
Cooperative Data Protection

by

Yupu Zhang

A dissertation submitted in partial fulfillment
of the requirements for the degree of

Doctor of Philosophy
(Computer Sciences)

at the
UNIVERSITY OF WISCONSIN-MADISON

2014

Date of final oral examination: 02/10/14

Committee in charge:
Andrea C. Arpaci-Dusseau, Professor, Computer Sciences
Remzi H. Arpaci-Dusseau, Professor, Computer Sciences
Shan Lu, Assistant Professor, Computer Sciences
Michael M. Swift, Associate Professor, Computer Sciences
Peter Z.G. Qian, Associate Professor, Statistics

i

To my parents

ii

Acknowledgements

First and foremost, I would like to express my deep gratitudeto my advisors, Andrea

Arpaci-Dusseau and Remzi Arpaci-Dusseau, who guided me through my Ph.D. studies.

There is an old saying in China: a teacher for a day is a father for a lifetime. I feel

extremely lucky and thankful to have both of them as my Ph.D. “parents”.

My initial interest in system research was born when I took Remzi’s Advanced Op-

erating Systems class. When I just came here, operating systems was definitely not one

of my favorites. However, Remzi’s excellent teaching and deep knowledge convinced me

that building systems is such a fun and challenging process that I can definitely start a

Ph.D. journey in systems. My last concern for research, writing papers, was eased by

Andrea’s meticulous guidance. After reading a paper draft,she always provided me with

a lot of feedback, ranging from grammatical corrections to organizational suggestions,

which greatly improved the quality of my work. She taught me crucial skills to convert a

complicated system written in C into a nice story with words and figures, which I could

never have learned by myself in such a short time. Throughoutmy Ph.D. studies, not

only did they give me numerous pieces of advices on how to be a good researcher, they

also showed me how to be a better person. I am extremely thankful for their patience

and support during my ups and downs. Without their encouragement, I would never have

completed this exceptional Ph.D. journey.

iii

Next, I would like to thank my thesis-committee members, Shan Lu, Peter Qian, and

Mike Swift, for their insights and suggestions for my research. I would especially like to

thank Mike for his detailed comments and challenging questions during my preliminary

exam and defense, which greatly help me in improving and finishing my thesis.

I have benefited greatly from interning at NetApp. I would like to thank the com-

pany as well as my mentor, Kiran Srinivasan, and my manager, Shankar Pasupathy, for

providing a terrific internship experience.

I am fortunate to have had the opportunity to work with smart and hardworking

colleagues: Chris Dragga, Daniel Myers, Abhishek Rajimwale, Lanyue Lu, Swami-

nathan Sundararaman, Sriram Subramaniam, Haryadi Gunawi,Thanh Do, and Samer

Al-Kiswany. I also have enjoyed interacting with other students: Nitin Agrawal, Ishani

Ahuja, Leo Arulraj, Vijay Chidambaram, Tyler Harter, Jun He, Asim Kadav, Ao Ma, Joe

Meehean, Sankaralingam Panneerselvam, Deepak Ramamurthi, Mohit Saxena, Laxman

Visampalli, Zev Weiss, Suli Yang, Wei Zhang, and Yiying Zhang.

I am lucky to have so many friends at Madison. To name a few: Henry Chung,

Guoliang Jin, Ji Liu, Jie Liu, Lanyue Lu, Ao Ma, Linhai Song, Chong Sun, Chong Sun,

Wenfei Wu, Wentao Wu, Wei Zhang, and Yiying Zhang. I would like to especially thank

my roommates, Guoliang Jin and Jie Liu, for accompanying me during these years. I

also would also like to thank Yiying Zhang for being a wonderful and helping officemate.

Of course, I am also grateful for the support from other friends who are not at Madison:

Shaochen Huang, Qiang Li, Kun Qian, and Yuxiang Zheng.

Finally, I would like to thank my family back in China, especially my parents, for their

unconditional love and support. When I am struggling with myresearch and sometimes

with my life, they have always been supportive and encouraging. When I have even the

smallest success, they are so happy that they almost want everyone in the world to know

about it. Thank you, Baba and Mama, I dedicate this dissertation to you!

iv

Abstract

COOPERATIVE DATA PROTECTION

Yupu Zhang

Storage systems employ various techniques to protect user data from hardware failures

and software defects. These techniques, while effective intheir own domains, fail to pro-

vide comprehensive protection. In this dissertation, we identify the problem ofisolated

protectionin both local storage systems and cloud storage services, and proposecooper-

ative data protectionto address this problem.

In the first half of this dissertation (on local storage systems), we present a study of

the effects of disk and memory corruption on ZFS, a modern commercial file system with

numerous reliability mechanisms. Through careful and thorough fault injection, we show

that ZFS is robust to a wide range of disk faults, but because of its isolated integrity checks

that only cover on-disk data, it is less resilient to memory corruption, which can lead to

corrupt data being returned to applications or system crashes.

To solve this problem, we introduce flexible end-to-end dataintegrity, which enables

all components along the I/O path (e.g., page cache, file system) to handle checksums

cooperatively. Each component is able to alter its protection scheme to meet the perfor-

mance and reliability demands of the system. We apply this new concept to ZFS and

build Zettabyte-Reliable ZFS (Z2FS). Z2FS provides dynamical tradeoffs between per-

v

formance and protection and offers Zettabyte Reliability,which is at most one undetected

corruption per Zettabyte of data read. We develop an analytical framework to evalu-

ate reliability; the protection approaches in Z2FS are built upon the foundations of the

framework. For comparison, we implement a straight-forward End-to-End ZFS (E2ZFS)

with the same protection scheme for all components. Throughanalysis and experiment,

we show that Z2FS is able to achieve better overall performance than E2ZFS, while still

offering Zettabyte Reliability.

In the second half of this dissertation (on cloud storage services), we analyze how reli-

able cloud-based synchronization services are in the face of local corruption and crashes.

We perform fault injection experiments on several popular synchronization services and

local file systems, and find that despite the excellent reliability that the cloud back-end

provides, the loose coupling of these services and local filesystems makes synchronized

data more vulnerable than users might believe. Local corruption may be propagated to

the cloud, polluting all copies on other devices, and a crashor untimely shutdown may

lead to inconsistency between a local file and its cloud copy.Even without these failures,

these services cannot provide causal consistency.

To solve this problem, we present ViewBox, an integrated synchronization service and

local file system that provides freedom from data corruptionand inconsistency. ViewBox

detects these problems using ext4-cksum, a modified versionof ext4, and recovers from

them using a user-level daemon, cloud helper, to fetch correct data from the cloud. To

provide a stable basis for recovery, ViewBox employs the view manager on top of ext4-

cksum. The view manager creates and exposes views, consistent in-memory snapshots of

the file system, which the synchronization client then uploads. Our experiments show that

ViewBox detects and recovers from both corruption and inconsistency, while incurring

minimal overhead.

vi

Contents

Acknowledgements ii

Abstract iv

1 Introduction 1

1.1 Cooperative Data Protection in Local Storage 3

1.1.1 Data Protection Analysis of ZFS 3

1.1.2 Z2FS: Zettabyte Reliability with Flexible End-to-end Data Integrity 4

1.2 Cooperative Data Protection across Local and Cloud Storage 6

1.2.1 Data Protection Analysis of Cloud Storage Services 7

1.2.2 ViewBox: Integrating File Systems with Cloud StorageServices . 8

1.3 Summary of Contributions / Outline 9

2 Threats to Data Protection 11

2.1 Data Corruption . 11

2.1.1 Disk Corruption . 12

2.1.2 Memory Corruption . 14

2.2 Data Inconsistency . 17

2.3 Summary . 18

vii

3 Data Protection Analysis of Local File Systems 19

3.1 Background . 20

3.1.1 ZFS Overview . 20

3.1.2 ZFS On-disk Organization . 22

3.1.3 ZFS In-memory Structures . 28

3.2 On-disk Data Integrity in ZFS .30

3.2.1 Methodology . 31

3.2.2 Results and Observations . 32

3.3 In-memory Data Integrity in ZFS .. 35

3.3.1 Methodology . 35

3.3.2 Results and Observations . 37

3.4 Probability Analysis of Memory Corruption 43

3.4.1 Methodology . 43

3.4.2 Calculation . 44

3.4.3 Results . 45

3.5 Summary . 47

4 Z2FS: Cooperative Data Protection in Local Storage 48

4.1 Reliability of Storage Systems with Data Corruption 49

4.1.1 Overview . 49

4.1.2 Models for Devices and Checksums 51

4.1.3 CalculatingPsys−udc . 55

4.1.4 Example: NCFS . 56

4.2 From ZFS to Z2FS . 59

4.2.1 ZFS: the Original ZFS . 59

4.2.2 E2ZFS: ZFS with End-to-end Data Integrity 62

viii

4.2.3 Z2FS: ZFS with Flexible End-to-end Data Integrity 66

4.3 Discussion . 74

4.3.1 Checksum Chaining . 75

4.3.2 Integration with Existing Applications 81

4.3.3 Error Handling . 83

4.4 Evaluation . 84

4.4.1 Reliability . 84

4.4.2 Overall Performance . 88

4.4.3 Impact of Checksum Switching 91

4.4.4 Trace Replay . 93

4.5 Summary . 94

5 Data Protection Analysis of Cloud Storage Services 96

5.1 Background . 97

5.1.1 Dropbox . 98

5.1.2 Seafile . 100

5.2 Data Protection Failures .102

5.2.1 Data Corruption . 102

5.2.2 Crash Inconsistency . 104

5.2.3 Causal Inconsistency . 105

5.3 Discussion . 107

5.3.1 Where Synchronization Services Fail 107

5.3.2 Where Local File Systems Fail 108

5.4 Summary . 109

6 ViewBox: Cooperative Data Protection across Local and Cloud Storage 111

ix

6.1 Design . 112

6.1.1 Goals . 113

6.1.2 Fault Detection . 114

6.1.3 View-based Synchronization . 115

6.1.4 Cloud-aided Recovery . 120

6.2 Implementation . 121

6.2.1 Ext4-cksum . 121

6.2.2 View Manager . 124

6.2.3 Cloud Helper . 135

6.3 Evaluation . 136

6.3.1 Cloud Helper . 136

6.3.2 Ext4-cksum . 137

6.3.3 View Manager . 139

6.3.4 ViewBox with Dropbox and Seafile 140

6.4 Summary . 142

7 Related Work 144

7.1 Fault Injection . 144

7.2 Reliability Modeling . 145

7.3 Techniques for Data Integrity .. . 146

7.4 Techniques for Data Consistency .. . 148

8 Conclusion and Future Work 150

8.1 Summary . 151

8.1.1 Cooperative Data Protection in Local Storage 151

8.1.2 Cooperative Data Protection across Local and Cloud Storage . . . 152

x

8.2 Lessons Learned . 154

8.3 Future Work . 155

8.3.1 Characteristic Study of Data Corruption 156

8.3.2 Application-level Data Protection 157

8.3.3 Cooperative Data Protection in Networked Storage Systems . . . 158

8.4 Closing Words . 159

1

Chapter 1

Introduction

People are generating tremendous amount of data everyday. By some estimates, there

were 2.8 Zettabytes of data created in 2012, and the amount ofdata is expected to double

by 2015 [115]. Not only governments and corporations, but also regular persons have

contributed to this data explosion, by storing musics, photos, videos, and even email

messages. Regardless of where data is placed, in a personal computer, an enterprise

server, or the cloud, the underlying storage systems are responsible for preserving data

correctly for a long time.

Unfortunately, storage systems are built upon imperfect hardware and software; hard-

ware errors, crash, and software bugs all can corrupt data. Rare events in hard drives such

as dropped writes or misdirected writes leave stale or corrupt data on disk [3, 23, 89, 92].

Bits in memory get flipped due to chip defects [63, 71, 97] or radiation [75, 133]. Un-

timely crash, if not handled properly, can lead to inconsistent data in the file system [37,

129]. Software bugs are also a source of data corruption, arising from low-level device

drivers [111], system kernels [38, 47], and file systems [125, 126]. Even worse, design

flaws are not uncommon and can lead to serious data loss or corruption [69].

2

As storage systems have evolved over the years, designers have developed various

mechanisms to handle some of the aforementioned problems. Besides the built-in hard-

ware ECC in hard drives, many modern file systems support high-level checksums to

detect corruption [29, 91, 104], and some of them even provide replicas inside the file

system to facilitate recovery [29]. Underneath the file system, RAID is widely used to

provide redundancy for recovery [86]. Nowadays, backing updata to the cloud is also an

appealing solution to preserve data [67]. In case of crash orpower loss, file systems usu-

ally apply techniques such as journaling [116], soft updates [50], or copy-on-write [62],

to provide metadata or data consistency.

However, these protection techniques, while effectively protecting data in their own

domains, fail to provide comprehensive data protection forthe entire system. As one

example, many of the techniques are able to detect and recover from disk corruption, but

they cannot protect in-memory data [131]. As another example, cloud storage services

usually protect its data using checksums and tend to store multiple copies, but if the local

file system exposes corrupt data, corruption may be propagated to the cloud, and thus

pollute all the replicas [129].

All these failures occur due toisolated protectionin storage systems, and we propose

cooperative data protectionto solve these problems. The goals of this dissertation are

two-fold: first, to examine the threats to data protection incurrent storage systems due

to isolated protection; second, to develop techniques thatenable components in storage

systems to work cooperatively to provide comprehensive data protection.

We address the goals of this dissertation in two aspects: local storage systems and

cloud storage services. For local storage systems, we first analyze the impact of disk

corruption and memory corruption on a modern file system, ZFS, and show that memory

corruption is largely ignored and poses great harm to data integrity [131]. Then, we build

Z2FS, which embraces a new protection scheme called flexible end-to-end data integrity

3

and provides protection to both in-memory and on-disk data without sacrificing much

performance [130]. For cloud storage services, especiallycloud-based file synchroniza-

tion services, we first examine how disk corruption and system crashes could lead to the

propagation of bad data across all synchronized devices [129]. Then we develop View-

Box, an integrated file system and synchronization service that provides data integrity,

crash consistency, and even causal consistency for both local and cloud data [127]. The

following sections elaborate on each of these contributions of the dissertation.

1.1 Cooperative Data Protection in Local Storage

One of the primary challenges faced by storage systems is to protect data despite the

presence of imperfect components in the storage stack. In the first part of the dissertation,

we focus on data protection in local storage systems. Specifically, we first use ZFS as an

example and show that its isolated integrity check does not protect data in memory. Then,

we propose and apply flexible end-to-end data integrity to ZFS to achieve cooperative

data protection.

1.1.1 Data Protection Analysis of ZFS

File and storage systems have evolved various techniques tohandle corruption. Different

types of checksums can be used to detect when corruption occurs [25, 29, 104, 109], and

redundancy, likely in mirrored or parity-based form [86], can be applied to recover from

corruption. While such techniques are not foolproof [69], they clearly have made file

systems more robust to disk corruption.

Unfortunately, the effects ofmemory corruptionon data integrity have been largely

ignored in file system design. Hardware-based memory corruption occurs as both tran-

4

sientsoft errorsand repeatablehard errorsdue to a variety of radiation mechanisms [27,

75, 133], and recent studies have confirmed their presence inmodern systems [72, 84, 97].

Software can also cause memory corruption; bugs can lead to “wild writes” into random

memory contents [34], thus polluting memory; studies confirm the presence of software-

induced memory corruptions in operating systems [2, 5, 14, 124].

To study how robust modern file systems are to disk and memory corruption, we

analyze a state-of-the-art file system, ZFS [29], by performing fault injection tests rep-

resentative of realistic disk and memory corruptions. We choose ZFS for our analysis

because it is a modern and mature commercial file system with numerous robustness fea-

tures, including end-to-end checksums, data replication,and transactional updates; the

result, according to the designers, is “provable data integrity” [29].

In our analysis, we find that ZFS is indeed robust to a wide range of disk corruptions,

thus partially confirming that many of its design goals have been met. However, we also

find that ZFS often fails to maintain data integrity in the face of memory corruption. In

many cases, ZFS is either unable to detect the corruption, returns bad data to the user, or

simply crashes.

1.1.2 Z2FS: Zettabyte Reliability with Flexible End-to-end Data In-

tegrity

A more comprehensive approach to data protection should embrace the “end to end” phi-

losophy [94]. In this approach, checksums are generated by an application and percolate

through the entire storage system. When reading data, the application can check whether

the calculated checksum matches the stored checksum, thus improving data integrity.

Unfortunately, the straight-forward end-to-end approachhas two drawbacks. The first

is performance; depending on the cost of checksum calculation, performance can suffer

5

when repeatedly accessing data from the in-memory page cache. The second istimeliness;

if a data block is corrupted in memory before being flushed to disk, the corruption can

only be detected when it is later read by an application, which is likely too late to recover

from the corruption.

To address these issues, we propose a concept calledflexible end-to-end data integrity.

We argue that it is not necessary for all components on the I/Opath to use the same

checksum. By carefully choosing a different checksum for each component (and perhaps

altering said checksum over time), the system can deliver better performance while still

maintaining a high level of protection. By enabling all components to handle checksums

cooperatively, the system can detect and recover from corruption in time.

To explore this flexible approach, we design and implement flexible end-to-end data

integrity within ZFS, resulting in a new variant which we call Zettabyte-reliable ZFS

(Z2FS). Z2FS exposes checksums to the application, and passes checksums through the

page cache down to the disk system, thus enabling end-to-endverification. Z2FS uses

two techniques to provide flexible data protection. The firstis checksum chaining, which

carefully orders the generation of new checksum and the verification of old checksum

such that there is no vulnerability window for data when it crosses domains (e.g., when

moving from a stronger on-disk checksum to a weaker but more performant in-memory

one). The second ischecksum switching, which enables a component (e.g., memory) to

switch the checksum it is using dynamically, thus preserving a high level of reliability for

blocks that remain resident for extended periods of time. For comparison, we also develop

End-to-End ZFS (E2ZFS), which embraces the straight-forward end-to-end protection and

uses only one type of checksum for both the page cache and disk.

Underlying Z2FS is an analytical framework that enables us to understand reliability

of storage systems against data corruption. The framework takes models of devices and

checksums used in a storage system as input, and calculates the probability of undetected

6

data corruption when reading a data block from the system as areliability metric. We

defineZettabyte Reliability, one undetected corruption per Zettabyte read, as a reliability

goal of storage systems. Guided by the reliability goal, we use the framework to provide

rationale behind flexible end-to-end data integrity.

Through fault injection experiments, we show that Z2FS is able to detect and recover

from corruption that occurs to a block in memory before it is flushed to disk in the write

path. Using both controlled benchmarks as well as real-world traces, we demonstrate that

Z2FS is able to meet or exceed the performance of E2ZFS while still providing Zettabyte

reliability. Especially for workloads dominated by warm reads, Z2FS ourperforms E2ZFS

by up to 17%.

1.2 Cooperative Data Protection across Local and Cloud

Storage

With the emergence of cloud storage, especially in the form of cloud-based file synchro-

nization services, local file systems are now connected to the cloud, and user data becomes

synchronized and replicated on multiple devices. These services are great additions to lo-

cal file systems and provide better protection for user data,but the loose coupling of these

services and the file systems actually puts data in danger in various ways. In the sec-

ond part of the dissertation, we focus on new challenges to data protection across local

and cloud storage. We first conduct an analysis of various filesynchronization services

and show how they propagate corrupt and inconsistent data tothe cloud. Then, we build

ViewBox, an integrated synchronization service and file system in which the underlying

file system works cooperatively with the file synchronization service to provide compre-

hensive data protection.

7

1.2.1 Data Protection Analysis of Cloud Storage Services

File synchronization services occupy a unique design pointbetween distributed file sys-

tems, like NFS [95] or Coda [68], and file backup services, like Mozy [8] or Data Do-

main [132]. Like the former, file synchronization services provide a means for users to

access their files on any machine connected to the service. Like the latter, however, file

synchronization services propagate local changes asynchronously, and often provide a

means to restore previous versions of files. Furthermore, they are only loosely integrated

with the file system, allowing them to be portable across a wide range of devices.

While the automatic propagation of files as they are modified is no doubt key to these

services’ success, the perceived reliability and consistency they provide is also instru-

mental to their appeal. The Dropbox tour goes as far as to state that “none of your

stuff will ever be lost” [44]. Unfortunately, the loose coupling of cloud synchroniza-

tion services with the underlying file system gives the lie tothis claim. While the data

stored remotely is generally robust, local client softwareis unable to distinguish between

deliberate modifications and unintentional errors, potentially causing corruption to auto-

matically propagate to all machines associated with a user.Thus, despite the presence of

multiple redundant copies, synchronization destroys the user’s data.

To understand this “false sense of security”, we perform fault injections experiments

on several popular cloud-based synchronization services.We first examine how these

services can silently propagate data corruption to all synchronized devices, and then show

how these services cannot guarantee data consistency with the underlying file system after

a crash. Furthermore, we show that a stronger level of inconsistency, causal inconsistency,

may occur and thus cause even more harm to both local and clouddata.

8

1.2.2 ViewBox: Integrating File Systems with Cloud StorageServices

The analysis reveals that the root cause of data protection failures is the loose coupling

of synchronization services and local file systems, and theytake equal responsibilities

for these failures. Therefore, we develop ViewBox, a systemthat integrates local file

system and cloud-based synchronization services to provide better data integrity, crash

consistency, and recoverability.

ViewBox synchronizes data between the local machine and thecloud throughviews,

in-memory snapshots of the local synchronized folder. ViewBox relies on three primary

components to guarantee the correctness of views: ext4-cksum, the view manager, and

the cloud helper. Ext4-cksum serves as the local file system,which is able to detect

corrupt and inconsistent data through data checksumming. Atop ext4-cksum, we place

the view manager, a file system extension that creates views and exposes views to the

synchronization client. The view manager provides consistency throughcloud journaling

by creating views at file-system epochs and uploading views to the cloud. To reduce the

overhead of maintaining views, the view manager employsincremental snapshottingby

keeping only deltas (changed data) in memory since the last view. Finally, in case of

corruption or crash, ViewBox uses an independent user-space daemon, the cloud helper,

to interact with the server-backend and utilize the views onthe cloud to restore the system

to a correct state.

We build ViewBox with two file synchronization services: Dropbox [44], one of the

most popular synchronization services to date, and Seafile [99], an open source synchro-

nization service based on GIT [52]. Through reliability experiments, we demonstrate that

ViewBox detects and recovers from local data corruption, thus preventing the corruption’s

propagation. We also show that upon a crash, ViewBox successfully rolls back the local

file system state to a previously uploaded view, restoring itto a causally consistent im-

9

age. By comparing ViewBox to Dropbox or Seafile running atop unmodified ext4, we

find that ViewBox incurs less than 5% overhead across a set of workloads. In some cases,

ViewBox even improves the synchronization time by 30%.

1.3 Summary of Contributions / Outline

Below is a summary of the contributions of the dissertation,which also serves as an

outline for the rest of the dissertation:

• Threats to Data Protection: Chapter 2 provides background on various threats to

data protection in existing storage systems: disk corruption, memory corruption,

and crashes.

• Cooperative Data Protection in Local Storage:In Chapter 3, we present an em-

pirical analysis of the reliability of ZFS in the face of diskand memory corrup-

tion. Then, in Chapter 4, we propose the concept of flexible end-to-end data in-

tegrity, introduce an analytical framework to provide the rationale behind the con-

cept, and implement Z2FS, which provides comprehensive data protection (from

both disk and memory corruption). The concept, framework, and techniques used

in implementing Z2FS, all together demonstrate a holistic way to think about the

performance-reliability tradeoff in storage systems, which is the first major contri-

bution of the dissertation.

• Cooperative Data Protection across Local and Cloud Storage: Chapter 5 presents

an analysis of data protection failures (focusing on disk corruption and crash) when

file synchronization services are running on top of current file systems. Chapter 6

describes our solution to the found problems, ViewBox, an integrated file system

10

and synchronization services that synchronizes data basedon file-system views.

Both the analysis and the solution serve as the second major contribution of this

dissertation.

• Related Work: Chapter 7 summarizes previous research efforts on protecting data

in storage systems.

• Conclusion and Future Work: Chapter 8 concludes this dissertation, first summa-

rizing our work and highlighting the lessons learned, and then discussing various

avenues for future work that arise from our research.

11

Chapter 2

Threats to Data Protection

This chapter provides the motivation for the dissertation by describing various threats

to data protection in storage systems. Specifically, we focus on two types of threats,

data corruption and data inconsistency. Data corruption occurs mostly due to hardware

failures and software bugs, and we describe why it happens, how frequently it occurs,

and how systems try to deal with it in Section 2.1. Data inconsistency, on the other hand,

usually results from the file system’s improper handling during an untimely system crash

or reboot. We discuss how file systems provide consistency and why data consistency is

not always guaranteed in Section 2.2.

2.1 Data Corruption

We now discuss data corruption in detail. Although it can occur at any place in a storage

system, we only focus on corruption on disk and in memory, because both are the major

media for long-term data storage and accesses.

12

2.1.1 Disk Corruption

We define disk corruption as a state when any data accessed from disk does not have the

expected contents due to some problem in the storage stack. This is different from latent

sector errors, not-ready-condition errors and recovered errors [22] in disk drives, where

there is an explicit notification from the drive about the error condition.

Why It Happens

Disk corruption happens due to many reasons originating at different layers of the storage

stack. Errors in the magnetic media lead to the problem of “bit-rot” where the magnetic

properties of a single bit or few bits are damaged. Spikes in power, erratic arm move-

ments, and scratches in media can also cause corruption in disk blocks [19, 98, 113].

On-disk ECC catches many (but not all) of these corruption.

Errors are also induced due to bugs in complex drive firmware (modern drives contain

hundreds of thousands of lines of firmware code [89]). Some reported firmware problems

include a misdirected write where the firmware accidentallywrites to the wrong loca-

tion [118] or a lost write (or phantom write) where the disk reports a write as completed

when in fact it never reaches the disk [109]. Bus controllershave also been found to

incorrectly report disk requests as complete or to corrupt data [55, 117].

Finally, software bugs in operating systems are also potential sources of corruption.

Buggy device drivers can issue disk requests with bad parameters or data [38, 47, 111].

Software bugs in the file system itself can cause incorrect data to be written to disk.

How Frequently It happens

Disk corruption are prevalent across a broad range of moderndrives. There is much

anecdotal evidence of corruption in hard disks [25, 109, 118]. In 2008, in a study of 1.53

13

million disk drives over 41 months [23], Bairavasundaram etal. show that more than

400,000 blocks had checksum mismatches, 8% of which were discovered during RAID

reconstruction, creating the possibility of real data loss. They also found that nearline

disks develop checksum mismatches an order of magnitude more often than enterprise

class disk drives.

How to Handle It

Systems use a number of techniques to handle disk corruption. We discuss some of the

most widely used techniques along with their limitations.

Checksums: Checksums are small pieces of data computed over data blocks with a spe-

cific function and are used to verify data integrity. For on-disk data integrity, checksums

are stored or updated on disk during write operations and read back to verify the block or

sector contents during reads.

Many storage systems have used checksums for on-disk data integrity, such as Tandem

NonStop [25] and NetApp Data ONTAP [109]. Similar checksumming techniques have

also been used in file systems [29, 91].

However, Krioukov et al. show that checksumming, if not carefully integrated into

the storage system, can fail to protect against complex failures such as lost writes and

misdirected writes [69]. Further, checksumming does not protect against corruption that

happens due to bugs in software, typically in large code bases [38, 125].

Redundancy: Redundancy in on-disk structures also helps to detect and,in some cases,

recover from disk corruption. For example, some B-Tree file systems such as Reis-

erFS [30] store page-level information in each internal page in the B-Tree. Thus, a corrupt

pointer that does not connect pages in adjacent levels is caught by checking this page-level

information. Similarly, ext2 [32] and ext3 [116] use redundant copies of superblock and

14

group descriptors to recover from corruption.

However, it has been shown that many of these file systems still sometimes fail to

detect corruption, leading to greater problems [89]. Further, Gunawi et al. show instances

where ext2/ext3 file system checkers fail to use available redundant information for re-

covery [57].

RAID : Another popular technique is to use a RAID storage system [86] underneath the

file system. However, RAID is designed to tolerate the loss ofa certain number of disks

or blocks (e.g., RAID-5 tolerates one, and RAID-6 two) and itmay not be possible with

RAID alone to accurately identify the block (in a stripe) that is corrupted. Secondly, some

RAID systems have been shown to have flaws where a single blockloss leads to data loss

or silent corruption [69]. Finally, not all systems incorporate multiple disks, which limits

the applicability of RAID.

2.1.2 Memory Corruption

We define memory corruption as the state when the contents accessed from the main

memory have one or more bits changed from the expected value (from a previous store

to the location). From the software perspective, it may not be possible to distinguish

memory corruption from disk corruption on a read of a disk block.

Why It Happens

Errors in the memory chip are one source of memory corruption. Memory errors can

be classified assoft errorswhich randomly flip bits in RAM without leaving any perma-

nent damage, andhard errorswhich corrupt bits in a repeatable manner due to physical

damage.

Researchers have discovered radiation mechanisms that cause errors in semiconductor

15

devices at terrestrial altitudes. Nearly three decades ago, May and Woods found that if

an alpha particle penetrates the die surface, it can cause a random, single-bit error [75].

Zeigler and Lanford found that cosmic rays can also disrupt electronic circuits [133].

More recent studies and measurements confirm the effect of atmospheric neutrons causing

single event upsets (SEU) in memories [83, 84].

Memory corruption can also happen due to software bugs. The use of unsafe lan-

guages like C and C++ makes software vulnerable to bugs such as dangling pointers,

buffer overflows and heap corruption [28], which can result in seemingly random mem-

ory corruption.

How Frequently It Happens

Early studies and measurements on memory errors provided evidence of soft errors. Data

collected from a vast storehouse of data at IBM over a 15-yearperiod [84] confirmed

the presence of errors in RAM and that the upset rates increase with elevation, indicating

atmospheric neutrons as the likely cause.

In 2009, a measurement-based study of memory errors in a large fleet of commodity

servers over a period of 2.5 years [97], Schroeder et al. observe DRAM error rates that

are orders of magnitude higher than previously reported, with 25,000 to 70,000 FIT per

Mbit (1 FIT equals 1 failure in 109 device hours). They also find that more than 8% of the

DIMMs they examined (from multiple vendors, with varying capacities and technologies)

were affected by bit errors each year. Finally, they also provide strong evidence that

memory errors are dominated by hard errors, rather than softerrors.

Another study [72] of production systems including 300 machines for a multi-month

period found 2 cases of suspected soft errors and 9 cases of hard errors suggesting the

commonness of hard memory faults.

16

Besides hardware errors, software bugs that lead to memory corruption are widely

extant. Reports from the Linux Kernel Bugzilla Database [5], USCERT Vulnerabilities

Notes Database [14], CERT/CC advisories [2], as well as other anecdotal evidence [34]

show cases of memory corruption happening due to software bugs.

How to Handle It

Systems use both hardware and software techniques to handlememory corruption. Below,

we discuss the most relevant hardware and software techniques.

ECC: Traditionally, memory systems have employed Error Correction Codes [35] to cor-

rect memory errors. Unfortunately, ECC is unable to addressall soft-error problems.

Studies found that the most commonly-used ECC algorithms called SEC/DED (Single Er-

ror Correct/Double Error Detect) can recover from only 94% of the errors in DRAMs [48].

Further, many consumer systems do not use ECC protection in order to reduce cost [59].

More sophisticated techniques like Chipkill [64] have beenproposed to withstand

multi-bit failure in DRAMs. However, such techniques are expensive and have been

restricted to proprietary server systems, leaving the problem of memory corruption open

in commodity systems.

Programming models and tools: Another approach to deal with memory errors is to use

recoverable programming models [80] at different levels (firmware, operating system, and

applications). However, such techniques require support from hardware to detect memory

corruption. Further, a holistic change in software is required to provide recovery solution

at various levels.

Much effort has also gone into detecting software bugs that cause memory corrup-

tion. Tools such as metal [58] and CSSV [42] apply static analysis to detect memory

corruption. Others such as Purify [61] and SafeMem [90] use dynamic monitoring to de-

17

tect memory corruption at runtime. However, as discussed previously, software-induced

memory corruption still remains a problem.

2.2 Data Inconsistency

The problem of data inconsistency usually occurs due to file system failing to provide

strong consistency guarantee upon a crash. File systems maintains various metadata struc-

tures to organize data. Performing a single file system operation, such as write(), usually

involves changes to several metadata structures. For example, appending a block to a file

in ext3 requires at least three blocks to be written to disk: adata bitmap block, an inode

block, and the data block. In order to correctly apply such anoperation to the on-disk file

system image, all these blocks must be written to disk as a whole. However, when crash

occurs, it is possible that some of the changes do not make to the disk. For instance, if the

data block is not written, the file would point to garbage data, resulting indata inconsis-

tency. If the data bitmap block is not written, the actual status ofthe data block (used by

the inode) does not match the bitmap (free), which leads tometadata inconsistency.

File system developers have been using several techniques to address the consistency

problem. One simple approach is to let the inconsistency occur and then use a tool, usu-

ally called file system checker (fsck) [76], to fix the inconsistency. This approach can fix

metadata inconsistency in most cases, but it cannot, for example, detect the data incon-

sistency case mentioned above. Therefore, many file systemshave built-in mechanism

to prevent inconsistency in runtime, and the most common technique is journaling. Jour-

naling, or write-ahead logging, provides consistency by grouping multiple updates into

transactions, which are first written to a circular log and then later checkpointed to their

fixed location in the file system. Journaling is quite popular, seeing use in ext3 [116],

ext4 [73], XFS [110], HFS+ [21], and NTFS [79]. Recording alldata and metadata in the

18

log can provide data consistency, but doing so doubles all write traffic in the system. Thus,

normally, these file systems only journal metadata, which can lead to inconsistencies in

file data upon recovery, even if the file system carefully orders its data and metadata writes

(as in ext4’s ordered mode, for instance).

Data inconsistency can be avoided entirely using copy-on-write, but it is an infre-

quently used solution. Copy-on-write never overwrites data or metadata in place; thus,

if a crash occurs mid-update, the original state will still exist on disk, providing a con-

sistent point for recovery. Implementing copy-on-write involves substantial complexity,

however, and only recent file-systems, like ZFS [29] and btrfs [91], support it for personal

use.

2.3 Summary

Modern storage systems are facing great challenges in protecting data. Disk errors, mem-

ory bit flips, and software bugs can all corrupt data. The combination of untimely crash

and imperfect crash handling of file system may lead to data inconsistency. We have pre-

sented some existing mechanisms to deal with these problems, but unfortunately they are

still separated techniques and cannot provide comprehensive data protection. In the fol-

lowing chapters we will show why they fail to protect data in local file systems as well as

cloud storage services, and explore new cooperative techniques to maintain data integrity

and consistency.

19

Chapter 3

Data Protection Analysis of Local File

Systems

Disk corruption is one of the primary sources for unreliability in data storage. As file

systems have evolved over the years, designers have focusedon this problem and devised

techniques to deal with it [29, 86, 104]. Unfortunately, memory corruption has been

ignored and poses a growing threat to data integrity. As discussed in Section 2.1.2, recent

studies measured increasing memory error rate due to hardware faults, and various bug

reports show the occurrence of memory corruption due to software bugs.

The problem of memory corruption is critical for file systemsthat cache a great deal

of data in memory for performance. Almost all modern file systems use a page cache

or buffer cache to store copies of on-disk data and metadata in memory. Moreover,

frequently-accessed data and important metadata may be cached in memory for long pe-

riods of time, making them more susceptible to memory corruption.

In this chapter, we ask: how robust are modern local file systems to disk and memory

corruptions? To answer this query, we perform a series of fault injection experiments on

20

ZFS to study how it responds to disk and memory corruptions. Before we go into details

about the experiments, we first we provide some background onZFS in Section 3.1. Then,

we present our analysis of data protection in ZFS with disk and memory corruptions in

Section 3.2 and Section 3.3, respectively. Finally, Section 3.4 gives an analysis of the

probabilities of different failure scenarios in ZFS due to memory errors.

3.1 Background

ZFS is a state-of-the-art file system from Sun (now Oracle) which takes a unified approach

to data management. ZFS provides data integrity, transactional consistency, scalability,

and a multitude of useful features such as snapshots, copy-on-write clones, and simple

administration [29]. In this section, we first present a high-level overview of ZFS, focus-

ing on the reliability mechanisms. Then, we discuss the disklayout of ZFS in detail and

illustrate how ZFS organizes metadata and data through a on-disk walkthrough. Finally,

we briefly discuss in-memory data structures.

3.1.1 ZFS Overview

ZFS claims to provide provable data integrity by using techniques like checksums, repli-

cation, and transactional updates. Further, the use of a pooled storage in ZFS lends it

additional RAID-like reliability features. In the words ofthe designers, ZFS is the “The

Last Word in File Systems.” We now describe the reliability mechanisms in ZFS.

Checksums for data integrity checking: ZFS maintains data integrity by using check-

sums for on-disk blocks. The checksums are kept separate from the corresponding blocks

by storing them in the parent blocks. ZFS provides for these parental checksums of blocks

by using a generic block pointer structure to address all on-disk blocks.

21

The block pointer structure contains the checksum of the block it references. Before

using a block, ZFS calculates its checksum and verifies it against the stored checksum in

the block pointer. The checksum hierarchy forms a self-validating Merkle tree [78]. With

this mechanism, ZFS is able to detect silent data corruption, such as bit rot, phantom

writes, and misdirected reads and writes.

Replication for data recovery: Besides using RAID techniques (described below), ZFS

provides for recovery from disk corruption by keeping replicas of certain “important”

on-disk blocks. Each block pointer contains pointers to up to three copies of the block

being referenced. By default ZFS stores multiple copies formetadata (three copies for

pool metadata and two copies for file system metadata) and onecopy for data. Upon

detecting a corruption due to checksum mismatch, ZFS uses a redundant copy with a

correctly-matching checksum.

COW transactions for atomic updates: ZFS maintains data consistency in the event of

system crashes by using a copy-on-write transactional update model. ZFS manages all

metadata and data as objects. Updates to all objects are grouped together as a transaction

group. To commit a transaction group to disk, new copies are created for all the modified

blocks (in a Merkle tree). The root of this tree (theuberblock) is updated atomically, thus

maintaining an always-consistent disk image. In effect, the copy-on-write transactions

along with block checksums (in a Merkle tree) preclude the need for journaling [120],

though ZFS occasionally uses a write-ahead log for performance reasons.

Storage pools for additional reliability: ZFS provides additional reliability by enabling

RAID-like configuration for devices using a common storage pool for all zfs instances.

ZFS presents physical storage to file systems in the form of a storage pool (calledzpool).

A storage pool is made up ofvirtual devices(vdev). A virtual device could be a physical

device (e.g., disks) or a logical device (e.g., a mirror thatis constructed by two disks).

This storage pool can be used to provide additional reliability by using devices as RAID

22

dnode

dnode

dnodednodezpool

zfs

dnode uberblock

vdev label

object set block

dnode block

data block

indirect block

dnode

dnode

dnode

dnode

LEGEND

Figure 3.1: ZFS Two-level Layout The figure shows the two-level layout of ZFS on-disk
structures.

arrays. ZFS provides automatic repairs in mirrored configurations and provides a disk

scrubbing facility to detect latent sector errors.

3.1.2 ZFS On-disk Organization

ZFS organizes its metadata and data into a two level architecture, as shown in Figure 3.1.

The zfs level contains on-disk structures that are used to represent a zfs instance, such as

a file system, a snapshot, or a clone. The zpool level maintains data structures that keep

track of all file system instances and their relationship. Wenow discuss some of these

basic on-disk structures and their usage in ZFS.

23

������� �����

���
 �

����� ���

����
���

����

������������ ���

������������ ���

���

����

����
�����

���
 �

�����

���
 �

Figure 3.2:Block pointer The figure shows how the block pointer structure points to (upto)
three copies of a block (ditto blocks), and keeps a single checksum.

Basic Structures

Block pointers: A block pointer is the basic structure in ZFS for addressinga block on

disk and connecting different structures. It provides a generic mechanism to keep parental

checksums and replicas of on-disk blocks. Figure 3.2 shows the block pointer used by

ZFS. As shown, the block pointer contains up to three block addresses, called DVAs (data

virtual addresses), each pointing to a different block having the same contents. These are

referred to asditto blocks. The number of DVAs varies depending on the importance of

the block. The current policy in ZFS is that there is one DVA for user data, two DVAs for

file system metadata, and three DVAs for global metadata across all file system instances

in the pool [81]. As discussed earlier, the block pointer also contains a single copy of the

checksum of the block being pointed to.

Objects: All blocks on disk are organized in objects. Physically, anobject is represented

on disk by a structure calleddnode phys t (hereafter referred to asdnode). A dnode

contains an array of up to three block pointers, each of whichpoints to either a leaf block

(e.g., a data block) or an indirect block (full of block pointers). These blocks pointed to by

the dnode form a block tree. A dnode also contains a bonus buffer at the end, which stores

24

Level Object Name Simplified Explanation

zpool

MOS dnode A dnode object that contains dnode blocks, which store dnodes repre-
senting pool-level objects.

Object directory A ZAP object whose blocks contain name-value pairs referencing further
objects in the MOS object set.

Dataset It represents an object set (e.g., a file system) and tracks its relationships
with other object sets (e.g., snapshots and clones).

Dataset directory It maintains an active dataset object along with its child datasets. It has a
reference to a dataset child map object. It also maintains properties such
as quotas for all datasets in this dataset directory.

Dataset child map A ZAP object whose blocks hold name-value pairs referencingchild
dataset directories.

zfs

FS dnode A dnode object that contains dnode blocks, which store dnodes repre-
senting filesystem-level objects.

Master node A ZAP object whose blocks contain name-value pairs referencing further
objects in this file system.

File An object whose blocks contain file data.
Directory A ZAP object whose blocks contain name-value pairs referencing files

and directories inside this directory.

Table 3.1:Summary of ZFS objects visitedThe table presents a summary of all ZFS objects
visited in the walkthrough, along with a simplified explanation. Note that ZAP stands for ZFS
Attribute Processor. A ZAP object is used to store name-value pairs.

an object-specific data structure for different types of objects. For example, a dnode of a

file object contains a structure calledznode phys t (znode) in the bonus buffer, which

stores file attributes such as access time, file mode and size of the file. The dnode then

points to a block tree with data blocks at the leaf level, as shown in Figure 3.1.

Object sets: Object sets are used in ZFS to group related objects. An example of a object

set is a file system, which contains file objects and directoryobjects belonging to this file

system. An object set is represented by a structure calledobjset phys t , which consists

of a meta dnode and a ZIL (ZFS Intent Log) header. The meta dnode points to a group of

dnode blocks; dnodes representing the objects in this object set are stored in these dnode

blocks. The object described by the meta dnode is called “dnode object”. The ZIL header

points to a list of blocks, which holds transaction records for ZFS’s logging mechanism.

25

Theobjset phys t structure is stored in anobjset block.

Datasets: An object set is eventually encapsulated by a zpool-level object called dataset.

A dataset could be a file system, a clone, or a snapshot. A dataset contains statistics such

as the space consumption of an object set, and tracks its relationship with other related

datasets. For example, a file system dataset maintains the inter-dependency between the

file system and its snapshots and clones. A dataset is represented by a dnode with a

dsl dataset phys t structure in the bonus field. The dnode itself does not point to

the objset block; it is thedsl dataset phys t structure that contains a block pointer

referencing the objset block.

Uberblock: As shown in Figure 3.1, all zpool-level objects form another object set and

the corresponding objset block is pointed to by a root block pointer in anuberblock. An

uberblock (similar to a superblock) is used to provide access to the current pool data and

verify its integrity. The uberblock is self-checksummed and updated atomically.

Vdev label: Each physical vdev is labeled with avdev labelthat describes this device

and other related virtual devices. Four copies of the label are stored in each physical vdev

to provide redundancy and a two-stage update mechanism is used to guarantee that there

is always a valid vdev label in the device [108]. Every vdev label contains an array of

uberblocks; updating an uberblock involves writing the newuberblock to the next entry

in the array (in a round robin fashion) and mark the new entry the active uberblock.

Therefore, if a crash occurs during the update, ZFS will always fall back to the previous

uberblock, thus guaranteeing consistency.

2
6

� 	 � � � � � � �

� ! " # $ % " $ & � # '

() � (" & � # '

*) (* + " # $ & � # '

, - . & � # '

(/ $ / & � # '

0 � 1 � � 1 � 2

3 4 5 6 7 8 9 : ; < 6 9 8 % $ + = # $ = + " � > /) � ! " # $ % " $

- + + / ? � > () � (" % � > /) � ! " # $ % " $

- + + / ? � > & � # ' @ � *) $ " + %

A / $ / > � + , B C - $ $ + * = $ " . + � # " % % � + � ! " # $

A / $ / > � + > * & " %

- D / * & / & " % $ � + / E " % @ / # "F G F HF IJ � � $

= " + & � # ' / + + / ?

J & /) '

% @ / # "

J � � $

K " / (" +

L / M " N D / & = "

@ / * + % ...

O P Q R S T U R T P V O S W

X Y O X R P V O S W

X Y O X R P V O S W

Z [\ P V O S W Z [\ P V O S W

] ^ _] ` a b c d e f b g

] ^ _] ` a b c d e f b g

...

h i T i P V O S W

j k C � ! " # $ % " $

+ � � $ l H > * & " l m

n o p q r s q t s u v t w x

+ � � $ (/ $ / % " $ l I

Z [\ P V O S W

M ? > % l I y

Z [\ P V O S W

1

2 3

4

5
6

7

8

10

11

12

13

14

15

16

17

18

k ! " # $

(* + " # $ � + ?

z � � $

(/ $ / % " $

(* + " # $ � + ?

z � � $

(/ $ / % " $

K * & (M / @

M ? > %

(/ $ / % " $

(* + " # $ � + ?

M ? > %

(/ $ / % " $

O P Q R S T U R T P V O S W

M ? > % � ! " # $ % " $

{ | } ~ q r s q t s u v t w x

j / % $ " +

) � ("

z � � $

(* + " # $ � + ?

B * & "

F �

9

� � � � � �

D (" D & / " &

Figure 3.3:ZFS On-disk Walk The figure illustrates a walkthrough of on-disk structures of ZFS to locate a data block in
a file system “myfs”. Zpool contains a sample file system named“myfs”. All data structures are shown by rounded boxes, and
blocks are shown by rectangular boxes. Solid arrows point toallocated blocks and dotted arrows represent references toobjects
inside blocks. The legend at the top shows the types of on-disk blocks and their contents.

27

On-disk Layout

Next, we present more details on ZFS on-disk layout. This overview will help the reader

to understand the range of our fault injection experiments presented in later sections. A

complete description of ZFS on-disk structures can be foundelsewhere [108].

For the purpose of illustration, we demonstrate the steps that ZFS takes to locate a

file system and to locate file data in it in a simple storage pool. Figure 3.3 shows the

on-disk layout of the simplified pool with a sample file systemcalled “myfs”, along with

the sequence of objects and blocks accessed by ZFS. A summaryof all visited objects is

described in Table 3.1. Note that we skip the details of how in-memory structures are set

up and assume that data and metadata are not cached in memory to begin with.

As shown in the figure, four copies of vdev labels are located at fixed locations on

the disk (two each at the start and end). The active uberblockis found in any one of

the labels (step 1). The uberblock points to a meta object set(MOS) (step 2), which is

an object set holding pool-wide information for describingand managing relationships

between various file system instances. Since MOS is pool-wide metadata, there are three

copies of the block containing it.

A special object in MOS called the object directory is used tokeep track of further

zpool-level objects (step 3 and 4). The object directory contains references (object num-

bers) to various other objects in the object set. One of thesereferences is the root dataset

directory (step 5). A dataset directory encapsulates a group of related datasets and main-

tains their common properties, such as quota, block size, checksum algorithm, etc. Every

zfs in zpool has a corresponding dataset directory. A dataset directory always has a single

“active dataset”, which represents the active zfs instance; other datasets are its snapshots,

clones, etc. Therefore, the root dataset directory represents the root file system in the pool

and it is used to access all child dataset directories.

28

The root dataset directory points to a dataset child map object (step 6), which contains

references to all child dataset directories, including “myfs” (step 7). Finally, the dataset

directory of “myfs” is found (step 8) and the active dataset of the directory points to the

current “myfs” file system (step 9). The object set pointed toby this dataset contains fur-

ther file-system specific metadata structures (step 10). Since the objset block is zfs-level

metadata, ZFS keeps two copies of the block. The “myfs” object set further points to

several layers of indirect blocks which eventually lead to alarge array of dnodes describ-

ing file system objects (step 11-13). Since all these blocks are also file-system specific

metadata, there are two copies of all the indirect blocks as well as the dnode blocks at the

leaf level.

There is a special object called master node for each file system. It contains references

to the root directory of a file system (step 14). The root directory is then traversed to find

further child directories and files in the “myfs” file system (step 15-17). Finally, the file

objects contain the block pointers to their corresponding data blocks (step 18).

3.1.3 ZFS In-memory Structures

ZFS in-memory structures can be classified into two categories: those that exist in the

page cache and those that are in memory outside of the page cache; for convenience

we call the latterin-heapstructures. Whenever a disk block is accessed, it is loaded

into memory. Disk blocks containing data and metadata are cached in the ARC page

cache [77], and stay there until evicted. Data blocks are stored only in the page cache,

while most metadata structures are stored in both the page cache (as copies of on-disk

structures) and the heap. Note that block pointers inside indirect blocks are also metadata,

but they only reside in the page cache. Uberblocks and vdev labels, on the other hand,

only stay in the heap.

29

���� ����
���� �����
��� ���

����� ���������� ����
��� ���

GV

�����
������

���������� ���

¡¢£¤

¥¦§¨
©¦©ª¨

«¬­®¯°®¯±

²³´
«¬­®¯°®¯±

µ ¶�����·
����¸���

¹�������
����¸���

�����
��º�¸

�º���»�
��º�¸

����������
����º�����

�����

���º�·
�º���»��º�

...... ...

����������
����º�����

�����

����·
��º�¸

READ WRITE

Figure 3.4:Lifecycle of a block This figure illustrates one example of the lifecycle of a block.
The left half represents the read timeline and the right halfrepresents the write timeline. The black
dotted line is a protection boundary, below which a block is protected by the checksum, otherwise
unprotected.

To help the reader understand the vulnerability of ZFS to memory corruptions dis-

cussed in later sections, Figure 3.4 illustrates one example of the lifecycle of a block (i.e.,

how a block is read from and written asynchronously to disk).To simplify the explana-

tion, we consider a pair of blocks in which the target block tobe read or written is pointed

to by a block pointer contained in the parental block. The target block could be a data

block or a metadata block. The parental block could be an indirect block (full of block

pointers), a dnode block (array of dnodes, each of which contains block pointers), or an

object set block (a dnode is embedded in it). The user of the block could be a user-level

application or ZFS itself. Note that only the target block isshown in the figure.

At first, the target block is read from disk to memory. For read, there are two scenarios,

as shown in the left half of Figure 3.4. On the first read of a target block, it is read from

the disk and immediately verified against the checksum stored in the block pointer in the

parental block. Then the target block is returned to the user. On a subsequent read of

a block already in the page cache, the read request gets the cached block from the page

cache directly, without verifying the checksum.

In both cases, after the read, the target block stays in the page cache until evicted. The

block remains in the page cache for an unbounded interval of time depending on many

30

factors such as the workload and the cache replacement policy.

After some time, the block is updated. The write timeline is illustrated in the right

half of Figure 3.4. All updates are first done in the page cacheand then flushed to disk.

Thus before the updates occur, the target block is either in the page cache already or just

loaded to the page cache from disk. After the write, the updated block stays in the page

cache for at most 30 seconds and then it is flushed to disk.

During the flush, a new physical block is allocated and a new checksum is generated

for the dirty target block. The new disk address and checksumare then written to the

block pointer contained in the parental block, thus making it dirty. After the target block

is written to the disk, the flush procedure continues to allocate a new block and calculate a

new checksum for the parental block, which in turn dirties its subsequent parental block.

Following the updates of block pointers along the tree (solid arrows in Figure 3.3), it

finally reaches the uberblock which is self-checksummed. After the flush, the target block

is kept in the page cache until it is evicted.

3.2 On-disk Data Integrity in ZFS

In this section, we analyze the robustness of ZFS against disk corruptions. Our aim is to

find whether ZFS can maintain data integrity under a variety of disk corruption scenarios.

Specifically, we wish to find if ZFS can detect and recover fromall disk corruptions in

data and metadata and how ZFS reacts to multiple block corruptions at the same time.

Through experiments, we find that ZFS is able to detect all andrecover from most disk

corruptions.

31

3.2.1 Methodology

Now we present the methodology of our reliability analysis of ZFS against disk corrup-

tions. We discuss our fault injection framework first and then present our test procedures

and workloads.

Fault Injection Framework

Our experiments are performed on a 64-bit Solaris Express Community Edition (build

108) virtual machine with 2GB memory. We use ZFS pool version14 and ZFS file system

version 3. We run ZFS on top of a single disk for our experiments.

To emulate disk corruptions, we developed a fault injectionframework consisting of a

pseudo-driver to perform fault injection on disk blocks andan application for controlling

the experiments. The pseudo-driver is a standard Solaris layered driver that interposes

between the ZFS virtual device and the disk driver beneath. We analyze the behavior of

ZFS by looking at return values, checking system logs, and tracing system calls.

Test Procedure and Workloads

In our tests, we wanted to understand the behavior of ZFS to disk corruptions on different

types of blocks. We injected faults by flipping bits at randomoffsets in disk blocks. Since

we used the default setting in ZFS for compression (metadatacompressed and data un-

compressed), our fault injection tests corrupted compressed metadata and uncompressed

data blocks on disk. We injected faults on nine different classes of ZFS on-disk blocks

and for each class, we corrupted a single copy as well as all copies of blocks.

In our fault injection experiments on pool-wide and file system level metadata, we

used “mount” and “remount” operations as our workload. The “mount” workload indi-

cates that the target block is corrupted with the pool exported and “myfs” not mounted,

32

and we subsequently mount it. This workload forces ZFS to useon-disk copies of meta-

data. The “remount” workload indicates that the target block is corrupted with “myfs”

mounted and we subsequently umount and mount it. ZFS uses in-memory copies of

metadata in this workload.

For injecting faults in file and directory blocks in a file system, we used two simple

operations as workloads: “create file” creates a new file in a directory, and “read file”

reads a file’s contents.

3.2.2 Results and Observations

The results of our fault injection experiments are shown in Table 3.2. The table reports

the results of experiments on pool-wide metadata and file system metadata and data. It

also shows the results of corrupting a single copy as well as all copies of blocks. We now

explain the results in detail in terms of the observations wemade from our fault injection

experiments.

Observation 1: ZFS detects all corruptions due to the use of checksums. In our fault

injection experiments on all metadata and data, we found that bad data was never returned

to the user because ZFS was able to detect all corruptions dueto the use of checksums in

block pointers. The parental checksums are used in ZFS to verify the integrity of all the

on-disk blocks accessed. The only exception are uberblocks, which do not have parent

block pointers. Corruptions to the uberblock are detected by the use of checksums inside

the uberblock itself.

Observation 2: ZFS gracefully recovers from single metadata block corruptions.

For pool-wide metadata and file system wide metadata, ZFS recovered from disk corrup-

tions by using the ditto blocks. ZFS keeps three ditto blocksfor pool-wide metadata and

two for file system metadata. Hence, on single-block corruption to metadata, ZFS was

33

Single All
ditto ditto

Level Block m
ou

nt
re

m
ou

nt
cr

ea
te

fil
e

re
ad

fil
e

m
ou

nt
re

m
ou

nt
cr

ea
te

fil
e

re
ad

fil
e

zpool

vdev label1 R R E R
uberblock R R E R
MOS object set block R R E R
MOS dnode block R R E R

zfs

myfs object set block R R E R
myfs indirect block R R E R
myfs dnode block R R E R
dir ZAP block R R E E
file data block E E

1 excluding the uberblocks contained in it.

Table 3.2:On-disk corruption analysis The table shows the results of on-disk experiments.
Each cell indicates whether ZFS was able to recover from the corruption (R), whether ZFS re-
ported an error (E), whether ZFS returned bad data to the user(B), or whether the system crashed
(C). Blank cells mean that the workload was not exercised forthe block.

successfully able to detect the corruption and use other available correct copies to recover

from it; this is shown by the cells (R) in the “Single ditto” column for all metadata blocks.

Observation 3: ZFS does not recover from data block corruptions. For data blocks

belonging to files, ZFS was not able to recover from corruptions. ZFS detected the cor-

ruption and reported an error on reading the data block. Since ZFS does not keep multiple

copies of data blocks by default, this behavior is expected;this is shown by the cells (E)

for the file data block.

Observation 4: In-memory copies of metadata help ZFS to recover from serious

multiple block corruptions. In an active storage pool, ZFS caches metadata in memory

for performance. ZFS performs operations on these cached copies of metadata and writes

them to disk on transaction group commits. These in-memory copies of metadata, along

with periodic transaction commits, help ZFS recover from multiple disk corruptions.

34

In the “remount” workload that corrupted all copies of uberblock, ZFS recovered from

the corruptions because the in-memory copy of the active uberblock remains as long as

the pool exists. The in-memory copy is subsequently writtento a new disk block in

a transaction group commit, making the old corrupted copy void. Similar results were

obtained when corrupting other pool-wide metadata and file system metadata, and ZFS

was able to recover from these multiple block corruptions (R).

Observation 5: ZFS cannot recover from multiple block corruptions affecting all

ditto blocks when no in-memory copy exists. For file system metadata, like directory

ZAP blocks, ZFS does not always keep an in-memory copy unlessthe directory has been

accessed. Thus, on corruptions to both ditto blocks, ZFS reported an error. This behavior

is shown by the results (E) for directories indicating for the “create file” and “read file”

operations. Note that we performed these corruptions without first accessing the directory,

so that there were no in-memory copies. Similarly, in the “mount” workload, when the

pool was inactive (exported) and thus no in-memory copies existed, ZFS was unable to

recover from multiple disk corruptions and responded with errors (E).

Observation 4 and 5 also lead to an interesting conclusion that an active storage pool

is likely to tolerate more serious disk corruptions than an inactive one.

In summary, ZFS successfully detects all corruptions and recovers from them as long

as one correct copy exists. The in-memory caching and periodic flushing of metadata on

transaction commits help ZFS recover from serious disk corruptions affecting all copies

of metadata. For user data, ZFS does not keep redundant copies and is unable to recover

from corruptions. ZFS, however, detects the corruptions and reports an error to the user.

35

3.3 In-memory Data Integrity in ZFS

Although ZFS was not specifically designed to tolerate memory corruptions, we still

would like to know how ZFS reacts to memory corruptions, i.e., whether ZFS can detect

and recover from a single bit flip in data and metadata blocks.In this section, we per-

form a series of fault injection experiments to study the behavior of ZFS in the presence

of memory corruptions. We find that ZFS has no precautions formemory corruptions:

bad data blocks are returned to the user or written to disk, file system operations fail, and

many times the whole system crashes.

3.3.1 Methodology

Now we discuss the fault injection framework and the test procedure and workloads.

The injection framework is similar to the one used for on-disk experiments. The only

difference is the pseudo-driver, which in this case, interacts with the ZFS stack by calling

internal functions to locate the in-memory structures.

Test Procedure and Workloads

We wished to find out the behavior of ZFS in response to corruptions in different in-

memory objects. Since all data and metadata in memory are uncompressed, we performed

a controlled fault injection in various objects. For metadata, we randomly flipped a bit

in each individual field of the structure separately; for data, we randomly corrupted a bit

in a data block of a file in memory. We repeated each fault injection test five times. We

performed fault injection tests on nine different types of objects at two levels (zfs and

zpool) and exercised different set of workloads as listed inTable 3.3. Table 3.4 shows all

data structures inside the objects and all the fields we corrupted during the experiments.

36

Object Data Structures Workload
MOS
dnode

dnodet, dnodephyst
zfs create,
zfs destroy,
zfs rename,
zfs list,
zfs mount,
zfs umount

Object
directory

dnodet, dnodephyst,
mzapphyst, mzapent physt

Dataset dnodet, dnodephyst,
dsl datasetphys t

Dataset
directory

dnodet, dnodephyst,
dsl dir physt

Dataset
child map

dnodet, dnodephyst,
mzapphyst, mzapent physt

FS dnode dnodet, dnodephyst zfs umount,
path traversalMaster

node
dnodet, dnodephyst,
mzapphyst, mzapent physt

File dnodet, dnodephyst,
znodephyst

open, close, lseek, read,
write, access, link, unlink,
rename, truncate
(chdir, mkdir, rmdir)

Dir dnodet, dnodephyst,
znodephyst,
mzapphyst, mzapent physt

Table 3.3: Summary of Tested ObjectsThe table presents a summary of all ZFS objects
corrupted in our in-memory analysis, along with their data structures and the workloads exercised
on them.

For data blocks, we injected bit flips at an appropriate time as described below. For

reads, we flipped a random bit in the data block after it was loaded to the page cache; then

we issued a subsequent read() on that block to see if ZFS returned the corrupted block. In

this case, the read() call fetched the block from the page cache. For writes, we corrupted

the block after the write() call finished but before the target block was written to the disk.

For metadata, in our fault injection experiments, we covered a broad range of metadata

structures (totally 16 core objects/structures). To reduce the sample space for experiments

to more interesting cases, we made two choices. First, we always injected faults to the

in-memory structure after it was accessed by the file system,so that both the in-heap

version and page cache version already exist in the memory. Second, among the in-heap

structures, we only corrupted thednode t structure (in-heap version ofdnode phys t).

37

Data Structure Fields
dnodet dn nlevels, dnbonustype,

dn indblkshift, dnnblkptr,
dn datablkszsec, dnmaxblkid,
dn compress, dnbonuslen,
dn checksum,
dn type

dnodephyst dn nlevels, dnbonustype,
dn indblkshift, dnnblkptr,
dn datablkszsec, dnmaxblkid,
dn compress, dnbonuslen,
dn checksum, dntype, dnused,
dn flags,

mzapphyst mz block type, mzsalt
mzapent phys t mzevalue, mzename
znodephys t zp mode, zpsize, zplinks,

zp flags, zpparent
dsl dir physt dd headdatasetobj,

dd child dir zapobj,
dd parentobj

dsl datasetphys t ds dir obj

Table 3.4:Summary of Tested Data structures and FieldsThe table lists all fields we
corrupted in the in-memory experiments.mzap phys t and mzap ent phys t are metadata
stored in ZAP blocks. The last three structures are object-specific structures stored in the dnode
bonus buffer.

The dnode structure is the most widely used metadata structure in ZFS and every object

in ZFS is represented by a dnode. Hence, we anticipate that corrupting the in-heap dnode

structure will cover many interesting cases.

3.3.2 Results and Observations

We present the results of our in-memory experiments in Table3.5. As shown, ZFS fails

to catch data block corruptions due to memory errors in both read and write experiments.

Single bit flips in metadata blocks not only lead to returningbad data blocks, but also

cause more serious problems like failure of operations and system crashes. Note that

38

Table 3.5 only shows cases with apparent problems. In other cases that are either indicated

by a dot (.) in the result cells or not shown at all in Table 3.5,the corresponding operation

either did not access the corrupted field or completed successfully with the corrupted field.

However, in all cases, ZFS did not correct the corrupted field.

Next we present our observations on ZFS behavior and user-visible results. The first

five observations are about ZFS behavior and the last five observations are about user-

visible results of memory corruptions.

Observation 1: ZFS does not use the checksums in the page cache along with the

blocks to detect memory corruptions.Checksums are the first guard for detecting data

corruption in ZFS. However, when a block is already in the page cache, ZFS implicitly

assumes that it is protected against corruptions. In the case of reads, the checksum is

verified only when the block is being read from the disk. Following that, as long as

the block stays in the page cache, it is never checked againstthe checksum, despite the

checksum also being in the page cache (in the block pointer contained in its parental

block). The result is that ZFS returns bad data to the user on reads.

For writes, the checksum is generated only when the block is being written to disk.

Before that, the dirty block stays in the page cache with an outdated checksum in the

block pointer pointing to it. If the block is corrupted in thepage cache before it is flushed

to disk, ZFS calculates a checksum for the bad block and stores the new checksum in

the block pointer. Both the block and its parental block containing the block pointer are

written to disk. On subsequent reads of the block, it passes the checksum verification and

is returned to the user.

Moreover, since the detection mechanisms already fail to detect memory corruptions,

recovery mechanisms such as ditto blocks and the mirrored zpool are not triggered to

recover from the damage.

3
9

File Dir MOS dnode Dataset directory
Dataset
childmap

Dataset

Structure Field O R W A U N T O A L U N T M C D c d r l m u c d r l m u c d r c d r l m

dnodet

dn type C C C C C C
dn indblkshift . BC . . C E E E . E . E .
dn nlevels . . C . . . C . . C C C . C . C C C C C C C C C C C C C. .
dn checksum . . C . . . C .
dn compress . . C .
dn maxblkid C C .

dnodephyst

dn indblkshift C .
dn nlevels . BC C . C C C
dn nblkptr . C . . .
dn bonuslen . . C . C C . . .
dn maxblkid . B . . C . C C C C . . C . . .

znodephyst
zp size E

zp flags E . . E . E E E E E E E E E E E

dsl dir physt
dd headdatasetobj E E E E . .
dd child dir zapobj EC EC EC EC ECC

dsl datasetphyst ds dir obj . E E . .
data block B B

Table 3.5:In-memory corruption results The table shows our memory corruption results. The operations exercised are
O(open), R(read), W(write), A(access), L(link), U(unlink), N(rename), T(truncate), M(mkdir), C(chdir), D(rmdir),c(zfs create),
d(zfs destroy), r(zfs rename), l(zfs list), m(zfs mount) and u(zfs umount). Each result cell indicates whether the system crashed
(C), whether the operation failed with wrong results or witha misleading message (E), whether a bad data block was returned
(B) or whether the operation completed (.). Large blanks mean that the operations are not applicable.

40

The results in Table 3.5 indicate that when a data block was corrupted, the application

that issued a read() or write() request was returned bad data(B), as shown in the last row.

When metadata blocks were corrupted, ZFS accessed the corrupted data structures and

thus behaved wrongly, as shown by other cases in the result table.

Observation 2:The window of vulnerability of blocks in the page cache is unbounded.

As Figure 3.4 shows, after a block is loaded into the page cache by first read, it stays there

until evicted. During this interval, if a corruption happens to the block, any subsequent

read will get the corrupted block because the checksum is notverified. Therefore, as long

as the block is in the page cache (unbounded), it is susceptible to memory corruptions.

Observation 3: Since checksums are created when blocks are written to disk,any

corruption to blocks that are dirty (or will be dirtied) is written to disk permanently on

a flush. As described in Section 3.1, dirty blocks in the page cache are written to disk

during a flush. During the flush, any dirty block will further cause updates of all its

parental blocks; a new checksum is then calculated for each updated block and all of

them are flushed to disk. If a memory corruption happens to anyof those blocks before a

flush (above the black dotted line before G in Figure 3.4), thecorrupted block is written

to disk with a new checksum. The checksum is thus valid for thecorrupted block, which

makes the corruption permanent. Since the window of vulnerability is long (30 seconds),

and there are many blocks that will be flushed to disk in each flush, we conjecture that the

likelihood of memory corruption leading to permanent on-disk corruptions is high.

We did a block-based fault injection to verify this observation. We injected a single

bit flip to a dirty (or to-be-dirtied) block before a flush; as long as the flipped bit in the

block was not overwritten by subsequent operations, the corrupted block was written to

disk permanently.

Observation 4: Dirtying blocks due to updating file access time increases the pos-

sibility of making corruptions permanent. By default, access time updates are enabled

41

in ZFS; therefore, a read-only workload will update the access time of any file accessed.

Consequently, when the structure containing the access time (znode) goes inactive (or

when there is another workload that updates the znode), ZFS writes the block holding the

znode to disk and updates and writes all its parental blocks.Therefore, any corruption

to these blocks will become permanent after the flush caused by the access time update.

Further, as mentioned earlier, the time interval when the corruption could happen is un-

bounded.

Observation 5: For most metadata blocks in the page cache, checksums are notvalid

and thus useless in detecting memory corruptions.By default, most metadata blocks such

as indirect blocks and dnode blocks are compressed on disk. Since the checksums for

these blocks are used to prevent disk corruptions, they are only valid for compressed

blocks, which are calculated after they are compressed during writes and verified before

they are decompressed during reads. When metadata blocks are in the page cache, they are

uncompressed. Therefore, the checksums contained in the corresponding block pointers

are useless.

Observation 6: When metadata is corrupted, operations fail with wrong results,

or give misleading error messages (E).For example, whenzp flags in dnode phys t

for a file object was corrupted, open() may return an error code EACCES (permission

denied). The case occurred when the 41st bit of zp flags was flipped from 0 to 1,

which signifies that the file is quarantined by an anti-virus software. Therefore, open()

was incorrectly denied, giving an error code EACCES. The calls access(), rename() and

truncate() also failed for the same reason.

Another example of a misleading error message happened whendd head dataset obj

in dsl dir phys t for a dataset directory object was corrupted. In this case, “zfs create”

failed to create a new file system under the parent file system represented by the corrupted

object. ZFS gave a misleading error message saying that the parent file system did not

42

exist. ZFS gave similar error messages in other cases (E) under “Dataset directory” and

“Dataset”.

Observation 7: Many corruptions lead to a system crash (C).For example, when

dn nlevels (the height of the block tree pointed to by the dnode) indnode phys t for a

file object was corrupted and the file was read, the system crashed due to a NULL pointer

dereference. In this case, ZFS used the wrong value ofdn nlevels to traverse the block

tree of the file object and obtained an invalid block pointer.Therefore, the block size

obtained from the block pointer was an arbitrary value, which was then used to index into

an array whose size was much less than the value. As a result, the system crashed when a

NULL pointer was dereferenced.

Observation 8: The read() system call may return bad data.As shown in Table 3.5,

for metadata corruptions, there were three cases where read() gave bad data block to the

user. In these cases, ZFS simply trusted the value of the corrupted field and used it to

traverse the block tree pointed to by the dnode, thus returning bad blocks. For example,

whendn nlevels in dnode phys t for a file object was changed from 3 to 1, ZFS gave

an incorrect block to the user on a read request for the first block of the file. The bad

block was returned because ZFS assumed that the tree only hadone level, and incorrectly

returned an indirect block to the user. Such cases where wrong blocks are returned to the

user also have the potential for security vulnerabilities.

Observation 9: There is no recovery for corrupted metadata.In the cases where no

apparent error happened (as indicated by a dot or not shown) and the operation was not

meant to update the corrupted field, the corruption remainedin the metadata block in the

page cache.

In summary, ZFS fails to detect and recover from memory corruptions. Checksums

in the page cache are not used to protect the integrity of blocks. Therefore, bad data

blocks are returned to the user or written to disk. Moreover,corrupted metadata blocks

43

are accessed by ZFS and lead to operation failure and system crashes.

3.4 Probability Analysis of Memory Corruption

In this section, we present a preliminary analysis of the likelihood of different failure sce-

narios due to memory errors in a system using ZFS. Specifically, given that one random

bit in memory is flipped, we compute the probabilities of fourscenarios: reading cor-

rupt data (R), writing corrupt data (W), crashing/hanging (C) and running successfully to

completion (S). These probabilities help us to understand how severely file system data

integrity is affected by memory corruptions and how much effort file system developers

should make to add extra protection to maintain data integrity.

3.4.1 Methodology

We apply fault-injection techniques to perform the analysis. Considering one run of a

specific workload as a trial, we inject a fixed number number ofrandom bit flips to the

memory and record how the system reacts. By doing multiple trials, we measure the num-

ber of trials where each scenario occurs, thus estimating the probability of each scenario

given that certain number of bits are flipped. Then, we calculate the probability of each

scenario given the occurrence of one single bit flip.

We have extended our fault injection framework to conduct the experiments. We re-

placed the pseudo-driver with a user-level “injector” which injects random bit flips to the

physical memory. We used filebench [107] to generate complexworkloads. We modi-

fied filebench such that it always writes predefined data blocks (e.g., full of 1s) to disk.

Therefore, we can check every read operation to verify that the returned data matches the

predefined pattern. We can also verify the data written to disk by checking the contents

44

of on-disk files.

We used the framework as follows. For a specific workload, we ran 100 trials. For

each trial, we used the injector to generate 16 random bit flips at the same time when

the workload has been running for 3 minutes. We then kept the workload running for 5

minutes. Any occurrence of reading corrupt data (R) was reported. When the workload

was done, we checked all on-disk files to see if there was any corrupt data written to

the disk (W). Since we only verify write operations after each run of a workload, some

intermediate corrupt data might have been overwritten and thus the actual number of

occurrence of writing corrupt data could be higher than measured here. We also logged

whether the system hung or crashed (C) during each trial, butwe did not determine if it

was due to corruption of ZFS metadata or other kernel data structures.

It is important to notice that we injected 16 bit flips in each trial because it let us

observe a sufficient number of failure trials in 100 trials. However, we apply the follow-

ing calculation to derive the probabilities of different failure scenarios given that 1 bit is

flipped.

3.4.2 Calculation

We usePk(X) to represent the probability of scenarioX given thatk random bits are

flipped, in which X could be R, W, C or S. Therefore,Pk(X̄) = 1 − Pk(X) is the prob-

ability of scenarioX not happening given thatk bits are flipped. In order to calculate

P1(X), we first measurePk(X) using the method described above and then deriveP1(X)

from Pk(X), as explained below.

• MeasurePk(X) Given thatk random bit flips are injected in each trial, we denote

the total number of trials asN and the number of trials in which scenarioX occurs

45

at least once asNX . Therefore,

Pk(X) =
NX

N

• Derive P1(X) Assumek bit flips are independent, then we have

Pk(X̄) = (P1(X̄))k, whenX = R,W orC

Pk(X) = (P1(X))k, whenX = S

SubstitutingPk(X̄) = 1− Pk(X) into the equations above, we can get,

P1(X) = 1− (1− Pk(X))
1

k , whenX = R,W orC

P1(X) = (Pk(X))
1

k , whenX = S

3.4.3 Results

The analysis is performed on the same virtual machine as mentioned in Section 3.2.1. The

machine is configured with 2GB memory and a single disk running ZFS. We first ran some

controlled micro-benchmarks (e.g., sequential read) to verify that the methodology and

the calculation is correct (the result is not shown due to limited space). Then, we chose

four workloads from filebench: varmail, oltp, webserver andfileserver, all of which were

exercised with their default parameters. A detailed description of these workloads can be

found elsewhere [107].

Table 3.6 provides the probabilities and confidence intervals given that 16 bits are

flipped and the derived values given that 1 bit is flipped. Notethat for each workload, the

sum ofPk(R), Pk(W), Pk(C) andPk(S) is not necessary equal to 1, because there are

46

Workload P16(R) P16(W) P16(C) P16(S)
varmail 9% [4, 17] 0% [0, 3] 5% [1, 12] 86% [77, 93]
oltp 26%[17, 36] 2% [0, 8] 16%[9, 25] 60% [49, 70]
webserver 11% [5, 19] 20%[12, 30] 19% [11, 29] 61% [50, 71]
fileserver 69%[58, 78] 44%[34, 55] 23% [15, 33] 28% [19, 38]

Workload P1(R) P1(W) P1(C) P1(S)
varmail 0.6%[0.2, 1.2] 0% [0, 0.2] 0.3%[0.1, 0.8] 99.1%[98.4, 99.5]
oltp 1.9%[1.2, 2.8] 0.1%[0, 0.5] 1.1%[0.6, 1.8] 96.9%[95.7, 97.8]
webserver 0.7%[0.3, 1.3] 1.4%[0.8, 2.2] 1.3%[0.7, 2.1] 97.0%[95.8, 97.9]
fileserver 7.1%[5.4, 9.0] 3.6%[2.5, 4.8] 1.6%[1.0, 2.5] 92.4%[90.2, 94.2]

Table 3.6:P16(X) and P1(X) The upper table presents percentage values of the probabilities
and 95% confidence intervals (in square brackets) of readingcorrupt data (R), writing corrupt
data (W), crash/hang and everything being fine (S), given that 16 bits are flipped, on a machine of
2GB memory. The lower table gives the derived percentage values given that 1 bit is corrupted.
The working set size of each workload is less than 2GB; the average amount of page cache con-
sumed by each workload after the bit flips are injected is 31MB(varmail), 129MB (oltp), 441MB
(webserver) and 915MB (fileserver).

cases where multiple failure scenarios occur in one trial.

From the lower table in Table 3.6, we see that a single bit flip in memory causes a

small but non-negligible percentage of runs to experience failure. For all workloads, the

probability of reading corrupt data is greater than 0.6% andthe probability of crashing or

hanging is higher than 0.3%. The probability of writing corrupt data varies widely from

0 to 3.6%. Our results also show that in most cases, when the working set size is less

than the memory size, the more page cache the workload consumes, the more likely that

a failure would occur if one bit is flipped.

In summary, when a single bit flip occurs, the chances of failure scenarios happen-

ing can not be ignored. Therefore, efforts should be made to preserve data integrity in

memory and prevent these failures from happening.

47

3.5 Summary

In this chapter, we analyzed a state-of-the-art file system,ZFS, to study the implications of

disk and memory corruptions to data integrity. We used carefully controlled fault injection

experiments to simulate realistic disk and memory errors and presented our observations

about ZFS behavior and its robustness.

While the reliability mechanisms in ZFS are able to provide reasonable robustness

against disk corruptions, memory corruptions still remaina serious problem to data in-

tegrity. Our results for memory corruptions indicate caseswhere bad data is returned to

the user, operations silently fail, and the whole system crashes. Our probability analysis

shows that one single bit flip has small but non-negligible chances to cause failures such

as reading/writing corrupt data and system crashing.

We argue that file systems should be designed with comprehensive data protection.

File systems should not only provide protection against disk corruptions, but also aim

to protect data from memory corruptions, which may require cooperation from the page

cache and even user-level applications.

48

Chapter 4

Z2FS: Cooperative Data Protection in

Local Storage

Many features that storage systems provide require great care and coordination across the

many layers of the system (e.g., performance), but integrity checks for data protection

generally remain isolated within individual components. For example, as shown in Chap-

ter 3, ZFS uses checksums to protect on-disk block, but failsto extend the checksums

to protect in-memory data; hard disks have built-in ECC for each sector [22], but the

ECCs are rarely exposed to the upper-level system; TCP uses Internet checksums to pro-

tect data payload [11], but only during the transmission. When data is transferred across

components, data is not protected and thus may become silently corrupted.

A comprehensive approach is to apply the straight-forward end-to-end data protec-

tion [94], where high-level applications generate and verify checksums for their data such

that the checksums protect data throughout the entire I/O stack. This approach does pro-

vide better data protection, but it suffers the performanceand timeliness problems, as

discussed in Chapter 1.

49

To address both problems, we propose a new concept calledflexible end-to-end data

integrity. With this concept, all components on the I/O path are aware of the checksum,

and different components can choose different type of checksum, depending on the reli-

ability characteristics (e.g., failure rate) and performance requirements (e.g., throughput)

of the component. Then, we develop an analytical framework to provide rationale for

the new concept. Specifically, the framework is able to evaluate and compare the reli-

ability of different storage systems, and help to choose proper checksums for different

components. Finally, guided by the framework, we build Zettabyte-reliable ZFS (Z2FS)

by applying flexible end-to-end data protection to ZFS. Z2FS is able to provide Zettabyte

Reliability while performing comparably to ZFS.

The rest of the chapter is organized as follows. In Section 4.1, we introduce the

framework for evaluating reliability of storage systems. We then present the design of

Z2FS in Section 4.2 and discuss some implementation issues in Section 4.3. Finally, we

evaluate Z2FS in Section 4.4.

4.1 Reliability of Storage Systems with Data Corruption

We now present a framework to analyze the reliability of storage systems with data cor-

ruption. The framework uses analytical models for each typeof device and checksum in

a system to calculate a reliability metric in terms of the probability of undetected data

corruption.

4.1.1 Overview

The reliability of a storage system can be evaluated based onhow likely corruption would

occur. There are two types of corruption: detected and undetected (silent data corruption,

50

SDC). Detected corruption is the case the system is built to detect and may recover from,

but SDC is what the system is not prepared for. SDC does more harm in that it would be

treated as correct data and may further pollute other good data (e.g., RAID reconstruc-

tion with corrupted data). Therefore, we focus on the probability of SDC in a storage

system. To quantify how likely a SDC would occur, we use the probability of undetected

data corruption (udc) when reading a data block from the systemPsys−udc as a reliability

metric.

Psys−udc for a storage system depends on various devices, each of which may expe-

rience corruptions caused by different factors. Each device may employ different types

of hardware protection and the upper-level system or application may add extra protec-

tion mechanisms. Therefore, we propose a framework that takes a ground-up approach to

derive the system-level reliability metric from underlying devices.

The framework consists of models for devices and checksums.All models are built

around the basic storage unit, a data block ofb bits. For a raw deviceD (with its own

hardware-level checksum), we are interested in how likely corruption would occur to a

block and escape from the detection of the device’s checksum(Pc(D)). To detect such

corruption, high-level (software) checksums are usually applied on top of a raw device

(henceafter, we will use “checksum” to indicate the high-level checksum). Each data

block has a checksum ofk bits. For a checksumC and deviceD, we focus on the device-

level probability of undetected corruption (Pudc(D,C)) when the checksum is used to

protect a data block on the device.

Devices with different checksums are connected in various ways to form the whole

system. A data block can pass through or stay in several devices from the time it is born to

the time it is accessed. By considering all possible corruption scenarios during this time

period, we calculate the overall probability of undetecteddata corruption when reading

the data block from the system (Psys−udc).

51

4.1.2 Models for Devices and Checksums

To demonstrate how to apply the framework, we present modelsfor devices and check-

sums that will be used throughout the chapter. We make assumptions (e.g., independence

of bit errors) to simplify our models such that we can focus onreasoning about the relia-

bility of storage systems within the framework; discussionon more complex and accurate

models is beyond the scope of this chapter.

Device Model

We consider two types of devices, hard disks (dsk) and memory (mem) , and one type of

corruption: random bit flip. We assume the block sizeb is 32768 bits (4KB).

Hard Disks Hard disks are a long-term storage medium for data, and are known to be

unreliable. Hard disks can exhibit unusual behaviors because of hardware faults such as

latent sector errors [22, 96]. These errors can usually be detected by disk ECC. The less-

likely but more harmful silent data corruption may come fromhardware bit rot, buggy

firmware, or mechanic faults (such as dropped writes and misdirected writes [23, 92]),

causing random bit flips and block corruption. These errors are not detectable by disk

ECC.

Bit error rate (BER) is often used to characterize the reliability of a hard disk. BER is

defined as the number of bit errors divided by the total numberof bits transferred and often

refers to detected bit error (by disk ECC). For silent corruption, we are more interested in

the undetected bit error rate (UBER), which is the rate of errors that have escaped from

ECC. Assuming each bit error in a data block is independent and the number of bit errors

follows a binomial distribution, the probability of an undetected bit flip is equal to UBER.

Assuming there is at most one flip for each bit, the probability of i bit flips in ab-bit block

52

is:

Pc(dsk, i) =

(

b

i

)

(UBER)i(1− UBER)b−i

Therefore, the probability of corruption in a block is the sum of the probabilities of all

possible bit flips (from exactly 1 bit flip to exact b bit flips):

Pc(dsk) =

b
∑

i=1

(

b

i

)

(UBER)i(1− UBER)b−i

While BER is often reported by disk manufactures, ranging from 10−14 to 10−16, there

is no published data on UBER. Rozier et al. estimated that therate of undetected disk

error caused by far-off track writes and hardware bit corruption is between10−12 and

10−13 [92]. Although we do not know the percentage of errors causedby either fault, we

conservatively assume that most are bit errors and thus we pick 10−12 as the UBER for

current disks. In our study, we choose a wider range for UBER,from 10−10 to 10−20, to

cover more reliability levels. To simplify the presentation, we define thedisk reliability

indexas−log10(UBER).

Memory Memory (DRAM) is mainly used to cache data for performance. Bit flips

are the main corruption type, probably due to chip faults or external radiation [75, 133].

Earlier studies show that memory errors can occur at a rate of10 to 360 errors/year/GB

[83, 84, 100] and suspect that most errors are soft errors, which are transient. However,

recent studies show that memory errors occur more frequently [63, 71, 97] and are prob-

ably dominated by hard errors (actual device defects). If a memory module has ECC or

more complex codes such as chipkill [64], then both soft errors and hard errors within

the capability of the codes can be detected or corrected. However, corruption caused by

software bugs [106] are not detectable by these hardware codes.

53

For memory, the error rate is usually measured as failure in time (FIT) per Mbit. As-

suming each failure is a bit flip, 1 FIT/Mbit means there is onebit flip in one billion hours

per Mbit. Assuming each bit flip is independent and the same bit can only experience one

flip, we model the number of bit flips in ab-bit block during a time periodt as a Poisson

distribution with a constant failure rateλ errors/second/bit. Therefore, the probability of

i bit flips in ab-bit block during timet is:

Pc(mem, i, t) =
e−bλt(bλt)i

i!

Summing up the probabilities of all possible bit corruptions, we have:

Pc(mem, t) =
b

∑

i=1

e−bλt(bλt)i

i!

Previous studies reported FIT/Mbit as low as 0.56 [72] and ashigh as 167,066 [63]. Con-

verting to errors/second/bit gives the range forλ, from1.48×10−19 (λmin) to4.42×10−14

(λmax). In this chapter, we choose6.62×10−15 (λmid) as the error rate of non-ECC mem-

ory; it is derived from 25,000 FIT/Mbit, which is the lower bound of the DRAM error

rate measured in a recent study [97]. We pickλmin as the error rate of ECC memory,

because most errors would have been detected by ECC. We use−log10(λ) as thememory

reliability index. The corresponding indices forλmin, λmid, andλmax are 18.8, 14.2, and

13.4.

Checksum Model

The effectiveness of a checksum is measured by the probability of undetected corruption

given an error rate. It is usually difficult, sometimes impossible, to have an accurate model

for the probability, because of the complexity of errors andthe data-dependency property

54

of some checksums. Therefore, we apply an analytic approachto evaluate checksums for

random bit flips.

We focus on two types of checksum: xor (64-bit) and Fletcher (256-bit). Exclusive

or checksums (xor) are calculated by XORing each fixed-sizedchunk of a data block.

For example, a 64-bit xor checksum over a 4KB data block is computed by XORing

every 64-bit of data in the block. The xor checksum is very fast to calculate, but it can

only detect one bit error. On the other hand, Flecther checksum is more complex, which

involves calculating two checksums at a time. For instance,to compute a 256-bit Fletcher

checksum from a 4KB block, the block is first divided into an array of 128-bit data chunks

(d1, d2, ..., d256), and two 128-bit checksums (s1 ands2) are initialized with 0. Then for

every data chunkdi (i from 1 to 256),s1 ands2 are calculated using one’s complement

addition as follows:s1 = (s1 + di) mod 2128 ands2 = (s2 + s1) mod 2128. Finally, the

two checksums are concatenated to form the Fletcher checksum of the block. Fletcher

checksum is slower to compute than xor, but it can detect all 1-bit errors and 2-bit errors

in a 4KB block.

Our approach to model both checksums is similar to the one used in a recent study on

checksums for embedded control networks [74]. The idea is based on Hamming Distance

(HD). A checksumC with HD=n can detect all bit errors up ton− 1 bits, but there is at

least one case ofn bit flips that is undetectable by the checksum. We useF (C) to repre-

sent the fraction ofn bit flips that are undetectable by checksumC. Then, the probability

of undetectablen bit flips is Pc(D, n) × F (C), in whichPc(D, n) is the probability of

n bit flips on deviceD. The actualPudc is the sum of the probabilities of undetectable

bit flips fromn to b (the size of the block isb bits). Since the occurrence of more thann

bit flips is highly unlikely, the probability of undetectedn bit flips dominatesPudc [74].

Therefore, we have the approximation ofPudc(D,C) = Pc(D, n)× F (C).

The value ofPc(D, n) can be easily calculated based on the model of each device, so

55

the key parameter isF (C). Assuming the block size isb bits and the checksum size isk

bits, there is an analytical formula for xor [74]:F (xor) = b−k
k(b−1)

. Since the HD for xor is

2, we have:Pudc(D, xor) = Pc(D, 2)× b−k
k(b−1)

. But for Fletcher (HD=3), we can only get

an approximation [10]:F (F letcher) = 4.16 × 10−20. Therefore,Pudc(D,F letcher) =

Pc(D, 3)× (4.16× 10−20).

4.1.3 CalculatingPsys−udc

Based on previous models, given the configuration of a storage system, we can calculate

Psys−udc by summing up the probabilities of every silent corruption scenario during the

time from the data being generated to it being read. We define the reliability scorefor a

system as−log10(Psys−udc); higher scores mean better reliability.

Finding all scenarios that lead to a silent corruption is tricky. In reality, it is possible

that multiple devices corrupt the same data when it is transferred through or stored on

them. In this chapter, we assume that in each scenario, thereis only one corruption from

when a data block is born to when it is read from the system. Onereason is that data cor-

ruption is rare - multiple corruptions to the same data blockare unlikely. Another reason

is that with this assumption, we do not have to reason about complex interactions of cor-

ruption from multiple devices, which may require more advanced modeling techniques.

Determining whether a value ofPsys−udc is good enough for a storage system is not

easy. Ideally, the best value ofPsys−udc is 0, but this is impossible. In reality,Psys−udc is

a tradeoff between reliability and performance; it should be low enough such that SDC is

extremely rare, but at the same time it should not hinder the system’s performance. In this

chapter, we useZettabyte Reliabilityas a reliability goal of storage systems. Zettabyte

reliability means that there is at most one SDC when reading one Zettabyte data from

a storage system. With our models, assuming the block size and the IO size is 4KB,

56

Reliability Score Reliability Goal Psys−udc

8.4 Terabyte 3.73× 10−9

11.4 Petabyte 3.64× 10−12

14.4 Exabyte 3.55× 10−15

17.5 Zettabyte 3.46× 10−18

Table 4.1: Reliability Scores This table lists a mapping from reliability scores to different
reliablity goals.

Cfg Cfg Index
Num Name Mem Dsk Description

1 low-end 13.4 10 worst mem & dsk
2 consumer 14.2 12 non-ECC mem & regular dsk
3 enterprise 18.8 12 ECC mem & regular dsk
4 server 18.8 20 ECC mem & best dsk

Table 4.2:Sample System ConfigurationsThis table shows four configurations of a local
file system that we will study throughout the dissertation.

this goal translates toPsys−udc = Pgoal = 3.46 × 10−18, which in terms of a reliability

score is 17.5. Intuitively, we can map other reliability scores to similar reliability metrics,

as shown in Table 4.1. Note that the numerical value of the reliability goal may differ

depending on the accuracy of the assumptions and models, andit may not be precise;

our purpose is to use it as a way to demonstrate how to make proper tradeoffs between

performance and protection in a storage system.

4.1.4 Example: NCFS

To illustrate how to apply the framework to evaluate the reliability of a storage system,

we use a local file system with no checksum (NCFS) as an example. We focus on four

57

writer

mem (none)

storage

dsk (none)

t
0

t
1

t
2

reader

mem (none)

t
3

Write Read
Checksum

Generation

Checksum

Veri!cationVG

Figure 4.1:Timeline of a Data Block in NCFSThis figure shows timeline of a block from
being generated by the writer (t0) to being read by the reader (t3) in NCFS. The timeline consists
of three parts: writer in memory, storage (disk), and readerin memory. The name of the checksum
used to protect data during each time period is listed in the parentheses on the right of the device
name.

configurations of the system, as listed in Table 4.2. Within the range for each index, we

use the minimum value to represent the worst memory or disks which may be faulty or

prone to corrupting data. We use the maximum disk index to represent disks that are much

more reliable than regular disks.

The timeline of a data block from being generated to being accessed is shown in

Figure 4.1. A writer application generates the block att0. The block stays in memory

until t1 when it is flushed to disk. The block is then read into memory att2 and finally

accessed by a reader application att3. The residency time of the block in writer’s memory

and reader’s memory ist1 − t0 andt3 − t2 respectively. To simplify the model and also

because most file systems flush dirty blocks to disk at regulartime intervals (usually 30

seconds), we assumet1 − t0 to be 30 seconds for all blocks in this chapter.

Based on the “one corruption” assumption, there are three scenarios that will lead to

silent data corruption: corruption that occurs in the reader’s memory, disk, or the writer’s

memory. Therefore,Psys−udc for NCFS is approximately the sum of the probabilities of

58

Memory Reliability Index

D
is

k
R

el
ia

bi
lit

y
In

de
x

6

7

8

9

10

11

12

1

2 3

4

14 15 16 17 18
10

12

14

16

18

20

Figure 4.2:NCFS Reliability Score (tresident = 1) This figure illustrates a contour plot of the
reliability score of NCFS. Darker color means lower score - worse reliability. Four points marked
with a “×” represent the four sample configurations: low-end (1), consumer (2), enterprise (3),
server (4).

corruption in each device:

PNCFS−udc =Pc(mem, tresident) + Pc(dsk)

+ Pc(mem, 30)

wheretresident = t3 − t2 is the residency time (in seconds) of the block in the reader’s

memory and 30 is the residency time of it in the writer’s memory. Psys−udc is a function of

three variables: the reliability indices of memory and diskin the system, and the residency

time tresident.

The reliability score of NCFS (tresident = 1) is shown in Figure 4.2, with the four

configurations marked as “×”. We choosetresident = 1 because it represents a best case

(approximately) for reliability and we will discuss the sensitivity of reliability score to

tresident in Section 4.2.3.

59

As one can see from the figure, when either the disk or the memory reliability index is

low, corruption on that device dominates the reliability score. For example, when the disk

reliability index is 12, the reliability score of the systemalmost does not change when the

memory reliability index varies; both config 2 (consumer) and config 3 (enterprise) have

a score of 7.4 (even worse than Terabyte reliability). But when the disk is more reliable,

memory corruption starts to dominate and the reliability score increases as the memory

reliability index increases. When both reliability indices are high, NCFS with config 4

(server) has the best reliability score of 12.8 (a little better than Petabyte), still less than

the Zettabyte reliability goal (17.5).

4.2 From ZFS to Z2FS

To explore end-to-end concepts in a file system, we now present two variants of ZFS:

E2ZFS, which takes the straight-forward end-to-end approach, and Z2FS, which employs

flexible end-to-end data integrity. Specifically, we show how ZFS, a modern file system

with strong protection against disk corruption, can be further hardened with end-to-end

data integrity to protect data all the way from application to disk, achieving Zettabyte

reliability with better performance.

4.2.1 ZFS: the Original ZFS

ZFS is a state-of-the-art open source file system originallycreated by Sun Microsystems

with many reliability features. ZFS provides data integrity by using checksums, data

recovery with replicas, and consistency with a copy-on-write transactional model [29]. In

addition, other mechanisms such as pooled storage, inline deduplication, snapshots, and

clones, provide efficient data management.

60

Write Read
Checksum

Generation

Checksum

Veri cation

writer

mem (none)

storage

dsk (Fletcher)

t
0

t
1

t
2

reader

mem (none)

Fletcher Fletcher

t
3

G V

G V

Figure 4.3:Timeline of a Data Block in ZFS This figure shows timeline of a block in ZFS.
The name of the checksum used to protect data during each timeperiod is listed in the parentheses
on the right of the device name. None means no checksum is used.

Problem

One important feature that distinguishes ZFS from most other file systems is that ZFS pro-

vides protection from disk corruption by using checksums. ZFS maintains adisk check-

sum(Fletcher, by default) for each disk block and keeps the checksum in a block pointer

structure. As shown in Figure 4.3, when ZFS writes a block to disk at t1, it generates a

Fletcher checksum. When ZFS reads the block back, it verifiesthe checksum and places

it in the page cache. In this manner, ZFS is able to detect manykinds of corruption caused

by disk faults, such as bit rot, phantom writes, and misdirected reads and writes [29].

However, Chapter 3, as well as some anecdotal evidence [9, 16, 17], shows that ZFS

is vulnerable to memory corruption. The checksum in ZFS is only verified and generated

at the boundary of memory and disk; once a block is cached in memory, the checksum

is never verified again. Applications could read bad data from the page cache without

knowing that it is corrupted. Even worse, if a dirty data pageis corrupted before the

new checksum is generated, the bad data will get to disk permanently with a matching

checksum and later reads will not be able to detect the corruption.

61

Memory Reliability Index

D
is

k
R

el
ia

bi
lit

y
In

de
x

8 9 10 11 12

1

2 3

4

14 15 16 17 18
10

12

14

16

18

20

Figure 4.4:ZFS Reliability Score (tresident = 1) This figure illustrates a contour plot of the
reliability score of ZFS. Darker color means lower score - worse reliability. Four points marked
with a “×” represent the four sample configurations: low-end (1), consumer (2), enterprise (3),
server (4).

Reliability Analysis

We apply the framework introduced in Section 4.1 to calculate the reliability score for

ZFS. Similar to NCFS, there are three scenarios that cause SDC:

PZFS−udc =Pc(mem, tresident)

+ Pudc(dsk, F letcher)

+ Pc(mem, 30)

Because ZFS has on-disk blocks protected by Fletcher, only undetected corruption con-

tributes toPZFS−udc.

Figure 4.4 depicts the reliability score of ZFS. With Fletcher protecting data on disk,

the reliability score is now dominated by memory corruption. However, the reliability

score is not improved much, due to the lack of protection of in-memory data. Both con-

62

fig 3 (enterprise) and config (server) 4 have the highest reliability score of 12.8 (above

Petabyte reliability), but they are still below the Zettabyte reliability goal (17.5). It is

interesting to see that config 4 (server) in ZFS has the same best reliability score as itself

in NCFS, which indicates that when both the disk and memory reliability indices are the

highest, memory corruption is more severe than disk corruption. Therefore, we need to

protect data in memory.

4.2.2 E2ZFS: ZFS with End-to-end Data Integrity

To improve the reliability of ZFS, data both in memory and on disk must be protected.

One way to achieve this is to apply the straight-forward end-to-end concept. In common

practice, the writer generates an application-level checksum for the data block and sends

both the checksum and data to the file system. Because the pagecache and the file system

are not aware of the checksum, the writer usually uses a portion of the data block to store

the checksum. When the reader reads back the block, it can verify the checksum portion

to ensure the integrity of the data portion. The checksum protects the data block all the

way from the writer to the reader.

Because ZFS already maintains a checksum for each on-disk block in the block pointer,

we do not have to append the application checksum on top of ZFS’s checksum. Instead,

we can simply store the application checksum in the block pointer, replacing the original

disk checksum. Therefore, we only have to expose the checksum to the reader and writer,

and make sure the page cache and the file system are oblivious to the checksum.

Implementation

To achieve the straight-forward end-to-end data integrity, we make the following changes

to ZFS, transforming it into E2ZFS.

63

First, we attach checksums to all buffers along the I/O path:user buffer, data page

and disk block. Since ZFS already providesdisk checksumfor each disk block, we add

memory checksumto the user buffer and the data page. It enables the system to pass

checksums between the application and disk. Since only one checksum algorithm is used

throughout the system, the memory checksum and the disk checksum are the same as

the application-generated checksum, assuming the user buffers are always aligned to data

pages. We will discuss the alignment issue in Section 4.3. E2ZFS currently supports both

xor and Fletcher, but only one can be used at a time.

Second, we enhance the existing read/write system calls with a new argument to trans-

fer checksums between user and kernel space. The new argument is a buffer containing

all checksums corresponding to the blocks in the user buffer. On reads, the application re-

ceives both data and checksum, and thus is able to verify the integrity of data. On writes,

the application must generate a checksum for each data block, and send both the data

block and checksum through the new system call.

Finally, we modify the checksum handling at the boundary of memory and disk such

that the checksum is always passed through this boundary without any extra processing.

E2ZFS simply stores both data and checksum on disk and does not generate or verify

the checksum. In this way, only the applications (reader andwrites) are responsible of

verifying and generating the checksums, thus providing thestraight-forward end-to-end

data integrity.

Reliability Analysis

The timeline of a data block from writer to reader is shown in Figure 4.5. E2ZFS uses

one type of checksum (xor or Fletcher) all the way through. The writer generates the

checksum for the data block att0, and passes both the checksum and data block to the file

64

Write Read
Checksum

Generation

Checksum

Veri cation
G V

writer

mem (Fletcher/xor)

storage

dsk (Fletcher/xor)

t
0

t
1

t
2

reader

mem (Fletcher/xor)

t
3

Fletcher/xorVFletcher/xorG

Figure 4.5:Timeline of a Data Block in E2ZFS This figure shows timeline of a block in
E2ZFS. E2ZFS uses the same checksum (either xor or Fletcher) all the way through.

system. Both are then written to disk att1 and read back att2. The reader receives them

at t3 and verifies the checksum.

In E2ZFS, only undetected corruption during each time period causes a SDC; detected

corruption would be caught by the checksum verification performed by the reader. The

probability of undetected data corruption is:

PE2ZFS−udc =Pudc(mem,F letcher/xor, tresident)

+ Pudc(dsk, F letcher/xor)

+ Pudc(mem,F letcher/xor, 30)

The reliability scores of E2ZFS (xor) and E2ZFS (Fletcher) are shown in Figure 4.6(a)

and Figure 4.6(b). Overall, E2ZFS (Fletcher) has the best reliability, with all scores above

the reliability goal. E2ZFS (xor) can meet the goal only when both disk and memory are

more reliable. Config 4 (server) has a score of 27.8 while bothconfig 2 (consumer) and

config 3 (enterprise) have a score of 17.1 (just short of Zettabyte reliability). Compar-

ing both figures, when the disk corruption dominates (with anindex below 12), E2ZFS

(Fletcher) is much better than E2ZFS (xor), showing that Fletcher is clearly a better check-

65

Memory Reliability Index

D
is

k
R

el
ia

bi
lit

y
In

de
x

15

17.5
19

21

23

25

27

1

2 3

4

14 15 16 17 18
10

12

14

16

18

20

(a) E2ZFS (xor)

Memory Reliability Index

D
is

k
R

el
ia

bi
lit

y
In

de
x

40

44

48

52

56

1

2 3

4

14 15 16 17 18
10

12

14

16

18

20

(b) E2ZFS (Fletcher)

Figure 4.6:E2ZFS Reliability Score (tresident = 1) These figures illustrate contour plots
of the reliability score of E2ZFS (xor) and E2ZFS (Fletcher). Four points marked with a “×”
represent the four sample configurations: low-end (1), consumer (2), enterprise (3), server (4).

System TP (MB/s) Normalized TP
ZFS 656.67 100%
E2ZFS (Fletcher) 558.22 85%
E2ZFS (xor) 639.89 97%

Table 4.3:Overhead of Checksum CalculationThis table shows the throughput of sequen-
tially reading a 1GB file from the page cache in ZFS, E2ZFS (xor), and E2ZFS(Fletcher).

sum for protecting blocks on disk.

Performance Issues

E2ZFS (xor) is less reliable than E2ZFS (Fletcher), but it offers better performance, es-

pecially when the reader is reading data from memory. Table 4.3 shows the throughput

of reading a 1GB file from the page cache. As one can see, ZFS hasthe best through-

put because there is no checksum calculation involved. E2ZFS with Fletcher suffers a

66

throughput drop of 15%. In contrast, E2ZFS (xor) is able to achieve a throughput just 3%

less than ZFS, with the checksum-on-copy optimization [39], which calculates the xor

checksum while data is copied between kernel space and user space. The checksum-on-

copy technique can be applied easily and efficiently due to the simplicity of xor checksum,

but may not be a good option for stronger and more complex checksums such as Fletcher.

4.2.3 Z2FS: ZFS with Flexible End-to-end Data Integrity

There are two drawbacks with the straight-forward end-to-end approach. Besides the

performance problem as shown above, it also suffers from untimely recovery: neither the

page cache nor the file system is able to verify the checksum todetect corruption in time.

To handle both problems, we build Z2FS on top of the changes we have made in E2ZFS

by further applying the concept of flexible end-to-end data integrity. For the timeliness

problem, a simple fix is to add an extra verification when the data is being flushed to disk

and when the data is being read from disk. For the performanceproblem, however, more

analysis and techniques are required. We will focus on the performance problem in this

section and discuss the timeliness problem in Section 4.3.

In this section, we will introduce two operation modes in Z2FS: static mode, in which

checksums are changed only across components (e.g., between memory and disk), and

dynamic mode, where checksums are even changed overtime.

Static Mode with Checksum Chaining

Looking at the reliability score and performance figures of E2ZFS, a natural question one

may ask is: can we combine E2ZFS (xor) and E2ZFS (Fletcher) to make a system with

better performance while still meeting the reliability goal? To answer this question, we

introduce the static mode of Z2FS, Z2FS (static), a hybrid of E2ZFS (xor) and E2ZFS

67

Write Read
Checksum

Generation

Checksum

Veri cation
G V

writer

mem (xor)

storage

dsk (Fletcher)

t
0

t
1

t
2

reader

mem (xor)

Fletcher

t
3

xor Fletcher

xor xorxorG

V

G G

V

V

Figure 4.7: Timeline of a Data Block in Z2FS with Checksum ChainingThis figure
shows timeline of a block in Z2FS with checksum chaining, which is applied att1 andt2.

(Fletcher) that uses xor as the memory checksum and Fletcheras the disk checksum.

In static mode, Z2FS must perform a checksum conversion at the cache-disk boundary.

To handle the conversion correctly, we develop a technique called Checksum Chaining,

which carefully changes the checksum to avoid any vulnerable window.

Z2FS (static) converts the checksum from xor to Fletcher when writing data to disk.

With checksum chaining, it must generate the Fletcher checksumbeforeverifying the xor

checksum. In this way, the creation of the new Fletcher checksum occurs before the last

use (verification) of the old xor checksum; the coverage of the new and old checksums

overlaps. It is as if the two checksums are chained to each other. A successful verifica-

tion of the xor checksum indicates that with high probability, the Fletcher checksum was

generated over the correct data and thus Fletcher checksum is correct. If the order of gen-

erating Fletcher and verifying xor is reversed, there is a vulnerable window in between. If

the data is corrupted in the window, the new Fletcher checksum will be calculated over the

corrupted data, resulting in silent corruption, because the checksum actually “matches”

the bad data.

The timeline of a data block in Z2FS with checksum chaining is shown in Figure

68

4.7. On the write path, the writer generates an xor checksum at first. When the block

is being written to disk, Z2FS generates a Fletcher checksum using checksum chaining

and sends the Fletcher checksum and data to disk. On the read path, Z2FS generates

an xor checksum using checksum chaining when reading the data block from disk, and

then passes it to the reader along with the data block. The reader finally verifies the xor

checksum. As a side effect of checksum chaining, the xor checksum is verified at the

cache-disk boundary on the write path and the Fletcher checksum is verified on the read

path, which helps to catch any detectable corruption in time.

With checksum chaining, Z2FS has to generate an xor checksum for each data block

when reading it from disk, which may affect the performance.In fact, the same xor check-

sum already existed when the data block was first written by the application. Instead of

regenerating the xor checksum on every read, Z2FS simply stores both the xor checksum

and the Fletcher checksum on disk when writing a data block, and then when reading it,

both checksums are available. The Fletcher checksum is called theprimary checksum,

because it is the required disk checksum. By grouping both checksums and storing them

on disk, Z2FS skips the generation of xor checksum on the read path, thusimproving the

performance. Note that Z2FS still need to verify the primary checksum (Fletcher) when

reading a block from disk.

69

Write Read
Checksum

Generation

Checksum

Veri cation
G V

writer

mem (xor)

storage

dsk (xor, Fletcher)

t
0

t
1

reader

mem (xor)

t
3

Fletcher

xor

Fletcherxor xorG

V

G V V

t
2

Figure 4.8:Timeline of a Data Block in Z2FS (static)This figure shows timeline of a block
in Z2FS (static). When there are two checksums during a time period, the underlined checksum is
the primary checksum, as defined in Section 4.2.3.

Reliability Analysis of Static Mode

Figure 4.8 shows an updated timeline for Z2FS (static) with this optimization. The prob-

ability of undetected corruption for Z2FS (static) is:

PZ2FS−udc =Pudc(mem, xor, tresident)

+ Pudc(dsk, xor&F letcher)

+ Pudc(mem, xor, 30)

Note that the corruption on disk must be undetectable by bothxor and Fletcher. Since the

block will be checked against the Fletcher checksum att2 and against the xor checksum

at t3, if either checksum catches the corruption, there will not be a silent data corruption.

The reliability score of Z2FS (static) attresident = 1 is shown in Figure 4.9. Since

on-disk blocks are protected by Fletcher, memory corruption dominates. When memory

corruption is severe with an index less than 13.7, the reliability score is below the goal. As

the memory reliability index increases, the reliability score increases and becomes above

the goal. However, astresident increases, the reliability score will decrease and at some

70

Memory Reliability Index

D
is

k
R

el
ia

bi
lit

y
In

de
x

17.5

19 21 23

25 27

1

2 3

4

14 15 16 17 18
10

12

14

16

18

20

Figure 4.9:Reliability Score (tresident = 1) of Z2FS (static) This graph is a contour plot
of the reliability score of Z2FS (static). Darker color means lower score - worse reliability. Four
points marked with a “×” represent the four sample configurations: low-end (1), consumer (2),
enterprise (3), server (4).

point it is possible to drop below the goal.

To find out when we should use Z2FS (static), we focus on memory reliability and

tresident. We take a close look at three cases based on the memory reliability index: 13.4

(λmax = 1.99×10−14), 14.2 (λmid = 6.62×10−15), and 18.8 (λmin = 1.48×10−19). Since

Figure 4.9 shows that memory corruption dominates, the value of the disk reliability index

in each case does not affect the reliability score. Therefore, we fix the disk reliability index

at 10 for the first case, and at 12 for second and third case; thethree cases now correspond

to config 1, 2 and 3 (low-end, consumer, and enterprise). Figure 4.10(a), Figure 4.10(b),

and Figure 4.10(c) illustrate the reliability score of Z2FS (static) versus residency time in

all three cases.

In Figure 4.10(c) where the memory reliable index is maximum, the reliability score

is above the goal and they will intersect after about seven weeks (not shown). It indicates

that xor is probably strong enough for data in memory; Z2FS (static) fits right into this

71

0 50 100 150 200 250 300
0

5

10

15

20

25

30

Residency Time (s)

R
el

ia
bi

lit
y

S
co

re

Z2FS
Goal

(a) λmax (index = 13.4, config 1, low-
end)

0 50 100 150 200 250 300
0

5

10

15

20

25

30

Residency Time (s)

R
el

ia
bi

lit
y

S
co

re

Z2FS
Goal

(b) λmid (index = 14.2, config 2, con-
sumer)

0 50 100 150 200 250 300
0

5

10

15

20

25

30

Residency Time (s)

R
el

ia
bi

lit
y

S
co

re

Z2FS
Goal

(c) λmin (index = 18.8, config 3, enter-
prise)

0 50 100 150 200 250 300
0

5

10

15

20

25

30

Residency Time (s)

R
el

ia
bi

lit
y

S
co

re

Z2FS
Goal

(d) λmid (index = 14.2, config 2, con-
sumer)

Figure 4.10: Reliability Score vs tresident in Z 2FS These figures show the relationship
between reliability score and residency time in Z2FS. The first three are for the static mode, and
the last for the dynamic mode, in which the checksum switching occurs at 92 seconds.

case.

In contrast, when the index is minimum as shown in Figure 4.10(a), the whole line of

Z2FS is below the goal. It shows that xor is not strong enough to protect data in memory.

To handle this extreme case, Z2FS (static) skips checksum chaining and uses Fletcher all

the way through, but keeps the extra verification at the boundary of memory and disk. In

this way, Z2FS (static) can provide the same level of reliability as E2ZFS (Fletcher).

The most interesting case is shown in Figure 4.10(b) with a memory reliability index

72

Write Read
Checksum

Generation

Checksum

Veri cation
G V

writer

mem (xor)

storage

t
2

t
1

dsk (xor, Fletcher)

reader

t
switch

mem (xor, Fletcher)mem (xor, Fletcher)

t
3

t
3

Fletcher

xor

Fletcherxor xorG

V

G V V

t
0

FletcherV

Figure 4.11:Timeline of a Data Block in Z2FS (dynamic)This figure shows timeline of a
block in Z2FS (dynamic). The memory checksum is switched from xor to Fletcher attswitch.

of 14.2. When the residency time is less than 92 seconds, Z2FS is able to keep the re-

liability score above the goal. However, after then the score drops below the goal and

slowly converges to E2ZFS (xor). In this case, in order to make sure the reliabilityscore

is always above the goal, Z2FS may need to change to a stronger checksum at some point

when data stays longer in memory.

Dynamic Mode with Checksum Switching

To prevent the reliability score from dropping below the goal as the residency time in-

creases, we apply a technique calledChecksum Switchingto Z2FS (static). The idea

behind checksum switching is simple. On the read path, thereare already two checksums

on disk: xor and Fletcher. Z2FS can simply read both checksums into memory; for the

first tswitch seconds, Z2FS uses xor as theweaker memory checksumand then switch to

Fletcher as thestronger memory checksumaftertswitch seconds. It is just a simple change

of checksum and there is no extra overhead. We call this mode Z2FS (dynamic).

Reliability Analysis of Dynamic Mode

Figure 4.11 shows the timeline of a block in Z2FS (dynamic mode). The static mode is

essentially a special case of dynamic mode with a extremely large value oftswitch such

73

thatt3 is always in betweent2 andtswitch.

Calculating Psys−udc Depending on whethert3 is before or aftertswitch, we have:

PZ2FS−udc =Pudc(mem, xor, tresident)

+ Pudc(dsk, xor&F letcher)

+ Pudc(mem, xor, 30)

wheret3 = t2 + tresident is betweent2 andtswitch, and:

PZ2FS−udc =Pudc(mem,F letcher, tresident)

+ Pudc(dsk, F letcher)

+ Pudc(mem, xor, 30)

wheret3 = t2 + tresident is greater thantswitch.

Determining tswitch By replacingtresident in the first formula withtswitch, we can solve

for tswitch from the equation below:

PZ2FS−udc = Pgoal

With the Zettabyte reliability goalPgoal = 3.46 × 10−18 andλmid, we havetswitch = 92.

Figure 4.10(d) shows the reliability score of Z2FS in dynamic mode. As we can see from

the figure, checksum switching occurs at 92 seconds so that the score afterwards is still

above the goal.

By varying both the disk and memory reliability index, we have Figure 4.12 showing

the values oftswitch that are required to meet the goal of Zettabyte reliability.When the

74

Memory Reliability Index

D
is

k
R

el
ia

bi
lit

y
In

de
x

1

2 3

4

1 2 3 4 5 6

14 15 16 17 18
10

12

14

16

18

20

Figure 4.12: tswitch of Z2FS (dynamic) This figure shows a contour plot of the required
switching time to provide Zettabyte reliability in Z2FS (dynamic), with respect to different disk
and memory reliability index. The z axis is the base 10 logarithm of tswitch in seconds. Four
points marked with a “×” represent the four sample configurations: low-end (1), consumer (2),
enterprise (3), server (4).

memory reliability index is high (λ = λmin, e.g., config 3 and 4),tswitch is about seven

weeks; in this case, Z2FS (static) is strong enough, which also offers the best performance.

When the memory reliability index is extremely low (e.g., config 1), Z2FS (static) keeps

using Fletcher as both disk and memory checksum to provide the best reliability. When

the memory reliability index is in between (e.g., config 2), Z2FS (dynamic) strikes a nice

balance between reliability and performance by switching the checksum attswitch.

4.3 Discussion

We now discuss three technical issues when implementing Z2FS: checksum chaining,

application integration, and error handling.

75

Symbol Description
X a data object, could beORG orDST
X.data the data of the objectX
X.cksum the checksum of objectX
X.size the size ofX.data
X.alg the checksum algorithm forX.cksum
S size of moved data
m(X) moved data inX
o(X) overwritten data inX
r(X) remaining data inX
g(cksum, alg, data) generatecksum usingalg overdata
v(cksum, alg, data) verify cksum usingalg overdata

Table 4.4:Model Notation for Checksum Chaining The table depicts all notations used to
describe the model for checksum chaining.

ORG DST

m(ORG)

o(DST)

ORG.cksum DST.cksum

r(ORG)
r(DST)

S
ORG.size

Figure 4.13:An Example of the Notations This figure shows some of the notations in a
data movement example. Small squares and triangles represent checksums. Different shapes of
checksum symbol indicates the algorithm or the value of the checksum are different. Each big
rectangle represents a data object over which a checksum is calculated. Heavy-shaded squares
represent the moved data and light-shaded squared represent overwritten data.

4.3.1 Checksum Chaining

So far, we have assumed the user buffer is always aligned to page size. In fact, checksum

chaining does support generic requests with arbitrary offset and size, which is imple-

76

mented in Z2FS through checksum-ware interfaces. Before we talk about the new inter-

faces, we first we propose a simple model to characterize all scenarios where checksum

chaining could apply when data is moved across buffers.

Notations In the model, data is always protected by a checksum. We use a data object

to represent a piece of data and a corresponding checksum. Data in different data objects

can be of different sizes and the checksum algorithms can also differ. Therefore, a data

object has four properties:data, cksum, size andalg.

Data movement is defined here as a piece of data moved from the origin data object

ORG to destination data objectDST . The moved data fromORG is represented by

m(ORG), and the overwritten data inDST is represented byo(DST). The moved and

overwritten data is of sizeS. In some cases,S may not be the same asORG.size or

DST.size; some portion of data inORG is not moved and some portion of data inDST is

not overwritten. The remaining data is represented byr(ORG) or r(DST). All notations

are explained in Figure 4.4 and illustrated in Figure 4.13.

During the data movement,m(ORG) is copied fromORG toDST and the checksum

of DST is updated. Checksum chaining is thus defined as follows: assumingD is the

data stored inDST after the data movement, the newDST.cksum is calculated over

D beforethe integrity ofD is verified usingORG.cksum and the oldDST.cksum. A

special case of checksum chaining is whenORG andDST are of the same size, and

ORG andDST use the same checksum algorithm. In this case,ORG.cksum is copied

to DST.cksum directly when the moved data, without any recalculation. Wecall this

special case checksum forwarding.

Checksum forwarding is straightforward and has no overheadexcept the copying of

the checksum, but it has strict requirements for the alignment and checksum algorithms

of the moved data,ORG andDST . In contrast, checksum chaining can be applied in any

77

scenario, but it has the overhead of one or more checksum calculations.

In checksum chaining, the order of new checksum generation and old checksum ver-

ification must not be reversed. IfDST.cksum is calculated AFTERD is verified, there

is a vulnerable window in between. If the data is corrupted inthis time window, the

new DST.cksum will be calculated using corrupt data. This is a type of silent cor-

ruption which is undetectable using the new checksum because the checksum actually

“matches” the corrupted data. With the correct order, a successful verification indicates

thatDST.cksum is generated over the correct data and thus can be trusted. Because the

creation ofDST.cksum occurs before the last use ofORG.cksum and oldDST.cksum,

the coverage of new and old checksums overlaps; it is as if twochecksums are chained to

each other.

Five Cases of Checksum Chaining Data movement is not just a simple data copy op-

eration. Transferring a piece of data from its initial origin to its final destination usually

involves multiple copies through different layers of the system. The alignment and size

of the moved data, as well as the size and checksum algorithm of ORG andDST in all

layers are important factors. Depending on theS, andalg andsize of bothORG and

DST objects, data movement can be classified into the following five cases, as shown in

Figure 4.14. For each case, we first give the condition these properties must satisfy and

then describe when and how checksum forwarding or chaining is applied in detail.

Case 1:Aligned Data Movement (Same Checksum Algorithms)

ORG.alg == DST.alg and

S == ORG.size == DST.size

One example of Case 1 is transferring data blocks between thepage cache and disk

when both components use the same checksum. The size of a datapage is usually the

same as a disk block, and data is always moved in full between them.

78

ORG DST

Case 1

ORG DST

Case 2

ORG DST

Case 3

ORG DST

Case 4

ORG DST

Case 5

overwritten data checksum moved data

V

G

ORG DST

Case 1’

V VG

VG VG V VG V

checksum generation

checksum veri!cation

Figure 4.14:Cases of Checksum ChainingThis figure shows five typical cases of data move-
ment. In Case 1, 1′ and 2, the moved data is aligned withORG andDST . In Case 3, 4 and 5, the
moved data is not aligned withORG, DST or both, respectively. The size of moved data could
be the same asDST.size as in Case 1, 2 and 3, or different as in Case 4 and 5. The sequence of
checksum chaining is shown as G and V operations in each case.The number of these operations
is used as an estimate of the overhead.

In this case, all data inORG is copied toDST . Since the checksum algorithms are

the same for both objects, one can apply checksum forwarding:

(1)DST.data← ORG.data

(2)DST.cksum← ORG.cksum

Before moving forward to Case 2, we introduce Case 1′, a more reliable version of

Case 1 with an extra verification, as shown in Figure 4.14. Because checksum forwarding

does not detect any corruption, doing such a verification provides an opportunity of early

detection and in-time recovery. Otherwise, if the data is already corrupted, it will not be

79

detected until the next time the data is accessed and verification is performed. In fact,

this is a tradeoff between reliability and performance. With the overhead of one extra

verification, possible corruptions can be detected early and repaired in time.

Note that Case 1 has the lowest overhead, because there is no checksum calculation

involved. For Case 1′, as well as the next four cases, one can estimate the overheadby

counting the number of checksum operations (generation andverification) needed in each

case. Each of these operations are shown in Figure 4.14 as a circled G or V, respectively.

To accurately measure the overhead, one needs to consider the size of data as well as the

speed of the checksum algorithm.

Case 2:Aligned Data Movement (Different Checksum Algorithms)

ORG.alg 6= DST.alg and

S == ORG.size == DST.size

In this case, since the checksum algorithms are different,DST.cksum must be calculated

usingDST.alg. Checksum chaining should be applied:

(1) g(DST.cksum,DST.alg, ORG.data)

(2) v(ORG.cksum,ORG.alg, ORG.data)

(3)DST.data← ORG.data

Case 3Unaligned Data Movement (Partial-to-Full)

ORG.buf 6= DST.buf and

ORG.size > DST.size and

S == ORG.size

A good example of Case 3 is an application reading data from the page cache into a

user buffer, with an offset not aligned to the block size (page size). In this example,ORG

is a data page andDST is a user buffer. The moved data is just a portion of the full block

stored in the page.

80

In this case,DST.data is overwritten by a partial amount ofORG.data. Irrespective

of the checksum algorithms used byORG andDST , checksum chaining must be applied.

A correct order is:

(1) g(DST.cksum,DST.alg,m(DST))

(2) v(ORG.cksum,ORG.alg, ORG.data)

(3)DST.data← m(ORG)

Note that in (1) the checksum is calculated only over the moved data inORG, while in

(2) the verification is performed using all data inORG, becauseORG.cksum covers all

its data and there is no checksum for the moved data. Therefore, for the sameS, the

overhead of this case is actually higher than Case 2.

All cases introduced so far have one commonality: the original data inDST is over-

written by the new data copied fromORG, so there is no need to verifyDST.cksum. The

next two cases, however, have part ofDST.data overwritten by new data. Therefore, an

extra verification is needed to make sure the portion of data in DST that is not modified

is correct.

Case 4Unaligned Data Movement (Full-to-Partial)

ORG.size < DST.size and

S = ORG.size

Case 4 happens when an application writes data to the file system with an offset not

aligned to the block size; the user buffer (ORG) is thus not aligned to the data page

(DST), because only part of the data page is overwritten.

In this case,ORG.data overwrites a part ofDST.data. The net effect is that the

newDST.data containsORG.data and the remaining portion of oldDST.data is not

overwritten. The newDST.data is represented byORG.data + r(DST). Therefore,

the newDST.cksum must be calculated overORG.data + r(DST) before the data

movement, as ifORG.data were already copied toDST . To make sure bothORG.data

81

andr(DST) are good whileDST.cksum is being calculated, they have to be verified.

Therefore, the correct order of checksum chaining is:

(1) g(tmpcksum,DST.alg, ORG.data+ r(DST))

(2) v(ORG.cksum,ORG.alg, ORG.data)

(3) v(DST.cksum,DST.alg,DST.data)

(4)DST.cksum← tmpcksum

(5) o(DST.data)← ORG.data

Unlike the previous cases, Case 4 requires two verifications, one overORG.data and the

other overDST.data.

Case 5Unaligned Data Movement (Partial-to-Partial)

S 6= ORG.size andS 6= DST.size

This is the general case of unaligned data movement: part ofORG.data is copied toDST

and overwrites part ofDST.data. The method of implementing checksum chaining is

similar to Case 4, with a slight change to step (1) and step (5):

(1) g(tmpcksum,DST.alg,m(ORG) + r(DST))

(2) v(ORG.cksum,ORG.alg, ORG.data)

(3) v(DST.cksum,DST.alg,DST.data)

(4) DST.cksum← tmpcksum

(5) o(DST.data)← m(ORG.data)

Although this case does not occur in Z2FS, we include Case 5 for the sake of complete-

ness.

4.3.2 Integration with Existing Applications

First, Z2FS supports generic requests with arbitrary offset and sizethrough checksum-

aware interfaces. These interfaces differ from the traditional read/write interfaces in that

82

Data Page User Bu�er

Aligned Read Unaligned Read

Data Page User Bu�er

Figure 4.15:Example of Aligned and Unaligned ReadsThis figure illustrates how Z2FS
handles aligned and unaligned reads. Small squares represent page checksums and small triangles
represent user checksums. The dark area represents the requested data.

both data and it associated checksums are transferred between the user space and the ker-

nel space. For example, Figure 4.15 illustrates how Z2FS handles aligned and generic

read requests respectively. In the aligned case, Z2FS simply returns all three checksums

to the application. But when dealing with the unaligned reads, Z2FS calculates a new

checksum that covers the requested data and sends it to the application. The order of

checksum generation and verification conforms with checksum chaining (see Case 3 and

Case 4 above): generate the user checksum first and then verify all three page check-

sums. Note that the applications must be modified to use the new interfaces. We believe

such changes are necessary, because the exposed checksums can be further utilized by

applications to protect data at the user level.

Second, Z2FS also provides a compatibility library that preserves thetraditional in-

terfaces. The library performs checksum generation and verification on behalf of the

application. The tradeoff is that applications do not have access to the checksums, thus

losing some data protection at the user level.

83

4.3.3 Error Handling

Both E2ZFS and Z2FS use checksums to verify data integrity. Whenever a mismatch

happens, it is reasonable to think the data is corrupted, notthe checksum, because the

checksum is usually much smaller than the data it protects and has a lower chance of

becoming corrupted. In the unusual case where the checksum is corrupted, good data

would be considered corrupted. This false positive about data corruption does not hurt

data integrity; in fact, any checksum mismatch indicates that the data cannot be trusted,

either because the data itself is corrupted, or because the checksum cannot prove the data

is correct. Therefore, both systems must handle verification failures properly.

In E2ZFS, there is only one verification, which occurs when the reader reads a data

block. If the verification fails, the reader will re-read thesame block from the file system.

If the corruption happens in the page cache (reader’s memory), E2ZFS can get the correct

data from disk and return it to the reader. However, if the corruption occurs before the

block is written to disk on the write path, it is too late to recover from the corruption. This

is the timeliness problem of the straight-forward end-to-end approach.

As we mentioned in Section 4.2.3, to solve the problem, Z2FS has extra checksum

verifications at the boundary of memory and disk. On the writepath, the verification is

part of the checksum chaining. If it fails, Z2FS aborts the write immediately and inform

the application, thus preventing corrupt data going to disk. The application then can re-

write the block. On the read path, Z2FS verifies the primary checksum (Fletcher) after

getting a data block from disk and will re-read it if the verification fails.

Note that informing the application about the failed write is quite challenging. It is

easy for synchronous writes; because the verification occurs before the write system call

returns, the application can just check the return value of the system call. However, for

asynchronous writes, the verification is performed by the background flushing thread. To

84

properly return the error information to the application, our solution in Z2FS is to use a

modified fsync system call. Z2FS creates an error table for each opened file to record

which data page fails the verification. Wheneverfsyncis called, it checks the error table

of the corresponding file and returns all block numbers foundin the table. Because at

that time all verifications of dirty pages belonging to the file have already finished,fsync

can give the most up-to-date error information. Therefore,by calling fsyncperiodically,

the application can know the latest status of the blocks it wrote and perform necessary

recovery in time.

4.4 Evaluation

We now evaluate and compare E2ZFS and Z2FS along two axes: reliability and perfor-

mance. Specifically, we want to answer the following questions:

• How do they handle various data corruption?

• What is the the overall performance of both systems?

• What is the impact of checksum switching on performance?

• What is the performance of both systems on real-world workloads?

We perform all experiments on a machine with a single-core 2.2GHz AMD Opteron pro-

cessor, 2GB memory, and a 1TB Hitachi Deskstar hard drive. Weuse Solaris Express

Community Edition (build 108), ZFS pool version 14 and ZFS file system version 3.

4.4.1 Reliability

The analyses in Section 4.2 showed theoretically how Z2FS can achieve Zettabyte Re-

liability with different reliability levels of disk and memory. In practice, however, it is

85

ZFS E2ZFS Z2FS
Timing act res act res act res
t0 ∼ t1 − × d3r e d1r

√

t1 ∼ t2 d2r e d3r e d2r e
t2 ∼ t3 − × d3r

√
d3r

√

Table 4.5:Fault Injection Results The columns (from left to right) show the time period when
the fault was injected (Timing), how the system and the reader reacts (act) and the result of the
read request from the reader (res). Under the act column, “dir” means the corruption is detected
at ti and a retry is performed. Under the res column, “×” means silent data corruption, “e”
means the corruption is detected but can not be recovered (assuming there is only one copy of the
data on disk), and “

√
” means the reader gets good data.

difficult to experimentally measure the reliability of a system, especially since we have

no knowledge of the actual failure rate of the disk and memoryin use. Therefore, we

focus on demonstrating the advantage of flexible end-to-enddata integrity in detecting

and recovering from corruption, through a series of fault injection experiments.

We inject a single bit flip to a data block during each time period in Figure 4.3, and

record how each system reacts and whether the reader can get correct data. We perform

the same set of experiments on all three systems, ZFS, E2ZFS, and Z2FS.

Table 4.5 summarizes the fault injection results. For the fault injected before the block

goes to disk (t0 ∼ t1), only Z2FS is able to detect it beforet1 and ask the writer to retry,

thus preventing corrupt data getting to disk. The reader in E2ZFS can also detect the fault

att3, but it is too late to recover the data. When data on disk is corrupted (t1 ∼ t2), neither

E2ZFS nor Z2FS is able to recover. For the fault injected after the block leaves disk on the

read path (t2 ∼ t3), the reader in both Z2FS and E2ZFS can detect it and re-read the block

from disk. Since ZFS only has protection for on-disk blocks,it can only catch corruption

that occurs on disk.

To show that Z2FS behaves as expected during the fault injection experiments, we

86

No Corruption Corruption

R
es

po
ns

e
T

im
e

(u
s)

4000

5000

6000

Read Syscall

Read IO (original)

Read IO (retry due to corruption)

Figure 4.16:Corruption in the Read Path (Cold) This graph shows the time breakdown
of a read system call in Z2FS when a block is correct or found corrupted in the page cache. The
y-axis is in micro seconds. Since the cache is cold, the blockis first read from disk.

measure the time cost of read and write system calls, as well as the I/O time of each disk

read and write. Figure 4.16, 4.17, and 4.18 present the time breakdown of a read or a

write system call in three cases: cold read, warm read and write with fsync.

Read (cold): In this case, the reader reads a 4KB block from Z2FS and the block is not

present in the page cache. We clear the disk cache at the beginning of our experiment so

that the first read always gets the block from disk. When no fault is injected, there is only

one I/O, which takes about 5000 micro seconds, as shown in Figure 4.16. When a fault

87

No Corruption Corruption

R
es

po
ns

e
T

im
e

(u
s)

0

50

100

150

200

250

300
Read Syscall

Read IO (retry due to corruption)

Figure 4.17:Corruption in the Read Path (Warm) This graph shows the time breakdown
of a read system call in Z2FS when a block is correct or found corrupted in the page cache. The
y-axis is in micro seconds. Since the cache is warm, the blockcan be returned directly from the
page cache.

is injected while the block is in the page cache, Z2FS is able to detect the corruption and

re-read the block from disk. Since the second read I/O hits disk cache, the actual I/O time

is small, only about 60 micro seconds.

Read (warm): As shown in Figure 4.17, the result is similar to the previouscase, except

that there is no huge first-time I/O cost, because the requested block is already cached.

88

Write with fsync: In this case, the writer writes a 4KB block to Z2FS and calls fsync

immediately. When there is no corruption, the write system call returns instantly (the

short white bar above the x-axis in Figure 4.18), because thewrite is asynchronous. The

following fsync flushes the data block to disk and logs the write operation in a log block

(totally two I/Os). Because both I/Os go to the disk cache, the I/O time is only about 120

micro seconds. Then, the file system issues a cache flush to thedisk so that all blocks

cached by the disk cache are forced to disk. The wait time for flush to finish is long,

which dominates the response time of fsync. When the block iscorrupted in the page

cache, Z2FS is able to detect the corruption before writing it out to disk. The writer gets

an error code from fsync and calls write and fsync again to re-do the write, which are

shown as the second set of bars on top of the previous failed fsync. Note that there is only

one write I/O (log block) during the failed fsync, because the data block write is aborted.

4.4.2 Overall Performance

We use a series of micro and macro benchmarks to evaluate the performance of E2ZFS

and Z2FS. All benchmarks are compiled with the compatibility library.

Micro Benchmark Figure 4.19 shows the results of our micro benchmark experiments.

Sequential write/read is writing/reading a 1GB file in 4KB requests. Random write/read

is writing/reading 100MB of a 1GB file in 4KB requests. To avoid the effect of checksum

switching, Z2FS is in static mode. From Figure 4.19, one can see that under random write

and random read (cold), the performance of Z2FS and E2ZFS is close to ZFS. Because

both workloads are dominated by disk seeks, the overhead of checksum calculation is

small. In the cases where the cache is warm, since no physicalI/Os are involved, the

calculation of checksums dominates the processing time. E2ZFS (Fletcher) is about 15-

89

No Corruption Corruption

R
es

po
ns

e
T

im
e

(u
s)

0

5000

10000

15000

20000

25000

30000
Write Syscall

Fsync Syscall

Write IO (log block)

Write IO (data block)

Figure 4.18:Corruption in the Write Path This graph shows the time breakdown of a write
system call followed by a fsync in Z2FS when a block is correct or found corrupted in the page
cache. The y-axis is in micro seconds.

17% slower than ZFS, while both E2ZFS (xor) and Z2FS only have a 3% throughput drop.

In sequential write and sequential read (cold), the performance of Z2FS is comparable to

E2ZFS (Fletcher).

90

Seq Write Seq Read
Cold

Seq Read
Warm

Random Write Random Read
Cold

Random Read
Warm

N
or

m
al

iz
ed

 T
hr

ou
gh

pu
t

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
77

.1
3

93
.5

9

65
6.

67

7.
51

0.
65

59
1.

65

75
.4

6

86
.9

6

63
9.

89

7.
43

0.
65

58
1.

55

76
.5

3

84
.4

5

55
8.

22

7.
37 0.
65

49
1.

8173
.2

9

85
.1

5

64
1.

89

7.
21 0.

65

58
0.

69

ZFS E ZFS (xor) 2 E ZFS (Fletcher) 2 Z FS (static) 2

Figure 4.19:Micro Benchmark This graph shows the results of several micro benchmarks on
ZFS, E2ZFS, and Z2FS (static). The bars are normalized to the throughput of ZFS. The absolute
values in MB/s are shown on top.

Macro Benchmark We use filebench [107] as our macro benchmark. We choose web-

server, fileserver and varmail to evaluate the overall application performance on E2ZFS

and Z2FS. Figure 4.20 depicts the throughput of these workloads.

Webserver is a multi-threaded read-intensive workload. Itconsists of 100 threads,

each of which performs a series of open-read-close operations on multiple files and then

appends to a log file. After reaching a steady state, all readsare satisfied by data in the

page cache. Therefore, the throughput is mainly determinedby the overhead of checksum

calculation. As shown in Figure 4.20, E2ZFS (xor) and Z2FS (static) has the closest

performance to ZFS, because they always calculate the xor checksum. E2ZFS (Fletcher)

is about 15% percent slower than ZFS, which matches our previous micro benchmark

result. In Z2FS (dynamic), the memory checksum is changed from xor to Fletcher when a

block stays in memory for more than 92 seconds, so the overallthroughput is in between

91

webserver fileserver varmail

N
or

m
al

iz
ed

 T
hr

ou
gh

pu
t

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

29
7.

21

11
9.

55

10
.3

8

28
2.

72

11
4.

48

10
.2

8

25
4.

75 11
3.

88

10
.2

4

28
2.

73

11
3.

87

10
.1

7

26
7.

38

11
2.

96

10
.1

9

ZFS E ZFS(xor) 2 E ZFS(Fletcher) 2 Z FS(static) 2 Z FS (dynamic) 2

Figure 4.20:Macro Benchmark This figure shows the throughput of our macro benchmarks
on ZFS, E2ZFS, Z2FS (static), and Z2FS (dynamic). Each workload runs for 720 seconds. Z2FS
(dynamic) hastswitch = 92 seconds.

Z2FS (static) and E2ZFS (Fletcher).

Fileserver is configured with 50 threads performing creates, deletes, appends, whole-

file writes and whole-file reads. It’s write-intensive with a1:2 read/write ratio. In this

case, the throughput of Z2FS is comparable to E2ZFS (Fletcher) and E2ZFS (xor).

Varmail emulates a multi-threaded mail server. Each threadperforms a set of create-

append-sync, read-append-sync, read, and delete operations. It has about half reads and

half writes and is dominated by random I/Os. Therefore, the overall throughput of Z2FS

and E2ZFS is no different than ZFS.

4.4.3 Impact of Checksum Switching

One key parameter in Z2FS is tswitch, which is the maximum residency time of a data

block in reader’s memory before checksum switching occurs.The value oftswitch in-

92

Switching Time (s)

0 100 200 300 400 500 600 700 800 900

T
hr

ou
gh

pu
t (

M
B

/s
)

250

260

270

280

290

E ZFS (Fletcher) 2

Z FS (static) 2

Z FS (dynamic) 2

Figure 4.21: Webserver Throughput with Different tswitch This figure illustrates the
throughput changes of webserver astswitch increases. The dashed line and dotted line represent
the throughput of webserver on Z2FS (static) and E2ZFS (Fletcher) respectively. The runtime of
the webserver workload is 720 seconds.

dicates a tradeoff between reliability and performance. Given a reliability goal, longer

tswitch means worse reliability score (still above the goal), but better performance because

the weaker memory checksum can be used for a longer time.

To understand the impact of checksum switching, we run the webserver workload

on Z2FS (dynamic) and varytswitch. Figure 4.21 illustrates the relationship between the

throughput of the workload andtswitch. As tswitch increases, the performance of Z2FS

(dynamic) gets closer to Z2FS (static), because more and more warm reads are verifying

the xor checksum. Whentswitch is the same as or longer than the runtime, Z2FS (dynamic)

matches the performance of Z2FS (static). Even whentswitch is short (e.g., 30 seconds),

Z2FS (dynamic) still outperfoms E2ZFS (Fletcher).

93

Trace Read Cache Before After
Num Count Hit Rate tswitch tswitch

1 14343 98.0% 34.5% 65.5%
2 35209 96.9% 58.9% 41.1%
3 61437 98.8% 83.7% 16.3%

Table 4.6:Trace Characteristics Read count is the total number of 4KB-read in each trace.
Hit rate is the cache hit rate for data reads. Before/Aftertswitch is the percentage of warm reads
that access a data block with a residency time less/greater thantswitch = 92 seconds.

4.4.4 Trace Replay

So far we have shown the performance benefit of Z2FS using artificially generated work-

loads. Now, we evaluate Z2FS by replaying real-world traces. We use the LASR system-

call traces [6] collected between 2000 and 2001, which coverthirteen machines used for

software development and research projects. The traces arenot I/O intensive, but they

contain realistic access patterns that are hard to emulate with controlled benchmarks. We

build a single-threaded trace replayer to sequentially replay the system calls at the same

speed as they were recorded. All unaligned read and write requests are converted into

aligned ones such that we can replay the trace on E2ZFS, which only supports aligned

requests.

We choose three one-hour long traces from the collection andreplay them on E2ZFS

(Fletcher), Z2FS (static), and Z2FS (dynamic,tswitch = 92). The characteristics of the

traces are listed in Table 4.6 and the results are shown in Table 4.7. As one can see from

the tables, overall, Z2FS has better performance than E2ZFS (Fletcher). In trace 3, most

of the warm reads (83.7%) are accessing data blocks with a residency time less than 92

seconds, and thus there are more calculations of xor checksum than Fletcher on Z2FS

94

Total Read Time (s)
Trace E2ZFS Z2FS Z2FS
Num (Fletcher) (static) (dynamic)

1 1.00 0.91 (9.0%) 0.95 (5.0%)
2 4.34 3.73 (14.1%) 3.82 (12.0%)
3 6.58 5.46 (17.0%) 5.47 (16.9%)

Table 4.7:Trace Replay Result The table shows the total time spent on read system calls for
each trace on each system. The percentage in the parenthesesis the speedup of Z2FS with respect
to E2ZFS (Fletcher).

(dynamic), which makes its performance closer to Z2FS (static). In contrast, 65.5% of

the warms reads in trace 1 are of blocks that have stayed in memory for more than 92

seconds, so the performance of Z2FS (dynamic) is closer to E2ZFS (Fletcher). Therefore,

workloads dominated by warm reads can benefit most from Z2FS (dynamic) if most read

accesses to a block occur during the firsttswitch seconds of that block in memory.

4.5 Summary

The straight-forward approach of end-to-end data integrity provides great protection against

corruption, but the requirement of using one strong high-level checksum for all compo-

nents along the I/O path leads to lower application performance and untimely detection

and recovery.

To address these issues, we present a new concept: flexible end-to-end data integrity.

A system with flexible end-to-end data integrity uses different checksum algorithms for

different component, and thus can dynamically make tradeoffs between performance and

reliability. Such a system also utilizes extra checksum verification below the application

to provide in-time detection and recovery. In this way, all components in the I/O path

95

provide strong data protection in a cooperative manner; every component is aware of the

checksums and performs necessary checksum operations, such as generation, verification,

switching or passing, to prevent silent data corruption.

To apply the concept to a system, we first develop an analytical framework to provide

rational behind flexible end-to-end data integrity. Then, we build E2ZFS and Z2FS, to

study both end-to-end concepts and demonstrate how to applyflexible end-to-end data

integrity to ZFS. Through reliability analysis and variousexperiments, we show that Z2FS

is able to provide Zettabyte reliability with comparable orbetter performance than E2ZFS.

Our analysis framework provides a holistic way to reason about the tradeoff between

performance and reliability in storage systems.

96

Chapter 5

Data Protection Analysis of Cloud

Storage Services

Cloud-based file synchronization services, such as Dropbox[44], SkyDrive [122], and

Google Drive [53], provide a convenient means both to synchronize data across a user’s

devices and to back up data in the cloud. While automatic synchronization of files is a

key feature of these services, the reliable cloud storage they offer is fundamental to their

success. Generally, the cloud backend will checksum and replicate its data to provide

integrity [18] and will retain old versions of files to offer recovery from mistakes or in-

advertent deletion [44]. The robustness of these data protection features, along with the

inherent replication that synchronization provides, can give the user with a strong sense

of data safety.

Unfortunately, this is merely a sense, not a reality; the loose coupling of these services

and the local file system endangers data even as these services strive to protect it. While

the data stored remotely is generally robust, local client software is unable to distinguish

between deliberate modifications and unintentional errors, potentially causing corrupt or

97

inconsistent data to automatically propagate to all machines associated with a user. Thus,

despite the presence of multiple redundant copies, synchronization destroys the user’s

data.

In this chapter, we demonstrate these problems through fault injection experiments.

We first present some background on file synchronization services in Section 5.1. Then,

in Section 5.2 we explore several case studies wherein synchronization services propa-

gate corruption and spread inconsistency. Finally, we analyze how the limitations of file

synchronization services and file systems directly cause these problems in Section 5.3.

5.1 Background

In order to understand the causes of the incorrect behavior of file synchronization services,

it is necessary to first understand how they operate. File synchronization services are aptly

named; they do their best to ensure that their users’ files aresynchronized across all of

their devices, as well as the cloud. While their design spacehas some variety in it, rang-

ing from Apple’s iCloud synchronizing specific applicationdata [20] to Wuala’s use of a

user-space file system [123], the basic functionality of these services is relatively homo-

geneous. We find that there are two popular ways of implementing such a service, based

on the underlying synchronization protocol. Services suchas Dropbox and ownCloud

rely on a specific file synchronization protocol, rsync [93] and csync [41] respectively.

On the other hand, many open-source synchronization services, including Seafile [99]

and sparkleshare [103], are built on top of distributed version control systems such as

GIT [52]. Thus, we provide a brief case study of Dropbox and Seafile to cover both types

of services; while the details are application-specific, the overall architecture applies to a

variety of services.

98

5.1.1 Dropbox

Dropbox consists of two main components: a client-side daemon and a cloud backend.

The daemon monitors changes in the local file system and uploads them to the cloud.

The cloud software, in turn, stores these files and then propagates them to the user’s other

devices. As the cloud component runs remotely, we can only infer its characteristics

through interacting with it via the network and through whatDropbox has published about

it. As Drago et al. [43] have already examined many of these details elsewhere, we focus

primarily on the client in our discussion. While the client is closed source, since it runs

locally, we can directly observe its behavior. In the following discussion, we concentrate

on two aspects of this behavior: how it manages its internal metadata and its procedures

for synchronizing files.

Data Management

The Dropbox client operates as a userspace daemon, requiring no direct operating system

support or kernel modules, and observes a single folder, ensuring that its contents are

synchronized with the cloud. To track local states, it uses several SQLite databases, most

of which are encrypted. These databases store metadata related to the user’s files, such as

the most recent time each file was modified, as well as hashes ofeach file used to identify

their contents. Dropbox uses this information to coordinate its synchronization with the

cloud.

Dropbox’s view of the user’s file namespace is much more simple than that of the file

system. It identifies files by their full pathnames and does not represent directories in its

database. If the user performs a rename of a file, it deletes the file from the cloud and

re-uploads the renamed version; similarly, if the user deletes a directory, the client deletes

all children of that directory and re-uploads them, identified by their new full pathname.

99

Dropbox provides a revision history for each file that it tracks, allowing a user to

revert a file to any of its previously uploaded states, withincertain time limits depending

on the level of the user’s subscription. While useful, Dropbox’s constrained view of the

file system limits the extent of this history. In particular,renamed files cannot explicitly

be reverted to prior versions before they were renamed. Instead, the user must restore the

file of the original name and delete the renamed file.

File Synchronization

Upon booting, the Dropbox client registers with the cloud and checks whether any files

have changed or been added remotely. If so, it downloads theminto a staging area and

renames them into the local directory once complete, so thatthe user never sees an in-

complete update. At the same time, it also scans the local directory to detect whether any

modifications have occurred while it was offline, comparing stats such as timestamps and

size of each file with the version stored in its databases. If these differ, it infers that the

file was changed and runs rsync to upload the changes to the cloud; to save bandwidth, it

divides files into chunks and only sends those chunks not already owned by the user. In

the event that it detects a conflict between two versions of a file, it performs no resolution;

instead, it keeps both versions of the file and renames one to indicate that it is in conflict.

Once running, the Dropbox client continues to actively synchronize its folder. When

remote changes occur, the server sends it a notification, causing the client to immediately

download the new data in the same manner as the initial upload. To detect local changes,

the client employs a notification service, such as Linux’s inotify, that informs it of events

in the local file system. This information is generally vague—inotify, for instance, reports

little more than the file name and the type of event, such as a create, write, or unlink, that

occurred–but suffices to allow Dropbox to maintain synchrony. Again, the client uses

100

rsync to upload only the changes in each file and performs deduplication.

5.1.2 Seafile

Similar to Dropbox, Seafile also has a client-side daemon anda server backend. Unlike

Dropbox, which interacts with files in the file system directly, Seafile maintains a GIT-

like repository (repo) to manage a synchronized folder. A local synchronized folder is

called a working tree. Seafile tracks and stores updates of the folder in local and remote

repositories. The remote repo on the server holds the masterbranch, acting as a backend to

store all data and version histories. The local repo contains the local branch, representing

the current state of the folder. The synchronization is thenperformed between the master

branch and the local branch.

Data Management

Unlike Dropbox, which only records file metadata in a local database, Seafile uses repos

to track both data and metadata. A repo is essentially an object store. Files and directories

in the folder are all stored as objects in the store, identified by SHA-1 hashes. A file’s

data is divided into chunks with variable length. A file is represented by a Seafile Object

which stores a list of hashes of data chunks. A directory is represented by a SeafDir

Object containing a list of directory entries, each of whichpoints to a Seafile Object or a

SeafDir Object. The hash of the root directory in the folder is called a commit ID, which

uniquely represents a state of the entire folder. Therefore, the history of changes to a

folder is recorded as a series of commit IDs. Similarly, the revision history of each file is

tracked by a series of hash values of its Seafile objects.

The remote repo maintains the complete version history for synchronized files, in-

cluding all the previously used but unreferenced data chunks. The client repository, on

101

the other hand, only keeps a short history of changes. Unuseddata chunks are garbage

collected at the beginning of each run of the local Seafile client daemon. At any time, the

master branch points to a remote commit ID on the server and the local branch points to

the latest local commit ID on the client.

File Synchronization

A Seafile client daemon runs on the client and monitors both the local folder and server

for updates. When there are local changes, the client commits the changes to the local

branch and then synchronizes the local branch to the server.When there are remote

changes, the client first downloads the master branch from the server, then commits local

changes, and finally merges the master branch into the local branch. The client performs

conflict handling during the merge, in which a conflicting copy from the master branch

is renamed and then committed to the local branch. After the merge, the client uploads

the local branch to the server, including all the regular local changes and changes due to

conflicts. Finally, the master branch is updated to point to the state just uploaded.

Seafile client detects offline changes in a way similar to Dropbox. After every commit,

it records in a local index file various stats of every file in the folder, including modifica-

tion time and file size. When the client starts, it performs a local scan to find out if there

are offline changes. This process involves checking every file in the folder and comparing

timestamps against the ones in the index file.

When the client is running, it monitors both the local folderand the server for updates.

For local changes, Seafile client relies on inotify, but it only uses inotify as an indicator. It

still depends on a scan to find out what files and directories were modified. In comparison,

Dropbox makes fully use of inotify to detect local changes. The client detects remote

updates by polling the server every 30 seconds. The client checks if the commit ID of the

102

local branch differs from the commit ID of the master branch.If they differ, it means that

there are remote changes. Since there is no remote scan, the polling process is fast and

efficient.

5.2 Data Protection Failures

We now present three case studies to show different failurescaused by the semantic gap

between local file systems and synchronization services. The first two of these failures,

the propagation of corruption and inconsistency, result from the client’s inability to dis-

tinguish between legitimate changes and failures of the filesystem. While these problems

can be warded off by using more advanced file systems, the third, causal inconsistency, is

a fundamental result of current file-system semantics.

5.2.1 Data Corruption

Data corruption is not uncommon and can result from a varietyof causes, ranging from

disk faults to operating system bugs [23, 38, 47, 89]. Corruption can be disastrous, and

one might hope that the automatic backups that synchronization services provide would

offer some protection from it. These backups, however, makethem likely to propagate

this corruption; as clients cannot detect corruption, theysimply spread it to all of a user’s

copies, potentially leading to irrevocable data loss.

To investigate what might cause disk corruption to propagate to the cloud, we first

inject a disk corruption to a block in a file synchronized withthe cloud (by flipping bits

through the device file of the underlying disk). We then manipulate the file in several

different ways, and observe which modifications cause the corruption to be uploaded. We

repeat this experiment for Dropbox, ownCloud, and Seafile atop ext4 (both ordered and

103

Data Metadata
FS Service write mtime ctime atime

ext4
(Linux)

Dropbox LG LG LG L
ownCloud LG LG L L
Seafile LG LG LG LG

ZFS
(Linux)

Dropbox L L L L
ownCloud L L L L
Seafile L L L L

HFS+
(Mac
OS X)

Dropbox LG LG L L
ownCloud LG LG L L
GoogleDrive LG LG L L
SugarSync LG L L L
Syncplicity LG LG L L

Table 5.1:Data Corruption Results “ L”: corruption remains local. “G”: corruption is
propagated (global).

data journaling modes) and ZFS [15] in Linux (kernel 3.6.11)and Dropbox, ownCloud,

Google Drive, SugarSync, and Syncplicity atop HFS+ in Mac OSX (10.5 Lion).

We execute both data operations and metadata-only operations on the corrupt file.

Data operations consist of both appends and in-place updates at varying distances from

the corrupt block, updating both the modification and accesstimes; these operations never

overwrite the corruption. Metadata operations change onlythe timestamps of the file. We

usetouch -ato set the access time,touch -mto set the modification time, andchownand

chmodto set the attribute-change time.

Table 5.1 displays our results for each combination of file systems and services. Since

ZFS is able to detect local corruption, none of the synchronization clients propagate

corruption. However, on ext4 and HFS+, all clients propagate corruption to the cloud

whenever they detect a change to file data and most do so when the modification time

is changed, even if the file is otherwise unmodified. In both cases, clients interpret the

104

Upload Download OOS
FS Service local ver. cloud ver.

ext4
(ordered)

Dropbox
√ × √

ownCloud
√ √ √

Seafile N/A N/A N/A

ext4
(data)

Dropbox
√ × ×

ownCloud
√ √ ×

Seafile
√ × ×

ZFS
Dropbox

√ × ×
ownCloud

√ √ ×
Seafile

√ × ×

Table 5.2:Crash Consistency ResultsThere are three outcomes: uploading the local (pos-
sibly inconsistent) version to cloud, downloading the cloud version, and OOS (out-of-sync), in
which the local version and the cloud version differ but are not synchronized. “×” means the
outcome does not occur and “

√
” means the outcome occurs. Because in some cases the Seafile

client fails to run after the crash, its results are labeled “N/A”.

corrupted block as a legitimate change and upload it. Seafileuploads the corruption when-

ever any of the timestamps changes. SugarSync is the only service that does not propagate

corruption when the modification time changes, doing so onlyonce it explicitly observes

a write to the file or it restarts.

5.2.2 Crash Inconsistency

The inability of synchronization services to identify legitimate changes also leads them

to propagate inconsistent data after the crash recovery. Todemonstrate this behavior, we

initialize a synchronized file on disk and in the cloud at version v0. We then write a new

version,v1, and inject a crash which may result in an inconsistent version v1′ on disk,

with mixed data fromv0 andv1, but the metadata remainsv0. We observe the client’s

behavior as the system recovers. We perform this experimentwith Dropbox, ownCloud,

and Seafile on ZFS and ext4.

105

Table 5.2 shows our results. Running the synchronization service on top of ext4 with

ordered journaling produces erratic and inconsistent behavior for both Dropbox and own-

Cloud. Dropbox may either upload the local, inconsistent version of the file or simply

fail to synchronize it, depending on whether it had noticed and recorded the update in its

internal structures before the crash. In addition to these outcomes, ownCloud may also

download the version of the file stored in the cloud if it successfully synchronized the file

prior to the crash. Seafile arguably exhibits the best behavior. After recovering from the

crash, the client refuses to run, as it detects that its internal metadata is corrupted. Manu-

ally clearing the client’s metadata and resynchronizing the folder allows the client to run

again; at this point, it detects a conflict between the local file and the cloud version.

All three services behave correctly on ZFS and ext4 with datajournaling. Since the

local file system provides strong crash consistency, after crash recovery, the local version

of the file is always consistent (eitherv0 or v1). Regardless of the version of the local

file, both Dropbox and Seafile always upload the local versionto the cloud when it differs

from the cloud version. OwnCloud, however, will download the cloud version if the local

version isv0 and the cloud version isv1. This behavior is correct for crash consistency,

but it may violate causal consistency, as we will discuss.

5.2.3 Causal Inconsistency

The previous problems occur primarily because the file system fails to ensure a key

property—either data integrity or consistency—and does not expose this failure to the

file synchronization client. In contrast, causal inconsistency derives not from a specific

failing on the file system’s part, but from a direct consequence of traditional file system

semantics. Because the client is unable to obtain a unified view of the file system at a

single point in time, the client has to upload files as they change in piecemeal fashion,

106

and the order in which it uploads files may not correspond to the order in which they were

changed. Thus, file synchronization services can only guarantee eventual consistency:

given time, the image stored in the cloud will match the disk image. However, if the

client is interrupted—for instance, by a crash, or even a deliberate powerdown—the im-

age stored remotely may not capture the causal ordering between writes in the file system

enforced by primitives like POSIX’ssync andfsync , resulting in a state that could not

occur during normal operations.

To investigate this problem, we run a simple experiment in which a series of files are

written to a synchronization folder in a specified order (enforced by fsync). During multi-

ple runs, we vary the size of each file, as well as the time between file writes, and check if

these files are uploaded to the cloud in the correct order. We perform this experiment with

Dropbox, ownCloud, and Seafile on ext4 and ZFS, and find that for all setups, there are

always cases in which the cloud state does not preserve the causal ordering of file writes.

While causal inconsistency is unlikely to directly cause data loss, it may lead to un-

expected application behavior or failure. For instance, suppose the user employs a file

synchronization service to store the library of a photo-editing suite that stores photos as

both full images and thumbnails, using separate files for each. When the user edits a

photo, and thus, the corresponding thumbnail as well, it is entirely possible that the syn-

chronization service will upload the smaller thumbnail filefirst. If a fatal crash, such as a

hard-drive failure, occurs before the client can finish uploading the photo, then the service

will still retain the thumbnail in its cloud storage, along with the original version of the

photo, and will propagate this thumbnail to the other devices linked to the account. The

user, accessing one of these devices and browsing through their thumbnail gallery to de-

termine whether their data was preserved, is likely to see the new thumbnail and assume

that the file was safely backed up before the crash. The resultant mismatch will likely

lead to confusion when the user fully reopens the file later.

107

5.3 Discussion

Our experiments demonstrate genuine problems with file synchronization services; in

many cases, they not only fail to prevent corruption and inconsistency, but actively spread

them. Responsibility for preventing corruption and inconsistency hardly rests with syn-

chronization services alone; much of the blame can be placedon local file systems, as

well. In this section, we analyze the limitations in synchronization services and local file

systems and show how they lead to data protection failures.

5.3.1 Where Synchronization Services Fail

Most synchronization services monitor its synchronization folder for changes using a file-

system notification service, such as Linux’s inotify or Mac OS X’s Events API. While

these services inform the synchronization clients of both namespace changes and changes

to file content, they provide this information at a fairly coarse granularity—per file, for

inotify, and per directory for the Events API, for instance.In the event that these services

fail, the machine crashes, or the client itself fails or is closed for a time, then the client

detects changes in local files by examining their statistics, including size and modification

timestamps.

Given this behavior, the causes of synchronization services’ inability to handle cor-

ruption and inconsistency become apparent. As file-system notification services provide

no information on what file contents have changed, the synchronization client must as-

sume that any changes that it detects result from legitimateuser action; it has no means

of distinguishing unintentional changes, like corruptionand inconsistent crash recovery.

Inconsistent crash recovery is further complicated by the client’s internal metadata

tracking. For example, with Dropbox, if the system crashes during an upload and restores

the file to an inconsistent state, the client will recognize that it needs to resume upload-

108

FS Corruption Crash Causal
ext4 (ordered) × × ×
ext4 (data) × √ ×
ZFS

√ √ ×

Table 5.3: Summary of File System Capabilities This table shows the synchronization
failures each file system is able to handle correctly. There are three types of failures: Corruption
(data corruption), Crash (crash inconsistency), and Causal (causal inconsistency). “

√
” means

the failure does not occur and “×” means the failure may occur.

ing the file, but it cannot detect that the contents are no longer consistent. Conversely, if

Dropbox had finished uploading and updated its internal timestamps, but the crash recov-

ery reverted the file’s metadata to an older version, Dropboxmust upload the file, since

the differing timestamp could potentially indicate a legitimate change.

5.3.2 Where Local File Systems Fail

File systems frequently fail to take the preventative measures necessary to avoid data

protection failures and, in addition, fail to expose adequate interfaces to allow synchro-

nization services to deal with them. As summarized in Table 5.3, neither a traditional file

system, ext4, nor a modern file system, ZFS, is able to avoid all failures.

File systems primarily prevent corruption via checksums. When writing a data or

metadata item to disk, the file system stores a checksum over the item as well. Then,

when it reads that item back in, it reads the checksum and usesthat to validate the item’s

contents. While this technique correctly detects corruption, file system support for it is

limited. ZFS and btrfs are some of the few widely available file systems that employ

checksums over the whole file system; ext4 uses checksums, but only over metadata [40].

Even with checksums, however, the file system can only detectcorruption, requiring other

mechanisms to repair it.

109

Recovering from crashes without exposing inconsistency tothe user is a problem that

has dogged file systems since their earliest days, and has been addressed with a variety

of solutions, such as journaling and copy-on-write. However, as discussed in Chapter

2, the most popular file systems, including ext3, ext4, HFS+,and NTFS, usually only

perform metadata journaling, sacrificing data consistencyfor performance. As a result,

the inconsistencies upon a crash cause the erratic behaviorobserved in Section 5.2.2.

Finally, avoiding causal inconsistency requires access tostable views of the file sys-

tem at specific points in time. File-system snapshots, such as those provided by ZFS or

Linux’s LVM [7], are currently the only means of obtaining such views. However, snap-

shot support is relatively uncommon, and when implemented,tends not to be designed

for the fine granularity at which synchronization services capture changes.

5.4 Summary

As our observations have shown, the sense of safety providedby synchronization services

is largely illusory. The limited interface between clientsand the file system, as well as

the failure of many file systems to implement key features, can lead to corruption and

flawed crash recovery polluting all available copies, and causal inconsistency may cause

bizarre or unexpected behavior. Thus, naively assuming that these services will provide

complete data protection can lead instead to data loss, especially on some of the most

commonly-used file systems.

Even for file systems capable of detecting errors and preventing their propagation,

such as ZFS and btrfs, the separation of synchronization services and the file system in-

curs an opportunity cost. Despite the presence of correct copies of data in the cloud,

the file system has no means to employ them to facilitate recovery. Tighter integration

between the service and the file system can remedy this, allowing the file system to auto-

110

matically repair damaged files. However, this makes avoiding causal inconsistency even

more important, as naive techniques, such as simply restoring the most recent version of

each damaged file, are likely to directly cause it.

111

Chapter 6

ViewBox: Cooperative Data Protection

across Local and Cloud Storage

Both cloud-based file synchronization services and file systems go to extensive efforts to

preserve user data. However, our analysis in Chapter 5 reveals that both systems fail to

protect user data in several scenarios. Because the client has no means of determining

whether file changes are intentional or the result of corruption, it may send both to the

cloud, ultimately spreading corrupt data to all of a user’s devices. Crashes compound

this problem; the client may upload inconsistent data to thecloud, download potentially

inconsistent files from the cloud, or fail to synchronize changed files. Finally, even in the

absence of failure, the client cannot normally preserve causal dependencies between files,

since it lacks stable point-in-time images of files as it uploads them. This can lead to an

inconsistent cloud image, which may in turn lead to unexpected application behavior.

In this chapter, we present ViewBox, a system in which local file system and cloud-

based synchronization services are integrated and work cooperatively to solve the prob-

lems above. Instead of synchronizing individual files, ViewBox synchronizes views, in-

112

memory snapshots of the local synchronized folder that provide data integrity, crash con-

sistency, and causal consistency. The local file system exposes views to the synchroniza-

tion client such that the client only uploads updates from the views. Since the client only

updates views in their entirety, ViewBox guarantees the correctness and consistency of

the cloud image, which it then uses to correctly recover fromlocal failures. Furthermore,

by making the server aware of views, ViewBox can synchronizeviews across clients and

properly handle conflicts without losing data.

The rest of the chapter is organized as follows. We first present the high-level design

of ViewBox in Section 6.1. We then describe the implementation of ViewBox in detail in

6.2. Finally, we evaluate our prototype ViewBox system in Section 6.3.

6.1 Design

To remedy the problems outlined in the previous section, we propose ViewBox, an inte-

grated solution in which the local file system and the synchronization service cooperate to

detect and recover from these issues. Instead of a clean-slate design, we structure View-

Box around ext4 (ordered journaling mode), Dropbox, and Seafile, in the hope of solving

these problems with as few changes to existing systems as possible.

Ext4 provides a stable, open-source, and widely-used solution on which to base our

framework. While both btrfs and ZFS already provide some of the functionality we desire,

they lack the broad deployment of ext4. Additionally, as it is a journaling file system,

ext4 also bears some resemblance to NTFS and HFS+, the Windows and Mac OS X file

systems; thus, many of our solutions may be applicable in these domains as well.

Similarly, we employ Dropbox because of its reputation as one of the most popular,

as well as one of the most robust and reliable, synchronization services. Unlike ext4, it is

entirely closed source, making it impossible to modify directly. Despite this limitation, we

113

are still able to make significant improvements to the consistency and integrity guarantees

that both Dropbox and ext4 provide. However, certain functionalities are unattainable

without modifying the synchronization service. Therefore, we take advantage of an open

source synchronization service, Seafile, to show the capabilities that a fully integrated file

system and synchronization service can provide. Although we only implement ViewBox

with Dropbox and Seafile, we believe that the techniques we introduce apply generally to

other synchronization services.

In this section, we first outline the fundamental goals driving ViewBox. We then

provide a high-level overview of the architecture with which we hope to achieve these

goals. Our architecture performs three primary functions:detection, synchronization,

and recovery; we discuss each of these in turn.

6.1.1 Goals

In designing ViewBox, we focus on four primary goals, based on both resolving the prob-

lems we have identified and on maintaining the features that make users appreciate file-

synchronization services in the first place.

Integrity: Most importantly, ViewBox must be able to detect local corruption and pre-

vent its propagation to the rest of the system. Users frequently depend on the syn-

chronization service to back up and preserve their data; thus, the file system should

never pass faulty data along to the cloud.

Consistency: When there is a single client, ViewBox should maintain causal consistency

between the client’s local file system and the cloud and prevent the synchroniza-

tion service from uploading inconsistent data. Furthermore, if the synchronization

service provides the necessary functionality, ViewBox must provide multi-client

consistency: file-system states on multiple clients shouldbe synchronized properly

114

with well-defined conflict resolution.

Recoverability: While the previous properties focus on containing faults, containment is

most useful if the user can subsequently repair the faults. ViewBox should be able

to use the previous versions of the files on the cloud to recover automatically. At the

same time, it should maintain causal consistency when necessary, ideally restoring

the file system to an image that previously existed.

Performance: Improvements in data protection cannot come at the expense of perfor-

mance. ViewBox must perform competitively with current solutions even when

running on the low-end systems employed by many of the users of file synchro-

nization services. Thus, naive solutions, like synchronous replication [65], are not

acceptable.

6.1.2 Fault Detection

The ability to detect faults is essential to prevent them from propagating and, ultimately,

to recover from them as well. In particular, we focus on detecting corruption and data

inconsistency. While ext4 provides some ability to detect corruption through its metadata

checksums, these do not protect the data itself. Thus, to correctly detect all corruption,

we add checksums to ext4’s data as well, storing them separately so that we may detect

misplaced writes [29, 69], as well as bit flips. Once it detects corruption, ViewBox then

prevents the file from being uploaded until it can employ its recovery mechanisms.

In addition to allowing detection of corruption resulting from bit-flips or bad disk

behavior, checksums also allow the file system to detect the inconsistent crash recov-

ery that could result from ext4’s journal. Because checksums are updated independently

of their corresponding blocks, an inconsistently recovered data block will not match its

checksum. As inconsistent recovery is semantically identical to data corruption for our

115

6

E0 E1 E2 E3

Synced View

Frozen View

Active View

5

4

6

E0 E1 E2 E3

5

4

6

E0 E1 E2 E3

6

54

7

E0 E1 E2 E3

6

54

5

(a) Uploading E1 as View 5 (b) View 5 is synchronized

(c) Freezing E3 as View 6 (d) Uploading View 6

FS Epoch

Synced View

Frozen View

Active View

FS Epoch

Figure 6.1:Synchronizing Frozen ViewsThis figure shows how view-based synchronization
works, focusing on how to upload frozen views to the cloud. The x-axis represents a series of file
system epochs. Squares represent various views in the system, with a view number as ID. When
an active view is shaded, it means that the view is not at an epoch boundary and cannot be frozen.

purposes—both comprise unintended changes to the file system—checksums prevent the

spread of inconsistent data, as well. However, they only partially address our goal of

correctly restoring data, which requires stronger functionality.

6.1.3 View-based Synchronization

Ensuring that recovery proceeds correctly requires us to eliminate causal inconsistency

from the synchronization service. Doing so is not a simple task, however. It requires the

client to have an isolated view of all data that has changed since the last synchronization;

116

otherwise, user activity could cause the remote image to span several file system images

but reflect none of them.

While file-system snapshots provide consistent, static images [62], they are too heavy-

weight for our purposes. Because the synchronization service stores all file data remotely,

there is no reason to persist a snapshot on disk. Instead, we propose a system of in-

memory, ephemeral snapshots, orviews.

View Basics

Views represent the state of the file system at specific pointsin time, or epochs, associated

with quiescent points in the file system. We distinguish between three types of views: ac-

tive views, frozen views, and synchronized views. The active view represents the current

state of the local file system as the user modifies it. Periodically, the file system takes a

snapshot of the active view; this becomes the current frozenview. Once a frozen view is

uploaded to the cloud, it then becomes a synchronized view, and can be used for restora-

tion. At any time, there is only one active view and one frozenview in the local system,

while there are multiple synchronized views on the cloud.

To provide an example of how views work in practice, Figure 6.1 depicts the state

of a typical ViewBox system. In the initial state, (a), the system has one synchronized

view in the cloud, representing the file system state at epoch0, and is in the process of

uploading the current frozen view, which contains the stateat epoch 1. While this occurs,

the user can make changes to the active view, which is currently in the middle of epoch 2

and epoch 3.

Once ViewBox has completely uploaded the frozen view to the cloud, it becomes a

synchronized view, as shown in (b). ViewBox refrains from creating a new frozen view

until the active view arrives at an epoch boundary, such as a journal commit, as shown

117

in (c). At this point, it discards the previous frozen view and creates a new one from the

active view, at epoch 3. Finally, as seen in (d), ViewBox begins uploading the new frozen

view, beginning the cycle anew.

Because frozen views are created at file-system epochs and the state of frozen views

is always static, synchronizing frozen views to the cloud provides both crash consistency

and causal consistency, given that there is only one client actively synchronizing with the

cloud. We call thissingle-client consistency.

Multi-client Consistency

When multiple clients are synchronized with the cloud, the server must propagate the

latest synchronized view from one client to other clients, to make all clients’ state syn-

chronized. Critically, the server must propagate views in their entirety; partially uploaded

views are inherently inconsistent and thus should not be visible. However, because syn-

chronized views necessarily lag behind the active views in each file system, the current

active file system may have dependencies that would be invalidated by a remote syn-

chronized view. Thus, remote changes must be applied to the active view in a way that

preserves local causal consistency.

To achieve this, ViewBox handles remote changes in two phases. In the first phase,

ViewBox applies remote changes to the frozen view. If a changed file does not exist in

the frozen view, ViewBox adds it directly; otherwise, it adds the file under a new name

that indicates a conflict (e.g., “foo.txt” becomes “remote.foo.txt”). In the second phase,

ViewBox merges the newly created frozen view with the activeview. ViewBox propagates

all changes from the new frozen view to the active view, usingthe same conflict handling

procedure. At the same time, it uploads the newly merged frozen view. Once the second

phase completes, the active view is fully updated; only after this occurs can it be frozen

118

Cloud

Local

Client

0

Remote

Client 0

0

Frozen View

Active View

Synced View

Frozen View

Active View

0

0

1

1

1

1

1

(a) Directly Applying Remote Updates

Cloud

Local

Client

Remote

Client Frozen View

Active View

Synced View

Frozen View

Active View

0

0

0

0

0

1

3

1

1

2

2

3

3

(b) Merging and Handling Potential Conflicts

Figure 6.2: Handling Remote Updates This figure demonstrates two different scenarios
where remote updates are handled. While case (a) has no conflicts, case (b) may, because it
contains concurrent updates.

and uploaded.

To correctly handle conflicts and ensure no data is lost, we follow the same policy as

GIT [54]. This can be summarized by the following three guidelines:

• Preserve any local or remote change; a change could be the addition, modification,

or deletion of a file.

119

• When there is a conflict between a local change and a remote change, always keep

the local copy untouched, but rename and save the remote copy.

• Synchronize and propagate both the local copy and the renamed remote copy.

Figure 6.2 illustrates how ViewBox handles remote changes.In case (a), both the

remote and local clients are synchronized with the cloud, atview 0. The remote client

makes changes to the active view, and subsequently freezes and uploads it to the cloud

as view 1. The local client is then informed of view 1, and downloads it. Since there are

no local updates, the client directly applies the changes inview 1 to its frozen view and

propagates those changes to the active view.

In case (b), both the local client and the remote client perform updates concurrently,

so conflicts may exist. Assuming the remote client synchronizes view 1 to the cloud first,

the local client will refrain from uploading its frozen view, view 2, and download view

1 first. It then merges the two views, resolving conflicts as described above, to create a

new frozen view, view 3. Finally, the local client uploads view 3 while simultaneously

propagating the changes in view 3 to the active view.

In the presence of simultaneous updates, as seen in case (b),this synchronization

procedure results in a cloud state that reflects a combination of the disk states of all clients,

rather than the state of any one client. Eventually, the different client and cloud states will

converge, providingmulti-client consistency. This model is weaker than our single-client

model; thus, ViewBox may not be able to provide causal consistency for each individual

client under all circumstances.

Unlike single-client consistency, multi-client consistency requires the cloud server

to be aware of views, not just the client. Thus, ViewBox can only provide multi-client

consistency for open source services, like Seafile; providing it for closed-source services,

like Dropbox, will require explicit cooperation from the service provider.

120

6.1.4 Cloud-aided Recovery

With the ability to detect faults and to upload consistent views of the file system state,

ViewBox is now capable of performing correct recovery. There are effectively two types

of recovery to handle: recovery of corrupt files, and recovery of inconsistent files at the

time of a crash.

In the event of corruption, if the file is clean in both the active view and the frozen

view, we can simply recover the corrupt block by fetching thecopy from the cloud. If the

file is dirty, the file may not have been synchronized to the cloud, making direct recovery

impossible, as the block fetched from cloud will not match the checksum. If recovering a

single block is not possible, the entire file must be rolled back to a previous synchronized

version, which may lead to causal inconsistency.

Recovering causally-consistent images of files that were present in the active view at

the time of a crash faces the same difficulties as restoring corrupt files in the active view.

Restoring each individual file to its most recent synchronized version is not correct, as

other files may have been written after the now-corrupted fileand, thus, depend on it; to

ensure these dependencies are not broken, these files also need to be reverted. Thus, naive

restoration can lead to causal inconsistency, even with views.

Instead, we present users with the choice of individually rolling back damaged files,

potentially risking causal inconsistency, or reverting tothe most recent synchronized view,

ensuring correctness but risking data loss. As we anticipate that the detrimental effects

of causal inconsistency will be relatively rare, the formeroption will be usable in many

cases to recover, with the latter available in the event of bizarre or unexpected application

behavior.

121

6.2 Implementation

Now that we have provided a broad overview of ViewBox’s architecture, we delve more

deeply into the specifics of our implementation. As with Section 6.1, we divide our dis-

cussion based on the three primary components of our architecture: detection, as imple-

mented with our newext4-cksumfile system; view-based synchronization using ourview

manager, a file-system agnostic extension to ext4-cksum; and recovery, using a user-space

recovery daemon calledcloud helper.

6.2.1 Ext4-cksum

Like most file systems that update data in place, ext4 provides minimal facilities for de-

tecting corruption and ensuring data consistency. While itoffers experimental metadata

checksums, these do not protect data; similarly, its default ordered journaling mode only

protects the consistency of metadata, while providing minimal guarantees about data.

Thus, it requires changes to meet our requirements for integrity and consistency. We now

present ext4-cksum, a variant of ext4 that supports data checksums to protect against data

corruption and to detect data inconsistency after a crash without the high cost of data

journaling.

Checksum Region

There are several ways in which we could add data checksums toext4. The simplest way

is to store a checksum within its protecting block, which is viable if the disk supports

520-byte sectors [112]. If not, some bytes in the 4KB block will have to be sacrificed to

store the checksum, which may cause alignment problems withapplications. In addition,

because this method stores the data block and the checksum inthe same logical write

122

Group

Descriptors

Block

Bitmap

Inode

Bitmap

Inode

Table

Data

Blocks
Superblock

Checksum

Region

Figure 6.3:Ext4-cksum Disk Layout This graph shows the typical layout of a block group
in ext4-cksum. The shaded region, the checksum table, contains data checksums for blocks in the
block group.

unit, it cannot detect misdirected writes or phantom writes[69]. Alternatively, the file

system could inline the checksum for each block with the pointer to it in metadata, as

ZFS does. While this method can work well, it can substantially limit the maximum file

size, due to the need to store checksums, and it may work awkwardly with ext4’s current

implementation of extents.

Ext4-cksum stores data checksums in a fixed-sizedchecksum regionimmediately after

the inode table in each block group, as shown in Figure 6.3. All checksums of data blocks

in a block group are preallocated in the checksum region. This region acts similarly to

a bitmap, except that it stores checksums instead of bits, with each checksum mapping

directly to a data block in the group. Since the region startsat a fixed location in a block

group, the location of the corresponding checksum can be easily calculated, given the

physical (disk) block number of a data block.

The size of the region depends solely on the total number of blocks in a block group

and the length of a checksum, both of which are determined andfixed during file system

creation. Currently, ext4-cksum uses the built-in crc32c checksum, which is 32-bit long.

Therefore, it reserves a 32-bit checksum for every 4KB block, imposing a space overhead

of 1/1024; for a regular 128MB block group, the size of the checksum region is 128KB.

Checksum Handling for Reads and Writes

When a data block is read from disk, the corresponding checksum must be verified. Be-

fore the file system issues a read of a data block from disk, it gets the corresponding

123

checksum by reading the checksum block. After the file systemreads the data block into

memory, it verifies the block against the checksum. If the initial verification fails, ext4-

cksum will retry. If the retry also fails, ext4-cksum will report an error to the application.

Note that in this case, if ext4-cksum is running with the cloud helper daemon, ext4-cksum

will try to get the remote copy from cloud and use that for recovery. The read part of a

read-modify-write is handled in the same way.

A read of a data block from disk always incurs an additional read for the checksum, but

not every checksum read will cause high latency. First, the checksum read can be served

from the page cache, because the checksum blocks are considered metadata blocks by

ext4-cksum and are kept in the page cache like other metadatastructures. Second, even

if the checksum read does incur a disk I/O, because the checksum is always in the same

block group as the data block, the seek latency will be minimal. Third, to avoid checksum

reads as much as possible, ext4-cksum employs a simple prefetching policy: always read

8 checksum blocks (within a block group) at a time. Advanced prefetching heuristics,

such as those used for data prefetching, are applicable here.

Ext4-cksum does not update the checksum for a dirty data block until the data block

is written back to disk. Before issuing the disk write for thedata block, ext4-cksum reads

in the checksum block and updates the corresponding checksum. This applies to all data

write-backs, caused by a background flush, fsync, or a journal commit.

Since ext4-cksum treats checksum blocks as metadata blocks, with journaling en-

abled, ext4-cksum logs all dirty checksum blocks in the journal. In ordered journaling

mode, this also allows the checksum to detect inconsistent data caused by a crash. In

ordered mode, dirty data blocks are flushed to disk before metadata blocks are logged in

the journal. If a crash occurs before the transaction commits, data blocks that have been

flushed to disk may become inconsistent, because the metadata that points to them still

remains unchanged after recovery. As the checksum blocks are metadata, they will not

124

have been updated, causing a mismatch with the inconsistentdata block. Therefore, if

such a block is later read from disk, ext4-cksum will detect the checksum mismatch.

To ensure consistency between a dirty data block and its checksum, data write-backs

triggered by a background flush and fsync can no longer simultaneously occur with a

journal commit. In ext4 with ordered journaling, before a transaction has committed, data

write-backs may start and overwrite a data block that was just written by the committing

transaction. This behavior, if allowed in ext4-cksum, would cause a mismatch between

the already logged checksum block and the newly written datablock on disk, thus mak-

ing the committing transaction inconsistent. To avoid thisscenario, ext4-cksum ensures

that data write-backs due to a background flush and fsync always occur before or after a

journal commit.

6.2.2 View Manager

To provide consistency, ViewBox requires file synchronization services to upload frozen

views of the local file system, which it implements through anin-memory file-system

extension, the view manager. In this section, we detail the implementation of the view

manager, beginning with an overview. Next, we introduce twotechniques, cloud journal-

ing and incremental snapshotting, which are key to the consistency and performance pro-

vided by the view manager. Then, we describe the synchronization processes that upload

a frozen view to cloud. Finally, we briefly discuss how to integrate the synchronization

client with the view manager to handle remote changes and conflicts.

View Manager Overview

The view manager is a light-weight kernel module that creates views on top of a local

file system. Since it only needs to maintain two local views atany time (one frozen view

125

and one active view), the view manager does not modify the disk layout or data structures

of the underlying file system. Instead, it relies on a modifiedtmpfs to present the frozen

view in memory and support all the basic file system operations to files and directories

in it. Therefore, a synchronization client now monitors theexposed frozen view (rather

than the actual folder in the local file system) and uploads changes from the frozen view

to the cloud. All regular file system operations from other applications are still directly

handled by ext4-cksum. The view manager uses the active viewto track the on-going

changes and then reflects them to the frozen view. Note that the current implementation

of the view manager is tailored to our ext4-cksum and it is notstackable [128]. We believe

that a stackable implementation would make our view managercompatible with more file

systems.

Consistency through Cloud Journaling

As we discussed in Section 6.1.3, to preserve consistency, frozen views must be created

at file-system epochs. Therefore, the view manager freezes the current active view at the

beginning of a journal commit in ext4-cksum, which serves asa boundary between two

file-system epochs. At the beginning of a commit, the currentrunning transaction be-

comes the committing transaction. When a new running transaction is created, all opera-

tions belonging to the old running transaction have completed, and operations belonging

to the new running transaction have not started yet. The viewmanager freezes the active

view at this point, ensuring that no in-flight operation spans multiple views. All changes

since the last frozen view are preserved in the new frozen view, which is then uploaded to

the cloud, becoming the latest synchronized view.

To ext4-cksum, the cloud acts as an external journaling device. Every synchronized

view on the cloud matches a consistent state of the local file system at a specific point in

126

time. Although ext4-cksum still runs in ordered journalingmode, when a crash occurs,

the file system now has the chance to roll back to a consistent state stored on cloud. We

call this approach cloud journaling.

Low-overhead via Incremental Snapshotting

During cloud journaling, the view manager achieves better performance and lower over-

head through a technique called incremental snapshotting.The view manager always

keeps the frozen view in memory and the frozen view only contains the data that changed

from the previous view. The active view is thus responsible for tracking all the files and

directories that have changed since it last was frozen. Whenthe view manager creates a

new frozen view, it marks all changed files copy-on-write (COW), which preserves the

data at that point. The new frozen view is then constructed byapplying the changes

associated with the active view to the previous frozen view.

The view manager uses several in-memory and on-cloud structures to support this

incremental snapshotting approach. First, the view manager maintains aninode mapping

tableto connect files and directories in the frozen view to their corresponding ones in the

active view. The view manager represents the namespace of a frozen view by creating

frozen inodesfor files and directories in tmpfs (their counterparts in theactive view are

thus calledactive inodes), but no data is usually stored under frozen inodes (unless the

data is copied over from the active view due to copy-on-write). When a file in the frozen

view is read, the view manager finds the active inode and fetches data blocks from it.

The inode mapping table thus serves as a translator between afrozen inode and its active

inode.

Second, the view manager tracks namespace changes in the active view by using an

operation log, which records all successful namespace operations (e.g.,create, mkdir,

127

unlink, rmdir, and rename) in the active view. The log records the type of an operation

and all operands, in the form of active inode numbers. For example, for a file create, the

inode numbers of the parent dir and the created file inode are logged. When the active

view is frozen, the log is replayed onto the previous frozen view to bring it up-to-date,

reflecting the new state.

Third, the view manager uses adirty tableto track what files and directories are mod-

ified in the active view. Once the active view becomes frozen,all these files are marked

copy-on-write. Then, by generating inotify events based onthe operation log and the

dirty table, the view manager is able to make the synchronization client check and upload

these local changes to the cloud. After the synchronizationis finished, the view becomes

a synchronized view on the cloud.

Finally, the view manager keepsview metadataon the server for every synchronized

view, which is used to identify what files and directories arecontained in a synchronized

view. For services such as Seafile, which internally keeps the modification history of

a folder as a series of snapshots [99], the view manager is able to use its snapshot ID

(called commit ID by Seafile) as the view metadata. For services like Dropbox, which

only provides file-level versioning, the view manager creates a view metadata file for

every synchronized view, consisting of a list of pathnames and revision numbers of files

in that view. The information is obtained by querying the Dropbox server. The view

manager stores these metadata files in a hidden folder on the cloud, so the correctness of

these files is not affected by disk corruption or crashes.

Synchronizing Views to the Cloud

Now, we describe how the view manager synchronizes views to the server.

128

x y

D

Frozen View 5

Frozen

Inode

Active

Inode

DF DA

xF xA

yF yA

Active View 5

x y

D

1. View manager copies the namespace from

active view 5 to frozen view 5, and

initializes the inode mapping table

2. Sync client uploads file x from frozen view 5

• View manager looks up frozen inode

number xF in inode mapping table and

find active inode number xA

• View manager reads data from active

inode xA

3. View manager creates and uploads view

metadata for frozen view 5

Figure 6.4:Initial Synchronization This figure shows how the view manager initializes and
uploads a frozen view upon file system mount. In the frozen view and active view, D is a directory
containing two files x and y. File x is shaded because it was modified while the synchronization
client is offline. The table represents the inode mapping table, in which NA is the active inode
number of N and NF is the frozen inode number of N.

Initial Synchronization: Assuming there are no crash and no remote changes, when

a local file system is mounted and the synchronization clientstarts, the client scans the

synchronization folder and uploads any offline changes to the server. With ViewBox, to

ensure that the synchronization client captures a view of the initial on-disk state of the

synchronized folder, the view manager freezes the initial state of ext4-cksum before the

client starts. The client then scans the frozen view and synchronizes any offline changes to

the cloud, in the same way as the unmodified synchronization client. We call this process

initial synchronization. Note that during the initial synchronization, ext4-cksumis not

accessible to applications other than the client, as if it were not mounted.

The view manager creates the initial frozen view by cloning the whole namespace

from ext4-cksum (the active view). It creates the same directories in the frozen view

129

x y

D

Frozen View 5

Frozen

Inode

Active

Inode

DF DA

xF xA

yF yA

Active View 6

y

D

z

Op Log 6

yA

zA

Dirty Table 6

unlink xA

create zA

1. User deletes file x

• View manager logs “unlink xA“ in op log

2. User modifies file y

• View manager records yA in dirty table

3. User creates file z

• View manager records zA in dirty table

• View manager logs “create zA“ in op log

Figure 6.5: Tracking Changes in an Active View This figure illustrates how the view
manager tracks changes in active view 6 using the dirty tableand op log. File y is shaded in active
view 6 because it was modified.

directly, and clones files from the active view by allocatingsparse files in their corre-

sponding directories in the frozen view. These frozen files have the same inode attributes

(such as mtime and size) as their active versions, but do not contain any data. The inode

mapping table is initialized during this process.

Then, the synchronization client starts to scan the frozen view, in order to detect offline

changes. The client reads all new and modified files from the frozen view and uploads

them to the server. Because the frozen view does not contain any data for the file, the

view manager handles data reads by looking up the inode mapping table, finding the

active inode, and reading blocks from the active view. Afterthe client finishes uploading

the view, the view manager creates and stores view metadata of the view on the server.

Figure 6.4 shows an example of how the view manager performs initial synchroniza-

tion. We will use the same example to illustrate how the view manager works in the

130

Frozen

Inode

Active

Inode

DF DA

xF xA

yF yA

Active View 7

y

D

z

Op Log 6

yA

zA

Dirty Table 6

unlink xA

create zA

Op Log 7

Dirty Table 7

1. View manager creates a new active view 7

with empty dirty table and op log

2. View manager attaches dirty table 6 and op

log 6 to the frozen view

x y

D

Frozen View 5

Figure 6.6:Freezing an Active View This figure shows how the view manager freezes active
view 6 and creates active view 7.

following discussion.

Regular Synchronization: Once the initial synchronization finishes, the active view

becomes visible to applications and starts to carry out operations. The view manager

uses an operation log and a dirty table to record namespace changes and file changes in

the active view, as shown in Figure 6.5. At some point, the active view is frozen and a

new active view is immediately created. While the frozen view is being synchronized to

the cloud, the new active view continues to serve requests from applications. We call this

processregular synchronization. Once the frozen view is synchronized, the view manager

starts the same process again.

Freezing an active view: The view manager freezes the current active view at the be-

ginning of the upcoming transaction commit in ext4-cksum. When the active view is

131

Frozen

Inode

Active

Inode

DF DA

yF yA

zF zA

Active View 7

y

D

z

Op Log 6

yA

zA

Dirty Table 6

unlink xA

create zA

Op Log 7

Dirty Table 7
Frozen View 6

y

D

z

View manager replays op log 6 onto frozen view

5 and brings its namespace up-to-date

• The inode mapping table is also updated

Figure 6.7:Establishing a Frozen View This figure shows how the view manager updates
the namespace of the frozen view to reflect the state of activeview 6.

frozen, the op-log and dirty table are attached to the frozenview and becomefrozen op-

log andfrozen dirty table. At the same time, a new active view is created on top of the

ext4-cksum, with an emptyactive op-logandactive dirty table. Figure 6.6 shows how the

view manager freezes the previous active view 6 and creates anew active view 7.

Establishing a frozen view: In ViewBox, a frozen view does not have to be persistent.

Instead, it only needs to be present when it is being synchronized to the cloud. Therefore,

the view manager takes a light-weight in-memory snapshot approach. The key is to break

the state of the snapshot into three parts: namespace, inodeattributes and file data.

The view manager relies on the op-log to quickly bring the namespace up-to-date.

When the active view becomes frozen, the namespace in the frozen view is stale; it still

reflects the state of previously synchronized frozen view, so does the inode mapping table.

Since the frozen op-log recorded all namespace operations that took place between when

132

Frozen

Inode

Active

Inode

DF DA

yF yA

zF zA

Active View 7

D

z

Op Log 6

yA

zA

Dirty Table 6

unlink xA

create zA

Op Log 7

Dirty Table 7
Frozen View 6

y

D

z

User deletes file y in active view 7

• View manager sees yA exists in dirty table 6

• View manager copies yA’s data to yF

• Unlink succeeds

• View manager logs “unlink yA“ in op logunlink yA

Figure 6.8:Example of Copy-on-write This figure shows an example of copy-on-write that
is trigger by deleting a frozen file in the active view.

the synchronized view was frozen and when the current frozenview was frozen, the view

manager keeps the namespace up-to-date by replaying these logged operations, as shown

in Figure 6.7. The inode mapping table is also updated duringthe replay. By storing

concrete directory structures in the frozen view, any namespace operation that takes place

in the current active view will not affect the namespace of the frozen view. Therefore,

there is no need to perform copy-on-write (COW) on metadata related to namespace,

which avoids the complication and overhead of copying thesemetadata structures.

However, preserving inode attributes and file data still need COW. After the replay is

finished, all files in the frozen view have their frozen inodesallocated. However, these

inodes are only placeholders; they still have the previous attributes and there are no data

blocks allocated. For inode attributes, when a frozen inodeis to be accessed or when the

corresponding active inode is to be changed, the inode attributes of the active inode would

be copied to the frozen inode. Therefore, operations such asutime, chown, and chmod

133

in the active view will trigger COW for inode attributes. Forfile data, the frozen view

does not keep a copy of a data block, unless the data block is tobe modified or deleted

in the active view, so operations including write, truncate, unlink, and rename (in which

a file is overwritten by the renamed file) will cause COW for affected data blocks. Figure

6.8 illustrates a COW example in which the file y is removed in active view 7. If a data

block remains unchanged in the active view, when the block isread from the frozen view,

the view manager will directly fetch that data block from theactive inode in ext4-cksum,

either from disk or from the page cache. This saves an unnecessary page copying from

the active inode to the frozen inode.

Moreover, not every file in the frozen view needs to be COWed. Since synchronization

services only upload changed files to the server, the view manager only has to COW

changed files. As discussed before, the dirty table recordedfiles that were changed when

the frozen view was active. Once the view is frozen, all recorded inodes are marked

COW. Therefore, before any file-changing operation takes place in the active view, the

view manager checks if the file’s inode exists in the frozen dirty table. If it exists, the

inode attributes and any data block that will be affected by the operation but have not

been COWed will be copied to the frozen view. Otherwise, the operation will be carried

out without any COW overhead.

Uploading a frozen view: In a regular file system without views, the synchronization

client relies on the inotify mechanism to monitor file and directory changes in real-time,

and uploads those changes accordingly. In ViewBox, however, the client monitors the

frozen view exposed by the view manager, in which most changes (other than the replayed

namespace operations) do not take place in real-time. Therefore, the view manager recre-

ates and replays inotify events to drive the synchronization client upload changes in the

frozen view. After the client finishes uploading the frozen view, the view manager creates

134

Frozen

Inode

Active

Inode

DF DA

yF yA

zF zA

Active View 7

D

z

Op Log 6

yA

zA

Dirty Table 6

unlink xA

create zA

Op Log 7

Dirty Table 7
Frozen View 6

y

D

z

1. View manager generates inotify events

based on op log 6 and dirty table 6

2. Sync client uploads file y to the cloud

• The view manager reads data from yF

directly, because file y was COWed

3. Sync client uploads file z to the cloud

• View manager reads data from zA

4. View manager creates and uploads view

metadata for frozen view 6

unlink yA

Figure 6.9:Uploading a Frozen View This figure illustrates how the view manager uploads
frozen view 6 to the cloud.

necessary view metadata. Finally, the view manager destroys the frozen op-log and the

frozen dirty table, cleans up COWed data pages in the frozen view, and prepares to freeze

the current active view. Figure 6.9 shows the steps the view manager takes to upload

frozen view 6.

Handling Remote Changes

All the techniques we have introduced so far focus on how to provide single-client con-

sistency and do not require modifications to the synchronization client or the server. They

work well with proprietary synchronization services such as Dropbox. However, when

there are multiple clients running ViewBox and performing updates at the same time, the

synchronization service itself must be view-aware. To handle remote updates correctly,

we modify the Seafile client to perform the two-phase synchronization described in Sec-

tion 6.1.3. We choose Seafile to implement multi-client consistency, because both its

135

client and server are open-source. More importantly, its data model and synchronization

algorithm are similar to GIT, which fits our view-based synchronization well.

6.2.3 Cloud Helper

When corruption or a crash occurs, ViewBox performs recovery using backup data on the

cloud. Recovery is performed through a user-level daemon, cloud helper. The daemon

is implemented in Python, which acts as a bridge between the local file system and the

cloud. It interacts with the local file system using ioctl calls and communicates with the

cloud through the service’s web API.

For data corruption, when ext4-cksum detects a checksum mismatch, it sends a block

recovery request to the cloud helper. The request includes the pathname of the corrupted

file, the offset of the block inside the file, and the block size. The cloud helper then

fetches the requested block from the server and returns the block to ext4-cksum. Ext4-

cksum re-verifies the integrity of the block against the datachecksum in the file system

and returns the block to the application. If the verificationstill fails, it is possibly because

the block has not been synchronized or because the block is fetched from a different file

in the synchronized view on the server with the same pathnameas the corrupted file.

When a crash occurs, the cloud helper performs a scan of the ext4-cksum file system

to find potentially inconsistent files. If the user chooses toonly roll back those inconsis-

tent files, the cloud helper will download them from the latest synchronized view. If the

user chooses to roll back the whole file system, the cloud helper will identify the latest

synchronized view on the server, and download files and construct directories in the view.

The former approach is able to keep most of the latest data butmay cause causal incon-

sistency. The latter guarantees causal consistency, but atthe cost of losing updates that

took place during the frozen view and the active view when thecrash occurred.

136

Service Data Metadata
ViewBox w/ write mtime ctime atime
Dropbox DR DR DR DR
Seafile DR DR DR DR

Table 6.1:Data Corruption Results of ViewBox In all cases, the local corruption is de-
tected (D) and recovered (R).

6.3 Evaluation

We now present the evaluation results of our ViewBox prototype. We first show that our

system is able to recover from data corruption and crashes correctly and provide causal

consistency. Then, we evaluate the underlying ext4-cksum and view manager components

separately, without synchronization services. Finally westudy the overall synchronization

performance of ViewBox with Dropbox and Seafile.

We implemented ViewBox in the Linux 3.6.11 kernel, with Dropbox client 1.6.0,

and Seafile client and server 1.8.0. All experiments are performed on machines with a

3.3GHz Intel Quad Core CPU, 16GB memory, and a 1TB Hitachi Deskstar hard drive.

For all experiments, we reserve 512MB of memory for the view manager. We run every

experiment 10 times and report the average result.

6.3.1 Cloud Helper

We first perform the same set of fault injection experiments as in Section 2. The corrup-

tion and crash test results are shown in Table 6.1 and Table 6.2. Because the local state is

initially synchronized with the cloud, the cloud helper is able to fetch the redundant copy

from cloud and recover from corruption and crashes. We also confirm that ViewBox is

able to preserve causal consistency.

137

Service Upload Download Out-of-sync
ViewBox w/ local ver. cloud ver. (no sync)
Dropbox × √ ×
Seafile × √ ×

Table 6.2:Crash Consistency Results of ViewBoxThe local version of the file is inconsis-
tent, and is rolled back to the previous version on the cloud.

Workload ext4 ext4-cksum Slowdown
(MB/s) (MB/s)

Seq. write 103.69 99.07 4.46%
Seq. read 112.91 108.58 3.83%
Rand. write 0.70 0.69 1.42%
Rand. read 5.82 5.74 1.37%

Table 6.3:Microbenchmarks on ext4-cksum This figure compares the throughtput of sev-
eral micro benchmarks on ext4 and ext4-cksum. Sequential write/read are writing/reading a 1GB
file in 4KB requests. Random write/read are writing/reading128MB of a 1GB file in 4KB requests.
For sequential read workload, ext4-cksum prefetches 8 checksum blocks for every disk read of a
checksum block.

6.3.2 Ext4-cksum

We now evaluate the performance of standalone ext4-cksum, focusing on the overhead

caused by data checksumming. Table 6.3 shows the throughputof several microbench-

marks on ext4 and ext4-cksum. From the table, one can see thatthe performance overhead

is quite minimal. Note that checksum prefeteching is important for sequential reads; if it

is disabled, the slowdown of the workload increases to 15%.

We perform a series of macrobenchmarks using Filebench on both ext4 and ext4-

cksum with checksum prefetching enabled. The results are shown in Table 6.4. For

the fileserver workload, the overhead of ext4-cksum is quitehigh, because there are 50

138

Workload ext4 ext4-cksum Slowdown
(MB/s) (MB/s)

Fileserver 79.58 66.28 16.71%
Varmail 2.90 3.96 -36.55%
Webserver 150.28 150.12 0.11%

Table 6.4: Macrobenchmarks on ext4-cksum This table shows the throughtput of file-
server, varmail, and webserver workloads on ext4 and ext4-cksum. Fileserver is configured with
50 threads performing creates, deletes, appends, whole-file writes, and whole-file reads. Varmail
emulates a multi-threaded mail server. Each thread performs a set of create-append-sync, read-
append-sync, read, and delete operations. It has about halfreads and half writes and is dominated
by random I/Os. Webserver is a multi-threaded read-intensive workload.

threads reading and writing concurrently and the negative effect of the extra seek for

checksum blocks accumulates. The webserver workload, on the other hand, experiences

little overhead, because it is dominated by warm reads.

It is surprising to notice that ext4-cksum greatly outperforms ext4 in varmail. This

is actually a side effect of the ordering of data write-backsand journal commit, as dis-

cussed in Section 6.2.1. Note that because ext4 and ext4-cksum are not mounted with

“journal asynccommit”, the commit record is written to disk with a cache flush and the

FUA (force unit access) flag, which ensures that when the commit record reaches disk,

all previous dirty data (including metadata logged in the journal) has already been forced

to disk. When running varmail in ext4, data blocks written byfsyncs from other threads

during the journal commit are also flushed to disk at the same time, which causes high

latency. In contrast, since ext4-cksum does not allow data write-back from fsync to run si-

multaneously with the journal commit, the amount of data flushed is much smaller, which

improves the overall throughput of the workload.

139

Normalized Response Time
Operation Before COW After COW
unlink (cold) 484.49 1.07
unlink (warm) 6.43 0.97
truncate (cold) 561.18 1.02
truncate (warm) 5.98 0.93
rename (cold) 469.02 1.10
rename (warm) 6.84 1.02
overwrite (cold) 1.56 1.10
overwrite (warm) 1.07 0.97

Table 6.5:Copy-on-write Operations in the View Manager This table shows the nor-
malized response time (against ext4) of various operationson a frozen file (10MB) that trigger
copy-on-write of data blocks. “Before COW”/”After COW” indicates the operation is performed
before/after affected data blocks are COWed.

6.3.3 View Manager

We now study the performance of various file system operations in an active view when

a frozen view exists. The view manager runs on top of ext4-cksum.

We first evaluate the performance of various operations thatdo not cause copy-on-

write (COW) in an active view. These operations are create, unlink, mkdir, rmdir, re-

name, utime, chmod, chown, truncate and stat. We run a workload that involves creating

1000 8KB files across 100 directories and exercising these operations on those files and

directories. We prevent the active view from being frozen sothat all these operations do

not incur a COW. We see a small overhead (mostly less than 5% except utime, which is

around 10%) across all operations, as compared to their performance in the original ext4.,

This overhead is mainly caused by operation logging and other bookkeeping performed

by the view manager.

Next, we show the normalized response time of operations that do trigger copy-on-

write in Table 6.5. These operations are performed on a 10MB file after the file is created

140

ext4 + Dropbox ViewBox with Dropbox
Workload Runtime Sync Time Runtime Sync Time
openssh 36.4 49.0 36.0 64.0

iphoto edit 577.4 2115.4 563.0 2667.3
iphoto view 149.2 170.8 153.4 591.0

Table 6.6:Performance of ViewBox with Dropbox This table compares the runtime and
sync time (in seconds) of various workloads running on top ofthe unmodified ext4 and ViewBox
using Dropbox. Runtime is the time it takes to finish the workload and sync time is the time it takes
to finish synchronizing.

and marked COW in the frozen view. All operations cause all 10MB of file data to be

copied from the active view to the frozen view. The copying overhead is listed under the

“Before COW” column, which indicates that these operationsoccur before the affected

data blocks are COWed. When the cache is warm, which is the common case, the data

copying does not involve any disk I/O but still incurs up to 7xoverhead. To evaluate

the worst case performance (when the cache is cold), we deliberately force the system to

drop all caches before we perform these operations. As one can see from the table, all

data blocks are read from disk, thus causing much higher overhead. Note that cold cache

cases are rare and may only occur during memory pressure. We further measure the

performance of the same set of operations on a file that has already been fully COWed.

As shown under the “After COW” column, the overhead is negligible, because no data

copying is performed.

6.3.4 ViewBox with Dropbox and Seafile

We assess the overall performance of ViewBox using three workloads: openssh (building

openssh from its source code), iphotoedit (editing photos in iPhoto, about 5GB data),

and iphotoview (browsing photos in iPhoto, about 1GB data). The lattertwo workloads

141

ext4 + Seafile ViewBox with Seafile
Workload Runtime Sync Time Runtime Sync Time
openssh 36.0 44.8 36.0 56.8

iphoto edit 566.6 857.6 554.0 598.8
iphoto view 150.0 166.6 156.4 175.4

Table 6.7:Performance of ViewBox with SeafileThis table compares the runtime and sync
time (in seconds) of various workloads running on top of the unmodified ext4 and ViewBox using
Seafile. Runtime is the time it takes to finish the workload andsync time is the time it takes to
finish synchronizing.

are from the iBench trace suite [60] and are replayed using Magritte [119]. We believe

that these workloads are representative of ones people run with synchronization services.

The results of running all three workloads on ViewBox with Dropbox and Seafile are

shown in Table 6.6 and Table 6.7. In all cases, the runtime of the workload in ViewBox

is at most 5% slower and sometimes even faster than that of theunmodified ext4 setup,

which shows that view-based synchronization does not have anegative impact on the

foreground workload. We also find that the memory overhead ofViewBox (the amount of

memory consumed by the view manager to store frozen views) isminimal, at most 20MB

across all three workloads.

We expect the synchronization time of ViewBox to be longer because ViewBox does

not start synchronizing until the current file system state is frozen, which may cause

delays. The results of openssh confirm our expectations. However, for iphotoview and

iphoto edit, the synchronization time on ViewBox with Dropbox is much greater than that

on ext4. This is due to Dropbox’s lack of proper interface support for views, as described

in Section 6.2.2. Because both workloads use a file system image with around 1200

directories, to create the view metadata for each view, ViewBox has to query the Dropbox

server numerous times, causing substantial overhead. In contrast, ViewBox can avoid this

overhead with Seafile because it has direct access to Seafile’s internal metadata. Thus, the

142

synchronization time of iphotoview in ViewBox with Seafile is near that in ext4.

Note that the iphotoedit workload actually has a much shorter synchronization time

on ViewBox with Seafile than on ext4. Because the photo editing workload involves many

writes, Seafile delays uploading when it detects files being constantly modified. After

the workload finishes, many files have yet to be uploaded. Since frozen views prevent

interference, ViewBox can finish synchronizing about 30% faster.

6.4 Summary

Despite their near-ubiquity, file synchronization services ultimately fail at one of their

primary goals: protecting user data. Not only do they fail toprevent corruption and

inconsistency, they actively spread it in certain cases. The fault lies equally with local file

systems, however, as they often fail to provide the necessary capabilities that would allow

synchronization services to catch these errors. To remedy this, we propose ViewBox, an

integrated system that allows the local file system and the synchronization client to work

together to prevent and repair errors.

Rather than synchronizing individual files, as current file synchronization services

do, ViewBox centers around views, in-memory file-system snapshots which have their

integrity guaranteed through on-disk checksums. Since views provide consistent images

of the file system, they provide a stable platform for recovery that minimizes the risk of

restoring a causally inconsistent state. As they remain in-memory, they incur minimal

overhead.

We implement ViewBox to support both Dropbox and Seafile clients, and find that it

prevents the failures that we observe with unmodified local file systems and synchroniza-

tion services. Equally importantly, it performs competitively with unmodified systems.

This suggests that the cost of correctness needs not be high;it merely requires adequate

143

interfaces and cooperation.

144

Chapter 7

Related Work

This chapter discusses various research efforts and real systems that are related to this

dissertation. We first discuss literature on analyzing system reliability using fault injection

and modeling techniques. Then, we summarize research on improving data integrity and

consistency in storage systems.

7.1 Fault Injection

Software-implemented fault injection techniques have been widely used to analyze the

robustness of systems [26, 33, 56, 66, 101, 114]. For example, FINE used fault injection

to emulate hardware and software faults in the operating system [66]; Gu et al. [56] in-

jected faults to instruction streams of Linux kernel function to characterize Linux kernel

behavior.

More recent works have applied type-aware fault injection to analyze failure behaviors

of different file systems to disk corruptions. Prabhakaran et al. injected partial disk

failures to various file systems to understand the behavior of these systems in the presence

145

of disk errors and randomly-corrupted disk blocks [89]. Bairavasundaram et al. developed

and applied type-aware pointer corruption to NTFS and ext3 to study how both systems

handle pointer corruption in their metadata structures [24]. Our analysis of on-disk data

integrity in ZFS and data corruption with synchronization services is similar to these

studies.

Furthermore, fault injection has also been used to analyze effects of memory corrup-

tion on systems. FIAT [26] used fault injection to study the effects of memory corruption

in a distributed environment. Krishnan et al. applied a memory corruption framework to

analyze the effects of metadata corruption on NFS [70]. Our study on in-memory data

integrity is related to these studies in their goal of findingeffects of memory corruption.

However, our work on ZFS is the first comprehensive reliability analysis of local

file system that covers carefully controlled experiments toanalyze both on-disk and in-

memory data integrity. Specifically, for our study of memorycorruptions, we separately

analyze ZFS behavior for faults in page cache metadata and data and for metadata struc-

tures in the heap. To the best of our knowledge, this is the first such comprehensive study

of end-to-end file system data integrity.

Similarly, our analysis of cloud-based synchronization services is the first study on the

reliability of these services. We study the impact of disk corruption and system crash to

synchronization services and reveal the surprising fact that multiple copies do not always

make data safe.

7.2 Reliability Modeling

A large body of research has been focusing on modeling device-level errors such as mem-

ory errors and latent sector errors. Li et al. performed a series of measurement of soft

errors on real production systems, and developed models forerror rates and error patterns

146

[71, 72]. Schroeder et al. conducted a detailed static analysis of latent sector errors and

provided parameters for models derived from the analysis [96]. Based on the models,

they proposed and evaluated several new protection schemesagainst latent sector errors.

There are many studies on reliability modeling for RAID systems [31, 45, 86], but

only a few of them cover silent data corruption. Rozier et al.presented a fault model

for Undetected Disk Errors (UDE) in RAID systems [92]. They built a framework that

combines simulation and model to calculate the manifestation rates of undetected data

corruption caused by UDEs. Krioukov et al. used model checking to analyze various pro-

tection techniques used in current RAID storage systems [69]. They study the interaction

between these techniques and find design faults that may leadto data loss or data corrup-

tion. In comparison, our reliability framework focuses on bit errors from various devices

(not just disk or RAID). We use analytical models to evaluatethe reliability of different

devices and different checksums in terms of the probabilityof undetected corruption. Our

framework calculates a system-level metric that can be usedto compare the reliability of

different storage systems.

7.3 Techniques for Data Integrity

Using checksums to detect data corruption is common. File systems, such as PFS [104],

GoogleFS [51], IRON file system [89], btrfs [91] and ZFS [29],use checksums to protect

on-disk blocks. Many database systems, such as Berkeley DB [85] and SQL Server [1],

support page-level checks to make sure data is not corruptedon disk. In networking, the

Internet checksum [12], used by most Internet protocols, isdesigned to detect transmis-

sion errors. The integrity check specified in RPCSECGSS [13] protects RPC messages

during transmission. All these checks are applied in a single subsystem/protocol, while

flexible end-to-end data integrity focuses on cross-component data protection. In addition,

147

our ext4-cksum is similar to these systems in using checksums, but to our knowledge, it is

the first work to add data checksumming to ext4. In Z2FS, we take advantage of existing

checks as well as our newly added checks to provide wider coverage of data protection.

Many of the systems above, such as GoogleFS, IRON file system,and ZFS, rely

on locally stored redundant copies for automatic recovery,which may or may not be

available. In contrast, ViewBox is the first work of which we are aware that employs the

cloud for recovery.

The concept of flexible end-to-end data integrity is similarto the protection scheme in

the Linux Data Integrity Extension (DIX) [87] and the T10 Protection Information (T10-

PI) model [112] (previously known as Data Integrity Field).DIX provides end-to-end

protection from the application to the I/O controller, while T10-PI covers the data path

between the I/O controller and the disk. Within this framework, checksums are passed

from the application all the way to the disk, and can be verified by the disk drive, as well

as the components inbetween. Although T10-PI requires CRC as the checksum, DIX is

able to use the Internet checksum [12] to achieve better performance and relies on the I/O

controller to convert the Internet checksum to CRC. The behavior of each components

in the I/O path is well modeled by the data integrity architecture from SNIA [102]. Our

flexible end-to-end concept differs from their scheme in that they focus ondefiningthe

behavior of each node while our work helps toreasonabout the rational behind certain

behaviors, such as what checksum should be used by which component, and when and

where the system should change checksum. Our reliability framework also provides a

holistic way to think about the tradeoffs between performance and protection.

In terms of implementation, Z2FS offers similar protection as DIX, but it is differ-

ent from DIX in several aspects. First, Z2FS is a software solution while T10-PI and

DIX require support from hardware vendors. The hard drives and the controller must

support 520-byte sector because the checksum is stored in the extra 8-byte area for each

148

sector. Z2FS uses space maintained by the file system to store checksumsso that it is

able to provide similar protection as DIX without special hardware. It can also be easily

extended to support T10-PI. Second, in addition to checksumchaining (conversion) at

the disk-memory boundary Z2FS performs checksum switching for data in memory. We

believe Z2FS is the first file system to take data residency time into consideration and

provide better protection for data in the page cache. Third,Z2FS is a full-featured local

file system that exposes checksum to applications through new and generic APIs so that

any application can be modified to take advantage of the data protection offered by Z2FS.

In comparison, DIX is currently a block layer extension in Linux. To our best knowledge,

there is no local file system support or user-level APIs available; DIX is now only used in

Lustre file system [82] and Oracle’s database products [46, 121].

7.4 Techniques for Data Consistency

A variety of research work, such as IRON file system [89] and OptFS [36], explores the

use of checksums for purposes beyond simply detecting corruption. IRON ext3 introduces

transactional checksums, which allow the journal to issue all writes, including the commit

block, concurrently; the checksum detects any failures that may occur. OptFS extends

transactional checksum to cover dirty data blocks that are flushed during journal commit,

so that the system is able to detect inconsistent data upon a crash. Ext4-cksum is mostly

related to OptFS in that ext4-cksum also relies on checksumsto detect inconsistent data,

but OptFS requires data block to be checksummed whenever theblock is updated in the

page cache, which may lead to high response time for write system calls (due to checksum

calculation). In contrast, ext4-cksum only generates checksums when data blocks are

written back, which usually occurs in the background and does not incur much overhead.

Similarly, a number of works have explored means of providing greater crash con-

149

sistency than ordered and metadata journaling provide. Data journaling mode in ext3

and ext4 provides full crash consistency, but its high overhead makes it unappealing.

OptFS [36] is able to achieve data consistency and deliver high performance through an

optimistic protocol, but it does so at the cost of durabilitywhile still relying on data jour-

naling to handle overwrite cases. In contrast, ViewBox avoids overhead by allowing the

local file system to work in ordered mode, while providing consistency through the views

it synchronizes to the cloud; it then can restore the latest view after a crash to provide

full consistency. Like OptFS, this sacrifices durability, since the most recent view on the

cloud will always lag behind the active file system. However,this approach is optional,

and, in the normal case, ordered mode recovery can still be used.

ViewBox’s snapshotting component, the view manager, bearssome resemblance to

ext3cow [88] and Next3 [49], but these similarities are mostly superficial. Like both of

these systems, the view manager performs copy-on-write once per snapshot. However,

unlike these systems, the view manager does not persist its snapshots on disk, relying

instead on the cloud back-end to store uploaded views. Additionally, while we imple-

ment the view manager as an extension to ext4, it requires no modification to on-disk

data structures and could easily be applied to any other Linux file system. Finally, while

ext3cow’s focus on file history resembles Dropbox’s file revision history interface, View-

Box shifts from this interface to focus on complete images, as this is the only way to

guarantee causal consistency when restoring previous file versions.

150

Chapter 8

Conclusion and Future Work

One of the major responsibilities of storage systems is to store data correctly and protect

it from being damaged. Existing systems and many research projects have employed

various techniques to fulfill this responsibility, but mostof the techniques only focus

on protecting data in a specific component in the storage stack, while failing to provide

comprehensive protection – corrupt data or inconsistent data still goes undetected and is

exposed to users or applications.

In this dissertation, we identified this problem of isolatedprotection in both local and

cloud storage systems, and proposed several cooperative data protection techniques to

address the problem. For local storage systems, we first analyzed the impact of disk and

memory corruption to ZFS and found that ZFS fails to protect in-memory data (Chapter

3). Then, we proposed the concept of flexible end-to-end dataintegrity and built Z2FS

by applying the concept to ZFS, which provides end-to-end protection with improved

performance (Chapter 4). For cloud storage services, we started by studying how syn-

chronization clients propagate corrupt data and inconsistent data to the cloud due to the

loose coupling of local file systems and synchronization services (Chapter 5). We then

151

built ViewBox, a system in which local file systems and synchronization services work

cooperatively to provide data integrity, consistency, andrecoverability (Chapter 6).

In this chapter, we first summarize our analysis and solutions in Section 8.1, then list

a set of lessons learned over the course of this work in Section 8.2, and finally discuss

directions for future research in Section 8.3.

8.1 Summary

This dissertation is mainly divided in two parts: cooperative data protection in local stor-

age, and cooperative data protection across local and cloudstorage. Each part further

consists of a problem analysis and a solution. We now summarize each part in turn.

8.1.1 Cooperative Data Protection in Local Storage

In the first part of the dissertation, we focused on the impactof disk corruption and mem-

ory corruption in local storage systems and we chose ZFS, a modern and mature file

system, as our study subject. First, we evaluated how robustZFS is against disk and

memory corruption. We injected corruption to data blocks and metadata structures both

on disk and in memory. We found that ZFS is able to detect and recover from most in-

jected disk corruption, due to the usage of checksums for on-disk blocks and file-system

level replication for important metadata structures. However, because the protection is

only limited to disk blocks, ZFS fails to protect in-memory data and metadata, which

leads to bad data blocks being silently returned to the user or written to disk, file system

operation failures, and whole system crashes. Our findings indicated that end-to-end data

protection is needed to protect data from both memory and disk corruption.

Then, we explored techniques to provide end-to-end data protection. A straight-

152

forward way to achieve this is to apply the traditional end-to-end concept, in which ap-

plications generate and verify checksum (usually a strong one) for their data. However,

this approach suffers from slow performance for workloads that repeatedly access data

from the page cache due to the overhead of calculating checksums. Moreover, when the

corruption occurs in the write path, it fails to detect the corruption in time, and thus it is

not able to recover from it.

To address both problems, we proposed a new concept called flexible end-to-end data

integrity, which enables all components in the storage system to be aware of check-

sums and changes checksums scheme across components (sometimes even over time)

to achieve a balance between performance and reliability. We developed an analytical

model to reason about which checksums to be used on which component, and then built

Z2FS to demonstrate how to apply flexible end-to-end data integrity to an existing file

system, ZFS. As a comparison, we also built E2ZFS with straight-forward end-to-end

data integrity. Through analysis and fault injection experiments, we showed that Z2FS

is able to provide Zettabyte reliability (at most one undetected corruption per Zettabyte

data read), and can detect and recover from corruption in thewrite path. Through per-

formance experiments, we showed that Z2FS performs comparably to the original ZFS in

various micro and macro benchmarks and outperforms E2ZFS by up to 17% in workloads

dominated by warm reads.

8.1.2 Cooperative Data Protection across Local and Cloud Storage

The second part of the dissertation focused on the impact of disk corruption and untimely

crashes in local file systems and cloud storage services (cloud-based file synchroniza-

tion services). We first performed fault injection experiments on several popular syn-

chronization services and studied how well they protect data. Through disk corruption

153

experiments, we found that in many cases, all the services weexamined propagate local

corruption to the cloud and thus corrupt copies on other devices. Through crash tests,

we found that the synchronization clients behave inconsistently; sometimes they upload

inconsistent files to the cloud, sometimes they download stale versions of files from the

server, and sometimes they refuse to synchronize despite the fact that the local copy is dif-

ferent than the cloud copy. Further, we showed that these services cannot provide causal

consistency because the clients are not able to obtain an unified and consistent view of the

local file system. Our analysis revealed that the root cause of these problems is the loose

coupling of synchronization services and local file systems.

Next, we designed, implemented, and evaluated a new system called ViewBox, in

which the synchronization service works cooperatively with the local file system to pro-

vide data integrity and consistency. The key idea behind ViewBox is views, in-memory

snapshots of the synchronizing folder. Instead of uploading files, ViewBox synchronizes

views between the devices and cloud. To guarantee the correctness of views, ViewBox

relies on three components: ext4-cksum, the view manager, and the cloud helper. Ext4-

cksum adds data checksuming to ext4 and serves as the local file system in ViewBox.

The added checksum is able to detect both corruption and inconsistency. The view man-

ager is an extension to ext4-cksum which creates views at filesystem epochs and exposes

views to the synchronization client; the consistency of views is thus guaranteed. The

cloud helper is a user-level daemon that uses views on the cloud to perform recovery

when corruption or inconsistency is detected. We built ViewBox around two synchro-

nization services, Dropbox and Seafile. Through fault injection experiments, we showed

that ViewBox is able to detect and recover from corruption and crash, and therefore pre-

vent bad data from being propagated. Compared to Dropbox andSeafile running on top

of unmodified ext4, we showed that ViewBox incurs less than 5%overhead in many

workloads, and in some cases reduces the synchronization time by 30%.

154

8.2 Lessons Learned

In this section, we present a list of general lessons we learned while working on this

dissertation.

• Reliability does not come for free. First, data protection techniques usually hurt

the performance of the system. In E2ZFS, we moved the checksum generation and

verification up to the application level to achieve end-to-end data integrity, which

caused about a 15% slowdown compared to the original ZFS in some workloads.

In ViewBox, we added checksums to ext4 and we find that the overall throughout

of ext4-cksum is worse than the original ext4. The former case is due to the CPU

overhead of calculating the checksum, and the latter is because of extra I/Os and

seeks to read and write checksum blocks.

Second, optimization helps to reduce the overhead. In Z2FS, we chose xor as mem-

ory checksum and we applied the checksum-on-copy optimization [39] to make it

extremely faster (3% overhead compared to the original ZFS)than the naive imple-

mentation (7% overhead). In ViewBox, we implemented prefetching of checksum

blocks for sequential read workloads such that the throughput slowdown (compared

to original ext4) is improved from 15% to 4%.

Finally, fast storage device needs fast checksum calculation. Current systems per-

form well with strong checksums because the checksum calculation usually occurs

with a (traditional) disk I/O, which is already costly. As fast devices (such as SSDs)

are becoming popular and widely deployed, storage systems cannot hide the com-

putational cost of checksum behind I/O time anymore, so we believe that either we

have to find a checksum that is strong enough to protect data and fast enough to

not cause noticeable slowdown, or we should take other approaches to reduce the

155

calculation overhead (e.g., through specialized instructions or additional chips).

• One size (checksum) does not fit all.With the straight-forward end-to-end pro-

tection scheme, usually one checksum is used all the way fromapplication to disk.

This simplifies the implementation of a system, but strips the flexibility away; relia-

bility can be achieved by using a stronger checksum, but the performance hurts. Our

flexible end-to-end data protection proposes to use different checksum for different

components, depending on the their reliability and/or performance characteristics,

such that the reliability and performance of the whole system can be tweaked to

satisfy certain requirement. We believe that such flexibility should be provided by

future storage systems, especially software-defined storage systems.

• Multiple copies do not always make data safe.File synchronization services

automatically upload local data to the cloud, and propagateit to other synchronized

devices. These services give the users a perception that there are multiple copies

of their data and their data must be safe. However, our analysis showed that this is

merely a false sense of “security”. When the local file systemor the synchronization

client cannot distinguish legitimate changes (actual updates) from “unauthorized”

changes (corrupt or inconsistent data), bad data may be uploaded to the server and

thus pollute all copies – failing to guarantee the correctness of data renders all the

replicas useless. We believe that the replication itself does not necessarily improve

data reliability; the ability to verify the integrity of data is the foundation replication

should rely on.

8.3 Future Work

In this section, we outline various directions for future work.

156

8.3.1 Characteristic Study of Data Corruption

Our analytical framework described in Section 4.1 models data corruption as indepen-

dent bit flips in a fixed-sized data block, which simplifies themodel but unfortunately

fails to represent the reality. Bairavasundaram et al. found that corruption (checksum

mismatches) that occur in the same disk is not independent and has spatial and temporal

locality [23]. Schroeder et al. found that memory errors also have strong time and space

correlations [63]. Therefore, in order to better understand and model data corruption, we

believe that a study of data corruption characteristic willbe an interesting future direction.

The focus of the study would be to find out the pattern of corruption and how likely

each pattern occurs. If the corruption is caused by dropped writes, the corrupt data would

be the same as the previous data at the same location but may look completely different

than the correct data. If the corruption is caused by bit-rots, it is highly likely that the

corruption is just several bit flips. In this case, it would also be interesting to know the

distribution of the number of bit flips.

In addition to helping to improve the modeling of data corruption, the study would be

beneficial in several other ways. First, categorizing data corruption events may provide

some hints on why data corruption occurs and which componentshould be blamed for

it. For example, if most corruption events are random bit flips, it is possible that the disk

drive is defected and should be replaced. Second, understanding corruption pattern would

help with the invention of special checksums. As mentioned above, fast devices need fast

checksums to avoid the performance slowdown. If the corruption pattern of such a device

is known, one may be able to apply a checksum that is speciallydesigned to handle that

corruption pattern and performs much faster than a generic and strong checksum.

157

8.3.2 Application-level Data Protection

This dissertation has focused on data protection provided by file systems and file synchro-

nization services, but it does not address another important piece: applications. Since

applications are the ones that generate data and process data, it is critical to make sure

applications protect data and handle corruption correctly. It is well known that corporate

applications, such as database systems and mail servers, already use checksums to protect

data from corruption [1, 4, 85, 105]. Therefore, studying the robustness of home-user

applications, such as document editors or photo managers, will be an interesting future

avenue and the first step would be a thorough analysis of how data corruption affects

application behavior.

We can inject various faults (such as corruption, read errorand write error) when an

application reads/writes data from/to the file system, and see how the application reacts.

We may classify application behaviors into three categories: detection, recovery and func-

tionality. In terms of detection, applications may ignore the failure or corruption, detect

and inform the user, or detect and hide from the user. In termsof recovery, applications

may perform no recovery, retry, repair, or wait for user instruction. By functionality, we

mean after the error handling (detection and recovery) whether the applications work as

usual, abort abnormally, or perform incorrect actions.

There are two challenges in this fault injection analysis. First, to effectively inject

faults, we have to understand various file formats. Different applications work with dif-

ferent file formats. Each file format is like a file system and has its own organization

of metadata and data. For example, a MP3 file contains a streamof MP3 frames, each

of which consists of a header (metadata) and an audio data block. In contrast, a DOC

file is actually a mini FAT file system, which contains text files, images files and other

metadata structures that make up the document. Therefore, it is important to study how

158

metadata and data in each file format is organized and what arethe meanings of the meta-

data structures. Second, automation of the fault injectionexperiments may be difficult.

Unlike traditional UNIX programs, most home-user applications are all GUI-based and

they interact with users extensively. The involvement of human users may hinder the

efficiency of fault injection experiments. To solve this problem, we can use advanced

scripting languages, such as AppleScript, to control GUIs.

Once we have the results from the fault injection analysis, we will be able to explore

techniques to improve the robustness of applications in theface of data corruption.

8.3.3 Cooperative Data Protection in Networked Storage Systems

We have explored techniques for cooperative data protection in local storage systems and

cloud storage systems. We believe that another important environment to look into is

networked storage systems.

Network File System (NFS) is a popular network file system protocol, originally de-

veloped by Sun, which allows users to access files across a network. NFS relies on a secu-

rity protocol called RPCSECGSS [13] to provide data integrity, in which RPC messages

containing NFS requests and responses are checksummed (NFS checksum). However, the

protocol also suffers from the problem of isolated protection; the checksum is only used

during network transmission and there is no end-to-end protection between the client-side

application and the server disk.

One approach to achieve cooperative data protection is to apply the concept of flexible

end-to-end data integrity to NFS. First, Z2FS can be directly used here as the local file

system on the client and the server. Second, models for network data corruption, TCP/IP

checksum, and NFS checksums used by RPCSECGSS (e.g., DES) are needed to evaluate

how reliable the whole system is with the addition of the network part, and to choose

159

a proper NFS checksum to meet the performance and reliability requirement. Finally,

checksum chaining must be applied at the boundary of page cache and the NFS layer to

connect the client’s or the server’s memory checksum and theNFS checksum.

8.4 Closing Words

In this dissertation, we have identified the problem of isolated protection in existing stor-

age systems, and proposed various techniques to achieve cooperative data protection. As

the amount of generated data explodes, the use of low-cost hardware increases, and the

complexity of storage systems grows, existing and future storage systems will face more

and more challenges to data protection. By demonstrating the power of cooperation, we

hope that this dissertation can help researchers, designers, and developers to rethink data

protection and build reliable storage systems with cooperative data protection.

160

Bibliography

[1] Buffer Management - SQL Server 2008 R2.http://msdn.microsoft.com/en-us/

library/aa337525.aspx .

[2] CERT/CC Advisories.http://www.cert.org/advisories/ .

[3] Data Integrity. http://indico.cern.ch/getFile.py/access?contribId=

3&sessionId=0&resId=1&materialId=paper&confId=13797 .

[4] Eseutil /K Checksum Mode. http://technet.microsoft.com/en-us/library/

bb123632%28EXCHG.65%29.aspx .

[5] Kernel Bug Tracker.http://bugzilla.kernel.org/ .

[6] LASR Traces.http://iotta.snia.org/traces/2 .

[7] lvcreate(8) - linux man page.

[8] Mozy. https://www.mozy.com .

[9] Repeated panics, something gone bad?http://tech.groups.yahoo.com/group/

solarisx86/message/38925 .

[10] RFC 3385 - Internet Protocol Small Computer System Interface (iSCSI) Cyclic Redundancy Check

(CRC)/Checksum Considerations.http://www.ietf.org/rfc/rfc3385.txt .

[11] RFC 793 - Transmission Control Protocol.http://www.ietf.org/rfc/rfc793.txt .

[12] RFC1071 - Computing the Internet Checksum.http://www.ietf.org/rfc/rfc1071.

txt .

161

[13] RFC2203 - RPCSECGSS Protocol Specification.http://www.ietf.org/rfc/rfc2203.

txt .

[14] US-CERT Vulnerabilities Notes Database.http://www.kb.cert.org/vuls/ .

[15] ZFS on Linux.http://zfsonlinux.org .

[16] Zfs problem mirror.http://www.mail-archive.com/zfs-discuss@opensolaris .

org/msg18079.html .

[17] Zfs problems.http://www.mail-archive.com/zfs-discuss@opensolaris .org/

msg04518.html .

[18] Amazon. Amazon Simple Storage Service (Amazon S3).http://aws.amazon.com/s3/ .

[19] Dave Anderson, Jim Dykes, and Erik Riedel. More Than an Interface: SCSI vs. ATA. InProceed-

ings of the 2nd USENIX Symposium on File and Storage Technologies (FAST ’03), San Francisco,

California, April 2003.

[20] Apple. icloud.http://www.icloud.com/ .

[21] Apple. Technical Note TN1150. http://developer.apple.com/technotes/tn/

tn1150.html , March 2004.

[22] Lakshmi N. Bairavasundaram, Garth R. Goodson, ShankarPasupathy, and Jiri Schindler. An Anal-

ysis of Latent Sector Errors in Disk Drives. InProceedings of the 2007 ACM SIGMETRICS Confer-

ence on Measurement and Modeling of Computer Systems (SIGMETRICS ’07), San Diego, Califor-

nia, June 2007.

[23] Lakshmi N. Bairavasundaram, Garth R. Goodson, Bianca Schroeder, Andrea C. Arpaci-Dusseau,

and Remzi H. Arpaci-Dusseau. An Analysis of Data Corruptionin the Storage Stack. InProceedings

of the 6th USENIX Symposium on File and Storage Technologies(FAST ’08), pages 223–238, San

Jose, California, February 2008.

[24] Lakshmi N. Bairavasundaram, Meenali Rungta, Nitin Agrawal, Andrea C. Arpaci-Dusseau,

Remzi H. Arpaci-Dusseau, and Michael M. Swift. Analyzing the Effects of Disk Pointer Corruption.

In Proceedings of the International Conference on DependableSystems and Networks (DSN ’08),

Anchorage, Alaska, June 2008.

162

[25] Wendy Bartlett and Lisa Spainhower. Commercial Fault Tolerance: A Tale of Two Systems.IEEE

Transactions on Dependable and Secure Computing, 1(1):87–96, January 2004.

[26] J.H. Barton, E.W. Czeck, Z.Z. Segall, and D.P. Siewiorek. Fault Injection Experiments Using FIAT.

IEEE Transactions on Computers, 39(4):1105–1118, April 1990.

[27] Robert Baumann. Soft errors in advanced computer systems. IEEE Design & Test of Computers,

22(3):258–266, 2005.

[28] Emery D. Berger and Benjamin G. Zorn. Diehard: probabilistic memory safety for unsafe languages.

In Proceedings of the ACM SIGPLAN 2005 Conference on Programming Language Design and

Implementation (PLDI ’06), Ottawa, Canada, June 2006.

[29] Jeff Bonwick and Bill Moore. ZFS: The Last Word in File Systems.http://opensolaris.

org/os/community/zfs/docs/zfs_last.pdf , 2007.

[30] Florian Buchholz. The structure of the Reiser file system. http://homes.cerias.purdue.

edu/˜florian/reiser/reiserfs.php .

[31] W. Burkhard and Jai Menon. Disk Array Storage System Reliability. In Proceedings of the 23rd In-

ternational Symposium on Fault-Tolerant Computing (FTCS-23), pages 432–441, Toulouse, France,

June 1993.

[32] Remy Card, Theodore Ts’o, and Stephen Tweedie. Design and Implementation of the Second Ex-

tended Filesystem. InFirst Dutch International Symposium on Linux, Amsterdam, Netherlands,

December 1994.

[33] Joao Carreira, Henrique Madeira, and Joao Gabriel Silva. Xception: A Technique for the Experimen-

tal Evaluation of Dependability in Modern Computers.IEEE Transactions on Software Engineering,

1998.

[34] John Chapin, Mendel Rosenblum, Scott Devine, Tirthankar Lahiri, Dan Teodosiu, and Anoop Gupta.

Hive: Fault Containment for Shared-Memory Multiprocessors. InProceedings of the 15th ACM Sym-

posium on Operating Systems Principles (SOSP ’95), Copper Mountain Resort, Colorado, December

1995.

[35] C. L. Chen. Error-correcting codes for semiconductor memories.SIGARCH Comput. Archit. News,

12(3):245–247, 1984.

163

[36] Vijay Chidambaram, Thanumalayan Sankaranarayana Pillai, Andrea C. Arpaci-Dusseau, and

Remzi H. Arpaci-Dusseau. Optimistic Crash Consistency. InProceedings of the 24th ACM Sympo-

sium on Operating Systems Principles (SOSP ’13), Farmington, PA, November 2013.

[37] Vijay Chidambaram, Tushar Sharma, Andrea C. Arpaci-Dusseau, and Remzi H. Arpaci-Dusseau.

Consistency Without Ordering. InProceedings of the 10th USENIX Symposium on File and Storage

Technologies (FAST ’12), San Jose, California, February 2012.

[38] Andy Chou, Junfeng Yang, Benjamin Chelf, Seth Hallem, and Dawson Engler. An Empirical Study

of Operating System Errors. InProceedings of the 18th ACM Symposium on Operating Systems

Principles (SOSP ’01), pages 73–88, Banff, Canada, October 2001.

[39] Hsiao-keng Jerry Chu. Zero-copy tcp in solaris. InProceedings of the 1996 USENIX Annual Tech-

nical Conference, San Diego, CA, 1996.

[40] Jonathan Corbet. Improving ext4: bigalloc, inline data, and metadata checksums.http://lwn.

net/Articles/469805/ , November 2011.

[41] csync. csync.http://www.csync.org/ .

[42] Nurit Dor, Michael Rodeh, and Mooly Sagiv. CSSV: towards a realistic tool for statically detecting

all buffer overflows in C. InProceedings of the 2003 ACM SIGPLAN Conference on Programming

Language Design and Implementation (PLDI ’03), San Diego, California, June 2003.

[43] Idilio Drago, Marco Mellia, Maurizio M. Munafò, Anna Sperotto, Ramin Sadre, and Aiko Pras.

Inside Dropbox: Understanding Personal Cloud Storage Services. InProceedings of the 2012 ACM

conference on Internet measurement conference (IMC ’12), Boston, MA, November 2012.

[44] Dropbox. The dropbox tour.https://www.dropbox.com/tour .

[45] Jon G. Elerath and Michael Pecht. Enhanced reliabilitymodeling of raid storage systems. InPro-

ceedings of the International Conference on Dependable Systems and Networks (DSN ’07), Edin-

burgh, UK, June 2007.

[46] EMC. An Integrated End-to-End Data Integrity Solutionto Protect Against Silent

Data Corruption. http://www.oracle.com/us/technologies/linux/

data-integrity-solution-1852762.pdf .

164

[47] Dawson Engler, David Yu Chen, Seth Hallem, Andy Chou, and Benjamin Chelf. Bugs as Deviant

Behavior: A General Approach to Inferring Errors in SystemsCode. InProceedings of the 18th ACM

Symposium on Operating Systems Principles (SOSP ’01), pages 57–72, Banff, Canada, October

2001.

[48] A. Eto, M. Hidaka, Y. Okuyama, K. Kimura, and M. Hosono. Impact of neutron flux on soft errors

in mos memories. InInternational Electron Devices Meeting 1998 (IEDM ’98), 1998.

[49] Amir G. Next3 snapshots design. Technical report, CTERA Networks, Ltd., July 2011.

[50] Gregory R. Ganger and Yale N. Patt. Metadata Update Performance in File Systems. InProceedings

of the 1st Symposium on Operating Systems Design and Implementation (OSDI ’94), pages 49–60,

Monterey, California, November 1994.

[51] Sanjay Ghemawat, Howard Gobioff, and Shun-Tak Leung. The Google File System. InProceedings

of the 19th ACM Symposium on Operating Systems Principles (SOSP ’03), pages 29–43, Bolton

Landing, New York, October 2003.

[52] GIT. Git. http://git-scm.com .

[53] Google. Google drive.http://www.google.com/drive/about.html .

[54] David Greaves, Junio Hamano, et al. git-read-tree(1):- linux man page.http://linux.die.

net/man/1/git-read-tree .

[55] Roedy Green. EIDE Controller Flaws Version 24.http://mindprod.com/jgloss/

eideflaw.html .

[56] Weining Gu, Z. Kalbarczyk, Ravishankar K. Iyer, and Zhenyu Yang. Characterization of Linux

Kernel Behavior Under Errors. InProceedings of the International Conference on Dependable

Systems and Networks (DSN ’03), pages 459–468, San Francisco, California, June 2003.

[57] Haryadi S. Gunawi, Abhishek Rajimwale, Andrea C. Arpaci-Dusseau, and Remzi H. Arpaci-

Dusseau. SQCK: A Declarative File System Checker. InProceedings of the 8th Symposium on

Operating Systems Design and Implementation (OSDI ’08), San Diego, California, December 2008.

[58] Seth Hallem, Benjamin Chelf, Yichen Xie, and Dawson Engler. A system and lang-uage for build-

ing system-specific, static analyses. InProceedings of the 2003 ACM SIGPLAN Conference on

Programming Language Design and Implementation (PLDI ’03), San Diego, California, June 2003.

165

[59] James Hamilton. Successfully Challenging the Server Tax. http://perspectives.

mvdirona.com/2009/09/03/SuccessfullyChallengingTheS erverTax.aspx .

[60] Tyler Harter, Chris Dragga, Michael Vaughn, Andrea C. Arpaci-Dusseau, and Remzi H. Arpaci-

Dusseau. A File is Not a File: Understanding the I/O Behaviorof Apple Desktop Applications.

In Proceedings of the 24th ACM Symposium on Operating Systems Principles (SOSP ’11), pages

71–83, Cascais, Portugal.

[61] Reed Hastings and Bob Joyce. Purify: Fast detection of memory leaks and access errors. InPro-

ceedings of the USENIX Winter Technical Conference (USENIXWinter ’92), San Francisco, CA,

1992.

[62] Dave Hitz, James Lau, and Michael Malcolm. File System Design for an NFS File Server Appliance.

In Proceedings of the USENIX Winter Technical Conference (USENIX Winter ’94), San Francisco,

California, January 1994.

[63] Andy A. Hwang, Ioan A. Stefanovici, and Bianca Schroeder. Cosmic rays don’t strike twice: un-

derstanding the nature of dram errors and the implications for system design. InProceedings of the

16th International Conference on Architectural Support for Programming Languages and Operating

Systems (ASPLOS XVI), London, UK, March 2012.

[64] Dell T. J. A white paper on the benefits of chipkill- correct ecc for pc server main memory.IBM

Microelectronics Division, 1997.

[65] Minwen Ji, Alistair C Veitch, and John Wilkes. Seneca: remote mirroring done write. InProceedings

of the USENIX Annual Technical Conference (USENIX ’03), San Antonio, Texas, June 2003.

[66] Wei-lun Kao, Ravishankar K. Iyer, and Dong Tang. FINE: AFault Injection and Monitoring Envi-

ronment for Tracing the UNIX System Behavior Under Faults. In IEEE Transactions on Software

Engineering, pages 1105–1118, 1993.

[67] Osama Khan, Randal Burns, James Plank, William Pierce,and Cheng Huang. Rethinking erasure

codes for cloud file systems: minimizing i/o for recovery anddegraded reads. InProceedings of

the 10th USENIX Symposium on File and Storage Technologies (FAST ’12), San Jose, California,

February 2012.

[68] J.J. Kistler and M. Satyanarayanan. Disconnected Operation in the Coda File System.ACM Trans-

actions on Computer Systems, 10(1), February 1992.

166

[69] Andrew Krioukov, Lakshmi N. Bairavasundaram, Garth R.Goodson, Kiran Srinivasan, Randy The-

len, Andrea C. Arpaci-Dusseau, and Remzi H. Arpaci-Dusseau. Parity Lost and Parity Regained.

In Proceedings of the 6th USENIX Symposium on File and Storage Technologies (FAST ’08), pages

127–141, San Jose, California, February 2008.

[70] Swetha Krishnan, Giridhar Ravipati, Andrea C. Arpaci-Dusseau, Remzi H. Arpaci-Dusseau, and

Barton P. Miller. The Effects of Metadata Corruption on NFS.In Proceedings of the 3rd International

Workshop on Storage Security and Survivability (StorageSS’07), Alexandria, Virginia, October 2007.

[71] Xin Li, Michael C. Huang, Kai Shen, and Lingkun Chu. A realistic evaluation of memory hard-

ware errors and software system susceptibility. InProceedings of the USENIX Annual Technical

Conference (USENIX ’10), Boston, Massachusetts, June 2010.

[72] Xin Li, Kai Shen, Michael C. Huang, and Lingkun Chu. A memory soft error measurement on

production systems. InProceedings of the USENIX Annual Technical Conference (USENIX ’07),

Santa Clara, CA, June 2007.

[73] Avantika Mathur, Mingming Cao, Suparna Bhattacharya,Andreas Dilger, Alex Tomas, Laurent

Vivier, and Bull S.A.S. The New Ext4 Filesystem: Current Status and Future Plans. InOttawa

Linux Symposium (OLS ’07), Ottawa, Canada, July 2007.

[74] Theresa C. Maxino and Philip J. Koopman. The effectiveness of checksums for embedded control

networks.IEEE Trans. Dependable Secur. Comput., 6(1):59–72, January 2009.

[75] T. C. May and M. H. Woods. Alpha-particle-induced soft errors in dynamic memories.IEEE Trans.

on Electron Dev, 26(1), 1979.

[76] Marshall Kirk McKusick, Willian N. Joy, Samuel J. Leffler, and Robert S. Fabry. Fsck - The UNIX

File System Check Program. Unix System Manager’s Manual - 4.3 BSD Virtual VAX-11 Version,

April 1986.

[77] Nimrod Megiddo and Dharmendra Modha. Arc: A self-tuning, low overhead replacement cache.

In Proceedings of the 2nd USENIX Symposium on File and Storage Technologies (FAST ’03), San

Francisco, California, April 2003.

[78] Ralph C. Merkle. A digital signature based on a conventional encryption function. InA Conference

on the Theory and Applications of Cryptographic Techniqueson Advances in Cryptology (CRYPTO

’87), 1987.

167

[79] Microsoft. How ntfs works. http://technet.microsoft.com/en-us/library/

cc781134(v=ws.10).aspx , March 2003.

[80] Dejan Milojicic, Alan Messer, James Shau, Guangrui Fu,and Alberto Munoz. Increasing relevance

of memory hardware errors: a case for recoverable programming models. InProceedings of the 9th

Workshop on ACM SIGOPS European Workshop, 2000.

[81] Bill Moore. Ditto Blocks - The Amazing Tape Repellent.http://blogs.sun.com/bill/

entry/ditto_blocks_the_amazing_tape .

[82] Nathan Rutman. Improvements in Lustre Data Integrity.http://legacy.xyratex.com/

pdfs/lustre/Improvements_in_Lustre_Data_Integrity.p df .

[83] Eugene Normand. Single event upset at ground level.Nuclear Science, IEEE Transactions on,

43(6):2742–2750, 1996.

[84] T. J. O’Gorman, J. M. Ross, A. H. Taber, J. F. Ziegler, H. P. Muhlfeld, C. J. Montrose, H. W. Curtis,

and J. L. Walsh. Field testing for cosmic ray soft errors in semiconductor memories.IBM Journal

of Research and Development, 40(1):41–50, 1996.

[85] Michael A. Olson, Keith Bostic, and Margo Seltzer. Berkeley db. InProceedings of the USENIX

Annual Technical Conference (USENIX ’99), Monterey, California, June 1999.

[86] David Patterson, Garth Gibson, and Randy Katz. A Case for Redundant Arrays of Inexpensive

Disks (RAID). InProceedings of the 1988 ACM SIGMOD Conference on the Management of Data

(SIGMOD ’88), pages 109–116, Chicago, Illinois, June 1988.

[87] Martin K. Petersen. Linux Data Integrity Extensions. In Linux Symposium, 2008.

[88] Zachary Peterson and Randal Burns. Ext3cow: a time-shifting file system for regulatory compliance.

Trans. Storage, 1(2):190–212, 2005.

[89] Vijayan Prabhakaran, Lakshmi N. Bairavasundaram, Nitin Agrawal, Haryadi S. Gunawi, Andrea C.

Arpaci-Dusseau, and Remzi H. Arpaci-Dusseau. IRON File Systems. InProceedings of the 20th

ACM Symposium on Operating Systems Principles (SOSP ’05), pages 206–220, Brighton, United

Kingdom, October 2005.

168

[90] Feng Qin, Shan Lu, and Yuanyuan Zhou. Safemem: Exploiting ecc-memory for detecting memory

leaks and memory corruption during production runs. InIn Proceedings of the 11th International

Symposium on High-Performance Computer Architecture (HPCA 05’), 2005.

[91] Ohad Rodeh, Josef Bacik, and Chris Mason. BTRFS: The Linux B-Tree Filesystem.ACM Transac-

tions on Storage (TOS), 9(3):9:1–9:32, August 2013.

[92] E. Rozier, W. Belluomini, V. Deenadhayalan, J. Hafner,K.K. Rao, and P. Zhou. Evaluating the

impact of undetected disk errors in raid systems. InProceedings of the International Conference on

Dependable Systems and Networks (DSN ’09), Lisbon, Portugal, June 2009.

[93] rsync. rsync.http://www.samba.org/rsync/ .

[94] Jerome H. Saltzer, David P. Reed, and David D. Clark. End-to-end arguments in system design.

ACM Transactions on Computer Systems, 2(4):277–288, November 1984.

[95] Russel Sandberg. The Design and Implementation of the Sun Network File System. InProceedings

of the 1985 USENIX Summer Technical Conference, pages 119–130, Berkeley, CA, June 1985.

[96] Bianca Schroeder, Sotirios Damouras, and Phillipa Gill. Understanding latent sector errors and

how to protect against them. InProceedings of the 8th USENIX Symposium on File and Storage

Technologies (FAST ’10), San Jose, California, February 2010.

[97] Bianca Schroeder, Eduardo Pinheiro, and Wolf-Dietrich Weber. DRAM errors in the wild: a large-

scale field study. InProceedings of the 2009 Joint International Conference on Measurement and

Modeling of Computer Systems (SIGMETRICS/Performance ’09), Seattle, Washington, June 2009.

[98] Thomas J.E. Schwarz, Qin Xin, Ethan L. Miller, Darrell D.E. Long, Andy Hospodor, and Spencer

Ng. Disk Scrubbing in Large Archival Storage Systems. InProceedings of the 12th Annual Meet-

ing of the IEEE International Symposium on Modeling, Analysis, and Simulation of Computer and

Telecommunication Systems (MASCOTS), Volendam, Netherlands, October 2004.

[99] Seafile. Seafile.http://seafile.com/en/home/ .

[100] Tezzaron Semiconductor. Soft errors in electronic memory - a white paper. 2004.

[101] D.P. Siewiorek, J.J. Hudak, B.H. Suh, and Z.Z. Segal. Development of a Benchmark to Measure Sys-

tem Robustness. InProceedings of the 23rd International Symposium on Fault-Tolerant Computing

(FTCS-23), Toulouse, France, June 1993.

169

[102] SNIA Technical Proposal. Architectural Model for Data Integrity.http://snia.org/sites/

default/files/Data_Integrity_Architectural_Model_v1 .0.pdf .

[103] sparkleshare. Sparkleshare.http://sparkleshare.org .

[104] Christopher A. Stein, John H. Howard, and Margo I. Seltzer. Unifying File System Protection.

In Proceedings of the USENIX Annual Technical Conference (USENIX ’01), pages 79–90, Boston,

Massachusetts, June 2001.

[105] Sriram Subramanian, Yupu Zhang, Rajiv Vaidyanathan,Haryadi S. Gunawi, Andrea C. Arpaci-

Dusseau, Remzi H. Arpaci-Dusseau, and Jeffrey F. Naughton.Impact of Disk Corruption on Open-

Source DBMS. InProceedings of the 26th International Conference on Data Engineering (ICDE

’10), Long Beach, California, March 2010.

[106] M. Sullivan and R. Chillarege. Software defects and their impact on system availability-a study of

field failures in operating systems. InProceedings of the 21st International Symposium on Fault-

Tolerant Computing (FTCS-21), Montreal, Canada, June 1991.

[107] Sun Microsystems. Solaris Internals: FileBench.http://www.solarisinternals.com/

wiki/index.php/FileBench .

[108] Sun Microsystems. ZFS On-Disk Specification.http://www.opensolaris.org/os/

community/zfs/docs/ondiskformat0822.pdf .

[109] Rajesh Sundaram. The Private Lives of Disk Drives.http://partners.netapp.com/go/

techontap/matl/sample/0206tot_resiliency.html .

[110] Adan Sweeney, Doug Doucette, Wei Hu, Curtis Anderson,Mike Nishimoto, and Geoff Peck. Scala-

bility in the XFS File System. InProceedings of the USENIX Annual Technical Conference (USENIX

’96), San Diego, California, January 1996.

[111] Michael M. Swift, Brian N. Bershad, and Henry M. Levy. Improving the Reliability of Commodity

Operating Systems. InProceedings of the 19th ACM Symposium on Operating Systems Principles

(SOSP ’03), Bolton Landing, New York, October 2003.

[112] T10 Technical Committee. SCSI Block Commands - 3.http://www.t10.org/members/w_

sbc3.htm .

170

[113] The Data Clinic. Hard Disk Failure. http://www.dataclinic.co.uk/

hard-disk-failures.htm .

[114] T. K. Tsai and R. K. Iyer. Measuring Fault Tolerance with the FTAPE Fault Injection Tool. In

The 8th International Conference On Modeling Techniques and Tools for Computer Performance

Evaluation, pages 26–40, September 1995.

[115] Patrick Tucker. Has big data made anonymity impossi-

ble? http://www.technologyreview.com/news/514351/

has-big-data-made-anonymity-impossible/ .

[116] Stephen C. Tweedie. Journaling the Linux ext2fs File System. InThe Fourth Annual Linux Expo,

Durham, North Carolina, May 1998.

[117] John Wehman and Peter den Haan. The Enhanced IDE/Fast-ATA FAQ. http://thef-nym.

sci.kun.nl/cgi-pieterh/atazip/atafq.html .

[118] Glenn Weinberg. The Solaris Dynamic File System.http://members.visi.net/

˜thedave/sun/DynFS.pdf .

[119] Zev Weiss, Tyler Harter, Andrea C. Arpaci-Dusseau, and Remzi H. Arpaci-Dusseau. ROOT: Re-

playing Multithreaded Traces with Resource-Oriented Ordering. In Proceedings of the 24th ACM

Symposium on Operating Systems Principles (SOSP ’13), Farmington, PA, November 2013.

[120] Andre Wenas. ZFS FAQ.http://blogs.sun.com/awenas/entry/zfs_faq .

[121] Wim Coekaerts. ASMLib.https://blogs.oracle.com/wim/entry/asmlib .

[122] Microsoft Windows. Skydrive.http://windows.microsoft.com/en-us/skydrive/

download .

[123] Wuala. Wuala.http://www.wuala.com/ .

[124] Yichen Xie, Andy Chou, and Dawson Engler. Archer: using symbolic, path-sensitive analysis to

detect memory access errors. InProceedings of the 11th ACM SIGSOFT International Symposium

on Foundations of Software Engineering (FSE ’03), Helsinki, Finland, September 2003.

[125] Junfeng Yang, Can Sar, and Dawson Engler. EXPLODE: A Lightweight, General System for Finding

Serious Storage System Errors. InProceedings of the 7th Symposium on Operating Systems Design

and Implementation (OSDI ’06), Seattle, Washington, November 2006.

171

[126] Junfeng Yang, Paul Twohey, Dawson Engler, and Madanlal Musuvathi. Using Model Checking to

Find Serious File System Errors. InProceedings of the 6th Symposium on Operating Systems Design

and Implementation (OSDI ’04), San Francisco, California, December 2004.

[127] Yupu Zhang, Chris Dragga, Andrea C. Arpaci-Dusseau, Remzi H. Arpaci-Dusseau. ViewBox: In-

tegrating Local File Systems with Cloud Storage Services. In Proceedings of the 12th USENIX

Symposium on File and Storage Technologies (FAST ’14), Santa Clara, California, February 2014.

[128] Erez Zadok, Ion Badulescu, and Alex Shender. Extending File Systems Using Stackable Templates.

In Proceedings of the USENIX Annual Technical Conference (USENIX ’99), Monterey, California,

June 1999.

[129] Yupu Zhang, Chris Dragga, Andrea C. Arpaci-Dusseau, and Remzi H. Arpaci-Dusseau. *-Box:

Towards Reliability and Consistency in Dropbox-like File Synchronization Services. InProceedings

of the 5th USENIX Workshop on Hot Topics in Storage and File Systems (HotStorage ’13), San Jose,

California, June 2013.

[130] Yupu Zhang, Daniel S. Myers, Andrea C. Arpaci-Dusseau, and Remzi H. Arpaci-Dusseau. Zettabyte

Reliability with Flexible End-to-end Data Integrity. InProceedings of the 29th IEEE Conference on

Massive Data Storage (MSST ’13), Long Beach, CA, May 2013.

[131] Yupu Zhang, Abhishek Rajimwale, Andrea C. Arpaci-Dusseau, and Remzi H. Arpaci-Dusseau. End-

to-end Data Integrity for File Systems: A ZFS Case Study. InProceedings of the 8th USENIX

Symposium on File and Storage Technologies (FAST ’10), San Jose, California, February 2010.

[132] Benjamin Zhu, Kai Li, and Hugo Patterson. Avoiding thedisk bottleneck in the data domain dedupli-

cation file system. InProceedings of the 6th USENIX Symposium on File and Storage Technologies

(FAST ’08), San Jose, California, February 2008.

[133] J. F. Ziegler and W. A. Lanford. Effect of Cosmic Rays onComputer Memories. Science,

206(4420):776–788, 1979.

