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EXEMPLAR-BASED FACE IMAGE PARSING
WITH LANDMARK- AND SEGMENT-BASED REPRESENTATIONS

Brandon M. Smith
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Parsing face images into their constituent parts (e.g., eyes, nose, lips) is an impor-
tant task in many computer vision applications (e.g., face recognition). Unfortunately,
automating this task is difficult in practice due to the wide variety of conditions in the
real world. For example, current approaches often fail on non-frontal faces and faces
with exaggerated expressions. To better highlight and address real-world challenges,
researchers have introduced several “in-the-wild” face datasets in recent years. How-
ever, each dataset typically has its own set of facial landmark definitions. As a result,
models trained on one dataset often cannot be evaluated on others, and inconsistencies
between datasets make it difficult to train robust models on more than one dataset.
Another limitation of current approaches is that, with few exceptions, they parse face
images using landmarks or contours, which have limited representational power.

To address these limitations, this dissertation proposes an exemplar-based approach
to face image parsing that models shape and appearance in a nonparametric way. First,
a facial landmark localization algorithm is introduced that combines a nonparametric
model of the local appearance context of each landmark with an exemplar-based shape
regularization technique. Second, this algorithm is extended to address the problem
of automatically transferring landmark definitions across different face datasets. The
result is a large dataset in which each image includes a union of all landmark types
as output. Third, a pixel-wise labeling algorithm is introduced to parse face images
into their constituent parts using a soft segmentation. This dissertation will show
that all three algorithms are able to parse challenging in-the-wild face images with
state-of-the-art accuracy. The results suggest that an exemplar-based approach that
models face shape and local appearance in a nonparametric way is (1) flexible enough
to parse faces according to landmark- and segment-based representations, (2) can be
used to combine different face datasets, and (3) is well-suited to parsing faces depicted
in challenging real-world conditions.

Li Zhang
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Abstract

Parsing face images into their constituent parts (e.g., eyes, nose, lips) is an important
task in many computer vision applications (e.g., face recognition). Unfortunately,
automating this task is difficult in practice due to the wide variety of conditions
in the real world. For example, current approaches often fail on non-frontal faces
and faces with exaggerated expressions. To better highlight and address real-world
challenges, researchers have introduced several “in-the-wild” face datasets in recent
years. However, each dataset typically has its own set of facial landmark definitions.
As a result, models trained on one dataset often cannot be evaluated on others, and
inconsistencies between datasets make it difficult to train robust models on more than
one dataset. Another limitation of current approaches is that, with few exceptions, they
parse face images using landmarks or contours, which have limited representational
power.

To address these limitations, this dissertation proposes an exemplar-based approach
to face image parsing that models shape and appearance in a nonparametric way. First,
a facial landmark localization algorithm is introduced that combines a nonparametric
model of the local appearance context of each landmark with an exemplar-based shape
regularization technique. Second, this algorithm is extended to address the problem
of automatically transferring landmark definitions across different face datasets. The
result is a large dataset in which each image includes a union of all landmark types
as output. Third, a pixel-wise labeling algorithm is introduced to parse face images
into their constituent parts using a soft segmentation. This dissertation will show
that all three algorithms are able to parse challenging in-the-wild face images with
state-of-the-art accuracy. The results suggest that an exemplar-based approach that
models face shape and local appearance in a nonparametric way is (1) flexible enough
to parse faces according to landmark- and segment-based representations, (2) can be
used to combine different face datasets, and (3) is well-suited to parsing faces depicted
in challenging real-world conditions.
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Chapter 1

Introduction

This work focuses on the computer vision task of automatically parsing face images
into their constituent facial parts, e.g., mouth corner points, left eyebrow region,
chin contour. In this dissertation, face image parsing is used as a general term that
encompasses face alignment, facial landmark localization, and semantic face image
segmentation. Face alignment addresses the problem of aligning a landmark or contour
model to a face image (or, conversely, aligning a face image to a reference model).
Facial landmark localization seeks to automatically locate predefined facial landmarks
(e.g., the nose tip, mouth corners, eye centers) in face images. Semantic face image
segmentation separates a face image into its constituent parts (e.g., eyebrows, lips,
nose) using a pixel-wise labeling.

1.1 Motivations

Autonomous systems that parse face images play a key role in many applications,
including face recognition [138], face tracking and performance-driven animation [58,
94, 136], and portrait editing wizards [8, 44, 125]. These applications are especially
important and compelling given the explosion of face image data in recent years.
Cameras are cheap, ubiquitous, and easy to use, and many websites allow users to
conveniently upload thousands of pictures for free. More than 250 billion photos have
been uploaded to Facebook since 2004 [37], and a 2008 study of approximately 4
million images randomly downloaded from several popular online sources found that
25.7% contained faces [65].
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Unfortunately, face image parsing remains a vexing computer vision problem in
practice despite its importance and popularity in the literature. Designing such
systems is extremely challenging if the goal is to imitate human visual perception.
Humans are remarkably proficient at recognizing many facial traits, even when face
images are extremely low-resolution or when faces are partly occluded, for example.
Despite this, many mechanisms used by the human visual channel to interpret faces
are still not well understood [107].

Historically, most experimental face datasets have been produced in laboratory
settings, where different types of variation are limited. For example, the head pose,
illumination, and facial expressions in the CMU PIE (Pose Illumination Expression)
dataset [106] are carefully controlled. In contrast, recent “in-the-wild” experimental
datasets like LFPW (Labeled Face Parts in the Wild) [7], AFW (Annotated Faces in
the Wild) [142], and AFLW (Annotated Facial Landmarks in the Wild) [60] incorporate
greater variation and highlight many challenges encountered in the real world, as
shown in Figure 1.1. In practice, even state-of-the-art algorithms (e.g., [117, 141, 142])
fail on many in-the-wild face images. For example, they often fail to accurately locate
landmarks on faces with exaggerated facial expression or non-frontal head pose. Also,
for many state-of-the-art algorithms, initialization can be troublesome in practice,
which can cause egregious errors in the final result.

To better cope with the many kinds of variations present in face images from the
real world, several recent works have abandoned traditional parametric models for more
nonparametric models of face shape [7, 18, 124] and facial landmark appearance [24,
36, 105]. These nonparametric approaches derive their power from large and diverse
collections of training faces.

Intuitively, in order for an algorithm to effectively handle faces in the wild, many
of the training faces should exhibit real-world variation, i.e., the training images
should also come from in-the-wild datasets. Such datasets have become popular since
Belhumeur et al.’s [7] influential work in 2011. However, most datasets, which each have
their own unique strengths and weaknesses, are developed independently with little
coordination or common standard between them. As a result, practitioners must choose
a single dataset (or a small number of datasets) for training and evaluation. Models
trained on one dataset often cannot be evaluated on other datasets, and inconsistencies
between datasets make it difficult to train models that combine multiple datasets.
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Low light Sunglasses Foreshortening Young faces Non-frontal pose

Noisy images Partial occlusion Unusual illumination Elderly faces Face paint

Blurred images Facial hair Intense shadows Intense expressions Tattoos, piercings

Figure 1.1: The examples above, taken from recent in-the-wild datasets (AFW [142],
LFPW [7], IBUG [98], and Helen [74]), highlight many of the challenges present in
real-world face images. This work targets these kinds of images.

Ideally, it would be desirable to have a common and unified definition of landmarks
and collect datasets following the same definition. However, this goal is challenging
in practice because the speed of collecting labels will always lag behind the speed of
collecting face data. Furthermore, it is difficult to predict which landmark definitions
(e.g., ears) new applications will find useful. Unfortunately, hand annotating is
expensive and tedious, which makes large-scale manual efforts impractical. A more
practical automated, or semi-automated approach is needed to transfer landmark
annotations from one dataset to another in a way that uses all of the available
information to help guide the transfer, e.g., using the subset of landmark definitions
common to multiple datasets.

Landmarks and contours are popular choices for representing face parts because
they are simple, efficient to store, and offer computational advantages over other
representations. However, their representational power is limited. Landmarks and
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contours are not well suited to complex boundaries, e.g., between hair and skin. Some
landmark definitions are ambiguous. For example, it is unclear whether a landmark
point on the side of the face should be defined relative to the eye, the ear, or by some
parameterized position along the chin contour. In addition, the sharp boundaries
imposed by contours belie the gradual transition between some face regions, such as
the transitions between the upper nose and upper cheeks. A pixel-wise labeling, or
soft segmentation, provides a much richer and more general representation of the face.
However, few researchers have focused on the problem of accurately and explicitly
segmenting faces images into their constituent parts.

1.2 An Exemplar-Based Approach

To address the challenges described above, we propose an exemplar-based approach
to face image parsing. We first propose an exemplar-based algorithm that parses face
images by estimating facial landmark locations in a nonparametric way. We then
extend this algorithm to transfer landmark annotations across different face datasets,
which is useful for combining multiple datasets with different landmark definitions into
a single dataset, where each face contains a union of all the landmark types. Finally,
we propose an exemplar-based algorithm that parses face images via soft semantic
segmentation in a nonparametric way.

1.2.1 Face Image Parsing with Landmarks

For facial landmark localization, we generalize and combine a recent exemplar-based
approach for shape regularization [7] with an exemplar-based approach for face
detection [105] to model the context interactions between facial landmarks and their
surrounding local appearance features in a nonparametric way. Specifically, we
use a Hough transform-based feature voting scheme to transfer many landmark
hypotheses from a large database of exemplar faces to the test image. The votes
capture the appearance and geometric correlations between local image features and
facial landmarks. Each vote is weighted; the weight is precomputed using a data-driven
procedure and takes into account each feature’s discriminative power. Finally, because
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each voting response map may include false peaks, we use an exemplar-based shape
regularization technique to select the best arrangement of landmarks.

We show that this approach offers several important advantages over other state-
of-the-art approaches, including improved accuracy and robustness on challenging
face images (e.g., faces with exaggerated facial expression or extreme head pose). Our
algorithm requires only a rough bounding rectangle around the face for initialization
rather than a full face shape, which is especially important for accurately locating
landmarks in unconstrained real-world images. The robustness and flexibility of our
approach comes from its ability to efficiently and effectively leverage the information
from a large database of face exemplars. Chapter 3 describes our approach to landmark
localization in detail.

1.2.2 Collaborative Face Image Parsing for Transferring
Landmark Annotations Across Datasets

Researchers introduce new face datasets every year in order to highlight new challenges
and advance the state of the art. However, due to lack of coordination between
researchers, and because different research projects focus on different problems, each
dataset has its own set of landmark definitions. For example, the AFLW [60] dataset
includes 21 landmark definitions, whereas the Helen dataset includes 194 contour
points. Ideally, we would like to combine multiple datasets to take advantage of
the different kinds of information provided by each. This is especially important for
exemplar-based approaches like ours, which derive their strength and flexibility from
large and diverse collections of exemplar faces.

To address these problems, we make the first effort, to the best of our knowledge,
to combine multiple face landmark datasets with different landmark definitions into a
single large dataset, in which each image includes a union of all landmark types as
output. Specifically, we present a novel pipeline built upon our landmark localization
algorithm. Our system labels images in the target dataset collaboratively rather than
independently and exploits known landmarks in both the source datasets and the
target dataset. Chapter 4 gives a detailed description of this system.
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1.2.3 Face Image Parsing with Soft Segments

We argue that, despite the popularity and utility of landmarks and contours in
many applications, they have several key limitations compared to segment-based
representations. For example,

• Other than eye corners and mouth corners, most landmarks are not well-defined;

• Contour-based representations are not general enough to model some facial parts
useful for robust face analysis, including hair strands, teeth, or cheeks; and

• It is difficult to incorporate spatial uncertainty in contour-based representations.

Segment-based representations alleviate these limitations: segments can represent
arbitrary facial parts, including hair, teeth, ears, and skin, and soft segments can
model uncertain transitions between parts.

We therefore propose an exemplar-based algorithm for parsing face images into their
constituent facial parts (e.g., eyes, nose, lips) using a soft segmentation. Specifically,
our algorithm produces a pixel-wise labeling of face images, in which each pixel is
represented by a probability vector of label types. Broadly speaking, our approach
to pixel-wise labeling is consistent with our approach to landmark localization (i.e.,
we propose a exemplar-based approach). Our algorithm is well-suited to segmenting
challenging images of faces in real-world conditions. We demonstrate this by producing
results with state-of-the-art accuracy on two in-the-wild face datasets. Chapter 5
describes our approach in detail.

1.3 Thesis Statement

This dissertation focuses on three face image parsing problems:

1. Automatically locating landmarks in challenging in-the-wild face images,

2. Combining multiple face datasets with different landmark definitions into a
single dataset with a consistent set of landmark definitions, and

3. Using a soft segmentation to separate the face into its constituent parts rather
than using contours or landmark points.
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We adopt an exemplar-based approach that models face shape and local appearance
in a nonparametric way to address all three of these problems. For each problem,
we evaluate the accuracy of the algorithm on recent in-the-wild face datasets, which
include challenging faces with significant yaw, roll, and pitch head rotation, exaggerated
expressions, and partial occlusions in images with low illumination, intense shadows,
noise, and motion blur, for example.

More succinctly, this dissertation will show that an exemplar-based approach
that models face shape and appearance in a nonparametric way can be
used to transfer landmarks or segments from an exemplar database to
challenging test images (i.e., for facial landmark localization and soft se-
mantic segmentation of facial parts) or between different datasets (i.e., for
combining multiple datasets that have different landmark definitions), all
with state-of-the-art accuracy.
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Chapter 2

Background

Face image parsing has been studied extensively in the computer vision literature.
We forgo a comprehensive survey and instead provide an overview of pioneering,
exemplary, and representative works that trace the progression of the state of the art.
First, for the sake of clarify, we define some terminology.

2.1 Terminology

The term scene parsing, or image parsing, typically refers to the problem of assigning
a semantic label to each pixel in an image. In this work, we define face parsing to
refer to the problem of separating a face image into its constituent semantic parts
(e.g., eyes, nose, lips) regardless of the representation used to parse the image, i.e.,
landmarks, contours, pixel-wise labels, or segments.

Most commonly, face parsing algorithms label face parts using landmarks, which
carry semantic meaning (e.g., eye centers, mouth corners, nose tip), or contours, which
are defined by connected landmarks. Some researchers use facial features, fiducial
points or keypoints to refer to landmarks. In this work we reserve the term feature
to refer to local appearance features (e.g., SIFT [84]) and landmarks to refer to
semantically meaningful points on the face.

The terms face alignment and facial landmark localization are sometimes used
interchangeably in the literature. Face alignment algorithms iteratively align a model
to the face image (or, equivalently, align a face image to a reference model). Once
the face image and the face model are aligned, locating the landmarks in the image is
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trivial. Face alignment algorithms typically represent the shape of faces using contour
landmarks. Facial landmark localization algorithms typically locate fewer landmarks,
and they often do not explicitly align a reference model to the face image. However,
alignment is trivial given landmark correspondences.

2.2 Very Early Approaches

Computer-aided face recognition started in the mid-1960’s with work by Bledsoe on
semiautomated face recognition [10, 11, 12, 13]. Like many very early works, Bledsoe
sidestepped the difficult task of automatically estimating face shape by requiring
manually-entered facial boundaries and landmark coordinates for recognition.

The earliest systems for automatically locating facial parts in images were developed
in the late 1960s and early 1970s for face recognition. Kelly [57] and later Sakai,
Nagao, and Kanade [100] built similar systems that processed images in a top-down
manner using part-specific heuristic procedures, i.e., first detect the edges of the
head, following by the eyes, nose, and mouth. These very early systems, although
pioneering, were very brittle and ad hoc. Nonetheless, improved but substantially
similar approaches were used in face recognition systems well into the 1980s, e.g., by
Craw et al. in 1987 [30].

In 1973, Fischler and Elschlager [40] developed a system for automatically finding
a face in an image and simultaneously determining its goodness of fit with a reference
model. They modeled the local appearance of face components using ad hoc, manually-
coded detector templates. They modeled the global shape of the face by linking
the face components with a set of manually-coded ‘springs.’ Goodness of fit was
measured as the sum of the component detector outputs plus the total mount of spring
deformation between the reference model and the ‘sensed’ object. They described a
“linear embedding algorithm” for optimizing the goodness of fit. Despite its simplicity
and reliance on heuristics rather than statistics derived from training data, their
system is noteworthy in that its basic framework (i.e., combining the output of local
part detectors with a global shape model) is still used today.

In 1981, Baron [6] described one of the first data-driven approaches for locating
face parts in images. Baron built eye templates derived from actual image data rather
than manually coding them. At runtime his system detected eyes by exhaustively
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scanning each template over the test image and thresholding the cross-correlation
value at each location.

In 1985, Nixon [92] created an eye detector based on an analytical shape model
of the iris and sclera (white region). His system used the Hough transform [50] to
locate the eyes and estimate their shape parameters, which included the iris center
and radius and the major and minor axes of the sclera ellipse. Nixon’s approach is
noteworthy for being one of the first to model face parts parametrically.

2.3 Early Shape Models

In the 1980s, elastic models revolutionized the way images were deformed, registered,
characterized, and matched. In 1981, Burr developed elastic models for nonrigidly
registering pairs of shapes [15, 16]. Several years later, Kass et al. proposed Active
Contour Models (a.k.a. ‘Snakes’) [56], which deform and stretch to fit image features
to which they are attracted via an energy minimization technique. Active Contour
Models are similar to elastic models, except they employ splines for regularization,
which improve their robustness to noise and local ambiguities.

One weakness of Active Contour Models is that they do not contain domain-
specific structure. Yuille et al. [131, 132, 133] addressed this weakness by constructing
a separate hand-build deformable template for each face part. Their model for the
eye is similar to Nixon’s analytic eye model [92] with several additional parameters
(e.g., orientation angle, iris offset). These models are limited in that they assume
an overly-idealized representations of the face, and they do not generalize well to
arbitrary face parts or expressions.

Craw et al. [29, 31, 32] proposed using eye templates (similar to Yuille et al.) and
additional “feature experts” (ad hoc procedures) to detect face parts, including the
hairline, nose, jawline, etc. Most importantly, their system uses statistics (spatial
mean and variance) from a collection of training faces to constrain the placement of
face parts in the test image.

Wiskott et al. [121, 122] later introduced elastic Face Bunch Graphs (FBGs).
FBGs are similar in some ways to Craw et al.’s system. For example, FBGs employ a
graph over the face, which is trained to impose constraints on the range of allowable
deformations. However, Wiskott et al.’s “local experts” are more principled and
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general than Craw et al.’s feature experts. The model for each landmark is a “bunch”
of Gabor wavelets extracted from different training faces. This approach better adapts
to local appearance variation due to head pose, expression, illumination, etc.

The aforementioned systems have several key weaknesses. Yuille et al.’s deformable
templates require hand-built models and individually tailored optimization techniques.
Craw et al.’s system, although novel for determining the feasibility of solutions by
imposing statistical constraints, nonetheless has many heuristic parts and relies on
simulated annealing for optimization, which is very slow. Wiskott et al.’s system
exhaustively searches over the parameter space (scale and aspect ratio) to find the best
shape fit, which is slow and suboptimal. Active Contour Models, in addition to not
incorporating domain-specific structure, enforce only simple local shape constraints,
which do not prevent global errors.

To address these weaknesses, Cootes et al. introduced Active Shape Models (ASMs)
(a.k.a. “Smart Snakes”) [23, 25, 28]. ASMs represent an object’s shape X as a vector
of N landmark points:

X = [x1
T,x2

T, · · · ,xNT]T, (2.1)

where x = [x, y]T. X is modeled as a mean shape vector X0 plus a weighted combina-
tion of M shape eigenvectors Xm:

X = X0 +
M∑
m

pmXm (2.2)

= X0 + Φp,

where p = [p1, p2, . . . , pM ]T are the model parameters. The eigenvectors Φ =
[X1, X2, · · · , XM ] are computed using principle component analysis (PCA) [48, 49, 93]
across a set of aligned training shapes. The first few eigenvectors capture the most
significant modes of variation among the training shapes, so typically only a few
eigenvectors are included1 (i.e., M is typically much smaller than the total number
of training shapes). X0 and Φ act as powerful shape priors. A set of global trans-
formation parameters (scale s, rotation R, and translation t) are usually included in
addition to the local shape deformation parameters p to account for the placement

1The rule of thumb is to keep enough eigenvectors to retain 95% of the variance.
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and orientation of the object in the image. In the context of shape modeling, X0, Φ,
p and {s, R, t} together form a Point Distribution Model (PDM) [27]. The task of
ASMs is to compute the set of shape parameters {p, s, R, t} in the PDM that best fit
the object in the image.

ASMs and PDMs are attractive because they model shapes linearly (which allows
for relatively simple mathematics), they represent the modes of shape variation of a
class of objects (e.g., faces) compactly, and they prevent ‘implausible’ shapes from
occurring. Although ASMs are often very effective, they are not perfect. For example,
ASMs use only local image information near the landmarks for fitting, which can
result in mistakes due to local ambiguities, and, to simplify the optimization, they
take a first order Taylor expansion of the PDMs, which can lead to imperfect results.
Many subsequent works have improved the optimization strategy of ASMs, and the
basic PDM framework remains popular, as discussed in Section 2.6.

2.4 Early Holistic Appearance Models

Prior to the late 1980s, most work focused on detecting individual face parts such
as the eyes, mouth, and nose, and characterizing the face based on the geometric
relationships among these parts. In the late 1980s and early 1990s, holistic approaches
came to prominence starting with work by Sirovich and Kirby [59, 108] and then Turk
and Pentland [113, 116, 114, 115].

Sirovich and Kirby [59, 108] were the first to propose using the Karhunen-Loève
expansion [54, 83] (a.k.a. principal component analysis (PCA) [48, 49, 93]) to charac-
terize human face images. Starting with a collection of carefully photographed faces
(to ensure scale and position uniformity), they performed PCA on the raster-scanned
grayscale pixel values in the collection to compute a mean face image α0 and a set of
L face image eigenvectors {αl}Ll=1. They showed that a novel face image α can be
approximately reconstructed using a weighted sum of relatively few eigenvectors:

α = α0 +
L∑
l=1

λlαl, (2.3)

where λl is the l-th weight and L is typically much smaller than the number of face
images in the collection. Thus, once encoded, holistic face appearance can be stored
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using a small (i.e., fewer than 100) collection of weight parameters.
This result inspired Turk and Pentland [113, 114, 115, 116] to extend Sirovich

and Kirby’s work to face recognition. In their well-known 1991 paper, Eigenfaces for
Recognition [115], Turk and Pentland showed impressive face recognition results under
controlled laboratory conditions.

One of the major weaknesses in these early PCA-based approaches is the lack of
shape normalization. The implicit assumption is that pixels with the same image offset
correspond to the same semantic face location. Even with careful scale, translation,
and rotation alignment, this assumption is easily violated: different faces inherently
come in many different shapes, a single face can dramatically change its shape due to
facial expression, and, within the 2D image plane, face shape changes significantly
with head pose.

As an improvement, Craw and Cameron [29] described an approach similar to
Eigenfaces, but with one key difference: they first manually normalized the shape
of each face. Lanitis, Taylor, and Cootes [71, 72, 70, 73] further extended Craw and
Cameron’s work by automating the shape normalization procedure. They used ASMs
to automatically locate contour landmarks on each test face. ASMs were a natural
choice: ASMs use PCA to model shape variation much like Eigenfaces use PCA to
model holistic appearance variation.

Lades et al. [68] adopted a different approach. To established correspondences
between face images, their system deforms each image based on an overlaid deformable
rectangular grid. Unlike ASMs, their system uses grayscale information over the whole
face to deform the grid. Lades et al.’s system penalizes deformations, but does not
otherwise constrain them (e.g., using PDMs), which means the deformations can
produce non-realistic results.

In the late 1990s, Cootes, Edwards, and Taylor [21, 22] introduced Active Ap-
pearance Models (AAMs) in a seminal paper by the same name. Like Lanitis et
al.’s work [73], AAMs use the Eigenfaces framework to model face texture/grayscale
appearance holistically, and PDMs to model face shape. Instead of using ASMs to
guide the shape fit, AAMs use the grayscale values over the entire face.

The central problem that AAMs address is the search for appearance and shape
parameters. AAMs model both the overall grayscale appearance α and shape X of
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the face linearly:

X = X0 +
M∑
m=1

pmXm (2.4)

α = α0 +
L∑
l=1

λlαl, (2.5)

where pm and λl are the m-th shape and l-th appearance parameters, respectively;
{Xm=1}Mm=1 and {αl}Ll=1 capture the most significant M shape and L appearance
modes, respectively; and X0 and α0 are the average shape and grayscale appearance
vectors, respectively. Note that Eq. (2.4) is identical to the ASM formulation in
Eq. (2.2), and Eq. (2.5) is identical to the Eigenfaces formulation in Eq. (2.3). The
goal is to minimize the difference between the test face image and the model:

min
p,λ

∥∥∥∥∥W (I,p)−
(

α0 +
L∑
l=1

λlαl

)∥∥∥∥∥
2

2
, (2.6)

whereW warps the face image I in a piecewise linear fashion using the shape parameters
p.

The parameters p and λ are gradually updated using an iterative technique until
convergence. The original AAM fitting procedure relies on two approximations in
order to simplify the optimization. First, a first order Taylor approximation is used to
linearize the problem at each iteration. Second, instead of recomputing the derivative
of the error image with respect to the parameters at each iteration, the relationship
between the error image and the additive parameter updates is computed once at the
beginning using regression, and is assumed to be constant from start to finish. Recent
works have focused on improving these approximations.

2.5 Recent Parametric Holistic Methods

There are two key challenges in applying AAMs in practice. First, although AAMs
model shape and appearance linearly, the model parameters are nonlinear with respect
to the image pixel intensities. Consequently, the (nonlinear) optimization can easily
converge to an incorrect local minimum or fail to converge entirely, especially if the
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model is not initialized close to the true face shape. Second, it is difficult to adequately
synthesize the appearance of a new face using a single linear model. This is known as
the generalization problem.

Many researchers have extended and improved the original AAM algorithm to
better address these challenges. Blanz and Vetter [9] proposed a similar parametric
framework to compute and align 3D models to 2D face images. A single 3D linear
model can better handle large head pose variation compared to a single 2D linear
model. However, like standard AAMs, the algorithm must be initialized carefully
and is susceptible to incorrect local minima. Other types of significant variation like
exaggerated expressions and dramatic illumination are similarly challenging for holistic
3D models.

Matthews et al. [89] improved the optimization procedure of AAMs. Specifically,
they proposed a fitting algorithm based on an extension of the inverse compositional
image alignment algorithm [4]. Rather than updating the warping parameters addi-
tively, their algorithm updates the entire warp by composing the current warp with
the computed incremental warp at each iteration. Rather than a forward warp, their
algorithm uses an inverse warp. They also fit the local shape parameters p and the
global shape transformation parameters {s, R, t} simultaneously rather than solving
for them independently.

Cong Zhao et al. [137] focused on the generalization problem. They proposed a
joint face alignment technique in which a generic AAM is fit to a batch of similar
faces (i.e., faces of the same individual) simultaneously. Specifically, they added a
rank term to the optimization, which encourages the grayscale appearance of the input
images to be linearly correlated. Intuitively, the rank term favors a solution in which
the input images were well aligned with one another (not just the global model).

Xiaowei Zhao et al. [139] also focused on the generalization problem. Their
algorithm first selects a subset of k-nearest neighbor training faces (with respect to the
test face) to construct a target-specific AAM for each test face at runtime. Xiaowei
Zhao et al.’s algorithm is among those we have evaluated; we show in Sections 3.4
and 4.4 that our approach produces more accurate results on challenging faces.

AAMs are generative models that are well-suited to face image synthesis, but not
necessarily to fitting. Many works have taken a different approach by learning the
parameter fitting procedure in a discriminative framework. Such approaches (e.g.,
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[102, 103]) directly map image appearance to AAM parameter updates. Boosted
regressors [41, 42] are commonly used to learn the mapping, e.g., Boosted Appearance
Model (BAM) [82], Boosted Ranking Model (BRM) [123], and Tresadern et al. [112].

More recently, Tzimiropoulos and Pantic [117] proposed an algorithm for solving
the exact AAM nonlinear least squares problem (i.e., by using fewer approximations).
They showed that AAMs can be trained and fit on in-the-wild faces. Their fitting
accuracy is state-of-the-art among AAM-based methods. In Sections 3.4 and 4.4 we
compare our fitting accuracy with theirs, and show that our results are significantly
more accurate.

Assuming that AAMs can be fit perfectly to the image, they still have inherent
limitations. For example, because AAMs model the entire face holistically, they tend
to fail on unusual expressions (e.g., asymmetric expressions not represented well in the
training set). Similarly, local aberrations, like partial occlusions or intense shadows,
are difficult to model holistically.

2.6 Recent Parametric Local Methods

Parametric local methods model the appearance of the face locally via an ensemble of
region experts, or local detectors, and model the global shape using a parametric model
(i.e., a PDM). Chief among these methods are Constrained Local Models (CLMs) [33,
34, 104]. CLMs overcome many of the problems inherent in AAMs. They have
inherent computational advantages (e.g., opportunities for parallelization) [85], reduced
modeling complexity and sensitivity to illumination changes [104, 119], and they
generalize well to new face images and can be made robust against other confounding
effects such as reflectance, image blur, and occlusion [46]. Methods that build on the
CLMs framework typically differ along two dimensions: the type of local detectors
used and the optimization strategy employed.

A variety of local detectors have been proposed for CLMs. Detectors most com-
monly use local image patches, SIFT (Scale-Invariant Feature Transform) [84] descrip-
tors, or HOGs (Histograms of Oriented-Gradients) [35] to encode local appearance.
Prior to shape fitting, each local detector is exhaustively scanned over each landmark
region to produce a local likelihood response map. The local appearance can be
modeled parametrically or nonparametrically. Parametric models are more common,
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and they can be either generative or discriminative. Generative landmark appearance
models include, for example, Gaussian mixture models [46] or eigenvectors computed
over collections of small (e.g., 15 × 15 pixels) training image patches [33, 34] (i.e.,
much like Eigenfaces, but with each landmark modeled locally and individually). Dis-
criminative landmark appearance models use, for example, linear SVM (support vector
machine) classifiers [85, 104, 119] and boosted classifiers [134, 140] like AdaBoost [41].

A variety of iterative optimization strategies have been proposed for CLMs.
ASMs [25] use the simplest optimization strategy. They compute the error at each
iteration as a weighted least squares difference between the PDM and the coordinates
of the peak responses, where each weight is a function of the peak height. The
objective function is approximated by a first order Taylor expansion at each iteration.
Unfortunately, ASMs are sensitive to false peaks, which commonly occur in practice.
Another strategy is to approximate the objective function as a convex quadratic [119],
which is less sensitive to isolated false peaks, but can fail if the response maps have
multiple strong peaks. Gaussian mixture models provide a better approximation
in such cases [46], but are computationally expensive, converge only locally, and
the number of mixture components must be chosen a priori. Saragih et al. [104]
proposed Subspace Constrained Mean-Shifts for optimizing the PDM. Specifically,
their algorithm uses kernel density estimation (KDE) with an isotropic Gaussian
kernel to approximate the objective function. The mean shift algorithm [20] is used
to iteratively fit the PDM.

More recently, Asthana et al. [3] proposed Discriminative Response Map Fitting
(DRMF). DRMF is similar to discriminative approaches to AAM fitting that use
boosted regressors [82, 103, 123], but it fits the PDM to local response maps rather
than the holistic face appearance.

Several approaches have focused directly on addressing the combinatorial problem
of fitting shape models to many landmark candidates. Amberg and Vetter [2] proposed
an efficient branch and bound [69] strategy to discard large areas of the search space. In
principle, their approach can accommodate different types of shape models, although
they limited their experiments to a fixed 3D shape model. Zhao et al. [140] recently
proposed a pruning strategy for efficiently removing incorrect shape configurations
based on a discriminative structure classifier. They showed results on nine facial
landmarks (eye corners, eye centers, mouth corners, and nose tip), but it is unclear
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how well their algorithm performs on more challenging landmarks, e.g., on the upper
and lower lips, the face contour, and the eyebrows.

Local methods are perhaps best suited to face tracking, where the face shape
in each frame can be initialized using the result from the previous frame. This is
because each local detector must be placed near the true landmark location a priori.
If the initialization is close, then the size of the detector window can be small, which
yields fewer ambiguities (false peaks) and greater efficiency. On the other hand, if the
landmark locations are less predictable, then the size of each detector window must
be large, which can significantly reduce performance.

Because CLMs and AAMs employ the same underlying global shape model (i.e.,
a PDM), they sometimes do not generalize well to new and unusual face shapes. In
practice, they often fail on exaggerated asymmetric facial expressions or non-frontal
head pose, for example.

2.7 State-of-the-Art Approaches

Beginning with the influential work of Belhumeur et al.’s [7], recent works have
shifted away from testing on laboratory datasets like those listed in the left columns
of Table 2.1 toward more challenging “in-the-wild” datasets like those listed in the
right column of Table 2.1. Recent datasets have introduced new challenges, including
greater facial expression and head pose variation, partial occlusion, and a range of
real-world imaging conditions, including noise, blur, and poor illumination. To better
address these challenges, several recent works [7, 18, 110, 124] have proposed modeling
shape nonparametrically rather than parametrically.

2.7.1 Exemplar-Based Approaches

Belhumeur et al. [7] proposed an exemplar-based approach to shape modeling. Much
like previous work, their method starts with an ensemble of SVM-based detectors
to compute each landmark response map. The novel part of their method is the
shape regularization step. They adopted a generate-and-test approach similar to the
RANSAC (RANdom SAmple Consensus) algorithm [39] to select a subset of top face
shape exemplars and similarity transformations, which align the face shape exemplars
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Laboratory face datasets (early) In-the-wild face datasets (recent)

• AR (Aleix-Robert) [88]

• XM2VTSDB (Extended Multi-
Modal Verification for Teleser-
vices and Security Database) [90]

• CMU PIE (Pose Illumination Ex-
pression) [106]

• PUT [55]

• CMU Multi-PIE [45]

• Yale B [43]

• BioID [52]

• LFW (Labeled Faces in the
Wild) [51]

• AFLW (Annotated Facial Land-
marks in the Wild) [60]

• LFPW (Labeled Face Parts in
the Wild) [7]

• AFW (Annotated Faces in the
Wild) [142]

• Helen [74]

• IBUG (Intelligent Behavior Un-
derstanding Group) [98]

Table 2.1: Common experimental face datasets for face alignment and facial landmark
localization. The left column lists several popular face datasets captured in laboratory
environments. They tend to depict faces with less variation (e.g., controlled illumi-
nation, limited head pose, neutral expressions, etc.). Most early face datasets fall
under this category. The right column lists several popular face datasets containing
images depicting faces in unconstrained real-world environments. They tend to be
more recent, and the faces tend to be much more challenging (e.g., exaggerated facial
expression, non-frontal head pose, image noise, etc.). In recent years, researchers
have been moving away from datasets in the left column toward the more challenging
in-the-wild datasets in the right column.
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to the test face. Each generated {exemplar shape, similarity transformation} pair
is scored based on how well the landmark hypotheses from the aligned exemplar
shape coincide with the peaks in the response maps. The landmark hypotheses from
the top-scoring shapes are then fused to compute a final set of landmark locations.
Belhumeur et al. showed impressive results on real-world face images, with landmark
localization accuracy similar to human annotators assigned to the same task. We have
incorporated their nonparametric approach to shape modeling into our core pipeline,
and so we describe their algorithm in more detail in Section 3.3.

Feng Zhou et al. [141] recently introduced exemplar-based graph matching (EGM)
as an extension of [7]. They noted that a major limitation of [7] is that the final
position of each landmark is inferred independently in the fusion step using a greedy
procedure, which is suboptimal. They formulated the inference problem as a graph
matching problem. Specifically, given k sets of landmark candidates and m exemplar
faces selected using Belhumeur et al.’s algorithm, they find an optimal subset of
candidates by (1) computing an affine-invariant shape constraint online from the
m exemplar faces, and (2) solving a graph matching problem to find the optimal
candidates. We have incorporated a modified version of their algorithm in our pipeline
for transferring landmark annotations across multiple face databases. We describe
their algorithm in more detail in Section 4.3.

2.7.2 Voting-Based Approaches

There are three main problems with using landmark detectors to compute the local
response in each landmark region. First, the initial placement of the detection window
depends on a relatively good initialization, which is difficult in practice. Second, each
detector must exhaustively scan each local region, which can be inefficient. Third,
landmark detectors typically encode the appearance of a landmark using a single small
image patch, or a single feature descriptor (e.g., SIFT), which can lead to many local
ambiguities that make shape fitting more difficult.

To address these problems, several recent works have used the Generalized Hough
Transform [5] framework to ‘vote’ for landmark locations. The basic idea is to cast
a vote from each appearance feature in the test image toward a potential landmark
location. The votes are generally noisy because they each depend on only a single local
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image feature, but a collection of votes will tend to accumulate at the correct landmark
location. Hough voting is attractive because it can capture complex interactions
between image features and landmarks, and the interactions can be proximate or
distant.

There are at least three key challenges in using Hough voting in practice. First, a
feature-to-landmark vote offset must be computed efficiently for each {image feature,
facial landmark} pair in the test image. Several recent works [24, 36, 126] have
proposed using regression forests for this purpose, as described below. Second, because
some features are more discriminative and less noisy than others, the weight or
confidence of each vote must be computed. Vote confidence is usually computed
heuristically. Third, because the raw voting maps tend to by ‘spiky’, the votes must be
spatially aggregated prior to mode selection. The canonical approach is to model the
spatial uncertainty of the votes using a 2D Gaussian; this is equivalent to smoothing
the voting map with a Gaussian filter after all votes have been accumulated.

Shen et al. [105] recently proposed using Hough voting and image retrieval tech-
niques for face detection. Their approach relies on a large database of face exemplars
to detect faces in the test image. Specifically, each exemplar consists of a face image,
quantized SIFT features, and a bounding rectangle around the face. The SIFT fea-
tures are assigned to one of 100k quantization bins (a.k.a. “visual words”) using fast
approximate k-means [91], and are stored in an inverted index for fast lookup. At
runtime, each SIFT feature in the test image is also quantized, and a list of matching
features (i.e., features assigned to the same quantization bin) is retrieved from the
database. Each matched feature produces one vote in the test image, which extends
from the test feature to the center of a potential face in the test image.

The vote offset is determined as follows. Assume one of the matched features is
fj at location L(fj) in exemplar j. Exemplar j contains a face centered at location
L(facej). The vote offset in the test image is then s · (L(facej) − L(fj)), where s
accounts for scale differences between the test face and the exemplar face. Shen et
al. demonstrated state-of-the-art detection performance on challenging face images.
Although they briefly mentioned face alignment as an extension of their approach,
they effectively left it as future work. Our landmark localization approach is inspired
by their work, and so we describe their algorithm in more detail in Chapter 3.

Most recent voting-based approaches to facial landmark localization employ re-
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gression forests to efficiently compute vote offsets from features in the test image. For
example, Dantone et al. [36] proposed using conditional regression forests, in which
each tree is trained to map image features (input) to displacement vectors (output).
Each displacement vector casts a vote from the image feature toward a potential facial
landmark location. Each vote is weighted based on the offset distance (i.e., intuitively,
nearby votes are usually more accurate than distance votes). Dantone et al. imposed
no global shape constraint; they simply used mean shift [20] to independently select
the largest mode in each voting map as the final landmark location.

Cootes et al. [24] proposed Regression-Voting, which extended Dantone et al.’s
work by fitting a PDM to the regression voting maps. Their algorithm has many of
the benefits of CLMs, but without the need for exhaustive landmark detectors. Hough
voting maps can cover a much larger area than local detector windows with little
additional overhead.

Yang and Patras [126] proposed ‘sieving’ regression forests. Each vote is passed
through a cascade of sieves, which filter out irrelevant votes and enforce local geometric
constraints. The weight of each feature is a function of (1) its ability to accurately
vote for the center of the face, and (2) the distance of the vote from the feature to the
landmark. Like Dantone et al., Yang and Patras chose not to incorporate a global
shape model into their algorithm.

2.7.3 Regression-Based Approaches that Model Shape
Nonparametrically

Researchers have recently proposed using regression-based approaches to fit nonpara-
metric shape models to the image. Cao et al. [18] proposed training a boosted regressor
to explicitly minimize the shape alignment error. Their algorithm is iterative; at each
iteration a boosted regressor computes an additive shape increment as a function of
the image features and the current face shape. Their shape model is nonparametric in
the sense that it represents novel shapes as a linear combination of all training shapes.
However, like PDMs, each combination weight is uniform across the entire face, which
means the model may not adapt well to unusual asymmetric expressions, for example.

To address this weakness, Xiong and De la Torre [124] recently proposed a Su-
pervised Descent Method (SDM). They encode local appearance using a single SIFT
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feature at each landmark. Their algorithm is iterative. At the k-th iteration the face
shape x is updated as

xk = xk−1 + ∆xk−1, (2.7)

where ∆xk−1 takes the form

∆xk−1 = Rk−1φk−1 + bk−1. (2.8)

φk−1 is a long vector of all the SIFT descriptors extracted at the current landmark
coordinates. Rk−1 outputs a descent direction and {bk} is a bias term. Thus, for any
given set of SIFT descriptors, their algorithm produces a face shape update. The
sequence of descent directions {Rk} and bias terms {bk} are trained such that the
succession of xk converge to the true shape x∗ for all images in the training set.

Xiong and De la Torre’s algorithm is very fast and produces excellent results on
most faces. However, in practice their method is sensitive to the initialization, i.e., x0

must be reasonably close to x∗. The initialization is less problematic in face tracking
applications, in which the previous video frame generally provides a good initialization
of the current frame, but shape initialization is difficult in practice on many static
in-the-wild face images, where the initialization is provided by a face detector. We
observe in Section 3.4 that most of the errors from their algorithm are due to poor
shape initialization when applied to especially challenging face images.

2.7.4 Simultaneous Face Detection and Landmark
Localization

Almost all face parsing methods rely on off-the-shelf face detectors for initialization.
By far the most popular face detector is Viola-Jones [118] due to its simplicity, speed,
satisfactory performance on most near-frontal faces, and the availability of open-source
implementations, e.g., via the OpenCV (Open Source Computer Vision) library [1].
Unfortunately, Viola-Jones fails on many challenging face images, including faces with
non-frontal head pose and exaggerated facial expression. To address this problem,
Zhu and Ramanan [142] proposed a part-based model for coupling face detection and
facial landmark localization. They used a tree structure (i.e., with no cycles) to model
the global face shape, which allowed them to use dynamic programming to efficiently
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fit face shapes to the image. They used a mixture of trees to model topological
changes due to viewpoint/head pose, with a shared pool of template-based landmark
detectors. Zhu and Ramanan showed impressive detection and pose estimation results
on faces with a large variety of head poses, from frontal to full-profile. However, the
landmark localization accuracy of their method is generally rough, and their model
can produce unnatural deformations, which suggests that loopy spatial constraints
are necessary. Several recent facial landmark localization methods use their algorithm
for initialization [130].

2.7.5 Face Parsing with Segments and Pixel-wise Labels

There are many examples in the literature of algorithms that parse general scenes
(e.g., with buildings, sky, cars, etc.) using segments or pixel-wise labels (e.g., [61,
80, 128]), and there are many examples of methods that parse face images using
landmarks. However, few researchers have proposed explicitly parsing face images
using semantically-defined segments or pixel-wise labels, and current approaches are
limited.

Warall and Prince [120] adapted a general scene parsing algorithm for the specific
task of face image labeling. Their work is novel because it is among the first to propose
face parsing as an image labeling problem. Unfortunately, their segmentation results
were rough and inexact.

Kumar et al. [66, 67] proposed separating faces into different semantic regions
for face verification. However, because parsing was not the focus of their work, their
method is simple and imprecise: each face is first rectified to a common reference
using an affine warp, and then a collection of masks in the reference frame select the
pixels that lie within each region.

Luo et al. [86] proposed a hierarchical deep learning strategy for directly learning
a mapping from images to label maps. In their work, they recovered pixel-wise labels
for eyes, eyebrows, nose, mouth, and background (including the skin). Unfortunately,
the details of their approach are opaque and their component-specific segmentors do
not generalize well to larger, less distinct regions of the face, such as the cheeks and
the chin. Both [120] and [86] produce a binary classification at each pixel, which does
not generalize well to more complicated label interactions, such as those between the
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inner mouth region, the lips, and the skin around the lips, for example. In Chapter 5
we describe a nonparametric strategy to face image labeling, which produces a soft
segmentation that generalizes well to arbitrary label types.

2.8 Summary and Observations

In the early years of face parsing, from the late 1960s through the 1980s, approaches
tended to focus on locating facial parts as a way to characterize face images. Starting
in the early 1990s with Eigenfaces, holistic methods, which model the raster-scanned
grayscale pixel intensity values across the entire face region, grew in popularity. The
Active Appearance Model (AAM) framework was part of this trend and influenced
many subsequent face alignment works. To overcome some of the optimization and
generalization challenges of AAMs, local methods like CLMs became popular starting
in the mid-2000s. Both AAMs and CLMs rely on parametric models, which can fail
to generalize well to new faces in real-world conditions. For example, they can fail
on asymmetric facial expressions or non-frontal head pose. Many approaches have
been proposed in the last 10 years to better address the challenges of unconstrained,
in-the-wild face images. We can categorize most modern landmark localization and
face alignment approaches into five overlapping categories: parametric, nonparametric
and exemplar-based, regression-based, voting-based, and graph-based approaches. In
addition, a small number of works have focused on computing segment-based face
representations rather than landmark- or contour-based representations.

Among these approaches, nonparametric ones have recently demonstrated excep-
tional promise. For example, using exemplar-based shape constraints, Belhumeur et
al. [7] demonstrated landmark localization accuracy comparable to human annotators
on challenging faces. Both Cao et al. [18] and Xiong and De la Torre [124] recently
demonstrated even better state-of-the-art accuracy at real-time speeds using shape re-
gression and nonparametric shape models. Voting-based approaches like [36, 105, 126],
which model local appearance in a nonparametric way, have recently demonstrated
promising results despite imposing no explicit global shape constraints.

Despite the excellent performance of recent nonparametric approaches relative
to others, they are not perfect. For example, [7] employs local detectors to measure
the local likelihood of each landmark; local detectors are sensitive to large head pose



26

variation. The iterative regression strategy of [124] depends on a good initialization,
which is difficult in practice. Without shape constraints, voting-based approaches like
[36, 105, 126] are susceptible to false detections and local aberrations.

Inspired by the recent success of nonparametric approaches, and motivated by
their weaknesses, we propose to parse faces using a nonparametric exemplar-based
strategy. Our approach models both shape and local appearance nonparametrically
using a large collection of exemplar faces. A key result is that our approach can locate
landmarks with state-of-the-art accuracy on especially challenging face images. For
example, our algorithm produces accurate results on faces with significant yaw, pitch,
and roll head rotation, and on faces with non-neutral facial expression.

One of the challenges in achieving good results with an exemplar-based approach
is that success or failure depends on the existence of similar exemplars in the database.
Unfortunately, experimental databases are usually developed independently with no
common standards. For example, AFLW faces include up to 21 landmarks, but Helen
faces include 194 landmarks. Furthermore, different datasets have different strengths
and weaknesses. For example, the LFPW dataset includes many adult celebrities with
mostly frontal head pose, while AFW is smaller but includes a wider range of ages and
head poses. Because of the different landmark definitions, researchers must choose
one database for experimentation and evaluation, which precludes taking advantage
of all the different kinds of information from multiple databases. Due to the expense
and tediousness of manual annotation, automated or semi-automated methods are
needed to combined these datasets.

We therefore introduce a novel pipeline that extends our core facial landmark
localization algorithm for the task of transferring landmark definitions across different
datasets. Specifically, our extended algorithm takes multiple source datasets as input
and collaboratively fills in the ‘missing’ labels in a target dataset using a union of
landmarks defined in the source datasets. Our algorithm can optionally use known
landmarks in the target dataset as constraints. One of the concrete results from this
work is 63 supplementary landmarks for faces in the AFLW database [60], which
increases the number of landmarks from 21 to 84. AFLW is significant in that, to the
best of our knowledge, it is currently the largest publicly available in-the-wild face
dataset with 25k annotated faces.

Face parsing is, with few exceptions, performed by facial landmark localization and
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face alignment algorithms. Landmarks and contours are convenient for computational
and storage reasons, and many experimental datasets exist with ground truth land-
mark annotations. However, a landmark-based representation is ill-suited for several
compelling applications in face image analysis. For example, portrait editing wizards
that automatically or interactively touch up faces often require accurate delineations
between face parts. Contours are well-suited to delineating the eyes from the cheek,
and the lips from the chin, for example. On the other hand, skin-hair boundaries
are often too complex to capture with a single contour, and other boundaries, like
the sides of the nose, are naturally indistinct, which is lost with sharp boundaries
imparted by contours. Facial attribute recognition, too, could benefit from a more
descriptive segment-based representation of the face. For example, image texture
analysis of skin regions is useful for age recognition, and the shape of the hair can be
a useful cue for gender recognition.

Motivated by these examples, we show that an exemplar-based strategy is well-
suited to the task of automatic face parsing with landmarks and segments. Because
our approach avoids parametric models, the collection of exemplar faces and the set
of segment types can be easily extended online with no retraining. Our algorithm
estimates soft segments, which naturally encode the indistinct boundaries between
some facial parts. In principle, such a representation is general enough to model any
facial part, including hair, ears, teeth, and skin.
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Chapter 3

Face Image Parsing with
Landmarks

3.1 Introduction

Facial landmark localization is an important research area in computer vision in part
because digital face portraits are ubiquitous. Many compelling applications depend
on it, including face recognition and retrieval, face animation, and face image editing
wizards. At the same time, robust facial landmark localization is very challenging in
practice. Real-world images can be cluttered, faces can be partially occluded, and
they can exhibit large variations in appearance, shape, expression, and head pose.
In particular, when current approaches fail, they often fail on faces with extreme
expression and/or head pose.

One primary source for failure is the practical challenge of initialization. Many
landmark localization methods rely heavily on a reasonable initialization as a pre-
requisite for success, and can fail to find the correct solution if the initial face shape
is too far from the true optimum. A popular strategy, even for recent approaches
(e.g., [3, 18, 19, 104, 124]), is to first detect the face (e.g., using [118]), and then
fit a mean face shape (in which the shape is defined by the facial landmarks) to
the detection window. For upright near-frontal faces (e.g., within 30 degrees yaw,
pitch, and/or roll head rotation from frontal), detection and initialization is seldom a
problem. However, for extreme poses and some expressions, traditional face detectors
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Figure 3.1: Our robust exemplar-based algorithm locates landmarks on challenging
faces with extreme head pose.

(e.g., [118]) may fail, or the true shape of the face inside the detection window will
differ significantly from the initial shape, making a good initialization unlikely, thereby
challenging even recent methods like [124], as we observe in Section 3.4. This problem
is often minimized in the literature, where even recent, popular evaluation datasets
like LFW [51], LFPW [7], and Helen [74] make initialization relatively easy.

Part-based models [38, 127] can be used to address the initialization problem,
but learning an accurate part graph parameterization and inferring part labels from
the graph can be challenging. Recent works [130, 142] simplify the graph structure
to a tree and produce impressive results. Failure cases suggest that human faces,
unlike the human body, still prefer a loopy graph structure. Furthermore, a landmark
graph typically only models interactions between landmarks but does not model the
interactions between landmarks and non-landmark image patches.

Our goal is to accurately localize landmarks on faces with extreme head pose and/or
expression. To achieve this goal, we have developed an nonparametric exemplar-based
approach that requires only a weak initialization. More specifically, we generalize
and combine a recent exemplar-based approach for shape regularization [7] with an
exemplar-based approach for face detection [105] to model context interactions between
landmarks and their surrounding local appearance features in a nonparametric way.
By “weak initialization” we mean that our algorithm does not require (nor does it
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position) a face shape for initialization. Our algorithm relies on a face detector (i.e.,
[105]) only to establish a rough initial size for the face and the region of interest
in the image. Our algorithm also searches over multiple face scales and rotations
during landmark localization, which allows for a large margin of error in the initial
face detection. The end result is a new pipeline that achieves state-of-the-art results
on unconstrained face datasets populated with challenging poses and expressions.
The robustness and flexibility of our method comes from its ability to efficiently and
effectively leverage the information from a large database of face exemplars.

This chapter describes three contributions:

1. We propose a data-driven approach for modeling the correlations between each
landmark and its surrounding appearance features. At runtime, each feature casts
a weighted vote to predict landmark locations, where the weight is precomputed
to take into account the feature’s discriminative power.

2. We combine nonparametric local appearance modeling with nonparametric shape
regularization to build a novel facial landmark localization pipeline that is robust
to common types of real-world variation, including scale, rotation, occlusion,
expression, and most importantly, extreme head pose.

3. We compare our approach to several recent approaches and show state-of-the-art
accuracy on two especially challenging in-the-wild datasets populated by faces
with extreme head pose and expression.
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3.2 Related Work

Early facial landmark localization and face alignment methods, e.g., Active Shape
Models (ASMs) [25] and Active Appearance Models (AAMs) [21], relied on global
parametric models for face shape and appearance. Parametric models work well for
favorable face images, e.g., where the illumination, pose, and expression do not vary
greatly.

To overcome the well-known generalization problem in AAMs, Zhao et al. [139]
proposed computing a separate AAM for each test face using k-nearest neighbor
training faces (w.r.t. the test face) rather than all training faces. Using k-NN exemplars
is an important part of our approach (see Section 3.3.3) and others [7, 105, 141],
although it is not our main contribution. Like other AAM-based methods, [139]
involves a gradient decent-type optimization over the whole face (holistic), which is
sensitive to initialization. We use a Hough voting scheme over features to model the
appearance context of each landmark, which is robust to poor initialization.

Constrained Local Models (CLMs) [3, 34, 104] handle a wider range of faces than
generic AAMs by employing an ensemble of local texture patches or landmark detectors
that are constrained by a global shape model. The local appearance models are more
robust to a range of challenges including occlusion and global illumination changes,
but CLMs still rely on parametric shape models for regularization, which may not
generalize well to a broad range of poses.

Belhumeur et al. [7], and more recently Zhou et al. [141], use nonparametric global
shape models, which generalize better to challenging real-world faces. However, these
two methods still rely on local landmark detectors (linear support vector machines
(SVMs)) to form the landmark response. Because landmark appearance changes dra-
matically with large head pose variation, these two methods are limited to constrained
head poses.

Recent regression-based approaches [18, 124] have also demonstrated increasingly
impressive performance on real-world faces without the need for a parametric shape
model. Although these methods have some tolerance to inaccurate initialization, for
many challenging faces, where pose can easily vary past 30 degrees yaw, pitch, or roll
head rotation, a good initialization is much more difficult. As a result, descent-based
methods can get stuck in local optima.



32

Zhu and Ramanan [142] address this initialization problem in their work. They
use a tree structured part model of the face, which both detects faces and locates
facial landmarks. One of the major advantages of their approach is that it can handle
extreme head pose. However, their method only models pairwise landmark interactions
on a tree structure. Yu et al. [130] speed up [142] by simplifying the mixture of parts
for face detection and initial landmark localization, and they extend [142] by adding a
two-step local refinement procedure, which resembles the approach in [104] followed
by the optimization of several additional constraints via a gradient descent method.
Like [142] and [130], we focus on locating facial landmarks without relying on a
good initialization, but we model the full interactions between each landmark and its
surrounding local features. That is, our context interactions are not limited to a tree
structure, and our approach does not involve graphical model inference.

We are most inspired by the recent face detection work of Shen et al. [105], who rely
on a Hough transform based feature voting scheme to transfer many face hypotheses
from a large database of exemplar faces to the test image. The votes capture the
appearance and geometric correlations between local image features and the face
center. While [105] focuses on face detection, we focus on landmark localization, and
we compute a set of sparse feature weights (i.e., most of them are zero) that naturally
amplify reliable features and suppress noisy or unreliable features across the database;
our weights are tailored to each {feature, landmark, exemplar} combination and are
computed in a data-driven way.

Several recent object detection [62, 95], tracking [129], and face landmark local-
ization methods [24, 36, 126] also rely on similar feature voting schemes to generate
object/landmark response maps. Among these methods, Yang and Patras [126] is
most similar to our work. They use image patches to cast votes for the location of
each facial landmark. Our core approach is much simpler than [126]: we do not train
regression forests or use SVM classifiers. Instead, we simply use a fast approximate
nearest neighbor algorithm [91] for image and feature retrieval, followed by weighted
vote accumulation. Unlike [126], we incorporate a shape regularization step in order
to avoid false landmark detections.
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3.3 Approach

In this section we first give an overview of our pipeline followed by technical details of
each step. Figure 3.2 shows a visual synopsis of our pipeline.

3.3.1 Overview

Database Construction Our database is composed of a large collection of exem-
plars. Each exemplar has four components: a face image, a set of dense quantized
SIFT [84] features, a sparse set of semantic facial landmarks corresponding to mouth
corners, nose tip, chin contour, etc., and a unique set of weights, one weight per
{feature, landmark} pair. Following the approach in [105], we quantize each SIFT
descriptor using fast approximate k-means [91], which efficiently maps each descriptor
to a visual word. The weights are an important aspect of our approach; Section 3.3.7
describes in more detail how they are useful and how we compute them.

Runtime Preprocessing Given a test image, we first use a state-of-the-art face
detector [105] to locate the face and roughly estimate its scale. The test image is
cropped to the face region, and then rescaled to approximately match the scale of the
exemplar faces (scale estimation will be refined in later steps). Dense SIFT descriptors
are then extracted over the test face at multiple orientations. Finally, each descriptor
is quantized for efficient matching in later steps.

Step 1: Top Exemplar Retrieval Given a detected face region, retrieve a subset
of top similar k exemplar faces from the database. The goal is to retrieve exemplars
that are similar to the test face in appearance, shape, expression, and pose so that
features in the exemplars will produce accurate landmark votes in the test image.

Step 2: Landmark Voting For each type of landmark, generate voting maps using
a multi-scale and multi-rotation generalized Hough transform [75]. Each matched
feature from the top k exemplars casts a vote (for each scale and rotation) for a
possible landmark location in the test image. The result is a table of voting maps for
each landmark, where each table row corresponds to an in-plane rotation, and each
table column corresponds to a scale estimate.



34

Input image

Output result

Runtime preprocessing

Step 1: Top exemplar retrieval
(perform for each orientation)

Step 2: Landmark voting

Step 3: Voting map selection

Step 4: Final landmark estimation

Exemplar database

Face detection Resize and crop
Extract dense SIFT features

at multiple orientations

0 degrees-10 degrees +10 degrees

SIFT features quantization

...
...

...

...

...
36478
36479
36480
36481
36482

Output visual 
word IDVisual wordsInput SIFT feature

...

Approx. nearest 
neighbor match

Each exemplar:  
  • Image
  • Landmarks
  • Dense quantized SIFT feats. 
  • Feature weights

...

...

...

...

...

...

...

...

.........

Hough voting
(face center)

...
Bag of
words 

retrieval 1 2 3 3000

...

Sort voting maps
Select top k = 200 exemplars

1 2 3 3000

... ...

Top 3000 Voting maps

(one set for each 
orientation)

... Weighted 
Hough voting

Left eye Right eye Mouth
-10 deg.

0 deg.

+10 deg.

0.9 1.0 1.1
Scale

A
ng

le

0.9 1.0 1.1
Scale

0.9 1.0 1.1
Scale

Input face

Top k exemplars
...

...

Left eye Right eye Mouth
-10 deg.

0 deg.

+10 deg.
0.9 1.0 1.1

Scale

A
ng

le

0.9 1.0 1.1
Scale

0.9 1.0 1.1
Scale

Select scales
(landmark specific)

Select orientation
(globally consistent)

Hough voting maps

Left eye Right eye Mouth
-10 deg.

0 deg.

+10 deg.
0.9 1.0 1.1

Scale

A
ng

le

0.9 1.0 1.1
Scale

0.9 1.0 1.1
Scale

Left eye Right eye Mouth
-10 deg.

0 deg.

+10 deg.
0.9 1.0 1.1

Scale

A
ng

le

0.9 1.0 1.1
Scale

0.9 1.0 1.1
Scale

Top k exemplars

Left eye Right eye Mouth

Top shape
hypotheses

Shape
aggregation

RANSAC-like
face shape fitting

Selected landmark voting maps

...

Figure 3.2: Overview of our facial landmark localization pipeline. Above, for simplicity,
we search over 3 face orientations, 3 face scales, and we compute 3 landmarks. However,
in practice, we search over 7 orientations, 7 scales, and we compute 68 landmarks.
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Step 3: Voting Map Selection Select a single voting map for each landmark.
We define the score of each voting map as the height of the maximum peak in the
voting map. For each landmark, we save the top-scoring voting map in each row of the
table of voting maps (each row corresponds to a rotation), which gives a unique scale
estimate for each {landmark, rotation} pair. Among these voting maps, we select the
single global rotation (and corresponding voting maps) that produce the maximum
total score across all landmarks.

Step 4: Final Landmark Estimation Given a single voting map for each land-
mark, estimate a final set of landmark locations. Due to local ambiguities, noise,
occlusions, etc. each voting map may contain multiple peaks. We employ a robust
nonparametric shape regularization technique [7] that avoids false peaks in the voting
maps and estimates a final arrangement of landmarks.

3.3.2 Database Construction

We use 17685 images exclusively from the Multi-PIE Face Database [45] as our
exemplars. The Multi-PIE authors annotated 4685 face images, each with 68 landmarks
(or 39 landmarks for profile faces). Some Multi-PIE faces have landmarks for one pose
(e.g., -30 degrees yaw), but not the opposite (e.g., +30 degrees yaw). For such faces
we synthesized the ‘missing’ landmarks by horizontally flipping the labeled image and
its landmarks. 400 additional Multi-PIE images were labeled by [142]; we manually
labeled 960 more (mostly non-frontal faces with non-neutral expressions). For each
{session, subject, expression, pose} snapshot, Multi-PIE provides 20 images with
different lighting directions. Therefore, we used each unique ground-truth face shape
on multiple images with the same {session, subject, expression, pose} combination,
but different lighting, to obtain 17685 labeled images. Prior to feature extraction and
quantization, we used Procrustes analysis to align all exemplar faces.

3.3.3 Step 1: Top Exemplar Retrieval

In order to transfer landmarks from the database to the test image, the shape and
appearance of the exemplar faces and the test face should not be drastically different.
For example, a left-profile face has a much different shape and appearance than a
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right-profile face; there are few feature-landmark correlations between the two. We
therefore select a top subset of exemplars for further processing.

Many strategies exist for retrieving similar face images from a database. We use
our generalized Hough transform framework to score each exemplar image. First, we
use a bag-of-words score to efficiently select the top 3000 exemplars. Next, we use
the features on the test face to vote for the center of each exemplar face among the
top 3000. The final score for each exemplar is the height of the maximum peak in the
voting map associated with each exemplar face. We sort the scores, and select the top
k = 200. Shen et al. [105] adopt a similar strategy for retrieving exemplar faces in the
validation step of their face detection algorithm.

3.3.4 Step 2: Landmark Voting

For efficiency, rather than exhaustively sliding each exemplar over the test image, we
use quantized features and employ an inverted index file to efficiently retrieve matched
features from the top k exemplars. When a feature in the test image is matched with
an exemplar feature, the feature-to-landmark offset in the exemplar is transferred to
the test image. The offset vector extends from the test feature toward a potential
landmark location, and produces a vote. After many such votes, a voting map is
formed, where the votes tend to cluster at landmark locations.

This Hough voting strategy is sensitive to scale and rotation differences between
the test image and the exemplars. We therefore produce votes at several different
scales (0.7 to 1.3 in increments of 0.1) and in several orientations (-30 to +30 degrees
roll in increments of 10 degrees) on the test face. For efficiency, we use the same
extracted features across multiple scales (this is possible because the scale differences
between the test face and the exemplar faces are close to 1); only the vote offset vectors
are scaled. For votes at different in-plane rotation angles, we use the corresponding
set of orientation-specific features computed during the runtime preprocessing step.
This is the same approach taken in [105] for face detection and alignment, except
they omit rotation search. In our evaluation, we found that the rotation search is
critical to our performance, as Figure 3.7 shows. This is partly due to the fact that
our exemplar faces are aligned and thus exhibit very little in-plane rotation variation.
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3.3.5 Step 3: Voting Map Selection

In selecting voting maps, we enforce the constraint that all voting maps must come
from the same in-plane rotation. The intuition is that faces tend to rotate globally, not
locally. On the other hand, the scale of face regions can vary locally due to expression
or pose. We therefore select scale separately for each landmark.

3.3.6 Step 4: Final Landmark Estimation

There are many approaches in the literature for enforcing shape constraints, e.g.,
[25, 34, 104, 130]. We use an exemplar-based approach to shape regularization [7],
which fits nicely within our exemplar-based framework. To make this chapter more
self-contained, we describe the essence of the shape regularization algorithm here.

LetX = {x1,x2, . . . ,xn} denote the location of n facial landmarks and let di denote
the window of measured detector response values for the i-th landmark. Belhumeur
et al. [7] use SVM-based detectors to produce di, whereas we use the Hough voting
strategy described in Step 2. Let j be an index into a set of exemplar face shapes,
and let t represent a 2D similarity transformation such that xij,t is the t-transformed
location of landmark i from exemplar j. A RANSAC-like procedure first generates
and tests a large number of plausible values for j and t:

1. Select a random j.

2. Select two random face parts (i.e., landmark detector windows). Randomly
select one of the g highest modes in each detector window. Match each landmark
mode to the corresponding landmark in exemplar j (i.e., this creates two pairs
of matched points).

3. Compute t such that the exemplar landmarks are aligned with the selected
modes in the landmark response map.

4. Evaluate ∏n
i=1 P (xij,t|di), where P (xij,t|di) is the detector response value in di

at location xij,t.

5. Repeat Steps 1 to 4 r times.

6. Record the m∗ pairs {j, t} for which the evaluation in 4 is largest.
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We use r = 40000, g = 4 and m∗ = 100. In Belhumeur et al.’s original work, j searches
over the entire collection of exemplar faces. However, we constrain j to only search
over the k = 200 exemplars retrieved in Step 1 of our pipeline. The top k exemplar
shapes tend to be better tailored to the test face than the general set of exemplar
shapes, which further aids the optimization.

The final location for each landmark is selected independently using a greedy fusion
procedure. Specifically, each location xij,t receives a weight, wij,t = P (xij,t|di). The
final location for landmark i is selected as the highest mode among all m∗ weighted
locations. Intuitively, because each xij,t comes from an actual face shape Xj,t, the
possible modes are limited to plausible face shapes. Please see [7] for more detail.

The SVM-based detectors used by Belhumeur et al. [7] are limited in that each
appearance feature provides information only about its own location, and each SVM
attempts to capture all the local appearance variation around each landmark within a
single model. This works well on faces with limited head pose variation, but can fail
otherwise. In contrast, by aggregating votes from many features, our method takes
advantage of the appearance context around each landmark, which provides more
robustness to local noise, occlusions, etc. We therefore use our voting-based landmark
response maps in place of the local detector response maps used in [7].
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3.3.7 Computing Exemplar Feature Weights

In this section we describe our approach for computing a unique weight for each
{feature, landmark} pair in each exemplar image. Each weight is a score on the
appearance and geometric consistency of each {feature, landmark} pair relative to
similar pairs in other images.

Previous approaches compute this weight heuristically. For example, Shen et
al. [105] attempt to down-weight potentially bad votes using a heuristic from object
retrieval: idf2(k)

tfQ(k)tfD(k) , where idf2(k) is the squared inverse document frequency of visual
word k, and tfQ(k) and tfD(k) are the term frequencies of k in the query image and the
database image, respectively. Shen et al.’s weighting scheme hinges on the heuristic
that common and repeated features produce noisier votes.

We rely on a different intuition, and we compute each weight in a data-driven
way. Intuitively, if a {feature, landmark} pair is consistent with similar pairs in other
images (i.e., the features map to the same visual word and the feature-to-landmark
offsets are similar), then the feature is a good predictor of the true landmark location,
and its vote should have higher weight. Conversely, if a feature is corrupted due to
occlusion, for example, or if it describes an ambiguous local region, then its vote
should have lower weight.

For simplicity, the discussion below focuses on a single generic landmark, but the
same procedure applies to all landmarks. We first define some new notation. Let L(f ri )
be the location of feature i in exemplar r, and let L(lr) be the location of landmark l in
exemplar r. The offset vector from L(f ri ) to L(lr) is denoted ∆L(f ri , lr) = L(lr)−L(f ri ).
Let w(f) denote the mapping from feature f to its visual word, i.e. w(f ri ) = w(f r′

j )
means that feature i in exemplar r matches feature j in another image r′.

Our goal is to compute the probability that f ri will vote for the correct landmark
location L(lr′) in other face images. Here, we assume that if two features f ri and f r′

j in
two exemplar images r and r′ correspond to the same visual word, i.e., w(f ri ) = w(f r′

j ),
the relative location offsets from the feature to the landmark should be approximately
the same. For “other similar face images” we use the top k retrieved exemplar images
from Step 1 of our approach.

We estimate the above probability by counting the number of correct votes (i.e.,
counting the number of matched offset vectors that are approximately the same) and
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Exemplar image Landmark 3 Landmark 31 Landmark 40 Landmark 55

Figure 3.3: Visualization of landmark-specific feature weights. The red dot in
each image shows the ground truth landmark location. The intensity of blue is
proportional to the weight of the underlying feature. We see that higher weights
naturally correspond to more locally discriminative regions and fully visible landmarks,
while lower weights occur in uniform regions. For example, for Landmark 31, we see
that features near the edges of the nose have higher weight than features on more
uniform areas like the cheeks or philtrum. For Landmark 3, which is occluded by hair
in the first and fourth rows, and partially occluded due to head pose in the second
row, the feature weights are generally lower. We do not use a parametric form to
model the weight; the weight values are completely derived from the data.
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dividing by the total number of votes. This can be written mathematically as

P (∆L(f ri , lr)) = 1
N

∑
r′ 6=r

∑
j∈r′ s. t.

w(fr′
j )=w(fr

i )

Ψ
(∥∥∥∆L(f ri , lr)−∆L(f r′

j , l
r′)
∥∥∥) , (3.1)

where the summation is over all features in the other exemplar images that share
the same visual word, and N is the total number of votes cast by f ri . The function
Ψ(·) in Eq. (3.1) quantifies the notion of “approximately the same offset.” In our
implementation we use Ψ(x) = exp

{
− x2

2σ2
g

}
. We observe in Eq. (3.1) that

||∆L(f ri , lr)−∆L(f r′

j , l
r′)|| = ||L(lr)− V ||, (3.2)

where V = L(f rj ) + ∆L(f r′
j , l

r′). This implies that we can evaluate Eq. (3.1) by first
generating a single voting map for f rj , where each vote is cast at location V in exemplar
r by features in other exemplars; we then count the number of votes near L(lr) and
divide by N to compute P (∆L(f ri , lr)).

As a kind of regularization, we modulate P (∆L(f ri , lr)) by a spatial weight that
gradually decreases with distance from the landmark,

srj = exp
{
−
||L(lr)− L(f rj )||2

2σ2
s

}
. (3.3)

Regularization is important because N in Eq. (3.1) can be small, especially for features
far from landmarks. Thus, the final weight is

vrj = srj · P (∆L(f rj , lr)). (3.4)

Figure 3.3 shows four sets of weights for four different exemplar images. Several
qualities emerge naturally from the data. For example, features in uniform regions, such
as the cheeks and forehead, receive smaller weights, while features in less ambiguous
regions receive larger weights. We see that nose and chin landmarks require wider
spatial support, while very distinctive landmarks such as the eye and mouth corners
require only nearby support. Because the weights are specific to each feature, landmark,
and exemplar, they can adapt to whatever global or local conditions exist, including
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different poses, illuminations, facial expressions, occlusions, etc.
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3.3.8 Implementation Details

For a large database of exemplar faces, storing weights vrj for all j and r across all
types of landmarks could be memory prohibitive. Fortunately, most features have all
zero weights, as shown in Figure 3.4 (a), which means we can significantly reduce the
size of the database by completely removing them. Additionally, few weights from
remaining features are significantly larger than zero, as shown in Figure 3.4 (b), which
means they can be efficiently stored in sparse arrays. Thus, even with 68 landmarks,
all of our weights fit into a 1.1GB file after 8-bit quantization.

We use k = 200 top retrieved exemplars for landmark localization and for training
weights. We empirically set σs = 0.1 · sizer in Eq. (3.3), where sizer is the size of the
r-th exemplar face, defined as the average height and width of the tightest bounding
box that encloses all 68 ground truth landmarks. Intuitively, this setting ensures that
a feature’s influence will be effectively limited to landmarks on only the most nearby
face part(s) (e.g., a left eye feature will have negligible influence on right eye landmark
estimates).

We empirically set σg = 0.03 · sizer in the Gaussian Ψ in Eq. (3.1). In practice, σg
controls the degree to which the voting maps are smoothed. σg = 0.03 · sizer effectively
smooths together votes that are within a few pixels of one another.

For face detection, we used our implementation of Shen et al.’s face detector [105].
We used their exemplar database to train their algorithm; most of their exemplars
come from the AFLW dataset [60]. Please see [105] for more details. For landmark
localization, all of our exemplar images come exclusively from the Multi-PIE Face
Database [45]; please see Section 3.3.2 for details.
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Figure 3.4: Feature weight histograms. (a) The distribution of the maximum weight
associated with each feature. Because many features have all zero weights (76.3% in
our implementation), we can completely remove them from the database. (b) The
distribution of all weights among remaining (i.e., not all zero) features from (a).
Few weights from remaining features are significantly larger than zero (20.5% in our
implementation), which means they can be stored efficiently in sparse arrays.
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3.4 Results and Discussion

In this section we evaluate the accuracy of our approach and compare with several
recent works [3, 7, 124, 130, 139, 142]. We show that our approach produces more
accurate landmark estimates on especially challenging faces.

3.4.1 Experimental Datasets

We have evaluated our method on two publicly available datasets: AFW [142] and
IBUG [99, 98]. We chose these two datasets because they each contain a large
portion of faces with challenging head pose/camera viewpoint and/or facial expression.
In contrast, other popular datasets such as LFPW [7], LFW [51], and Helen [74]
contain predominantly frontal, and otherwise less widely varying test cases, which
are consequently well-addressed by current, less robust methods. For example, the
average landmark localization accuracy in [7] was shown to be slightly better than
human labelers on LFPW.

For our quantitative results, we compared our landmark estimates with the ground
truth annotations provided as part of the 300 Faces In-the-Wild Challenge (300-
W) [99, 98]. Specifically, 300-W provides 68 landmarks per face according to the
Multi-PIE arrangement [45] for 337 faces in AFW and 135 faces in IBUG. Typical
AFW and IBUG faces are shown in Figure 3.5 with landmarks estimated by our
algorithm overlaid in green.

3.4.2 Comparisons with Recent Work

We present cumulative error distribution (CED) curves in Figure 3.6 to quantitatively
compare the accuracy of our method with six other state-of-the-art methods. For
fair comparison in Figure 3.6 we evaluated only a subset of landmarks (49 out of 68:
the eye, nose, and mouth landmarks, with inside mouth corners omitted) common to
all method shown (i.e., Xiong and De la Torre’s [124] publicly available executable
outputs only 49 landmarks). Unless otherwise noted, we evaluated each algorithm
using the authors’ original implementation.
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Figure 3.5: Selected qualitative results on two challenging evaluation datasets:
AFW [142] (top three rows) and IBUG [99, 98] (bottom three rows). Our method can
handle a wide variety of very challenging conditions, including significant image noise
and blur, occlusions, and exaggerated expressions and head poses/camera viewpoints.
Please see Appendix A for additional results. Best viewed electronically in color.
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Figure 3.6: Two sets of cumulative error distribution (CED) curves comparing our
accuracy with recent methods. In all cases, the average localization error is normalized
by the face size, defined as the average height and width of the tightest bounding box
that encloses all 68 ground truth landmarks [142]. For fair comparison with other
works we evaluated on a subset of 49 landmarks (eye, nose, and mouth contour points,
minus the inner mouth corners) common to all methods above (i.e., Xiong and De la
Torre output 49 landmarks). We see that our method performs significantly better
than Zhu and Ramanan [142] and Yu et al. [130] despite the fact that these methods
are designed to handle faces with non-frontal pose. Our method performs significantly
better than Belhumeur et al. [7] and Xiong and De la Torre [124], although most of
the errors in [124] are due to the initialization. When we initialize [124] using our
landmark estimates, the accuracy is better than either approach in isolation, which
suggests that our method is complementary to methods like [124].

Comparisons with Zhu and Ramanan [142] In their original evaluation, Zhu
and Ramanan assigned an infinite localization error to the entire face if their algorithm
incorrectly estimated the landmark arrangement (i.e., if a frontal face was incorrectly
labeled as a profile face with only 39 visible landmarks). In our evaluation, if an
incorrect arrangement is given by their algorithm, we simply ignore the missing
landmarks, and measure the mean error among the given landmarks.

Zhu and Ramanan’s landmark localization algorithm is tied to their detection
algorithm, and so we do not provide it with any kind of initialization. For each
ground truth face annotation, we select the output face that has the largest bounding
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box overlap (the area of intersection divided by the area of union), and we ignore
all false positives. We set their detection threshold to −∞ to avoid missing faces.
Zhu and Ramanan provide three off-the-shelf models with their implementation, all
trained on Multi-PIE. Although it requires the most computation time, we used their
Independent-1050 model for our experiments since it generally performed best.

Comparisons with Yu et al. [130] Yu et al. rely on a simplified version of Zhu
and Ramanan’s algorithm for initialization, and so we do not provide a separate
initialization. However, the authors’ implementation only returns landmark estimates
for the highest scoring face in each image, which is a problem for test images with
multiple faces. To obtain results for all annotated faces, we isolated each face from the
rest of the image. Specifically, we cropped each annotated face using a box centered
on the true face location with it’s height and width set to be approximately twice the
face height and width.

Comparisons with Belhumeur et al. [7] We used our own implementation of
Belhumeur et al.’s algorithm, which we trained on our Multi-PIE exemplar dataset. We
endeavored to reproduce their algorithm as faithfully as possible, although some subtle
differences are inevitable. As suggested in [7], we placed a mean face shape over each
face detection to initialize the location of each landmark detector window. Belhumeur
et al. set the size of each landmark detector window to approximately 33% of the
height/width of the tight face bounding box in their original work. Unfortunately,
we found that this size did not always cover the true landmark locations in our
experimental datasets, especially for non-frontal faces. As a compromise, we initialized
the height and width of each detector window to the larger of: (1) 33% of the size of
the tight face bounding box, or (2) large enough to cover the true landmark location
plus 5% of the face size. To evaluate [7] on more challenging datasets (i.e., AFW
and IBUG), we had to use a more robust face detector, e.g. [105], for initialization.
The Viola-Jones [118] detector used in [7] works well for near-frontal faces typical
in datasets like LFPW and LFW, but misses many faces in AFW and IBUG (e.g.,
Viola-Jones missed 62 out of 135 faces in IBUG, whereas [105] missed only 4).



49

Comparisons with Xiong et al. [124] We used Xiong and De la Torre’s [124]
publicly available implementation for evaluation. Because the training code for [124]
is not publicly available, we used their off-the-shelf model. According to [124], their
model is trained on Multi-PIE and LFW. Therefore, comparing their model to ours
is reasonable. By default, Xiong and De la Torre’s executable uses the Viola-Jones
face detector for initialization. Because Viola-Jones misses so many faces in AFW
and IBUG, we instead initialized [124] using the same procedure described above for
Belhumeur et al.’s algorithm. We used this initialization because it is more realistic
than simply using the ground truth face bounding box.

It is possible that the additional faces detected by [105] negatively impacted the
performance of [124]. We observe that most of the localization errors from [124]
arise when the initialization is far from the true landmark locations (e.g., on faces
with extreme head pose and/or expression), which suggests that [124] is sensitive to
initialization. In such cases, [124] fails to converge to the correct solution. However,
in cases where the initialization is relatively close to the true landmark locations,
their algorithm performs slightly better than ours. We demonstrate this in Figure 3.6,
where we also show that the accuracy of their algorithm initialized using our estimates
(labeled “Ours + Xiong & De la Torre” in each plot), is higher than either approach
in isolation. In this way our approach is complementary to [124].

Comparisons with Asthana et al. [3] Asthana et al.’s implementation provides
three modes for initialization: (1) the localization results from [142], (2) MATLAB’s
Viola-Jones face detector, or (3) a face bounding box. For fair comparison, we elected
to use (3) with each bounding box computed by [105] (i.e., the same face detector
used in our pipeline).

Comparisons with Zhou et al. [139] Zhou et al.’s implementation relies on eye
center locations (e.g., provided by an eye detector) to initialize the face shape. We note
that, like other AAM-based approaches, their algorithm is sensitive to initialization.
Therefore, we provided their algorithm with ground truth eye centers. Rather than
using a single AAM model, Zhou et al. compute a separate AAM for each test image
at runtime. For training, we provided their algorithm with our Multi-PIE exemplar
dataset.
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3.4.3 Runtime

On a 900 × 600-pixel image with one face, the overall runtime of our MATLAB
implementation of Shen et al.’s face detector [105] is 42.8 seconds on an Intel Xeon E5-
2670 workstation; our landmark localization algorithm, also implemented in MATLAB,
requires an additional 25.5 seconds. This is similar to the runtime of [142] (using
their Independent-1050 model) and our MATLAB implementation of [7], but is much
slower than several recent methods (e.g., [3, 124, 130]) that are designed to run in real
time. However, we note that many strategies exist to speed up our implementation.
For example, although the stages of our pipeline must run sequentially, each stage
represents an embarrassingly parallel workload (in the parlance of parallel computing),
and the size of each landmark voting map, which currently span the entire face, could
be reduced significantly by employing a multi-resolution image pyramid.
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Figure 3.7: Cumulative error distribution (CED) curves showing the impact of
different parts of our pipeline on performance. The average localization error is
normalized by the face size, defined as the average height and width of the tightest
bounding box that encloses all 68 ground truth landmarks [142].

3.4.4 Impact of Different Algorithm Parts

Figure 3.7 shows the relative impact of different parts of our pipeline on accuracy. We
see that shape regularization noticeably boosts our accuracy. Key to the success of our
method is a data-driven approach for weighting the feature votes. We see in Figure 3.7
that performance drops dramatically without these weights. We also see in Figure 3.7
that our voting-based approach is sensitive to rotation misalignment between the
test face and the exemplar faces, thus necessitating a rotation search. This is partly
a function of our exemplar faces, which are rotation normalized. Another strategy
would be to expand our exemplar database to include rotated versions of faces, and
handle in-plane rotation nonparametrically. Other methods don’t perform an explicit
grid search over rotations.
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Chapter 4

Collaborative Face Image Parsing
for Transferring Landmark
Annotations Across Datasets

4.1 Introduction

Many datasets have also been proposed to evaluate face alignment and landmark
localization methods, from early datasets collected in the lab like CMU Pose Illumi-
nation Expression (PIE) [106], Multi-PIE [45], AR [88], and eXtended Multi Modal
Verification for Teleservices and Security applications DataBase (XM2VTSDB) [90],
to more recent in-the-wild datasets like Labeled Face Parts in the Wild (LFPW) [7],
Annotated Facial Landmarks in the Wild (AFLW) [60], Annotated Faces in the Wild
(AFW) [142], Helen [74], and IBUG [99, 98].

On one hand, new datasets pose new challenges to the research community and
foster new ideas. On the other hand, as researchers, we always have to choose specific
datasets for evaluation to publish our work, which becomes increasingly difficult
because different datasets have different landmark definitions (for example, AFLW
uses a 21-landmark markup, while Helen uses 194 contour points). As a result, models
trained on one dataset often cannot be evaluated on other datasets. Furthermore,
inconsistencies between datasets make it difficult to train robust landmark localization
models that combine all the different datasets.



53

Ideally, it would be desirable to have a common and unified definition of landmarks
and collect datasets following the same definition. However, this goal is challenging
in practice because the speed of collecting labels will always lag behind the speed of
collecting face data. Furthermore, it is difficult to predict which landmark definitions
(e.g., ears) new applications will find useful.

We make the first effort, to the best of our knowledge, to combine multiple face
landmark datasets with different landmark definitions into a super dataset, with a
union of all landmark types computed in each image as output. Specifically, we
present a novel pipeline built as an extension of the state-of-the-art facial landmark
localization method described in Chapter 3. Our system labels images in the target
dataset jointly rather than independently and exploits exemplars from both the source
datasets and the target dataset. This approach allows us to integrate nonparametric
appearance and shape modeling and graph matching together to transfer annotations
across datasets. Toward this goal, this chapter makes the following contributions:

1. A pipeline that transfers landmark annotations from multiple source datasets to
never-before-labeled datasets.

2. An algorithm that takes multiple source datasets as input and labels a par-
tially labeled target dataset using a union of landmarks defined in the source
datasets. Our system can optionally use known landmarks in the target dataset
as constraints.

3. 63 supplementary landmarks for faces in the AFLW database [60], for a total
of 84 landmarks. AFLW is significant in that, to the best of our knowledge,
it is currently the largest publicly available in-the-wild face dataset with 25k
annotated faces.



54

4.2 Related Work

To the best of our knowledge, we know of no other systems that try to solve the same
problem considered here: that is, given multiple source datasets, estimate a union of
landmarks for a given target dataset. However, components of our system are inspired
by and/or are built upon existing methods in the literature, which we summarize
below.

Like [24, 36, 105, 126], we use a Hough voting approach to generate landmark
response maps in Stage 2 of our system. Yang and Patras [126] use several ‘sieves’
to filter out votes that are not relevant. Cootes et al. [24], Dantone et al. [36], and
Shen et al. [105] weight each vote based on heuristics. In our approach, we adjust the
weight of each vote by considering how well it agrees with other votes from matched
features in other images.

Our landmark detection algorithm optionally uses known landmarks in the target
image as constraints. Cootes and Taylor [26] proposed a constrained AAM that utilizes
some known landmarks in the target image; AAMs are parametric models, while
our approach is nonparametric and exemplar-based. Sagonas et al. [99] proposed a
semi-automatic method for creating facial landmark annotations using person-specific
models. Their process is iterative: users label results as ‘good’ or ‘bad’, and good
results are used in later iterations as training data. In contrast, our method is fully
automatic; our system has the ability to take user input, but we do not consider it in
our experiments.

Exemplar-based approaches have been popular since Belhumeur et al.’s pioneering
work [7]. Zhao et al. [139] use grayscale pixel values and HOG features to select
k-nearest neighbor training faces, from which they construct a target-specific AAM
at runtime. Shen et al. [105] perform Hough voting using k-NN exemplar faces; we
use the same basic approach in our system. Finally, Zhou et al. [141] combine an
exemplar-based approach with graph matching for robust facial landmark localization.
We extend Zhou et al.’s approach to integrate different landmarks from multiple source
datasets.



55

4.3 Approach

In this section we first give a brief overview of our system followed by a more detailed
explanation of each stage in subsequent sections.

4.3.1 Overview

The input to our system is one or more source face datasets, and one target face
dataset. We assume that each source dataset consists of a set of face images, in
which each image is labeled with a set of facial landmarks, e.g., eye centers, mouth
corners, nose tip. Importantly, we do not require the landmark definitions to be
consistent between source datasets. Optionally, each target image can have known
landmarks, which our system uses as additional constraints. The output of our system
is a combined set of landmark estimates (i.e., the union set of landmark types from
all source datasets) for each target face.

Stage 0: Preprocessing

We first rotate and scale all faces such that the eyes are level and the size is the same
across all face instances. We then extract dense SIFT [84] features across each face at
multiple scales. Following the approach in [105], we quantize each SIFT descriptor
using fast approximate k-means [91], which efficiently maps each descriptor to a visual
word.

Stage 1: Selection of Top Source Faces

For each target face, retrieve a separate subset of top k similar faces from each source
dataset. The goal is to retrieve faces that are similar to the target face in appearance,
shape, expression, and pose so that features in the source images will produce accurate
landmark votes in the target image.

Stage 2: Weighted Landmark Voting

For each target face, independently compute a separate voting map for each landmark
type from each source dataset using a generalized Hough transform [75]. Each feature
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from the top k source faces casts a vote for a possible landmark locations in the target
image.

Stage 3: Shape Regularization

For each target face, compute a separate set of landmark estimates from each source
dataset. Due to local ambiguities, occlusions, noise, etc. each voting map may contain
multiple peaks. We employ a robust nonparametric shape regularization technique [7]
that avoids false peaks and estimates a globally optimized set of landmark estimates
from each source dataset.

Stage 4: Final Landmark Estimation and Integration

For each target face, retrieve the top m most similar faces from the target dataset.
The goal is to exploit the correlation between landmark estimates from Stage 3 among
similar target faces to consistently label all target images. We combine estimates
for landmarks common to multiple source datasets, and we optionally use known
landmarks in each target image to constrain the optimization. We extend the graph
matching technique in [141] for landmark integration from multiple source datasets.
The final output for each target face is a full set of landmark estimates; by “full” we
mean the union of landmark types from all source datasets.

4.3.2 Stage 1: Selection of Top Source Faces

To transfer landmarks from each source dataset to the target image, the shape and
appearance of the source faces and the target face should not be too different. For
example, a frontal face has much different appearance and shape than a profile face;
there are few geometric feature-landmark correlations between the two. We therefore
select a top subset of source faces for further processing.

Many strategies exist for retrieving similar face images from a database. In our
system, we use a generalized Hough transform framework to score each source face.
Specifically, we use the features on the target face to vote for the center of the face in
each source image. The final score for each source face is the height of the maximum
peak in the voting map associated with each source image. The intuition is that source
faces with many shared features in similar geometric layouts with the target image
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Input: One or more source face datasets, and one target dataset
Output: A combined set of landmark estimates for each target face
Stage 0: Preprocessing
for all target faces do

Stage 1: Selection of Top Source Faces
Stage 2: Weighted Landmark Voting
Stage 3: Shape Regularization

end
for all target faces do

Stage 4: Final Landmark Estimation and Integration
end

Figure 4.1: Overview of our pipeline for transferring landmark annotations across face
datasets. Stage 4 is in a separate loop because it uses all the target face results from
Stage 3 to help constrain and consistently estimate the final landmark results.

will produce many consistent votes for the center of the face. We sort the scores and
select the top k = 200. This is the same procedure described in Step 1 of our facial
landmark localization algorithm (Chapter 3).

4.3.3 Stage 2: Weighted Landmark Voting

For efficiency, rather than exhaustively sliding each source landmark region over the
target image, we use quantized features and employ an inverted index file to efficiently
retrieve matched features (i.e., features in the same quantization bin) from the top
k source images. When a feature in the target image is matched to a feature in a
source image, the feature-to-landmark offset in the source image is transferred to the
target image. The offset vector extends from the feature in the target image toward a
potential landmark location and produces a vote. After many such votes, a voting
map is formed, where the votes tend to cluster at landmark locations.

In practice, due to errors in the feature quantization step, image noise, occlusions,
uniform and locally ambiguous image regions, etc., many of the votes are incorrect,
which can significantly impact overall voting accuracy. In Section 3.3.7 we described
an offline procedure for precomputing feature weights for landmark localization. This
was necessary to speed up the execution of our algorithm at test time.
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However, because we are concerned with annotating whole datasets rather than
test images in this chapter (i.e., for future use as a training dataset), the ‘online’
speed is not the main priority. Therefore, we instead compute a weight for each vote
online as follows. For a given feature in the target image, retrieve all features in
the top k source images that share the same quantization bin. For each of these
features, compute their offset from landmark l. After rejecting outlier votes (i.e., by
measuring the distribution and rejecting vote offsets outside the inter-quartile range),
we compute the variance σ2

v of the remaining offsets. We then cast a ‘fuzzy’ vote from
each offset using a 2D Gaussian N (v;σ2) centered on the vote location v. Intuitively,
this rewards matched features that produce consistent voting offsets and suppresses
features that disagree.

We note that the Hough voting strategy is sensitive to scale and rotation differences
between source and target faces. Shen et al. [105] addressed this problem by performing
Hough voting over multiple scales, and we addressed it in Chapter 3 by searching over
multiple scales and rotations. Here, we instead normalize the scale and orientation
of each face in Stage 0, which eliminates the need to search for scale and rotation
parameters.

4.3.4 Stage 3: Shape Regularization

There are many strategies for enforcing shape constraints (e.g., [7, 104, 124, 142, 141]).
However, in our case, we use an exemplar-based approach to shape regularization [7],
which fits nicely with our exemplar-based Hough voting strategy for generating
landmark response maps. We use the same procedure here as described in Step 4 of
our landmark localization pipeline in Chapter 3.

4.3.5 Stage 4: Final Landmark Estimation and Integration

Stages 0 through 3 are very similar to the steps in our core landmark localization
algorithm, as described in Chapter 3. This stage embodies the main extensions our
original algorithm. The goal here is to combine the individual landmark estimates
from each source dataset into a single result for each target image. We incorporate
several constraints into the optimization:
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1. We model each landmark location as a linear combination of the other landmarks,
which provides an affine-invariant shape constraint [141].

2. If available, known landmarks in the target image are fixed and help steer nearby
landmark estimates to their correct locations.

3. Only one estimate is allowed for each landmark type irrespective of the number
of source datasets contributing estimates for each type.

We address the shape constraint first. Let P = [p1, . . . ,pNP ] be a face shape
composed of NP landmarks. Following [141], we assume that the c-th landmark
location pc can be reconstructed by a linear combination of neighboring landmarks:
pc = Pwc, where wc ∈ RNP is a vector of weights for the other NP − 1 landmarks
(the c-th entry of wc is zero).

Suppose we have NS source datasets and therefore NS {target image t, source
dataset s} pairs. Each pair has a union set of landmark types, Lts = {Lt ∪ Ls},
composed of landmark types Lt defined in the target image1 or landmark types Ls
defined in the source dataset. In other words, each Lts contains all landmark types
either known a priori in target image t, or estimated from source s or both. We aim
to compute an optimal wtsc for c ∈ Lts for each {target image t, source dataset s}
pair (we subsequently omit t and s subscripts in wtsc for simplicity).

To accomplish this task we need a set of example shapes that include all landmark
types in Lts. Given a target image t, we retrieve the m most similar face shapes
among the target face images; the face shapes for the target images come from the
regularized landmark localization results from Stage 3. As a distance metric, we
simply use the mean Euclidean error between shapes after similarity transformation
alignment. Using [141], we compute the wc for image t that minimizes the sum of
reconstruction errors among the top m most similar shape results from Stage 3:

min
wc

m∑
j

||Pjwc − pjc||22 + η||wc||22 (4.1)

s.t. wc
T1NP = 1,

wcc = 0,

wcr = 0 ∀r /∈ Lts,
1Lt can be empty, in which case the target dataset has no known landmarks.
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where Pj is the j-th most similar face shape relative to t among other results from
Stage 3; the constraint wcr = 0 ∀r /∈ Lts means that we force weights to zero if the
r-th landmark is undefined in Lts; and η||wc||22 is a regularization term that penalizes
the sparsity of the weight vector, i.e., it promotes more uniformity in the weights,
which means that non-local landmarks can also carry importance in determining the
c-th landmark location. Eq. (4.1) is a small convex quadratic problem, which we solve
independently for each wc. The formulation of Eq. (4.1) is the same as [141] except
for our added third constraint.

We compose the joint weight matrix as Ws = [w1, . . . ,wNP ], and we repeat
the process for each source dataset s to create a set of NS joint weight matrices
W1, . . . ,WNS

specific to target image t. Note that undefined columns in each Ws

(corresponding to landmarks not defined in Lts) are set to zero.
Following [141], let us now define a global coordinate matrix Q = [Q1, . . . ,QNP ] ∈

R2×N , where Qc ∈ R2×Nc denotes candidate locations for the c-th landmark and
N = ∑

cNc. Let G ∈ {0, 1}NP×N be a binary association matrix, where gci = 1 if
the i-th point belongs to the c-th landmark. Note that the candidate locations are
the locations of the local peaks in the landmark response maps in Stage 3. When a
landmark is common in multiple source datasets, we average the response maps from
different source datasets before finding the local peaks. Let A ∈ RNP×N denote the
assignment cost matrix, i.e., aci = − log(Rc(qi)), where Rc(qi) is the height value in
the c-th voting map at qi after the voting map is normalized to sum to 1.

Given the candidates Q, G, A and the shape constraints W1, . . . ,WNS
, the

problem consists of finding the optimal correspondence X that minimized the following
error:

min
X

λtr(AXT) +
NS∑
s

‖QXT(Is −Ws)‖1 (4.2)

s.t. X1N = 1NP ,

X ∈ {0, 1}NP×N ,

xci = 0, [c, i] ∈ {[c, i] | gci = 0},

where Is is an NP ×NP identity matrix except that we set Is(r, r) = 0 ∀r /∈ Lts (i.e.,
the r-th diagonal element is set to zero if landmark r is not defined in the target
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image or in dataset s). Eq. (4.2) is inspired by [141] except here we sum over multiple
shape constraint terms instead of just one. λ is a regularization weight that balances
feature cost and reconstruction error. The first constraint, X1N = 1NP , enforces a
many-to-one mapping in X. The remaining constraints forces X to select only a single
landmark from the candidates in G.

Due to the integer constraint on X, optimizing Eq. (4.2) is NP-hard. Like [141], we
solve Eq. (4.2) by relaxing the integer constraint with a continuous one, X ∈ [0, 1]NP×N ,
and then we reformulate the problem using the trick in [53, 79] by incorporating
auxiliary variables Us,Vs ∈ R2×NP that replace the non-smooth `1 norm with a
smooth term and a linear constraint:

min
X,U,V

λtr(AXT) +
NS∑
s

12
T(Us + Vs)1NP (4.3)

s.t. QXT(Is −Ws) = Us −Vs,

Us ≥ 02×NP ,

Vs ≥ 02×NP ,

X ∈ [0, 1]NP×N ,

xci = 0, [c, i] ∈ {[c, i] | gci = 0}.

MATLAB’s LP solver can be used to find the optimal solution of the above minimiza-
tion problem. Please see [141] for more details.

Incorporating known landmarks in the target image as constraints in Eq. (4.2) is
straightforward. We simply provide only a single candidate location for each of the
known landmarks via the matrices Q and G.

Because we use the same correspondence matrix X for all terms in Eq. (4.2), we
will obtain only one estimate for each landmark type, regardless of how many source
datasets contribute to the estimate.

4.3.6 Implementation Details and Runtime

For quantizing SIFT features we use fast approximate k-means [91] with k = 105

clusters. For efficiency, we quantize the spatial variance σ2
v measurement of each vote

cluster in Section 4.3.3 and convolve each voting map after all voting is complete using
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a set of precomputed Gaussian kernels. We also threshold σv to prevent erroneous
spikes in the voting maps: we do not allow σv to fall below 3 pixels. In Stage 4, we
set η = 1000, λ = 100, and we use about 200 candidates for each landmark.

Because our system operates on face datasets, we consider our pipeline to be entirely
‘offline.’ However, it is not prohibitively slow despite the number of steps involved.
All tests were conducted on an Intel Xeon E5-2670 workstation. For each 480× 480
image in our evaluation set, feature extraction and quantization takes less than a
second. For each {target image, source dataset} pair, top exemplar selection (Stage 1)
takes approximately 2.5 seconds, landmark voting (Stage 2) across 84 landmarks takes
approximately 15 seconds, and shape regularization (Stage 3) takes approximately 10
seconds using our MATLAB implementation. The final stage is the most expensive
(approximately 30 seconds per image) in part because MATLAB’s linear program
solver is relatively slow with many landmarks and candidate locations. We remark
that most stages in our pipeline can be easily parallelized.
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4.4 Results and Discussion

In this section we present two groups of experiments to evaluate the accuracy of our
approach. In the first group, the source dataset consists of several subsets, each with
a different set of landmark definitions. Each target image has no known landmarks,
and our algorithm estimates a union of landmarks for each target image from the
source datasets. This group of experiments allows us to compare our results with
recent landmark localization works [3, 7, 117, 124, 130, 139, 141, 142]. We show
state-of-the-art accuracy on especially challenging “in-the-wild” faces. In the second
group of experiments we show that our approach can simultaneously (1) integrate
landmark annotations from multiple source datasets and (2) effectively make use
of known landmarks in the target dataset to significantly reduce errors among the
estimated landmarks. These experiments show that our approach is well-suited to
automatically supplementing an existing dataset with additional landmarks from other
source datasets.

4.4.1 Experimental Datasets

We used five face datasets for our quantitative evaluation: Multi-PIE [45], Helen [74],
LFPW [7], AFW [142], and IBUG [98]. In the literature, there are two versions of
landmark annotations for Helen, LFPW, and AFW: (1) the annotations provided
when the datasets were originally released, which we refer to as “original” hereafter;
and (2) the recent annotations provided as part of the 300 Faces in-the-wild Challenge
(300-W) [98], which we refer to as "300-W" hereafter. We use both versions of the
landmarks; the details are described in the context of individual experiments.

As in [142, 117, 130], we measure the size of the face as the average of the height
and width of the rectangular hull around the ground truth landmarks. We favor this
size measurement over inter-ocular distance (IOD) because it is more robust to yaw
head rotation. Prior to testing, we rescaled all faces to a canonical size (200 pixels)
and rotated them to make the eyes level.



64

(a) Helen (b) Multi-PIE (c) LFPW (d) IBUG, AFW

Figure 4.2: Experimental datasets. When each dataset is acting as a source, we use
the landmark annotations shown above. Across all source datasets there are 85 unique
landmark types.

4.4.2 Comparisons with Recent Work

In this section we quantitatively compare our algorithm with recent works [7, 142,
141, 3, 117, 130, 139]. The source datasets for training consist of Multi-PIE, Helen,
and LFPW. For our algorithm, we used the ground truth landmark annotations
shown in Figure 4.2 for Multi-PIE, Helen, and LFPW as training. The ground truth
landmarks come from both the original annotations and the 300-W annotations (300-W
annotations are favored in cases of redundant definitions). We note that there are 85
unique landmark types across all source datasets.

Our target datasets for testing are AFW [142] and IBUG [98]. We use these two
datasets for evaluation because they are particularly challenging; they include a large
percentage of faces with extreme facial expression and/or head pose. In contrast, other
popular datasets like BioID [52], Helen [74], LFW [51], and LFPW [7] contain faces
with less challenging variations, which are consequently well-addressed by current
methods. For example, among recent methods (e.g., [7, 141, 3]) the average point-to-
point error for estimated landmarks is less than 10% of the IOD for more than 95% of
LFPW faces.

We made every effort to implement Belhumeur et al. [7] and Zhou et al. [141]
algorithms faithfully; we trained them on the source dataset (Multi-PIE, Helen,
and LFPW) using only 300-W annotations. For all other algorithms, we used the
original authors’ implementations. We used the off-the-shelf models provided with
each implementation, with the exception of Zhao et al. [139]. Zhao et al. compute
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Figure 4.3: Two sets of cumulative error distribution (CED) curves on AFW and
IBUG face datasets. In all cases, the average localization error is normalized by the
face size as defined in [142]. Here we compare the accuracy of our approach with seven
recent works: Asthana et al. [3], Tzimiropoulos and Pantic [117], Zhou et al. [141],
Belhumeur et al. [7], Zhao et al. [139], Zhu and Ramanan [142], and Yu et al. [130].
We see that our approach generally produces more accurate results among those
evaluated above. Best viewed in color.

target face-specific models online from a given training database; for their algorithm,
like Belhumeur et al. [7] and Zhou et al. [141], we provided Multi-PIE, Helen, and
LFPW faces as training data using only 300-W annotations.
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Initialization

For Belhumeur et al. [7] and Zhou et al. [141] we initialized the position of each
landmark detector using a mean face shape aligned to the face. The diameter of each
detector window was set to the larger of 33% of the face size or large enough to overlap
the true landmark location. Zhao et al.’s implementation [139] is initialized via eye
center detectors; we therefore provided their algorithm with ground truth eye centers.
Tzimiropoulos and Pantic’s [117] algorithm takes a face bounding box as input; for
this we provided the ground truth bounding box.

Zhu and Ramanan’s [142] algorithm is tied to their detection algorithm, and so
we do not provide it with an initialization. We set their detection threshold to −∞
to avoid missing faces. For each ground truth face annotation, we select the output
face that has the largest bounding box overlap (the area of intersection divided by
the area of union), and we ignore all false positives. Zhu and Ramanan provide three
models with their implementation. Although it requires the most computation time,
we used their Independent-1050 model for all of our experiments since it generally
performs best.

Asthana et al. [3] and Yu et al. [130] each rely on a version of Zhu and Ra-
manan’s [142] algorithm for initialization, and so we do not provide a separate
initialization. However, since Yu et al.’s implementation only returns landmark esti-
mates for the highest scoring face in each image, we isolated the true face by cropped
it out (the crop window was centered on the true face and set to approximately twice
the face height/width).

Quantitative Results

Figure 4.3 shows two sets of cumulative error distribution (CED) curves, which compare
the accuracy of our approach with others. Using Multi-PIE, Helen, and LFPW as
source datasets, our algorithm produces 84 landmark estimates (a union of both 300-W
and original annotations from the three source datasets).2 We evaluated the accuracy

2We supplemented the 300-W annotations on Helen with 10 landmarks from the original annota-
tions (3 on each eyebrow, and 4 on the nose). When we use LFPW as a source dataset, we use only
the 29 landmarks from the 300-W annotations that coincide with the original annotations. When we
use AFW and IBUG as source datasets, we use only the 6 300-W annotations that coincide with
the original AFW annotation definitions. Figure 4.2 shows the layout of landmarks for each source
dataset.
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of all algorithms on 66 landmarks in Figure 4.3 because [3] estimates 66 landmarks.
Errors are computed relative to the 300-W ground truth landmarks as the mean
point-to-point error normalized by the face size. We see that our approach (assuming
no known landmarks in the target dataset) produces state-of-the-art accuracy on AFW
and IBUG faces.

4.4.3 Evaluation with Known Target Landmarks

We have quantitatively evaluated our full pipeline using 1035 images from LFPW as
the target dataset, and using Multi-PIE, Helen, AFW, and IBUG as source datasets.
The union of the different annotation definitions results in a total of 85 landmarks.
For each target image, our algorithm estimates 85 landmarks. We performed six
different trials, with each trial assuming a different number of known landmarks in
the target dataset: 0, 6, 9, 15, 21, and 32. Among these different numbers, we chose
6 because it corresponds to the original AFW annotations; we chose 21 because it
corresponds to annotations provided in the AFLW dataset [60]; and we chose 32
because it closely resembles the original annotations in LFPW. The top of Figure 4.5
shows the arrangement of known landmarks for each trial. For each face, we measure
the accuracy of 79 landmarks (out of 85 estimated) relative to ground truth annotations
from 300-W and the original LFPW dataset; the ground truth of the remaining 6
landmarks are not available for LFPW.

The CED curves in Figure 4.5 show the accuracy of our algorithm on each of these
trials across 79 face landmarks. We see that the accuracy of our algorithm is high
with 0 known landmarks (96.5% at 0.05 average overall), and the accuracy continues
to improve with additional known landmarks.

A prime target dataset for our approach is AFLW [60], which contains 25k in-
the-wild face images from Flickr, each manually annotated with up to 21 sparse
landmarks. Our approach is well-suited to automatically supplementing AFLW with
additional landmarks from source datasets like Multi-PIE [45] and Helen [74]. Please
see Appendix B for selected qualitative results.
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(a) (b) (c) (d) (e)

Figure 4.4: Qualitative results on AFW faces (a)-(d) and IBUG faces (e) with varying
numbers of known landmarks in the target images. Green points are estimated
landmark locations, and red points are known landmark locations. From the top row
to the bottom row, results were computed with 32, 21, 6, and 0 known landmarks. We
see that errors are corrected with additional known landmarks, e.g., the eyebrows in
(a) and (d), and the lips in (c) and (e). Even with no known landmarks (bottom row),
our algorithm performs well on challenging faces, including those with significant head
pitch rotation (a and e), head yaw rotation (a, b, d, and e), occlusion (b), and facial
hair (a). Figure 4.3 shows a quantitative evaluation with no known landmarks in the
target images. Best viewed electronically in color.
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Figure 4.5: Quantitative evaluation of our full pipeline with six different trials, each
assuming a different number of known landmarks. The top row shows the arrangement
of known landmarks for each trial. “6 known” corresponds to the original AFW layout;
“21 known” corresponds to AFLW; and “32 known” closely resembles the original
LFPW annotations. In (a) we see the overall mean accuracy is high with 0 known
landmarks (96.5% at 0.05), and the accuracy continues to improve significantly as
additional landmarks become known. For reference, Belhumeur et al. [7] showed that
their algorithm surpasses the average accuracy of human labelers on most landmarks,
and our algorithm further improves Belhumeur et al.’s localization accuracy (see
Figure 4.3) even with 0 known landmarks. We note that inherent ambiguities exist on
the face, especially on longer contours such as the lips and the outer face contour. For
example, a landmark estimate on the outer contour may be qualitatively correct, but
in disagreement with “ground truth” in terms of its location along the contour. This
phenomenon partly explains the lower CED curves in (c), (e), and (f). In general,
we see that our approach correctly estimates landmarks on a large majority of faces,
especially with 21 or 32 known landmarks. This suggests that our approach is well-
suited for automatically supplementing the landmarks in large, sparsely annotated
datasets like AFLW. Best viewed in color.



70

Chapter 5

Face Image Parsing with Soft
Segments

5.1 Introduction

In face image analysis, one common task is to parse an input face image into facial
parts, e.g., left eye and upper lip. Most previous methods accomplish this task by
marking a few landmarks [7, 142] or a few contours [46, 104] on the input face image.
In this chapter, we seek to mark each pixel on the face with its semantic part label;
that is, our algorithm parses a face image into its constituent facial parts.

Compared to segment-based representations, we argue that landmark- and contour-
based representations have several key limitations.

• Other than eye corners and mouth corners, most landmarks are not well-defined.
For example, it is unclear how many landmarks should be defined on the chin line,
or how noses should be represented: should there be a line segment along the nose
ridge, or a contour around the nostrils? Due to the lack of agreement, different
datasets have different contour models. This creates difficulty for practitioners
interested in unifying different datasets for robust algorithm development.

• Contour-based representations are not general enough to model several facial
parts useful for robust face analysis. For example, teeth are important cues for
analyzing open-mouth expressions; ears are important cues for analyzing profile
faces; strands of hair are often confused by algorithms as occluders. It would be
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Figure 5.1: Our exemplar-based algorithm parses a face image into its constituent
facial parts using a soft segmentation.

difficult to model these important parts using contours, and it is unclear how
many landmark points should be used.

• It is difficult to encode uncertainty in contour-based representations. For example,
the precise location of the tip of an eyebrow or the contour of a nose ridge are
difficult to determine, even for human labelers. Such uncertainty leads to errors
in human labeled face data that are used in both the training and evaluation of
algorithms.

Segment-based representations alleviate the aforementioned limitations: segments
can represent any facial part, be they hair or teeth, and soft segmentation can model
uncertain transitions between parts. Although semantic segmentation for general
scenes has received tremendous attention in recent years [61, 63, 80, 111], there
has been relatively little attention given specifically to face part segmentation, with
the exception of [86, 120]. Since facial parts have special geometric configurations
compared to general indoor and outdoor scenes, we propose an exemplar-based face
image segmentation algorithm, taking inspiration from previous work in image parsing
for general scenes.

Specifically, our approach assumes a database of face images, each of which
is associated with a hand-labeled segmentation map and a set of sparse keypoint
descriptors. We emphasize that these keypoints need not correspond between different
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images in the database; we extract keypoints and their descriptors independently
from each image using SIFT [84]. Given a test image, our algorithm first employs
Belhumeur et al. [7] to select m top exemplar images from the database as input. Our
algorithm then computes a nonrigid warp for each top exemplar; each nonrigid warp
aligns the exemplar image to the test image by matching the set of sparse precomputed
exemplar keypoints to the test image. Finally, we propagate labels from the exemplar
images to the test image in a pixel-wise manner, using trained weights that modulate
and combine label maps differently for each part type.

We evaluate our method on two challenging datasets [51, 74] and compare with
two face parsing algorithms [86, 120] and a general scene parsing algorithm [80]. We
also compare our segmentation results with contour-based face alignment results: that
is, we first run the alignment algorithms [46, 104, 142] to extract contour points and
then derive segments from the contours. Our algorithm compares favorably with these
previous works on all datasets tested. As a byproduct, our algorithm can recover
contours of facial parts as well, although we do not focus on this representation. In
summary, this chapter makes the following contributions.

1. A novel algorithm for robustly segmenting face parts. We recover a soft segmenta-
tion, which naturally encodes the segment class uncertainty in the image. Rather
than artificially placing a hard boundary between, e.g., skin and eyebrow regions,
we recover label probabilities at each pixel. Our algorithm is exemplar-based;
exemplars can also encode continuous, probabilistic segment labels.

2. A learning algorithm for finding optimal parameters for calibrating exemplar
label types. Some part labels occur more frequently than others (e.g., “skin”
labels occur more frequently than “eye” labels), and tend to dominate adjacent
labels that occur less frequently. To correct these biases, we train a set of label
weights that adjust the relative importance of each label type.

3. A rich training dataset for face segmentation. Our dataset is built as an
extension of the recent Helen Facial Feature Dataset [74]. The images are high
resolution, and our dataset features segments that are created from densely-
sampled, hand-labeled contours. Hair mattes are also included for future work
in hair segmentation.
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5.2 Related Work

We are inspired by the recent work of Luo et al. [86], who proposed a hierarchical
technique for face parsing. In their work, they recover pixel-wise labels for eyes,
eyebrows, nose, mouth, and background, which includes the skin. Their approach can
be divided into three stages:

1. detect face parts (e.g., upper face, lower face),

2. detect face components (e.g., mouth, eyes), and

3. use component-specific segmentors on each component to estimate pixel-wise
labels.

There are two aspects of this approach that can be improved. First, because they
operate at the lowest level, the component-specific segmentors do not generalize well
to labeling larger and/or less distinct regions of the face, such as the cheeks or the chin.
Second, because they produce only a binary classification, the component-specific
segmentors do not generalize well to more complicated label interactions, such as those
that exist between the inner mouth region, the lips, and the skin around the lips, for
example. Instead, we propose a nonparametric approach that naturally extends to
these difficult cases.

Previously, Warrell and Prince [120] introduced LabelFaces based on a scene parsing
approach applied to faces. Warrell and Prince argued that the scene parsing approach
is advantageous because it is general enough to handle unconstrained face images,
where the shape and appearance of features vary widely and relatively rare semantic
label classes exist, such as mustaches and hats. As part of their contribution, they
introduced priors to loosely model the topological structure of face images (so that
mouth labels do not appear in the forehead, for example). However, the labels they
generate are often coarse and inaccurate, especially for small face components like eyes
and eyebrows. We show in this work that our approach produces accurate, fine-scale
label estimates in unconstrained face images.

There are several recent scene parsing approaches in the literature that do not
target faces, but nonetheless do share some aspects with our approach ([61, 63, 80, 111]
to name just a few). A full review is outside the scope of this chapter. Of these
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approaches, Liu et al. [80] is particularly relevant. Like our approach, they propose a
nonparametric system that transfers labels from exemplars in a database to annotate
a test image. At its core, Liu et al.’s system relies on the SIFT Flow [81] algorithm to
densely transfer labels from exemplars to the test image. Unfortunately, SIFT Flow
is slow, even with a coarse-to-fine strategy. For example, [81] reported a runtime of
31 seconds for 256× 256-pixel image pairs with a C++ implementation running on
modern hardware.

Targeting face image matching, we employ an efficient sparse matching approach
that does not require global optimization, and therefore requires much less computation
for each image pair. This savings allows us to use a large set of top exemplar images
for label transfer (in [80] they use m ≤ 9 top exemplar images; we use m = 100), which
is important in our approach for two reasons. First, by aggregating label votes from
many exemplars, our approach is robust to outliers and noise. Second, it partially
explains why we can avoid global optimization of the flow field: by using a large
number of top exemplars, the sparse keypoint matches cover the test image well and
good matches occur almost everywhere.

Furthermore, our algorithm produces a soft segmentation while [80] produces a
hard segmentation; specifically, our algorithm assigns each pixel a probability value for
each label type. To this end, we propose a training algorithm for estimating a set of
weights that convert label maps from exemplars to label probabilities on the test image.
We remark that soft segmentation is useful for future work on hair segmentation,
among other applications.
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5.3 Approach

In this section we first give an overview of our approach and then present technical
details of each step. Figure 5.2 includes a supplementary visual synopsis of our
algorithm.

We start with some notation. Let pi be a probability vector for pixel i:

pi = [pi,1, pi,2, . . . , pi,K ]T (5.1)

s.t.
∑K

k
pi,k = 1, 0 ≤ pi,k ≤ 1,

where pi,k is the probability that pixel i belongs to segment class k. Each pi encodes
label uncertainty at the pixel level, which reflects the natural indistinctness of some
facial features (e.g., light eyebrows, chin line). We seek to estimate pi for all pixels
i = 1, 2, . . . , N in the test image I.

5.3.1 Overview

Database Construction Our database M is composed of a set of exemplars
{Mj}Jj=1. Each exemplar Mj has four parts: an image, a label map, a very sparse set
of facial landmark points, and a sparse set of SIFT [84] keypoint descriptors. Each
label map can either be soft (i.e., so that each pi has several non-zero components), or
hard (i.e., so that each pi has exactly one nonzero component). We use 12 landmark
points: 2 mouth corners, 4 eye corners, 2 points on the eyebrows (each centered on
the top edge), 2 points on the mouth (one on the top edge of the upper lip and one
on the bottom edge of the bottom lip), 1 point between the nostrils, and 1 chin point.
About 150 SIFT keypoints are automatically extracted from each image independently
in the database. We make a distinction here between landmarks, which are defined
consistently across images (e.g., the mouth corners), and keypoints, which are not
necessarily consistent across images. Each SIFT keypoint descriptor is computed using
a window radius of approximately 1/4 the inter-ocular distance (IOD).

Runtime Preprocessing Given a test image, we first use a face detector (i.e.,
[118]) to roughly locate the face and estimate its scale. The test image is then rescaled
so that the face has an IOD of approximately 55 pixels, which is the size of the
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exemplar faces. Second, dense SIFT descriptors [84] are extracted using the same
window size (1/4 IOD) across all pixels. To search for a subset of m top exemplar
faces in the database, we use Belhumeur et al. [7] on our 12 landmark points. The
output of the preprocessing is a set of m exemplars, each of which is associated with
a similarity transformation that aligns the exemplar to the face in the test image.

Step 1: Nonrigid exemplar alignment For each keypoint in each of the top m
exemplars, search within a small window in the test image to find the best match;
record the matching score and the location offset of the best match for each keypoint.
Warp the label map of each top exemplar nonrigidly using a displacement field
interpolated from the location offsets.

Step 2: Exemplar label map aggregation Aggregate warped label maps using
weights derived from the keypoint matching scores in Step 1. The weights are spatially
varying among exemplar pixel locations and favor exemplar pixels near keypoints that
are matched well with the test image.

Step 3: Pixel-wise label selection Produce a label probability vector at each pixel
by first attenuating each channel in the aggregated label map and then normalizing it.
The attenuating weights are trained offline in order to correct for label population
biases and maximize labeling accuracy. Hard segmentation can be generated by
selecting the highest probability label channel.
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Aggregate warped label maps using weights derived from the keypoint 
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Produce a label probability vector at each pixel by attenuating each channel 
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2000 exemplar images
12 landmarks

~150 SIFT keypoints

Figure 5.2: Overview of our semantic face image segmentation pipeline.
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5.3.2 Step 1: Nonrigid Exemplar Alignment

Due to local deformation, a similarity transformation is not sufficient to align an
exemplar with the testing image. The goal of Step 1 is to refine the registration
using a nonrigid warp between each top exemplar label map and the test image.
Dense per-pixel correspondence algorithms like SIFT Flow [81] are one strategy for
this purpose. However, per-pixel correspondence algorithms often perform global
optimization, which is computationally intensive and does not scale well to the many
exemplars we use for our task. In particular, we would like to aggregate a large number
of top exemplars (we use 100) in order to be robust against outliers in one or a small
number of exemplars. Therefore, for efficiency reasons, we instead rely on about 150
SIFT keypoints to compute the nonrigid warp between each exemplar and the test
image.

Given the similarity transformation estimated in the preprocessing step, for each
keypoint in one top exemplar, its true correspondence in the test image is usually within
a small window centered at the location predicted by the similarity transformation.
Therefore, we adopt a local search within the window to find its best match. To make
the search robust to untextured regions, we encourage the best match to be close
to the window center. Specifically, for each keypoint f with SIFT descriptor sf , we
search for the location offset ∆xf that produces the best match in the window by
using the following objective function:

r(∆xf ) = gspatial( ∆xf

σspatial
) · gdesc( s(∆xf )−sf

σdesc
), (5.2)

where gspatial and gdesc are Gaussian functions and s(∆xf) is the SIFT descriptor at
the offset location. In our implementation, we set σspatial = 10 to be the same as the
search window radius and σdesc = a · b, where a is the length of the SIFT descriptor
and b is the scale of the descriptor elements.

Our algorithm computes a nonrigid warp for each exemplar label map by inter-
polating the displacements {∆xf}Ff=1, where F is the number of SIFT keypoints
in the exemplar. The interpolation is implemented using a linear combination of
Gaussian Radial Basis Functions (RBF) [97] centered at each keypoint, where each
RBF bandwidth is proportional to the distance to the nearest neighboring keypoint.
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5.3.3 Step 2: Exemplar Aggregation

For each exemplar label map, we interpolate the matching scores r(∆xf ) in Eq. (5.2)
between its keypoints to generate a matching score for each pixel; the interpolation
uses the same Gaussian RBFs as we use at the end of Step 1 to generate the nonrigid
warping field. Note that r(∆xf ) ∈ [0, 1], where higher values suggest better matches.
Now, each nonrigidly warped exemplar label map is associated with a per-pixel
matching score map. We aggregate these label maps by taking a weighted sum as
follows:

pi ∝
∑m

j
ri,j · pexemplar

i,j , (5.3)

where pexemplar
i,j is the label probability vector at pixel i in exemplar j, and ri,j is the

corresponding matching score.
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5.3.4 Step 3: Pixel-wise Label Selection

The results from the previous stage are imperfect. Near smaller regions, like the eyes,
eyebrows, and lips, we observe that, if the aggregated label probabilities are incorrect,
they tend to be incorrect in the direction of the larger surrounding regions, namely
the face skin and background. Consider, for example, a region near the eyebrow edge.
Assuming noise prevents perfect correspondences, “skin” label correspondences will
occur more frequently than “eyebrow” label correspondence simply because there are
many more skin labels than eyebrow labels. A common symptom of this label bias is
that estimated eyebrow regions (and other small regions of the face) tend to be too
small.

We compensate for this bias by re-weighting each component of the aggregated
label probability vector, and then re-normalizing each pixel’s label probability vector
afterward. Given a tuning set with ground truth label probabilities, we find label
component weights α = [α1, α2, . . . , αK ] by minimizing the following function Θ:

Θ(α) =
∑
k

θk(α) + λ
∑
k′>k

‖θk(α)− θk′(α)‖2

s.t.
∑K

k
αk = 1, ∀k : αk > 0, (5.4)

where

θk(α) = 1
Ck

J∑
j

∑
i∈φj,k

∥∥∥∥∥pgt
i,j,k −

αkpi,j,k∑
k αkpi,j,k

∥∥∥∥∥
2

, (5.5)

pi,j,k and pgt
i,j,k are estimated and the ground truth label probabilities for image j, pixel

i, and class k, respectively; φj,k is the set of pixels in image j for which pgt
i,j,k > 0; Ck

is a normalization parameter; and λ is a scalar regularization parameter.
Minimizing Eq. (5.4) is complicated by the normalization in θk(α), which makes

it nonlinear, and the sum over images and pixels, which makes it large. However,
Eq. (5.4) only needs to be minimized offline once. In our implementation, we minimize
Eq. (5.4) using MATLAB’s fmincon function, which uses the interior point method for
large-scale constrained nonlinear optimization problems [17].

We can use Eq. (5.4) to find optimal weights to maximize different evaluation
metrics. For example, setting Ck to the total number of pixels in all images with label
k according to ground truth and λ = 0.5, we can maximize accuracy with respect to a
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confusion matrix; setting Ck = 1 and λ = 0, we can maximize accuracy with respect
to F-measures. We will discuss the pros and cons of different settings in Section 5.4.3.

After the label component weights have been found, we adjust each label probability
vector. Optionally, we can select the component with the largest probability value to
generate hard segmentation results. A hard segmentation is used in our quantitative
experiments for accuracy evaluation.



82

5.4 Results and Discussion

We have evaluated our method on two different datasets, and we show that it clearly
improves upon a recent general scene parsing approach and existing face parsing
approaches. Additionally, we adapt a recent landmark localization method and two
face alignment algorithms to produce segmentation results, and show that our method
is more accurate.

5.4.1 Experimental Datasets

Our first experimental dataset is LFW [51]. Luo et al. [86] showed segmentation
results on 300 randomly selected images from LFW. To compare with their results,
we use the same subset of images in our experiments. Following their procedure to
evaluate accuracy, we generated ground truth by annotating each face with contour
points around each segment.

Our second (primary) dataset is Helen [74], which is composed of 2330 face images
with densely-sampled, manually-annotated contours around the eyes, eyebrows, nose,
outer lips, inner lips, and jawline. We use Helen because it features high-quality,
real-world photographs of people with a more balanced proportion of genders, ages,
and ethnic backgrounds than other face datasets. We separated Helen into three parts
for our experiments: exemplar, tuning, and test sets. Our exemplar set was used for
all experiments, including experiments on LFW images. Our Helen tuning and test
sets were formed by taking the first 330 images in the dataset; they include no subjects
from the exemplar set. Our Helen test set is composed of 100 randomly selected
images from the first 330, and our tuning set comes from the remaining images.

We generated ground truth eye, eyebrow, nose, inside mouth, upper lip, and lower
lip segments automatically by using the manually-annotated contours as segment
boundaries. For face skin, we used the jawline contour as the lower boundary; for the
upper boundary, we separated the forehead from the hair by manually annotating
forehead and hair scribbles and running an automatic matting algorithm [77] on each
image. Although we do not focus on hair segmentation in this work, we also recovered
“ground truth” hair regions using this approach. The hair mattes from [77] are usually
accurate, but mistakes are inevitable. Therefore, to ensure fair accuracy measurements,
we manually annotated the face skin in all test images.



83

5.4.2 Accuracy vs. Number of Top Exemplars

The number of top exemplars m effects labeling accuracy, the quality of the soft
segmentation, and runtime. Up to a point, greater m results in more accurate hard
segments and higher quality transitions between soft segments, but at the cost of
runtime, which is linear in m. Figure 5.3 shows a plot of the F-measure1 versus m.
We see that accuracy plateaus near m = 50.

5.4.3 Comparisons on LFW

We first show results on LFW, and compare with two recent face parsing tech-
niques [86, 120], two recent face alignment algorithms [46, 104] and a face landmark
localization algorithm [142], which we have adapted for face parsing; that is, we derived
segmentation results from the estimated contour points using the same approach used
to generate ground truth segments in Helen. Warrell and Prince [120] also showed
results on LFW, but their 150-image test subset and source code are no longer available.
We therefore simply report their numbers, and acknowledge that their results were
computed on a different (but qualitatively similar) set of images.

Luo et al. [86] presented the accuracy of their segmentors using a confusion matrix.
We repeated their experiment using our method. First, we computed results on
our Helen tuning set, and used our continuous results to train the label weights
according to Section 5.3.4 (we matched the LFW segment representation by grouping
the Helen mouth components, and treating face skin as background). Table 5.1 shows
a comparison of our results using our trained label weights, and the results reported
in [86].

Using the confusion matrix for comparison, our results look much more accurate
than [86]. However, Figure 5.4 shows a result that exemplifies a problem with the
label weights found by minimizing Eq. (5.4). Effectively, if we use Ck = ∑

j |φj,k| and
λ = 0.5, Eq. (5.4) finds label weights that maximize the recall rates of eye, eyebrow,
nose, and mouth pixels, which are relatively few and sensitive to errors, by sacrificing
the recall rate of background pixels, which are numerous and insensitive to errors.
The confusion matrix in Table 5.1 (b) reflects maximized recall rates, but does not
give any indication of the problem exemplified in Figure 5.4 (a). We therefore instead

1The F-measure is the harmonic mean of precision and recall: F = 2 · precision·recall
precision+recall .
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Figure 5.3: Face segmentation accuracy vs. the number of top exemplars m used by
our algorithm. (a) Qualitative results with different m. (b) Pixel-wise label accuracy,
as measured by the F-measure, which is the harmonic mean of precision and recall.
We see that accuracy increases with greater m until approximately m = 25, where it
begins to plateau. The accuracy does not improve significantly beyond m = 50.
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left eye .90 .01 .09 .990 .003 .007
right eye .93 .01 .06 .990 .002 .008

nose .88 .01 .11 .992 .001 .001 .006
left brow .03 .91 .06 .002 .988 .010

mouth .90 .10 .001 .983 .016
right brow .02 .89 .09 .003 .982 .015

background .01 .04 .95 .002 .002 .004 .006 .005 .006 .975
(a) Results from [86] (b) Our results

Table 5.1: Luo et al. [86] presented the accuracy of their segmentors using the
confusion matrix shown in (a). We repeated their experiment using our method; our
results are shown in (b) for comparison. Based on the confusion matrix, our results
look much more accurate. However, this metric can be deceiving, as discussed in
Section 5.4.3.

(a) Estimated (b) Ground truth

Figure 5.4: The result on the left exemplifies the problem with the label weights
found by minimizing Eq. (5.4) using Ck = ∑

j |φj,k| and λ = 0.5: the eye, eyebrow,
nose, and mouth regions are too dilated compared to the ground truth shown on
the right despite maximizing the diagonal of the confusion matrix in Table 5.1 (b).
Based on this problem with the confusion matrix, we instead show accuracy using the
F-measure, and set Ck = 1 and λ = 0 in Eq. (5.4).
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F-Measures for LFW Images
Method Eyes Brows Nose Mouth Overall

Warrell & Prince [120] 0.443 0.273 0.733 0.653 n/a
Zhu & Ramanan [142] 0.520 n/a n/a 0.635 n/a

Saragih et al. [104] 0.684 0.651 0.903 0.753 0.793
Gu & Kanade [46] 0.735 0.722 0.900 0.801 0.820

Ours 0.765 0.752 0.914 0.881 0.863

Table 5.2: The top row is copied from [120]. Zhu & Ramanan [142] is a landmark
localization method, Saragih et al. [104], and Gu & Kanade [46] are face alignment
methods. Segments were derived from the contours generated by these methods. We
used the model provided with Zhu & Ramanan’s implementation, which was trained
on the Multi-PIE face database [45]. We used our implementations of Saragih et
al. [104] and Gu & Kanade [46], both trained on Helen. The “overall” values are
computed using all eye, eyebrow, nose, and mouth pixels. We see that our algorithm
compares favorably to all previous works on LFW.

Label Weights
Face skin 0.0765 Nose 0.1000
Left eye 0.0925 Inner mouth 0.2132

Right eye 0.0925 Upper lip 0.1114
Left brow 0.0615 Lower lip 0.1067

Right brow 0.0615 Background 0.0841

Table 5.3: Label weights computed using Eq. (5.4) with Ck = 1 and λ = 0.

show accuracy in Table 5.2 using the F-measure, which is the harmonic mean of both
recall and precision. We find that setting Ck = 1 and λ = 0 in Eq. (5.4) results in a
set of label weights that give good performance with respect to the F-measure, shown
in Table 5.3.

We compare the accuracy of our method with several other face parsing and
alignment methods [46, 104, 120, 142] in Table 5.2. Our algorithm compares favorably
to these works on LFW.

5.4.4 Comparisons on Helen

We repeated the LFW experiment on the Helen test set. Table 5.4 shows a comparison
of the accuracy from three variants of our algorithm, Liu et al. [80], which is a general
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scene parsing method, and the adapted output from Zhu & Ramanan [142], Saragih
et al. [104], and Gu and Kanade [46], all ordered by overall F-measure.

A large disparity in accuracy can be seen between the results from Zhu & Ra-
manan [142] and the other methods. We conjecture that this is due in part to the
fact Zhu & Ramanan’s provided model was trained on Multi-PIE, whereas the other
methods were trained on Helen, which includes a much richer set of landmarks and
faces. Regardless, we see that our approach improves upon the segments generated by
recent face alignment algorithms.

We used Liu et al.’s code trained on Helen to generate the values in Table 5.4. Liu
et al.’s algorithm requires four parameters. We set α = 0.06 (spatial prior weight) and
β = 1 (smoothness weight) by performing a parameter sweep and selecting the values
that maximized the overall F-measure. In [80] they suggest using K = 85 nearest
neighbors and M = 9 voting candidates. However, for a fairer comparison, we set
K = 100 and M = 100 to match the number of m top exemplars used by our method.
To ensure that this change of K and M did not artificially reduce the performance of
their method, we verified that K = M = 100 produced more accurate results than
K = 85 and M = 9. We see in Table 5.4 that our algorithm is much more accurate
than Liu et al. in general. Qualitatively, the segments generated by Liu et al. are also
less accurate; please see our supplementary material for a visual comparison.

By comparing the fifth and sixth rows of Table 5.4, we observe that the local search
and nonrigid exemplar alignment from Step 1 of our algorithm modestly improves the
quantitative accuracy of our results. However, the improvement from Step 1 is mostly
visible in our continuous, probabilistic results, which we cannot adequately judge
quantitatively (i.e., to compute the F-measures, we must first quantize our results).

We see a noticeable improvement from row six to row seven in Table 5.4, especially
in the inner mouth region, due to the label weights. In our view, the mouth is the
most challenging region of the face to segment. The shape and appearance of lips vary
widely between subjects, mouths deform significantly, and the overall appearance of
the mouth region changes depending on whether the inside of the mouth is visible or
not. Unusual mouth expressions, like the one shown in the bottom row of Figure 5.5
and in Appendix C, Figure C.2 are not represented well in the exemplar images,
which results in poor label transfer from the top exemplars to the test image. Despite
these challenges, our algorithm generally performs well on the mouth, with large
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Original image Our method, Our method, Ground truth
soft segmentation hard segmentation

Figure 5.5: Selected results on LFW images (top two rows) and Helen images (bottom
four rows). The inside of the mouth is not given as ground truth for the LFW images,
and so we show only the entire mouth segment. We observe that our algorithm works
well on grayscale images (third column) and images of young faces (fourth column).
Our algorithm does not currently detect occlusions, and instead ‘hallucinates’ occluded
parts of the face (fifth column). The last column shows a failure case due to the
unusual expression. We note that our algorithm generally produces excellent results.
Best viewed in color.
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segmentation errors occurring infrequently. We show qualitative results in Figure 5.5
and in Appendix C, Figure C.1. Our improvement over other algorithms demonstrates
the advantages of using segments to parse face parts. For example, the inside of the
mouth is not well modeled using a classical contour based representation.

5.4.5 Comparisons with Liu et al. [80]

The scene parsing approach by Liu et al. [80] shares several similarities with our work.
Like our approach, they propose a nonparametric system that transfers labels from
exemplars in a database to annotate a test image. This begs the question, Why not
simply apply the approach from Liu et al. to face images?

To help answer this question, we used the code provided by Liu et al. on our
Helen [74] images; our exemplar set is used for training their system, and our test set
is used for testing. Figure 5.6 shows several selected results for qualitative comparison.
In general, our algorithm performs much better than Liu et al.’s algorithm.

5.4.6 Runtime

Our experimental implementation was written in MATLAB, which makes it difficult
to judge the true runtime of our approach. However, we can roughly estimate it as
follows. Belhumeur et al. [7] report a runtime of less than one second per fiducial
and they note that most of the time is spent evaluating the local detectors. For 12
landmarks, their algorithm should take approximately 12 seconds. Our MATLAB
implementation of their algorithm represents 56% of the total computation in our
pipeline. We therefore estimate that the true runtime of our algorithm would be
approximately 21 seconds with a C++ implementation. Furthermore, much of the
computation is devoted to interpolation and image warping, which can be made very
fast on the GPU.

To be more concrete, we can compare the actual runtime of our current implemen-
tation with that of Liu et al. [80]. Liu et al. use global optimization, which makes
their approach very slow. On a workstation with two quad-core 3.00 GHz Intel Xeon
CPUs and 32 GB memory, their implementation took an average of 18.5 minutes per
test image with M = K = 100, whereas our implementation took an average of 1.1
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Original image Liu et al. [80] Our method Ground truth

Figure 5.6: Qualitative comparison with Liu et al. [80]. We see that the segments
generated by Liu et al. are visibly less accurate, especially in the mouth region. This
suggests that a general scene parsing approach is not well suited for faces. Best
viewed in color.
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minutes per test image with m = 50 after the runtime pre-processing step (i.e., after
Belhumeur et al.’s algorithm).

5.4.7 Extensions of Our Approach

Here we also show preliminary results for several extensions of our approach.

Contour Estimation Estimating contours is not the focus of this work. However,
we can recover contours by treating contour points in the exemplars in almost the
same way that we treat segment labels. That is, in Step 1, we warp the contour point
from each exemplar in the same way that we warp the exemplar label maps. Then, in
Step 2, we can aggregate the contour points using an approach similar to Belhumeur
et al. [7]. Specifically, each contour point is found by computing the weighted average
location of the warped exemplar contour points; each weight j is given by the match
scores in Rj closest to the contour point. Figure 5.7 shows two selected results using
this approach.

Hair Segmentation Several approaches for hair segmentation start by estimating
a set of hair / not hair seed pixels in the image, and then refine the hair region using a
matting algorithm ([96] is one example). We can also generate seeds by counting the
votes from hair / not hair labels from the top exemplars, and thresholding the counts.
Figure 5.8 shows seeds generating using this approach, and hair mattes computed
from these seeds using [77].

Face Image Reconstruction and Synthesis Exemplar-based face image recon-
struction/synthesis is applicable for various face image editing tasks, including grayscale
image colorization [76] and automatic face image retouching [47]. We can create a
synthetic version of the input face by propagating color and intensity information
from the exemplar images to the input image; this can be easily accomplished by
replacing the label vectors with the color (or intensity) channels of the exemplar
images. Figure 5.9 shows two examples.
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Figure 5.7: A simple extension of our approach is contour estimation. Please see
Section 5.4.7 for details.
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Original images

Our automatically generated ‘seeds’

Automatic matting results

Figure 5.8: Preliminary results using an extension of our approach for hair segmen-
tation. Top row: input. Middle row: our automatically generated ‘seeds’ for hair
(purple) and background (blue). Bottom row: automatic matting results from [77]. We
can recover accurate hair mattes in many cases (first two columns), but the procedure
often fails on difficult cases (third column). Best viewed in color.
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Original image Synthesized result

Figure 5.9: We can synthesize the input face by replacing the exemplar label vectors
with the color channels from the exemplar images. See Section 5.4.7 for more details.
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Chapter 6

Conclusions and Future Work

This dissertation has described three related and complementary algorithms with
associated qualitative and quantitative results that strongly support the thesis that: an
exemplar-based approach that models face shape and appearance in a nonparametric way
can be used to transfer landmarks or segments from an exemplar database to challenging
test images ( i.e., for facial landmark localization and soft semantic segmentation of
facial parts) or between different datasets ( i.e., for combining multiple datasets that
have different landmark definitions), all with state-of-the-art accuracy.

Chapter 3 described an exemplar-based approach to facial landmark localization
that models the local appearance context of each landmark and global face shape in a
nonparametric way. Using this approach, we built an algorithm that produces results
with state-of-the-art accuracy on challenging in-the-wild face datasets, including faces
with non-neutral expression, non-frontal head pose/camera viewpoint, and partial
occlusion.

Chapter 4 described a novel pipeline built as an extension of the facial landmark
localization algorithm in Chapter 3 for the task of combining multiple face landmark
datasets that have different landmark definitions into a super dataset, with a union of
all landmark types computed in each image as output. Our pipeline transfers landmark
annotations from multiple source datasets to a target dataset in a collaborative way
(i.e., the information from multiple datasets is used jointly in the final landmark
localization step). One of the concrete results from this work is a larger supplementary
set of landmark definitions for the AFLW face dataset (increasing the original 21
landmarks to 84 landmarks), which is significant because AFLW is probably the
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largest publicly available in-the-wild landmark database. We anticipate that our
supplementary landmarks will be useful as a richer training and evaluation dataset in
future work.

Chapter 5 described an exemplar-based approach to semantic face image segmen-
tation that also models shape and appearance in a nonparametric way. Using this
approach, we built an algorithm that produces segmentation results with better accu-
racy than other methods on challenging in-the-wild images. Our algorithm produces
a probability vector of label types at each pixel. Unlike landmarks or contours, this
representation is general enough to model any facial part, including facial hair, teeth,
forehead, etc.

This work extends the state-of-the-art of face image parsing but only begins to
address the problem of creating commercially viable systems that surpass human
accuracy irrespective of the common types of real-world challenges encountered. Many
disparities exist between the academic prototypes developed here and successful
products, which must be fast (i.e., near real-time) in addition to being accurate and
robust against real-world challenges.

6.1 Improving Efficiency

Several strategies exist for improving efficiency without sacrificing accuracy.

1. A careful C++ implementation of each algorithm (as opposed to the MATLAB
implementations used for experimentation) would greatly improve runtime.

2. Although the steps of each algorithm must be executed sequentially, each step
is an embarrassingly parallel workload (in the parlance of parallel computing).
For example, each Hough vote is completely independent of all other Hough
votes; similarly, each loop of the RANSAC-like shape regularization algorithm
in Section 3.3 can be executed independently in parallel.

3. The current implementation of the landmark localization algorithm computes
voting maps across the whole face for each landmark, which is inefficient. We
could use an image pyramid to consider fewer features and effectively reduce
the size of each landmark’s search region.
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4. Many exemplar faces provide very little additional information relative to other
exemplar faces. The recent work of Li et al. [78] suggests that we can eliminate
this redundancy to significantly improve efficiency. That is, by selecting the
most unique and discriminative faces in the database and discarding the rest
(e.g., using AdaBoost [41]), each step of the algorithm would involve less data,
which would result in less computation. This is applicable to both landmark
localization and soft segmentation.

The above strategies have more to do with improving the implementations rather
than the fundamental algorithms. Greater efficiency could be achieved by modifying
the algorithms as well. This could be achieved by combining steps in some way: voting
for landmarks while simultaneously enforcing an implicit or explicit shape constraint,
or removing the need to bootstrap the face segmentation algorithm with an initial set
of landmark estimates, for example.

6.2 A Unified Pipeline

Chapter 3, Chapter 4, and Chapter 5 describe different but related algorithms. We
can unify all three algorithms in a straightforward way as follows:

Database Construction: Rectify each source/exemplar face; extract features
Runtime Preprocessing: Detect and rescale each target face; extract features
Step A: Top exemplar retrieval
Step B: Weighted landmark voting
Step C: Shape regularization
Step D: Final landmark estimation and integration
Step E: Nonrigid exemplar alignment
Step F: Exemplar label aggregation
Step G: Pixel-wise label selection

Table 6.1 shows the correspondence between steps in each separate algorithm and steps
in the unified pipeline above. Step D can be optionally added to the landmark local-
ization algorithm (i.e., by assuming that no landmarks are known in the target face).
In the runtime preprocessing step in Chapter 5, sparse landmark localization serves as
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Landmark Localization Combining Datasets Soft Segmentation Unified Algorithm
(Chapter 3) (Chapter 4) (Chapter 5)

Database Construction Preprocessing Database Construction Database Construction
Runtime Preprocessing Preprocessing Runtime Preprocessing Runtime Preprocessing
Step 1 Stage 1 Runtime Preprocessing Step A
Step 2 Stage 2 Runtime Preprocessing Step B
Step 3 Stage 3 Runtime Preprocessing Step C
— Stage 4 — Step D
— — Step 1 Step E
— — Step 2 Step F
— — Step 3 Step G

Table 6.1: Correspondence between steps in each separate algorithm and steps in the
unified pipeline given in Section 6.2.

an initialization for soft segmentation. We used a straightforward implementation of
Belhumeur et al.’s algorithm [7] for this purpose. However, we can instead use Steps
A through C (and optionally Step D) for this purpose. If Steps A through D involve
only a sparse set of landmarks, then Steps E through F could be used to localize a
more dense set of landmarks or contours (e.g., Helen’s 194 contour landmarks), which
would be less computationally expensive than computing a large set of voting response
maps. Step G is an optional step that only applies to soft segmentation.

6.3 Additional Segment Types

Hand labeling face images is time-consuming and tedious, which partially explains
the lack of good face datasets that include semantically-defined pixel-wise labels.
Chapter 4 addressed the problem of transferring landmark definitions across multiple
face datasets. Interesting future work would include extending this approach to other
representations, including segments and pixel-wise labels, with the goal of efficiently
creating large exemplar databases with additional label types, including ears, teeth,
eye pupils, hair, and neck.

For especially challenging images, we could also extend the original pipeline by
bringing users into the loop as part of a crowdsourcing effort. Users could vet results
for accuracy and help correct failure cases, i.e., by clicking on one or a few landmarks
to add additional constraints.
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6.4 A Semi-Supervised Approach

A semi-supervised approach to face image parsing could be used to transfer annotations
from a relatively small source dataset, or datasets, to much larger target datasets. An
important component of such an approach would be an iterative joint optimization
of landmark or segment estimates among the target faces, with the goal of making
the landmarks or segments more shape- and appearance-consistent. By appearance-
consistent we mean that the local appearance at each landmark or segment estimate is
more similar across images, and by shape-consistent we mean the spatial arrangement
of landmarks or segments are more consistent. This could also be used to clean up
large collections of imprecisely annotated face images. A semi-supervised approach
could also be combined with our algorithm for combining multiple face datasets.

6.5 Better Exemplar Database Characterization

Although our approach generally works well, we observe that it occasionally fails on
faces with exaggerated mouth expressions. We assume this is due to the fact that
some exaggerated facial expressions are not well-represented among the exemplars. We
currently do not have a concrete idea of how well different exaggerated expressions are
characterized among the exemplar faces. A better characterization of the distribution
of exemplar facial expressions would allow us to more accurately determine the range of
facial expressions that our algorithms can handle. It would also allow us to compensate
for attribute biases among the exemplars. For example, near-frontal faces with neutral
facial expression are more common than non-frontal, non-neutral faces in real-world
face datasets. This bias can negatively impact the accuracy of our algorithm on head
poses and expressions that exist in the long ‘tail’ of the distribution.

6.6 Occlusion Detection

One limitation of our current approach (and almost all other approaches) is that it
assumes face parts are always visible. An artifact of this assumption is that occluded
landmarks and segments are incorrectly hallucinated in our results. This behavior is
acceptable for some applications, such as face tracking. However, for other applications,
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such as automated portrait retouching and, to some extent, face recognition, occlusion
detection is necessary in order to generate reasonable results.

Occlusion detection is challenging for many reasons. For example, occlusions can
take any form (i.e., generative models are impractical), they often resemble noisy but
visible face regions, and the strategies that make algorithms robust to common types
of real-world variation are often antithetical to occlusion detection (i.e., algorithms
are robust because they ignore local aberrations).

One strategy is to decouple occlusion detection from face parsing. That is, first
perform face parsing, and then examine each landmark or region to determine whether
or not it is occluded. Another strategy is to incorporate occlusion detection directly
into the parsing pipeline. Burgos-Artizzu et al. [14] recently proposed such a strategy.
They incorporated occlusion information directly during learning to improve facial
landmark localization. Interesting future work would include pixel-wise occlusion
detection (i.e., to explicitly label occluding objects), which is much more challenging
than landmark occlusion detection.

6.7 Future Applications

Face image retrieval is an incidental part of the exemplar-based strategy described
in this work. However, with more development, the face image retrieval part of the
pipeline could be used more prominently for a variety of compelling applications,
including face image search [109], face attribute recognition (e.g., age, head pose,
facial expression) [66, 67], automatic example-based grayscale portrait colorization,
example-based face portrait restoration and superresolution, and personal portrait
photo collection management.

In the behavioral sciences it is often necessary to analyze the head pose and facial
expression of human subjects. In some situations, it is also necessary to maintain
privacy or anonymity. For example, the Federal Highway Administration (FHWA)
announced a grant1 in 2013 for anonymizing naturalistic driving data. The FHWA
is interested in better understanding driver behavior leading up to vehicle crashes,
and they want to release data to more researchers for analysis, but existing privacy

1Federal Highway Administration Broad Agency Announcement No. DTFH61-13-R-00011: “Ex-
ploratory Advanced Research Program”
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issues make this very difficult. The segment-based face parsing approach described in
Chapter 5 is well-suited to the task of automatically masking faces in driver videos,
while retaining information useful for behavioral analysis. For example, even when a
face is digitally masked to conceal identity, it is possible to infer head pose, eye state,
facial expression, etc.

6.8 Other Domains

Faces were the focus of this work for several reasons, including:

• Compared to other types of objects, faces are especially compelling to humans.

• Many interesting computer vision applications (e.g., face recognition, automated
portrait editing) depend on the accuracy of face parsing algorithms.

• Face datasets are readily available.

However, the general approach described in this dissertation is applicable to other
domains. The broader problem addressed here is finding correspondences between mul-
tiple image instances of objects that share the same class. For example, in principle, we
could apply the same techniques to parse car images for vehicle identification [135], leaf
images for plant identification [64] (i.e., to automatically identify edible or poisonous
plants), and images of assembled products for quality inspections in factories [87].
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Appendix A

Supplementary Facial Landmark
Localization Results

Figures A.1, A.2, and A.3 supplement the results in Chapter 3. The input images
in Figure A.1 are from the AFW dataset [142], and the input images in Figure A.2
are from the IBUG dataset [99, 98]. We note that our algorithm generally produces
accurate results, even on faces with extreme head poses and expression. However, our
algorithm is not perfect and makes mistakes on some especially challenging faces, as
shown in Figure A.3.

In our judgment, faces with unusual mouth shapes and/or significant yaw+pitch
head rotation are the most challenging for our implementation. We speculate that
this is largely due to the limited head pitch rotation variation and mouth shape
variation in the Multi-PIE Face Database [45], which we use as our sole exemplar
database. Head yaw and pitch combinations like those shown in the left two columns
of Figure A.3, and the mouth shapes shown in the right two columns of Figure A.3,
are not well-represented in our database, which results in poor landmark votes from
the top exemplar images to the test image. Despite these challenges, our algorithm
generally performs well on mouths, and on faces with significant yaw+pitch head
rotation.
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Figure A.1: Selected results on AFW [142]. Our method can handle a wide
variety of very challenging conditions, including significant image noise and blur,
occlusions, and extreme expressions and head poses. Best viewed electronically
in color.
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Figure A.2: Selected results on IBUG [99, 98]. Our method can handle a
wide variety of very challenging conditions, including significant image noise and blur,
occlusions, and extreme expressions and head poses. Best viewed electronically
in color.
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Figure A.3: Failure cases on faces with significant yaw+pitch rotation (left
two columns) and on mouths (right two columns). The input images on the
top row are from AFW [142], and the input images on the bottom row are from
IBUG [99, 98]. Large errors occur infrequently, but when they do occur they are
usually localized to the eyes (in the case of significant yaw and pitch head rotation) and
the mouth (in the case of unusual mouth expressions). Yaw and pitch combinations
and unusual mouth expressions like those shown above are not well-represented in
our exemplar database, which results in poor landmark votes from the top exemplar
images to the test image. Best viewed electronically in color.
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Appendix B

Supplementary Landmark Transfer
Results on AFLW Faces

The Annotated Facial Landmarks in the Wild (AFLW) face database [60] is an ideal
target for our system. AFLW includes 25k real-world faces with up to 21 landmark
annotations on each face. Our system uses these known landmarks as constraints to
help localize 85 landmarks from multiple source datasets (Multi-PIE [45], Helen [74],
LFPW [7], AFW [142], and IBUG [98]).

A quantitative evaluation on AFLW is impractical because (1) our system uses all
21 known landmarks as constraints, and (2) no additional ground truth is provided
beyond the 21 landmarks. Therefore, we instead show a large selection of qualitative
results on challenging faces from AFLW, including:

Figure B.1: partially occluded faces,

Figure B.2: faces with significant yaw and/or pitch head rotation,

Figure B.3: young and old faces,

Figure B.4: faces with non-neutral expressions,

Figure B.5: bearded, painted, blurred, bespectacled, and dramatically illuminated
faces, and

Figure B.6: problem cases on especially difficult cases.
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We see that our system generally performs very well despite these challenges. Our
future work will include detecting landmark occlusions (i.e., due to extreme head
pose), and introducing humans in the loop as part of a crowd sourcing platform to
efficiently correct mistakes; users will typically only need to manually click on one or
two landmarks to correct problematic contours.



109

Figure B.1: Results on partially occluded faces due to sunglasses (first column), hands
(second column), hair and clothing (third and fourth columns), and objects (fifth
column). Red dots denote ‘known’ landmarks provided by AFLW, and green dots
denote landmarks estimated by our system. Best viewed electronically in color.
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Figure B.2: Results on faces with significant yaw and/or pitch head rotation. Red
dots denote ‘known’ landmarks provided by AFLW, and green dots denote landmarks
estimated by our system. Best viewed electronically in color.
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Figure B.3: Results on young faces (first three columns) and older faces (last two
columns). Red dots denote ‘known’ landmarks provided by AFLW, and green dots
denote landmarks estimated by our system. Best viewed electronically in color.
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Figure B.4: Results on faces with non-neutral expressions. Red dots denote ‘known’
landmarks provided by AFLW, and green dots denote landmarks estimated by our
system. Best viewed electronically in color.
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Figure B.5: Results on faces with beards (first column), face paint (second column),
eyeglasses (third column), image blur (fourth column), and challenging illumination
(fifth column). Red dots denote ‘known’ landmarks provided by AFLW, and green
dots denote landmarks estimated by our system. Best viewed electronically in
color.
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Figure B.6: Our system generally performs well, but occasionally makes mistakes.
Localization errors sometimes occur due to: (1) self-occluded landmarks on full profile
faces, which our algorithm incorrectly hallucinates (first two columns), (2) unusual
mouth expressions not well-covered by the source datasets (third and fourth columns),
and (3) errors among the ‘known’ landmark annotations in AFLW (fifth column). Red
dots denote ‘known’ landmarks provided by AFLW, and green dots denote landmarks
estimated by our system. Future work could include detecting landmark occlusions
(i.e., due to extreme head pose), and introducing humans in the loop as part of a
crowd sourcing platform for efficiently correcting mistakes; users will typically only
need to manually click on one or two landmarks to correct problematic contours. Best
viewed electronically in color.
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Appendix C

Supplementary Face Segmentation
Results

Figures C.1 and C.2 supplement the results in Chapter 5. In all cases, the input images
come from our Helen [74] test set. We note that our algorithm generally produces
accurate results, as shown in Figures C.1. However, our algorithm is not perfect and
makes mistakes on especially challenging input images, as shown in Figure C.2.

In our view, the mouth is the most challenging region of the face to segment: the
shape and appearance of the lips vary widely from subject to subject, mouths deform
significantly, and the overall appearance of the mouth region changes depending on
whether the inside of the mouth is visible or not. Unusual mouth expressions, like those
shown in Figure C.2, are not well-represented in the exemplar images, which results in
poor label transfer from the top exemplars to the test image. Despite these challenges,
our algorithm generally performs well on the mouth, with large segmentation errors
occurring infrequently.
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Original image Our method, Our method, Ground truth
soft segmentation hard segmentation

Figure C.1: Selected qualitative results. We note that our algorithm generally
produces accurate results. Best viewed in color.
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Original image Our method, Our method, Ground truth
soft segmentation hard segmentation

Figure C.2: Failure cases on mouths. Large segmentation errors occur infrequently,
but when they do occur, errors are almost always localized to the mouth region.
Unusual mouth expressions like those shown above are not well-represented in the
exemplar images, which results in poor label transfer from the top exemplars to the
test image. Best viewed in color.
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Appendix D

Summary of Face Image Datasets
Used in This Dissertation

AFLW (Annotated Facial Landmarks in the Wild) [60]
Type In-the-wild
Year released 2011
Resolution Various, high resolution
Number of images 21,997
Number of faces 25,993
Number of subjects Unknown, but few duplicates
Number of landmarks Up to 21 (many missing)
Head pose variation ±90◦ yaw, ±30◦ roll, ±30◦ pitch
Facial expressions Various, mostly neutral or smiling
Demographics Wide variety of ages and ethnic backgrounds
Annotation details Each face was hand-annotated using a tool developed at

the Institute for Computer Graphics and Vision at Graz
University of Technology. The landmark annotations
are sometimes inaccurate.
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AFW (Annotated Faces in the Wild) [142]
Type In-the-wild
Year released 2012
Resolution Various, high resolution
Number of images 205
Number of faces 468
Number of subjects Unknown, but few duplicates
Number of landmarks 6
Head pose variation ±90◦ yaw, ±15◦ roll, ±30◦ pitch
Facial expressions Various, mostly neutral or smiling
Demographics Wide variety of ages and ethnic backgrounds
Annotation details Each face was hand-annotated by Xiangxin Zhu or Deva

Ramanan. 337 faces were separately annotated with 68
landmarks according to the Multi-PIE arrangement [45]
as part of the 300 Faces in the-wild Challenge [98].



120

Helen [74]
Type In-the-wild
Year released 2012
Resolution Various, high resolution
Number of images 2,330
Number of faces 2,330
Number of subjects Unknown, but some duplicates
Number of landmarks 194
Head pose variation ±45◦ yaw, ±15◦ roll, ±30◦ pitch
Facial expressions Large variety
Demographics Wide variety of ages and ethnic backgrounds
Annotation details Pre-screened Amazon Mechanical Turk workers hand-

annotated each face (one worker per face) using an
interactive tool. The contours were reviewed manually
by the authors to ensure high quality annotations. All
faces were separately annotated with 68 landmarks ac-
cording to the Multi-PIE arrangement [45] as part of
the 300 Faces in the-wild Challenge [98].

Additional comments Landmarks are spaced evenly along each contour. There-
fore, landmarks with the same ID do not necessarily
correspond to exactly the same semantic point on the
face.
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IBUG (Intelligent Behavior Understanding Group) [98]
Type In-the-wild
Year released 2013
Resolution Various, high resolution
Number of images 135
Number of faces 135
Number of subjects Unknown, but some duplicates
Number of landmarks 68
Head pose variation ±60◦ yaw, ±30◦ roll, ±45◦ pitch
Facial expressions Large variety
Demographics Almost all white adults; many are celebrities
Annotation source The authors used a semi-automatic tool [99] to annotate

each face. The landmark annotations are very accurate.
Comments All images depict non-frontal head pose and/or exagger-

ated facial expression.

LFPW (Labeled Face Parts in the Wild) [7]
Type In-the-wild
Year released 2011
Resolution Various, high resolution
Number of images 1,432
Number of faces 1,432
Number of subjects Unknown, but some duplicates
Number of landmarks 29
Head pose variation ±45◦ yaw, ±15◦ roll, ±15◦ pitch
Facial expressions Large variety
Demographics Almost all white adults; many are celebrities
Annotation details Three Amazon Mechanical Turk workers hand-annotated

each face. The authors used the average location of each
landmark as ground truth. 1,035 faces were separately
annotated with 68 landmarks according to the Multi-
PIE arrangement [45] as part of the 300 Faces in the-wild
Challenge [98].
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LFW (Labeled Faces in the Wild) [51]
Type In-the-wild
Year released 2007
Resolution Consistent, 250× 250 pixels
Number of images 13,233
Number of faces 13,233
Number of subjects 5,749
Number of landmarks Varies†

Head pose variation ±45◦ yaw, ±15◦ roll, ±15◦ pitch
Facial expressions Large variety
Demographics Almost all adult celebrities; ethnically diverse
Annotation details †Luo et al. [86] independently hand-annotated 300

faces with 94 landmarks each, as shown above right.
Saragih [101] independently hand-annotated 1,000 faces
with 66 landmarks according to the Multi-PIE landmark
arrangement [45] minus the inner mouth corners.



123

Multi-PIE (CMU Multiple Pose Illumination Expression) [45]
Type Laboratory
Year released 2008
Resolution Consistent, 480× 640 pixels
Number of images 754,202
Number of faces 754,202
Number of subjects 337
Number of landmarks 68
Head pose variation −90◦ to +90◦ yaw in increments of 15◦; almost no pitch

or roll variation
Facial expressions Approximately 46% Neutral, 18% smile, 9% surprise,

9% squint, 9% disgust, and 9% scream
Demographics Representative of staff and students at CMU
Annotation details The landmark locations for 4,685 images were “manu-

ally established” by the authors. We observe that the
landmark locations are very accurate. Zhu and Ra-
manan [142] separately hand-annotated an additional
400 (mostly non-frontal) faces. We hand-annotated 960
more (mostly non-frontal faces with non-neutral expres-
sions).

Additional comments Each {session, subject, head pose, facial expression}
snapshot includes 19 different flash illuminations. There-
fore, the number of landmark-annotated images is effec-
tively 6048× 19 = 114855.
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