Cooperative Data Protection

by

Yupu Zhang

A dissertation submitted in partial fulfillment
of the requirements for the degree of

Doctor of Philosophy
(Computer Sciences)

at the
UNIVERSITY OF WISCONSIN-MADISON

2014

Date of final oral examination: 02/10/14

Committee in charge:
Andrea C. Arpaci-Dusseau, Professor, Computer Sciences
Remzi H. Arpaci-Dusseau, Professor, Computer Sciences
Shan Lu, Assistant Professor, Computer Sciences
Michael M. Swift, Associate Professor, Computer Sciences
Peter Z.G. Qian, Associate Professor, Statistics

To my parents

Acknowledgements

First and foremost, | would like to express my deep gratittaleny advisors, Andrea
Arpaci-Dusseau and Remzi Arpaci-Dusseau, who guided noeigivrmy Ph.D. studies.
There is an old saying in China: a teacher for a day is a fathea flifetime. | feel
extremely lucky and thankful to have both of them as my Pharénts”.

My initial interest in system research was born when | tooknRiss Advanced Op-
erating Systems class. When | just came here, operatingmgstas definitely not one
of my favorites. However, Remzi’s excellent teaching anejgdenowledge convinced me
that building systems is such a fun and challenging prodessl tcan definitely start a
Ph.D. journey in systems. My last concern for research,ivgipapers, was eased by
Andrea’s meticulous guidance. After reading a paper dsat,always provided me with
a lot of feedback, ranging from grammatical corrections ngaaizational suggestions,
which greatly improved the quality of my work. She taught mecal skills to convert a
complicated system written in C into a nice story with wordsl &igures, which | could
never have learned by myself in such a short time. ThroughmuPh.D. studies, not
only did they give me numerous pieces of advices on how to bamod gesearcher, they
also showed me how to be a better person. | am extremely thiaftkftheir patience
and support during my ups and downs. Without their encoumage, | would never have

completed this exceptional Ph.D. journey.

Next, | would like to thank my thesis-committee members,rSha, Peter Qian, and
Mike Swift, for their insights and suggestions for my restéarl would especially like to
thank Mike for his detailed comments and challenging qoestduring my preliminary
exam and defense, which greatly help me in improving andnfingsmy thesis.

| have benefited greatly from interning at NetApp. | wouldelito thank the com-
pany as well as my mentor, Kiran Srinivasan, and my manadpmi&r Pasupathy, for
providing a terrific internship experience.

| am fortunate to have had the opportunity to work with smandl &ardworking
colleagues: Chris Dragga, Daniel Myers, Abhishek Rajinewdlanyue Lu, Swami-
nathan Sundararaman, Sriram Subramaniam, Haryadi Guidanh Do, and Samer
Al-Kiswany. | also have enjoyed interacting with other stats: Nitin Agrawal, Ishani
Ahuja, Leo Arulraj, Vijay Chidambaram, Tyler Harter, Jun,Hesim Kadav, Ao Ma, Joe
Meehean, Sankaralingam Panneerselvam, Deepak RamanMiotiit Saxena, Laxman
Visampalli, Zev Weiss, Suli Yang, Wei Zhang, and Yiying Zgan

| am lucky to have so many friends at Madison. To name a few: r{H€&hung,
Guoliang Jin, Ji Liu, Jie Liu, Lanyue Lu, Ao Ma, Linhai Songh@hg Sun, Chong Sun,
Wenfei Wu, Wentao Wu, Wei Zhang, and Yiying Zhang. | woulcelido especially thank
my roommates, Guoliang Jin and Jie Liu, for accompanying oménd these years. |
also would also like to thank Yiying Zhang for being a wondé&nd helping officemate.
Of course, | am also grateful for the support from other tewho are not at Madison:
Shaochen Huang, Qiang Li, Kun Qian, and Yuxiang Zheng.

Finally, | would like to thank my family back in China, espalty my parents, for their
unconditional love and support. When | am struggling with magearch and sometimes
with my life, they have always been supportive and encoagagiWhen | have even the
smallest success, they are so happy that they almost warybeeein the world to know

about it. Thank you, Baba and Mama, | dedicate this dissernt&b you!

Abstract

COOPERATIVE DATA PROTECTION
Yupu Zhang

Storage systems employ various techniques to protect agerftbm hardware failures
and software defects. These techniques, while effectittedin own domains, fail to pro-
vide comprehensive protection. In this dissertation, venidy the problem ofsolated
protectionin both local storage systems and cloud storage servicdQraposecooper-
ative data protectiono address this problem.

In the first half of this dissertation (on local storage syst® we present a study of
the effects of disk and memory corruption on ZFS, a modernmgerial file system with
numerous reliability mechanisms. Through careful anddabgh fault injection, we show
that ZFS is robust to a wide range of disk faults, but becatisgisolated integrity checks
that only cover on-disk data, it is less resilient to memarsgraption, which can lead to
corrupt data being returned to applications or system esash

To solve this problem, we introduce flexible end-to-end datkagrity, which enables
all components along the 1/O path (e.g., page cache, filesysto handle checksums
cooperatively. Each component is able to alter its pratacticheme to meet the perfor-
mance and reliability demands of the system. We apply thig cencept to ZFS and

build Zettabyte-Reliable ZFS ¢ES). ZFS provides dynamical tradeoffs between per-

\Y

formance and protection and offers Zettabyte Reliabilyich is at most one undetected
corruption per Zettabyte of data read. We develop an awalytramework to evalu-
ate reliability; the protection approaches ifF5 are built upon the foundations of the
framework. For comparison, we implement a straight-fod\&nd-to-End ZFS (EZFS)
with the same protection scheme for all components. Thraungitysis and experiment,
we show that ZFS is able to achieve better overall performance thiFs, while still
offering Zettabyte Reliability.

In the second half of this dissertation (on cloud storageises), we analyze how reli-
able cloud-based synchronization services are in the feloea corruption and crashes.
We perform fault injection experiments on several popwaickronization services and
local file systems, and find that despite the excellent riiaibhat the cloud back-end
provides, the loose coupling of these services and locadydtems makes synchronized
data more vulnerable than users might believe. Local ctiompnay be propagated to
the cloud, polluting all copies on other devices, and a caasintimely shutdown may
lead to inconsistency between a local file and its cloud cBpgn without these failures,
these services cannot provide causal consistency.

To solve this problem, we present ViewBox, an integrated&byonization service and
local file system that provides freedom from data corrupgind inconsistency. ViewBox
detects these problems using ext4-cksum, a modified veo$iext4, and recovers from
them using a user-level daemon, cloud helper, to fetch cbdata from the cloud. To
provide a stable basis for recovery, ViewBox employs thevviganager on top of ext4-
cksum. The view manager creates and exposes views, cansisteemory snapshots of
the file system, which the synchronization client then ugébo@®ur experiments show that
ViewBox detects and recovers from both corruption and is@iancy, while incurring

minimal overhead.

Vi

Contents

Acknowledgements ii
Abstract \Y

1 Introduction 1

1.1 Cooperative Data Protection in Local Storage 3
1.1.1 Data Protection Analysisof ZFS

1.1.2 Z2FS: Zettabyte Reliability with Flexible End-to-end Datadgrity 4

1.2 Cooperative Data Protection across Local and Clouda§¢or. 6

1.2.1 Data Protection Analysis of Cloud Storage Services 7

1.2.2 ViewBox: Integrating File Systems with Cloud Stor&pzvices . 8

1.3 Summary of Contributions/OQutline 9

2 Threats to Data Protection 11
2.1 DataCorruption
2.1.1 DiskCorruption
2.1.2 Memory Corruption
2.2 Datalnconsistency

2.3 SUMMArY e e e e e

3 Data Protection Analysis of Local File Systems

3.1 Background
3.1.1 ZFSOVerview
3.1.2 ZFS On-disk Organization
3.1.3 ZFSIn-memory Structures

3.2 On-disk DataIntegrityinZFS
3.21 Methodology
3.2.2 Resultsand Observations

3.3 In-memory Data IntegrityinZFS
3.3.1 Methodology
3.3.2 Resultsand Observations

3.4 Probability Analysis of Memory Corruption
3.41 Methodology
3.42 Calculation
343 Results

3.5 Summary e e

4 Z%FS: Cooperative Data Protection in Local Storage

4.1 Reliability of Storage Systems with Data Corruption

4.1.1 OVEeIVIEW o ot e
4.1.2 Models for Devices and Checksums
4.1.3 Calculatin@Psys_ude « « «+ v v e e e
414 Example:NCFS
4.2 FromZFStoOZFS
421 ZFS:theOriginalZFS

4.2.2 BZFS: ZFS with End-to-end Data Integrity

Vil

4.2.3 ZFS: ZFS with Flexible End-to-end Data Integrity
4.3 DISCUSSION
4.3.1 ChecksumChaining
4.3.2 Integration with Existing Applications
4.3.3 ErrorHandling
4.4 Evaluation
4.4.1 Reliability.
442 Overall Performance
4.4.3 Impact of Checksum Switching
444 TraceReplay e
4.5 SUMMAIY o e e e e

5 Data Protection Analysis of Cloud Storage Services

5.1 Background
5.1.1 Dropbox
512 Seafile.

5.2 DataProtectionFailures
5.2.1 DataCorruption
5.2.2 Crashlinconsistency
5.2.3 Causallnconsistency

5.3 DISCUSSION
5.3.1 Where Synchronization ServicesFail
5.3.2 Where Local File Systems Fail

54 Summary e e e e

6 ViewBox: Cooperative Data Protection across Local and Clad Storage

viii

6.1 Design e 112
6.1.1 Goals e 113
6.1.2 FaultDetection 114
6.1.3 View-based Synchronization 151
6.1.4 Cloud-aided Recovery 120

6.2 Implementation 121
6.2.1 Extd-cksum L 121
6.2.2 ViewManager e 124
6.2.3 CloudHelper 135

6.3 Evaluation 136
6.3.1 CloudHelper 136
6.3.2 Extd-cksum 137
6.3.3 ViewManager 139
6.3.4 ViewBox with Dropbox and Seafile 140

6.4 SUMMAIY e e e e 142

Related Work 144

7.1 Faultlnjection. e 14

7.2 Reliability Modeling 43

7.3 TechniquesforDatalIntegrity 146

7.4 Techniques for Data Consistency 148

Conclusion and Future Work 150

8.1 Summary e e e 151
8.1.1 Cooperative Data Protection in Local Storage 151
8.1.2 Cooperative Data Protection across Local and Clooc&e . . . 152

8.2 LessonslLearned 154

83 FutureWork 155
8.3.1 Characteristic Study of Data Corruption 156
8.3.2 Application-level Data Protection 157
8.3.3 Cooperative Data Protection in Networked StoragéeBys . . . 158

159

8.4 ClosingWords. e

Chapter 1

Introduction

People are generating tremendous amount of data everydagorBe estimates, there
were 2.8 Zettabytes of data created in 2012, and the amoulatafs expected to double
by 2015 [115]. Not only governments and corporations, bsb aégular persons have
contributed to this data explosion, by storing musics, pbovideos, and even email
messages. Regardless of where data is placed, in a persomplter, an enterprise
server, or the cloud, the underlying storage systems apomnsgble for preserving data
correctly for a long time.

Unfortunately, storage systems are built upon imperfeatware and software; hard-
ware errors, crash, and software bugs all can corrupt dat@ & ents in hard drives such
as dropped writes or misdirected writes leave stale or ppdata on disk [3, 23, 89, 92].
Bits in memory get flipped due to chip defects [63, 71, 97] aliation [75, 133]. Un-
timely crash, if not handled properly, can lead to incomsistiata in the file system [37,
129]. Software bugs are also a source of data corruptiosingrirom low-level device
drivers [111], system kernels [38, 47], and file systems [112Z%]. Even worse, design

flaws are not uncommon and can lead to serious data loss oiptiomn [69].

As storage systems have evolved over the years, designezsdeaeloped various
mechanisms to handle some of the aforementioned probleesd&s the built-in hard-
ware ECC in hard drives, many modern file systems supportleigi checksums to
detect corruption [29, 91, 104], and some of them even peowéglicas inside the file
system to facilitate recovery [29]. Underneath the file eystRAID is widely used to
provide redundancy for recovery [86]. Nowadays, backinglaga to the cloud is also an
appealing solution to preserve data [67]. In case of cragiower loss, file systems usu-
ally apply techniques such as journaling [116], soft upslgd®], or copy-on-write [62],
to provide metadata or data consistency.

However, these protection techniques, while effectivebtgcting data in their own
domains, fail to provide comprehensive data protectiontlier entire system. As one
example, many of the techniques are able to detect and nefrowe disk corruption, but
they cannot protect in-memory data [131]. As another exampbud storage services
usually protect its data using checksums and tend to stoltgielcopies, but if the local
file system exposes corrupt data, corruption may be propddatthe cloud, and thus
pollute all the replicas [129].

All these failures occur due tsolated protectionn storage systems, and we propose
cooperative data protectioto solve these problems. The goals of this dissertation are
two-fold: first, to examine the threats to data protectiomumnrent storage systems due
to isolated protection; second, to develop techniquesahable components in storage
systems to work cooperatively to provide comprehensiva gedtection.

We address the goals of this dissertation in two aspectstl kiorage systems and
cloud storage services. For local storage systems, we fiedyze the impact of disk
corruption and memory corruption on a modern file system,, A4r8 show that memory
corruption is largely ignored and poses great harm to déggiity [131]. Then, we build

Z%FS, which embraces a new protection scheme called flexilé@®end data integrity

and provides protection to both in-memory and on-disk dathowt sacrificing much
performance [130]. For cloud storage services, espeaiiiyd-based file synchroniza-
tion services, we first examine how disk corruption and systeashes could lead to the
propagation of bad data across all synchronized deviced.[Tzhen we develop View-
Box, an integrated file system and synchronization seniag provides data integrity,
crash consistency, and even causal consistency for badhdod cloud data [127]. The

following sections elaborate on each of these contribgtafrthe dissertation.

1.1 Cooperative Data Protection in Local Storage

One of the primary challenges faced by storage systems isoteqh data despite the
presence of imperfect components in the storage stackelfirgh part of the dissertation,
we focus on data protection in local storage systems. Spaityfiwe first use ZFS as an
example and show that its isolated integrity check does maépt data in memory. Then,
we propose and apply flexible end-to-end data integrity t& Zé achieve cooperative

data protection.

1.1.1 Data Protection Analysis of ZFS

File and storage systems have evolved various techniguesittie corruption. Different
types of checksums can be used to detect when corruptiomsoj@sy 29, 104, 109], and
redundancy, likely in mirrored or parity-based form [86ndbe applied to recover from
corruption. While such techniques are not foolproof [68k\t clearly have made file
systems more robust to disk corruption.

Unfortunately, the effects ahemory corruptioron data integrity have been largely

ignored in file system design. Hardware-based memory ctompccurs as both tran-

sientsoft errorsand repeatablkeard errorsdue to a variety of radiation mechanisms [27,
75, 133], and recent studies have confirmed their presemedern systems [72, 84, 97].
Software can also cause memory corruption; bugs can leadlil Writes” into random
memory contents [34], thus polluting memory; studies camtine presence of software-
induced memory corruptions in operating systems [2, 5, 24].1

To study how robust modern file systems are to disk and memamyation, we
analyze a state-of-the-art file system, ZFS [29], by perfoghault injection tests rep-
resentative of realistic disk and memory corruptions. Weosie ZFS for our analysis
because itis a modern and mature commercial file system witferous robustness fea-
tures, including end-to-end checksums, data replicaton, transactional updates; the
result, according to the designers, is “provable data mtigd29].

In our analysis, we find that ZFS is indeed robust to a wideeariglisk corruptions,
thus partially confirming that many of its design goals hagerbmet. However, we also
find that ZFS often fails to maintain data integrity in thedasf memory corruption. In
many cases, ZFS is either unable to detect the corruptiturnebad data to the user, or

simply crashes.

1.1.2 ZFS: Zettabyte Reliability with Flexible End-to-end Data In-
tegrity

A more comprehensive approach to data protection shouldaaalhe “end to end” phi-
losophy [94]. In this approach, checksums are generated lapplication and percolate
through the entire storage system. When reading data, fieaion can check whether
the calculated checksum matches the stored checksumptipugving data integrity.
Unfortunately, the straight-forward end-to-end apprdaaf two drawbacks. The first

is performancedepending on the cost of checksum calculation, perforeaaa suffer

when repeatedly accessing data from the in-memory page catle second ismeliness
if a data block is corrupted in memory before being flushedisé,dhe corruption can
only be detected when it is later read by an application, vtgdikely too late to recover
from the corruption.

To address these issues, we propose a concept tahdre end-to-end data integrity
We argue that it is not necessary for all components on thepdth to use the same
checksum. By carefully choosing a different checksum fehesomponent (and perhaps
altering said checksum over time), the system can delivitetperformance while still
maintaining a high level of protection. By enabling all camnpnts to handle checksums
cooperatively, the system can detect and recover from gtoruin time.

To explore this flexible approach, we design and implemenritfle end-to-end data
integrity within ZFS, resulting in a new variant which we IcZkttabyte-reliable ZFS
(Z?FS). ZFS exposes checksums to the application, and passes checkswugh the
page cache down to the disk system, thus enabling end-taaifitation. ZFS uses
two techniques to provide flexible data protection. The fgshecksum chainingvhich
carefully orders the generation of new checksum and thdicagion of old checksum
such that there is no vulnerability window for data when @sses domains (e.g., when
moving from a stronger on-disk checksum to a weaker but merpnant in-memory
one). The second ishecksum switchingvhich enables a component (e.g., memory) to
switch the checksum it is using dynamically, thus preseyaimigh level of reliability for
blocks that remain resident for extended periods of time cbmparison, we also develop
End-to-End ZFS (EZFS), which embraces the straight-forward end-to-endagtian and
uses only one type of checksum for both the page cache and disk

Underlying ZFS is an analytical framework that enables us to underseliability
of storage systems against data corruption. The framevadistmodels of devices and

checksums used in a storage system as input, and calcuiatesobability of undetected

data corruption when reading a data block from the systemra$iadility metric. We
defineZettabyte Reliabilityone undetected corruption per Zettabyte read, as a filabi
goal of storage systems. Guided by the reliability goal, s tlhe framework to provide
rationale behind flexible end-to-end data integrity.

Through fault injection experiments, we show th3E3 is able to detect and recover
from corruption that occurs to a block in memory before itisHed to disk in the write
path. Using both controlled benchmarks as well as realdioaces, we demonstrate that
Z°FS is able to meet or exceed the performance’@HsS while still providing Zettabyte
reliability. Especially for workloads dominated by warnads, ZFS ourperforms EZFS
by up to 17%.

1.2 Cooperative Data Protection across Local and Cloud

Storage

With the emergence of cloud storage, especially in the fdrolaud-based file synchro-
nization services, local file systems are now connectecktolthud, and user data becomes
synchronized and replicated on multiple devices. Thesecgarare great additions to lo-
cal file systems and provide better protection for user datithe loose coupling of these
services and the file systems actually puts data in dangearious ways. In the sec-
ond part of the dissertation, we focus on new challenges ti pi@tection across local
and cloud storage. We first conduct an analysis of variousyirgehronization services
and show how they propagate corrupt and inconsistent dakeetcloud. Then, we build
ViewBox, an integrated synchronization service and fildesysin which the underlying
file system works cooperatively with the file synchronizatsgrvice to provide compre-

hensive data protection.

1.2.1 Data Protection Analysis of Cloud Storage Services

File synchronization services occupy a unique design pgaetween distributed file sys-
tems, like NFS [95] or Coda [68], and file backup services hMozy [8] or Data Do-
main [132]. Like the former, file synchronization servicesypde a means for users to
access their files on any machine connected to the servike.the latter, however, file
synchronization services propagate local changes asymously, and often provide a
means to restore previous versions of files. Furthermoeg,dhe only loosely integrated
with the file system, allowing them to be portable across awahge of devices.

While the automatic propagation of files as they are modiBatbidoubt key to these
services’ success, the perceived reliability and consistehey provide is also instru-
mental to their appeal. The Dropbox tour goes as far as te shatt “none of your
stuff will ever be lost” [44]. Unfortunately, the loose cding of cloud synchroniza-
tion services with the underlying file system gives the lighis claim. While the data
stored remotely is generally robust, local client softwianenable to distinguish between
deliberate modifications and unintentional errors, padigtcausing corruption to auto-
matically propagate to all machines associated with a Users, despite the presence of
multiple redundant copies, synchronization destroys Hes'sidata.

To understand this “false sense of security”, we perfornit fajections experiments
on several popular cloud-based synchronization servivés.first examine how these
services can silently propagate data corruption to alllssordzed devices, and then show
how these services cannot guarantee data consistencyhwitimtlerlying file system after
a crash. Furthermore, we show that a stronger level of ins@my, causal inconsistency,

may occur and thus cause even more harm to both local and daiad

1.2.2 ViewBox: Integrating File Systems with Cloud Storag&ervices

The analysis reveals that the root cause of data protedibmds is the loose coupling
of synchronization services and local file systems, and takg equal responsibilities
for these failures. Therefore, we develop ViewBox, a systeat integrates local file
system and cloud-based synchronization services to prdsédter data integrity, crash
consistency, and recoverability.

ViewBox synchronizes data between the local machine andlthel throughviews
in-memory snapshots of the local synchronized folder. ewrelies on three primary
components to guarantee the correctness of views: extdgkthe view manager, and
the cloud helper. Ext4-cksum serves as the local file systemch is able to detect
corrupt and inconsistent data through data checksummingp &xt4-cksum, we place
the view manager, a file system extension that creates viad/®®goses views to the
synchronization client. The view manager provides coasist througtcloud journaling
by creating views at file-system epochs and uploading viewise cloud. To reduce the
overhead of maintaining views, the view manager empiogseemental snapshottingy
keeping only deltas (changed data) in memory since the lagt vFinally, in case of
corruption or crash, ViewBox uses an independent useresgaemon, the cloud helper,
to interact with the server-backend and utilize the viewthercloud to restore the system
to a correct state.

We build ViewBox with two file synchronization services: [ptwox [44], one of the
most popular synchronization services to date, and Se8@#flle 4n open source synchro-
nization service based on GIT [52]. Through reliability ekments, we demonstrate that
ViewBox detects and recovers from local data corruptions fpreventing the corruption’s
propagation. We also show that upon a crash, ViewBox suftdbssolls back the local

file system state to a previously uploaded view, restoririg & causally consistent im-

age. By comparing ViewBox to Dropbox or Seafile running atopnadified ext4, we
find that ViewBox incurs less than 5% overhead across a sevdfi@ads. In some cases,

ViewBox even improves the synchronization time by 30%.

1.3 Summary of Contributions / Outline

Below is a summary of the contributions of the dissertatahjch also serves as an

outline for the rest of the dissertation:

e Threats to Data Protection: Chapter 2 provides background on various threats to
data protection in existing storage systems: disk coromptimnemory corruption,

and crashes.

e Cooperative Data Protection in Local Storage:In Chapter 3, we present an em-
pirical analysis of the reliability of ZFS in the face of diskhkd memory corrup-
tion. Then, in Chapter 4, we propose the concept of flexibtterend data in-
tegrity, introduce an analytical framework to provide th&onale behind the con-
cept, and implement?£S, which provides comprehensive data protection (from
both disk and memory corruption). The concept, framewonkl, chniques used
in implementing 2FS, all together demonstrate a holistic way to think aboat th
performance-reliability tradeoff in storage systems,ahhis the first major contri-

bution of the dissertation.

e Cooperative Data Protection across Local and Cloud StorageChapter 5 presents
an analysis of data protection failures (focusing on diskugation and crash) when
file synchronization services are running on top of currdatdystems. Chapter 6

describes our solution to the found problems, ViewBox, aagrated file system

10

and synchronization services that synchronizes data basdille-system views.
Both the analysis and the solution serve as the second majirilution of this

dissertation.

Related Work: Chapter 7 summarizes previous research efforts on protedtita

in storage systems.

Conclusion and Future Work: Chapter 8 concludes this dissertation, first summa-
rizing our work and highlighting the lessons learned, arehttiscussing various

avenues for future work that arise from our research.

11

Chapter 2

Threats to Data Protection

This chapter provides the motivation for the dissertatigndbscribing various threats
to data protection in storage systems. Specifically, we damu two types of threats,
data corruption and data inconsistency. Data corrupti@urscmostly due to hardware
failures and software bugs, and we describe why it happens,flequently it occurs,

and how systems try to deal with it in Section 2.1. Data in&ieacy, on the other hand,
usually results from the file system’s improper handlingmigian untimely system crash
or reboot. We discuss how file systems provide consistendydny data consistency is

not always guaranteed in Section 2.2.

2.1 Data Corruption

We now discuss data corruption in detail. Although it canup@t any place in a storage
system, we only focus on corruption on disk and in memoryabse both are the major

media for long-term data storage and accesses.

12

2.1.1 Disk Corruption

We define disk corruption as a state when any data accessedlis& does not have the
expected contents due to some problem in the storage stagkisTdifferent from latent
sector errors, not-ready-condition errors and recoverem<[22] in disk drives, where

there is an explicit notification from the drive about theoecondition.

Why It Happens

Disk corruption happens due to many reasons originatingfateht layers of the storage
stack. Errors in the magnetic media lead to the problem dfrddi’ where the magnetic
properties of a single bit or few bits are damaged. Spikesimgp, erratic arm move-
ments, and scratches in media can also cause corruptiorsknbtbcks [19, 98, 113].
On-disk ECC catches many (but not all) of these corruption.

Errors are also induced due to bugs in complex drive firmwaadern drives contain
hundreds of thousands of lines of firmware code [89]). Sorperted firmware problems
include a misdirected write where the firmware accidentaltites to the wrong loca-
tion [118] or a lost write (or phantom write) where the diskoets a write as completed
when in fact it never reaches the disk [109]. Bus controlleage also been found to
incorrectly report disk requests as complete or to corrapd ¢65, 117].

Finally, software bugs in operating systems are also piadesdurces of corruption.
Buggy device drivers can issue disk requests with bad pdeaser data [38, 47, 111].

Software bugs in the file system itself can cause incorrdet twebe written to disk.

How Frequently It happens

Disk corruption are prevalent across a broad range of modeves. There is much

anecdotal evidence of corruption in hard disks [25, 109].1188008, in a study of 1.53

13

million disk drives over 41 months [23], Bairavasundaranalet show that more than
400,000 blocks had checksum mismatches, 8% of which wecewised during RAID

reconstruction, creating the possibility of real data lo$sey also found that nearline
disks develop checksum mismatches an order of magnitude oftan than enterprise

class disk drives.

How to Handle It

Systems use a number of techniques to handle disk corruptiendiscuss some of the
most widely used techniques along with their limitations.

Checksums Checksums are small pieces of data computed over datasblatika spe-
cific function and are used to verify data integrity. For askddata integrity, checksums
are stored or updated on disk during write operations ardilvaek to verify the block or
sector contents during reads.

Many storage systems have used checksums for on-disk degaity, such as Tandem
NonStop [25] and NetApp Data ONTAP [109]. Similar checksumgrtechniques have
also been used in file systems [29, 91].

However, Krioukov et al. show that checksumming, if not éalhg integrated into
the storage system, can fail to protect against complenrésl such as lost writes and
misdirected writes [69]. Further, checksumming does notgmt against corruption that
happens due to bugs in software, typically in large codedgas 125].

Redundancy. Redundancy in on-disk structures also helps to detectiarshme cases,
recover from disk corruption. For example, some B-Tree filstams such as Reis-
erFS [30] store page-level information in each internalgpaghe B-Tree. Thus, a corrupt
pointer that does not connect pages in adjacent levels ghtay checking this page-level

information. Similarly, ext2 [32] and ext3 [116] use redand copies of superblock and

14

group descriptors to recover from corruption.

However, it has been shown that many of these file systemsatiietimes fail to
detect corruption, leading to greater problems [89]. FrertGunawi et al. show instances
where ext2/ext3 file system checkers fail to use availaldendant information for re-
covery [57].

RAID : Another popular technique is to use a RAID storage systéhyBderneath the
file system. However, RAID is designed to tolerate the losa oértain number of disks
or blocks (e.g., RAID-5 tolerates one, and RAID-6 two) anchéty not be possible with
RAID alone to accurately identify the block (in a stripe)tttecorrupted. Secondly, some
RAID systems have been shown to have flaws where a single ldeshkeads to data loss
or silent corruption [69]. Finally, not all systems incorpte multiple disks, which limits
the applicability of RAID.

2.1.2 Memory Corruption

We define memory corruption as the state when the contenessed from the main
memory have one or more bits changed from the expected Viaura & previous store
to the location). From the software perspective, it may refpbssible to distinguish

memory corruption from disk corruption on a read of a diskcklo

Why It Happens

Errors in the memory chip are one source of memory corruptidiemory errors can
be classified asoft errorswhich randomly flip bits in RAM without leaving any perma-
nent damage, angiard errorswhich corrupt bits in a repeatable manner due to physical
damage.

Researchers have discovered radiation mechanisms tls& eaors in semiconductor

15

devices at terrestrial altitudes. Nearly three decadesMgy and Woods found that if
an alpha particle penetrates the die surface, it can caumedam, single-bit error [75].
Zeigler and Lanford found that cosmic rays can also disrigxtteonic circuits [133].
More recent studies and measurements confirm the effeanoisgtheric neutrons causing
single event upsets (SEU) in memories [83, 84].

Memory corruption can also happen due to software bugs. Bkeotiunsafe lan-
guages like C and C++ makes software vulnerable to bugs suiclargling pointers,
buffer overflows and heap corruption [28], which can resukeéemingly random mem-

ory corruption.

How Frequently It Happens

Early studies and measurements on memory errors provideerae of soft errors. Data
collected from a vast storehouse of data at IBM over a 15-pedaod [84] confirmed
the presence of errors in RAM and that the upset rates inere#ls elevation, indicating
atmospheric neutrons as the likely cause.

In 2009, a measurement-based study of memory errors in a fi@gt of commodity
servers over a period of 2.5 years [97], Schroeder et al.rob$2RAM error rates that
are orders of magnitude higher than previously reporteth 26,000 to 70,000 FIT per
Mbit (1 FIT equals 1 failure in 10device hours). They also find that more than 8% of the
DIMMs they examined (from multiple vendors, with varyingoeaities and technologies)
were affected by bit errors each year. Finally, they alsovide strong evidence that
memory errors are dominated by hard errors, rather thareswits.

Another study [72] of production systems including 300 maek for a multi-month
period found 2 cases of suspected soft errors and 9 casesdéhars suggesting the

commonness of hard memory faults.

16

Besides hardware errors, software bugs that lead to menwryption are widely
extant. Reports from the Linux Kernel Bugzilla Database [3$CERT Vulnerabilities
Notes Database [14], CERT/CC advisories [2], as well asra@hecdotal evidence [34]

show cases of memory corruption happening due to softways. bu

How to Handle It

Systems use both hardware and software techniques to lraadiery corruption. Below,
we discuss the most relevant hardware and software teatmiqu
ECC: Traditionally, memory systems have employed Error CdimadcCodes [35] to cor-
rect memory errors. Unfortunately, ECC is unable to addedissoft-error problems.
Studies found that the most commonly-used ECC algorithitesctBEC/DED (Single Er-
ror Correct/Double Error Detect) can recover from only 94%e errors in DRAMs [48].
Further, many consumer systems do not use ECC protectianén to reduce cost [59].

More sophisticated techniques like Chipkill [64] have bgeoposed to withstand
multi-bit failure in DRAMs. However, such techniques aregersive and have been
restricted to proprietary server systems, leaving thelprolmf memory corruption open
in commodity systems.
Programming models and tools Another approach to deal with memory errors is to use
recoverable programming models [80] at different levetsifvare, operating system, and
applications). However, such techniques require suppart hardware to detect memory
corruption. Further, a holistic change in software is reggito provide recovery solution
at various levels.

Much effort has also gone into detecting software bugs thase memory corrup-
tion. Tools such as metal [58] and CSSV [42] apply static gsialto detect memory
corruption. Others such as Purify [61] and SafeMem [90] yseachic monitoring to de-

17

tect memory corruption at runtime. However, as discussedigusly, software-induced

memory corruption still remains a problem.

2.2 Data Inconsistency

The problem of data inconsistency usually occurs due to yistesn failing to provide
strong consistency guarantee upon a crash. File systemsaimaivarious metadata struc-
tures to organize data. Performing a single file system tiperasuch as write(), usually
involves changes to several metadata structures. For égaampending a block to a file
in ext3 requires at least three blocks to be written to dis#tata bitmap block, an inode
block, and the data block. In order to correctly apply suchperation to the on-disk file
system image, all these blocks must be written to disk as dewlhtowever, when crash
occurs, it is possible that some of the changes do not maketisk. For instance, if the
data block is not written, the file would point to garbage de¢aulting indata inconsis-
tency If the data bitmap block is not written, the actual statuthefdata block (used by
the inode) does not match the bitmap (free), which leadsdtadata inconsistency

File system developers have been using several technigaeksitess the consistency
problem. One simple approach is to let the inconsistencyroaed then use a tool, usu-
ally called file system checker (fsck) [76], to fix the incatency. This approach can fix
metadata inconsistency in most cases, but it cannot, fanpbe detect the data incon-
sistency case mentioned above. Therefore, many file systaumesbuilt-in mechanism
to prevent inconsistency in runtime, and the most commdmiigcie is journaling. Jour-
naling, or write-ahead logging, provides consistency lyuging multiple updates into
transactions, which are first written to a circular log anerthater checkpointed to their
fixed location in the file system. Journaling is quite popus&reing use in ext3 [116],
ext4 [73], XFS [110], HFS+ [21], and NTFS [79]. Recording@dita and metadata in the

18

log can provide data consistency, but doing so doubles a#waffic in the system. Thus,
normally, these file systems only journal metadata, whichlead to inconsistencies in
file data upon recovery, even if the file system carefully sds data and metadata writes
(as in ext4’s ordered mode, for instance).

Data inconsistency can be avoided entirely using copy-otewbut it is an infre-
guently used solution. Copy-on-write never overwritesadat metadata in place; thus,
if a crash occurs mid-update, the original state will stdis¢ on disk, providing a con-
sistent point for recovery. Implementing copy-on-writgdlves substantial complexity,
however, and only recent file-systems, like ZFS [29] andsl§er1], support it for personal

use.

2.3 Summary

Modern storage systems are facing great challenges ingbiregedata. Disk errors, mem-
ory bit flips, and software bugs can all corrupt data. The daation of untimely crash

and imperfect crash handling of file system may lead to dat@nisistency. We have pre-
sented some existing mechanisms to deal with these propberngnfortunately they are
still separated techniques and cannot provide compreleedata protection. In the fol-
lowing chapters we will show why they fail to protect datadcal file systems as well as
cloud storage services, and explore new cooperative tggbsaito maintain data integrity

and consistency.

19

Chapter 3

Data Protection Analysis of Local File

Systems

Disk corruption is one of the primary sources for unrelidpiin data storage. As file
systems have evolved over the years, designers have foongbis problem and devised
techniques to deal with it [29, 86, 104]. Unfortunately, nwgyncorruption has been
ignored and poses a growing threat to data integrity. Asudised in Section 2.1.2, recent
studies measured increasing memory error rate due to heedaualts, and various bug
reports show the occurrence of memory corruption due toveoét bugs.

The problem of memory corruption is critical for file systethat cache a great deal
of data in memory for performance. Almost all modern file eys$ use a page cache
or buffer cache to store copies of on-disk data and metadataemory. Moreover,
frequently-accessed data and important metadata may heaat memory for long pe-
riods of time, making them more susceptible to memory cdionp

In this chapter, we ask: how robust are modern local file syst® disk and memory

corruptions? To answer this query, we perform a series df ifigjection experiments on

20

ZFS to study how it responds to disk and memory corruptior$oi® we go into details
about the experiments, we first we provide some backgroud-&in Section 3.1. Then,
we present our analysis of data protection in ZFS with digk memory corruptions in
Section 3.2 and Section 3.3, respectively. Finally, Sec8a! gives an analysis of the

probabilities of different failure scenarios in ZFS due temory errors.

3.1 Background

ZFS is a state-of-the-art file system from Sun (now Oraclagiwtakes a unified approach
to data management. ZFS provides data integrity, tramssdtconsistency, scalability,
and a multitude of useful features such as snapshots, aopyrite clones, and simple
administration [29]. In this section, we first present a Higvel overview of ZFS, focus-
ing on the reliability mechanisms. Then, we discuss the ldig&ut of ZFS in detail and
illustrate how ZFS organizes metadata and data throughdistnwalkthrough. Finally,

we briefly discuss in-memory data structures.

3.1.1 ZFS Overview

ZFS claims to provide provable data integrity by using teghes like checksums, repli-
cation, and transactional updates. Further, the use of egaborage in ZFS lends it
additional RAID-like reliability features. In the words tfe designers, ZFS is the “The
Last Word in File Systems.” We now describe the reliabilitgahanisms in ZFS.
Checksums for data integrity checking ZFS maintains data integrity by using check-
sums for on-disk blocks. The checksums are kept separatetfr® corresponding blocks
by storing them in the parent blocks. ZFS provides for thesemqtal checksums of blocks

by using a generic block pointer structure to address atlisk-blocks.

21

The block pointer structure contains the checksum of thekbilioreferences. Before
using a block, ZFS calculates its checksum and verifies inagthe stored checksum in
the block pointer. The checksum hierarchy forms a selfeeding Merkle tree [78]. With
this mechanism, ZFS is able to detect silent data corrupsanh as bit rot, phantom
writes, and misdirected reads and writes.

Replication for data recovery. Besides using RAID techniques (described below), ZFS
provides for recovery from disk corruption by keeping rep#i of certain “important”
on-disk blocks. Each block pointer contains pointers toahtee copies of the block
being referenced. By default ZFS stores multiple copiesrietadata (three copies for
pool metadata and two copies for file system metadata) anccapye for data. Upon
detecting a corruption due to checksum mismatch, ZFS usedumdant copy with a
correctly-matching checksum.

COW transactions for atomic updates ZFS maintains data consistency in the event of
system crashes by using a copy-on-write transactionaltapdadel. ZFS manages all
metadata and data as objects. Updates to all objects arpegtdogether as a transaction
group. To commit a transaction group to disk, new copies weated for all the modified
blocks (in a Merkle tree). The root of this tree (thieerbloch is updated atomically, thus
maintaining an always-consistent disk image. In effeat, ¢cbpy-on-write transactions
along with block checksums (in a Merkle tree) preclude thednier journaling [120],
though ZFS occasionally uses a write-ahead log for perfoomaeasons.

Storage pools for additional reliability: ZFS provides additional reliability by enabling
RAID-like configuration for devices using a common storageldor all zfs instances.
ZFS presents physical storage to file systems in the form tfrage pool (calle@poo).

A storage pool is made up ofrtual devicegvdev). A virtual device could be a physical
device (e.qg., disks) or a logical device (e.g., a mirror teatonstructed by two disks).

This storage pool can be used to provide additional reltgily using devices as RAID

22

LEGEND

D vdev label
- uberblock

[
[dnod= Jif

zpool ﬁj[j]iﬂ

E object set block

T || dnode block

o

D indirect block

T D data block
i

Figure 3.1: ZFS Two-level Layout The figure shows the two-level layout of ZFS on-disk
structures.
arrays. ZFS provides automatic repairs in mirrored configons and provides a disk

scrubbing facility to detect latent sector errors.

3.1.2 ZFS On-disk Organization

ZFS organizes its metadata and data into a two level ar¢bresas shown in Figure 3.1.

The zfs level contains on-disk structures that are usedai@sent a zfs instance, such as
a file system, a snapshot, or a clone. The zpool level magtita structures that keep
track of all file system instances and their relationship. s discuss some of these

basic on-disk structures and their usage in ZFS.

23

vdevl offsetl Jpval— b?ig?
1
vdev2 offset2 | DVA2 \ 0.
vdev3 offset3 | pvas b?(: :[:fz
\ ditto
block 3
checksum } < LH

Figure 3.2:Block pointer The figure shows how the block pointer structure points tot¢)p
three copies of a block (ditto blocks), and keeps a singlelshan.

Basic Structures

Block pointers: A block pointer is the basic structure in ZFS for addressirgock on
disk and connecting different structures. It provides agiermechanism to keep parental
checksums and replicas of on-disk blocks. Figure 3.2 shbeidlock pointer used by
ZFS. As shown, the block pointer contains up to three blockeskes, called DVAsiata
virtual addresseys each pointing to a different block having the same costehltese are
referred to aglitto blocks The number of DVAs varies depending on the importance of
the block. The current policy in ZFS is that there is one DVAUser data, two DVAs for
file system metadata, and three DVAs for global metadatasaaibfile system instances
in the pool [81]. As discussed earlier, the block pointeoasntains a single copy of the
checksum of the block being pointed to.

Objects: All blocks on disk are organized in objects. Physicallyodect is represented
on disk by a structure calledghode _phys _t (hereafter referred to adnodg. A dnode
contains an array of up to three block pointers, each of wpahts to either a leaf block
(e.g., adata block) or an indirect block (full of block parg). These blocks pointed to by

the dnode form a block tree. A dnode also contains a bonusttaifthe end, which stores

24

Level | Object Name Simplified Explanation

MOS dnode A dnode object that contains dnode blocks, which store dnoere-
senting pool-level objects.

zpool | Object directory | A ZAP object whose blocks contain name-value pairs refengrfarther
objects in the MOS object set.

Dataset It represents an object set (e.g., a file system) and traxkslétionships
with other object sets (e.g., shapshots and clones).

Dataset directory | It maintains an active dataset object along with its chilthdats. It has a
reference to a dataset child map object. It also maintaimgasties such
as quotas for all datasets in this dataset directory.

Dataset child mag A ZAP object whose blocks hold name-value pairs referencimid
dataset directories.

FS dnode A dnode object that contains dnode blocks, which store dnoere-
7fs senting filesystem-level objects.
Master node A ZAP object whose blocks contain name-value pairs refengrfarther
objects in this file system.
File An object whose blocks contain file data.
Directory A ZAP object whose blocks contain name-value pairs refengnfiles

and directories inside this directory.

Table 3.1:Summary of ZFS objects visitedThe table presents a summary of all ZFS objects
visited in the walkthrough, along with a simplified explaoat Note that ZAP stands for ZFS
Attribute Processor. A ZAP object is used to store nameevphirs.

an object-specific data structure for different types ototy. For example, a dnode of a
file object contains a structure calledode _phys t (znod¢ in the bonus buffer, which
stores file attributes such as access time, file mode and the @ile. The dnode then
points to a block tree with data blocks at the leaf level, aswhin Figure 3.1.

Object sets Object sets are used in ZFS to group related objects. An pbeaniia object
set is a file system, which contains file objects and direatbjgcts belonging to this file
system. An object set is represented by a structure caltigdt _phys _t , which consists
of a meta dnode and a ZIL (ZFS Intent Log) header. The metaalpouhts to a group of
dnode blocks; dnodes representing the objects in this begt@re stored in these dnode
blocks. The object described by the meta dnode is calleddebject”. The ZIL header

points to a list of blocks, which holds transaction recoms4AFS’s logging mechanism.

25

Theobjset _phys _t structure is stored in ambjset block

Datasets An object set is eventually encapsulated by a zpool-lebgdai called dataset.
A dataset could be a file system, a clone, or a snapshot. Aedataistains statistics such
as the space consumption of an object set, and tracks itsoredhip with other related
datasets. For example, a file system dataset maintainstérediependency between the
file system and its snapshots and clones. A dataset is repedsby a dnode with a
dsl _dataset _phys t structure in the bonus field. The dnode itself does not paint t
the objset block; it is thelsl _dataset _phys t structure that contains a block pointer
referencing the objset block.

Uberblock: As shown in Figure 3.1, all zpool-level objects form anotbbject set and
the corresponding objset block is pointed to by a root blamikter in anuberblock An
uberblock (similar to a superblock) is used to provide asteshe current pool data and
verify its integrity. The uberblock is self-checksummed apdated atomically.

Vdev label: Each physical vdev is labeled withvaev labelthat describes this device
and other related virtual devices. Four copies of the lateetstored in each physical vdev
to provide redundancy and a two-stage update mechanisradstaguarantee that there
is always a valid vdev label in the device [108]. Every vddvelacontains an array of
uberblocks; updating an uberblock involves writing the ndwerblock to the next entry
in the array (in a round robin fashion) and mark the new ertigy dctive uberblock.
Therefore, if a crash occurs during the update, ZFS will gbaall back to the previous

uberblock, thus guaranteeing consistency.

LEGEND

L0 | L1 | Boot Available storage space L2 | L3 Block type Contents
_ object set block | objset_phys_t structure of an object set
el I dnode block Array of dnodes of an object set
o vdev label 1 uberblock array ™ ~=-~-__ _ . Y -)
== indirect block Array of block pointers
Blank | Boot Name/value ZAP block Data for ZFS Attribute Processor object
space | header pairs data block Data for files
‘ dnode block
object set block Py - - ~. 9
5 L, - AN o 7 \ // N /7 AN
3 y : 5
2 MOS object set /// Object Root Root / myfs myfs
MOS dnode object = - directory dataset dataset g dataset dataset
/ directory) \ child map i directory
/
// ‘ !
ZAP/block ZAP block /
/
4
; 7 /
root dataset=2 myfs =27 '
15 - 17

~

___dnode block

s

Juy
[68)

10

- indirect block
—
12 >

4
| [Master Root I File
> node directory g
/
I
/

/
;14
| ZAP block

[

18

1
16 /
ZAP! block y Data block

Y

T
root =3

|
file=4 !

Figure 3.3:ZFS On-disk Walk The figure illustrates a walkthrough of on-disk structuré&BS to locate a data block in

a file system “myfs”. Zpool contains a sample file system namgds”. All data structures are shown by rounded boxes, and
blocks are shown by rectangular boxes. Solid arrows poiatlticated blocks and dotted arrows represent referencebjects
inside blocks. The legend at the top shows the types of &rblitisks and their contents.

9¢

27

On-disk Layout

Next, we present more details on ZFS on-disk layout. Thiswoee will help the reader
to understand the range of our fault injection experimengsgnted in later sections. A
complete description of ZFS on-disk structures can be faiselvhere [108].

For the purpose of illustration, we demonstrate the stepsZRkS takes to locate a
file system and to locate file data in it in a simple storage pé&afjure 3.3 shows the
on-disk layout of the simplified pool with a sample file systeafied “myfs”, along with
the sequence of objects and blocks accessed by ZFS. A sunofreliyisited objects is
described in Table 3.1. Note that we skip the details of homémory structures are set
up and assume that data and metadata are not cached in merbegir with.

As shown in the figure, four copies of vdev labels are locatdikad locations on
the disk (two each at the start and end). The active uberbk&bund in any one of
the labels (step 1). The uberblock points to a meta objediM@IS) (step 2), which is
an object set holding pool-wide information for describengd managing relationships
between various file system instances. Since MOS is pocd-metadata, there are three
copies of the block containing it.

A special object in MOS called the object directory is use#tdep track of further
zpool-level objects (step 3 and 4). The object directoryta@iois references (object num-
bers) to various other objects in the object set. One of thefeeences is the root dataset
directory (step 5). A dataset directory encapsulates apgobvelated datasets and main-
tains their common properties, such as quota, block sizsksum algorithm, etc. Every
zfs in zpool has a corresponding dataset directory. A datiisetory always has a single
“active dataset”, which represents the active zfs instamiter datasets are its snapshots,
clones, etc. Therefore, the root dataset directory reptgesiee root file system in the pool

and it is used to access all child dataset directories.

28

The root dataset directory points to a dataset child mapcofgeep 6), which contains
references to all child dataset directories, including fsfiystep 7). Finally, the dataset
directory of “myfs” is found (step 8) and the active datadethe directory points to the
current “myfs” file system (step 9). The object set pointetiydhis dataset contains fur-
ther file-system specific metadata structures (step 10reSire objset block is zfs-level
metadata, ZFS keeps two copies of the block. The “myfs” dlget further points to
several layers of indirect blocks which eventually lead targe array of dnodes describ-
ing file system objects (step 11-13). Since all these blocksakso file-system specific
metadata, there are two copies of all the indirect blocksedkas the dnode blocks at the
leaf level.

There is a special object called master node for each filesydt contains references
to the root directory of a file system (step 14). The root doBcis then traversed to find
further child directories and files in the “myfs” file systesidp 15-17). Finally, the file

objects contain the block pointers to their correspondiaig @hlocks (step 18).

3.1.3 ZFS In-memory Structures

ZFS in-memory structures can be classified into two categorihose that exist in the
page cache and those that are in memory outside of the pafe;dac convenience
we call the latterin-heapstructures. Whenever a disk block is accessed, it is loaded
into memory. Disk blocks containing data and metadata acbezhin the ARC page
cache [77], and stay there until evicted. Data blocks anedtonly in the page cache,
while most metadata structures are stored in both the pade das copies of on-disk
structures) and the heap. Note that block pointers insidiegat blocks are also metadata,
but they only reside in the page cache. Uberblocks and vdmidaon the other hand,

only stay in the heap.

29

<« READ > « WRITE >
first read ; vulnerable memory %nextread ; ; write ; [0-30s] ; flush [<5s] ; vulnerable ; evicted ;
[<5ms] | [unbounded corruption | (bad data) | | [<1ms] | ; ' [unbounded ; ;
PAGE 3 time] ! [<1ms] ! i i i ; time]
| | | | % N |
' ' ' ! [oo R !
NOT L B .. B B |
protected | | | | | | |
protected @ verify generate
checksum checksum
DISK |:| clean dirty m corrupt
block block block

Figure 3.4:Lifecycle of a block This figure illustrates one example of the lifecycle of akloc
The left half represents the read timeline and the right kgifesents the write timeline. The black
dotted line is a protection boundary, below which a blockritgcted by the checksum, otherwise
unprotected.

To help the reader understand the vulnerability of ZFS to orgngorruptions dis-
cussed in later sections, Figure 3.4 illustrates one exawifihe lifecycle of a block (i.e.,
how a block is read from and written asynchronously to didk) simplify the explana-
tion, we consider a pair of blocks in which the target blockéaead or written is pointed
to by a block pointer contained in the parental block. Thgeatablock could be a data
block or a metadata block. The parental block could be arréntiblock (full of block
pointers), a dnode block (array of dnodes, each of whichatostlock pointers), or an
object set block (a dnode is embedded in it). The user of thekidould be a user-level
application or ZFS itself. Note that only the target blockl®wn in the figure.

Atfirst, the target block is read from disk to memory. For rghdre are two scenarios,
as shown in the left half of Figure 3.4. On the first read of geaiblock, it is read from
the disk and immediately verified against the checksum gtioréhe block pointer in the
parental block. Then the target block is returned to the.u€er a subsequent read of
a block already in the page cache, the read request getsc¢hecchlock from the page
cache directly, without verifying the checksum.

In both cases, after the read, the target block stays in e @ache until evicted. The

block remains in the page cache for an unbounded intervainef lepending on many

30

factors such as the workload and the cache replacemenypolic

After some time, the block is updated. The write timelinellisstrated in the right
half of Figure 3.4. All updates are first done in the page cacitethen flushed to disk.
Thus before the updates occur, the target block is eithdrampage cache already or just
loaded to the page cache from disk. After the write, the wgatiatock stays in the page
cache for at most 30 seconds and then it is flushed to disk.

During the flush, a new physical block is allocated and a nescksum is generated
for the dirty target block. The new disk address and checkarerthen written to the
block pointer contained in the parental block, thus makirdirty. After the target block
is written to the disk, the flush procedure continues to alle@a new block and calculate a
new checksum for the parental block, which in turn dirtissitbsequent parental block.
Following the updates of block pointers along the tree (salirows in Figure 3.3), it
finally reaches the uberblock which is self-checksummetkrAhe flush, the target block

is kept in the page cache until it is evicted.

3.2 On-disk Data Integrity in ZFS

In this section, we analyze the robustness of ZFS againstdisuptions. Our aim is to
find whether ZFS can maintain data integrity under a variétlisk corruption scenarios.
Specifically, we wish to find if ZFS can detect and recover frahdisk corruptions in

data and metadata and how ZFS reacts to multiple block diongat the same time.
Through experiments, we find that ZFS is able to detect allrandver from most disk

corruptions.

31

3.2.1 Methodology

Now we present the methodology of our reliability analydiZBS against disk corrup-
tions. We discuss our fault injection framework first andtipeesent our test procedures

and workloads.

Fault Injection Framework

Our experiments are performed on a 64-bit Solaris Expressnamity Edition (build
108) virtual machine with 2GB memory. We use ZFS pool verdidand ZFS file system
version 3. We run ZFS on top of a single disk for our experiraent

To emulate disk corruptions, we developed a fault injectiamework consisting of a
pseudo-driver to perform fault injection on disk blocks @mdapplication for controlling
the experiments. The pseudo-driver is a standard Solamesdd driver that interposes
between the ZFS virtual device and the disk driver beneath.akélyze the behavior of

ZFS by looking at return values, checking system logs, aaxrig system calls.

Test Procedure and Workloads

In our tests, we wanted to understand the behavior of ZFSstoatirruptions on different
types of blocks. We injected faults by flipping bits at randafifisets in disk blocks. Since
we used the default setting in ZFS for compression (metactatgressed and data un-
compressed), our fault injection tests corrupted compressetadata and uncompressed
data blocks on disk. We injected faults on nine differenssés of ZFS on-disk blocks
and for each class, we corrupted a single copy as well as@iksof blocks.

In our fault injection experiments on pool-wide and file gystlevel metadata, we
used “mount” and “remount” operations as our workload. Thmtnt” workload indi-

cates that the target block is corrupted with the pool exgoband “myfs” not mounted,

32

and we subsequently mount it. This workload forces ZFS tooasdisk copies of meta-
data. The “remount” workload indicates that the target blgccorrupted with “myfs”
mounted and we subsequently umount and mount it. ZFS use®inery copies of
metadata in this workload.

For injecting faults in file and directory blocks in a file sgist, we used two simple
operations as workloads: “create file” creates a new file irectbry, and “read file”

reads a file's contents.

3.2.2 Results and Observations

The results of our fault injection experiments are shownabl& 3.2. The table reports
the results of experiments on pool-wide metadata and fileesysnetadata and data. It
also shows the results of corrupting a single copy as welll@aspies of blocks. We now
explain the results in detail in terms of the observationswvaele from our fault injection
experiments.

Observation 1: ZFS detects all corruptions due to the use of checksimwur fault
injection experiments on all metadata and data, we fourtd#hdata was never returned
to the user because ZFS was able to detect all corruptionsdbe use of checksums in
block pointers. The parental checksums are used in ZFS iiy Wee integrity of all the
on-disk blocks accessed. The only exception are uberbledkich do not have parent
block pointers. Corruptions to the uberblock are detectetthe use of checksums inside
the uberblock itself.

Observation 2: ZFS gracefully recovers from single metadata block cotinns
For pool-wide metadata and file system wide metadata, ZRk&veeed from disk corrup-
tions by using the ditto blocks. ZFS keeps three ditto bldokpool-wide metadata and

two for file system metadata. Hence, on single-block coroumptio metadata, ZFS was

33

Single All
ditto ditto
L2 L2
2558 | 558
SESR | 3857
Level Block ELGL | ELGY
vdev labet RR ER
zpool uberbloc_k RR ER
MOS object set block RR ER
MOS dnode block RR ER
myfs object set block| RR ER
myfs indirect block | RR ER
zfs myfs dnode block RR ER
dir ZAP block RR EE
file data block E E

I excluding the uberblocks contained in it.

Table 3.2:0n-disk corruption analysis The table shows the results of on-disk experiments.
Each cell indicates whether ZFS was able to recover from tireuption (R), whether ZFS re-
ported an error (E), whether ZFS returned bad data to the (B&ror whether the system crashed
(C). Blank cells mean that the workload was not exercisedhi@iblock.

successfully able to detect the corruption and use othdaal@correct copies to recover
from it; this is shown by the cells (R) in the “Single ditto”loonn for all metadata blocks.

Observation 3: ZFS does not recover from data block corruptiofer data blocks
belonging to files, ZFS was not able to recover from corrupstiaZFS detected the cor-
ruption and reported an error on reading the data block. eiS does not keep multiple
copies of data blocks by default, this behavior is expedtad;is shown by the cells (E)
for the file data block.

Observation 4: In-memory copies of metadata help ZFS to recover from sgriou
multiple block corruptions In an active storage pool, ZFS caches metadata in memory
for performance. ZFS performs operations on these cachmedsof metadata and writes
them to disk on transaction group commits. These in-memopyes of metadata, along

with periodic transaction commits, help ZFS recover fronitiple disk corruptions.

34

In the “remount” workload that corrupted all copies of udedk, ZFS recovered from
the corruptions because the in-memory copy of the activebldiek remains as long as
the pool exists. The in-memory copy is subsequently writtelm new disk block in
a transaction group commit, making the old corrupted copg.v&imilar results were
obtained when corrupting other pool-wide metadata and yi#tesn metadata, and ZFS
was able to recover from these multiple block corruptions (R

Observation 5: ZFS cannot recover from multiple block corruptions affegtall
ditto blocks when no in-memory copy existsor file system metadata, like directory
ZAP blocks, ZFS does not always keep an in-memory copy uttesdirectory has been
accessed. Thus, on corruptions to both ditto blocks, ZF&8rteg an error. This behavior
is shown by the results (E) for directories indicating foe tiereate file” and “read file”
operations. Note that we performed these corruptions witfist accessing the directory,
so that there were no in-memory copies. Similarly, in the tmid workload, when the
pool was inactive (exported) and thus no in-memory copiéstex, ZFS was unable to
recover from multiple disk corruptions and responded witbrs (E).

Observation 4 and 5 also lead to an interesting conclusiairet active storage pool
is likely to tolerate more serious disk corruptions thanraactive one.

In summary, ZFS successfully detects all corruptions andvers from them as long
as one correct copy exists. The in-memory caching and pgerilighing of metadata on
transaction commits help ZFS recover from serious diskugions affecting all copies
of metadata. For user data, ZFS does not keep redundansaopidas unable to recover

from corruptions. ZFS, however, detects the corruptiomsraports an error to the user.

35

3.3 In-memory Data Integrity in ZFS

Although ZFS was not specifically designed to tolerate mgnuarruptions, we still
would like to know how ZFS reacts to memory corruptions, wehether ZFS can detect
and recover from a single bit flip in data and metadata blodkghis section, we per-
form a series of fault injection experiments to study theawsdr of ZFS in the presence
of memory corruptions. We find that ZFS has no precautionsremory corruptions:
bad data blocks are returned to the user or written to digksjistem operations fail, and

many times the whole system crashes.

3.3.1 Methodology

Now we discuss the fault injection framework and the testedore and workloads.
The injection framework is similar to the one used for orkdegperiments. The only
difference is the pseudo-driver, which in this case, irderavith the ZFS stack by calling

internal functions to locate the in-memaory structures.

Test Procedure and Workloads

We wished to find out the behavior of ZFS in response to coiwoptin different in-

memory objects. Since all data and metadata in memory ammmessed, we performed
a controlled fault injection in various objects. For metadave randomly flipped a bit
in each individual field of the structure separately; forajate randomly corrupted a bit
in a data block of a file in memory. We repeated each fault tigadest five times. We

performed fault injection tests on nine different types bjeats at two levels (zfs and
zpool) and exercised different set of workloads as listethinle 3.3. Table 3.4 shows all

data structures inside the objects and all the fields we ptaduduring the experiments.

36

Object Data Structures Workload

MOS dnodet, dnodephyst

dnode zfs create,

Object dnodet, dnodephyst, zfs destroy,

directory | mzapphyst, mzapentphyst zfs rename,

Dataset | dnodet, dnodephyst, zfs list,
dsldatasetphyst zfs mount,

Dataset | dnodet, dnodephyst, zfs umount

directory | dsLdir_physt

Dataset | dnodet, dnodephyst,

child map | mzapphyst, mzapent physt

FS dnode | dnodet, dnodephyst zfs umount,

Master dnodet, dnodephyst, path traversal

node mzapphyst, mzapent physt

File dnodet, dnodephyst, open, close, Iseek, read,
znodephyst write, access, link, unlink,

Dir dnodet, dnodephyst, rename, truncate
znodephyst, (chdir, mkdir, rmdir)
mzapphyst, mzapent physt

Table 3.3: Summary of Tested ObjectsThe table presents a summary of all ZFS objects
corrupted in our in-memory analysis, along with their datiaustures and the workloads exercised
on them.

For data blocks, we injected bit flips at an appropriate tisiéescribed below. For
reads, we flipped a random bit in the data block after it wadddao the page cache; then
we issued a subsequent read() on that block to see if ZFShesttine corrupted block. In
this case, the read() call fetched the block from the pagkecdeor writes, we corrupted
the block after the write() call finished but before the tafgeck was written to the disk.

For metadata, in our fault injection experiments, we cod@rbroad range of metadata
structures (totally 16 core objects/structures). To redhe sample space for experiments
to more interesting cases, we made two choices. First, wayahwnjected faults to the
in-memory structure after it was accessed by the file syssenthat both the in-heap
version and page cache version already exist in the memepprd, among the in-heap

structures, we only corrupted thdeode _t structure (in-heap version dhode _phys _t).

37

Data Structure Fields

dnodet dn.nlevels, dnbonustype,
dn.indblkshift, dnnblkptr,
dn_datablkszsec, = dmaxblkid,
dn.compress, dibonuslen,
dn.checksum,
dn.type

dnodephyst dn.nlevels, dnbonustype,
dn.indblkshift, dnnblkptr,
dndatablkszsec, dmaxblkid,
dn.compress, dibonuslen,
dn.checksum, drtype, dnused,
dnflags,

mzapphyst mz_block type, mzsalt

mzapentphyst | mzevalue, mzename

znodephyst zp_mode, zpsize, zplinks,
zp_flags, zpparent

dsLdir_physt dd_headdataseibj,
dd_child_dir_zapobj,
dd_parentobj

dsldataseiphyst | dsdir_obj

Table 3.4:Summary of Tested Data structures and FieldsThe table lists all fields we
corrupted in the in-memory experimentsizap_phys .t and mzap_ent _phys .t are metadata
stored in ZAP blocks. The last three structures are objpet#ic structures stored in the dnode
bonus buffer.

The dnode structure is the most widely used metadata steuitctZ FS and every object
in ZFS is represented by a dnode. Hence, we anticipate thafptimg the in-heap dnode

structure will cover many interesting cases.

3.3.2 Results and Observations

We present the results of our in-memory experiments in Talile As shown, ZFS fails
to catch data block corruptions due to memory errors in bedld and write experiments.
Single bit flips in metadata blocks not only lead to returnipagl data blocks, but also

cause more serious problems like failure of operations gstes crashes. Note that

38

Table 3.5 only shows cases with apparent problems. In oflserstthat are either indicated
by a dot (.) in the result cells or not shown at all in Table &%, corresponding operation
either did not access the corrupted field or completed safidgswith the corrupted field.
However, in all cases, ZFS did not correct the corrupted.field

Next we present our observations on ZFS behavior and usireiresults. The first
five observations are about ZFS behavior and the last fiveradigens are about user-
visible results of memory corruptions.

Observation 1: ZFS does not use the checksums in the page cache along with the
blocks to detect memory corruption€hecksums are the first guard for detecting data
corruption in ZFS. However, when a block is already in thegpegche, ZFS implicitly
assumes that it is protected against corruptions. In the ohseads, the checksum is
verified only when the block is being read from the disk. Relltg that, as long as
the block stays in the page cache, it is never checked aghmshecksum, despite the
checksum also being in the page cache (in the block pointetaseed in its parental
block). The result is that ZFS returns bad data to the useeadts:.

For writes, the checksum is generated only when the blockiisgowritten to disk.
Before that, the dirty block stays in the page cache with adaiad checksum in the
block pointer pointing to it. If the block is corrupted in tpage cache before it is flushed
to disk, ZFS calculates a checksum for the bad block andsstbee new checksum in
the block pointer. Both the block and its parental block earihg the block pointer are
written to disk. On subsequent reads of the block, it passestiecksum verification and
is returned to the user.

Moreover, since the detection mechanisms already fail tectienemory corruptions,
recovery mechanisms such as ditto blocks and the mirroredl Zye not triggered to

recover from the damage.

File Dir MOS dnode Dataset directory (E)I'?illgfnea:p Dataset
Structure Field ORWAUNT | OALUNTMCD | cdrim u cdrimu|cdr|cdrlm
dn_type e ccccc Cc| ...
dn.indblkshift .BC. . C. . EEE.E .E||
dn.nlevels c...cC ccc.c.c|ccececec | .. ccc|ccec. .
dnodet
dn_checksum C o o
dn_.compress . C N T T
dn_maxblkid B o T o
dn_indblkshift oL C e o -
dn_nlevels BcC . C. .| B o R .C.| ...
dnodephyst dn_nblkptr I e .C.
dn_bonuslen C e R . C.C.
dn_maxblkid B C.C|C| C. .C.| .cC.
znodephyst zp_size . T .E
zpflags E..E.EE|EEEEEEEE
. dd_headdataseibj EEEE. .
dsLdir_physt dd_child_dir_zapobj Ec £C EC £ ECC
dslLdataseiphyst dsdir_obj .EE. .
data block B B]

Table 3.5:In-memory corruption results The table shows our memory corruption results. The operati&xercised are
O(open), R(read), W(write), A(access), L(link), U(un)ifk(rename), T(truncate), M(mkdir), C(chdir), D(rmdic(zfs create),
d(zfs destroy), r(zfs rename), I(zfs list), m(zfs mound) @afs umount). Each result cell indicates whether theegystrashed
(C), whether the operation failed with wrong results or watimisleading message (E), whether a bad data block was edurn
(B) or whether the operation completed (.). Large blanksmrtbat the operations are not applicable.

6€

40

The results in Table 3.5 indicate that when a data block wasipted, the application
that issued a read() or write() request was returned badBatas shown in the last row.
When metadata blocks were corrupted, ZFS accessed theptamrdata structures and
thus behaved wrongly, as shown by other cases in the reblédt ta

Observation 2: The window of vulnerability of blocks in the page cache isaumtaled.
As Figure 3.4 shows, after a block is loaded into the pageechytiirst read, it stays there
until evicted. During this interval, if a corruption hapgeto the block, any subsequent
read will get the corrupted block because the checksum igardted. Therefore, as long
as the block is in the page cache (unbounded), it is suséepbil;memory corruptions.

Observation 3: Since checksums are created when blocks are written to alsk,
corruption to blocks that are dirty (or will be dirtied) is wten to disk permanently on
a flush As described in Section 3.1, dirty blocks in the page cackenaitten to disk
during a flush. During the flush, any dirty block will furtheawse updates of all its
parental blocks; a new checksum is then calculated for epdatad block and all of
them are flushed to disk. If a memory corruption happens tméftiyose blocks before a
flush (above the black dotted line before G in Figure 3.4) cthreupted block is written
to disk with a new checksum. The checksum is thus valid foctreupted block, which
makes the corruption permanent. Since the window of vubikrais long (30 seconds),
and there are many blocks that will be flushed to disk in eadhflwe conjecture that the
likelihood of memory corruption leading to permanent oskdiorruptions is high.

We did a block-based fault injection to verify this obserwat We injected a single
bit flip to a dirty (or to-be-dirtied) block before a flush; amb as the flipped bit in the
block was not overwritten by subsequent operations, theipted block was written to
disk permanently.

Observation 4: Dirtying blocks due to updating file access time increasespibs-

sibility of making corruptions permanenBy default, access time updates are enabled

41

in ZFS; therefore, a read-only workload will update the asagme of any file accessed.
Consequently, when the structure containing the access (@mode) goes inactive (or
when there is another workload that updates the znode), ZE&swhe block holding the

znode to disk and updates and writes all its parental bloGkerefore, any corruption

to these blocks will become permanent after the flush caugdldebaccess time update.
Further, as mentioned earlier, the time interval when threuption could happen is un-
bounded.

Observation 5: For most metadata blocks in the page cache, checksums avalicht
and thus useless in detecting memory corrupti@ysdefault, most metadata blocks such
as indirect blocks and dnode blocks are compressed on diske $he checksums for
these blocks are used to prevent disk corruptions, they @isevalid for compressed
blocks, which are calculated after they are compresseaglwiites and verified before
they are decompressed during reads. When metadata bledkglae page cache, they are
uncompressed. Therefore, the checksums contained in thesponding block pointers
are useless.

Observation 6: When metadata is corrupted, operations fail with wrong hssu
or give misleading error messages (Epr example, whenp _flags in dnode _phys _t
for a file object was corrupted, open() may return an erroeddCCES (permission
denied). The case occurred when thé'4lt of zp _flags was flipped from O to 1,
which signifies that the file is quarantined by an anti-viraBwsare. Therefore, open()
was incorrectly denied, giving an error code EACCES. This@dcess(), rename() and
truncate() also failed for the same reason.

Another example of a misleading error message happenedduhlesad dataset _obj
indsl _dir _phys _t for a dataset directory object was corrupted. In this cade,create”
failed to create a new file system under the parent file systpnesented by the corrupted

object. ZFS gave a misleading error message saying thatatteatpfile system did not

42

exist. ZFS gave similar error messages in other cases (EErUbdtaset directory” and
“‘Dataset”.

Observation 7: Many corruptions lead to a system crash (Epr example, when
dn_nlevels (the height of the block tree pointed to by the dnodejrinde phys _t fora
file object was corrupted and the file was read, the systerhedadue to a NULL pointer
dereference. In this case, ZFS used the wrong valde ailevels to traverse the block
tree of the file object and obtained an invalid block point€herefore, the block size
obtained from the block pointer was an arbitrary value, Whi@as then used to index into
an array whose size was much less than the value. As a résulty$tem crashed when a
NULL pointer was dereferenced.

Observation 8: The read() system call may return bad dafs shown in Table 3.5,
for metadata corruptions, there were three cases wher§ g bad data block to the
user. In these cases, ZFS simply trusted the value of thepmed field and used it to
traverse the block tree pointed to by the dnode, thus retgrbad blocks. For example,
whendn nlevels in dnode _phys _t for a file object was changed from 3to 1, ZFS gave
an incorrect block to the user on a read request for the ficstkbdf the file. The bad
block was returned because ZFS assumed that the tree onbnkdevel, and incorrectly
returned an indirect block to the user. Such cases wheregigimcks are returned to the
user also have the potential for security vulnerabilities.

Observation 9: There is no recovery for corrupted metadaka the cases where no
apparent error happened (as indicated by a dot or not shavanth@ operation was not
meant to update the corrupted field, the corruption remaiméae metadata block in the
page cache.

In summary, ZFS fails to detect and recover from memory qions. Checksums
in the page cache are not used to protect the integrity ofkblod@ herefore, bad data

blocks are returned to the user or written to disk. Moreoverupted metadata blocks

43

are accessed by ZFS and lead to operation failure and systsimnes.

3.4 Probability Analysis of Memory Corruption

In this section, we present a preliminary analysis of theliilood of different failure sce-
narios due to memory errors in a system using ZFS. Specyficallen that one random
bit in memory is flipped, we compute the probabilities of f@eenarios: reading cor-
rupt data (R), writing corrupt data (W), crashing/hangi@ &énd running successfully to
completion (S). These probabilities help us to understawd $everely file system data
integrity is affected by memory corruptions and how muclorffile system developers

should make to add extra protection to maintain data irtiegri

3.4.1 Methodology

We apply fault-injection techniques to perform the anaysConsidering one run of a
specific workload as a trial, we inject a fixed number numbematiom bit flips to the
memory and record how the system reacts. By doing multi@kstiwe measure the num-
ber of trials where each scenario occurs, thus estimatm@ithbability of each scenario
given that certain number of bits are flipped. Then, we cateuthe probability of each
scenario given the occurrence of one single bit flip.

We have extended our fault injection framework to conduetdékperiments. We re-
placed the pseudo-driver with a user-level “injector” whinjects random bit flips to the
physical memory. We used filebench [107] to generate comptakloads. We modi-
fied filebench such that it always writes predefined data Isldelg., full of 1s) to disk.
Therefore, we can check every read operation to verify tiateéturned data matches the

predefined pattern. We can also verify the data written tk byschecking the contents

44

of on-disk files.

We used the framework as follows. For a specific workload, ave 100 trials. For
each trial, we used the injector to generate 16 random bg #ipthe same time when
the workload has been running for 3 minutes. We then kept trlead running for 5
minutes. Any occurrence of reading corrupt data (R) wasrtedo When the workload
was done, we checked all on-disk files to see if there was anymodata written to
the disk (W). Since we only verify write operations after leagn of a workload, some
intermediate corrupt data might have been overwritten &nd the actual number of
occurrence of writing corrupt data could be higher than messhere. We also logged
whether the system hung or crashed (C) during each triakvbudid not determine if it
was due to corruption of ZFS metadata or other kernel datatsties.

It is important to notice that we injected 16 bit flips in eacilaltbecause it let us
observe a sufficient number of failure trials in 100 trialsowéver, we apply the follow-
ing calculation to derive the probabilities of differentld@me scenarios given that 1 bit is

flipped.

3.4.2 Calculation

We useP,(X) to represent the probability of scenatid given thatk random bits are
flipped, in which X could be R, W, C or S. Therefo®,(X) = 1 — P,(X) is the prob-
ability of scenarioX not happening given that bits are flipped. In order to calculate
P (X), we first measuré, (X) using the method described above and then deniya’)

from P,(X), as explained below.

e Measure P, (X) Given thatk random bit flips are injected in each trial, we denote

the total number of trials a& and the number of trials in which scenaftooccurs

45

at least once ad’y. Therefore,

e Derive P;(X) Assumek bit flips are independent, then we have
P(X) = (P(X))*, whenX = R, W or C

P,(X) = (P, (X))*, whenX = S

SubstitutingP,,(X) = 1 — P,(X) into the equations above, we can get,
P(X)=1-(1— Py(X))*, whenX = R, W orC

Py(X) = (Py(X))*, whenX = S

3.4.3 Results

The analysis is performed on the same virtual machine asomexatin Section 3.2.1. The
machine is configured with 2GB memory and a single disk rupZiaS. We first ran some
controlled micro-benchmarks (e.g., sequential read) tdythat the methodology and
the calculation is correct (the result is not shown due tatéichspace). Then, we chose
four workloads from filebench: varmail, oltp, webserver &teserver, all of which were
exercised with their default parameters. A detailed dpson of these workloads can be
found elsewhere [107].

Table 3.6 provides the probabilities and confidence intergaven that 16 bits are
flipped and the derived values given that 1 bit is flipped. No& for each workload, the
sum of P,(R), P.(W), P.(C) and P,(S) is not necessary equal to 1, because there are

Workload P16<R) P16<W) PIG(C> P16(S)
varmail 9%][4, 17] 0%]0, 3] 5%]I1, 12] | 86%(77, 93]
oltp 26%][17,36] | 2%]0, 8] 16%][9, 25] | 60%][49, 70]
webserver| 11%(5, 19] | 20%[12, 30] | 19%][11, 29] | 61%][50, 71]
fileserver | 69%][58, 78] | 44%]34, 55] | 23%][15, 33] | 28%]19, 38]
Workload P (R) P (W) P (C) P (5)
varmail [0.6%]0.2, 1.2]] 0%]0, 0.2] |0.3%]0.1, 0.8]| 99.1%98.4, 99.5]
oltp 1.9%][1.2, 2.8]| 0.1%]0, 0.5] | 1.1%][0.6, 1.8]| 96.9%[95.7, 97.8]
webserver 0.7%]0.3, 1.3]| 1.4%]0.8, 2.2]| 1.3%]0.7, 2.1]| 97.0%[95.8, 97.9]
fileserver | 7.1%]5.4, 9.0]| 3.6%]2.5, 4.8]| 1.6%[1.0, 2.5]| 92.4%[90.2, 94.2]

46

Table 3.6:P;5(X) and P;(X) The upper table presents percentage values of the probiabili
and 95% confidence intervals (in square brackets) of readimgupt data (R), writing corrupt
data (W), crash/hang and everything being fine (S), givenltGaits are flipped, on a machine of
2GB memory. The lower table gives the derived percentagesaliven that 1 bit is corrupted.
The working set size of each workload is less than 2GB; theageeamount of page cache con-
sumed by each workload after the bit flips are injected is 3XMBmail), 129MB (oltp), 441MB
(webserver) and 915MB (fileserver).

cases where multiple failure scenarios occur in one trial.

From the lower table in Table 3.6, we see that a single bit flipmemory causes a
small but non-negligible percentage of runs to experieadare. For all workloads, the
probability of reading corrupt data is greater than 0.6%taedorobability of crashing or
hanging is higher than 0.3%. The probability of writing agt data varies widely from
0 to 3.6%. Our results also show that in most cases, when thidmoset size is less
than the memory size, the more page cache the workload cassuine more likely that
a failure would occur if one bit is flipped.

In summary, when a single bit flip occurs, the chances of faikcenarios happen-
ing can not be ignored. Therefore, efforts should be madedsepve data integrity in

memory and prevent these failures from happening.

a7

3.5 Summary

In this chapter, we analyzed a state-of-the-art file sys##8, to study the implications of
disk and memory corruptions to data integrity. We used aédlyefontrolled fault injection
experiments to simulate realistic disk and memory errocs@esented our observations
about ZFS behavior and its robustness.

While the reliability mechanisms in ZFS are able to providasonable robustness
against disk corruptions, memory corruptions still remaiserious problem to data in-
tegrity. Our results for memory corruptions indicate casbsre bad data is returned to
the user, operations silently fail, and the whole systerslwa. Our probability analysis
shows that one single bit flip has small but non-negligiblendes to cause failures such
as reading/writing corrupt data and system crashing.

We argue that file systems should be designed with comprisfeetigta protection.
File systems should not only provide protection against disruptions, but also aim
to protect data from memory corruptions, which may requaeperation from the page

cache and even user-level applications.

48

Chapter 4

Z°FS: Cooperative Data Protection in

Local Storage

Many features that storage systems provide require greaboa coordination across the
many layers of the system (e.g., performance), but integhecks for data protection
generally remain isolated within individual componentst &xample, as shown in Chap-
ter 3, ZFS uses checksums to protect on-disk block, but faikxtend the checksums
to protect in-memory data; hard disks have built-in ECC fackesector [22], but the
ECCs are rarely exposed to the upper-level system; TCP ns&sdét checksums to pro-
tect data payload [11], but only during the transmission.eWtata is transferred across
components, data is not protected and thus may becomd\sitentupted.

A comprehensive approach is to apply the straight-forwawdite-end data protec-
tion [94], where high-level applications generate andfyatecksums for their data such
that the checksums protect data throughout the entire #€ksiThis approach does pro-
vide better data protection, but it suffers the performaaeeé timeliness problems, as

discussed in Chapter 1.

49

To address both problems, we propose a new concept dhdiedle end-to-end data
integrity. With this concept, all components on the I/O path are awhtkeochecksum,
and different components can choose different type of chenk depending on the reli-
ability characteristics (e.g., failure rate) and perfonc@requirements (e.g., throughput)
of the component. Then, we develop an analytical frameworgrovide rationale for
the new concept. Specifically, the framework is able to eaaland compare the reli-
ability of different storage systems, and help to choose@@rahecksums for different
components. Finally, guided by the framework, we build Zeyte-reliable ZFS (ZFS)
by applying flexible end-to-end data protection to ZF&g is able to provide Zettabyte
Reliability while performing comparably to ZFS.

The rest of the chapter is organized as follows. In Sectidn We introduce the
framework for evaluating reliability of storage systemse Yhen present the design of
Z%FS in Section 4.2 and discuss some implementation issuesciiog 4.3. Finally, we

evaluate 2FS in Section 4.4.

4.1 Reliability of Storage Systems with Data Corruption

We now present a framework to analyze the reliability of ager systems with data cor-
ruption. The framework uses analytical models for each tffevice and checksum in
a system to calculate a reliability metric in terms of thelyadoility of undetected data

corruption.

4.1.1 Overview

The reliability of a storage system can be evaluated basédwrikely corruption would

occur. There are two types of corruption: detected and ectied (silent data corruption,

50

SDC). Detected corruption is the case the system is buiktead and may recover from,
but SDC is what the system is not prepared for. SDC does mone inethat it would be
treated as correct data and may further pollute other gotad (8agy., RAID reconstruc-
tion with corrupted data). Therefore, we focus on the prdialmf SDC in a storage
system. To quantify how likely a SDC would occur, we use thabpbility of undetected
data corruption«dc) when reading a data block from the systéty,_,.. as a reliability
metric.

P,,s_u4. for a storage system depends on various devices, each ofi wiag expe-
rience corruptions caused by different factors. Each @emay employ different types
of hardware protection and the upper-level system or agiphic may add extra protec-
tion mechanisms. Therefore, we propose a framework thastakjround-up approach to
derive the system-level reliability metric from underlgidevices.

The framework consists of models for devices and checksuttisnodels are built
around the basic storage unit, a data block bfts. For a raw devicé (with its own
hardware-level checksum), we are interested in how likelyuption would occur to a
block and escape from the detection of the device’s checkgu(b)). To detect such
corruption, high-level (software) checksums are usugblyliad on top of a raw device
(henceafter, we will use “checksum” to indicate the higielechecksum). Each data
block has a checksum éfbits. For a checksury’ and deviceD, we focus on the device-
level probability of undetected corruptio®;.(D, C')) when the checksum is used to
protect a data block on the device.

Devices with different checksums are connected in varioagswo form the whole
system. A data block can pass through or stay in severalekefriom the time itis born to
the time it is accessed. By considering all possible comamcenarios during this time
period, we calculate the overall probability of undeteaeth corruption when reading
the data block from the systenf{,;_,q.).

51

4.1.2 Models for Devices and Checksums

To demonstrate how to apply the framework, we present mddelsevices and check-

sums that will be used throughout the chapter. We make asgmage.g., independence
of bit errors) to simplify our models such that we can focuseasoning about the relia-
bility of storage systems within the framework; discusstiarmore complex and accurate

models is beyond the scope of this chapter.

Device Model

We consider two types of devices, hard disksk) and memoryf.em) , and one type of

corruption: random bit flip. We assume the block diie 32768 bits (4KB).

Hard Disks Hard disks are a long-term storage medium for data, and aerkio be
unreliable. Hard disks can exhibit unusual behaviors beeaf hardware faults such as
latent sector errors [22, 96]. These errors can usually tectbal by disk ECC. The less-
likely but more harmful silent data corruption may come froardware bit rot, buggy
firmware, or mechanic faults (such as dropped writes andireigedd writes [23, 92]),
causing random bit flips and block corruption. These erroesnat detectable by disk
ECC.

Bit error rate (BER) is often used to characterize the rdligitof a hard disk. BER is
defined as the number of bit errors divided by the total nurabbits transferred and often
refers to detected bit error (by disk ECC). For silent cotiaup we are more interested in
the undetected bit error rate (UBER), which is the rate afrsrthat have escaped from
ECC. Assuming each bit error in a data block is independeshtl@number of bit errors
follows a binomial distribution, the probability of an urtdeted bit flip is equal to UBER.
Assuming there is at most one flip for each bit, the probatulit; bit flips in ab-bit block

52

P.(dsk, 1) = (UBER)'(1 — UBER)"™"

1

Therefore, the probability of corruption in a block is thersof the probabilities of all

possible bit flips (from exactly 1 bit flip to exact b bit flips):

P,(dsk) = i (f) (UBER)'(1 — UBER)"™*

While BER is often reported by disk manufactures, rangimgnfi0—14 to 10716, there
is no published data on UBER. Rozier et al. estimated thatdteeof undetected disk
error caused by far-off track writes and hardware bit cdiaurpis betweenl0~'2 and
10713 [92]. Although we do not know the percentage of errors calseeither fault, we
conservatively assume that most are bit errors and thus ekelpi'? as the UBER for
current disks. In our study, we choose a wider range for UBER 1071° to 10~%, to
cover more reliability levels. To simplify the presentatiave define thelisk reliability
indexas—log;o(UBER).

Memory Memory (DRAM) is mainly used to cache data for performancet flips
are the main corruption type, probably due to chip faultsxbemmal radiation [75, 133].
Earlier studies show that memory errors can occur at a rai® ¢d 360 errors/year/GB
[83, 84, 100] and suspect that most errors are soft errorghvdre transient. However,
recent studies show that memory errors occur more frequgg| 71, 97] and are prob-
ably dominated by hard errors (actual device defects). leawry module has ECC or
more complex codes such as chipkill [64], then both softreremd hard errors within
the capability of the codes can be detected or corrected.eMernvcorruption caused by

software bugs [106] are not detectable by these hardwamscod

53

For memory, the error rate is usually measured as failuriena (FIT) per Mbit. As-
suming each failure is a bit flip, 1 FIT/Mbit means there is bitdlip in one billion hours
per Mbit. Assuming each bit flip is independent and the sarnesdlni only experience one
flip, we model the number of bit flips infbit block during a time period as a Poisson
distribution with a constant failure rateerrors/second/bit. Therefore, the probability of
1 bit flips in ab-bit block during timet is:

e P (bAt)!

P.(mem,i,t) = n
il

Summing up the probabilities of all possible bit corruppwe have:

.(mem, t) zb: 6_b/\t b)\t
i=1

Previous studies reported FIT/Mbit as low as 0.56 [72] ankigis as 167,066 [63]. Con-
verting to errors/second/bit gives the rangeXpfrom 1.48 x 1071° (\,,;,) t04.42 x 10714
(Amaz)- In this chapter, we choo$e62 x 10~1% (\,,.;4) as the error rate of non-ECC mem-
ory; it is derived from 25,000 FIT/Mbit, which is the lower tnod of the DRAM error
rate measured in a recent study [97]. We pigk,, as the error rate of ECC memory,
because most errors would have been detected by ECC. Welugg(\) as thememory
reliability index The corresponding indices fat,,;,,, A\pniq, @and\,,., are 18.8, 14.2, and
13.4.

Checksum Model

The effectiveness of a checksum is measured by the protyatfilindetected corruption
given an error rate. Itis usually difficult, sometimes imgibte, to have an accurate model

for the probability, because of the complexity of errors #reldata-dependency property

54

of some checksums. Therefore, we apply an analytic approeealuate checksums for
random bit flips.

We focus on two types of checksum: xor (64-bit) and FletcB&6(bit). Exclusive
or checksums (xor) are calculated by XORing each fixed-streohk of a data block.
For example, a 64-bit xor checksum over a 4KB data block isprded by XORing
every 64-bit of data in the block. The xor checksum is very fagalculate, but it can
only detect one bit error. On the other hand, Flecther cheuks more complex, which
involves calculating two checksums at a time. For instatocepmpute a 256-bit Fletcher
checksum from a 4KB block, the block is first divided into aragrof 128-bit data chunks
(dq,ds, ..., dssg), and two 128-bit checksums;(ands,) are initialized with 0. Then for
every data chunki; (: from 1 to 256),s; ands, are calculated using one’s complement
addition as follows:s; = (s; + d;) mod 2'?® ands, = (so + s1) mod 2'?%. Finally, the
two checksums are concatenated to form the Fletcher check$the block. Fletcher
checksum is slower to compute than xor, but it can detecthit érrors and 2-bit errors
in a 4KB block.

Our approach to model both checksums is similar to the ong inserecent study on
checksums for embedded control networks [74]. The ideassedban Hamming Distance
(HD). A checksumC' with HD=n can detect all bit errors up to— 1 bits, but there is at
least one case of bit flips that is undetectable by the checksum. We E&€) to repre-
sent the fraction of bit flips that are undetectable by checksGmThen, the probability
of undetectable: bit flips is P.(D,n) x F(C'), in which P.(D,n) is the probability of
n bit flips on deviceD. The actualP,,. is the sum of the probabilities of undetectable
bit flips fromn to b (the size of the block i8 bits). Since the occurrence of more than
bit flips is highly unlikely, the probability of undetectedbit flips dominatesP, ;. [74].
Therefore, we have the approximationfof,.(D, C) = P.(D,n) x F(C).

The value ofP.(D,n) can be easily calculated based on the model of each device, so

55

the key parameter i8'(C'). Assuming the block size sbits and the checksum sizefis
bits, there is an analytical formula for xor [74f:(zor) = . Since the HD for xor is
2, we haveP,;.(D, xor) = P.(D,2) x k(b 1)
an approximation [10]F (Fletcher) = 4.16 x 1072°. Therefore,P.4.(D, Fletcher) =

P.(D,3) x (4.16 x 107%0),

k(b 1
But for Fletcher (HD=3), we can only get

Based on previous models, given the configuration of a stosggtem, we can calculate
P,y s_vuq. by summing up the probabilities of every silent corrupticersario during the
time from the data being generated to it being read. We ddimeetiability scorefor a
system as-l0gi(Psys—udc); higher scores mean better reliability.

Finding all scenarios that lead to a silent corruption iskiyi In reality, it is possible
that multiple devices corrupt the same data when it is teansfl through or stored on
them. In this chapter, we assume that in each scenario, ierdy one corruption from
when a data block is born to when it is read from the system.r@ason is that data cor-
ruption is rare - multiple corruptions to the same data blrekunlikely. Another reason
is that with this assumption, we do not have to reason abouptex interactions of cor-
ruption from multiple devices, which may require more acethmodeling techniques.

Determining whether a value @,,,_.q. is good enough for a storage system is not
easy. ldeally, the best value 6%,,_,4. is O, but this is impossible. In reality,s_q. IS
a tradeoff between reliability and performance; it showddw enough such that SDC is
extremely rare, but at the same time it should not hinderybtem’s performance. In this
chapter, we us@ettabyte Reliabilityas a reliability goal of storage systems. Zettabyte
reliability means that there is at most one SDC when readimg £ettabyte data from

a storage system. With our models, assuming the block sidelenlO size is 4KB,

56

Reliability Score | Reliability Goal Pyys—ude
8.4 Terabyte 3.73 x 107°
11.4 Petabyte 3.64 x 10712
14.4 Exabyte 3.55 x 1071
17.5 Zettabyte 3.46 x 10718

Table 4.1: Reliability Scores This table lists a mapping from reliability scores to diéfat
reliablity goals.

Cfg Cfg Index
Num Name | Mem | Dsk | Description

1 low-end | 13.4 | 10 | worst mem & dsk
2 consumer| 14.2 | 12 | non-ECC mem & regular dsk
3 | enterprisel 18.8 | 12 | ECC mem & regular dsk
4 server | 18.8 | 20 | ECC mem & best dsk

Table 4.2:Sample System ConfigurationsThis table shows four configurations of a local
file system that we will study throughout the dissertation.

this goal translates t®,s_ua. = Py = 3.46 x 1078, which in terms of a reliability
score is 17.5. Intuitively, we can map other reliability seoto similar reliability metrics,
as shown in Table 4.1. Note that the numerical value of thab#ity goal may differ

depending on the accuracy of the assumptions and modelst ara not be precise;
our purpose is to use it as a way to demonstrate how to makept@ueoffs between

performance and protection in a storage system.

4.1.4 Example: NCFS

To illustrate how to apply the framework to evaluate theatglity of a storage system,

we use a local file system with no checksum (NCFS) as an exariygefocus on four

57

writer | storage | reader
| |
L mem (none) | dsk (none) | mem (none) T
1 1 }
t, t, t t
. Checksum Checksum
¢ Write f Read Generation Verification

Figure 4.1:Timeline of a Data Block in NCFS This figure shows timeline of a block from
being generated by the writety) to being read by the readety) in NCFS. The timeline consists
of three parts: writer in memory, storage (disk), and reaifememory. The name of the checksum
used to protect data during each time period is listed in thgeptheses on the right of the device
name.

configurations of the system, as listed in Table 4.2. Withmmrtange for each index, we
use the minimum value to represent the worst memory or diskshamay be faulty or
prone to corrupting data. We use the maximum disk index taeesgmt disks that are much
more reliable than regular disks.

The timeline of a data block from being generated to beingssed is shown in
Figure 4.1. A writer application generates the blockyat The block stays in memory
until ¢; when it is flushed to disk. The block is then read into memors @nd finally
accessed by a reader applicatiomafl he residency time of the block in writer's memory
and reader’s memory is — ty, andt; — t, respectively. To simplify the model and also
because most file systems flush dirty blocks to disk at redineg intervals (usually 30
seconds), we assumg— t, to be 30 seconds for all blocks in this chapter.

Based on the “one corruption” assumption, there are threeasms that will lead to
silent data corruption: corruption that occurs in the reéadaemory, disk, or the writer’'s

memory. Thereforep;,,_,q. for NCFS is approximately the sum of the probabilities of

58

N
o

=
(o]

=
(o))

Disk Reliability Index
|_\
D

[N
N

114 15 16 17 18
Memory Reliability Index

Figure 4.2:NCFS Reliability Score (¢, ¢siqen: = 1) This figure illustrates a contour plot of the
reliability score of NCFS. Darker color means lower scoreorse reliability. Four points marked
with a “ x” represent the four sample configurations: low-end (1), samer (2), enterprise (3),
server (4).

corruption in each device:

PNCFS—udc :Pc(memv tresident) + Pc(d5k>

+ P.(mem, 30)

wheret,..q.nt = t3 — to IS the residency time (in seconds) of the block in the reader’
memory and 30 is the residency time of it in the writer's meynét,,;_,.q. is a function of
three variables: the reliability indices of memory and disthe system, and the residency
time t,esident-

The reliability score of NCFSt{.si4en: = 1) is shown in Figure 4.2, with the four
configurations marked as<”. We choos€,...q.n: = 1 because it represents a best case
(approximately) for reliability and we will discuss the séivity of reliability score to

tresident 1N SeCtion 4.2.3.

59

As one can see from the figure, when either the disk or the merabability index is
low, corruption on that device dominates the reliabilitgigc For example, when the disk
reliability index is 12, the reliability score of the systemost does not change when the
memory reliability index varies; both config 2 (consumer)l @onfig 3 (enterprise) have
a score of 7.4 (even worse than Terabyte reliability). Buemwthe disk is more reliable,
memory corruption starts to dominate and the reliabilityredncreases as the memory
reliability index increases. When both reliability indscare high, NCFS with config 4
(server) has the best reliability score of 12.8 (a littletdrethan Petabyte), still less than
the Zettabyte reliability goal (17.5).

4.2 From ZFS to Z2FS

To explore end-to-end concepts in a file system, we now ptésenvariants of ZFS:
E2ZFS, which takes the straight-forward end-to-end approact ZFS, which employs
flexible end-to-end data integrity. Specifically, we showh&FS, a modern file system
with strong protection against disk corruption, can beHerthardened with end-to-end
data integrity to protect data all the way from applicationdisk, achieving Zettabyte

reliability with better performance.

4.2.1 ZFS:the Original ZFS

ZFS is a state-of-the-art open source file system origir@athated by Sun Microsystems
with many reliability features. ZFS provides data integiily using checksums, data
recovery with replicas, and consistency with a copy-ortenransactional model [29]. In

addition, other mechanisms such as pooled storage, inidagication, snapshots, and

clones, provide efficient data management.

60

writer ; storage | reader
i mem (none) : dsk (Fletcher) : mem (none) T

N
>

t t t t

0 1 2 3

@ Fletcher (V) Fletcher

. Checksum Checksum
¢ Write ¢ Read Generation Verification

Figure 4.3:Timeline of a Data Block in ZFS This figure shows timeline of a block in ZFS.
The name of the checksum used to protect data during eaclpérical is listed in the parentheses
on the right of the device name. None means no checksum is used

Problem

One important feature that distinguishes ZFS from mostrdileesystems is that ZFS pro-
vides protection from disk corruption by using checksumBSZnaintains alisk check-
sum(Fletcher, by default) for each disk block and keeps the k$iem in a block pointer
structure. As shown in Figure 4.3, when ZFS writes a blockis& dt¢,, it generates a
Fletcher checksum. When ZFS reads the block back, it vetlieshecksum and places
itin the page cache. In this manner, ZFS is able to detect ikiadg of corruption caused
by disk faults, such as bit rot, phantom writes, and mistee@ceads and writes [29].
However, Chapter 3, as well as some anecdotal evidence [9,71,6shows that ZFS
is vulnerable to memory corruption. The checksum in ZFS Ig werified and generated
at the boundary of memory and disk; once a block is cached mang the checksum
is never verified again. Applications could read bad datenftbe page cache without
knowing that it is corrupted. Even worse, if a dirty data pageorrupted before the
new checksum is generated, the bad data will get to disk pernily with a matching

checksum and later reads will not be able to detect the chorup

61

20 ,
. 18

()

©

=

> 16

B

3

S 14

4

2}

Q42 *,

[EEN
o

114 15 16 17 18
Memory Reliability Index

Figure 4.4:ZFS Reliability Score (t,csiqent = 1) This figure illustrates a contour plot of the
reliability score of ZFS. Darker color means lower score +sereliability. Four points marked

with a “ x” represent the four sample configurations: low-end (1), samer (2), enterprise (3),
server (4).

Reliability Analysis

We apply the framework introduced in Section 4.1 to caleuthe reliability score for

ZFS. Similar to NCFS, there are three scenarios that cau§e SD

PZFS—udc :Pc(mema tresident)
+ Puac(dsk, Fletcher)

+ P.(mem, 30)

Because ZFS has on-disk blocks protected by Fletcher, ordgtected corruption con-
tributes toPzrs_yde-

Figure 4.4 depicts the reliability score of ZFS. With Fledclprotecting data on disk,
the reliability score is now dominated by memory corruptidtowever, the reliability

score is not improved much, due to the lack of protection ehemory data. Both con-

62

fig 3 (enterprise) and config (server) 4 have the highestliétyascore of 12.8 (above
Petabyte reliability), but they are still below the Zettabyeliability goal (17.5). It is
interesting to see that config 4 (server) in ZFS has the sastediability score as itself
in NCFS, which indicates that when both the disk and memdrghiity indices are the
highest, memory corruption is more severe than disk caonptTherefore, we need to

protect data in memory.

4.2.2 BZFS: ZFS with End-to-end Data Integrity

To improve the reliability of ZFS, data both in memory and eskdnust be protected.
One way to achieve this is to apply the straight-forward smdnd concept. In common
practice, the writer generates an application-level checkfor the data block and sends
both the checksum and data to the file system. Because theadge and the file system
are not aware of the checksum, the writer usually uses agpasfithe data block to store
the checksum. When the reader reads back the block, it cég trex checksum portion
to ensure the integrity of the data portion. The checksuntepts the data block all the
way from the writer to the reader.

Because ZFS already maintains a checksum for each on-aick ol the block pointer,
we do not have to append the application checksum on top okAfR8&cksum. Instead,
we can simply store the application checksum in the blochteoj replacing the original
disk checksum. Therefore, we only have to expose the chetlsthe reader and writer,

and make sure the page cache and the file system are oblivithes ¢hecksum.

Implementation

To achieve the straight-forward end-to-end data integrigymake the following changes
to ZFS, transforming it into &ZFS.

63

First, we attach checksums to all buffers along the I/O paser buffer, data page
and disk block. Since ZFS already providiisk checksunfor each disk block, we add
memory checksuro the user buffer and the data page. It enables the systems® p
checksums between the application and disk. Since only leaeksum algorithm is used
throughout the system, the memory checksum and the diskshecare the same as
the application-generated checksum, assuming the uderdafe always aligned to data
pages. We will discuss the alignment issue in Section £3FE currently supports both
xor and Fletcher, but only one can be used at a time.

Second, we enhance the existing read/write system calisawiew argument to trans-
fer checksums between user and kernel space. The new argisnaelouffer containing
all checksums corresponding to the blocks in the user bu@fiereads, the application re-
ceives both data and checksum, and thus is able to verifyitbgrity of data. On writes,
the application must generate a checksum for each data,ldmcksend both the data
block and checksum through the new system call.

Finally, we modify the checksum handling at the boundary efmory and disk such
that the checksum is always passed through this boundapwiiiny extra processing.
E?ZFS simply stores both data and checksum on disk and doesenetage or verify
the checksum. In this way, only the applications (readerwantds) are responsible of
verifying and generating the checksums, thus providingstreght-forward end-to-end

data integrity.

Reliability Analysis

The timeline of a data block from writer to reader is shown igufe 4.5. EZFS uses
one type of checksum (xor or Fletcher) all the way throughe Writer generates the

checksum for the data block @t and passes both the checksum and data block to the file

64

| reader

writer storage

imem (Fletcher/xor) : dsk(FIetcher/xor): mem (FIetcher/xor)T

N
>

t t t t

0 1 2 3
@ Fletcher/xor (V) Fletcher/xor
. Checksum Checksum
¢ Write f Read Generation Verification

Figure 4.5: Timeline of a Data Block in E2ZFS This figure shows timeline of a block in
E2ZFS. EZFS uses the same checksum (either xor or Fletcher) all tlyetwaugh.

system. Both are then written to disktatand read back at. The reader receives them
atts; and verifies the checksum.

In E2ZFS, only undetected corruption during each time periodeaa SDC; detected
corruption would be caught by the checksum verificationgrened by the reader. The

probability of undetected data corruption is:

Pe2zes wide =Pudc(mem, Fletcher /xor, teesidgent)

+ Pua.(dsk, Fletcher /xor)

+ Puac(mem, Fletcher /zor, 30)

The reliability scores of EZFS (xor) and BEZFS (Fletcher) are shown in Figure 4.6(a)
and Figure 4.6(b). Overall, ZZFS (Fletcher) has the best reliability, with all scores\abo
the reliability goal. BZFS (xor) can meet the goal only when both disk and memory are
more reliable. Config 4 (server) has a score of 27.8 while botifig 2 (consumer) and
config 3 (enterprise) have a score of 17.1 (just short of Bgteareliability). Compar-
ing both figures, when the disk corruption dominates (withratex below 12), EZFS
(Fletcher) is much better thart &S (xor), showing that Fletcher is clearly a better check-

65

x x
() ()
e] e]
k= k=
2 2
3 3
8 8
© ©
(14 (14
= =
v v
a a
114 15 16 17 18 114 15 16 17 18
Memory Reliability Index Memory Reliability Index
(a) BZFS (xor) (b) E2ZFS (Fletcher)

Figure 4.6: E?ZFS Reliability Score (t,csizent = 1) These figures illustrate contour plots
of the reliability score of EZFS (xor) and BZFS (Fletcher). Four points marked with ax”
represent the four sample configurations: low-end (1), comex (2), enterprise (3), server (4).

System TP (MB/s) | Normalized TP
ZFS 656.67 100%
E?ZFS (Fletcher) 558.22 85%
E?ZFS (xor) 639.89 97%

Table 4.3:0verhead of Checksum CalculationThis table shows the throughput of sequen-
tially reading a 1GB file from the page cache in ZFSZES (xor), and BZFS(Fletcher).

sum for protecting blocks on disk.

Performance Issues

E2ZFS (xor) is less reliable than?BFS (Fletcher), but it offers better performance, es-
pecially when the reader is reading data from memory. TallesHows the throughput
of reading a 1GB file from the page cache. As one can see, ZFthédwest through-

put because there is no checksum calculation involveFE with Fletcher suffers a

66

throughput drop of 15%. In contrast?ZAS (xor) is able to achieve a throughput just 3%
less than ZFS, with the checksum-on-copy optimization,[88jich calculates the xor
checksum while data is copied between kernel space and paseg.sThe checksum-on-
copy technique can be applied easily and efficiently duedaitmplicity of xor checksum,

but may not be a good option for stronger and more complexksiiees such as Fletcher.

4.2.3 Z2FS: ZFS with Flexible End-to-end Data Integrity

There are two drawbacks with the straight-forward endrtd-approach. Besides the
performance problem as shown above, it also suffers frommehy recovery: neither the
page cache nor the file system is able to verify the checksutatext corruption in time.
To handle both problems, we build#EZS on top of the changes we have made iAES
by further applying the concept of flexible end-to-end datagrity. For the timeliness
problem, a simple fix is to add an extra verification when thea tabeing flushed to disk
and when the data is being read from disk. For the performpratdem, however, more
analysis and techniques are required. We will focus on tipeance problem in this
section and discuss the timeliness problem in Section 4.3.

In this section, we will introduce two operation modes ##3: static mode, in which
checksums are changed only across components (e.g., Inetmezaory and disk), and

dynamic mode, where checksums are even changed overtime.

Static Mode with Checksum Chaining

Looking at the reliability score and performance figures ®IES, a natural question one
may ask is: can we combine &S (xor) and EZFS (Fletcher) to make a system with
better performance while still meeting the reliability ¢fodao answer this question, we
introduce the static mode of’ES, ZFS (static), a hybrid of &FS (xor) and EZFS

67

writer storage reader

dsk (Fletcher)

I
L mem (xor) I mem (xor) T

t t t t

0 1 3

2
(© xor @ Fletcher @ xor (W) xor
(V) xor (V) Fletcher

. Checksum Checksum
¢ Write ¢ Read Generation Verification

N
>

Figure 4.7: Timeline of a Data Block in Z2FS with Checksum Chaining This figure
shows timeline of a block inES with checksum chaining, which is applied aandt,.

(Fletcher) that uses xor as the memory checksum and Fle&sh#re disk checksum.
In static mode, ZFS must perform a checksum conversion at the cache-diskdaoyn
To handle the conversion correctly, we develop a technigllecChecksum Chaining
which carefully changes the checksum to avoid any vulneraimdow.

Z*FS (static) converts the checksum from xor to Fletcher wheting data to disk.
With checksum chaining, it must generate the Fletcher chaukeforeverifying the xor
checksum. In this way, the creation of the new Fletcher chi@atkoccurs before the last
use (verification) of the old xor checksum; the coverage efrtew and old checksums
overlaps. Itis as if the two checksums are chained to eaar.ofhsuccessful verifica-
tion of the xor checksum indicates that with high probagilihe Fletcher checksum was
generated over the correct data and thus Fletcher checkstomrect. If the order of gen-
erating Fletcher and verifying xor is reversed, there islaemable window in between. If
the data is corrupted in the window, the new Fletcher chauksill be calculated over the
corrupted data, resulting in silent corruption, becaugectiecksum actually “matches”
the bad data.

The timeline of a data block in2ES with checksum chaining is shown in Figure

68

4.7. On the write path, the writer generates an xor checkduimsa When the block
is being written to disk, ZFS generates a Fletcher checksum using checksum chaining
and sends the Fletcher checksum and data to disk. On the atladZFS generates
an xor checksum using checksum chaining when reading tleebdiatk from disk, and
then passes it to the reader along with the data block. Tlkerdmally verifies the xor
checksum. As a side effect of checksum chaining, the xorkshau is verified at the
cache-disk boundary on the write path and the Fletcher cluecks verified on the read
path, which helps to catch any detectable corruption in.time

With checksum chaining, S has to generate an xor checksum for each data block
when reading it from disk, which may affect the performarindact, the same xor check-
sum already existed when the data block was first written byafhplication. Instead of
regenerating the xor checksum on every rea<Zsimply stores both the xor checksum
and the Fletcher checksum on disk when writing a data blawt tlhen when reading it,
both checksums are available. The Fletcher checksum isdctieprimary checksum
because it is the required disk checksum. By grouping botiskdums and storing them
on disk, ZFS skips the generation of xor checksum on the read pathjrtiprsving the
performance. Note that’ES still need to verify the primary checksum (Fletcher) when

reading a block from disk.

69

writer storage reader

|
dsk (xor, Fletcher) :

L mem (xor) mem (xor) T

N
>

t t t t

1 3

0 2
(@ xor G Fletcher () Fletcher (V)xor
(V) xor

. Checksum Checksum
¢ Write ¢ Read Generation Verification

Figure 4.8:Timeline of a Data Block in Z2FS (static) This figure shows timeline of a block
in Z2FS (static). When there are two checksums during a time geifi@ underlined checksum is
the primary checksum, as defined in Section 4.2.3.

Reliability Analysis of Static Mode

Figure 4.8 shows an updated timeline fdiF5 (static) with this optimization. The prob-

ability of undetected corruption for’ES (static) is:

PZ2FS—udc = udc(mema xor, tresident)
+ Puac(dsk, xor& Fletcher)

+ Pug.(mem, zor, 30)

Note that the corruption on disk must be undetectable by katland Fletcher. Since the
block will be checked against the Fletcher checksum and against the xor checksum
atts, if either checksum catches the corruption, there will reoatsilent data corruption.
The reliability score of ZFS (static) att,sizent = 1 iS Shown in Figure 4.9. Since
on-disk blocks are protected by Fletcher, memory corrupdiominates. When memory
corruption is severe with an index less than 13.7, the rdiliabcore is below the goal. As
the memory reliability index increases, the reliabilitpseincreases and becomes above

the goal. However, ak...q..; iINCreases, the reliability score will decrease and at some

70

= = =)
N o [e%) o

Disk Reliability Index

=
N

10
14 15 16 17 18

Memory Reliability Index

Figure 4.9:Reliability Score (t,csiqzen: = 1) of Z2FS (static) This graph is a contour plot
of the reliability score of ZFS (static). Darker color means lower score - worse reliiil Four
points marked with a %” represent the four sample configurations: low-end (1), samer (2),
enterprise (3), server (4).

point it is possible to drop below the goal.

To find out when we should use’ES (static), we focus on memory reliability and
tresident- WWE take a close look at three cases based on the memonyiligligdolex: 13.4
(Mmaz = 1.99%x10714), 14.2 (\ig = 6.62x1071%), and 18.8 K, = 1.48 x 10719). Since
Figure 4.9 shows that memory corruption dominates, theavafithe disk reliability index
in each case does not affect the reliability score. Theeefoe fix the disk reliability index
at 10 for the first case, and at 12 for second and third caséhtée cases now correspond
to config 1, 2 and 3 (low-end, consumer, and enterprise).r€igui0(a), Figure 4.10(b),
and Figure 4.10(c) illustrate the reliability score gF5 (static) versus residency time in
all three cases.

In Figure 4.10(c) where the memory reliable index is maximtira reliability score
is above the goal and they will intersect after about sevezke/énot shown). It indicates

that xor is probably strong enough for data in memonES (static) fits right into this

71

w
o
w
o

N
[S2)
N
[S2)

N
o

=
[S)
=
[S)

Reliability Scor
=
Reliability Score
=
(&)

u

51 —Z%Fs

-=--Goal

—Z7°Fs
---Goal

0 ‘ ‘ : :] 0 ‘ ‘ : :]
0 50 100 150 200 250 300 0 50 100 150 200 250 300

Residency Time (s) Residency Time (s)

(&) Mnae (index = 13.4, config 1, low- (b) Mg (index = 14.2, config 2, con-
end) sumer)

301 301

25¢ 25¢

N
o
N
o

=
o

Reliability Scort
= =
Q (%))
Reliability Score
[y
(%))

o
o

—7%s
---Goal

—7%s
---Goal

O0 50 100 150 200 250 300 O0 50 100 150 200 250 300

Residency Time (s) Residency Time (s)

(€) Amin (index = 18.8, config 3, enter- (d) Apniq (index = 14.2, config 2, con-
prise) sumer)

Figure 4.10: Reliability Score Vs t,.sqent IN Z2FS These figures show the relationship
between reliability score and residency time i#FB. The first three are for the static mode, and
the last for the dynamic mode, in which the checksum swigabhdcurs at 92 seconds.

case.
In contrast, when the index is minimum as shown in Figure @J1.@he whole line of

Z?FS is below the goal. It shows that xor is not strong enoughdtept data in memory.

To handle this extreme case’F5S (static) skips checksum chaining and uses Fletcher all

the way through, but keeps the extra verification at the bagndf memory and disk. In

this way, ZFS (static) can provide the same level of reliability 4ZES (Fletcher).

The most interesting case is shown in Figure 4.10(b) with enarg reliability index

72

writer storage | reader
i mem (xor) : dsk (xor, Fletcher) : mem (xor, FIetcher)T | mem (xor, FIetcher)T

N
Ll

t t t t, t t,

0 1 2 3 “switch

© xor © Fletcher) Fletcher (V) xor) Fletcher
W) xor
. Checksum Checksum
¢ Write T Read Generation Verification

Figure 4.11:Timeline of a Data Block in Z2FS (dynamic) This figure shows timeline of a
block in ZFS (dynamic). The memory checksum is switched from xor toHeeatt ,witch.

of 14.2. When the residency time is less than 92 secortdsS Is able to keep the re-
liability score above the goal. However, after then the sanops below the goal and
slowly converges to &2FS (xor). In this case, in order to make sure the reliabditgre

is always above the goal2ES may need to change to a stronger checksum at some point

when data stays longer in memory.

Dynamic Mode with Checksum Switching

To prevent the reliability score from dropping below the lgag the residency time in-
creases, we apply a technique callédecksum Switchingp Z°FS (static). The idea
behind checksum switching is simple. On the read path, dreralready two checksums
on disk: xor and Fletcher. 2ES can simply read both checksums into memory; for the
first t,,i.cn SECONAS, ZFS Uses xor as theeaker memory checksuand then switch to
Fletcher as thetronger memory checksuattert,, .., Seconds. It is just a simple change

of checksum and there is no extra overhead. We call this méég Zynamic).

Reliability Analysis of Dynamic Mode

Figure 4.11 shows the timeline of a block iRES (dynamic mode). The static mode is

essentially a special case of dynamic mode with a extrenagfyelvalue ot ., ;;., Such

73

thatts is always in betweety, andt, ;.
Calculating Psys—wqc Depending on whethey, is before or after,;;.,, we have:

PZ2FS—udc = udc(mema xor, tresident)

+ Puac(dsk, xor& Fletcher)

+ Puac(mem, zor, 30)

wherets = ty + tresident 1S DEIWEEN, andt g i10n, and:

PZ2FS—udc = udc(memu Fletcher, t?"esident)
+ Puac(dsk, Fletcher)

+ Puac(mem, zor, 30)

wherets = ty + t,esident 1S greater tham,,iep.

Determining t¢,.;:cn By replacingt, csiqen: in the first formula witht,,;;.,, we can solve

for t,.::c, from the equation below:

PZ2FS—udc = Pgoal

With the Zettabyte reliability goaP,,,; = 3.46 x 107! and\,,;4, We havet i, = 92.
Figure 4.10(d) shows the reliability score ofS in dynamic mode. As we can see from
the figure, checksum switching occurs at 92 seconds so teacibre afterwards is still
above the goal.

By varying both the disk and memory reliability index, we basigure 4.12 showing

the values ot,,;;.;, that are required to meet the goal of Zettabyte reliabiMghen the

74

20 X4
. 18
[}
©
g
> 16
E
=
S 14
-
2}
Q49 *,

=
o

114 15 16 17 18
Memory Reliability Index

Figure 4.12:t,,:., Of Z2FS (dynamic) This figure shows a contour plot of the required
switching time to provide Zettabyte reliability i’ZS (dynamic), with respect to different disk
and memory reliability index. The z axis is the base 10 ldbarioft,,,;.; in seconds. Four
points marked with a %” represent the four sample configurations: low-end (1), samer (2),
enterprise (3), server (4).

memory reliability index is highX = \,.;., €.9., config 3 and 4).,......, iS about seven
weeks; in this case,’ES (static) is strong enough, which also offers the besbp@dnce.
When the memory reliability index is extremely low (e.g.nfig 1), Z2FS (static) keeps
using Fletcher as both disk and memory checksum to provel&dist reliability. When
the memory reliability index is in between (e.g., config 2F3 (dynamic) strikes a nice

balance between reliability and performance by switchivegahecksum at, ;.-

4.3 Discussion

We now discuss three technical issues when implementiif@Zchecksum chaining,

application integration, and error handling.

75

Symbol Description

X a data object, could b@ RG or DST
X.data the data of the objecY

X.cksum the checksum of object

X.size the size ofX.data

X.alg the checksum algorithm foX.cksum
S size of moved data

m(X) moved data inX

o(X) overwritten data inX

r(X) remaining data in\

g(cksum,alg, data) | generateksum usingalg overdata
v(cksum, alg, data) | verify cksum usingalg overdata

Table 4.4:Model Notation for Checksum Chaining The table depicts all notations used to
describe the model for checksum chaining.

ORG.cksum <—4|:| A—» DST.cksum

1] % T =
ORG m(ORG) |
r() ORG.size o(DST) r(DST)
T l A
ORG DST

Figure 4.13: An Example of the Notations This figure shows some of the notations in a
data movement example. Small squares and triangles regrebecksums. Different shapes of
checksum symbol indicates the algorithm or the value of Heelcsum are different. Each big

rectangle represents a data object over which a checksuralésilated. Heavy-shaded squares
represent the moved data and light-shaded squared repgresenwritten data.

4.3.1 Checksum Chaining

So far, we have assumed the user buffer is always alignedy® $2e. In fact, checksum

chaining does support generic requests with arbitraryedf#sd size, which is imple-

76

mented in ZFS through checksum-ware interfaces. Before we talk alh@ubéw inter-
faces, we first we propose a simple model to characterizeaftissios where checksum

chaining could apply when data is moved across buffers.

Notations In the model, data is always protected by a checksum. We uataabject
to represent a piece of data and a corresponding checksummirDdifferent data objects
can be of different sizes and the checksum algorithms candéfier. Therefore, a data
object has four propertieduata, cksum, size andalg.

Data movement is defined here as a piece of data moved fronrithe data object
ORG to destination data objed?S7T. The moved data frond RG is represented by
m(ORG), and the overwritten data iR ST is represented by(DST). The moved and
overwritten data is of siz&. In some cases§ may not be the same @3RG.size Or
DST.size; some portion of data i® RG is not moved and some portion of datalny7" is
not overwritten. The remaining data is represented(6YRG) or r(D.ST'). All notations
are explained in Figure 4.4 and illustrated in Figure 4.13.

During the data movement;(O RG) is copied fromO RG to DST and the checksum
of DST is updated. Checksum chaining is thus defined as followsinaisg) D is the
data stored inDST after the data movement, the néWST.cksum is calculated over
D beforethe integrity of D is verified usingD RG.cksum and the oldDST.cksum. A
special case of checksum chaining is whe@RG and DST are of the same size, and
ORG and DST use the same checksum algorithm. In this casR(=.cksum is copied
to DST.cksum directly when the moved data, without any recalculation. aak this
special case checksum forwarding.

Checksum forwarding is straightforward and has no overlexadpt the copying of
the checksum, but it has strict requirements for the aligrtraad checksum algorithms

of the moved data) RG and D ST'. In contrast, checksum chaining can be applied in any

77

scenario, but it has the overhead of one or more checksumlaatms.

In checksum chaining, the order of new checksum generatidroll checksum ver-
ification must not be reversed. I ST.cksum is calculated AFTERD is verified, there
is a vulnerable window in between. If the data is corruptedhis time window, the
new DST.cksum will be calculated using corrupt data. This is a type of dileor-
ruption which is undetectable using the new checksum bectheschecksum actually
“matches” the corrupted data. With the correct order, aesgfal verification indicates
that DST.cksum is generated over the correct data and thus can be trustedu8ethe
creation ofDST.cksum occurs before the last use ORG .cksum and oldDST'.cksum,
the coverage of new and old checksums overlaps; it is as ittvecksums are chained to

each other.

Five Cases of Checksum Chaining Data movement is not just a simple data copy op-
eration. Transferring a piece of data from its initial onigo its final destination usually
involves multiple copies through different layers of thetgyn. The alignment and size
of the moved data, as well as the size and checksum algorithipR6: and DST in all
layers are important factors. Depending on theandalg andsize of both O RG and
DST objects, data movement can be classified into the followwegdases, as shown in
Figure 4.14. For each case, we first give the condition thesgepties must satisfy and
then describe when and how checksum forwarding or chaisiagplied in detail.

Case 1:Aligned Data Movement (Same Checksum Algorithms)

ORG.alg == DST.alg and
S == ORG.size == DST.size
One example of Case 1 is transferring data blocks betweepate cache and disk
when both components use the same checksum. The size of patgtas usually the

same as a disk block, and data is always moved in full betwesmn.t

78

O O O O O A
ORG DST ORG DST ORG DST
Case 1 Case 1’ Case 2
O A O A O A
ORG DST ORG DST ORG DST
Case3 Case 4 Case 5

checksum generation
- moved data overwritten data = checksum @ g
A @ checksum verification

Figure 4.14.Cases of Checksum Chaining his figure shows five typical cases of data move-
ment. In Case 1,/-nd 2, the moved data is aligned withRG and DST'. In Case 3, 4 and 5, the
moved data is not aligned with RG, DST or both, respectively. The size of moved data could
be the same aBST.size as in Case 1, 2 and 3, or different as in Case 4 and 5. The segqu&nc
checksum chaining is shown as G and V operations in each Tasenumber of these operations
is used as an estimate of the overhead.

In this case, all data iW RG is copied toDST'. Since the checksum algorithms are

the same for both objects, one can apply checksum forwarding

(1) DST.data < ORG.data
(2) DST.cksum < ORG.cksum
Before moving forward to Case 2, we introduce Casealnore reliable version of
Case 1 with an extra verification, as shown in Figure 4.14aBse checksum forwarding
does not detect any corruption, doing such a verificatiomiges an opportunity of early

detection and in-time recovery. Otherwise, if the datalieaay corrupted, it will not be

79

detected until the next time the data is accessed and véofics performed. In fact,
this is a tradeoff between reliability and performance. Wihe overhead of one extra
verification, possible corruptions can be detected eardyrapaired in time.

Note that Case 1 has the lowest overhead, because there ecksam calculation
involved. For Case’las well as the next four cases, one can estimate the oveblyead
counting the number of checksum operations (generationarnification) needed in each
case. Each of these operations are shown in Figure 4.14 ededds or V, respectively.
To accurately measure the overhead, one needs to consedgizéhof data as well as the
speed of the checksum algorithm.

Case 2:Aligned Data Movement (Different Checksum Algorithms)

ORG.alg # DST.alg and
S == ORG.size == DST.size
In this case, since the checksum algorithms are diffef@A{.cksum must be calculated

usingDST.alg. Checksum chaining should be applied:

(1) g(DST.cksum, DST.alg, ORG .data)
(2) v(ORG .cksum, ORG.alg, ORG.data)
(3) DST.data < ORG .data

Case 3Unaligned Data Movement (Partial-to-Full)

ORG.buf # DST.buf and
ORG.size > DST.size and
S == ORG.size
A good example of Case 3 is an application reading data frenpége cache into a
user buffer, with an offset not aligned to the block size @sige). In this examplé&) RG
is a data page anB ST is a user buffer. The moved data is just a portion of the fudthl

stored in the page.

80

In this case D ST'.data is overwritten by a partial amount 6 RG.data. Irrespective
of the checksum algorithms used @y G and D.ST", checksum chaining must be applied.
A correct order is:

(1) g(DST.cksum, DST.alg, m(DST))

(2) v(ORG .cksum,ORG.alg, ORG .data)

(3) DST.data + m(ORG)
Note that in (1) the checksum is calculated only over the rdalaga inO RG, while in
(2) the verification is performed using all dataRG, becaus® RG.cksum covers all
its data and there is no checksum for the moved data. Therefimr the sames, the
overhead of this case is actually higher than Case 2.

All cases introduced so far have one commonality: the oaigilata inD.ST is over-
written by the new data copied frodR G, so there is no need to verityST.cksum. The
next two cases, however, have part/a$7.data overwritten by new data. Therefore, an
extra verification is needed to make sure the portion of dafa97 that is not modified
is correct.

Case 4Unaligned Data Movement (Full-to-Partial)

ORG.size < DST.size and
S =ORG.size

Case 4 happens when an application writes data to the fileraywith an offset not
aligned to the block size; the user buffép RG) is thus not aligned to the data page
(DST), because only part of the data page is overwritten.

In this case,O RG.data overwrites a part of)ST.data. The net effect is that the
new DST.data containsO RG.data and the remaining portion of ol ST .data is not
overwritten. The newDST.data is represented by RG.data + r(DST). Therefore,
the new DST'.cksum must be calculated oved RG.data + r(DST) before the data

movement, as i) RG.data were already copied t&ST. To make sure botbh RG.data

81

andr(DST) are good whileDST.cksum is being calculated, they have to be verified.
Therefore, the correct order of checksum chaining is:

(1) g(tmpcksum, DST.alg, ORG.data + r(DST))

(2) v(ORG .cksum, ORG.alg, ORG.data)

(3) v(DST.cksum, DST.alg, DST.data)

(4) DST.cksum <+ tmpcksum

(5) o(DST.data) + ORG.data
Unlike the previous cases, Case 4 requires two verificatmmes ovelO RG .data and the
other overDST.data.

Case 5Unaligned Data Movement (Partial-to-Partial)

S # ORG.size andS # DST'.size

This is the general case of unaligned data movement: parfisf.data is copied toD ST
and overwrites part oD ST.data. The method of implementing checksum chaining is
similar to Case 4, with a slight change to step (1) and step (5)

(1) g(tmpcksum, DST.alg, n(ORG) + r(DST))

(2) v(ORG.cksum, ORG.alg, ORG .data)

(3)v(DST.cksum, DST.alg, DST.data)

(4) DST.cksum < tmpcksum

(5) o(DST.data) + m(ORG .data)
Although this case does not occur iARS, we include Case 5 for the sake of complete-

ness.

4.3.2 Integration with Existing Applications

First, Z2FS supports generic requests with arbitrary offset andthimigh checksum-

aware interfaces. These interfaces differ from the trad#i read/write interfaces in that

82

O O O
o — 0O o —>» A
O O O
Data Page User Buffer Data Page User Buffer
Aligned Read Unaligned Read

Figure 4.15:Example of Aligned and Unaligned ReadsThis figure illustrates how ZS
handles aligned and unaligned reads. Small squares reptg@sgje checksums and small triangles
represent user checksums. The dark area represents thestegudata.
both data and it associated checksums are transferreddretive user space and the ker-
nel space. For example, Figure 4.15 illustrates hdw< handles aligned and generic
read requests respectively. In the aligned cadESZimply returns all three checksums
to the application. But when dealing with the unaligned seaflFS calculates a new
checksum that covers the requested data and sends it to phieasipn. The order of
checksum generation and verification conforms with chetkshiaining (see Case 3 and
Case 4 above): generate the user checksum first and they airihree page check-
sums. Note that the applications must be modified to use thanterfaces. We believe
such changes are necessary, because the exposed checksubesfarther utilized by
applications to protect data at the user level.

Second, 2FS also provides a compatibility library that preservestthditional in-
terfaces. The library performs checksum generation anification on behalf of the
application. The tradeoff is that applications do not haseeas to the checksums, thus

losing some data protection at the user level.

83

4.3.3 Error Handling

Both E2ZFS and Z2FS use checksums to verify data integrity. Whenever a migmat
happens, it is reasonable to think the data is corruptedtheothecksum, because the
checksum is usually much smaller than the data it proteaishas a lower chance of
becoming corrupted. In the unusual case where the checksworiupted, good data
would be considered corrupted. This false positive abota darruption does not hurt
data integrity; in fact, any checksum mismatch indicates the data cannot be trusted,
either because the data itself is corrupted, or becausddoksum cannot prove the data
is correct. Therefore, both systems must handle verifiodéidures properly.

In E2ZFS, there is only one verification, which occurs when theleeaeads a data
block. If the verification fails, the reader will re-read th@me block from the file system.
If the corruption happens in the page cache (reader's mepie¥FS can get the correct
data from disk and return it to the reader. However, if thewmion occurs before the
block is written to disk on the write path, it is too late tooger from the corruption. This
is the timeliness problem of the straight-forward end+td-approach.

As we mentioned in Section 4.2.3, to solve the probleAES has extra checksum
verifications at the boundary of memory and disk. On the wéth, the verification is
part of the checksum chaining. If it fails?ES aborts the write immediately and inform
the application, thus preventing corrupt data going to.diEgke application then can re-
write the block. On the read path2ES verifies the primary checksum (Fletcher) after
getting a data block from disk and will re-read it if the vexdiion fails.

Note that informing the application about the failed wrigequite challenging. It is
easy for synchronous writes; because the verification sdoefiore the write system call
returns, the application can just check the return valudefsystem call. However, for

asynchronous writes, the verification is performed by thekgeound flushing thread. To

84

properly return the error information to the applicationr solution in ZFS is to use a
modified fsync system call. S creates an error table for each opened file to record
which data page fails the verification. Whenefsmcis called, it checks the error table
of the corresponding file and returns all block numbers foumthe table. Because at
that time all verifications of dirty pages belonging to the fiave already finishefsync

can give the most up-to-date error information. Therefbyecallingfsyncperiodically,

the application can know the latest status of the blocks d@tevand perform necessary

recovery in time.

4.4 Evaluation

We now evaluate and comparéZES and 2FS along two axes: reliability and perfor-

mance. Specifically, we want to answer the following questio

e How do they handle various data corruption?
e What is the the overall performance of both systems?
e What is the impact of checksum switching on performance?

e What is the performance of both systems on real-world waidts®

We perform all experiments on a machine with a single-ca2&2iz AMD Opteron pro-
cessor, 2GB memory, and a 1TB Hitachi Deskstar hard drive.u¥&eSolaris Express

Community Edition (build 108), ZFS pool version 14 and ZF8 §i/stem version 3.

4.4.1 Reliability

The analyses in Section 4.2 showed theoretically h8®SZcan achieve Zettabyte Re-

liability with different reliability levels of disk and meory. In practice, however, it is

85

ZFS E?ZFS | Z°%FS
Timing | act res| act res| act res

tg ~ t1 — X dg’f’ e le‘ \/
ti~ty | dor e | dsr e | dar e
tg ~ t3 — X d37’ \/ dg’l“ \/

Table 4.5:Fault Injection Results The columns (from left to right) show the time period when
the fault was injected (Timing), how the system and the meseets (act) and the result of the
read request from the reader (res). Under the act columly ™ means the corruption is detected

at t; and a retry is performed. Under the res columng™means silent data corruption, ¢”

means the corruption is detected but can not be recoverenlifaisag there is only one copy of the
data on disk), and {/” means the reader gets good data.

difficult to experimentally measure the reliability of a 8, especially since we have
no knowledge of the actual failure rate of the disk and menionyse. Therefore, we
focus on demonstrating the advantage of flexible end-toetd integrity in detecting
and recovering from corruption, through a series of fay#ahon experiments.

We inject a single bit flip to a data block during each time p&iin Figure 4.3, and
record how each system reacts and whether the reader caorgsttaata. We perform
the same set of experiments on all three systems, ZE3; % and 2FS.

Table 4.5 summarizes the fault injection results. For th# fajected before the block
goes to disk#, ~ t,), only Z’FS is able to detect it beforg and ask the writer to retry,
thus preventing corrupt data getting to disk. The readef#HS can also detect the fault
atts, butitis too late to recover the data. When data on disk isupbed ¢, ~ t5), neither
E?ZFS nor 2FS is able to recover. For the fault injected after the bleekés disk on the
read path#, ~ t3), the reader in bothFS and BEZFS can detect it and re-read the block
from disk. Since ZFS only has protection for on-disk blogksan only catch corruption
that occurs on disk.

To show that 2FS behaves as expected during the fault injection expetsnere

86

Read Syscall
Read 10 (original)
B Read |0 (retry due to corruption)
6000 —
m
2
o)
£
|_
@
2
I
S 5000 —
7
o}
o
4000 I

|
No Corruption Corruption

Figure 4.16:Corruption in the Read Path (Cold) This graph shows the time breakdown
of a read system call in2FS when a block is correct or found corrupted in the page cadte
y-axis is in micro seconds. Since the cache is cold, the liéofikst read from disk.

measure the time cost of read and write system calls, as s#leal/O time of each disk
read and write. Figure 4.16, 4.17, and 4.18 present the tm@&kdown of a read or a

write system call in three cases: cold read, warm read artd with fsync.

Read (cold): In this case, the reader reads a 4KB block frotfE and the block is not
present in the page cache. We clear the disk cache at thenregyiof our experiment so
that the first read always gets the block from disk. When ntt fainjected, there is only

one I/O, which takes about 5000 micro seconds, as shown uré. When a fault

87

300 —
Read Syscall

B Read |0 (retry due to corruption)
250 —

200 —

150 —

100 —

Response Time (us)

50 —

0
I

No Corruption Corruption

Figure 4.17:Corruption in the Read Path (Warm) This graph shows the time breakdown
of a read system call inZFS when a block is correct or found corrupted in the page cadte

y-axis is in micro seconds. Since the cache is warm, the ldackoe returned directly from the
page cache.

is injected while the block is in the page cachéF3 is able to detect the corruption and
re-read the block from disk. Since the second read I/O hitls ciiche, the actual I/O time

is small, only about 60 micro seconds.

Read (warm): Asshownin Figure 4.17, the result is similar to the previcase, except

that there is no huge first-time 1/0O cost, because the regdébck is already cached.

88

Write with fsync: In this case, the writer writes a 4KB block té&S and calls fsync
immediately. When there is no corruption, the write systeih @turns instantly (the
short white bar above the x-axis in Figure 4.18), becaus#ithie is asynchronous. The
following fsync flushes the data block to disk and logs thdewoperation in a log block
(totally two 1/0Os). Because both 1/Os go to the disk cache It® time is only about 120
micro seconds. Then, the file system issues a cache flush thistkheso that all blocks
cached by the disk cache are forced to disk. The wait time @shfko finish is long,
which dominates the response time of fsync. When the blodoiisupted in the page
cache, ZFS is able to detect the corruption before writing it out tekdiThe writer gets
an error code from fsync and calls write and fsync again tdaehe write, which are
shown as the second set of bars on top of the previous fayed f&\ote that there is only

one write I/O (log block) during the failed fsync, because data block write is aborted.

4.4.2 Overall Performance

We use a series of micro and macro benchmarks to evaluateetf@mpance of EZFS

and ZFS. All benchmarks are compiled with the compatibility &by.

Micro Benchmark Figure 4.19 shows the results of our micro benchmark experim
Sequential write/read is writing/reading a 1GB file in 4KBjuests. Random write/read
is writing/reading 100MB of a 1GB file in 4KB requests. To avthe effect of checksum
switching, ZFS is in static mode. From Figure 4.19, one can see that uaddom write
and random read (cold), the performance éFZ and BZFS is close to ZFS. Because
both workloads are dominated by disk seeks, the overheatlemfksum calculation is
small. In the cases where the cache is warm, since no phy&@slare involved, the

calculation of checksums dominates the processing tim&F& (Fletcher) is about 15-

89

30000 —
L] write Syscall
Fsync Syscall
B write 10 (log block)

25000 — B Write 10 (data block)
__ 20000 —
0
2
()
£
|_ | ——l— |
o 15000 —
%)
c
)
o
N
)
e

10000 —

5000 —

0 I
No Corruption Corruption

Figure 4.18:Corruption in the Write Path This graph shows the time breakdown of a write
system call followed by a fsync ifEZS when a block is correct or found corrupted in the page

cache. The y-axis is in micro seconds.
17% slower than ZFS, while boti?EFS (xor) and 2FS only have a 3% throughput drop.

In sequential write and sequential read (cold), the peréme of 2FS is comparable to
E’ZFS (Fletcher).

90

m ZFS m EZFS (xor) E2ZFS (Fletcher) Z%FS (static)
9¢8B, B Gg g B%5g 8888 8y g3
NG odN el QTe Nle] (o pag NG cooo 94 o
~MNN~No © s R ENE ™~ Do 0
_ N~ 8 < O ©ON© - W10 g0
1 | 00 © o . 27
2 09 = 8 2
ey
§> 0.8 —
;E_ 0.7 —
3 0.6
N 05
£ 04 -
S 03
0.2 —
0.1 —
0
Seq Write Seq Read Seq Read Random Write Random Read Random Read
Cold Warm Cold Warm

Figure 4.19:Micro Benchmark This graph shows the results of several micro benchmarks on
ZFS, BZFS, and 2FS (static). The bars are normalized to the throughput of ZF absolute
values in MB/s are shown on top.

Macro Benchmark We use filebench [107] as our macro benchmark. We choose web-
server, fileserver and varmail to evaluate the overall appbn performance on’ZFS
and ZFS. Figure 4.20 depicts the throughput of these workloads.

Webserver is a multi-threaded read-intensive workloadcoftsists of 100 threads,
each of which performs a series of open-read-close opasatin multiple files and then
appends to a log file. After reaching a steady state, all raggsatisfied by data in the
page cache. Therefore, the throughput is mainly deternbgelde overhead of checksum
calculation. As shown in Figure 4.202H-S (xor) and 2FS (static) has the closest
performance to ZFS, because they always calculate the xoksbm. BEZFS (Fletcher)
is about 15% percent slower than ZFS, which matches our quswunicro benchmark
result. In ZFS (dynamic), the memory checksum is changed from xor teéetwhen a

block stays in memory for more than 92 seconds, so the ovbralighput is in between

91

m ZFS] EZZFS(xor) EZZFS(FIetcher) ZZFS(static) s (dynamic)
R‘f N ™ S O 0 N~ © % g F\rl '; (3
N~ S o oS ® 05 ©oooco
Qaiwam O 0o ddAaa9
© N~ © A
1 4 N ¢ N ¢ o o
- o— N —
2 0.9 — N
<
%30.8 —
E 0.7 —
5 0.6 —
NO05 —
g04
03
0.2 —
0.1 —
0 \ \ \
webserver fileserver varmail

Figure 4.20:Macro Benchmark This figure shows the throughput of our macro benchmarks

on ZFS, BZFS, 2FS (static), and ZFS (dynamic). Each workload runs for 720 second¥<
(dynamic) has.icn = 92 seconds.

Z°FS (static) and EZFS (Fletcher).

Fileserver is configured with 50 threads performing createketes, appends, whole-
file writes and whole-file reads. It's write-intensive withl& read/write ratio. In this
case, the throughput ofES is comparable to®ZFS (Fletcher) and &ZFS (xor).

Varmail emulates a multi-threaded mail server. Each thpsatbrms a set of create-
append-sync, read-append-sync, read, and delete operatidias about half reads and
half writes and is dominated by random I/Os. Therefore, trexall throughput of ZFS
and BZFS is no different than ZFS.

4.4.3 Impact of Checksum Switching

One key parameter in%ES ist,,itn, Which is the maximum residency time of a data

block in reader's memory before checksum switching occuise value oft ;. IN-

92

290
280 —
K
m
2
3 270 —
S
§ """" E2ZFS (Fletcher)
= 260 - - ZFs (static)
O Z%Fs (dynamic)
250 \ \ \ \ \ \ \ \ \

0 100 200 300 400 500 600 700 800 900
Switching Time (s)

Figure 4.21: Webserver Throughput with Different ¢,,., This figure illustrates the
throughput changes of webservertag;;., increases. The dashed line and dotted line represent
the throughput of webserver oS (static) and EZFS (Fletcher) respectively. The runtime of
the webserver workload is 720 seconds.

dicates a tradeoff between reliability and performanceve®ia reliability goal, longer
tswiten Means worse reliability score (still above the goal), butdygerformance because
the weaker memory checksum can be used for a longer time.

To understand the impact of checksum switching, we run thieseser workload
on Z?FS (dynamic) and vary,,...,. Figure 4.21 illustrates the relationship between the
throughput of the workload antd,i;ch. AS t.wiren, iNCreases, the performance offF5
(dynamic) gets closer to?ES (static), because more and more warm reads are verifying
the xor checksum. Whef,,i:.» is the same as or longer than the runtim&; & (dynamic)
matches the performance ofZS (static). Even whety,.., is short (e.g., 30 seconds),

Z%FS (dynamic) still outperfoms®FS (Fletcher).

93

Trace | Read Cache | Before After
Num | Count | Hit Rate | tywiten tswiten
1 14343 | 98.0% | 34.5% 65.5%
2 35209 | 96.9% | 58.9% 41.1%
3 61437 | 98.8% | 83.7% 16.3%

Table 4.6:Trace Characteristics Read count is the total number of 4KB-read in each trace.
Hit rate is the cache hit rate for data reads. Before/Aftgr;;.;, is the percentage of warm reads
that access a data block with a residency time less/greatart;,;;.;, = 92 seconds.

4.4.4 Trace Replay

So far we have shown the performance benefit®dfF using artificially generated work-
loads. Now, we evaluate’ES by replaying real-world traces. We use the LASR system-
call traces [6] collected between 2000 and 2001, which cthugeen machines used for
software development and research projects. The tracasoaléO intensive, but they
contain realistic access patterns that are hard to emultiewantrolled benchmarks. We
build a single-threaded trace replayer to sequentialllasefne system calls at the same
speed as they were recorded. All unaligned read and writgestg are converted into
aligned ones such that we can replay the trace @™FE, which only supports aligned
requests.

We choose three one-hour long traces from the collectiorrgpidy them on EZFS
(Fletcher), 2FS (static), and ZS (dynamic..i.., = 92). The characteristics of the
traces are listed in Table 4.6 and the results are shown ile Bab. As one can see from
the tables, overall, S has better performance thatZES (Fletcher). In trace 3, most
of the warm reads (83.7%) are accessing data blocks withiderey time less than 92

seconds, and thus there are more calculations of xor checksan Fletcher on FS

94

Total Read Time (Ss)
Trace E2ZFS Z°’FS Z°FS
Num | (Fletcher) (static) (dynamic)
1 1.00 0.91(9.0%) 0.95 (5.0%)
2 4.34 3.73(14.1%) 3.82(12.0%)
3 6.58 5.46 (17.0%) 5.47 (16.9%)

Table 4.7:Trace Replay Result The table shows the total time spent on read system calls for
each trace on each system. The percentage in the parentiseébesspeedup of’ES with respect
to E2ZFS (Fletcher).

(dynamic), which makes its performance closer #3 (static). In contrast, 65.5% of
the warms reads in trace 1 are of blocks that have stayed inonyefor more than 92

seconds, so the performance 68 (dynamic) is closer to*ZFS (Fletcher). Therefore,
workloads dominated by warm reads can benefit most fréF8Zdynamic) if most read

accesses to a block occur during the fitst:.,, seconds of that block in memory.

4.5 Summary

The straight-forward approach of end-to-end data intggribvides great protection against
corruption, but the requirement of using one strong higtellehecksum for all compo-
nents along the 1/0 path leads to lower application perforeeaand untimely detection
and recovery.

To address these issues, we present a new concept: flexible-@md data integrity.
A system with flexible end-to-end data integrity uses défgrchecksum algorithms for
different component, and thus can dynamically make trddéaftween performance and
reliability. Such a system also utilizes extra checksunification below the application

to provide in-time detection and recovery. In this way, a@imponents in the I/O path

95

provide strong data protection in a cooperative manneryes@mponent is aware of the
checksums and performs necessary checksum operatiohgsgeneration, verification,
switching or passing, to prevent silent data corruption.

To apply the concept to a system, we first develop an analytazaework to provide
rational behind flexible end-to-end data integrity. Them, build EZFS and Z2FS, to
study both end-to-end concepts and demonstrate how to #pgiigle end-to-end data
integrity to ZFS. Through reliability analysis and variaperiments, we show thatEZS
is able to provide Zettabyte reliability with comparablébetter performance thartEFS.
Our analysis framework provides a holistic way to reasonualbioe tradeoff between

performance and reliability in storage systems.

96

Chapter 5

Data Protection Analysis of Cloud

Storage Services

Cloud-based file synchronization services, such as Dropbtx SkyDrive [122], and
Google Drive [53], provide a convenient means both to symize data across a user’s
devices and to back up data in the cloud. While automaticleymization of files is a
key feature of these services, the reliable cloud storagyedffer is fundamental to their
success. Generally, the cloud backend will checksum ariicagp its data to provide
integrity [18] and will retain old versions of files to offeecovery from mistakes or in-
advertent deletion [44]. The robustness of these datagirotefeatures, along with the
inherent replication that synchronization provides, cee the user with a strong sense
of data safety.

Unfortunately, this is merely a sense, not a reality; theéowoupling of these services
and the local file system endangers data even as these sestrige to protect it. While
the data stored remotely is generally robust, local clieftixsare is unable to distinguish

between deliberate modifications and unintentional erptentially causing corrupt or

97

inconsistent data to automatically propagate to all mahassociated with a user. Thus,
despite the presence of multiple redundant copies, synidaton destroys the user’s
data.

In this chapter, we demonstrate these problems throughifgattion experiments.
We first present some background on file synchronizatiorigesyn Section 5.1. Then,
in Section 5.2 we explore several case studies wherein synmization services propa-
gate corruption and spread inconsistency. Finally, weyaeahow the limitations of file

synchronization services and file systems directly caussetproblems in Section 5.3.

5.1 Background

In order to understand the causes of the incorrect behal/fiie eynchronization services,
itis necessary to first understand how they operate. Filetspmization services are aptly
named; they do their best to ensure that their users’ filesyarehronized across all of
their devices, as well as the cloud. While their design sp@asesome variety in it, rang-
ing from Apple’s iCloud synchronizing specific applicatidata [20] to Wuala’s use of a
user-space file system [123], the basic functionality oféhgervices is relatively homo-
geneous. We find that there are two popular ways of implemgistich a service, based
on the underlying synchronization protocol. Services sagtDropbox and ownCloud
rely on a specific file synchronization protocol, rsync [98fasync [41] respectively.
On the other hand, many open-source synchronization ssviocluding Seafile [99]
and sparkleshare [103], are built on top of distributed ieer€ontrol systems such as
GIT [52]. Thus, we provide a brief case study of Dropbox andffBeto cover both types
of services; while the details are application-specifie,dkierall architecture applies to a

variety of services.

98

5.1.1 Dropbox

Dropbox consists of two main components: a client-side aaeand a cloud backend.
The daemon monitors changes in the local file system and dpltteem to the cloud.

The cloud software, in turn, stores these files and then pgadpa them to the user’s other
devices. As the cloud component runs remotely, we can otiér its characteristics

through interacting with it via the network and through whabpbox has published about
it. As Drago et al. [43] have already examined many of thesaildeslsewhere, we focus
primarily on the client in our discussion. While the clieatdlosed source, since it runs
locally, we can directly observe its behavior. In the foliogzdiscussion, we concentrate
on two aspects of this behavior: how it manages its interrethdata and its procedures

for synchronizing files.

Data Management

The Dropbox client operates as a userspace daemon, regoaidirect operating system
support or kernel modules, and observes a single foldeyrmgsthat its contents are
synchronized with the cloud. To track local states, it ugeeral SQLite databases, most
of which are encrypted. These databases store metadatadridhe user’s files, such as
the most recent time each file was modified, as well as hasteschffile used to identify
their contents. Dropbox uses this information to coordintg synchronization with the
cloud.

Dropbox’s view of the user’s file namespace is much more srtign that of the file
system. It identifies files by their full pathnames and dodgeresent directories in its
database. If the user performs a rename of a file, it deletefiléhfrom the cloud and
re-uploads the renamed version; similarly, if the usertdsla directory, the client deletes

all children of that directory and re-uploads them, ideatifby their new full pathname.

99

Dropbox provides a revision history for each file that it kscallowing a user to
revert a file to any of its previously uploaded states, wittértain time limits depending
on the level of the user’s subscription. While useful, Droxb constrained view of the
file system limits the extent of this history. In particuleenamed files cannot explicitly
be reverted to prior versions before they were renamededdsthe user must restore the

file of the original name and delete the renamed file.

File Synchronization

Upon booting, the Dropbox client registers with the cloud ahecks whether any files
have changed or been added remotely. If so, it downloads thiena staging area and
renames them into the local directory once complete, sothigatiser never sees an in-
complete update. At the same time, it also scans the locdtdiry to detect whether any
modifications have occurred while it was offline, comparitagssuch as timestamps and
size of each file with the version stored in its databaseshe$e differ, it infers that the
file was changed and runs rsync to upload the changes to the; ¢cbsave bandwidth, it
divides files into chunks and only sends those chunks naadrewned by the user. In
the event that it detects a conflict between two versions ¢é atfperforms no resolution;
instead, it keeps both versions of the file and renames omelicaite that it is in conflict.
Once running, the Dropbox client continues to actively $yoaize its folder. When
remote changes occur, the server sends it a notificatiosirgathe client to immediately
download the new data in the same manner as the initial uplaadetect local changes,
the client employs a notification service, such as Linuxdify, that informs it of events
in the local file system. This information is generally vagtiaotify, for instance, reports
little more than the file name and the type of event, such asaterwrite, or unlink, that

occurred—but suffices to allow Dropbox to maintain synckiroAgain, the client uses

100

rsync to upload only the changes in each file and performspdedtion.

5.1.2 Seaflle

Similar to Dropbox, Seafile also has a client-side daemonaasetver backend. Unlike
Dropbox, which interacts with files in the file system dirgcteafile maintains a GIT-
like repository (repo) to manage a synchronized folder. @alsynchronized folder is
called a working tree. Seafile tracks and stores updatesdbtter in local and remote
repositories. The remote repo on the server holds the mastech, acting as a backend to
store all data and version histories. The local repo costihia local branch, representing
the current state of the folder. The synchronization is fhexnfiormed between the master

branch and the local branch.

Data Management

Unlike Dropbox, which only records file metadata in a locabtbase, Seafile uses repos
to track both data and metadata. A repo is essentially arciodijgre. Files and directories
in the folder are all stored as objects in the store, identifig SHA-1 hashes. A file’'s
data is divided into chunks with variable length. A file ismegented by a Seafile Object
which stores a list of hashes of data chunks. A directory jsagented by a SeafDir
Object containing a list of directory entries, each of whathints to a Seafile Object or a
SeafDir Object. The hash of the root directory in the foldecalled a commit ID, which
uniquely represents a state of the entire folder. Therefibie history of changes to a
folder is recorded as a series of commit IDs. Similarly, #ngsion history of each file is
tracked by a series of hash values of its Seafile objects.

The remote repo maintains the complete version history yaclsronized files, in-

cluding all the previously used but unreferenced data cbuike client repository, on

101

the other hand, only keeps a short history of changes. Undsdchunks are garbage
collected at the beginning of each run of the local Seafintiilaemon. At any time, the
master branch points to a remote commit ID on the server amtbtal branch points to

the latest local commit ID on the client.

File Synchronization

A Seafile client daemon runs on the client and monitors batHdbal folder and server
for updates. When there are local changes, the client carthetchanges to the local
branch and then synchronizes the local branch to the seiren there are remote
changes, the client first downloads the master branch fremsdhver, then commits local
changes, and finally merges the master branch into the logatbh. The client performs
conflict handling during the merge, in which a conflicting gdgpm the master branch
is renamed and then committed to the local branch. After teege) the client uploads
the local branch to the server, including all the regulaal@hanges and changes due to
conflicts. Finally, the master branch is updated to poinheodtate just uploaded.

Seafile client detects offline changes in a way similar to Dmp After every commit,
it records in a local index file various stats of every file ia tblder, including modifica-
tion time and file size. When the client starts, it performeaal scan to find out if there
are offline changes. This process involves checking everytfihe folder and comparing
timestamps against the ones in the index file.

When the client is running, it monitors both the local folded the server for updates.
For local changes, Seafile client relies on inotify, but ityarses inotify as an indicator. It
still depends on a scan to find out what files and directories wdified. In comparison,
Dropbox makes fully use of inotify to detect local change$e Tlient detects remote

updates by polling the server every 30 seconds. The cliegtkshif the commit ID of the

102

local branch differs from the commit ID of the master bran€they differ, it means that
there are remote changes. Since there is no remote scamllimg process is fast and

efficient.

5.2 Data Protection Failures

We now present three case studies to show different faiktagsed by the semantic gap
between local file systems and synchronization services.fif$t two of these failures,
the propagation of corruption and inconsistency, resolnfthe client’s inability to dis-
tinguish between legitimate changes and failures of theyiem. While these problems
can be warded off by using more advanced file systems, thi ttausal inconsistency, is

a fundamental result of current file-system semantics.

5.2.1 Data Corruption

Data corruption is not uncommon and can result from a vaoétauses, ranging from
disk faults to operating system bugs [23, 38, 47, 89]. Cdrompcan be disastrous, and
one might hope that the automatic backups that synchromizaérvices provide would
offer some protection from it. These backups, however, nthkm likely to propagate
this corruption; as clients cannot detect corruption, gieyly spread it to all of a user’s
copies, potentially leading to irrevocable data loss.

To investigate what might cause disk corruption to propagatthe cloud, we first
inject a disk corruption to a block in a file synchronized witle cloud (by flipping bits
through the device file of the underlying disk). We then matdfe the file in several
different ways, and observe which modifications cause theiption to be uploaded. We

repeat this experiment for Dropbox, ownCloud, and Seafde akt4 (both ordered and

103

Data Metadata
FS Service write | mtime ctime atime
oxtd Dropbox LG LG LG L
(Linux) own(_:loud LG LG L L
Seafile LG LG LG LG
Dropbox L L L L
(L?:Li() ownC_:Ioud L L L L
Seafile L L L L
Dropbox LG LG L L
HFS+ ownCloud LG LG L L
(Mac GoogleDrive| LG LG L L
OS X) SugarSync | LG L L L
Syncplicity LG LG L L

Table 5.1: Data Corruption Results “ L”: corruption remains local. “G™:

propagated (global).

corruption is

data journaling modes) and ZFS [15] in Linux (kernel 3.6.4491 Dropbox, ownCloud,
Google Drive, SugarSync, and Syncplicity atop HFS+ in Mac>X(Q@&0.5 Lion).

We execute both data operations and metadata-only opesatio the corrupt file.
Data operations consist of both appends and in-place updatearying distances from
the corrupt block, updating both the modification and actiesss; these operations never
overwrite the corruption. Metadata operations change thrdyimestamps of the file. We
usetouch -ato set the access timmuch -mto set the modification time, arahownand
chmodto set the attribute-change time.

Table 5.1 displays our results for each combination of filgeys and services. Since
ZFS is able to detect local corruption, none of the synclmation clients propagate
corruption. However, on ext4 and HFS+, all clients propagadrruption to the cloud
whenever they detect a change to file data and most do so whanddification time

is changed, even if the file is otherwise unmodified. In bot¥esaclients interpret the

104

Upload Download OOS
FS Service | local ver. cloud ver.
4 Dropbox v X V
ownCloud Vv vV i
(ordered) g afile N/A N/A N/A
Dropbox Vv X X
(g’:t‘;) ownCloud| v/ Y x
Seafile vV X X
Dropbox Vv X X
ZFS ownCloud vV v X
Seafile v X X

Table 5.2:Crash Consistency ResultsThere are three outcomes: uploading the local (pos-
sibly inconsistent) version to cloud, downloading the dimgrsion, and OOS (out-of-sync), in
which the local version and the cloud version differ but act synchronized. %” means the
outcome does not occur and/” means the outcome occurs. Because in some cases the Seafile
client fails to run after the crash, its results are labeleld/A”".

corrupted block as a legitimate change and upload it. Segditeads the corruption when-
ever any of the timestamps changes. SugarSync is the onigsénat does not propagate
corruption when the modification time changes, doing so onbe it explicitly observes

a write to the file or it restarts.

5.2.2 Crash Inconsistency

The inability of synchronization services to identify legiate changes also leads them
to propagate inconsistent data after the crash recovergieifmnstrate this behavior, we
initialize a synchronized file on disk and in the cloud at \@rs,. We then write a new
version,v;, and inject a crash which may result in an inconsistent garsj/ on disk,
with mixed data fromv, andv;, but the metadata remains. We observe the client’s
behavior as the system recovers. We perform this experimigémiDropbox, ownCloud,

and Seafile on ZFS and ext4.

105

Table 5.2 shows our results. Running the synchronizationcgeon top of ext4 with
ordered journaling produces erratic and inconsistentldehtor both Dropbox and own-
Cloud. Dropbox may either upload the local, inconsistemsiom of the file or simply
fail to synchronize it, depending on whether it had noticed eecorded the update in its
internal structures before the crash. In addition to thegeames, ownCloud may also
download the version of the file stored in the cloud if it siestally synchronized the file
prior to the crash. Seafile arguably exhibits the best behasifter recovering from the
crash, the client refuses to run, as it detects that itsnatenetadata is corrupted. Manu-
ally clearing the client’s metadata and resynchronizirgftider allows the client to run
again; at this point, it detects a conflict between the lotakind the cloud version.

All three services behave correctly on ZFS and ext4 with gatenaling. Since the
local file system provides strong crash consistency, aftetcrecovery, the local version
of the file is always consistent (eitheg or v;). Regardless of the version of the local
file, both Dropbox and Seafile always upload the local vergdhe cloud when it differs
from the cloud version. OwnCloud, however, will download thoud version if the local
version isvy and the cloud version is;. This behavior is correct for crash consistency,

but it may violate causal consistency, as we will discuss.

5.2.3 Causal Inconsistency

The previous problems occur primarily because the file sydtEls to ensure a key
property—either data integrity or consistency—and dodsempose this failure to the
file synchronization client. In contrast, causal incorsisy derives not from a specific
failing on the file system’s part, but from a direct conseaqueof traditional file system
semantics. Because the client is unable to obtain a unifiaa of the file system at a

single point in time, the client has to upload files as theyngeain piecemeal fashion,

106

and the order in which it uploads files may not correspondeawtider in which they were

changed. Thus, file synchronization services can only gieeaeventual consistency:
given time, the image stored in the cloud will match the dislage. However, if the

client is interrupted—for instance, by a crash, or even édete powerdown—the im-

age stored remotely may not capture the causal orderingeleetwrites in the file system
enforced by primitives like POSIX’'sync andfsync , resulting in a state that could not
occur during normal operations.

To investigate this problem, we run a simple experiment irctvla series of files are
written to a synchronization folder in a specified order ¢eoéd by fsync). During multi-
ple runs, we vary the size of each file, as well as the time betite writes, and check if
these files are uploaded to the cloud in the correct order.a&enmn this experiment with
Dropbox, ownCloud, and Seafile on ext4 and ZFS, and find thalfsetups, there are
always cases in which the cloud state does not preserve tisalaadering of file writes.

While causal inconsistency is unlikely to directly causéadass, it may lead to un-
expected application behavior or failure. For instancepsse the user employs a file
synchronization service to store the library of a photdiedisuite that stores photos as
both full images and thumbnails, using separate files foh.edWhen the user edits a
photo, and thus, the corresponding thumbnail as well, ihtsay possible that the syn-
chronization service will upload the smaller thumbnail fitst. If a fatal crash, such as a
hard-drive failure, occurs before the client can finish agiog the photo, then the service
will still retain the thumbnail in its cloud storage, alongthvthe original version of the
photo, and will propagate this thumbnail to the other dewviagked to the account. The
user, accessing one of these devices and browsing throagtittbmbnail gallery to de-
termine whether their data was preserved, is likely to seediw thumbnail and assume
that the file was safely backed up before the crash. The egguttismatch will likely

lead to confusion when the user fully reopens the file later.

107

5.3 Discussion

Our experiments demonstrate genuine problems with file mpmization services; in

many cases, they not only fail to prevent corruption andmssiency, but actively spread
them. Responsibility for preventing corruption and indetency hardly rests with syn-
chronization services alone; much of the blame can be planddcal file systems, as
well. In this section, we analyze the limitations in synatization services and local file

systems and show how they lead to data protection failures.

5.3.1 Where Synchronization Services Fall

Most synchronization services monitor its synchronizafader for changes using a file-
system notification service, such as Linux’s inotify or Ma8 &'s Events API. While
these services inform the synchronization clients of batn@space changes and changes
to file content, they provide this information at a fairly cea granularity—per file, for
inotify, and per directory for the Events API, for instantethe event that these services
fail, the machine crashes, or the client itself fails or isseld for a time, then the client
detects changes in local files by examining their statisticsuding size and modification
timestamps.

Given this behavior, the causes of synchronization sesvioability to handle cor-
ruption and inconsistency become apparent. As file-systifiaation services provide
no information on what file contents have changed, the symthation client must as-
sume that any changes that it detects result from legitimsee action; it has no means
of distinguishing unintentional changes, like corruptand inconsistent crash recovery.

Inconsistent crash recovery is further complicated by flents internal metadata
tracking. For example, with Dropbox, if the system crashesg an upload and restores

the file to an inconsistent state, the client will recognizat it needs to resume upload-

108

FS Corruption Crash Causal
ext4 (ordered X X X
ext4 (data) X V X
ZFS v V X

Table 5.3: Summary of File System Capabilities This table shows the synchronization
failures each file system is able to handle correctly. Theeetlaree types of failures: Corruption
(data corruption), Crash (crash inconsistency), and Casausal inconsistency). /" means
the failure does not occur andX” means the failure may occur.

ing the file, but it cannot detect that the contents are nodongnsistent. Conversely, if
Dropbox had finished uploading and updated its internaldtaraps, but the crash recov-
ery reverted the file’s metadata to an older version, Drophast upload the file, since

the differing timestamp could potentially indicate a legéte change.

5.3.2 Where Local File Systems Fail

File systems frequently fail to take the preventative messumecessary to avoid data
protection failures and, in addition, fail to expose adeguaterfaces to allow synchro-
nization services to deal with them. As summarized in TalBe faeither a traditional file
system, ext4, nor a modern file system, ZFS, is able to avbfdiires.

File systems primarily prevent corruption via checksumshew writing a data or
metadata item to disk, the file system stores a checksum bgategm as well. Then,
when it reads that item back in, it reads the checksum andtiiae® validate the item’s
contents. While this technique correctly detects cormuptfile system support for it is
limited. ZFS and btrfs are some of the few widely available &l/stems that employ
checksums over the whole file system; ext4 uses checksutslylover metadata [40].
Even with checksums, however, the file system can only deteatption, requiring other

mechanisms to repair it.

109

Recovering from crashes without exposing inconsistentiydaiser is a problem that
has dogged file systems since their earliest days, and hasabeeessed with a variety
of solutions, such as journaling and copy-on-write. Howg®as discussed in Chapter
2, the most popular file systems, including ext3, ext4, HFS¥ NTFS, usually only
perform metadata journaling, sacrificing data consistdacyerformance. As a result,
the inconsistencies upon a crash cause the erratic belubgerved in Section 5.2.2.

Finally, avoiding causal inconsistency requires accessable views of the file sys-
tem at specific points in time. File-system snapshots, sa¢hase provided by ZFS or
Linux's LVM [7], are currently the only means of obtainingcfuviews. However, snap-
shot support is relatively uncommon, and when implemerteas not to be designed

for the fine granularity at which synchronization servicaptare changes.

5.4 Summary

As our observations have shown, the sense of safety probgdsgnchronization services
is largely illusory. The limited interface between cliemisd the file system, as well as
the failure of many file systems to implement key features, lead to corruption and
flawed crash recovery polluting all available copies, angsahinconsistency may cause
bizarre or unexpected behavior. Thus, naively assumirighiese services will provide
complete data protection can lead instead to data lossciafipeon some of the most
commonly-used file systems.

Even for file systems capable of detecting errors and pregtiteir propagation,
such as ZFS and btrfs, the separation of synchronizatiaficesrand the file system in-
curs an opportunity cost. Despite the presence of corrquesmf data in the cloud,
the file system has no means to employ them to facilitate exgovTighter integration

between the service and the file system can remedy this,iatiade file system to auto-

110

matically repair damaged files. However, this makes avgidewsal inconsistency even
more important, as naive techniques, such as simply regttiie most recent version of

each damaged file, are likely to directly cause it.

111

Chapter 6

ViewBox: Cooperative Data Protection

across Local and Cloud Storage

Both cloud-based file synchronization services and fileesystgo to extensive efforts to
preserve user data. However, our analysis in Chapter 5lsetrest both systems fail to
protect user data in several scenarios. Because the chsnmidmeans of determining
whether file changes are intentional or the result of coromptit may send both to the
cloud, ultimately spreading corrupt data to all of a useesides. Crashes compound
this problem; the client may upload inconsistent data toctbad, download potentially
inconsistent files from the cloud, or fail to synchronizerdped files. Finally, even in the
absence of failure, the client cannot normally preservealadependencies between files,
since it lacks stable point-in-time images of files as it ap®them. This can lead to an
inconsistent cloud image, which may in turn lead to unexgskeipplication behavior.

In this chapter, we present ViewBox, a system in which lodaldystem and cloud-
based synchronization services are integrated and wornecatively to solve the prob-

lems above. Instead of synchronizing individual files, VBB synchronizes views, in-

112

memory snapshots of the local synchronized folder thatideodata integrity, crash con-
sistency, and causal consistency. The local file systemsegpgews to the synchroniza-
tion client such that the client only uploads updates froeiews. Since the client only
updates views in their entirety, ViewBox guarantees theembness and consistency of
the cloud image, which it then uses to correctly recover floral failures. Furthermore,
by making the server aware of views, ViewBox can synchromiee's across clients and
properly handle conflicts without losing data.

The rest of the chapter is organized as follows. We first priethe high-level design
of ViewBox in Section 6.1. We then describe the implemeaotatif ViewBox in detail in

6.2. Finally, we evaluate our prototype ViewBox system ictim 6.3.

6.1 Design

To remedy the problems outlined in the previous section, l@egse ViewBox, an inte-
grated solution in which the local file system and the syneiz@ation service cooperate to
detect and recover from these issues. Instead of a clesneldaign, we structure View-
Box around ext4 (ordered journaling mode), Dropbox, andifee& the hope of solving
these problems with as few changes to existing systems agjms

Ext4 provides a stable, open-source, and widely-usedisolonh which to base our
framework. While both btrfs and ZFS already provide soméeftinctionality we desire,
they lack the broad deployment of ext4. Additionally, assitaijournaling file system,
ext4 also bears some resemblance to NTFS and HFS+, the WsralutvMac OS X file
systems; thus, many of our solutions may be applicable isetemains as well.

Similarly, we employ Dropbox because of its reputation as ohthe most popular,
as well as one of the most robust and reliable, synchrooizaervices. Unlike ext4, it is

entirely closed source, making it impossible to modify dikg Despite this limitation, we

113

are still able to make significant improvements to the cdestsy and integrity guarantees
that both Dropbox and ext4 provide. However, certain fuoralities are unattainable
without modifying the synchronization service. Therefave take advantage of an open
source synchronization service, Seafile, to show the chipedbthat a fully integrated file
system and synchronization service can provide. Althouglomaly implement ViewBox
with Dropbox and Seafile, we believe that the techniques wednce apply generally to
other synchronization services.

In this section, we first outline the fundamental goals digviiewBox. We then
provide a high-level overview of the architecture with wihiwe hope to achieve these
goals. Our architecture performs three primary functiodstection, synchronization,

and recovery; we discuss each of these in turn.

6.1.1 Goals

In designing ViewBox, we focus on four primary goals, basedboth resolving the prob-
lems we have identified and on maintaining the features tladkenusers appreciate file-

synchronization services in the first place.

Integrity: Most importantly, ViewBox must be able to detect local cptron and pre-
vent its propagation to the rest of the system. Users fratyudapend on the syn-
chronization service to back up and preserve their data, the file system should

never pass faulty data along to the cloud.

Consistency: When there is a single client, ViewBox should maintain chasasistency
between the client’s local file system and the cloud and mtetree synchroniza-
tion service from uploading inconsistent data. Furtheendrthe synchronization
service provides the necessary functionality, ViewBox hprsvide multi-client

consistency: file-system states on multiple clients shbaldynchronized properly

114

with well-defined conflict resolution.

Recoverability: While the previous properties focus on containing faulbsitainment is
most useful if the user can subsequently repair the faulmyBox should be able
to use the previous versions of the files on the cloud to recvtematically. At the
same time, it should maintain causal consistency when sangsdeally restoring

the file system to an image that previously existed.

Performance: Improvements in data protection cannot come at the expengerfor-
mance. ViewBox must perform competitively with currentigans even when
running on the low-end systems employed by many of the udefike synchro-
nization services. Thus, naive solutions, like synchre@plication [65], are not

acceptable.

6.1.2 Fault Detection

The ability to detect faults is essential to prevent themrmffmopagating and, ultimately,
to recover from them as well. In particular, we focus on d@tgccorruption and data
inconsistency. While ext4 provides some ability to detectuption through its metadata
checksums, these do not protect the data itself. Thus, teaty detect all corruption,

we add checksums to ext4’s data as well, storing them sehasad that we may detect
misplaced writes [29, 69], as well as bit flips. Once it detexirruption, ViewBox then

prevents the file from being uploaded until it can employétsovery mechanisms.

In addition to allowing detection of corruption resultingpin bit-flips or bad disk
behavior, checksums also allow the file system to detectritbensistent crash recov-
ery that could result from ext4’s journal. Because checksame updated independently
of their corresponding blocks, an inconsistently recodatata block will not match its

checksum. As inconsistent recovery is semantically idahto data corruption for our

115

Synced View +
Frozen View

Active View 6 6
T T T T > T T T T >
FS Epoch E, E, E E E, E E, Ej
(a) Uploading E, as View 5 (b) View 5 is synchronized

synced View (4) (4) .

Frozen View (6] (6]

Active View (6) 7
]

FS Epoch E, E, E,

(c) Freezing E; as View 6 (d) Uploading View 6
Figure 6.1:Synchronizing Frozen Views This figure shows how view-based synchronization
works, focusing on how to upload frozen views to the clou@ xFaxis represents a series of file
system epochs. Squares represent various views in themsystth a view number as ID. When
an active view is shaded, it means that the view is not at antepoundary and cannot be frozen.
purposes—both comprise unintended changes to the filensysstdecksums prevent the
spread of inconsistent data, as well. However, they onlyiglyr address our goal of

correctly restoring data, which requires stronger funly.

6.1.3 View-based Synchronization

Ensuring that recovery proceeds correctly requires usitoirghte causal inconsistency
from the synchronization service. Doing so is not a simpt& taowever. It requires the

client to have an isolated view of all data that has changezkghe last synchronization;

116

otherwise, user activity could cause the remote image to speeral file system images
but reflect none of them.

While file-system snapshots provide consistent, statigaa§62], they are too heavy-
weight for our purposes. Because the synchronizationsestores all file data remotely,
there is no reason to persist a snapshot on disk. Insteadraop®ge a system of in-

memory, ephemeral snapshotsymws

View Basics

Views represent the state of the file system at specific pwititsie, or epochs, associated
with quiescent points in the file system. We distinguish leetmthree types of views: ac-
tive views, frozen views, and synchronized views. The actiew represents the current
state of the local file system as the user modifies it. Peratigiahe file system takes a
shapshot of the active view; this becomes the current fremm Once a frozen view is
uploaded to the cloud, it then becomes a synchronized vigdvcan be used for restora-
tion. At any time, there is only one active view and one frozew in the local system,
while there are multiple synchronized views on the cloud.

To provide an example of how views work in practice, Figurgé @epicts the state
of a typical ViewBox system. In the initial state, (a), thes®m has one synchronized
view in the cloud, representing the file system state at ePpemd is in the process of
uploading the current frozen view, which contains the sthepoch 1. While this occurs,
the user can make changes to the active view, which is clyrerthe middle of epoch 2
and epoch 3.

Once ViewBox has completely uploaded the frozen view to tbad; it becomes a
synchronized view, as shown in (b). ViewBox refrains froraating a new frozen view

until the active view arrives at an epoch boundary, such asiaal commit, as shown

117

in (c). At this point, it discards the previous frozen viewdazreates a new one from the
active view, at epoch 3. Finally, as seen in (d), ViewBox hegiploading the new frozen
view, beginning the cycle anew.

Because frozen views are created at file-system epochs arstiaie of frozen views
is always static, synchronizing frozen views to the clounaes both crash consistency
and causal consistency, given that there is only one cligivedy synchronizing with the

cloud. We call thisingle-client consistency

Multi-client Consistency

When multiple clients are synchronized with the cloud, tBever must propagate the
latest synchronized view from one client to other clientsiiake all clients’ state syn-
chronized. Critically, the server must propagate views$eirtentirety; partially uploaded
views are inherently inconsistent and thus should not hbleisHowever, because syn-
chronized views necessarily lag behind the active viewsatchdile system, the current
active file system may have dependencies that would be datali by a remote syn-
chronized view. Thus, remote changes must be applied toctiheeariew in a way that
preserves local causal consistency.

To achieve this, ViewBox handles remote changes in two ghasethe first phase,
ViewBox applies remote changes to the frozen view. If a ckdrfge does not exist in
the frozen view, ViewBox adds it directly; otherwise, it adthe file under a new name
that indicates a conflict (e.g., “foo.txt” becomes “remfue.txt”). In the second phase,
ViewBox merges the newly created frozen view with the actie. ViewBox propagates
all changes from the new frozen view to the active view, usiregsame conflict handling
procedure. At the same time, it uploads the newly mergecfrazew. Once the second

phase completes, the active view is fully updated; onlyrdftes occurs can it be frozen

Active View

Remote e
Client Frozen View @
Cloud Synced View @
Local Frozen View @
. N
Client Active View @
(a) Directly Applying Remote Updates
Remote Active View \
Client Frozen View @
Cloud Synced View @
Local Frozen View
Client Active View

(b) Merging and Handling Potential Conflicts

Figure 6.2: Handling Remote Updates This figure demonstrates two different scenarios
where remote updates are handled. While case (a) has noaenftiase (b) may, because it
contains concurrent updates.

and uploaded.

To correctly handle conflicts and ensure no data is lost, Wewidhe same policy as

GIT [54]. This can be summarized by the following three glirges:

e Preserve any local or remote change; a change could be tit@adohodification,

or deletion of a file.

119

e When there is a conflict between a local change and a remotgehalways keep

the local copy untouched, but rename and save the remote copy
e Synchronize and propagate both the local copy and the retheen®ote copy.

Figure 6.2 illustrates how ViewBox handles remote chandascase (a), both the
remote and local clients are synchronized with the cloudjeat 0. The remote client
makes changes to the active view, and subsequently freedegpdoads it to the cloud
as view 1. The local client is then informed of view 1, and dimaus it. Since there are
no local updates, the client directly applies the changesew 1 to its frozen view and
propagates those changes to the active view.

In case (b), both the local client and the remote client parfopdates concurrently,
so conflicts may exist. Assuming the remote client synctzeswiew 1 to the cloud first,
the local client will refrain from uploading its frozen viewiew 2, and download view
1 first. It then merges the two views, resolving conflicts ascdbed above, to create a
new frozen view, view 3. Finally, the local client uploadewi3 while simultaneously
propagating the changes in view 3 to the active view.

In the presence of simultaneous updates, as seen in cashigb¥ynchronization
procedure results in a cloud state that reflects a combimatfithe disk states of all clients,
rather than the state of any one client. Eventually, thebfit client and cloud states will
converge, providingnulti-client consistencyT his model is weaker than our single-client
model; thus, ViewBox may not be able to provide causal coescy for each individual
client under all circumstances.

Unlike single-client consistency, multi-client consisty requires the cloud server
to be aware of views, not just the client. Thus, ViewBox caty gmovide multi-client
consistency for open source services, like Seafile; progidifor closed-source services,

like Dropbox, will require explicit cooperation from thersee provider.

120

6.1.4 Cloud-aided Recovery

With the ability to detect faults and to upload consistermtins of the file system state,
ViewBox is now capable of performing correct recovery. Ehare effectively two types
of recovery to handle: recovery of corrupt files, and recpwdrinconsistent files at the
time of a crash.

In the event of corruption, if the file is clean in both the aetview and the frozen
view, we can simply recover the corrupt block by fetchingdbpy from the cloud. If the
file is dirty, the file may not have been synchronized to thed/onaking direct recovery
impossible, as the block fetched from cloud will not matol ¢hecksum. If recovering a
single block is not possible, the entire file must be rolleddta a previous synchronized
version, which may lead to causal inconsistency.

Recovering causally-consistent images of files that wezegnt in the active view at
the time of a crash faces the same difficulties as restoringgbfiles in the active view.
Restoring each individual file to its most recent synchredigersion is not correct, as
other files may have been written after the now-corruptedafii@, thus, depend on it; to
ensure these dependencies are not broken, these files atstoriee reverted. Thus, naive
restoration can lead to causal inconsistency, even withszie

Instead, we present users with the choice of individuallymg back damaged files,
potentially risking causal inconsistency, or revertingg®most recent synchronized view,
ensuring correctness but risking data loss. As we anteifiedt the detrimental effects
of causal inconsistency will be relatively rare, the forroption will be usable in many

cases to recover, with the latter available in the eventzdrpe or unexpected application

behavior.

121

6.2 Implementation

Now that we have provided a broad overview of ViewBox’s at@tture, we delve more
deeply into the specifics of our implementation. As with 8st6.1, we divide our dis-
cussion based on the three primary components of our actiniée detection, as imple-
mented with our nevext4-cksunfile system; view-based synchronization using aexv
manager a file-system agnostic extension to ext4-cksum; and regowging a user-space

recovery daemon calledoud helper

6.2.1 Ext4-cksum

Like most file systems that update data in place, ext4 preuidi@imal facilities for de-
tecting corruption and ensuring data consistency. Whitéférs experimental metadata
checksums, these do not protect data; similarly, its detadered journaling mode only
protects the consistency of metadata, while providing maliguarantees about data.
Thus, it requires changes to meet our requirements forrityeand consistency. We now
present ext4-cksum, a variant of ext4 that supports datekshiens to protect against data
corruption and to detect data inconsistency after a cradiowi the high cost of data

journaling.

Checksum Region

There are several ways in which we could add data checksuex¢4o0The simplest way
is to store a checksum within its protecting block, which igble if the disk supports
520-byte sectors [112]. If not, some bytes in the 4KB block nave to be sacrificed to
store the checksum, which may cause alignment problemsapjthications. In addition,

because this method stores the data block and the checkstita same logical write

122

Group Block Inode Inode Checksum Data

Superblock Descriptors Bitmap Bitmap Table Region Blocks

Figure 6.3:Ext4-cksum Disk Layout This graph shows the typical layout of a block group
in ext4-cksum. The shaded region, the checksum table,iosrttata checksums for blocks in the
block group.

unit, it cannot detect misdirected writes or phantom wr[&3. Alternatively, the file
system could inline the checksum for each block with the f@oito it in metadata, as
ZFS does. While this method can work well, it can substdgtiahit the maximum file
size, due to the need to store checksums, and it may work atkwaith ext4’s current
implementation of extents.

Ext4-cksum stores data checksums in a fixed-sthedksum regioimmediately after
the inode table in each block group, as shown in Figure 6.ch&cksums of data blocks
in a block group are preallocated in the checksum regions Tiégion acts similarly to
a bitmap, except that it stores checksums instead of bith, @dch checksum mapping
directly to a data block in the group. Since the region stresfixed location in a block
group, the location of the corresponding checksum can biéy ezdculated, given the
physical (disk) block number of a data block.

The size of the region depends solely on the total numberaakislin a block group
and the length of a checksum, both of which are determinediged during file system
creation. Currently, ext4-cksum uses the built-in crc32eaksum, which is 32-bit long.
Therefore, it reserves a 32-bit checksum for every 4KB hloukosing a space overhead
of 1/1024; for a regular 128MB block group, the size of theakseim region is 128KB.

Checksum Handling for Reads and Writes

When a data block is read from disk, the corresponding checkaust be verified. Be-

fore the file system issues a read of a data block from diskets the corresponding

123

checksum by reading the checksum block. After the file systauds the data block into
memory, it verifies the block against the checksum. If thgahverification fails, ext4-
cksum will retry. If the retry also fails, ext4-cksum willpert an error to the application.
Note that in this case, if ext4-cksum is running with the dbelper daemon, ext4-cksum
will try to get the remote copy from cloud and use that for kery. The read part of a
read-modify-write is handled in the same way.

Aread of a data block from disk always incurs an additionatir®r the checksum, but
not every checksum read will cause high latency. First, Hezksum read can be served
from the page cache, because the checksum blocks are amusitdetadata blocks by
ext4-cksum and are kept in the page cache like other metattataures. Second, even
if the checksum read does incur a disk I/O, because the chercissalways in the same
block group as the data block, the seek latency will be mihifftaird, to avoid checksum
reads as much as possible, ext4-cksum employs a simplegtrieig policy: always read
8 checksum blocks (within a block group) at a time. Advancegfgiching heuristics,
such as those used for data prefetching, are applicable here

Ext4-cksum does not update the checksum for a dirty dat&hiotil the data block
is written back to disk. Before issuing the disk write for theta block, ext4-cksum reads
in the checksum block and updates the corresponding chiecKBhis applies to all data
write-backs, caused by a background flush, fsync, or a jbeoramit.

Since ext4-cksum treats checksum blocks as metadata blatksjournaling en-
abled, ext4-cksum logs all dirty checksum blocks in the paiir In ordered journaling
mode, this also allows the checksum to detect inconsistatat caused by a crash. In
ordered mode, dirty data blocks are flushed to disk beforada¢h blocks are logged in
the journal. If a crash occurs before the transaction comjrdédta blocks that have been
flushed to disk may become inconsistent, because the mattddtpoints to them still

remains unchanged after recovery. As the checksum bloekmatadata, they will not

124

have been updated, causing a mismatch with the inconsg&atblock. Therefore, if
such a block is later read from disk, ext4-cksum will detbet¢checksum mismatch.

To ensure consistency between a dirty data block and itkehat, data write-backs
triggered by a background flush and fsync can no longer sametiusly occur with a
journal commit. In ext4 with ordered journaling, beforeansaction has committed, data
write-backs may start and overwrite a data block that wasyusten by the committing
transaction. This behavior, if allowed in ext4-cksum, wboause a mismatch between
the already logged checksum block and the newly written diaiek on disk, thus mak-
ing the committing transaction inconsistent. To avoid #tdsnario, ext4-cksum ensures
that data write-backs due to a background flush and fsyncyalaecur before or after a

journal commit.

6.2.2 View Manager

To provide consistency, ViewBox requires file synchronaaservices to upload frozen
views of the local file system, which it implements throughiamemory file-system

extension, the view manager. In this section, we detail tq@ementation of the view

manager, beginning with an overview. Next, we introduce t®ahniques, cloud journal-
ing and incremental snapshotting, which are key to the stersty and performance pro-
vided by the view manager. Then, we describe the synchrioizprocesses that upload
a frozen view to cloud. Finally, we briefly discuss how to grie the synchronization

client with the view manager to handle remote changes anflictsn

View Manager Overview

The view manager is a light-weight kernel module that cieatews on top of a local

file system. Since it only needs to maintain two local viewargt time (one frozen view

125

and one active view), the view manager does not modify tHeldigut or data structures
of the underlying file system. Instead, it relies on a modifragfs to present the frozen
view in memory and support all the basic file system operatiorfiles and directories
in it. Therefore, a synchronization client now monitors éxposed frozen view (rather
than the actual folder in the local file system) and uploadsgks from the frozen view
to the cloud. All regular file system operations from otheplagations are still directly

handled by ext4-cksum. The view manager uses the active tadvack the on-going

changes and then reflects them to the frozen view. Note thatutrent implementation
of the view manager is tailored to our ext4-cksum and it isstatkable [128]. We believe
that a stackable implementation would make our view manag@apatible with more file

systems.

Consistency through Cloud Journaling

As we discussed in Section 6.1.3, to preserve consisterager views must be created
at file-system epochs. Therefore, the view manager fre@eesurrent active view at the
beginning of a journal commit in ext4-cksum, which serves d®undary between two
file-system epochs. At the beginning of a commit, the curranhing transaction be-
comes the committing transaction. When a new running trdiwsais created, all opera-
tions belonging to the old running transaction have conepleand operations belonging
to the new running transaction have not started yet. The mewager freezes the active
view at this point, ensuring that no in-flight operation spamultiple views. All changes
since the last frozen view are preserved in the new frozem, vilaich is then uploaded to
the cloud, becoming the latest synchronized view.

To ext4-cksum, the cloud acts as an external journalingcgevievery synchronized

view on the cloud matches a consistent state of the localyfiem at a specific point in

126

time. Although ext4-cksum still runs in ordered journalimgpde, when a crash occurs,
the file system now has the chance to roll back to a consistatet stored on cloud. We

call this approach cloud journaling.

Low-overhead via Incremental Snapshotting

During cloud journaling, the view manager achieves bettefgpmance and lower over-
head through a technique called incremental snapshotfling view manager always
keeps the frozen view in memory and the frozen view only dostthe data that changed
from the previous view. The active view is thus responsibtetfacking all the files and
directories that have changed since it last was frozen. Wiermiew manager creates a
new frozen view, it marks all changed files copy-on-write W) which preserves the
data at that point. The new frozen view is then constructe@dyplying the changes
associated with the active view to the previous frozen view.

The view manager uses several in-memory and on-cloud stescto support this
incremental snapshotting approach. First, the view mamagetains annode mapping
tableto connect files and directories in the frozen view to theiresponding ones in the
active view. The view manager represents the namespacerotenfview by creating
frozen inodedor files and directories in tmpfs (their counterparts in #utive view are
thus calledactive inodey but no data is usually stored under frozen inodes (unless t
data is copied over from the active view due to copy-on-Writghen a file in the frozen
view is read, the view manager finds the active inode and éstclata blocks from it.
The inode mapping table thus serves as a translator betwieezea inode and its active
inode.

Second, the view manager tracks namespace changes in itree\aetv by using an

operation log which records all successful namespace operations (gaate, mkdir,

127

unlink, rmdir, and rename) in the active view. The log resoatfte type of an operation
and all operands, in the form of active inode numbers. Fomgia, for a file create, the
inode numbers of the parent dir and the created file inodecgigeld. When the active
view is frozen, the log is replayed onto the previous frozeswwmo bring it up-to-date,
reflecting the new state.

Third, the view manager useslaty tableto track what files and directories are mod-
ified in the active view. Once the active view becomes frozadiithese files are marked
copy-on-write. Then, by generating inotify events basedhmoperation log and the
dirty table, the view manager is able to make the synchrdinizalient check and upload
these local changes to the cloud. After the synchronizasgifinished, the view becomes
a synchronized view on the cloud.

Finally, the view manager keepgew metadatan the server for every synchronized
view, which is used to identify what files and directories ematained in a synchronized
view. For services such as Seafile, which internally keepsntlodification history of
a folder as a series of snapshots [99], the view manager éstahlse its snapshot ID
(called commit ID by Seafile) as the view metadata. For sesvlike Dropbox, which
only provides file-level versioning, the view manager ceeah view metadata file for
every synchronized view, consisting of a list of pathnanmesravision numbers of files
in that view. The information is obtained by querying the plvox server. The view
manager stores these metadata files in a hidden folder otathe, o the correctness of

these files is not affected by disk corruption or crashes.

Synchronizing Views to the Cloud

Now, we describe how the view manager synchronizes viewsetgerver.

128

Frozen View 5

1. View manager copies the namespace from
active view 5 to frozen view 5, and
initializes the inode mapping table

2. Sync client uploads file x from frozen view 5
e View manager looks up frozen inode
number x. in inode mapping table and
find active inode number x,

- Active View 5 * View manager reads data from active
Frozen | Active inode x
A

Inode Inode

D¢ D, 3. View manager creates and uploads view

. . metadata for frozen view 5

F A
Ye Ya

Figure 6.4:Initial Synchronization This figure shows how the view manager initializes and
uploads a frozen view upon file system mount. In the frozenauiel active view, D is a directory
containing two files x and y. File x is shaded because it wasifreddvhile the synchronization
client is offline. The table represents the inode mappingetah which N, is the active inode
number of N and | is the frozen inode number of N.
Initial Synchronization: Assuming there are no crash and no remote changes, when
a local file system is mounted and the synchronization chgants, the client scans the
synchronization folder and uploads any offline changeseacstrver. With ViewBox, to
ensure that the synchronization client captures a view @firikial on-disk state of the
synchronized folder, the view manager freezes the initetesof ext4-cksum before the
client starts. The client then scans the frozen view andreymizes any offline changes to
the cloud, in the same way as the unmodified synchronizalientc\We call this process
initial synchronization Note that during the initial synchronization, ext4-cksiemot
accessible to applications other than the client, as if rewmst mounted.

The view manager creates the initial frozen view by cloning whole namespace

from ext4-cksum (the active view). It creates the same thregs in the frozen view

129

Dirty Table 6

Frozen View 5

Ya
Zp

1. User deletes file x
View manager logs “unlink x,“ in op log

Op Log 6

2. User modifies file y

unlink x, View manager records y, in dirty table

create z,

3. User creates file z
View manager records z, in dirty table
Active View 6 * View manager logs “create z,“ in op log

Frozen | Active
Inode Inode

D, D,
Xe %
Ye Ya

Figure 6.5: Tracking Changes in an Active View This figure illustrates how the view

manager tracks changes in active view 6 using the dirty tabkop log. File y is shaded in active

view 6 because it was modified.

directly, and clones files from the active view by allocatspparse files in their corre-

sponding directories in the frozen view. These frozen fikegelthe same inode attributes
(such as mtime and size) as their active versions, but doamam any data. The inode

mapping table is initialized during this process.

Then, the synchronization client starts to scan the froeam,\n order to detect offline
changes. The client reads all new and modified files from theefr view and uploads
them to the server. Because the frozen view does not comginlata for the file, the
view manager handles data reads by looking up the inode mgggble, finding the
active inode, and reading blocks from the active view. After client finishes uploading
the view, the view manager creates and stores view metatititea wiew on the server.

Figure 6.4 shows an example of how the view manager perfaritiglisynchroniza-

tion. We will use the same example to illustrate how the vieanager works in the

130

Dirty Table 6 Dirty Table 7
Frozen View 5
Ya
Zp
1. View manager creates a new active view 7
with empty dirty table and op log
Op Log 6 Op Log 7 i .
) 2. View manager attaches dirty table 6 and op
unlink x, log 6 to the frozen view
create z,

Active View 7

Frozen | Active
Inode Inode

D, Dx
Xg %
Ye Ya

Figure 6.6:Freezing an Active View This figure shows how the view manager freezes active
view 6 and creates active view 7.

following discussion.

Regular Synchronization: Once the initial synchronization finishes, the active view
becomes visible to applications and starts to carry outaijmers. The view manager
uses an operation log and a dirty table to record namespargehb and file changes in
the active view, as shown in Figure 6.5. At some point, thevaatiew is frozen and a
new active view is immediately created. While the frozernwig being synchronized to
the cloud, the new active view continues to serve requesits &pplications. We call this
processegular synchronizationOnce the frozen view is synchronized, the view manager

starts the same process again.

Freezing an active view: The view manager freezes the current active view at the be-

ginning of the upcoming transaction commit in ext4-cksumhef the active view is

131

Dirty Table 6 Dirty Table 7|

Frozen View 6

Ya
Za

View manager replays op log 6 onto frozen view
5 and brings its namespace up-to-date
* The inode mapping table is also updated

Op Log 6 Op Log7

unlink x,
create z,

Active View 7

Frozen | Active
Inode Inode
D; D,

Ye Ya

|
!
|
|
!
|
|
!
|
|
!
|
|
!
|
|
!
|
|
!
!
!
!
!
!
!
|
!
!
|
|
!
|
|
!
|
|
Z Zp }
|

Figure 6.7:Establishing a Frozen View This figure shows how the view manager updates
the namespace of the frozen view to reflect the state of adtwet.

frozen, the op-log and dirty table are attached to the frazew and becoméozen op-

log andfrozen dirty table At the same time, a new active view is created on top of the
ext4-cksum, with an emptgctive op-logandactive dirty table Figure 6.6 shows how the

view manager freezes the previous active view 6 and createw/ active view 7.

Establishing a frozen view: In ViewBox, a frozen view does not have to be persistent.
Instead, it only needs to be present when it is being synacredno the cloud. Therefore,
the view manager takes a light-weight in-memory snapshatogeh. The key is to break
the state of the snapshot into three parts: namespace, atiotbeites and file data.

The view manager relies on the op-log to quickly bring the espace up-to-date.
When the active view becomes frozen, the namespace in therfraew is stale; it still
reflects the state of previously synchronized frozen vievdees the inode mapping table.

Since the frozen op-log recorded all namespace operatiansaok place between when

132

Dirty Table 6 Dirty Table 7

Frozen View 6

User deletes file y in active view 7
View manager sees y, exists in dirty table 6
View manager copies y,’s data to y,
Unlink succeeds
View manager logs “unlink y,“ in op log

unlink x,
create z,,

Active View 7

Frozen | Active
Inode Inode a

D; D,

Ye Ya

7 Z

Figure 6.8:Example of Copy-on-write This figure shows an example of copy-on-write that
is trigger by deleting a frozen file in the active view.
the synchronized view was frozen and when the current fremamwas frozen, the view
manager keeps the namespace up-to-date by replaying tuyggsdloperations, as shown
in Figure 6.7. The inode mapping table is also updated dutiegeplay. By storing
concrete directory structures in the frozen view, any ngraes operation that takes place
in the current active view will not affect the namespace @& filozen view. Therefore,
there is no need to perform copy-on-write (COW) on metadelated to namespace,
which avoids the complication and overhead of copying tmestadata structures.
However, preserving inode attributes and file data stilbn@®W. After the replay is
finished, all files in the frozen view have their frozen inod#ecated. However, these
inodes are only placeholders; they still have the previduibates and there are no data
blocks allocated. For inode attributes, when a frozen insde be accessed or when the
corresponding active inode is to be changed, the inodéat#$ of the active inode would

be copied to the frozen inode. Therefore, operations suchime, chown, and chmod

133

in the active view will trigger COW for inode attributes. Fie data, the frozen view
does not keep a copy of a data block, unless the data blockbis todified or deleted
in the active view, so operations including write, truncatelink, and rename (in which
a file is overwritten by the renamed file) will cause COW foeatkd data blocks. Figure
6.8 illustrates a COW example in which the file y is removeddtivae view 7. If a data

block remains unchanged in the active view, when the blookad from the frozen view,
the view manager will directly fetch that data block from #Hative inode in ext4-cksum,
either from disk or from the page cache. This saves an unsagepage copying from
the active inode to the frozen inode.

Moreover, not every file in the frozen view needs to be COWeaceSsynchronization
services only upload changed files to the server, the viewagemonly has to COW
changed files. As discussed before, the dirty table recditsdthat were changed when
the frozen view was active. Once the view is frozen, all rdedrinodes are marked
COW. Therefore, before any file-changing operation takesein the active view, the
view manager checks if the file’'s inode exists in the frozatydable. If it exists, the
inode attributes and any data block that will be affectedH®y aperation but have not
been COWed will be copied to the frozen view. Otherwise, theration will be carried

out without any COW overhead.

Uploading a frozen view: In a regular file system without views, the synchronization
client relies on the inotify mechanism to monitor file andediiory changes in real-time,
and uploads those changes accordingly. In ViewBox, howekerclient monitors the
frozen view exposed by the view manager, in which most chei(@ter than the replayed
namespace operations) do not take place in real-time. fidrerehe view manager recre-
ates and replays inotify events to drive the synchronimati@nt upload changes in the

frozen view. After the client finishes uploading the frozeéew, the view manager creates

134

Dirty Table 6 Dirty Table 7

Frozen View 6

1. View manager generates inotify events
based on op log 6 and dirty table 6

2. Sync client uploads file y to the cloud
¢ The view manager reads data from y;
directly, because file y was COWed

unlink x,
create z,,

3. Sync client uploads file z to the cloud

. Active View 7 * View manager reads data from z,
Inode Inode a 4. View manager creates and uploads view
D¢ D, metadata for frozen view 6
Yr Ya
_ o

Figure 6.9:Uploading a Frozen View This figure illustrates how the view manager uploads
frozen view 6 to the cloud.

necessary view metadata. Finally, the view manager desth®yfrozen op-log and the
frozen dirty table, cleans up COWed data pages in the fromsm and prepares to freeze
the current active view. Figure 6.9 shows the steps the viemager takes to upload

frozen view 6.

Handling Remote Changes

All the techniques we have introduced so far focus on how ¢wide single-client con-
sistency and do not require modifications to the synchroioizalient or the server. They
work well with proprietary synchronization services sushxopbox. However, when
there are multiple clients running ViewBox and performirglates at the same time, the
synchronization service itself must be view-aware. To laneimote updates correctly,
we modify the Seafile client to perform the two-phase syneization described in Sec-

tion 6.1.3. We choose Seafile to implement multi-client ¢stesicy, because both its

135

client and server are open-source. More importantly, ita deodel and synchronization

algorithm are similar to GIT, which fits our view-based syratization well.

6.2.3 Cloud Helper

When corruption or a crash occurs, ViewBox performs regpusmg backup data on the
cloud. Recovery is performed through a user-level daemiondchelper. The daemon
is implemented in Python, which acts as a bridge betweenoited file system and the
cloud. It interacts with the local file system using ioctllsalnd communicates with the
cloud through the service’s web API.

For data corruption, when ext4-cksum detects a checksumatdt, it sends a block
recovery request to the cloud helper. The request incldgepdathname of the corrupted
file, the offset of the block inside the file, and the block siZEhe cloud helper then
fetches the requested block from the server and returnslolo& to ext4-cksum. Ext4-
cksum re-verifies the integrity of the block against the ddiacksum in the file system
and returns the block to the application. If the verificatsifi fails, it is possibly because
the block has not been synchronized or because the blociclsefd from a different file
in the synchronized view on the server with the same pathraantiee corrupted file.

When a crash occurs, the cloud helper performs a scan of theckgum file system
to find potentially inconsistent files. If the user choosesrity roll back those inconsis-
tent files, the cloud helper will download them from the lagchronized view. If the
user chooses to roll back the whole file system, the cloudeneydl identify the latest
synchronized view on the server, and download files and natstirectories in the view.
The former approach is able to keep most of the latest datemhytcause causal incon-
sistency. The latter guarantees causal consistency, I &bst of losing updates that

took place during the frozen view and the active view wherctiash occurred.

136

Service Data Metadata

ViewBox w/ | write | mtime ctime atime
Dropbox DR | DR DR DR
Seafile DR DR DR DR

Table 6.1:Data Corruption Results of ViewBox In all cases, the local corruption is de-
tected) and recoveredR).

6.3 Evaluation

We now present the evaluation results of our ViewBox pragietyWe first show that our
system is able to recover from data corruption and crashesatly and provide causal
consistency. Then, we evaluate the underlying ext4-cksuhview manager components
separately, without synchronization services. Finallystuely the overall synchronization
performance of ViewBox with Dropbox and Seafile.

We implemented ViewBox in the Linux 3.6.11 kernel, with Dbax client 1.6.0,
and Seafile client and server 1.8.0. All experiments areopaéd on machines with a
3.3GHz Intel Quad Core CPU, 16GB memory, and a 1TB HitachkBes hard drive.
For all experiments, we reserve 512MB of memory for the vieanager. We run every

experiment 10 times and report the average result.

6.3.1 Cloud Helper

We first perform the same set of fault injection experimests;eSection 2. The corrup-

tion and crash test results are shown in Table 6.1 and Tabl&écause the local state is
initially synchronized with the cloud, the cloud helper Beto fetch the redundant copy
from cloud and recover from corruption and crashes. We asdiren that ViewBox is

able to preserve causal consistency.

137

Service Upload Download Out-of-sync
ViewBox w/ | local ver. cloud ver. (no sync)
Dropbox X vV X
Seafile X Vv X

Table 6.2:Crash Consistency Results of ViewBoxThe local version of the file is inconsis-
tent, and is rolled back to the previous version on the cloud.

Workload ext4 | extd-cksum | Slowdown
(MB/s) (MB/s)

Seq. write | 103.69 99.07 4.46%
Seq.read | 112.91 108.58 3.83%
Rand. write| 0.70 0.69 1.42%
Rand. read| 5.82 5.74 1.37%

Table 6.3:Microbenchmarks on ext4-cksum This figure compares the throughtput of sev-
eral micro benchmarks on ext4 and ext4-cksum. Sequentitd/vead are writing/reading a 1GB
file in 4KB requests. Random write/read are writing/readir88MB of a 1GB file in 4KB requests.
For sequential read workload, ext4-cksum prefetches 8kshaw blocks for every disk read of a
checksum block.

6.3.2 Ext4-cksum

We now evaluate the performance of standalone ext4-cksoensing on the overhead
caused by data checksumming. Table 6.3 shows the throughgateral microbench-
marks on ext4 and ext4-cksum. From the table, one can seéaerformance overhead
is quite minimal. Note that checksum prefeteching is imgairfor sequential reads; if it
is disabled, the slowdown of the workload increases to 15%.

We perform a series of macrobenchmarks using Filebench tmdéd4 and ext4-
cksum with checksum prefetching enabled. The results avevrshin Table 6.4. For

the fileserver workload, the overhead of ext4-cksum is chi, because there are 50

138

Workload ext4d | extd-cksum| Slowdown
(MB/s) (MB/s)
Fileserver | 79.58 66.28 16.71%
Varmail 2.90 3.96 -36.55%
Webserver| 150.28 150.12 0.11%

Table 6.4: Macrobenchmarks on ext4-cksum This table shows the throughtput of file-
server, varmail, and webserver workloads on ext4 and ek$dwn. Fileserver is configured with

50 threads performing creates, deletes, appends, whelevfites, and whole-file reads. Varmail

emulates a multi-threaded mail server. Each thread perfoanset of create-append-sync, read-
append-sync, read, and delete operations. It has aboutéadfs and half writes and is dominated
by random I/Os. Webserver is a multi-threaded read-intengiorkload.

threads reading and writing concurrently and the negatifecteof the extra seek for
checksum blocks accumulates. The webserver workload,eattter hand, experiences
little overhead, because it is dominated by warm reads.

It is surprising to notice that ext4-cksum greatly outparfe ext4 in varmail. This
is actually a side effect of the ordering of data write-baakd journal commit, as dis-
cussed in Section 6.2.1. Note that because ext4 and extdackee not mounted with
“Jjournal_asynccommit”, the commit record is written to disk with a cache fiusd the
FUA (force unit access) flag, which ensures that when the dometord reaches disk,
all previous dirty data (including metadata logged in therj@l) has already been forced
to disk. When running varmail in ext4, data blocks writtenfyncs from other threads
during the journal commit are also flushed to disk at the same, twhich causes high
latency. In contrast, since ext4-cksum does not allow datawwack from fsync to run si-
multaneously with the journal commit, the amount of datahfadsis much smaller, which

improves the overall throughput of the workload.

139

Normalized Response Time
Operation Before COW After COW
unlink (cold) 484.49 1.07
unlink (warm) 6.43 0.97
truncate (cold) 561.18 1.02
truncate (warm) 5.98 0.93
rename (cold) 469.02 1.10
rename (warm) 6.84 1.02
overwrite (cold) 1.56 1.10
overwrite (warm) 1.07 0.97

Table 6.5: Copy-on-write Operations in the View Manager This table shows the nor-
malized response time (against ext4) of various operat@ns frozen file (10MB) that trigger
copy-on-write of data blocks. “Before COW"/"After COW” inchtes the operation is performed
before/after affected data blocks are COWed.

6.3.3 View Manager

We now study the performance of various file system operatio@n active view when
a frozen view exists. The view manager runs on top of ext4xrks

We first evaluate the performance of various operationsdbatot cause copy-on-
write (COW) in an active view. These operations are creaténk, mkdir, rmdir, re-
name, utime, chmod, chown, truncate and stat. We run a wamtkleat involves creating
1000 8KB files across 100 directories and exercising theseatipns on those files and
directories. We prevent the active view from being frozenhsd all these operations do
not incur a COW. We see a small overhead (mostly less than B#péxitime, which is
around 10%) across all operations, as compared to theonpeahce in the original ext4.,
This overhead is mainly caused by operation logging andrditbekkeeping performed
by the view manager.

Next, we show the normalized response time of operatiortsdiharigger copy-on-

write in Table 6.5. These operations are performed on a 10MBfier the file is created

140

ext4 + Dropbox | ViewBox with Dropbox
Workload | Runtime Sync Timg Runtime Sync Time

openssh 36.4 49.0 36.0 64.0
iphotoedit | 577.4 2115.4 | 563.0 2667.3
iphotaview | 149.2 170.8 153.4 591.0

Table 6.6:Performance of ViewBox with Dropbox This table compares the runtime and
sync time (in seconds) of various workloads running on tofhefunmodified ext4 and ViewBox
using Dropbox. Runtime is the time it takes to finish the veatkland sync time is the time it takes
to finish synchronizing.

and marked COW in the frozen view. All operations cause aWlB®f file data to be

copied from the active view to the frozen view. The copyingrnead is listed under the
“Before COW” column, which indicates that these operationsur before the affected
data blocks are COWed. When the cache is warm, which is thenmontase, the data
copying does not involve any disk I/O but still incurs up to @xerhead. To evaluate
the worst case performance (when the cache is cold), weetlatidy force the system to
drop all caches before we perform these operations. As amsaa from the table, all
data blocks are read from disk, thus causing much highehe®el. Note that cold cache
cases are rare and may only occur during memory pressure. ultfeef measure the
performance of the same set of operations on a file that haadylrbeen fully COWed.

As shown under the “After COW” column, the overhead is nebley because no data

copying is performed.

6.3.4 ViewBox with Dropbox and Seafile

We assess the overall performance of ViewBox using thre&laads: openssh (building
openssh from its source code), iphatdit (editing photos in iPhoto, about 5GB data),
and iphotaview (browsing photos in iPhoto, about 1GB data). The latter workloads

141

ext4 + Seafile ViewBox with Seafile
Workload | Runtime Sync Timg Runtime Sync Time
openssh 36.0 44.8 36.0 56.8
iphotoedit | 566.6 857.6 554.0 598.8
iphotoview | 150.0 166.6 156.4 175.4

Table 6.7:Performance of ViewBox with Seafile This table compares the runtime and sync
time (in seconds) of various workloads running on top of thmadified ext4 and ViewBox using
Sedfile. Runtime is the time it takes to finish the workload sma time is the time it takes to
finish synchronizing.

are from the iBench trace suite [60] and are replayed usingritda [119]. We believe
that these workloads are representative of ones peopleitbrsyynchronization services.

The results of running all three workloads on ViewBox wittopbox and Seafile are
shown in Table 6.6 and Table 6.7. In all cases, the runtimaeforkload in ViewBox
is at most 5% slower and sometimes even faster than that afrimedified ext4 setup,
which shows that view-based synchronization does not havegative impact on the
foreground workload. We also find that the memory overheadesBox (the amount of
memory consumed by the view manager to store frozen viewsinsgnal, at most 20MB
across all three workloads.

We expect the synchronization time of ViewBox to be longerause ViewBox does
not start synchronizing until the current file system statérozen, which may cause
delays. The results of openssh confirm our expectations.eMeryvfor iphotaview and
iphoto_edit, the synchronization time on ViewBox with Dropbox ischigreater than that
on ext4. This is due to Dropbox’s lack of proper interfacemarpfor views, as described
in Section 6.2.2. Because both workloads use a file systergamath around 1200
directories, to create the view metadata for each view, Bexhas to query the Dropbox
server numerous times, causing substantial overheadntrest, ViewBox can avoid this

overhead with Seafile because it has direct access to Sgaftle'nal metadata. Thus, the

142

synchronization time of iphotwiew in ViewBox with Seafile is near that in ext4.

Note that the iphotadit workload actually has a much shorter synchronizaiioe t
on ViewBox with Seafile than on ext4. Because the photo egitiorkload involves many
writes, Seafile delays uploading when it detects files beomgstantly modified. After
the workload finishes, many files have yet to be uploaded. eSirtzen views prevent

interference, ViewBox can finish synchronizing about 30%ida

6.4 Summary

Despite their near-ubiquity, file synchronization sersgicdtimately fail at one of their
primary goals: protecting user data. Not only do they faiptevent corruption and
inconsistency, they actively spread it in certain caseg.fault lies equally with local file
systems, however, as they often fail to provide the necgssgabilities that would allow
synchronization services to catch these errors. To rentedywe propose ViewBox, an
integrated system that allows the local file system and thetspnization client to work
together to prevent and repair errors.

Rather than synchronizing individual files, as current fyachronization services
do, ViewBox centers around views, in-memory file-systempshats which have their
integrity guaranteed through on-disk checksums. Sinogs/@ovide consistent images
of the file system, they provide a stable platform for recg\what minimizes the risk of
restoring a causally inconsistent state. As they remameénaory, they incur minimal
overhead.

We implement ViewBox to support both Dropbox and Seafilentigand find that it
prevents the failures that we observe with unmodified lotakfistems and synchroniza-
tion services. Equally importantly, it performs compegty with unmodified systems.

This suggests that the cost of correctness needs not beitigarely requires adequate

143

interfaces and cooperation.

144

Chapter 7

Related Work

This chapter discusses various research efforts and reedrsyg that are related to this
dissertation. We first discuss literature on analyzingesyseliability using fault injection
and modeling techniques. Then, we summarize research aowng data integrity and

consistency in storage systems.

7.1 Fault Injection

Software-implemented fault injection techniques havenbeglely used to analyze the
robustness of systems [26, 33, 56, 66, 101, 114]. For exaANE used fault injection
to emulate hardware and software faults in the operatingesy§6]; Gu et al. [56] in-
jected faults to instruction streams of Linux kernel fuontio characterize Linux kernel
behavior.

More recent works have applied type-aware fault injectmartalyze failure behaviors
of different file systems to disk corruptions. Prabhakarbale injected partial disk

failures to various file systems to understand the beha¥ibiese systems in the presence

145

of disk errors and randomly-corrupted disk blocks [89].rBaasundaram et al. developed
and applied type-aware pointer corruption to NTFS and ext&udy how both systems
handle pointer corruption in their metadata structure$. [@ur analysis of on-disk data
integrity in ZFS and data corruption with synchronizatiarsces is similar to these
studies.

Furthermore, fault injection has also been used to analffeete of memory corrup-
tion on systems. FIAT [26] used fault injection to study tlffeets of memory corruption
in a distributed environment. Krishnan et al. applied a mgneorruption framework to
analyze the effects of metadata corruption on NFS [70]. Quofyson in-memory data
integrity is related to these studies in their goal of findafigcts of memory corruption.

However, our work on ZFS is the first comprehensive religbiinalysis of local
file system that covers carefully controlled experimentanalyze both on-disk and in-
memory data integrity. Specifically, for our study of memooyruptions, we separately
analyze ZFS behavior for faults in page cache metadata @adhdd for metadata struc-
tures in the heap. To the best of our knowledge, this is thiesfirsh comprehensive study
of end-to-end file system data integrity.

Similarly, our analysis of cloud-based synchronizatiawises is the first study on the
reliability of these services. We study the impact of diskrgption and system crash to
synchronization services and reveal the surprising fattrtiultiple copies do not always

make data safe.

7.2 Reliability Modeling

A large body of research has been focusing on modeling désvez errors such as mem-
ory errors and latent sector errors. Li et al. performed s&eseaf measurement of soft

errors on real production systems, and developed modetsriarrates and error patterns

146

[71, 72]. Schroeder et al. conducted a detailed static aisabf latent sector errors and
provided parameters for models derived from the analy$$ [Based on the models,
they proposed and evaluated several new protection scheyaasst latent sector errors.
There are many studies on reliability modeling for RAID &yss [31, 45, 86], but
only a few of them cover silent data corruption. Rozier et@lesented a fault model
for Undetected Disk Errors (UDE) in RAID systems [92]. Thayilba framework that
combines simulation and model to calculate the manifestiatites of undetected data
corruption caused by UDEs. Krioukov et al. used model chregto analyze various pro-
tection techniques used in current RAID storage systenis Jofey study the interaction
between these techniques and find design faults that maydetada loss or data corrup-
tion. In comparison, our reliability framework focuses andsrors from various devices
(not just disk or RAID). We use analytical models to evaluhte reliability of different
devices and different checksums in terms of the probalafityndetected corruption. Our
framework calculates a system-level metric that can be tesedmpare the reliability of

different storage systems.

7.3 Techniques for Data Integrity

Using checksums to detect data corruption is common. Feegays, such as PFS [104],
GoogleFS [51], IRON file system [89], btrfs [91] and ZFS [29$e checksums to protect
on-disk blocks. Many database systems, such as Berkeley8bjBahd SQL Server [1],
support page-level checks to make sure data is not corragptelisk. In networking, the
Internet checksum [12], used by most Internet protocoldesgned to detect transmis-
sion errors. The integrity check specified in RPCSGSS [13] protects RPC messages
during transmission. All these checks are applied in a sisgbsystem/protocol, while

flexible end-to-end data integrity focuses on cross-corapbdata protection. In addition,

147

our ext4-cksum is similar to these systems in using checkshuot to our knowledge, it is
the first work to add data checksumming to ext4. #¥3, we take advantage of existing
checks as well as our newly added checks to provide widerageeof data protection.

Many of the systems above, such as GoogleFS, IRON file sysaaoh,ZFS, rely
on locally stored redundant copies for automatic recovetyich may or may not be
available. In contrast, ViewBox is the first work of which we @ware that employs the
cloud for recovery.

The concept of flexible end-to-end data integrity is sintitethe protection scheme in
the Linux Data Integrity Extension (DIX) [87] and the T10 Rrction Information (T10-
P1) model [112] (previously known as Data Integrity Field)IX provides end-to-end
protection from the application to the I/O controller, venhil 10-PI covers the data path
between the 1/0O controller and the disk. Within this framekyahecksums are passed
from the application all the way to the disk, and can be vetifig the disk drive, as well
as the components inbetween. Although T10-PI requires CRiieachecksum, DIX is
able to use the Internet checksum [12] to achieve betteoprence and relies on the I/O
controller to convert the Internet checksum to CRC. The biehaf each components
in the 1/0O path is well modeled by the data integrity arcHitee from SNIA [102]. Our
flexible end-to-end concept differs from their scheme it thay focus ordefiningthe
behavior of each node while our work helpsreasonabout the rational behind certain
behaviors, such as what checksum should be used by whicharwnp and when and
where the system should change checksum. Our reliabibtjpéwork also provides a
holistic way to think about the tradeoffs between perforogaand protection.

In terms of implementation, 2£S offers similar protection as DIX, but it is differ-
ent from DIX in several aspects. First?i5S is a software solution while T10-PI and
DIX require support from hardware vendors. The hard drived the controller must

support 520-byte sector because the checksum is stored axtia 8-byte area for each

148

sector. 2FS uses space maintained by the file system to store checlsuthst it is
able to provide similar protection as DIX without speciatdware. It can also be easily
extended to support T10-PI. Second, in addition to checkshiaming (conversion) at
the disk-memory boundary?ES performs checksum switching for data in memory. We
believe 2FS is the first file system to take data residency time into idenation and
provide better protection for data in the page cache. THiit&S is a full-featured local
file system that exposes checksum to applications throughane generic APIs so that
any application can be modified to take advantage of the datagtion offered by ZS.

In comparison, DIX is currently a block layer extension imlx. To our best knowledge,
there is no local file system support or user-level APIs atéd; DIX is now only used in

Lustre file system [82] and Oracle’s database products [28}. 1

7.4 Techniques for Data Consistency

A variety of research work, such as IRON file system [89] andFS{36], explores the
use of checksums for purposes beyond simply detectingutioru IRON ext3 introduces
transactional checksums, which allow the journal to isslugrées, including the commit
block, concurrently; the checksum detects any failures ity occur. OptFS extends
transactional checksum to cover dirty data blocks that asthéld during journal commit,
so that the system is able to detect inconsistent data upmash.cExt4-cksum is mostly
related to OptFS in that ext4-cksum also relies on checkgsardstect inconsistent data,
but OptFS requires data block to be checksummed whenevétdbk is updated in the
page cache, which may lead to high response time for writesysalls (due to checksum
calculation). In contrast, ext4-cksum only generates kfiesns when data blocks are
written back, which usually occurs in the background andsda# incur much overhead.

Similarly, a number of works have explored means of proygdimneater crash con-

149

sistency than ordered and metadata journaling providea @atfrnaling mode in ext3
and ext4 provides full crash consistency, but its high osadchmakes it unappealing.
OptFS [36] is able to achieve data consistency and deliggr performance through an
optimistic protocol, but it does so at the cost of durabiitlyile still relying on data jour-
naling to handle overwrite cases. In contrast, ViewBox dsaverhead by allowing the
local file system to work in ordered mode, while providing sistency through the views
it synchronizes to the cloud; it then can restore the latest after a crash to provide
full consistency. Like OptFS, this sacrifices durabilityjyce the most recent view on the
cloud will always lag behind the active file system. Howevis approach is optional,
and, in the normal case, ordered mode recovery can still & us

ViewBox’s snapshotting component, the view manager, bsanse resemblance to
ext3cow [88] and Next3 [49], but these similarities are riyostiperficial. Like both of
these systems, the view manager performs copy-on-write pec snapshot. However,
unlike these systems, the view manager does not persistagshots on disk, relying
instead on the cloud back-end to store uploaded views. aaily, while we imple-
ment the view manager as an extension to ext4, it requires atification to on-disk
data structures and could easily be applied to any othextfiteisystem. Finally, while
ext3cow’s focus on file history resembles Dropbox’s file sewn history interface, View-
Box shifts from this interface to focus on complete imagesthas is the only way to

guarantee causal consistency when restoring previousefigons.

150

Chapter 8

Conclusion and Future Work

One of the major responsibilities of storage systems isdrestata correctly and protect
it from being damaged. Existing systems and many reseamjeqts have employed
various techniques to fulfill this responsibility, but madtthe techniques only focus
on protecting data in a specific component in the storagd steuile failing to provide
comprehensive protection — corrupt data or inconsistetat stdl goes undetected and is
exposed to users or applications.

In this dissertation, we identified this problem of isolapgdtection in both local and
cloud storage systems, and proposed several cooperataeguasection techniques to
address the problem. For local storage systems, we firsgzaththe impact of disk and
memory corruption to ZFS and found that ZFS fails to proteaniemory data (Chapter
3). Then, we proposed the concept of flexible end-to-end idé&grity and built ZFS
by applying the concept to ZFS, which provides end-to-eratgation with improved
performance (Chapter 4). For cloud storage services, wiedthy studying how syn-
chronization clients propagate corrupt data and incozisistata to the cloud due to the

loose coupling of local file systems and synchronizationises (Chapter 5). We then

151

built ViewBox, a system in which local file systems and sywtization services work
cooperatively to provide data integrity, consistency, eswbverability (Chapter 6).

In this chapter, we first summarize our analysis and solatinrSection 8.1, then list
a set of lessons learned over the course of this work in Seéti®, and finally discuss

directions for future research in Section 8.3.

8.1 Summary

This dissertation is mainly divided in two parts: coopemtilata protection in local stor-
age, and cooperative data protection across local and cltmudge. Each part further

consists of a problem analysis and a solution. We now surnaeagdch part in turn.

8.1.1 Cooperative Data Protection in Local Storage

In the first part of the dissertation, we focused on the imp#disk corruption and mem-
ory corruption in local storage systems and we chose ZFS, gemoand mature file
system, as our study subject. First, we evaluated how ratieStis against disk and
memory corruption. We injected corruption to data blockd aretadata structures both
on disk and in memory. We found that ZFS is able to detect acolver from most in-
jected disk corruption, due to the usage of checksums fatiskblocks and file-system
level replication for important metadata structures. Hesvebecause the protection is
only limited to disk blocks, ZFS fails to protect in-memorgtd and metadata, which
leads to bad data blocks being silently returned to the useritien to disk, file system
operation failures, and whole system crashes. Our findmdjsated that end-to-end data
protection is needed to protect data from both memory aridadisruption.

Then, we explored techniques to provide end-to-end dattegqtion. A straight-

152

forward way to achieve this is to apply the traditional eneehd concept, in which ap-
plications generate and verify checksum (usually a strove) éor their data. However,
this approach suffers from slow performance for worklodds tepeatedly access data
from the page cache due to the overhead of calculating chetksMoreover, when the
corruption occurs in the write path, it fails to detect theraption in time, and thus it is
not able to recover from it.

To address both problems, we proposed a new concept cabdaldlend-to-end data
integrity, which enables all components in the storageesysto be aware of check-
sums and changes checksums scheme across componentsn&seten over time)
to achieve a balance between performance and reliability. d&¥eloped an analytical
model to reason about which checksums to be used on whichamnp and then built
Z%FS to demonstrate how to apply flexible end-to-end data iiityetp an existing file
system, ZFS. As a comparison, we also buAZES with straight-forward end-to-end
data integrity. Through analysis and fault injection expents, we showed that’ES
is able to provide Zettabyte reliability (at most one undegtd corruption per Zettabyte
data read), and can detect and recover from corruption invtite path. Through per-
formance experiments, we showed thaE& performs comparably to the original ZFS in
various micro and macro benchmarks and outperforf@$E by up to 17% in workloads

dominated by warm reads.

8.1.2 Cooperative Data Protection across Local and Cloud Stage

The second part of the dissertation focused on the impagsktdrruption and untimely
crashes in local file systems and cloud storage serviceaddiased file synchroniza-
tion services). We first performed fault injection expemtgeon several popular syn-

chronization services and studied how well they proteca.ddhrough disk corruption

153

experiments, we found that in many cases, all the servicesxamined propagate local
corruption to the cloud and thus corrupt copies on othera#svi Through crash tests,
we found that the synchronization clients behave incoasilt;, sometimes they upload
inconsistent files to the cloud, sometimes they downlode s&rsions of files from the
server, and sometimes they refuse to synchronize despifadththat the local copy is dif-
ferent than the cloud copy. Further, we showed that thesgcssrcannot provide causal
consistency because the clients are not able to obtain adiand consistent view of the
local file system. Our analysis revealed that the root catifeese problems is the loose
coupling of synchronization services and local file systems

Next, we designed, implemented, and evaluated a new sysitetd ¢/iewBox, in
which the synchronization service works cooperativehhwite local file system to pro-
vide data integrity and consistency. The key idea behinevBiex is views, in-memory
snapshots of the synchronizing folder. Instead of uplagaflias, ViewBox synchronizes
views between the devices and cloud. To guarantee the tmesscof views, ViewBox
relies on three components: ext4-cksum, the view managdritee cloud helper. Ext4-
cksum adds data checksuming to ext4 and serves as the |lecay$lem in ViewBox.
The added checksum is able to detect both corruption anc&nstency. The view man-
ager is an extension to ext4-cksum which creates views ayfdeem epochs and exposes
views to the synchronization client; the consistency ofwgas thus guaranteed. The
cloud helper is a user-level daemon that uses views on thel dlm perform recovery
when corruption or inconsistency is detected. We built \Bew around two synchro-
nization services, Dropbox and Seafile. Through fault impecexperiments, we showed
that ViewBox is able to detect and recover from corruptiod erash, and therefore pre-
vent bad data from being propagated. Compared to DropboSeaatile running on top
of unmodified ext4, we showed that ViewBox incurs less than ®8rhead in many

workloads, and in some cases reduces the synchronizatierbly 30%.

154
8.2 Lessons Learned

In this section, we present a list of general lessons we éshwhile working on this

dissertation.

¢ Reliability does not come for free. First, data protection techniques usually hurt
the performance of the system. IAZES, we moved the checksum generation and
verification up to the application level to achieve end-tal-€ata integrity, which
caused about a 15% slowdown compared to the original ZFSnire seorkloads.
In ViewBox, we added checksums to ext4 and we find that theativiiroughout
of ext4-cksum is worse than the original ext4. The formeedague to the CPU
overhead of calculating the checksum, and the latter isusecaf extra 1/0Os and

seeks to read and write checksum blocks.

Second, optimization helps to reduce the overhead?f$Zwe chose xor as mem-
ory checksum and we applied the checksum-on-copy optimiz§®9] to make it
extremely faster (3% overhead compared to the original ZIk8) the naive imple-
mentation (7% overhead). In ViewBox, we implemented podfiely of checksum
blocks for sequential read workloads such that the througsipwdown (compared

to original ext4) is improved from 15% to 4%.

Finally, fast storage device needs fast checksum calonlaCurrent systems per-
form well with strong checksums because the checksum edionlusually occurs
with a (traditional) disk 1/0O, which is already costly. Asstalevices (such as SSDs)
are becoming popular and widely deployed, storage systamsot hide the com-
putational cost of checksum behind 1/O time anymore, so ieusethat either we
have to find a checksum that is strong enough to protect datdaah enough to

not cause noticeable slowdown, or we should take other appes to reduce the

155

calculation overhead (e.g., through specialized inswastor additional chips).

e One size (checksum) does not fit allWith the straight-forward end-to-end pro-
tection scheme, usually one checksum is used all the way difgptication to disk.
This simplifies the implementation of a system, but strigsfléxibility away; relia-
bility can be achieved by using a stronger checksum, butehifepnance hurts. Our
flexible end-to-end data protection proposes to use diftarieecksum for different
components, depending on the their reliability and/orqrenince characteristics,
such that the reliability and performance of the whole systan be tweaked to
satisfy certain requirement. We believe that such flexipghould be provided by

future storage systems, especially software-definedge@pstems.

e Multiple copies do not always make data safe.File synchronization services
automatically upload local data to the cloud, and propaig&deother synchronized
devices. These services give the users a perception thratdhe multiple copies
of their data and their data must be safe. However, our asapswed that this is
merely a false sense of “security”. When the local file systethe synchronization
client cannot distinguish legitimate changes (actual tggjdrom “unauthorized”
changes (corrupt or inconsistent data), bad data may badsdbto the server and
thus pollute all copies — failing to guarantee the correxsref data renders all the
replicas useless. We believe that the replication itsedsdwot necessarily improve
data reliability; the ability to verify the integrity of dais the foundation replication

should rely on.

8.3 Future Work

In this section, we outline various directions for futureriuo

156

8.3.1 Characteristic Study of Data Corruption

Our analytical framework described in Section 4.1 modeta @darruption as indepen-
dent bit flips in a fixed-sized data block, which simplifies thedel but unfortunately
fails to represent the reality. Bairavasundaram et al. dotlvat corruption (checksum
mismatches) that occur in the same disk is not independenhas spatial and temporal
locality [23]. Schroeder et al. found that memory error@ddave strong time and space
correlations [63]. Therefore, in order to better underdtand model data corruption, we
believe that a study of data corruption characteristicalan interesting future direction.

The focus of the study would be to find out the pattern of cdrampand how likely
each pattern occurs. If the corruption is caused by droppédsythe corrupt data would
be the same as the previous data at the same location but olagdmpletely different
than the correct data. If the corruption is caused by bg;rivtis highly likely that the
corruption is just several bit flips. In this case, it would@be interesting to know the
distribution of the number of bit flips.

In addition to helping to improve the modeling of data cotioip, the study would be
beneficial in several other ways. First, categorizing datauption events may provide
some hints on why data corruption occurs and which compaostemtid be blamed for
it. For example, if most corruption events are random bisflipis possible that the disk
drive is defected and should be replaced. Second, unddistprorruption pattern would
help with the invention of special checksums. As mentioreal/a, fast devices need fast
checksums to avoid the performance slowdown. If the coiwogdattern of such a device
is known, one may be able to apply a checksum that is speda#ligned to handle that

corruption pattern and performs much faster than a genedstiong checksum.

157

8.3.2 Application-level Data Protection

This dissertation has focused on data protection provigéitidsystems and file synchro-
nization services, but it does not address another impopiace: applications. Since
applications are the ones that generate data and processtdatcritical to make sure
applications protect data and handle corruption corretitig well known that corporate
applications, such as database systems and mail serveegjyalise checksums to protect
data from corruption [1, 4, 85, 105]. Therefore, studying thbustness of home-user
applications, such as document editors or photo managdrfenan interesting future
avenue and the first step would be a thorough analysis of hosvaaruption affects
application behavior.

We can inject various faults (such as corruption, read exrnarwrite error) when an
application reads/writes data from/to the file system, aedreow the application reacts.
We may classify application behaviors into three categodetection, recovery and func-
tionality. In terms of detection, applications may ignadne failure or corruption, detect
and inform the user, or detect and hide from the user. In t&fmscovery, applications
may perform no recovery, retry, repair, or wait for useriastion. By functionality, we
mean after the error handling (detection and recovery) draéhe applications work as
usual, abort abnormally, or perform incorrect actions.

There are two challenges in this fault injection analysigstFto effectively inject
faults, we have to understand various file formats. Diffeegplications work with dif-
ferent file formats. Each file format is like a file system ang ia own organization
of metadata and data. For example, a MP3 file contains a sioé&iP3 frames, each
of which consists of a header (metadata) and an audio dat&.bla contrast, a DOC
file is actually a mini FAT file system, which contains text $ilemages files and other

metadata structures that make up the document. Therefasdmiportant to study how

158

metadata and data in each file format is organized and wh#t@raeanings of the meta-
data structures. Second, automation of the fault injeatixperiments may be difficult.
Unlike traditional UNIX programs, most home-user appiigas are all GUI-based and
they interact with users extensively. The involvement ofmlan users may hinder the
efficiency of fault injection experiments. To solve this pplem, we can use advanced
scripting languages, such as AppleScript, to control GUISs.

Once we have the results from the fault injection analysesywil be able to explore

techniques to improve the robustness of applications ifieite of data corruption.

8.3.3 Cooperative Data Protection in Networked Storage Sysms

We have explored techniques for cooperative data protettitncal storage systems and
cloud storage systems. We believe that another importastosment to look into is
networked storage systems.

Network File System (NFS) is a popular network file systentguol, originally de-
veloped by Sun, which allows users to access files acrossvarnetNFS relies on a secu-
rity protocol called RPCSEMSS [13] to provide data integrity, in which RPC messages
containing NFS requests and responses are checksurNk&dtchecksujnHowever, the
protocol also suffers from the problem of isolated protactithe checksum is only used
during network transmission and there is no end-to-enceptioin between the client-side
application and the server disk.

One approach to achieve cooperative data protection iy #pe concept of flexible
end-to-end data integrity to NFS. First!iZS can be directly used here as the local file
system on the client and the server. Second, models for net¥ata corruption, TCP/IP
checksum, and NFS checksums used by RPCS&ISS (e.g., DES) are needed to evaluate

how reliable the whole system is with the addition of the retpart, and to choose

159

a proper NFS checksum to meet the performance and reljalbgiifuirement. Finally,
checksum chaining must be applied at the boundary of padeaatd the NFS layer to

connect the client’s or the server's memory checksum andlft& checksum.

8.4 Closing Words

In this dissertation, we have identified the problem of ismdgrotection in existing stor-
age systems, and proposed various techniques to achieperative data protection. As
the amount of generated data explodes, the use of low-cadivhee increases, and the
complexity of storage systems grows, existing and futueagie systems will face more
and more challenges to data protection. By demonstratm@adwver of cooperation, we
hope that this dissertation can help researchers, desicarat developers to rethink data

protection and build reliable storage systems with codperdata protection.

160

Bibliography

(1]

(2]
(3]

(4]

(5]
(6]
[7]
(8]
9]

[10]

[11]

[12]

Buffer Management - SQL Server 2008 R2http://msdn.microsoft.com/en-us/
library/aa337525.aspx

CERT/CC Advisorieshttp://www.cert.org/advisories/

Data Integrity. http://indico.cern.ch/getFile.py/access?contribld=
3&sessionld=0&resld=1&materialld=paper&confld=13797

Eseutil /K Checksum Mode. http://technet.microsoft.com/en-us/library/
bb123632%28EXCHG.65%29.aspx .

Kernel Bug Trackerhttp://bugzilla.kernel.org/
LASR Traces.http://iotta.snia.org/traces/2
Ivcreate(8) - linux man page.

Mozy. https://lwww.mozy.com

Repeated panics, something gone bad?http://tech.groups.yahoo.com/group/

solarisx86/message/38925

RFC 3385 - Internet Protocol Small Computer Systemrfate (iISCSI) Cyclic Redundancy Check
(CRC)/Checksum Consideratiortstp://www.ietf.org/rfc/rfc3385.txt

RFC 793 - Transmission Control Protocbttp://www.ietf.org/rfc/rfc793.txt

RFC1071 - Computing the Internet Checksurhttp://www.ietf.org/rfc/rfc1071.
txt .

[13]

[14]
[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

161

RFC2203 - RPCSEGSS Protocol Specificatiorttp://www.ietf.org/rfc/rfc2203.
txt .

US-CERT Vulnerabilities Notes Databagutp://www.kb.cert.org/vuls/
ZFS on Linux.http://zfsonlinux.org

Zfs problem mirror. http://www.mail-archive.com/zfs-discuss@opensolaris

org/msg18079.html

Zfs problems. http://www.mail-archive.com/zfs-discuss@opensolaris .org/
msg04518.html

Amazon. Amazon Simple Storage Service (Amazon 88p://aws.amazon.com/s3/

Dave Anderson, Jim Dykes, and Erik Riedel. More Thanraerface: SCSI vs. ATA. liProceed-
ings of the 2nd USENIX Symposium on File and Storage TeahiesI¢FAST '03) San Francisco,
California, April 2003.

Apple. icloud. http://www.icloud.com/

Apple. Technical Note TN1150. http://developer.apple.com/technotes/tn/
tn1150.html , March 2004.

Lakshmi N. Bairavasundaram, Garth R. Goodson, ShaR&aupathy, and Jiri Schindler. An Anal-
ysis of Latent Sector Errors in Disk Drives. Rroceedings of the 2007 ACM SIGMETRICS Confer-
ence on Measurement and Modeling of Computer Systems (SIBMIS '07) San Diego, Califor-
nia, June 2007.

Lakshmi N. Bairavasundaram, Garth R. Goodson, Biarcadder, Andrea C. Arpaci-Dusseau,
and Remzi H. Arpaci-Dusseau. An Analysis of Data Corrupitithe Storage Stack. IRroceedings
of the 6th USENIX Symposium on File and Storage Technol@Be3T '08) pages 223-238, San
Jose, California, February 2008.

Lakshmi N. Bairavasundaram, Meenali Rungta, Nitin &gal, Andrea C. Arpaci-Dusseau,
Remzi H. Arpaci-Dusseau, and Michael M. Swift. Analyzing tiffects of Disk Pointer Corruption.
In Proceedings of the International Conference on Depend8pitems and Networks (DSN '08)

Anchorage, Alaska, June 2008.

162

[25] Wendy Bartlett and Lisa Spainhower. Commercial Faolefance: A Tale of Two System$EEE
Transactions on Dependable and Secure Compufi(ih):87—-96, January 2004.

[26] J.H. Barton, E.W. Czeck, Z.Z. Segall, and D.P. Siewkoifeault Injection Experiments Using FIAT.
IEEE Transactions on Compute39(4):1105-1118, April 1990.

[27] Robert Baumann. Soft errors in advanced computer systéEEE Design & Test of Computers
22(3):258-266, 2005.

[28] Emery D. Berger and Benjamin G. Zorn. Diehard: prokbati memory safety for unsafe languages.
In Proceedings of the ACM SIGPLAN 2005 Conference on Programinanguage Design and
Implementation (PLDI '06)Ottawa, Canada, June 2006.

[29] Jeff Bonwick and Bill Moore. ZFS: The Last Word in File 8gms. http://opensolaris.
org/os/community/zfs/docs/zfs_last.pdf ,2007.

[30] Florian Buchholz. The structure of the Reiser file systéttp://homes.cerias.purdue.

edu/ florian/reiser/reiserfs.php

[31] W. Burkhard and Jai Menon. Disk Array Storage Systemddlty. In Proceedings of the 23rd In-
ternational Symposium on Fault-Tolerant Computing (FTZ33-pages 432-441, Toulouse, France,
June 1993.

[32] Remy Card, Theodore Ts'0, and Stephen Tweedie. Desigriraplementation of the Second Ex-
tended Filesystem. IRirst Dutch International Symposium on Linu&msterdam, Netherlands,
December 1994,

[33] Joao Carreira, Henrique Madeira, and Joao GabriehSXeeption: A Technique for the Experimen-
tal Evaluation of Dependability in Modern ComputeliSEE Transactions on Software Engineering
1998.

[34] John Chapin, Mendel Rosenblum, Scott Devine, Tirttzaublahiri, Dan Teodosiu, and Anoop Gupta.
Hive: Fault Containment for Shared-Memory MultiprocessémProceedings of the 15th ACM Sym-
posium on Operating Systems Principles (SOSP, ‘@bpper Mountain Resort, Colorado, December
1995.

[35] C. L. Chen. Error-correcting codes for semiconductenmories.SIGARCH Comput. Archit. News
12(3):245-247,1984.

163

[36] Vijay Chidambaram, Thanumalayan Sankaranarayanai,P#hndrea C. Arpaci-Dusseau, and
Remzi H. Arpaci-Dusseau. Optimistic Crash Consistencyriceedings of the 24th ACM Sympo-
sium on Operating Systems Principles (SOSP,' Eaymington, PA, November 2013.

[37] Vijay Chidambaram, Tushar Sharma, Andrea C. Arpacssaau, and Remzi H. Arpaci-Dusseau.

Consistency Without Ordering. Proceedings of the 10th USENIX Symposium on File and Storage

Technologies (FAST '12pan Jose, California, February 2012.

[38] Andy Chou, Junfeng Yang, Benjamin Chelf, Seth Hallend ®awson Engler. An Empirical Study

of Operating System Errors. IRroceedings of the 18th ACM Symposium on Operating Systems

Principles (SOSP '01)pages 73-88, Banff, Canada, October 2001.

[39] Hsiao-keng Jerry Chu. Zero-copy tcp in solaris.Pimceedings of the 1996 USENIX Annual Tech-
nical ConferenceSan Diego, CA, 1996.

[40] Jonathan Corbet. Improving ext4: bigalloc, inlinealaand metadata checksuntdtp://lwn.
net/Articles/469805/ , November 2011.

[41] csync. csynchttp://www.csync.org/

[42] Nurit Dor, Michael Rodeh, and Mooly Sagiv. CSSV: towsuarealistic tool for statically detecting
all buffer overflows in C. IrProceedings of the 2003 ACM SIGPLAN Conference on Progragnmi
Language Design and Implementation (PLDI '0San Diego, California, June 2003.

[43] Idilio Drago, Marco Mellia, Maurizio M. Munafd, Annarotto, Ramin Sadre, and Aiko Pras.
Inside Dropbox: Understanding Personal Cloud Storagei@essvInProceedings of the 2012 ACM

conference on Internet measurement conference (IMG B@3ton, MA, November 2012.
[44] Dropbox. The dropbox touhttps://www.dropbox.com/tour

[45] Jon G. Elerath and Michael Pecht. Enhanced reliahifigdeling of raid storage systems. Pmo-
ceedings of the International Conference on Dependablee®gsand Networks (DSN 'Q7&din-
burgh, UK, June 2007.

[46] EMC. An Integrated End-to-End Data Integrity Solutioto Protect Against Silent
Data Corruption. http://www.oracle.com/us/technologies/linux/
data-integrity-solution-1852762.pdf

[47]

[48]

[49]

[50]

[51]

[52]
[53]

[54]

[55]

[56]

[57]

[58]

164

Dawson Engler, David Yu Chen, Seth Hallem, Andy Choid Benjamin Chelf. Bugs as Deviant
Behavior: A General Approach to Inferring Errors in Systébasle. InProceedings of the 18th ACM
Symposium on Operating Systems Principles (SOSR fiHddes 57-72, Banff, Canada, October
2001.

A. Eto, M. Hidaka, Y. Okuyama, K. Kimura, and M. Hosonanpact of neutron flux on soft errors

in mos memories. linternational Electron Devices Meeting 1998 (IEDM '98P98.
Amir G. Next3 snapshots design. Technical report, CAENetworks, Ltd., July 2011.

Gregory R. Ganger and Yale N. Patt. Metadata UpdateoBeagnce in File Systems. Proceedings
of the 1st Symposium on Operating Systems Design and Imtietine (OSDI '94) pages 49-60,

Monterey, California, November 1994.

Sanjay Ghemawat, Howard Gobioff, and Shun-Tak Leurige Google File System. IRroceedings
of the 19th ACM Symposium on Operating Systems Princip@SPS03) pages 29-43, Bolton
Landing, New York, October 2003.

GIT. Git. http://git-scm.com
Google. Google drivehttp://www.google.com/drive/about.html

David Greaves, Junio Hamano, et al. git-read-tree(lijtux man page http://linux.die.

net/man/1/git-read-tree

Roedy Green. EIDE Controller Flaws Version 24http://mindprod.com/jgloss/

eideflaw.html

Weining Gu, Z. Kalbarczyk, Ravishankar K. lyer, and Bjie Yang. Characterization of Linux
Kernel Behavior Under Errors. IRroceedings of the International Conference on Dependable

Systems and Networks (DSN '0ages 459—-468, San Francisco, California, June 2003.

Haryadi S. Gunawi, Abhishek Rajimwale, Andrea C. ArpRasseau, and Remzi H. Arpaci-
Dusseau. SQCK: A Declarative File System Checker.Pioceedings of the 8th Symposium on
Operating Systems Design and Implementation (OSD| 88y Diego, California, December 2008.

Seth Hallem, Benjamin Chelf, Yichen Xie, and Dawson EngA system and lang-uage for build-
ing system-specific, static analyses. Rroceedings of the 2003 ACM SIGPLAN Conference on
Programming Language Design and Implementation (PLDI,@&3n Diego, California, June 2003.

[59]

[60]

[61]

[62]

[63]

[64]

[65]

[66]

[67]

[68]

165

James Hamilton. Successfully Challenging the Servax. T http://perspectives.

mvdirona.com/2009/09/03/SuccessfullyChallengingTheS erverTax.aspx

Tyler Harter, Chris Dragga, Michael Vaughn, Andrea Gpéci-Dusseau, and Remzi H. Arpaci-
Dusseau. A File is Not a File: Understanding the I/O BehawioApple Desktop Applications.
In Proceedings of the 24th ACM Symposium on Operating Systemsghes (SOSP '11)pages
71-83, Cascais, Portugal.

Reed Hastings and Bob Joyce. Purify: Fast detectionerhory leaks and access errors. Hro-
ceedings of the USENIX Winter Technical Conference (USBMMXer '92), San Francisco, CA,
1992.

Dave Hitz, James Lau, and Michael Malcolm. File Systeesign for an NFS File Server Appliance.
In Proceedings of the USENIX Winter Technical Conference (URBEVinter '94) San Francisco,
California, January 1994.

Andy A. Hwang, loan A. Stefanovici, and Bianca Schraedeosmic rays don't strike twice: un-
derstanding the nature of dram errors and the implicationsystem design. IRroceedings of the
16th International Conference on Architectural Supportfeogramming Languages and Operating
Systems (ASPLOS XVLondon, UK, March 2012.

Dell T. J. A white paper on the benefits of chipkill- coeteecc for pc server main memoryBM

Microelectronics Division1997.

Minwen Ji, Alistair C Veitch, and John Wilkes. Senecamote mirroring done write. IRroceedings

of the USENIX Annual Technical Conference (USENIX, &3 Antonio, Texas, June 2003.

Wei-lun Kao, Ravishankar K. lyer, and Dong Tang. FINEFAult Injection and Monitoring Envi-
ronment for Tracing the UNIX System Behavior Under FaulsIBEE Transactions on Software

Engineeringpages 1105-1118, 1993.

Osama Khan, Randal Burns, James Plank, William Piexed,Cheng Huang. Rethinking erasure
codes for cloud file systems: minimizing i/o for recovery atejraded reads. IRroceedings of
the 10th USENIX Symposium on File and Storage TechnoloBST('12) San Jose, California,
February 2012.

J.J. Kistler and M. Satyanarayanan. Disconnected &joerin the Coda File SystenACM Trans-
actions on Computer Systemi9(1), February 1992.

[69]

[70]

[71]

[72]

[73]

[74]

[75]

[76]

[77]

[78]

166

Andrew Krioukov, Lakshmi N. Bairavasundaram, GarthGdodson, Kiran Srinivasan, Randy The-
len, Andrea C. Arpaci-Dusseau, and Remzi H. Arpaci-Dussé&irity Lost and Parity Regained.
In Proceedings of the 6th USENIX Symposium on File and Storagfm®logies (FAST '08pages
127-141, San Jose, California, February 2008.

Swetha Krishnan, Giridhar Ravipati, Andrea C. ArpBeisseau, Remzi H. Arpaci-Dusseau, and
Barton P. Miller. The Effects of Metadata Corruption on NF&Proceedings of the 3rd International

Workshop on Storage Security and Survivability (StoraffEg SAlexandria, Virginia, October 2007.

Xin Li, Michael C. Huang, Kai Shen, and Lingkun Chu. A listic evaluation of memory hard-
ware errors and software system susceptibility.Ploceedings of the USENIX Annual Technical
Conference (USENIX '10Boston, Massachusetts, June 2010.

Xin Li, Kai Shen, Michael C. Huang, and Lingkun Chu. A mem soft error measurement on
production systems. IRroceedings of the USENIX Annual Technical Conference (W%ED7),
Santa Clara, CA, June 2007.

Avantika Mathur, Mingming Cao, Suparna Bhattacharfadreas Dilger, Alex Tomas, Laurent
Vivier, and Bull S.A.S. The New Ext4 Filesystem: Currentt8taand Future Plans. Bttawa
Linux Symposium (OLS '0,/pttawa, Canada, July 2007.

Theresa C. Maxino and Philip J. Koopman. The effectagsnof checksums for embedded control

networks.IEEE Trans. Dependable Secur. Comp6(1):59—-72, January 2009.

T. C. May and M. H. Woods. Alpha-particle-induced saftoes in dynamic memoriedEEE Trans.
on Electron Dey26(1), 1979.

Marshall Kirk McKusick, Willian N. Joy, Samuel J. Leffleand Robert S. Fabry. Fsck - The UNIX
File System Check Program. Unix System Manager's Manu& B&D Virtual VAX-11 Version,
April 1986.

Nimrod Megiddo and Dharmendra Modha. Arc: A self-tumitow overhead replacement cache.
In Proceedings of the 2nd USENIX Symposium on File and Stomgjen®dlogies (FAST '03)5an
Francisco, California, April 2003.

Ralph C. Merkle. A digital signature based on a conwamdl encryption function. I Conference
on the Theory and Applications of Cryptographic Technique#édvances in Cryptology (CRYPTO
'87), 1987.

[79]

[80]

[81]

[82]

[83]

[84]

[85]

[86]

[87]

[88]

[89]

167

Microsoft. How ntfs works. http://technet.microsoft.com/en-us/library/

cc781134(v=ws.10).aspx , March 2003.

Dejan Milojicic, Alan Messer, James Shau, Guangruidng Alberto Munoz. Increasing relevance
of memory hardware errors: a case for recoverable progragnmodels. IrProceedings of the 9th
Workshop on ACM SIGOPS European WorksHfi9O0.

Bill Moore. Ditto Blocks - The Amazing Tape Repellenttp://blogs.sun.com/bill/

entry/ditto_blocks_the amazing_tape

Nathan Rutman. Improvements in Lustre Data Integribitp://legacy.xyratex.com/

pdfs/lustre/Improvements_in_Lustre_Data_Integrity.p df .

Eugene Normand. Single event upset at ground leMlclear Science, IEEE Transactions,on
43(6):2742-2750, 1996.

T.J. O'Gorman, J. M. Ross, A. H. Taber, J. F. Ziegler, HMRBhlfeld, C. J. Montrose, H. W. Curtis,
and J. L. Walsh. Field testing for cosmic ray soft errors ims®nductor memoriesiBM Journal
of Research and Developme#0(1):41-50, 1996.

Michael A. Olson, Keith Bostic, and Margo Seltzer. Beldy db. InProceedings of the USENIX
Annual Technical Conference (USENIX '9B)onterey, California, June 1999.

David Patterson, Garth Gibson, and Randy Katz. A CaseérEdundant Arrays of Inexpensive
Disks (RAID). InProceedings of the 1988 ACM SIGMOD Conference on the Manewgeoh Data
(SIGMOD '88) pages 109-116, Chicago, lllinois, June 1988.

Martin K. Petersen. Linux Data Integrity Extensions.Linux Symposiun?008.

Zachary Peterson and Randal Burns. Ext3cow: a timighstpfile system for regulatory compliance.

Trans. Storagel(2):190-212, 2005.

Vijayan Prabhakaran, Lakshmi N. BairavasundaraminMigrawal, Haryadi S. Gunawi, Andrea C.
Arpaci-Dusseau, and Remzi H. Arpaci-Dusseau. IRON Filde3ys. InProceedings of the 20th
ACM Symposium on Operating Systems Principles (SOSP pages 206-220, Brighton, United
Kingdom, October 2005.

168

[90] Feng Qin, Shan Lu, and Yuanyuan Zhou. Safemem: Explpiticc-memory for detecting memory
leaks and memory corruption during production runs.nProceedings of the 11th International

Symposium on High-Performance Computer Architecture (NBE'), 2005.

[91] Ohad Rodeh, Josef Bacik, and Chris Mason. BTRFS: ThexLBrTree FilesystemACM Transac-
tions on Storage (TOSY(3):9:1-9:32, August 2013.

[92] E. Rozier, W. Belluomini, V. Deenadhayalan, J. HafrleK. Rao, and P. Zhou. Evaluating the
impact of undetected disk errors in raid systemsPioceedings of the International Conference on
Dependable Systems and Networks (DSN,’'D&pon, Portugal, June 2009.

[93] rsync. rsynchttp://www.samba.org/rsync/

[94] Jerome H. Saltzer, David P. Reed, and David D. Clark. -EBrdnd arguments in system design.
ACM Transactions on Computer Syste():277-288, November 1984.

[95] Russel Sandberg. The Design and Implementation of timeN&twork File System. IRroceedings
of the 1985 USENIX Summer Technical Conferepages 119-130, Berkeley, CA, June 1985.

[96] Bianca Schroeder, Sotirios Damouras, and Phillipd. Ginderstanding latent sector errors and
how to protect against them. Proceedings of the 8th USENIX Symposium on File and Storage
Technologies (FAST '10pan Jose, California, February 2010.

[97] Bianca Schroeder, Eduardo Pinheiro, and Wolf-Diétiigeber. DRAM errors in the wild: a large-
scale field study. IfProceedings of the 2009 Joint International Conference @asdirement and

Modeling of Computer Systems (SIGMETRICS/Performange S&ttle, Washington, June 2009.

[98] Thomas J.E. Schwarz, Qin Xin, Ethan L. Miller, Darrell® Long, Andy Hospodor, and Spencer
Ng. Disk Scrubbing in Large Archival Storage SystemsPtoceedings of the 12th Annual Meet-
ing of the IEEE International Symposium on Modeling, Anialygnd Simulation of Computer and

Telecommunication Systems (MASCQVWBlendam, Netherlands, October 2004.
[99] Seafile. Seafilehttp://seafile.com/en/home/
[100] Tezzaron Semiconductor. Soft errors in electronicnoey - a white paper. 2004.

[101] D.P. Siewiorek, J.J. Hudak, B.H. Suh, and Z.Z. Segalidlopment of a Benchmark to Measure Sys-
tem Robustness. IRroceedings of the 23rd International Symposium on Faoléifnt Computing
(FTCS-23) Toulouse, France, June 1993.

169

[102] SNIA Technical Proposal. Architectural Model for Rdnhtegrity. http://snia.org/sites/
default/files/Data_Integrity_Architectural_Model_v1 .0.pdf

[103] sparkleshare. Sparkleshahgtp://sparkleshare.org

[104] Christopher A. Stein, John H. Howard, and Margo |. 85lt Unifying File System Protection.
In Proceedings of the USENIX Annual Technical Conference (USE1), pages 79-90, Boston,

Massachusetts, June 2001.

[105] Sriram Subramanian, Yupu Zhang, Rajiv Vaidyanathdaryadi S. Gunawi, Andrea C. Arpaci-
Dusseau, Remzi H. Arpaci-Dusseau, and Jeffrey F. Nauglgmact of Disk Corruption on Open-
Source DBMS. InProceedings of the 26th International Conference on DatgiB#ering (ICDE
’10), Long Beach, California, March 2010.

[106] M. Sullivan and R. Chillarege. Software defects argirthimpact on system availability-a study of
field failures in operating systems. Rroceedings of the 21st International Symposium on Fault-
Tolerant Computing (FTCS-21)Montreal, Canada, June 1991.

[107] Sun Microsystems. Solaris Internals: FileBendttitp://www.solarisinternals.com/

wiki/index.php/FileBench

[108] Sun Microsystems. ZFS On-Disk Specificatiorhttp://www.opensolaris.org/os/
community/zfs/docs/ondiskformat0822.pdf

[109] Rajesh Sundaram. The Private Lives of Disk Drive#p://partners.netapp.com/go/

techontap/matl/sample/0206tot_resiliency.html

[110] Adan Sweeney, Doug Doucette, Wei Hu, Curtis Anderstike Nishimoto, and Geoff Peck. Scala-
bility in the XFS File System. liProceedings of the USENIX Annual Technical Conference (USE
'96), San Diego, California, January 1996.

[111] Michael M. Swift, Brian N. Bershad, and Henry M. Levynproving the Reliability of Commodity
Operating Systems. IRroceedings of the 19th ACM Symposium on Operating SystamgdRes
(SOSP '03)Bolton Landing, New York, October 2003.

[112] T10 Technical Committee. SCSI Block Commands ht3p://www.t10.org/members/w_
sbc3.htm .

170

[113] The Data Clinic. Hard Disk Failure. http://www.dataclinic.co.uk/

hard-disk-failures.htm

[114] T. K. Tsai and R. K. lyer. Measuring Fault Tolerancehwihe FTAPE Fault Injection Tool. In
The 8th International Conference On Modeling Techniques Eools for Computer Performance

Evaluation pages 26—40, September 1995.

[115] Patrick Tucker. Has big data made anonymity impossi-
ble? http://www.technologyreview.com/news/514351/
has-big-data-made-anonymity-impossible/

[116] Stephen C. Tweedie. Journaling the Linux ext2fs Fifst&m. InThe Fourth Annual Linux Expo
Durham, North Carolina, May 1998.

[117] John Wehman and Peter den Haan. The Enhanced IDEXFASFAQ. http://thef-nym.

sci.kun.nl/cgi-pieterh/atazip/atafg.html

[118] Glenn Weinberg. The Solaris Dynamic File Systemhttp://members.visi.net/
“thedave/sun/DynFS.pdf

[119] Zev Weiss, Tyler Harter, Andrea C. Arpaci-Dusseau] Remzi H. Arpaci-Dusseau. ROOT: Re-
playing Multithreaded Traces with Resource-Oriented @ngde In Proceedings of the 24th ACM
Symposium on Operating Systems Principles (SOSRFB3inington, PA, November 2013.

[120] Andre Wenas. ZFS FA(http://blogs.sun.com/awenas/entry/zfs_faq
[121] Wim Coekaerts. ASMLibhttps://blogs.oracle.com/wim/entry/asmlib

[122] Microsoft Windows. Skydrive.http://windows.microsoft.com/en-us/skydrive/

download .
[123] Wuala. Wualahttp://www.wuala.com/

[124] Yichen Xie, Andy Chou, and Dawson Engler. Archer: gsgymbolic, path-sensitive analysis to
detect memory access errors. Rroceedings of the 11th ACM SIGSOFT International Symposiu

on Foundations of Software Engineering (FSE 'A3glsinki, Finland, September 2003.

[125] Junfeng Yang, Can Sar, and Dawson Engler. EXPLODE ghtweight, General System for Finding
Serious Storage System Errors.Rroceedings of the 7th Symposium on Operating SystemsrDesig

and Implementation (OSDI '0p¥peattle, Washington, November 2006.

[126]

[127]

[128]

[129]

[130]

[131]

[132]

[133]

171

Junfeng Yang, Paul Twohey, Dawson Engler, and Madahlsuvathi. Using Model Checking to
Find Serious File System Errors. Rtoceedings of the 6th Symposium on Operating SystemsrDesig

and Implementation (OSDI '04pan Francisco, California, December 2004.

Yupu Zhang, Chris Dragga, Andrea C. Arpaci-Dusseam& H. Arpaci-Dusseau. ViewBox: In-
tegrating Local File Systems with Cloud Storage Servicas.Prbceedings of the 12th USENIX
Symposium on File and Storage Technologies (FAST, 3anta Clara, California, February 2014.

Erez Zadok, lon Badulescu, and Alex Shender. ExtepHile Systems Using Stackable Templates.
In Proceedings of the USENIX Annual Technical Conference (USE99), Monterey, California,
June 1999.

Yupu Zhang, Chris Dragga, Andrea C. Arpaci-Dusseauw, Remzi H. Arpaci-Dusseau. *-Box:
Towards Reliability and Consistency in Dropbox-like Filgn8hronization Services. IRroceedings

of the 5th USENIX Workshop on Hot Topics in Storage and Fisge®ys (HotStorage '13%an Jose,

California, June 2013.

Yupu Zhang, Daniel S. Myers, Andrea C. Arpaci-Dusseaa Remzi H. Arpaci-Dusseau. Zettabyte
Reliability with Flexible End-to-end Data Integrity. Proceedings of the 29th IEEE Conference on
Massive Data Storage (MSST '18png Beach, CA, May 2013.

Yupu Zhang, Abhishek Rajimwale, Andrea C. Arpaci-Besu, and Remzi H. Arpaci-Dusseau. End-
to-end Data Integrity for File Systems: A ZFS Case Study.Ptaceedings of the 8th USENIX
Symposium on File and Storage Technologies (FAST, 3@ Jose, California, February 2010.

Benjamin Zhu, Kai Li, and Hugo Patterson. Avoiding thisk bottleneck in the data domain dedupli-
cation file system. IfProceedings of the 6th USENIX Symposium on File and Storegfablogies
(FAST '08) San Jose, California, February 2008.

J. F. Ziegler and W. A. Lanford. Effect of Cosmic Rays Gomputer Memories. Science
206(4420):776-788, 1979.

