — 1.034) and found measured air and theoretical water produced
the worst combination, with slope values of 1.379 + 6.185 (-10.99 — 13.75). The second
category, including theoretical air and theoretical water for 1 scan per patient (n = 211),
found AABSM scan specific slope values of mean + std dev (lower — upper) = 1.021 +
0.006 (1.009 — 1.034) for the best combination and found measured air and theoretical
water produced the worst combination, with slope values of 1.468 + 6.856 (-12.24 —
15.18). The third category, excluding theoretical air and theoretical water for all scans (n
= 258), found AABSM scan specific slope values of mean * std dev (lower — upper) =
1.017 £0.010 (0.998 — 1.037) for the best combination and found aortic blood and skeletal
muscle produced the worst result, with values of 0.893 + 2.151 (-3.458 — 5.195). The final
category, excluding theoretical air and water for 1 scan per patient (n = 211), found AA
scan specific slope values of mean % std dev (lower — upper) = 0.975 + 0.010 (0.956 —
0.994) and found aortic blood and skeletal muscle produced the worst result, with values
of 0.839 + 2.149 (-3.458 — 5.137).

For FS results, the AABSM calibration resulted in a 6.9% bias over scan specific

inline calibration, a 7.3% bias over averaged inline calibration, and a 22% bias over offline
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calibration; and the AA calibration resulted in a 9.9% bias over scan specific inline
calibration, a 10% bias over averaged inline calibration, and a 25% bias over offline
calibration (Figure 5-2). For BMD results, the AABSM calibration resulted in a 3.9% bias
over scan specific inline calibration, a 3.7% bias over averaged inline calibration, and a
17% bias over offline calibration; and the AA calibration resulted in a 6.1% bias over scan
specific inline calibration, a 6.0% bias over averaged inline calibration, and a 19% bias
over offline calibration (Figure 5-3). When considering the calibration slopes directly, the
AABSM and AA combinations resulted in biases of 2.6% and 6.3% over scan specific
inline calibration, respectively (Figure 5-4). For the calibration intercepts, the AABSM and
AA combinations resulted in biases of 110% and 110% over scan specific inline
calibration, respectively (Figure 5-4). When comparing scan specific results for all 211
patient scans against the scan specific inline calibration, the ten best AABSM slope
combinations all resulted in the majority of patients falling within the range demonstrated
by the inline calibration (Figure 5-5). The three best AA slope combinations did not fall
within the range demonstrated by the inline calibration; however, the inter-quartile range
for the next seven best did fall within the range demonstrated by the inline calibration
(Figure 5-5). All intercepts for the ten best combinations for both AABSM and AA fell within
the range demonstrated by the inline calibration (Figure 5-5). Biases for the best ten tissue
combination results for all four categories, compared with the inline calibration slope, were
found to be less than or equal to 0.068 + 0.064 HU/(mg/cm?) for the five patients with
inline calibration available. The resulting 40 calibration slopes and the scan specific inline

calibration slopes were found to be normally distributed using a Shapiro-Wilk test.
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Differences in FS between calibration methods were only statistically significant for
AABSM versus the average of the inline calibrations (p < 0.01). Differences in BMD
between calibration methods were not statistically significant for either phantomless
calibration combination (AABSM and AA) and the inline phantom calibration (p = 0.03,
0.10). However, differences in BMD between calibration methods were statistically
significant for both phantomless calibration combinations (AABSM and AA) versus the
average of the inline calibrations (p = 0.003, 0.002) and the offline phantom (p = 0.004,
0.003). Differences in calibration equation followed the same trend. For the slopes,
differences were not statistically significant between either phantomless calibration
combination (AABSM and AA) and the inline phantom (p = 0.04, 0.17). Conversely,
differences were statistically significant between both phantomless calibration
combinations (AABSM and AA) versus the average of the inline calibrations (p < 0.001,
0.001) and the offline phantom (p < 0.001, 0.001). For the intercepts, differences were
not statistically significant between either phantomless calibration combination (AABSM
and AA) and the inline phantom (p = 0.08, 0.26). Continuing with the trend, differences
were statistically significant between both phantomless calibration combinations (AABSM
and AA) versus the average of the inline calibrations (p < 0.001, 0.001) and the offline
phantom (p < 0.001, 0.001).

Both average intra-operator and inter-operator repeatability were better for AABSM
than for AA when analysing FS, BMD, or calibration equation (Table 4). Segmentation CT
Number [HU] results found similar means and standard deviations for tissues compared

between the “all scans” and “one scan per patient” categories, respectively: adipose -
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99.12 +9.44 and -98.98 * 9.62; aortic blood 52.42 + 17.28 and 51.83 + 17.41; and muscle

43.58 + 13.42 and 44.01 + 14.05.
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FS Validation
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Figure 5-2: FS results derived using phantomless calibration displayed the least bias
when compared against results derived using the average of the patient and scan-specific
K2HPO4 calibration as shown by Bland-Altman analyses. Overall results using
phantomless calibration were more consistent with results from the K2HPO4 phantom than
the HA phantom. The blue lines are the means and the red lines are the 95% confidence
interval.
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BMD Validation
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Figure 5-3: BMD results derived using phantomless calibration displayed the least bias
when compared against results derived using the average of the patient and scan specific
K2HPO4 calibration as shown by Bland-Altman analyses. Overall results using
phantomless calibration were more consistent with results from the K2HPO4 phantom than
the HA phantom. The blue lines are the means and the red lines are the 95% confidence
interval.
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Figure 5-4: Phantomless calibration slopes derived from air, aortic blood and skeletal
muscle segmentations displayed less bias than those derived from air and adipose when
compared with patient and scan specific Kz2HPO4 calibration as shown by Bland-Altman
analyses. While both sets of phantomless calibration intercepts displayed similar and
large bias, all averages were within the performance expectations for a GE CT scanner
(0 £ 7 HU)'®. The blue lines are the mean and the red lines are the 95% confidence

interval.
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Calibration Equation Verification
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Figure 5-5: These plots compare the ten best combinations of tissues in terms of
calibration slopes and intercepts. Boxplots are overlaid on scatter plots of the patient
specific calibration slopes and intercepts (purple points). For the slopes plots, the three
blue lines include: the dashed lines for the minimum (0.99 HU/(mg/cm?3)) and maximum
(1.06 HU/(mg/cm?3)) slopes across patients from the K2HPO4 calibration phantom, and the
dash-dot line is for the calibration slope for the custom phantom scanned offline in water
(1.10 HU/(mg/cm3)). All slopes are in HU/(mg/cm?). For the intercept plots, the three blue
lines include: the dashed lines for the minimum (-0.0085 HU) and maximum (0.0135 HU)
patient specific results for the K2HPO4 phantom, and the dash-dot line is calibration
intercept for the custom phantom scanned in water (-0.0239 HU).
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Table 5-4: Intra- and Inter-operator reanalysis precision error (root-mean-square) for FS,
BMD, calibration equation, and tissue segmentations at the femur for n = 5. Coefficients
of variation (CVrwms, in %) and standard deviations (SDrwms, in absolute units) are

presented.
Intra-operator Inter-operator

Measurement CVrwms (%) SDrms CVRrwms (%) SDrms

Femoral Strength [N]
AABSM 0.28 9.67 0.42 13.27
AA 1.27 63.85 4.14 22444
Inline 0.37 11.68

Bone Mineral Density

[kg/cm3]
AABSM 0.22 0.13 0.39 0.20
AA 0.65 0.48 1.52 1.28
Inline 0.57 0.57

Slope [HU/(mg/cm?3)]
AABSM 0.22 0.00 0.41 0.01
AA 0.41 0.01 1.01 0.02
Inline 0.60 0.01

Intercept [HU]
AABSM 2.70 0.08 4.56 0.14
AA 6.20 7.45 17.03 20.12
Inline 9.31 2.22

Segment [HU]
Adipose 1.68 3.77 1.78 3.98
Air 0.35 7.44 0.93 20.10
Aortic Blood 10.09 10.67 13.93 15.99
Skeletal Muscle 10.25 719 11.24 8.12
Bladder 50.82 3.67 68.11 12.21

5.4 Discussion

The main aim of this study was to demonstrate, verify, and validate a method for selecting

basis patient tissues for deriving an equivalent density equation in femoral bone QCT

analyses. As an example, this method identified AABSM as the best combination of

tissues for phantomless calibration. This method was shown to be valid for FS, BMD, and

calibration equation results. The validity of phantomless calibration for FEAs of the femur

is consistent with other studies®>193.118 To verify this method, results for 258 scans were
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shown to be within the range of those from the inline calibration of five scans. This method
shows promise for use in the retrospective analysis of patient cohorts without available
calibration data and can be applied opportunistically to any CT scan.

This study differs from previous studies in several ways, including different CT
scanners, CT scan protocols, tissues used as the basis for phantomless calibration,
assumed tissue densities, methods of segmentation, and FEA pipelines. Focusing in on
which tissues are used as the basis for phantomless calibration, this study’s selection of
the AABSM combination of tissues is different from prior combinations in literature for
FEAs of the femur, including: fat and muscle'?°; air and fat®%.103.118: gjr, fat, and muscle';
and air, fat, blood, muscle, and cortical bone'39. The variety of different combinations
shows the need for a universally accessible objective method, such as that presented in
this study, for identifying the best tissues for use as the basis for phantomless calibration
within the existing constraints of CT scanners and CT scan protocols for the application
specific anatomic site. Algorithms for decision making, such as that presented in the
current study, can be more robust than correlation approaches, such as those presented
by Eggermont et al."3,

Despite the differences in FEA pipelines, the bias introduced by phantomless
calibration is comparable across studies, with all other variables held constant within the
respective studies. This study’s calculated FS mean absolute difference, 90 N (6.9%),
was similar to recent studies, such as Lee et al. 30 N (0.8%)'%3, and Michalski et al. -40
N (17%)%°. The calculated BMD biases 0.92 kg/cm?® (0.04%) were larger than a recent
study on a more developed method presented by Lee et al., 2 mg/cm?® (0.9%)'%3. Note

that differences observed in FS measurements were expected to be greater than
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differences observed in BMD measurements for two reasons. First, differences that
appear small when examining preliminary results (i.e. segmentation, calibration equation,
BMD) are amplified by the power-law component of the density-elastic modulus
relationship (equation (5.7)), making FEAs sensitive to changes in the calibration
equation. Second, the sideways fall load case is more sensitive to changes in mechanical
properties of materials due to the stress gradient from bending in the combined-loading.
Both the results of this study and the results from literature show greater differences in
FS biases than BMD biases. From a clinical perspective, this drives the reasonable
assumption that variables known to affect CT Number [HU] or BMD measurement would
have an amplified effect on FS.

Recent studies have proposed the use of QCT derived FEAs for improved
osteoporotic hip fracture risk prediction’-'"% and the use of phantomless calibration in
this context®2103, Limited studies have been conducted to identify and quantify the impact
of relevant factors. Michalski et al., who conducted part of their analysis on ten full body
cadavers, iteratively correlated ROI specific CT Numbers across energy levels, setting
the example of taking these factors into account during the development of their
phantomless calibration method®2. Several authors have noted the improvements in
phantomless calibration results, due to the decreased distance between the patient and
the reference’03.196.110 The current study controlled for some factors known to create
variations in CT Number [HU] by limiting data analysed to scans captured on GE
LightSpeed CT Scanners with 120 kVp, variable mA, slice thickness of 1.25 mm, slice
increments of 0.625 mm, and a standard reconstruction kernel. Lee et al. used similar

inclusion criteria, identifying 120 kVp and a standard reconstruction kernel as the most
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important imaging technique factors and their decision to analyse a single protocol as a
limitation'93. Although attempting to work with a standardized protocol, Eggermont et al.
found that a small number of their patients were scanned with a different reconstruction
kernel, allowing them to make relevant observations (1) changing reconstruction kernel
had no significant effect on phantom-based or air-fat-muscle calibration, and (2) changing
reconstruction kernel resulted in significantly higher failure loads when using their non-
patient specific calibration'®. Michalski et al. observed that by using consistent imaging
acquisition and a single imaging protocol, there were fewer confounding variables when
measuring methodological precision®?. Beyond the limitation of only considering one
clinical protocol, this study was also limited to pre-fracture cases that went on to
experience femoral fragility fracture.

The current study’s segmentation method may be less repeatable than the
segmentation methods presented in other studies. Where this study conducted manual
segmentation using the mean CT Number [HU] over the digital volume, other studies used
higher fidelity segmentation methods. Examples relevant to multiple studies include: Lee
et al., who have automated their segmentation using gradient-profile algorithms
independent of absolute attenuation®%193.118  or the popular histogram and peak fitting
approach3:92106,110.122  Boden et al. designed the histogram and peak fitting approach
specifically to overcome the challenge of reliably locating a conventional ROI to calculate
the mean CT Number [HU] of the digital volume'°. This implies that methods using this
approach would naturally account for the heterogeneity included in patient tissues and
improving the precision of phantomless calibration. The differences in segmentation

methods are a major reason why this method was less repeatable than those presented
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previously in literature (Table 5-5). This comparison shows using a higher fidelity
segmentation method may improve the repeatability of the current study’s phantomless
calibration method.

Table 5-5: Comparison of precision errors between the current study and literature.

Intra-operator Inter-operator

Measurement CVRrws (%) SDRrwms CVRrwms (%) SDRrwms
Femoral Strength

Leel03 [N] 0.4 20

Michalski2 [N] 6.0 84

Current Study [N] 0.28 9.67 0.42 13
Bone Mineral Density

Leel03 [mg/cm?] <0.3 <1

Michalskio2 [mg/cm?] 4.3 12 5.3 11

Current Study [kg/cm?] 0.22 0.13 0.39 0.20

This study showed phantomless calibration results were close to results derived from
the Mindways Model 3 BMD inline phantom, which relies on K2HPO4 as a reference
material. Further, the phantomless calibration derived results were not significantly
different from the inline calibration derived results and were significantly different from
both the averaged inline calibration and the offline calibration. Both the inline phantom,
which ranges from -53.4 to 375.8 of equivalent K2HPO4, and this phantomless calibration
technique, require extrapolation in order to define in vivo BMD'34. The potential for
extrapolation errors has been raised as a concern in several studies'3196.122 |n their
phantomless study, Lee et al. demonstrated their method to calibrate CT scans was
equivalent to traditional phantom-based calibration'. If assumptions are made about the
density of bone and included when deriving phantomless calibration, the results become
less accurate, as shown by the correlation analysis in the pilot study written by Eggermont
etal.’s.

There were several limitations to this study. CT scans of the proximal femur region

include a limited choice of tissues to segment: adipose tissue, skeletal muscle, aortic
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blood, and in some cases the bladder is empty. In addition to population variance across
patients, tissues also depend on a variety of patient specific variables such as: hydration
level'®, patient pathologies'?*, heterogenous distributions of muscle and fat'%,  j.v.
contrast'9%125  exercise habits, and body mass index. The cohort studied here did not
include patient details about exercise habits, body mass index or comorbidities. Future
studies should consider a more detailed examination of factors known to cause variance
across patients and a larger sample size to further develop the phantomless calibration
methodology. In this study, GE LightSpeed family CT scanners were used to demonstrate
the calibration process. CT scanners from other manufacturers were not analysed due to
lack of available data. Future work should consider a multi-centre study comparing the
same model of CT scanner across different hospitals and consider CT scanners from
other manufacturers. Also of note was the small sample size of available calibration
curves for comparison.

This study did not examine several potential confounding variables. When
reassigning pre-fracture/control pairings, researchers were not blind to CTXA, a method
for measuring areal BMD from CT data, mathematically equivalent to dual-energy X-ray
absorptiometry, density measurements. Stratification accuracy between pre-fracture and
control cases when using phantomless calibration was not examined. Additional
confounding factors may have been present such as: other diseases, routine exercise
habits, differences in body-mass index/height/weight, comorbidities, or different
pathologies. These were not considered due to lack of readily available cohort
information. Several of these variables could be considered in a prospective study orin a

reanalysis of retrospective data prospectively gathered. A more systemic method of
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randomly assigning controls to pre-fracture cases could be developed and implemented
to mitigate the potential alignment of CTXA density measurements between pre-fracture
and control cases. Future studies could be designed to fully test stratification accuracy
between pre-fracture and control cases when using phantomless calibration.

Overall, results derived from the phantomless calibration slopes were a valid
substitute for those derived from the inline calibration. When considering FS, the
phantomless calibration resulted in a small 7% increase over inline calibration. For BMD,
the phantomless calibration resulted in a small 4% increase over inline calibration. The
phantomless calibration slopes were consistently comparable with the range
demonstrated by the patient specific Mindways Model 3 BMD phantom calibration slopes,
with our best method displaying a small bias of 0.028 + 0.054 HU/(mg/cm?). The study
shows the proposed method for phantomless calibration is valid for FEA studies of
retrospective cohorts lacking calibration data. This method can be applied
opportunistically to CT scans captured for analyses other than hip fracture. Further
examination of the error introduced when the proposed method for phantomless

calibration is applied in patient specific FEA derived FS should be conducted.
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6 Comparison of internal tissue-based
phantomless densitometric CT calibrations
and error assessment

As shown in Chapter 5, the proposed approach to tissue-based phantomless DCTC has
the potential to enable both opportunistic evaluation of osteoporosis and retrospective
analysis of patient CT scans lacking phantom-based densitometric calibration data. As
published, this method is available in the public domain and remains recommended for
use. The previous chapter thoroughly discussed the limitations of tissue-based
phantomless calibration in general and of that study in particular. This chapter will broaden
the discussion by examining the proposed method in the context presented in Subsection
3.2.10.

As noted previously, ASTM E1935-97 recommends selecting densitometric
standards that bracket the range of densities being measured. In the case of tissue-based
phantomless calibration, including femoral bone as a reference tissue will likely increase
the error introduced for several reasons. ICRU 44 and NIST?830 assume a cortical bone
nominal density of 1920 mg/cm?3. The data this is based on comes from 24 adults (20-74
years old) and may not be a reasonable assumption for either a geriatric population or a
predominately female population®. In any case, assuming a density for cortical bone
increases the risk of analysing the assumption instead of the actual patient bone.

Since the previous illustration from Chapter 3 was created including cortical bone
tissue in all calculations, a follow-up illustration is included here to repeat all the same
calculations, excluding cortical bone as an internal reference tissue. First, slice effective

energy is calculated following both approaches described in Chapter 3: iteratively linearly
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regressing CT Number [HU] and linear attenuation coefficients as recommended by
ASTM E1935-972%, and iteratively linearly regressing CT Number [HU] and mass
attenuation coefficients as recommended by Michalski et al.34. Note that the iterative
linear regressions include segmentations for air, adipose, aortic blood, and skeletal

muscle. The resulting plots are included in Figure 6-1.
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Figure 6-1: Slice effective energy calculations for tissue segmentations from the CT-
scan of a 79-year-old patient.

After calculation of slice effective energy, nine densitometric calibration equations

were derived for three different combinations of internal patient tissues: (1) air, adipose,

aortic blood, and skeletal muscle; (2) air, aortic blood, and skeletal muscle; and (3) air,
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and adipose. For each of these combinations, three calibration equations were derived
following the density and attenuation approaches for each slice effective energy
described previously. Then to compare densitometric results, each DCTC equation was
applied to estimate the bracketing densities of femoral trabecular and cortical bone
(Figure 6-2). Consistent with the results in the previous chapter, the air, aortic blood, and
skeletal muscle combination introduced the least amount of error across the range of
densities relevant to human femoral bone. Similar to the example from Chapter 3, this
analysis shows that the corrections based on slice-specific energy improves accuracy
(Figure 6-3). Whether this difference is clinically significant depends on the application.
The prior illustrations have been limited to regions of interest on one CT slice of one
patient. Another useful illustration is conducting the same analyses for the segmentation
data from Chapter 5 (Figure 6-4). In this illustration, measured BMD from both tissue-
based phantomless DCTCs result in higher measured BMD than the measurement from
the FDP for three out of four densities. Overall, the results in this chapter continue to
support the use of tissue-based phantomless DCTC, and the proposed method continues

to show promise for facilitating QCT analyses.
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Figure 6-2: Representative density [mg/cm?®] measurements for bracketing trabecular and
cortical femoral bone standards for multiple calibration references: femoral density
phantom (FDP); density and attenuation calibration methods for internal tissue-based
phantomless calibration derived from air, adipose, aortic blood, and skeletal muscle;
density and attenuation calibration methods for internal tissue-based phantomless
calibration derived from air, aortic blood, and skeletal muscle; and density and attenuation
calibration methods for internal tissue-based phantomless calibration derived from air,
and adipose. When relevant, attenuation approaches were calculated two for differing
slice effective energies.
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Figure 6-3: Percent difference calculations between the femoral density phantom (FDP)
and phantomless density measurements for bracketing trabecular and cortical femoral
densities. Phantomless measurements include density and attenuation calibration
methods derived from air, adipose, aortic blood, and skeletal muscle; density and
attenuation calibration methods derived from air, aortic blood, and skeletal muscle; and
density and attenuation calibration methods derived from air, and adipose. When relevant,
attenuation approaches were calculated two for differing slice effective energies. Note
that differences range from -21% to 17%.
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Figure 6-4: Representative densitometric CT measurements for trabecular and cortical
human femoral bone bracketing densities. The light blue bars represent measurements
derived from the femoral density phantom. The red and dark blue bars represent internal
tissue-based phantomless DCTC derived measurements, for 258 CT scans of 211
patients, from the air, aortic blood, and skeletal muscle (AABSM); and air, and adipose
(AA) combinations respectively. Note that the phantom-based measurements slightly
underpredict the nominal density [mg/cm?] and that the AABSM measurements are closer
to them than the AA measurements.
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7 Discussion

Two CTPSFE pipelines to predict femoral fragility fracture are available as clinical
services. The first, VirtuOst software (O.N. Diagnostics, Berkeley, CA), is FDA approved
and is clinically available in the USA. The second, “CT to Strength” Service non-invasive
bone strength estimation from INSIGEO Institute for in silico Medicine and the University
of Sheffield, can return an accurate assessment within 48 hours. To overcome the need
for phantom-based DCTC data, Lee et al. validated an approach to phantomless DCTC
in their 2017 study'%3. This method is proprietary and therefore the clinical accessibility of
this method is limited to clients of VirtuOst. A public-domain method allows for widespread
collaboration across clinics, and potentially greater accessibility to patients. The objective
of this dissertation was to demonstrate, verify, and validate a public domain method for
selecting tissues to use as the basis for tissue-based phantomless DCTC for use in
femoral QCT analyses.

A thorough understanding of the relevant definitions, limitations, and assumptions of
both X-ray-based clinical imagining and CTPSFE was required. Chapter 3 presented the
definitions, limitations, and assumptions of X-ray-based clinical imagining. X-rays were
shown to be sensitive to energy [kVp], current [mA], and thickness [cm]. DXA is known to
be sensitive to thickness of tissue present around the bone. Clinical CT scanners were
shown to measure density relative to water using the Hounsfield Scale. The impacts of
slice thickness, slice overlap, and differing reconstruction kernels were discussed.

Several approaches to approximating DCTC were described and illustrated in the

examples in Chapter 3. Using the same structure as the examples in ASTM E1935-97
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“Standard Test Method for Calibrating and Measuring CT Density”, an illustration in this
dissertation compared and contrasted densitometric results from a variety of calibration
approaches: a femoral density phantom; a density approach with phantomless DCTC
derived from air, adipose, aortic blood, skeletal muscle and cortical bone; and an
attenuation approach with internal tissue-based phantomless DCTC derived from air,
adipose, aortic blood, skeletal muscle and cortical bone. The illustration showed that two
different approaches to estimating the slice effective energy found 80 keV and 97 keV
respectively, almost 20% difference in results. As expected, the femoral density phantom
yielded the most accurate results across the range of densities relevant to human
trabecular and cortical femoral bone. The density approach was more accurate than the
MFM approach but less accurate than the attenuation approaches, regardless of which
effective energy was assumed. Overall, the benefits from assuming an effective energy
were uncertain and did not meaningfully reduce the potential error introduced by these
approaches.

The final example in Chapter 6 showed a strong correlation between left and right
adipose and a weaker correlation between left and right skeletal muscle tissue
segmentation measurements when paired within the patient. The strong correlation in
adipose makes sense and agrees with the Chapter 5 finding that adipose is the most
consistent tissue across patients. The weaker correlation for skeletal muscle also makes
sense given that most people experience a muscle imbalance. The corresponding
Bland-Altman analysis showed zero bias between right and left adipose and skeletal

muscle tissue segmentation measurements across patients.
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Chapter 4 presented the relevant definitions, limitations, and assumptions for
CTPSFE analyses. Medical image software applications show medical image data in
three planes—the coronal, sagittal, and axial planes. A representative segmented patient
femur was shown with the description of how various software applications support
segmentation of patient femurs and what approaches are sufficiently accurate to yield
trustworthy results. The empirical relationships that form the foundation of the material
property mapping were explored, starting with scanning a densitometric reference
phantom and deriving the CT Number-to-radiological-density relationship. The
experiments conducted to derive the relationships between radiological density and ash
density, ash density and apparent density, and apparent density and Young’s modulus
were explored in detail. Many of the methodological details in these experiments may
vary from lab to lab; however, the ones discussed in this dissertation not only serve as
the foundation for the VirtuOst software (O.N. Diagnostics, Berkely, CA) but have also
been agreed upon by two other leading research groups in the field*3137. Importantly, the
material mapping strategy applied in the study was shown to bring the results of CT-based
specimen-specific finite element analyses closer to the experimental results*3.

The stance phase during walking and sideways fall loading are two loading
conditions identified as relevant to assessing femoral fracture risk. The most commonly
applied loading conditions for the stance phase during walking come from a study by
Bergmann et al.53. Although empirical data are not available for sideways fall loading, 33
loading angles worth considering have been identified*!. An advantage of applying FEA
methods to study femoral fracture risk is the ability to simulate more than one loading

condition, considering experimental specimens can only be broken once. 3D-printed
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patient-specific femur geometries could be printed and leveraged in a variety of ways,
including testing the experimental setup or assessing precision of results through the
repetition of experiments. Whether stance phase during walking or sideways fall loading
is being simulated, experimental validation is important and has been conducted on
human femoral specimens in several studies. Some examples were discussed. A
limitation of this dissertation is the lack of researcher experience with conducting
validation experiments with cadaveric specimens; however, early on in graduate training
some experimentation with 3D printed versions of the cadaveric specimens was
conducted and observed.

CTPSFE analyses have been shown to be more accurate if boundary conditions are
applied at the knee centre rather than making a cut and applying them close to the bottom
of the trochanter. In prospectively captured data, the entire patient femur can be included
in the CT scan by design and protocol. However, in retrospective case studies, patient CT
scans frequently contained limited amounts of the femur. To overcome this gap in
information, Ju Zhang created MapClient, which employs statistical shape modelling and
customizable pipelines to extrapolate the missing portion of the femur. Using the
estimated full femur from statistical shape modelling based on the available part of the
patient femur and a database of 200 cadavers, MapClient can provide an estimated full
femur capable of facilitating anatomical mapping to establish a coordinate system. While
using this coordinate system has been shown to result in higher femoral fracture-control
case stratification accuracy, after further studies the authors have reported that the
accuracy of the statistical shape mapping tool is not sufficient to be used for CTPSFE

analyses®’.
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The ability to derive clinically meaningful outcomes from the models is as important
as being able to set up and run the models. Chapter 4 summarized the research behind
applying a maximum principal strain failure criterion and the different approaches towards
identifying a strong fracture status classifier. The best classifier to identify patients at risk
for femoral fragility fracture prior to fracture is still an open question. Minimum Fall
Strength (MFS) shows promise, especially when applying the recent stochastic modelling
approaches'38-140,

The CTPSFE analyses methods described in Chapter 4 lacked a method for internal
tissue-based phantomless DCTC, limiting the ability to retrospectively analyse patient
cohorts without available phantom-based DCTC data. Designed for use in industry rather
than clinical use, ASTM E1935-97 “Standard Test Method for Calibrating and Measuring
CT Density” provides a good foundation for estimating DCTC. The National Institute of
Standards and Technology provides reasonable assumptions for nominal human tissue
densities. The outstanding question in this puzzle was what combination of internal
tissues should be used as the basis for estimating DCTC.

The demonstrated method for segmenting internal tissues, quality-checking tissue
segment mean CT Number [HU] measurements and optimizing with the Hounsfield Scale
as the gold standard, resulted in a reasonable estimate for a DCTC equation. When the
sparsely available cohort-specific phantom-based DCTC measurements were treated as
representative boundary measurements, the tissue-based phantomless DCTC equations
were not only verified but also were shown to produce smaller measurement variance
across patients and CT scanners than the representative boundary measurements. This

makes sense because both the patient and the inline phantom are in the path of the X-ray
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when capturing DCTC data from an inline phantom. The resulting phantom-based
measurement has higher density measurements, due to the distance from CT scanner
isocentre in the field of view and due to the increase in thickness the X-rays travel through.
The bias measured between the demonstrated tissue-based phantomless DCTC and the
inline phantom-based DCTC-derived clinical outcomes were comparable with other
studies in the field.

Chapter 6 presents an updated version of the example from Chapter 3; however, in
Chapter 6, internal tissue-based phantomless DCTC-based measurements were derived
without including cortical tissue segmentation measurements. The error in measured
density across the range relevant to human trabecular and cortical femoral bone only
came down slightly when excluding the cortical tissue segmentation measurements
(Figure 7-1). The finding that the attenuation method did not result in an increase in
accuracy large enough to be clinically meaningful remained consistent.

While the error introduced by tissue-based phantomless DCTC-based density
measurements is larger than measurements from the FDP-based DCTC, there are
several advantages to tissue-based phantomless DCTC. First, the reduction in variation
of tissue-based phantomless DCTC equations result in a more consistent measurement
and potential data for patient evaluation. Second, patient tissues will always be present
in patient CT scans. Tissue-based phantomless DCTC adds data to the CTPSFE
analyses and may improve the stratification accuracy of clinical assessments.
Additionally, the quality checks presented in Chapter 5 facilitate the public-domain use of

this method.
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Figure 7-1: Percent difference calculations for phantomless density measurements with
femoral density phantom (FDP) based density measurements as the gold standard.
Cortical (C) and No Cortical (NC) are compared for the Density and Attenuation
Calibration Method percent difference phantomless density measurements. Note that the
No Cortical Attenuation Method with the Mass-Absorption Coefficient assumed effective
energy has the least percent difference across the trabecular and cortical femoral
bracketing densities.

Limitations to tissue-based phantomless DCTC are the dependency of the quality
checks on the NIST tissue nominal density tables and the available information about the

CT scanners. Internal tissues are dependent on a variety of patient-specific factors such

as health status, hydration, and the presence of a contrast agent. The validations
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conducted in Chapter 5 were limited to LightSpeed family CT scanners from GE, a single
clinical protocol of CT scan acquisition and reconstruction parameters, and a small
number of patients. All patients included in the study in Chapter 5 were undergoing routine
abdominopelvic CT examinations due to cancer risk.

Tissue-based phantomless DCTC shows promise for application in CTPSFE and
other quantitative CT-based analyses. The method demonstrated, verified, and validated
in Chapter 5 is the first public-domain method. This method enables the retrospective

evaluation of patient CT data and the opportunistic assessment of osteoporosis.
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8 Scientific knowledge generated

Several new pieces of scientific knowledge were generated. At a high level, the first
public-domain method for tissue-based phantomless DCTC was demonstrated, verified,
and validated. Tissue segmentation measurements of air, adipose, aortic blood, and
skeletal muscle were captured. Through statistical analyses, these measurements
provide a basis for quality-checking future patient-specific tissue segmentation
measurements for the broadest representation possible with the patient cohort. Through
combinatorics and optimization, combinations of patient tissues were identified to serve
as a basis for tissue-based phantomless DCTC. While this work recommended two
specific combinations, the verification space showed that a wide variety of combinations
may be valid. Making the segmentation measurements publicly available upon request
allows for future researchers to test a specific combination with these data and then apply
that combination to another patient cohort®”. The breadth of these results can further
enable the development and application of tissue-based phantomless DCTC in clinically
relevant quantitative CT analyses.

In addition to the patient tissue segmentation measurements, the work in this
dissertation may be the only comparison of tissue-based phantomless DCTC to a FDP-
based DCTC. By reversing the assumption that offline phantom-based DCTC data is
relevant to patient CT scans, this work could also apply the patient-specific, tissue-based
phantomless DCTC data to the measured mean CT Numbers [HU] for the four

densitometric standards in the FDP. Through this approach, measured density could be
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compared between the phantom-based and phantomless results, and accuracy could be

quantified.
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9 Future work

There are several directions of future research relevant to tissue-based phantomless
DCTC. The data available for the development of this tissue-based phantomless DCTC
were collected using machines from only one manufacturer. Since the method proposed
is general to CT systems with the expectation that any manufacturer-specific CT rescale
intercept may need to be corrected for and the tissues are chosen to align with the
Hounsfield Scale, the method is presumed to be applicable to any clinical CT scanner
operating on the Hounsfield Scale. As a public-domain method, global researchers can
work together to test this presumption by applying the proposed method in their own
clinical contexts, gradually widening the validation space and building clinical confidence
in the methods.

Patients with surgical implants have not yet been considered in the studies on tissue-
based phantomless DCTC methods. One reason for this is the X-ray scatter created by
the implanted hardware. One advantage to the proposed method is that segmentation is
performed manually, and specific tissue CT Number [HU] segmentation thresholds are
provided. Through careful segmentation, it may be possible to apply this tissue-based
phantomless method to characterize and analyse CT scans of patients with surgical
implants (Figure 9-1). Initial research would need to assess the tissue-based phantomless
method result in comparison to a phantom, ideally the femoral density phantom, which
was designed to support CTPSFE models of femurs to aid in analyses surrounding

surgical implants. Follow-on research could include CTPSFE analyses of the contralateral
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femur and may be comparable to the Sheffield cohort which looks at the contralateral

femur17,39,140,141 .

Figure 9-1: Representative CT slice of internal tissue segmentations for a 93-year-old
patient with a surgical implant. Note that three adipose segmentations were necessary to
get aresult consistent with the thresholds established in Chapter 5, and that a result within
that framework was possible.

There are still several research questions that may be answered with further
analyses on the femoral fracture cohort for which the method was developed. A age- and
sex-matched pre-fracture cohort was selected for a FEA study from the full fracture cohort
of patient data retrospectively identified at UW-Madison. Of the 43 pre-fracture patients,

40 patient CT scans met the following inclusion criteria. First the scan contained the

femur. Second the scan was captured at the prescribed clinical CT scan acquisition
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protocol and reconstructed with a standard kernel. An additional sub-cohort of 40 patients
were identified as age and sex matched controls.

Table 9-1: Breakdown of prefracture and control patients segmented from the Madison
fracture cohort for later CTPSFE analyses.

Pre-fracture Control Total
Female 26 26 52
Male 14 14 28
Total 40 40 80

The Madison cohort differs from the Sheffield cohort in at least two ways: the
Sheffield cohort was captured on a GE Lightspeed CT scanner with a BonePlus
reconstruction kernel, and the CTPSFE analyses were conducted on the contralateral
femur'®'7. The Madison cohort includes femoral CT scans of patients up to 5 years prior
to fracture, although most are within a year of fracture. This offers a unique opportunity to
assess the stratification accuracy of CTPSFE derived MFS developed with the Sheffield
cohort on the femur known to go on to fracture.

Phantomless DCTC continues to show promise for femoral QCT analyses. Pursuing
future studies on additional patient cohorts has the potential to broaden the applicability
of the methods. Additional studies assessing pre-fracture cohorts may yield insights
relevant to our understanding of femoral fragility fracture. Phantomless DCTC has the

potential to facilitate QCT analyses.
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Appendix — Clinical handout for phantomless
calibration

This document is intended to highlight specific details from “Evaluation of patient tissue
selection methods for deriving equivalent density calibration for femoral bone quantitative
CT analyses” (Winsor et al. 2021). Please note some reference in here that are relevant

may also come from Lee/Keaveny et al. 2017 or Michalski/Boyd et al. 2020.

When forming a cohort, results will be more precise if patients are grouped by specific CT
scan acquisition and reconstruction parameters (Bligh 2009). Further to this, | also
recommend stratifying according to variables known to impact the calibration equation so

that

Variables known to impact the calibration equation in general include scan voltage, slice
thickness, and reconstruction kernel. Note that my cohort only had sufficient validation
data for 120 kVp, 1.25 mm slice thickness with 50% overlap, and a standard

reconstruction kernel. (Other lurking currently unknown impactful variables may appear.)

Once you've identified your desired study cohort, the next step is segmentation.
Segmentation can be challenging, for this method, | recommend finding the approximate
centre of the femoral head and trying to keep the area of interest in the same places for
5 slices in each direction. For air, urine, skeletal muscle, and adipose tissue, | recommend
a diameter of about 10 pixels. Aortic Blood is a bit harder, and | found a diameter of 8

pixels led to a better measurement.
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To create scan-specific calibration measurements, | linearly regressed the tissue-specific
segmentation measurements [HU] (dependent variable) against the nominal density from
the National Institute of Standards and Technology Tables of X-Ray Mass Attenuation
Coefficients and Mass Energy Absorption Coefficients Table 2. This density calibration
approach is discussed in ASTM E1935-97: Standard Test Method for Calibrating and

Measuring CT Density.

Theoretical air (not segmented) 1.205
Adipose tissue 950

Aortic blood 1060
Theoretical water (not segmented) 1000
Skeletal muscle 1050

| ran this for one patient with air, aortic blood and skeletal muscle to get an example
equation:

Y = 0.974*x-984.859

At this point, | recommend modifying the intercept by adding the values of the Rescale

Intercept from the Dicom header. For GE LightSpeed scanners, this value is typically

1024. So my updated equation would be:

Y =0.974*x+39.15.

For the ability to process many patients at a time, | have set up the accompanying matlab

script. In the event that the rescale slope changes, the script may need to be tweaked.
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Appendix — Matlab function for calibration
equation derivation

function [slope intercept r2] = mycalibrationequation(x, y);

[curve, G] = fit(x,y,'poly1");
slope = curve.p1;
intercept = curve.p2+1024;

r2 = G.rsquare;

end



