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ȳ)2 = 2.090, where ȳ is the average of the response values. . . . . . . . . . . . . 69

6.1 Comparison of predictive mean squared errors for Example 6.9. PMSE = predic-

tive mean squared error, SE = standard error . . . . . . . . . . . . . . . . . . . . 103



ix

6.2 Comparison of predictive mean squared errors for Example 6.10. PMSE = pre-

dictive mean squared error, SE = standard error . . . . . . . . . . . . . . . . . . 104

6.3 Comparison of predictive mean squared errors for Example 6.11. PMSE = pre-

dictive mean squared error, SE = standard error . . . . . . . . . . . . . . . . . . 105

6.4 Comparison of predictive mean squared errors for Example 6.12. PMSE = pre-

dictive mean squared error, SE = standard error . . . . . . . . . . . . . . . . . . 106

B.1 ADNI recruitment criteria of CN, MCI and AD subjects. AD: Alzheimer’s disease;

CDR: Clinical Dementia Rating; HC: Healthy controls; MCI: Mild cognitive

impairment; MMSE: Mini-Mental State Examination; Edu : years of education. 171

C.1 FDR and TDR averaged over 500 simulation replications with sample sizes n =

1000 and tuning parameters set as their universal values. The values in the “SD”

columns are standard deviations, not standard errors. . . . . . . . . . . . . . . . 206

C.2 FDR and TDR averaged over 500 simulation replications with sample sizes n =

2000 and tuning parameters set as their universal values. The values in the “SD”

columns are standard deviations, not standard errors. . . . . . . . . . . . . . . . 207



x

List of Figures

2.1 Diagram of the closed-loop flexible assembly system for Example 2.9 . . . . . . 21

2.2 The box plots of MSEs for Example 2.9 . . . . . . . . . . . . . . . . . . . . . . . . 23

2.3 Estimation error of our regularized estimator incorporating different levels of

partial derivatives for Example 2.11. The y-axis is in the log scale. . . . . . . . . 27

3.1 Illustration of heterogenous longitudinal data with p covariates. . . . . . . . . . 31

3.2 Flowchart of the proposed method. . . . . . . . . . . . . . . . . . . . . . . . . . . 37

3.3 The prediction comparisons of our method using six levels of longitudinal data. 39

3.4 Examples of selected features for Model 6. . . . . . . . . . . . . . . . . . . . . . . 40

3.5 The prediction comparisons of three methods for MCI-C. . . . . . . . . . . . . . 40

3.6 The prediction comparisons of three methods for MCI-NC. . . . . . . . . . . . 41

4.1 Panel (a) compares the penalty functions for TWIN-a and TWIN-b with the

Lasso and MCP all with with λ = 1 (and λc = 1 in the case of TWIN). The extra

tuning parameter γ for MCP is set to 1.4. Panel (b) compares the corresponding

derivative functions. Panel (c) compares the thresholding functions for all of the

penalties. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49



xi

4.2 Plot of coefficient paths as the λ tuning parameter is varied for TWIN-a and -b in

comparison with that of the Lasso, SCAD, and MCP. The top left plot is TWIN-a

with τ = 0.1, the top middle is TWIN-b with τ = 0.1, and the top right is TWIN-a

with τ = 0.5. Only variables V 1− V 10 have nonzero coefficients in this example

and only these variables are labeled on the right of each plot if selected. . . . . 50

4.3 The results above are for a simulation with data generated under Model 3 de-

scribed in Section 5.3. Models are fit using the TWIN-a penalty. . . . . . . . . . 53

4.4 The results above are for a simulation with data generated under Model 1 (top

panel) and Model 2 (bottom panel). . . . . . . . . . . . . . . . . . . . . . . . . . . 66

4.5 The results above are for a simulation with data generated under Model 3 (top

panel) and Model 4 (bottom panel). . . . . . . . . . . . . . . . . . . . . . . . . . . 67

4.6 The results above are for a simulation with data generated under Model 1 (top

panel) and Model 2 (bottom panel). . . . . . . . . . . . . . . . . . . . . . . . . . . 68

5.1 A sketch of “flat” and “sharp” minima for one-dimensional case (left panel) and

two-dimensional case (right panel). The vertical axis indicates the value of the

loss function. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

5.2 A sketch of two local minimizer w̌1 and w̌2 of a risk function. The w∗ is the

saddle point between w̌1 and w̌2 and the H is the relative height of w∗ to w̌1. . 74

5.3 Log of Frobenius norm of Hessian as a function of epochs. Three (γ,M) pairs

(0.01, 128), (0.1, 128) and (0.2, 256) are studied, which are denoted in red, blue

and green, respectively. The left plot shows 10 experiments for each of three

(γ,M) pairs and the right plot shows the average of 10 experiments. Total 180

epochs are trained. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79



xii

5.4 The left plot shows the training accuracy as a function of epochs and the right

plot shows the cross entropy loss as a function of epochs. Three (γ,M) pairs

(0.01, 128), (0.1, 128) and (0.2, 256) are studied, which are denoted in red, blue

and green, respectively. Both plots show 10 experiments for each of three (γ,M)

pairs. Total 180 epochs are trained. . . . . . . . . . . . . . . . . . . . . . . . . . . 81

5.5 The top left plot shows the training and test accuracy as a function of epochs. The

top right plot gives the zoomed in performance of the accuracy when epochs are

no less than 25. The bottom left plot shows the cross entropy loss as a function of

epochs. The bottom right plot gives the zoomed in performance of the loss when

epochs are no less than 25. Three (γ,M) pairs (0.01, 128), (0.1, 128) and (0.2, 256)

are studied, which are denoted in red, blue and green, respectively. Total 200

epochs are trained. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

6.1 Normalized model discrepancy equipped with L2(Π)-norm and RKHS-norm in

Example 6.9. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

C.1 The results above are for a simulation with data generated under Model 1 with

p = 2000. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 208

C.2 The results above are for a simulation with data generated under Model 2 with

p = 2000. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 209

C.3 The results above are for a simulation with data generated under Model 5 with

p = 2000. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 210

C.4 The results above are for a simulation with data generated under Model 6 with

p = 2000. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 211

C.5 The results above are for a simulation with data generated under Model 1 with

p = 2000. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 212

C.6 The results above are for a simulation with data generated under Model 2 with

p = 2000. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 213



xiii

C.7 The results above are for a simulation with data generated under Model 5 with

p = 2000. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 214

C.8 The results above are for a simulation with data generated under Model 6 with

p = 2000. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 215

C.9 The results above are for a simulation for TWIN-a with data generated under

Model 1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 216

C.10 The results above are for a simulation for TWIN-a with data generated under

Model 2 with p = 1000. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 217

C.11 The results above are for a simulation for TWIN-a with data generated under

Model 3 with p = 1000. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 218

C.12 The results above are for a simulation for TWIN-a with data generated under

Model 4 with p = 1000. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 219

C.13 The results above are for a simulation for TWIN-a with data generated under

Model 1 with p = 1000. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 220

C.14 The results above are for a simulation for TWIN-a with data generated under

Model 2 with p = 1000. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 221

C.15 The results above are for a simulation for TWIN-a with data generated under

Model 3 with p = 1000. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 222

C.16 The results above are for a simulation for TWIN-a with data generated under

Model 4 with p = 1000. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 223

C.17 The results above are for a simulation for TWIN-b with data generated under

Model 1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 224

C.18 The results above are for a simulation for TWIN-b with data generated under

Model 2 with p = 1000. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 225

C.19 The results above are for a simulation for TWIN-b with data generated under

Model 3 with p = 1000. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 226

C.20 The results above are for a simulation for TWIN-b with data generated under

Model 4 with p = 1000. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 227



xiv

C.21 The results above are for a simulation with data generated under Model 3 (top

panel) and Model 4 (bottom panel) with p = 1000. . . . . . . . . . . . . . . . . . 228

D.1 Illustration of Example 1 with ε = 0.1. The left panel shows the probabil-

ity of W (∞) staying in the ε-neighborhood of different global minima. The

right panel compares the differences of probabilities that W (∞) staying in the

ε-neighborhood of different global minima. . . . . . . . . . . . . . . . . . . . . . 240

D.2 Illustration of Example 1 with ε = 0.1. The left panel shows the probability of

W (∞) staying in the ε-neighborhood under different SGD variances σ2(w̌). The

right panel compares the differences of probabilities that W (∞) staying in the

ε-neighborhood of different σ(w̌). . . . . . . . . . . . . . . . . . . . . . . . . . . . 240

D.3 Illustration of Example 3 with ε = 0.1. The left panel shows the probability of

the limiting mini-batch SGD limk→∞wk staying in the ε-neighborhood of two

different global minima. The right panel shows the probability of three different

global minima. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 241



xv

Abstract

This thesis is focused on developing theory and computational methods for a set of problems

involving complex data.

Chapter 2 studies multivariate nonparametric predictions with gradient information.

Gradients can be easily estimated in stochastic simulations and computer experiments.

We propose a unified framework to incorporate the noisy and correlated gradients into

predictions. We show theoretically, through minimax optimal rates of convergence, that

incorporating gradients tends to significantly improve predictions with deterministic or

random designs.

Chapters 3 proposes high-dimensional smoothing splines with applications to Alzheimer’s

disease (AD) prediction. While traditional prediction based on structural MRI uses imag-

ing acquired at a single time point, a longitudinal study is more sensitive in detecting

early pathological changes of the AD. Our novel method can be applied to extract features

from heterogeneous and longitudinal MRI for the AD prediction, outperforming existing

methods.

Chapters 4 introduces a novel class of variable selection penalties called TWIN, which

provides sensible data-adaptive penalization. Under a linear sparsity regime, we show

that TWIN penalties have a high probability of selecting correct models and result in

minimax optimal estimators. We demonstrate in challenging and realistic simulation settings

with high correlations between active and inactive variables that TWIN has high power in

variable selection while controlling the number of false discoveries, outperforming standard

penalties.
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Chapters 5 investigates generalizations of mini-batch SGD in deep neural networks. We

theoretically justify a hypothesis that large-batch SGD tends to converge to sharp minimizers

by providing new properties of SGD. In particular, we give an explicit escaping time of SGD

from a local minimum in the finite-time regime and prove that SGD tends to converge to

flatter minima in the asymptotic regime (although may take exponential time to converge)

regardless of the batch size.

Chapter 6 provides another look at statistical calibration problems in computer models.

This viewpoint is inspired by two overarching practical considerations: (i) Many computer

models are inadequate for perfectly modeling physical systems; (ii) Only a finite number

of data are available from physical experiments to calibrate related computer models. We

provide a non-asymptotic theory and derive a novel prediction-oriented calibration method.
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Chapter 1

Introduction

The main focus of this dissertation is to develop theory and computational methods for

a set of problems involving complex data: (i) Statistical machine learning for “big data”,

where data are heterogeneous, high-dimensional, and high-volume, and (ii) Uncertainty

quantification for model errors in the non-asymptotic regime.

1.1 Statistical Machine Learning for Complex Data Sets

First, the heterogeneous and complex nature of data is increasingly collectable in the era

of big data. As an example, derivative observations are available in many applications.

Economists estimate cost functions, where data on factor demands and costs are collected

together, and the demand functions are partial derivatives of the cost function by Shephard’s

Lemma. In dynamic systems and traffic engineering, real-time motion sensors can record

velocity, acceleration in addition to position. To date, the fundamental question of how

much benefit can be gained by incorporating noisy derivative data into function estimation

and prediction has not been answered satisfactorily.

Chapter 2 aims to propose new nonparametric methods to incorporate derivatives for

estimation and show that incorporation of first-order partial derivatives can adequately

improve minimax optimal rates. In particular, the general multivariate nonparametric
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functional ANOVA models can be estimated as efficiently as additive models by incorporating

first-order partial derivatives.

Second, data heterogeneity is common in many existing datasets. A motivating example

for my work is a longitudinal study where brain magnetic resonance imaging (MRI) is used

to detect early pathological changes of Alzheimer’s disease (AD). Two main difficulties arise

here: (i) the longitudinal scans are collected in a highly inconsistent manner across and

within subjects; (ii) the regions of interest (ROIs) in brain MRI is of a large amount and

atrophy at heterogeneous rates (e.g.,the atrophy rate of entorhinal cortex is significantly

higher than that of hippocampus). Chapters 3 provides a statistical modeling solution to

simultaneously consider these two sources of heterogeneity.

Chapter 3 utilizes varying-coeffficient models (Hastie and Tibshirani, 1993) to capture

these nonlinear relations and to model the heterogeneous atrophies of ROIs, which is

motivated by the fact that functional relations between atrophies of AD-related ROIs and

changes in clinical cognition are nonlinear in time (Jack Jr et al., 2010). In order to identify

important AD-related ROIs from the plethora of possible ROIs in brain MRI data, we

proposes a novel feature selection method for nonparametric varying-coefficient models.

Our idea is to combine the smoothing splines and an l1-penalty in the penalized likelihood

framework, which can simultaneously select AD-related ROIs and estimate their smooth

heterogenous progressions. Our method is robust to the inconsistency among longitudinal

scans and can be applied to general longitudinal studies with heterogeneous data structures.

We introduce a computationally efficient algorithm to implement the proposed method.

Third, discovering linear relationships between high-dimensional covariates and an

outcome remains a challenging problem when a significant fraction of covariates is im-

portant in predicting a response. Considering examples of human biology, it is sensible

that more relevant predictors may be included when an increasing amount of genetic

or microbiome information is leveraged, especially for gene-gene, gene-environment, or

microbiome-environment interactions. In this setting it is crucial to provide variable selec-

tion methods which are able to yield high power in variable selection while controlling the
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number of false discoveries.

Chapter 4 address this problem with a novel class of penalties where larger coefficients

are subjected to attenuated penalization. The proposed penalty class results in estimators

that are selection consistent and asymptotically minimax in high-dimensional scenarios

under a linear sparsity regime. We show theoretically and through extensive simulations that

our method gives higher power while controlling FDR under the cases of strong correlations

and weak signals, compared with standard penalties.

Fourth, big data is marked by its massive size. To economize the computational cost,

the stochastic gradient descent (SGD) method is almost ubiquitously used for optimization

tasks, including the training of deep neural networks (DNNs). Standard gradient descent

proceeds iteratively via the gradient of the objective function, while SGD adopts an unbiased

but variable estimate of the true gradient. The stochasticity in SGD is proportional to the

ratio of the step size and the batch size of samples used in gradient estimations and the effect

of the batch size on generalization performance remains an elusive but critical problem.

The understanding how geometry and generalization performance of models trained by

SGD relate with the batch size of SGD is limited in the literature. Recently, a hypothesis by

Keskar et al. (2016) that “large batch SGD tends to converge to sharp minimizers of the training

function” has received increasing attentions.

Chapter 5 provides a theoretical justification to this conjecture, with the tools from

empirical process theory and nonlinear partial differential equations. As part of my ongoing

effort, I am working to extend the current work to explain the generalization mystery that

large batch SGD tends to generalize less well on unseen data.

1.2 Uncertainty Quantification and A Non-Asymptotic Theory

Computer models constructed on partial differential equations and other mathematical

physics tools are increasingly used to facilitate the study of complex systems. As George

Box famously stated “All models are wrong, but essentially some are useful” – even the best
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computer models are only approximations of reality and the model errors always exist.

Optimal predictions for real systems are only possible by combining the information from

expensive data and the insights from the complex but imperfect structure of computer

models.

Chapter 6 proposes a new method for quantifying uncertainties in computer models by fol-

lowing this line of thinking. The uncertainties of computer models come from model errors

and unknown calibration parameters that cannot be directly measured. As an example of a

calibration parameter, the soil permeability in underground water simulations is important

but its true value is rarely known. We propose to identify calibration parameters by mini-

mizing the distance between computer models and collected data in the reproducing kernel

Hilbert space (RKHS) norm. We provide justification of the use of RKHS norm as opposed

to the L2 norm, as it not only incorporates L2-distance information, but also sensitivity

information. Theoretically, our calibration method is shown to give the minimal predictive

mean squared error for any finite sample with statistical guarantees. This result is based

on a novel sharp bound for nonparametric estimation error in the finite-sample regime.

We introduce an algorithm to carry out the proposed calibration method. Beyond calibra-

tion of computer models, our method can be applied to calibrate unknown parameters for

misspecified models in statistics and engineering.

The dissertation is concluded by a few remarks on future works in Chapter 7.
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Chapter 2

Minimax Optimal Rates of Estimation

in Functional ANOVA Models with

Derivatives

2.1 Introduction

Derivative observations for complex systems are available in many applications. In dynamic

systems and traffic engineerings, real-time motion sensors can record velocity, acceleration

in addition to positions. Economists estimate cost functions, where data on factor demands

and costs are collected together, and the demand functions are partial derivatives of the

cost function by Shephard’s Lemma (Hall and Yatchew, 2007, 2010). In actuarial science,

mortality force data can be obtained from demography, which together with samples for

the survival distribution can yield derivatives for the survival distribution function. In

computer experiments, partial derivatives are available by using differentiation mechanisms

at little additional cost.

We consider the problem of nonparametric regression with data from the function

itself and its first-order partial derivatives. Let ∂f(t)/∂tj denote the jth first-order partial

derivative of a scalar function f(t) of d covariates t = (t1, . . . , td). Consider a multivariate
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regression model 
Y (0) = f0(t(0)) + ε(0),

Y (j) = ∂f0/∂tj(t
(j)) + ε(j), 1 ≤ j ≤ p.

(2.1)

Here, Y (0) is the observation of the function under design t(0) and Y (j) is the observation of

the jth first-order partial derivative under design t(j). Suppose that t(0), t(j)s are supported

on X d1 with X1 = [0, 1]. Assume the random errors ε(0) and ε(j)s are uncentered and

correlated. Let p ∈ {1, . . . , d} denote the number of different types of first-order partial

derivatives available. Without loss of generality, we focus on the first p covariates in (2.1).

Assume that {(t(j)
i , y

(j)
i ) : i = 1, . . . ,n} are copies of (t(j),Y (j)) for j = 0, 1, . . . , p.

We use the smoothing spline analysis of variance (SS-ANOVA) (Wahba, 1990) for model-

ing f0(t) which assumes a tensor product structure and smoothness properties on lower

dimensions. This framework is desirable for many applications with derivative data. For

illustration, consider cost function estimation in economics (Hall and Yatchew, 2007). Write

the cost as f0(t1, . . . , td), with td being the level of output and (t1, . . . , td−1) the prices

of the d − 1 factor inputs. The first order partial derivatives of f0 with respect to in-

put prices is the quantities of factor inputs, which are available together with the cost

itself. The Cobb-Douglas production function (Varian, 1992) yields that f0(t1, . . . , td) =

[c
−1/c
0

∏d−1
j=1(c/cj)

cj/c]
∏d−1
j=1 t

cj/c
j t

1/c
d , which is an SS-ANOVA function, where c0 is the effi-

ciency parameter, c1, . . . , cd−1 are elasticity parameters, and c = c1 + · · ·+ cd−1.

2.1.1 Existing Work and Our Contributions

Our work is related to the pioneering work of Hall and Yatchew (2007) which proposed

kernel estimators to incorporate derivative data and established improved rates of conver-

gence. Their method replaces local averages with nonlocal averages from partial derivatives.

Provided that data on sufficient mixed higher-order partial derivatives are available, local

averaging can be avoided and the root-n consistency can be achieved. Since obtaining

higher-order derivatives can be difficult in practice, this work focuses on data from first-
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order partial derivatives and under a relaxed error structure. Hall and Yatchew (2010)

consider series-type estimators to incorporate derivatives under deterministic designs. Main

differences between Hall and Yatchew (2007, 2010) and ours are as follows:

• Function space. We consider SS-ANOVA functions that have a tensor product structure,

which is not explored in Hall and Yatchew (2007, 2010). The tensor product structure

in our model can improve the convergence rate exponentially with p types of first-order

partial derivatives as in (2.5) and (2.7). For p = d− 1 in (2.1), we achieve the same rate

as additive models. Our simulations in the Supplemental Materials corroborate this

improvement of convergence rates. For situations where the true function cannot be

well modeled by tensor product functions with squared approximation error O(n−1),

the first-order partial derivatives only cannot substantially improve the estimation

error and use higher-order derivatives are necessary as shown in Hall and Yatchew

(2007).

• Estimation approach. We propose a new estimator in the RKHS to incorporate first-

order partial derivatives. See Theorems 2.2 and 2.4 for its minimax optimality under

both deterministic and random designs. Its easy interpretability for estimation in SS-

ANOVA provides a direct description of interactions (Wahba et al., 1995). In remarks

after (2.11) and (2.12), we observe that the first-order partial derivatives have an effect

on reducing interactions of a SS-ANOVA function in terms of the optimal rates. Since

the first derivatives help achieve the root-n consistency in univariate estimation, the

tensor product structure of SS-ANOVA allows the components with partial derivative

data to be estimated with the root-n consistency and reduce the interactions.

• Error structure. Our approach broadens the i.i.d. error structure in Hall and Yatchew

(2007, 2010) to allow the random errors to have certain bias and correlation. This

relaxed assumption is in line with applications where derivatives are estimated from

function observations.
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The rest of the article is organized as follows. We provide additional notation and a

summary of main results in Section 2.2. We give the main results on estimating functions

with deterministic designs in Section 2.3 and random designs in Section 2.4. We consider

the optimal rates of estimating first-order partial derivatives in Section 2.5. We describe

results of a real example in Section 2.6. Another real application and extensive simulations

together with all proofs are relegated to the Appendix.

2.2 Notation and Summary of Main Results

2.2.1 SS-ANOVA and Error Structure

The SS-ANOVA model has the following form:

f0(t) = constant +
d∑

k=1

f0k(tk) +
∑
k<j

f0kj(tk, tj) + · · · , (2.2)

where the f0ks are the main effects, the f0kjs are the two-way interactions, and so on.

Components on the right hand side satisfy side conditions to assure identifiability. The

series is truncated to some order r of interactions to enhance interpretability. Here, f0(t) is a

full or truncated interaction SS-ANOVA model if r = d or 1 ≤ r < d, respectively. We assume

that f0 ∈ H, where H is a RKHS corresponding to the decomposition (2.2). Let Hk be a

function space of functions of tk over X1 such that
∫
X1
f0k(tk)dtk = 0 for any f0k(tk) ∈ Hk,

and {1} be the space of constant functions. Construct the tensor product spaceH as

H =

d⊗
k=1

[
{1} ⊕Hk

]
= {1} ⊕

d∑
k=1

Hk ⊕
∑
k<j

[
Hk ⊗Hj

]
⊕ · · · ,

(2.3)

where the second equality is the expansion of the tensor product. The components of the

SS-ANOVA decomposition (2.2) are in the mutually orthogonal subspaces of H in (2.3).

We further assume that all component functions come from a common RKHS (H1, ‖ · ‖H1)
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given byHk ≡ H1 for k = 1, . . . , d. Let K : X1 ×X1 7→ R be a Mercer kernel generating the

RKHSH1 and write Kd

(
(t1, . . . , td)

>, (t′1, . . . , t′d)
>) = K(t1, t′1) · · ·K(td, t

′
d). Then Kd is the

reproducing kernel of RKHS (H, ‖ · ‖H) (Aronszajn, 1950).

Suppose the random errors ε(0) and ε(j)s in (2.1) satisfy

E[ε
(j)
i ] = o(n−1/2), Var[ε(j)i ] = σ2

j <∞,

Cov[ε
(j)
i , ε

(k)
i′ ] = O

(
|i− i′|−Υ

)
for some Υ > 1,

(2.4)

where i 6= i′ and j, k = 0, 1, . . . , p. Random errors in derivative data can be uncentered and

correlated. The short-range correlations is assumed in (2.4) for some Υ > 1 since partial

derivatives are usually calculated using local function data. The error structure (2.4) is

reasonable when derivatives are estimated by methods like the infinitesimal perturbation

analysis (Glasserman, 2013).

2.2.2 Deterministic Design

We derive the minimax optimal convergence rates for estimating f0(·) and its partial deriva-

tives ∂f0/∂tj(·). First consider regular lattices, or called tensor product designs. Suppose

that the eigenvalues of the K decay polynomially with the νth largest eigenvalue of the

order ν−2m. In Section 2.3, we show that the minimax optimal rate for estimating a full

interaction (r = d) SS-ANOVA model f0 ∈ H is

∞f̃ sup
f0∈H

E
∫
X d1

[
f̃(t)− f0(t)

]2
dt

=


C1

[
n(log n)1+p−d]−2m/(2m+1) if 0 ≤ p < d,

C2

{
n−1(log n)d−1 + n−2md/[(2m+1)d−2]

}
if p = d,

(2.5)

where the infimum is taken over all measurable estimators, and C1,C2 are constants not

depending on n. If 0 ≤ p < d, the above rate is the minimax optimal rate for estimating a

(d− p) dimensional full interaction SS-ANOVA model with only function observations (Gu,
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2013; Lin, 2000). If p = d and d ≥ 3, the minimax optimal rate in (2.5) becomes

∞f̃ sup
f0∈H

E
∫
X d1

[
f̃(t)− f0(t)

]2
dt = C2n

−2md/[(2m+1)d−2]. (2.6)

The rate in (2.6) converges faster than the optimal rate n−2m/(2m+1) for additive models given

in Hastie and Tibshirani (1990); Stone (1985). If p = d and d = 2, the minimax optimal rate

in (2.5) is n−1 log n. If p = d and d = 1, the root-n consistency is achieved in (2.5) and this

phenomenon is observed in Hall and Yatchew (2007, 2010).

The results for truncated interaction SS-ANOVA models (r < d) with derivatives will

be given in Section 2.3. In particular, for the additive model r = 1 and p = d, the minimax

optimal rate is n−1, which coincides with the parametric convergence rate.

2.2.3 Random Design

We are interested in obtaining sharp results for random designs. Suppose that design points

t(0) and t(j)s are independently drawn from distributions Π(0) and Π(j)s with support on

X d1 . In Section 2.4, we show that the minimax optimal rate for estimating a full interaction

(r = d) SS-ANOVA model f0 ∈ H is

∞f̃ sup
f0∈H

P

{∫
X d1

[
f̃(t)− f0(t)

]2
dt ≥ C3

([
n(log n)1+p−d

]−2m/(2m+1)
10≤p<d

+
[
n−1(log n)d−1 + n−2md/[(2m+1)d−2]

]
1p=d

)}
= 0,

(2.7)

where C3 is a constant scalar not depending on n. Results for truncated interaction (r < d)

SS-ANOVA models will be given in Section 2.4. In addition, the minimax optimal rates are

obtained for estimating ∂f0/∂tj(·) for j ∈ {1, . . . , p} and both full and truncated SS-ANOVA

models. These rates are

∞f̃ sup
f0∈H

P

{∫
X d1

[
f̃(t)− ∂f0/∂tj(t)

]2
dt ≥ C4n

−2(m−1)/(2m−1)

}
> 0, (2.8)
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where C4 does not depend on n. This result holds regardless of the values of d and r. The

rate is the same as the optimal rate for estimating ∂f0/∂tj(·) if f0 comes from a univariate

function spaceH1 (Stone, 1980, 1982) instead of the d-variate function spaceH.

2.3 Minimax Risks with Deterministic Designs

This section provides the minimax optimal rates of estimating f0(·) with model (2.1) and

regular lattices. A regular lattice of size n = l1 × · · · × ld on X d1 is a collection of design

points {t1, . . . , tn} = {(ti1,1, ti2,2, . . . , tid,d) | ik = 1, . . . , lk, k = 1, . . . , d}, where tj,k = j/lk,

j = 1, . . . , lk, k = 1, . . . , d. This design is often used in statistics when the true function

f0 is a functional ANOVA model. Under the regular lattice design, it is reasonable to

assume f0 : X d1 7→ R to have a periodic boundary condition as any finite-length sequence

{f(t1), . . . , f(tn)} can be associated with a periodic sequence

fper (i1/l1, · · · , id/ld)

=

∞∑
q1=−∞

· · ·
∞∑

qd=−∞
f (i1/l1 − q1, · · · , id/ld − qd) , ∀(i1, . . . , id) ∈ Zd

by letting f(·) ≡ 0 outside X d1 and at the unobserved boundaries of X d1 . On the other hand,

any finite-length sequence {f(t1), . . . , f(tn)} can be recovered from the periodic sequence

fper(·).

Recall that K is the reproducing kernel for component RKHSH1, which is a symmetric

positive semi-definite, square integrable function on X1 × X1. We require an additional

differentiability condition on kernel K:

∂2

∂t∂t′
K(t, t′) ∈ C(X1 ×X1). (2.9)

A straightforward explanation on this condition is as follows. Denote by 〈·, ·〉H the inner



12

product of RKHSH in (2.3). Then, for any g ∈ H,

∂g(t)

∂tj
=
∂〈g,Kd(t, ·)〉H

∂tj
=

〈
g,
∂Kd(t, ·)
∂tj

〉
H

,

where the last step is by the continuity of 〈·, ·〉H. This implies that the composite functional

of evaluation and partial differentiation ∂g/∂tj(t) is a bounded linear functional inH and

has a representer ∂Kd(t, ·)/∂tj inH.

From Mercer’s theorem (Riesz and Sz.-Nagy, 1955), K admits a spectral decomposition

K(t, t′) =

∞∑
ν=1

λνψν(t)ψν(t′),

where λ1 ≥ λ2 ≥ · · · ≥ 0 are its eigenvalues and {ψν : ν ≥ 1} are the corresponding

eigenfunctions.

We are now in the position to present our main results. We first state a minimax lower

bound under regular lattices.

Theorem 2.1. Assume that λν � ν−2m for some m > 3/2, and design points t(0) and t(j), j =

1, . . . , d, are from the regular lattice. Suppose that f0 ∈ H has periodic boundaries on X d1 and is

truncated up to r interactions in (2.2). Then under the error structure (2.4), as n→∞,

∞f̃ sup
f0∈H

E
∫
X d1

[
f̃(t)− f0(t)

]2
dt

=


C1

[
n(log n)1−(d−p)∧r]−2m/(2m+1)

, if 0 ≤ p < d

C2{n−1(log n)r−1 + n−2mr/[(2m+1)r−2]}, if p = d

where constants C1,C2 do not depend on n.

For two scalars {a, b}, a ∨ b denotes their maximizer and a ∧ b denotes their minimizer.

We relegate the proof of Theorem 2.1 to Section A.2.1 in the Appendix. Next, we show

the lower bounds of convergence rates in Theorem 2.1 are obtainable. We consider the

method of regularization by simultaneously minimizing the empirical losses of function
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observations and partial derivative observations with a single penalty:

f̂nλ = arg min
f∈H

{
1

n(p+ 1)

[
1

σ2
0

n∑
i=1

{
y

(0)
i − f(t

(0)
i )
}2

+

p∑
j=1

1

σ2
j

n∑
i=1

{
y

(j)
i −

∂f

∂tj
(t

(j)
i )

}2
+ λJ(f)

 ,

(2.10)

where the weighted squared error loss may be replaced by other convex losses, and J(·)

is a quadratic penalty associated with RKHS H, and λ ≥ 0 is a tuning parameter. By the

representer lemma (Wahba, 1990), (2.10) has a closed-form solution. If the variances σ2
j s are

unknown, we can replace σ2
j s in (2.10) by consistent estimators for the variances (Hall et al.,

1990). For estimator (2.10), the empirical loss of partial derivatives adds a further regularity

restriction to the estimation compared with the traditional smoothing splines in Wahba

(1990). The following theorem shows f̂nλ in (2.10) is minimax rate optimal.

Theorem 2.2. Under the conditions of Theorem 2.1, f̂nλ given by (2.10) satisfies

E
∫
X d1

[
f̂nλ(t)− f0(t)

]2
dt

=


C ′1
[
n(log n)1−(d−p)∧r]−2m/(2m+1) if 0 ≤ p < d,

C ′2n
−1(log n)r−1 + n−2mr/[(2m+1)r−2] if p = d,

where constantsC ′1,C ′2 do not depend onn, if the tuning parameterλ is chosen byλ �
[
n(log n)1−(d−p)∧r]−2m/(2m+1)

when 0 ≤ p < d, andλ � n−(2mr−2)/[(2m+1)r−2] when p = d, r ≥ 3, andλ � (n log n)−(2m−1)/2m

when p = d, r = 2, and λ . n−(m−1)/m when p = d, r = 1.

For two positive sequences an and bn, an . bn (or an & bn) means that there exists a

constant c > 0 (or c′ > 0) such that an ≤ cbn (or an ≥ c′bn) for all n. The proof of Theorem

2.2 is presented in Section A.2.2 in the Appendix. Theorems 2.1 and 2.2 together imply that
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with model (2.1) and regular lattices, the minimax optimal rate for estimating f0 ∈ H is

E
∫
X d1

[
f̂(t)− f0(t)

]2
dt

=


C1

[
n(log n)1−(d−p)∧r]−2m/(2m+1)

, if 0 ≤ p < d,

C2{n−1(log n)r−1 + n−2mr/[(2m+1)r−2]}, if p = d,

(2.11)

and the estimator in RKHS achieves (2.11). We make several remarks. First, suppose there is

no derivative data. Then, (2.11) recovers [n(log n)1−d]−2m/(2m+1) and this rate is known (Gu,

2013). For a large n, the exponential term (log n)d−1 makes the full d-interaction SS-ANOVA

model impractical for large d. On the contrary, suppose partial derivatives data are available.

Then, (2.11) gives n−2m/(2m+1) for any d ≥ 1, which coincides with the classical optimal

rate for additive models (Hastie and Tibshirani, 1990; Stone, 1985) and is not affected by the

dimension d.

Second, if partial derivative observations are available on all covariates with p = d, then

the optimal rate can be improved. In addition to (2.6) for r = d and d ≥ 3, we point out some

other interesting cases. For the additive model with r = 1 and d ≥ 1, (2.11) provides the

minimax rate n−1. For the pairwise interaction model with r = 2 and d ≥ 1, (2.11) provides

the minimax rate n−1 log n, which is different from n−1 only by a log n multiplier.

Third, we remark on an “interaction reduction” phenomenon in the sense that the optimal

rate for estimating an unknown SS-ANOVA model by incorporating partial derivative data is

the same as the optimal rate for estimating a reduced interaction SS-ANOVA without derivative

data. For example, with r = d and p = 1, (2.11) gives [n(log n)1−(d−1)]−2m/(2m+1), which is

the same rate as r = d − 1 and p = 0 involving no derivative data but a lower degree of

interactions. And, with r = d and p = 2, (2.11) gives [n(log n)1−(d−2)]−2m/(2m+1), which is

the same rate as r = d − 2 and p = 0 involving no derivative observations but two lower

degrees of interactions. Similarly, we can extend the same discussion to p = 3, . . . , d− 1.

Fourth, the proofs for Theorems 2.1 and 2.2 indicate that when p = d, both the squared

bias and variance are smaller in magnitude than p < d, and when d− r < p < d, only the
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variance is smaller in magnitude than 0 ≤ p ≤ d− r.

Finally, let n0 denote the sample size on (t(0),Y (0)) and nj denote the sample sizes on

(t(j),Y (j)), where 1 ≤ j ≤ p. If n0 and njs are not all identical to n, n in (2.11) can be replaced

by min1≤j≤p nj .

2.4 Minimax Risks with Random Designs

We now turn to random designs for the minimax optimal rates of estimating f0(·) with the

regression model (2.1). Parallel to Theorem 2.1, we have the following minimax lower bound

of estimation under random designs.

Theorem 2.3. Assume that λν � ν−2m for some m > 3/2, and design points t(0) and t(j), j =

1, . . . , d, are independently drawn from Π(0) and Π(j)s, respectively. Suppose that Π(0) and Π(j)s

have densities bounded away from zero and infinity, and f0 ∈ H is truncated up to r interactions in

(2.2). Then under the error structure (2.4), as n→∞,

∞f̃ sup
f0∈H

P

{∫
X d1

[
f̃(t)− f0(t)

]2
dt ≥ C3

([
n(log n)1−(d−p)∧r

]−2m/(2m+1)
10≤p<d

+
[
n−1(log n)r−1 + n−2mr/[(2m+1)r−2]

]
1p=d

)}
> 0

where constant C3 does not depend on n.

The lower bound is established via Fano’s lemma (Tsybakov, 2009). The proof is deferred

to Section A.3.1. Next, we show the lower bounds of convergence rates in Theorem 2.3 can

be achieved by using the estimator (2.10) in RKHS.

Theorem 2.4. Under the conditions of Theorem 2.3, we assume that Π(0) and Π(j)s are known, and
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m > 2. Then, f̂nλ in (2.10) satisfies

lim
C′3→∞

lim sup
n→∞

sup
f0∈H

P

{∫
X d1

[
f̂nλ(t)− f0(t)

]2
dt

> C ′3

([
n(log n)1−(d−p)∧r

]−2m/(2m+1)
10≤p<d

+
[
n−1(log n)r−1 + n−2mr/[(2m+1)r−2]

]
1p=d

)}
= 0

if the tuning parameter λ is chosen by λ �
[
n(log n)1−(d−p)∧r]−2m/(2m+1) when 0 ≤ p < d, and

λ � n−(2mr−2)/[(2m+1)r−2] when p = d, r ≥ 3, and λ � (n log n)−(2m−1)/2m when p = d, r = 2,

and λ . n−(m−1)/m when p = d, r = 1. In other words, f̂nλ is rate optimal.

We use the linearization method in Cox and O’Sullivan (1990) to prove Theorem 2.4.

The key ingredient of this method is to pick a suitable basis such that the expected loss

of the regularization and the quadratic penalty J(·) can be simultaneously diagonalized.

Our situation is unique in the sense that the loss function in (2.10) is the sum of squared

error losses for both the function and partial derivatives but we are only interested in

estimating the function itself in Theorem 2.4. This induces a third positive semi-definite

functional, which is the squared error loss of function estimation. But three functionals are

not guaranteed to be simultaneously diagonized, this making the direct application of the

linearization method infeasible. We present a detailed proof in Section A.3.1.

Theorems 2.3 and 2.4 together demonstrate the fundamental limit rate of the squared

error loss for estimating f0 ∈ H with model (2.1) and random designs is

[
n(log n)1−(d−p)∧r

]−2m/(2m+1)
10≤p<d

+
[
n−1(log n)r−1 + n−2mr/[(2m+1)r−2]

]
1p=d

(2.12)

in a probabilistic sense, and the estimator in RKHS achieves (2.12). The minimax rate is

the same as that with the regular lattice. We make several remarks on (2.12). First, the five

remarks following (2.11) for the mean squared situation hold for (2.12) in a probabilistic
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sense. Second, for the special case when p = 0, (2.12) recovers the minimax optimal rate of

convergence OP
{

[n(log n)1−r]−2m/(2m+1)
}

for SS-ANOVA models, which is known in Lin

(2000). Third, the squared error loss in Theorems 2.3 and 2.4 can be replaced by squared

prediction error
∫
{f̂nλ(t)− f0(t)}2dΠ(0)(t) and it achieves the same minimax optimal rate

as (2.12).

As a byproduct of Theorem 2.4, we obtain the following result of estimating the mixed

partial derivatives ∂df0/∂t1 · · · ∂td(t) by its natural estimator ∂df̂nλ/∂t1 · · · ∂td(t).

Corollary 2.5. Under the conditions of Theorem 2.4 and m > 3, then

lim
D′1→∞

lim sup
n→∞

sup
f0∈H

P


∫
X d1

[
∂df̂nλ(t)

∂t1 · · · ∂td
− ∂df0(t)

∂t1 · · · ∂td

]2

dt

> D′1

([
n(log n)1−(d−p)∧r

]−2(m−1)/(2m+1)
10≤p<d

+
[
n−2(m−1)r/[(2m+1)r−2]

]
1p=d

)}
= 0,

if the tuning parameter λ is chosen by λ �
[
n(log n)1−(d−p)∧r]−2m/(2m+1) when 0 ≤ p < d, and

λ � n−(2mr−2)/[(2m+1)r−2] when p = d.

2.5 Minimax Risk for Estimating Partial Derivatives

Suppose noisy observations of data on the function and some partial derivatives in (2.1) are

available. We are interested in the optimal rate for estimating first-order partial derivatives

by using all observed data. For brevity, we only consider random designs although similar

results can be obtained for regular lattices. The following theorem gives the minimax lower

bound for estimating ∂f0/∂tj , 1 ≤ j ≤ p.

Theorem 2.6. Assume that λν � ν−2m for some m > 2 and design points t(0) and t(j), j =

1, . . . , d, are independently drawn from Π(0) and Π(j)s, respectively. Suppose that Π(0) and Π(j)s

have densities bounded away from zero and infinity, and f0 ∈ H is truncated up to r interactions in
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(2.2). Then under the error structure (2.4), for any j ∈ {1, . . . , p} and 1 ≤ r ≤ d, as n→∞,

∞f̃ sup
f0∈H

P

{∫
X d1

[
f̃(t)− ∂f0(t)

∂tj

]2

dt ≥ C4n
−2(m−1)/(2m−1)

}
> 0,

where constant C4 does not depend on n.

We will prove this theorem in Section A.4.1 in the Appendix. As a natural estimator for

∂f0/∂tj , ∂f̂nλ/∂tj achieves the lower bound of convergence rates in Theorem 2.6.

Theorem 2.7. Under the conditions of Theorem 2.6, f̂nλ given by (2.10) satisfies that for any j ∈

{1, . . . , p} and 1 ≤ r ≤ d,

lim
C′4→∞

lim sup
n→∞

sup
f0∈H

P


∫
X d1

[
∂f̂nλ(t)

∂tj
− ∂f0(t)

∂tj

]2

dt > C ′4n
−2(m−1)/(2m−1)

 = 0,

if the tuning parameter λ is chosen by λ � n−2(m−1)/(2m−1).

The proof of this theorem is given in Section A.4.2 in the Appendix. When r = 1, this

result coincides with Corollary 2.5. Unlike Theorem 2.4 and Corollary 2.5, the distributions

Π(0) and Π(j)s are not assumed to be known.

Theorems 2.6 and 2.7 together give the minimax optimal rate for estimating ∂f0/∂tj ,

provided in (2.8). Since the optimal rate in (2.8) holds regardless of the value of p ≥ 1,

first-order partial derivative data on different covariates do not improve the optimal rates

for estimating each other. For example, given noisy data on f0(·) and ∂f0/∂tj(·), data on

∂f0/∂tk(·) do not improve the minimax optimal rate for estimating ∂f0/∂tj(·) if 1 ≤ k 6=

j ≤ p.

2.6 Real Data and Simulation Examples

This section consists of four examples. We give a real example on actuarial life table in

Example 2.8 to demonstrate benefits of incorporating first-order partial derivatives for

estimation. We provide another real application of multivariate estimation in manufacturing
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in Example 2.9. We present simulations in Example 2.10 and 2.11 to corroborate the proposed

theory and compare our estimator with the estimator in Hall and Yatchew (2007).

Example 2.8 (Survival distribution in actuarial life table). The life table in actuarial prac-

tice provides probabilities of survival and death at integer ages (Frees and Valdez, 1998) In order

to value payments that are not at integer ages, actuaries need to make a fractional age assump-

tion for probabilities of surviving at fractional ages. This is smoothing the data given at inte-

ger ages for survival function estimation. We consider a real data of U.S. 2015 period life table

(www.ssa.gov/OACT/STATS/table4c6.html#fn2) for the Social Security area of male

and female population separately. Write f0(t) as the survival distribution function and u(t) as the

force of mortality function. Then,

f ′0(t) = −f0(t)u(t).

Here, data on f0(t) can be calculated using the death probability in life table and u(t) can be estimated

by divided differences using l(t) the number of people that survive at age t (Jones and Mereu, 2002),

u(t) =
l(t− 1)− l(t+ 1)

2l(t)
, u(0) =

3l(0)− 4l(1) + l(2)

2l(0)
.

The data on f0(t), denoted by Y (0), and the estimate of u(t) together yield the data on derivative

f ′0(t), denoted by Y (1). The random error of Y (0) and Y (1) for the current data satisfies our error

structure (2.4).

Table 2.1: MSE of only incorporating Y (0) and MSE of incorporating Y (0)&Y (1) for Example
2.8. The MSEs are in the unit of 10−4

n = 5 n = 10 n = 15 n = 20

Male Incorporating Y (0) 15.3674 6.7944 1.7687 0.1745

Incorporating Y (0)&Y (1) 7.4381 1.6488 0.3446 0.0227

Female Incorporating Y (0) 23.0655 9.9948 2.2299 0.5925

Incorporating Y (0)&Y (1) 9.4745 2.4790 0.4091 0.0755

We compare our proposed estimator (2.10) by whether not incorporating derivative data. We use

www.ssa.gov/OACT/STATS/table4c6.html#fn2
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Table 2.2: MSE of incorporating Y (0)&Y (1) relative to MSE of only incorporating Y (0) for
Example 2.8

n = 5 n = 10 n = 15 n = 20

Male 0.4840 0.2426 0.1948 0.1301

Female 0.4108 0.2480 0.1835 0.1274

the Matérn kernel K(t, t′) = (1 + |t − t′|/ψ + |t − t′|2/3ψ2) exp(−|t − t′|/ψ), which satisfies

the differentiability condition (2.9). Here, the scale parameter ψ is chosen by the five-fold cross-

validation, and the tuning parameter λ in (2.10) is selected by GCV. The training data are selected

as the equally spaced integers t in the range [0, 119] with varying sample sizes n = 5, 10, 15, 20.

The boundaries {0, 119} are included in the training set. The MSE= E[f̂nλ − f0]2 is estimated by

a test set consisting of all 120 samples with t ∈ {0, 1, · · · , 119}. Table 2.1 summarizes the averaged

MSEs over 200 experiments in each setting. A significant improvement of estimation is achieved by

incorporating the derivative data. Table 2.2 provides the ratios of MSE of incorporating Y (0),Y (1)

relative to MSE of only incorporating Y (0). The ratios decrease as the sample size increases, which

confirms our theorem that incorporating derivatives accelerates the rate.

Example 2.9 (Production time of CLFAS). The closed-loop flexible assembly system (CLFAS)

in the design for manufacturing is known to be effective in lowering production cost and increas-

ing flexibility; see, e.g., Suri and Leung (1987); Chen et al. (2013). A significant amount of cost

is required for building a CLFAS. Hence, it is important to rapidly and accurately estimate the per-

formance of CLFAS. We show in this example that first-order partial derivatives can be estimated at

little cost and incorporating of them can significantly improve the estimation accuracy.

As shown in Figure 2.1, consider a CLFAS consisting of six automatic workstations that is con-

nected by a conveyor with six pallets in the system. Unfinished parts are loaded and unloaded through

workstation 1 and proceed through CLFAS on the pallets. The operation time at workstation j,

1 ≤ j ≤ 6, is given by

tj + 1{jam at station j} ·Rj ,

where tj is the fixed machine production time (in minutes) and Rj is the additional random time
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Figure 2.1: Diagram of the closed-loop flexible assembly system for Example 2.9

to clear the machine j if it jams. Let pj be the probability that a part causes jam at workstation j.

In our experiment, we set pj = 0.005 and Rj to be i.i.d. uniformly drawn from [6, 66]. Because

the operation times are random, queueing would occur. We are interested in predicting the expected

production time of the first 5000 parts completed by the CLFAS, and we denote it by f0(t1, . . . , t6) as

a function of tjs. The estimation of f0 helps identify the bottleneck workstations so that resources can

be better distributed. If no queue occurs, f0(t1, . . . , t6) is a SS-ANOVA function since it is additive

in t1, . . . , t6. The analysis below can be generalized to any number of workstations or pallets.

The following algorithm gives data on function f0 and the unbiased estimators for partial deriva-

tives ∂f0/∂tj , 1 ≤ j ≤ 6. The algorithm is based on the infinitesimal perturbation analysis (IPA)

(Suri and Leung, 1987), which simply adds some accumulator variablesAj1,j2 to be updated during

the simulation.

1. Initialize: Aj1,j2 ← 0 for j1, j2 = 1, . . . , 6.

2. At the end of an operation at station j, let Aj,j ← Aj,j + 1, j = 1, . . . , 6.

3. If a pallet leaving station j1 going to station j′1 terminates an idle period of station j′1, then set

Aj′1,j2 ← Aj1,j2 , j2 = 1, . . . , 6.
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4. If a pallet leaving station j1 going to station j′1 terminates a blocked period of station j1, then

set Aj1,j2 ← Aj′1,j2 , j2 = 1, . . . , 6.

5. At the end of the simulation, let P denote the total number of parts completed and L be total

length of simulation in time unites. The data on f0 is given by Y (0)(t) = L/P . The IPA

estimator for ∂f0/∂tj is Y (j)(t) = A6,j/P , j = 1, . . . , 6.

The random noises exist in data Y (0) and Y (j)s due to the stochastic nature of CLFAS. We com-

pare estimation results of incorporating partial derivative data and not incorporating derivatives into

our estimator (2.10), where the tuning parameter in (2.10) is selected by GCV. The tensor product

Matérn kernel
∏6
j=1(1 + |tj − t′j |/ψj + |tj − t′j |2/3ψ2

j ) exp(−|tj − t′j |/ψj) is used, where ψjs are

chosen by the five-fold cross-validation. The experimental design is 100 uniform random points in

[3, 9]6. To address the impact of stochastic noises, we replicate 100 experiments of CLFAS at each

design point with a run length of P = 5000 and average data. We note two facts of this data gen-

erating. First, obtaining function value at a new design point requires to conduct the experiment

100 more times. This is expensive compared with obtaining partial derivatives which only requires

to record a small matrix A shown in above algorithm. Second, the error correlation only exists for

function value and partial derivatives at the same design, not between components at different design

points. Hence, this error structure satisfies our assumption (2.4).

The MSE= E[f̂nλ − f0]2 is estimated by a Monte Carlo sample of 1000 test points in [3, 9]6.

Because the true production costs f0 at the test points are unknown, we approximated them by repli-

cating 1000 experiments of CLFAS at each test point. The experiment of CLFAS is programmed in

VBA. We replicate the above procedures for 100 times to compare the MSEs obtained by only incorpo-

rating function data Y (0) and by incorporating both function and derivatives Y (0),Y (1), . . . ,Y (6).

Figure 2.2 gives the box plots of MSEs over these 100 macro-replications. It is evident that incorpo-

rating partial derivatives leads to a significant improvement of the estimation error.

Example 2.10 (Cost function in econometrics). In this example, we compare our estimator (2.10)

with the estimator in Hall and Yatchew (2007). We adopt a similar simulation setting of Hall and
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Figure 2.2: The box plots of MSEs for Example 2.9

Yatchew (2007) for estimating cost function. The true cost is

f0(t1, t2, t3, t4) = c
− 1
c1+c2+c3

0

3∏
ν=1

(
c1 + c2 + c3

cν

) cν
c1+c2+c3

3∏
ν=1

t
cν

c1+c2+c3
ν t

1
c1+c2+c3
4 ,

where t1, t2, t3 are the prices of three factor inputs, t4 is the level of output produced, c0 is the effi-

ciency parameter, and c1, c2, c3 are elasticity parameters. Clearly, f0 has the tensor product structure

(2.3). As in Hall and Yatchew (2007), we fix t3 = 1 since the cost function is homogeneous of degree

one in (t1, t2, t3), that is, f0(t1, t2, t3, t4) = t3f0(t1/t3, t2/t3, 1, t4). Suppose data are given on

Y (0) = f0(t1, t2, 1, t4) + ε(0)

Y (j) =
∂f0(t1, t2, 1, t4)

∂tj
+ ε(j), for j = 1, 2.

Set c0 = 1, c1 = 0.8, c2 = 0.7, c3 = 0.6. Let the designs for t1, t2 and t4 be i.i.d. uniformly drawn

from [0.5, 1.5]. Suppose that ε(j), j = 0, 1, 2 are Gaussian with zero means, standard deviations

0.35, and correlation ρ.
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Table 2.3: MSE of our estimator only incorporating Y (0), MSE of the estimator in Hall and
Yatchew (2007) incorporating Y (0)&Y (1)&Y (2), and MSE of our estimator incorporating
Y (0)&Y (1)&Y (2) for Example 2.10. The MSEs are in the unit of 10−4

Our estimator Hall and Yatchew (2007) Our estimator
with only Y (0) with Y (0)&Y (1)&Y (2) with Y (0)&Y (1)&Y (2)

ρ = 0 127.1471 61.4098 47.4739

n = 100 ρ = 0.4 128.9210 63.1006 49.8963

ρ = 0.9 129.6300 64.5989 51.9224

ρ = 0 76.6199 33.3001 24.1501

n = 200 ρ = 0.4 77.7602 35.0696 25.5342

ρ = 0.9 77.9138 36.2591 27.0137

ρ = 0 36.1925 16.3861 9.3499

n = 500 ρ = 0.4 38.0683 18.2355 10.4708

ρ = 0.9 38.9311 18.7698 11.0498

ρ = 0 21.8570 9.2788 4.5364

n = 1000 ρ = 0.4 22.4943 10.4801 5.1468

ρ = 0.9 22.9499 10.6193 5.3288

We compare the proposed estimator (2.10) with the estimator in Hall and Yatchew (2007) under

varying sample size n = 100, 200, 500, 1000 and correlation ρ = 0, 0.4, 0.9. For our estimator

(2.10), the tensor product Matérn kernel
∏
j=1,2,4(1 + |tj − t′j |/ψj + |tj − t′j |2/3ψ2

j ) exp(−|tj −

t′j |/ψj) is used, where ψjs are chosen by the five-fold cross-validation and the λ in (2.10) is selected

by GCV. For the estimator in Hall and Yatchew (2007), the kernel smoothing with tensor product

Matérn kernel is used for local averaging in the (t1, t4) or (t2, t4) directions as the Example 3 of Hall

and Yatchew (2007), and then estimators are averaged. The bandwidth parameters for the estimator

in Hall and Yatchew (2007) are chosen by the five-fold cross-validation. The MSE= E[f̂nλ− f0]2 is

estimated by a Monte Carlo sample of 106 test points in [0.5, 1.5]3.

Table 2.3 gives the MSEs of our estimator (2.10), the MSEs of estimator in Hall and Yatchew

(2007), and additionally the MSE of (2.10) with only function data Y (0) as the reference. In each

combination of n and ρ, the MSEs are averaged over 1000 replicated simulations. It is clear from
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Table 2.3 that the MSEs of incorporating partial derivatives are significantly smaller than the MSEs

without derivatives. Moreover, the performance of our estimator compares favorably with the esti-

mator in Hall and Yatchew (2007).

Table 2.4 gives the MSEs of our estimator relative to MSEs of the estimator in Hall and Yatchew

(2007) by incorporating Y (0),Y (1),Y (2). The ratio decreases with the sample size. This phenomenon

is expected since our estimator converges at the rate of additive models (see, Theorem 2.4), which is

faster than the convergence rate of nonparametric dimension not exceeding two by Hall and Yatchew

(2007).

Table 2.4: MSE of our estimator incorporating Y (0)&Y (1)&Y (2) relative to MSE of the esti-
mator in Hall and Yatchew (2007) incorporating Y (0)&Y (1)&Y (2)

ρ = 0 ρ = 0.4 ρ = 0.9

n = 100 0.7731 0.7907 0.8038

n = 200 0.7252 0.7281 0.7450

n = 500 0.5706 0.5742 0.5887

n = 1000 0.4889 0.4911 0.5018

Example 2.11 (The Black-Scholes call option pricing). In many stochastic simulations, first-order

partial derivatives can be obtained with negligible effort compared to obtain the function observation

itself. As an illustration, we study an example of pricing a call option. We would illustrate our

theoretical results in this example.

The Black-Scholes stochastic differential equation is commonly used to model the price St of a

stock at time t through dSt = rStdt + σStdWt, t ≥ 0, where Wt is Wiener process, r is the risk-

free rate, and σ is the volatility parameter of stock price. This equation has a closed-form solution:

St = S0 exp{(r− 1
2σ

2)t+ σ
√
tZ}, where Z ∼ N(0, 1). The European call option is a right to buy

a stock at the presepcified date t = T with a prespecified price K and the function value is

Y (0) = e−rT (ST −K)+.
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The goal is to estimate the net present value of this option with fixed T ,K:

f0(S0, r,σ;T ,K) = E[Y (0)]. (2.13)

The sensitivities of interest are the partial derivatives of f0 with respect to the parameters (S0, r,σ)

while holding (T ,K) fixed. Partial derivative estimators for ∂f0/∂S0, ∂f0/∂r, ∂f0/∂σ obtained by

the infinitesimal perturbation analysis (IPA) are, respectively,

Y (1) = e−rT
ST
S0
· 1{ST ≥ K},

Y (2) = −TY (0) + e−rTTST · 1{ST ≥ K},

Y (3) = e−rT
1

σ
[log(ST /S0)− (r +

1

2
σ2)T ]ST · 1{ST ≥ K}.

(2.14)

It can be shown that IPA estimators (2.14) are unbiased, that is e.g., E[Y (1)] = ∂f0/∂S0. We refer

to Glasserman (2013); L’Ecuyer (1990) for details.

In this experiment, we fix T = 1 and K = 100. The experiment design is as follows. Choose

l equally spaced design points for each of three covariates: S0 ∈ [80, 120], r ∈ [0.01, 0.05], and

σ ∈ [0.2, 1] with l = 7, 14, 21. The end points of each interval are always included. Hence the

design has the tensor product structure with sample size n = 73, 143, 213. To address the impact

of stochastic simulation noise, we simulate q = 1000, 2000, 5000 i.i.d. replications of ST at each

design point and average, and the independent sampling is used across design points. Here, a larger

q corresponds to smaller noise variances of Y (j)s.

Two facts of this data generating are noted. First, obtaining function value at a new design point

requires to generate q new random numbers for getting ST . However, obtaining a partial derivative

estimate in (2.14) does not need any new random number. Second, the error correlation only exists

for function value and partial derivatives at the same design, not between components at different

design points. Hence, this error structure satisfies assumption (2.4).



27

Figure 2.3: Estimation error of our regularized estimator incorporating different levels of
partial derivatives for Example 2.11. The y-axis is in the log scale.

We compare estimation results of our proposed estimator (2.10) with different levels of par-

tial derivative data. We use the tensor product Matérn kernel
∏3
j=1(1 + |tj − t′j |/ψj + |tj −

t′j |2/3ψ2
j ) exp(−|tj − t′j |/ψj), which satisfies the differentiability condition (2.9). Here, the scale

parameter ψjs are chosen by the five-fold cross-validation, and the tuning parameter λ in (2.10)

is selected by GCV. It is known that f0(S0, r,σ;T ,K) defined in (2.13) has an explicit solution
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f0(S0, r,σ; 1, 100) = S0Φ (−d1 + σ) − 100e−rΦ (−d1) when T = 1,K = 100, where d1 =

σ−1[log 100 − log(S0) − (r − σ2/2)] and Φ(·) is the cdf of the standard normal distribution. The

MSE= E[f̂nλ − f0]2 is estimated by a Monte Carlo sample of 10000 test points in [80, 120] ×

[0.01, 0.05]× [0.2, 1].

Figure 2.3 shows the estimation error, E[f̂nλ − f0]2, when the sample size n = 73, 143, 213

for each combination of q and different levels of partial derivatives–only function data (i.e., p = 0),

function data with one type of first partial derivative (i.e., p = 1), function data with two types of first

partial derivatives (i.e., p = 2), function data with three types of first partial derivatives (i.e., p = 3).

The results are averaged over 1000 simulations in each setting. The y-axis is in the log scale. Figure

2.3 suggests the estimation error converges exponentially with the number of types of first partial

derivatives (i.e., p), which agrees with our theoretical results. We also observe that the convergence

rate increases when incorporating p = 3 partial derivatives compared with p ≤ 2. This also confirms

our theoretical finding that the faster raten−1(log n)d−1+n−2md/[(2m+1)d−2] is achieved when using

all first partial derivatives p = d, compared to the rate [n(log n)1+p−d]−2m/(2m+1) when p < d,

where d = 3 in this example. Furthermore, Figure 2.3 indicates that within each n the slopes are

very close across different q, and the slopes get steeper when n increases. For example, we provide in

Table 2.5 the ratios of MSE of incorporating Y (0),Y (1) and Y (2) (i.e., p = 2) relative to MSE of only

incorporating Y (0) (i.e., p = 0). This further corroborates our derived results that incorporating

derivatives leads to the faster convergence rates. Finally, it is clear that the estimation error decreases

as the stochastic error decreases (i.e., q increases).

Table 2.5: MSE of incorporating Y (0)&Y (1)&Y (2) relative to MSE of only incorporating Y (0)

for Example 2.11

n q = 1000 q = 2000 q = 5000

73 = 343 0.6818 0.6789 0.6612

143 = 2744 0.5850 0.5848 0.5835

213 = 9261 0.5484 0.5483 0.5294

In this stochastic simulation example, partial derivatives can be easily estimated by (2.14) with-

out additional cost. Although the function f0 does not have tensor product structure, our estimator
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with first-order partial derivatives gives substantial improvements in function estimation. For ex-

ample, the MSE of n = 73, q = 1000 with three types of partial derivatives included is even smaller

than the MSE of n = 143, q = 1000 with no partial derivative included. This shows the use of

derivatives saves the computational cost for sampling at new designs in order to achieve a same

estimation accuracy.
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Chapter 3

High-Dimensional Smoothing

Splines with Application to

Alzheimer’s Disease Prediction Using

Longitudinal and Heterogeneous

Magnetic Resonance Imaging

3.1 Introduction

Alzheimer’s Disease (AD) is the most common cause of dementia in the aged population

(Prince et al., 2013). In order to prevent disease progression and take therapeutic treatment

in the earliest stage, it is vital to identify AD-related pathological biomarkers of progression

and diagnose early-stage AD. A considerable amount of research has been devoted to the

use of structured magnetic resonance imaging (MRI) for early-stage AD diagnosis; e.g.,

Jack Jr et al. (2010, 2013). The structural MRI provides measures of cerebral atrophy and it is

shown to be most closely coupled with clinical symptoms in AD (Jack Jr et al., 2009).
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Figure 3.1: Illustration of heterogenous longitudinal data with p covariates.

Most work in the literature focus on the cross-sectional study with MRI collected at one

single time point; see, e.g., Aguilar et al. (2013); Liu et al. (2016); Tzourio-Mazoyer et al. (2002).

However, the cross-sectional study could be insensitive to early pathological changes. As an

alternative, longitudinal analysis of structural abnormalities has recently attracted attentions

(Chincarini et al., 2016; Yau et al., 2015; Zhang et al., 2012). Most of these existing longitudinal

studies focus on the atrophy of a few well-known biomarkers such as the hippocampus,

entorhinal cortex, and ventricular cortex. However, these prespecified regions of interest

(ROIs) may be insufficient to capture the full morphological abnormality pattern of the

brain MRI. Besides it, a few other issues remain as challenges in the longitudinal analysis.

First, longitudinal scans across subjects are usually inconsistent. For example, subjects

could have different scanning time and different total number of scans. Second, the total

number of ROIs in the brain is large compared with the number of subjects, which poses

a challenge to select AD-rated longitudinal biomarkers from the whole brain. Third, the

rates of longitudinal change in different ROIs are different and this heterogeneity should be

accounted by the modeling of progression.

The goal of this paper is to identify important AD-related ROIs in the whole brain MRI

with longitudinal MRI data and use the selected ROIs for AD prediction. Specifically, we use

the varying coefficient model (Hastie and Tibshirani, 1993) to characterize the heterogeneous
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changes of different ROIs in structural MRI. This model also allows a nonlinear functional

modeling between MRI and clinical cognition functions. We propose a novel feature selection

method by combining the smoothing splines and a l1-penalty, which can simultaneously

select and estimate AD-related ROIs. We provide an efficient algorithm to implement

the proposed feature selection method. Then the prediction is performed based on the

selected longitudinal features and estimated varying coefficients. Our method is robust to

the inconsistency among longitudinal scans and is adaptive to the heterogeneity of changes

in different ROIs. The use of varying coefficient models is motivated by the hypothetical AD

dynamic biomarkers curves proposed by Jack Jr et al. (2010, 2013), where their principle is

that the rates of change over time for MRI and clinical cognition functions are in a temporally

ordered manner. Hence, the functional relationship between the atrophy of MRI and the

change in clinical cognition functions must be nonlinear in time.

To evaluate our method, we perform experiments using data from the Alzheimer’s

Disease Neuroimaging Initiative (ADNI). We predict future clinical changes of mild cognitive

impairment (MCI) subjects with brain MRI data. The MCI is a prodromal stage of AD. The

prediction of clinical changes help to determine whether a MCI subject will convert into AD

at a future time point, which is vital for early diagnosis of AD.

Main differences between this paper and existing longitudinal studies in Chincarini et al.

(2016); Yau et al. (2015); Zhang et al. (2012) are as follows.

• Different feature representations. We use the varying coefficient model to characterize

nonlinear and smooth progression of longitudinal features, which is motivated by

clinical findings and the dynamic biomarker curve in Jack Jr et al. (2010, 2013). On

the other hand, Chincarini et al. (2016); Yau et al. (2015); Zhang et al. (2012) use linear

representations for features.

• Different scalability to heterogenous longitudinal scans. Different from Chincarini

et al. (2016); Yau et al. (2015); Zhang et al. (2012), our method does not require same

scanning times and a same number of scans across samples.
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• Different feature selections. We proposed a novel feature selection method by combin-

ing smoothing splines with a l1-penalty, which allows to simultaneously select and

estimate features. This is different from the two-step method in Zhang et al. (2012) by

doing the selection and estimation separately and Chincarini et al. (2016); Yau et al.

(2015) by only using pre-selected features.

The rest of the paper is organized as follows. We introduce our method in Section 3.2.

We give experiment results in Section 3.3. Additional material and proofs are relegated to

Appendix.

3.2 Methodology

The varying coefficient model (Hastie and Tibshirani, 1993) can describe time-dependent

covariate effects on the responses. Given scaled time t ∈ [0, 1], the response functional Y (·)

is related to covariates X1(·), . . . ,Xp(·) through

Y (t) = b+

p∑
j=1

βj(t)Xj(t) + ε(t), b ∈ R, (3.1)

where the centered noise process ε(·) is independent of Xj(·)s. The model (3.1) allows a

nonlinear relationship between Xj(·)s and Y (·) be letting the coefficients βj(·)s vary on

t. On the other hand, (3.1) has an additive structure on covariates Xj(·)s, which enables

efficient estimations of coefficients βj(·)s.

In practice, data are obtained for subject i = 1, . . . ,n at time tiν , where ν = 1, 2, . . . ,mi,

and 0 ≤ ti1 ≤ ti2 ≤ · · · ≤ timi ≤ 1. Note that mi and tiνs are allowed to be different for

different subjects i. Denote Xj(tij) = xij and let yiν be the response for subject i at time tiν ,

then (3.1) implies

yiν = b+

p∑
j=1

βj(tiν)xij(tiν) + ε(tiν), b ∈ R. (3.2)

The structure of heterogenous longitudinal data is illustrated in Figure 3.1, where some

subjects could have missing feature values at certain time point. The number of covariates p in
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(3.2) can be larger than the sample size n, and then (3.2) becomes a high-dimensional model.

Since some covariates might be irrelevant with the response, we want to select important

covariates Xj(·)s based on data (3.2) and use the selected covariates for prediction.

We propose a new method to simultaneously select covariates and estimate their corre-

sponding varying coefficients as follows. Assume that varying coefficientsβ1(·),β2(·), . . . ,βp(·)

reside in a reproducing kernel Hilbert space (RKHS) (HK , ‖ · ‖HK ) with the reproducing

kernel K(·, ·) (Wahba, 1990). Find β1(·),β2(·), . . . ,βp(·) ∈ HK and b ∈ R to minimize

1

N

n∑
i=1

mi∑
ν=1

yiν − b− p∑
j=1

βj(tiν)xij(tiν)

2

+ λ

p∑
j=1

‖βj‖HK , (3.3)

where N =
∑n

i=1mi and ‖ · ‖HK is the RKHS norm. The first term in (3.3) measures the

goodness of data fitting and the second term merits the selection property by the l1-like

penalty
∑p

j=1 ‖βj‖HK . We first provide the following theorem to justify the existence of

minimizer for (3.3).

Theorem 3.1. There exists a minimizer of (3.3) that is in the domain β1(·), . . . ,βp(·) ∈ HK and

b ∈ R.

The proof of this theorem is given in Appendix B.3. The variable selection method (3.3)

is new in the literature and (3.3) is efficient for optimization since it is convex in βj(·)s and it

has only one tuning parameter λ. We provide an algorithm in Appendix B.4.

The following theorem gives further insights into (3.3) that it is indeed a combination of

the smoothing splines (Wahba, 1990) and the Lasso (Tibshirani, 1996).

Theorem 3.2. Consider the following optimization problem. Find β1(·), . . . ,βp(·) ∈ HK and

θ1, . . . , θp, b ∈ R to minimize

1

N

n∑
i=1

mi∑
ν=1

[yiν − b−
p∑
j=1

βj(tiν)xij(tiν)]2 + τ0

p∑
j=0

θ−1
j ‖βj‖

2
HK + τ1

p∑
j=0

θj ,

s.t. θj ≥ 0, j = 0, 1, . . . , p,

(3.4)
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where τ0 is a constant and τ1 is a tuning parameter. Let τ1 = λ4/(4τ0). The following equivalence

holds.

1) If (β̂0, β̂1(·), . . . , β̂p(·)) minimizes (3.3), by letting θ̂j = τ
1/2
0 τ

−1/2
1 ‖β̂j‖HK , we have that

(θ̂1, . . . , θ̂p; β̂0, β̂1(·), . . . , β̂p(·)) minimizes (3.4).

2) If there exists (θ̂1, . . . , θ̂p; β̂0, β̂1(·), . . . , β̂p(·)) minimizes (3.4), then (β̂0, β̂1(·), . . . , β̂p(·))

minimizes (3.3).

We give the proof of this theorem in Appendix B.5. Note that (3.4) is a combination of

the smoothing splines and the Lasso since the first two terms:

1

N

n∑
i=1

mi∑
ν=1

[yiν − b−
p∑
j=1

βj(tiν)xij(tiν)]2 + τ0

p∑
j=0

θ−1
j ‖βj‖

2
HK + τ1

p∑
j=0

θj

is actually the same as the smoothing splines in nonparametric statistics (Wahba, 1990), and

the last term

τ1

p∑
j=0

θj

is actually the same as the Lasso penalty (Tibshirani, 1996) for the weights θjs.

Let Xj1 ,Xj2 , . . . ,Xjs be s of selected features by (3.3), 1 ≤ j1 ≤ j2 ≤ · · · ≤ js ≤ p,

and β̂j1 , β̂j2 , . . . , β̂js be the corresponding estimated varying coefficients by (3.3). Then the

prediction model for a new subject with features X∗j1(t),X∗j2(t), . . . ,X∗js(t) at time t is

f̂∗(t) = β̂j1X
∗
j1(t) + β̂j2X

∗
j2(t) + · · ·+ β̂jsX

∗
js(t).

3.2.1 Dataset for experiments

Data used in the preparation of this article were obtained from the Alzheimer’s Disease Neu-

roimaging Initiative (ADNI) database (adni.loni.usc.edu). The ADNI was launched

in 2003 as a public-private partnership, led by Principal Investigator Michael W. Weiner,

MD. The primary goal of ADNI has been to test whether serial magnetic resonance imaging

adni.loni.usc.edu
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(MRI), positron emission tomography (PET), other biological markers, and clinical and neu-

ropsychological assessment can be combined to measure the progression of mild cognitive

impairment (MCI) and early Alzheimer’s disease (AD). More descriptions on the ADNI

database is in Appendix B.1.

3.3 Experiment Results

We corroborate our method by predicting future clinical changes of MCI subjects. Generally,

some MCI subjects will convert into AD after certain time (i.e., MCI converters, MCI-C for

short), while others will not convert (i.e., MCI non-converters, MCI-NC for short) Zhang

et al. (2012). The prediction of clinical change in a MCI subject help to determine whether

the subject will convert into AD at a future time point, which is a central task for the early

diagnosis of AD. We summarize the baseline demographic information of ADNI subjects

studied here in Table 3.1.

Table 3.1: Demographics of ADNI subjects studied here

MCI-C MCI-NC
(n = 74) (n = 98)

Male/Female 44 / 30 61 / 37
Age (years) 73.03 ± 6.65 74.35 ± 7.47
Edu. (years) 15.51 ± 3.05 15.59 ± 3.07

The preprocessing steps for brain MR imaging used here are described in Appendix

B.2. Specifically, we have total 324 ROIs for each imaging. For MCI subjects, MRI scans

were performed at baseline (bl), 6 months (M06), one year (M12), 18 months (M18), two

years (M24), three years (M36), and four years (M48). However, some subjects may miss

a few visit times and hence they do not have MRI scans at these time points. We choose

n = 172 MCI subjects who have M48 imaging data. Table 3.2 lists the distributions of visit

times for these 172 MCI subjects, where, e.g., 6 of MCI-C subjects make at most 3 visits
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among the scheduled six times (bl, M06, M12, M18, M24, M36) such that they have at most

3 longitudinal MRI scans.

Table 3.2: Distribution of visit times for ADNI subjects studied here

MCI-C MCI-NC
(n = 74) (n = 98)

≤ 3 scans 6 6
4 scans 8 14
5 scans 15 33
6 scans 45 45

Figure 3.2: Flowchart of the proposed method.
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Our goal is to use longitudinal information (from bl up to M36) to predict the clinical

changes of MCI subjects at M48. Since the empirical evidences suggest that the rates of

change over time for structural MRI and clinical cognition functions are in a temporally

ordered manner (Jack Jr et al., 2010, 2013), a nonlinear modeling for the functional relation-

ship between the atrophy of MRI and the change in clinical cognition functions is necessary.

Hence, the varying coefficient model (3.1) is used. We choose the Alzheimer’s Disease As-

sessment Scale – Cognitive Subscale (ADAS-Cog) as the response clinical cognitive test score

Y (·) and it ranges from 70 (severe cognitive impairment) to 0 (no cognitive impairment).

The ADAS-Cog measures disturbances of memory, language, and other cognitive abilities.

The covariates Xj(·)s include 324 MR imaging ROIs and 3 demographic covariates: age,

gender, and education years. The index t in (3.1) should be identifiable and we let t be

the scaled time relative to subjects enter the ADNI study. We normalize the time to the

unit interval [0, 1]. Figure 3.2 gives the flowchart of our method, where the abnormality

magnitude measures the shrinkage of a feature by comparing the average of normal subjects

that progressed to AD over time relative to the average of normal subjects that did not

progress to AD over time with ADNI dataset. For example, Figure 3.2 shows the thickness

of right parahippocampal cortex and thickness of right entorhinal cortex significantly decrease

over time for subjects progressed to AD compared to subjects did not progress. These two

features are selected by our method for prediction.

We build six models by using six different levels of longitudinal information:

• Model 1: bl.

• Model 2: bl+M06 (including subjects have missings at bl).

• Model 3: bl+M06+M12 (including subjects have missings at bl or M06).

• Model 4: bl+M06+M12+M18 (including subjects have missings at bl, M06 or M12).

• Model 5: bl+M06+M12+M18+M24 (including subjects have missings at bl, M06, M12

or M18).
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• Model 6: bl+M06+M12+M18+M24+M36 (including subjects have missings at bl, M06,

M12, M18, or M24).

Figure 3.3: The prediction comparisons of our method using six levels of longitudinal data.

Following the flowchart in Figure 3.2, we first perform the feature selection method

in (3.3) for each of the six models. In each experiment, we randomly leave out half of

samples in both MCI-C and MCI-NC for prediction. For the training of each model, a 10-fold

cross validation is performed to select the tuning parameter λ in (3.3). The experiments

are replicated for 100 times. We summarized the mean squared prediction accuracy in

Figure 3.3. It is clear that the longitudinal data can significantly improve the prediction

results compared with only using baseline information. And the more longitudinal data

included, the better prediction will be obtained. We also observe that the prediction results

for MCI-NC are slightly better compared with MCI-C, which can be explained by the fact

that MCI-NC subjects have more stable clinical status and less varied clinical scores.

We give examples of selected feature in Figure 3.4. These are four ROIs that consistently

selected in Model 6 for 100 experiments. Figure 3.4 demonstrates the varying coefficients

of the ROIs. Specifically, gender is an important factor and different ROIs have different

functional relations with clinical functions (i.e., the maximum effect of each biomarker
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Figure 3.4: Examples of selected features for Model 6.

varies over the course of disease progression). This confirms the evidence and hypothesis

in Sabuncu et al. (2011); Schuff et al. (2012) that atrophy does not affect all regions of the

brain simultaneously, but perhaps in a sequential manner.

Figure 3.5: The prediction comparisons of three methods for MCI-C.

Now we compare our method (3.3) with other two state-of-the-art methods:

• The longitudinal analysis in Chincarini et al. (2016) which only uses the hippocampal

volume shrinkage rate as the feature.

• The longitudinal analysis in Zhang et al. (2012) which use linear feature representations
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Figure 3.6: The prediction comparisons of three methods for MCI-NC.

and a group Lasso for variable selection (e.g., Yuan and Lin (2006)).

Since the methods in Chincarini et al. (2016); Zhang et al. (2012) require same scanning

times and a same number of scans across samples, we perform Model 1–6 for AD prediction

with samples having no missing visits. In each experiment, we randomly leave out half of

samples in both MCI-C and MCI-NC for prediction. For the training of each model, a 10-fold

cross validation is performed to select the tuning parameters in (3.3) and in Chincarini

et al. (2016); Zhang et al. (2012). The experiments are replicated for 100 times. The mean

squared prediction accuracy for MCI-C are summarized in Figure 3.5 and the mean squared

prediction accuracy for MCI-NC are summarized in Figure 3.6. It is clear that our proposed

method consistently achieves better prediction performances for both MCI-C and MCI-NC.

The reason of the superior performance of our method is due to the modeling of nonlinear

progression of longitudinal features and selecting important features from the whole brain

instead of only using a prespecified feature for prediction.
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Chapter 4

Selection and Estimation Optimality

in High Dimensions with the TWIN

Penalty

4.1 Introduction

Discovering relevant relationships between a large number of variables and an outcome

continues to be an eminently challenging problem in statistics and a major interest in a

wide variety of scientific disciplines. Decades of research has focused on variable selection

techniques to identify relevant variables. Among these techniques, penalized regression-

based methods such as the Lasso (Tibshirani, 1996), smoothly-clipped absolute deviation

(SCAD) (Fan and Li, 2001), and the minimax concave penalty (MCP) (Zhang, 2010) have been

widely explored, as they often perform well in practice, have computational advantages, and

possess desirable variable selection properties. However, selection consistency results for

penalized methods often require the imposition of relatively extreme levels of sparsity on

the data generating mechanism and thus may not accurately describe real world data. For

example, when modeling health outcomes of patients, such as hospitalization risk or human

phenotypes, the relevant risk factors may be highly varied and numerous. As human biology
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is extraordinarily complex, it is sensible that more relevant predictors may be included

when an increasing amount of genetic or microbiome information is leveraged, especially

when considering gene-gene, gene-environment, or microbiome-environment interactions

(Nadeau and Topol, 2006; Martin et al., 2007; Bull and Plummer, 2014; Shreiner et al., 2015).

As such, methodological and theoretical advances in variable selection commensurate with

this possibility are needed.

In this paper we seek to address this gap with a novel class of penalties. The proposed

penalty class results in estimators that are provably selection consistent and asymptoti-

cally minimax in high-dimensional scenarios under linear sparsity and relatively weak

assumptions regarding the data-generating mechanism. We call our penalty class the two

mountains penalty class, or TWIN (TWo mountaINs) for short, as the shape of the penalty

function resembles two mountains centered around the origin. The general shape of the

two mountains penalty class makes it amenable to controlling the false discovery rate of

variable selections (FDR) while retaining high power of selection and is thus instrumental to

its desirable selection properties. Furthermore, the shape of TWIN penalty functions, illus-

trated in Figure 4.1a, results in sensible data-adaptive penalization where larger coefficients

are subjected to attenuated penalization. Throughout this paper we show that this general

pattern of penalization yields advantageous selection and estimation properties. Extensive

simulations buttress our theoretical results and demonstrate the superior finite sample

selection and estimation properties of our penalty in scenarios with strong correlations

between relevant and irrelevant variables.

The core of this paper centers around the ubiquitous linear model, which posits that the

relationship between a set of predictors and a response variable has the following linear

form:

y = Xβ + z, (4.1)

where y ∈ Rn is a vector of responses,X ≡ (x1, . . . ,xp) ∈ Rn×p is a random matrix with

each column representing samples of a particular predictor, β = (β1, . . . ,βp)
′ ∈ Rp is a
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vector which relates the predictors to a mean response value, and z ∼ N(0,σ2In) is an error

term independent ofX . We adopt the familiar penalized regression framework, wherein

sparse estimates β̂ of β are achieved by minimizing a penalized least squares objective with

penalty P (·):

β̂ = arg min
b∈Rp

1

2
||y −Xb||2 +

p∑
j=1

P (|bj |)

 . (4.2)

The Lasso falls under this framework with P (|b|) = |b|. The focus of this paper is on a new

class of penalty functions P (·), which will be introduced in Section 4.2.

We highlight three main contributions of this work:

1. We propose a novel class of penalty functions for variable selection, which provide

data-adaptive penalization in a manner which results empirically in favorable selection

and prediction performance. We provide two examples of the penalty class which are

amenable to computationally efficient algorithms.

2. We provide selection consistency results for the proposed class of penalty functions in

both the high dimensional (p > n) and low-dimensional settings under linear sparsity.

Similar to SLOPE (Bogdan et al., 2015), our penalty admits a finite sample bound for

the FDR under orthogonality and is thus a candidate for future study of FDR control

under more general designs.

3. We establish new minimax optimal risk under the linear sparsity. Moreover, we show

that TWIN estimators are minimax optimal for both orthogonal and random designs.

The remainder of this paper is organized as follows. We introduce our proposed class

of penalty functions in Section 4.2. In Section 4.3 we study the key selection properties

of the TWIN penalty and in Section 4.4 we present minimax optimality results. Section

5.3 investigates the numerical properties of the TWIN penalty in comparison with other

standard penalties using extensive simulation studies. In Section 4.6 we analyze a microarray

study relating gene expression levels to a phenotype in mice with the TWIN penalty.
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4.2 Methodology

4.2.1 The TWIN penalty class and examples

The “two mountains” penalty class is defined by a general shape, which has the appearance

of two mountains centered around the origin. Figure 4.1a depicts the archetypal shape

of TWIN with two examples of the penalty class in comparison with the shapes of the

Lasso penalty and the MCP. The motivation of the two mountains shape is clear: it has a

singularity at zero, thus allowing for variable selection, and it penalizes small coefficients

more heavily and relaxes the amount of penalization for large coefficients, effectuating the

idea that variables with larger coefficients are more likely to be related to our response. Thus,

it provides data-adaptive penalization of coefficients. However, the relationship between

the magnitude of penalization is not monotone with coefficient size, as it is potentially

unreasonable to assume that all small coefficients are necessarily unimportant.

The TWIN penalty class Pλ,τ (t) is indexed by two parameters λ, τ > 0 and satisfies the

following criteria:

1. Pλ,τ (t) is continuous and nonnegative for t ∈ R+ with Pλ,τ (0) = 0;

2. supλ>0 Pλ,τ (t) =∞ for any t 6= 0;

3. The derivative of the penalty is continuous except at the origin and satisfies

• P ′λ,τ (0+) = λ, which enables the selection of variables,

• P ′λ,τ (t) is positive for 0 < t < τ and decreases to 0 such that P ′λ,τ (τ) = 0,

• P ′λ,τ (t) is nonpositive for t > τ , first decreasing in a neighborhood after τ and

then increasing to 0, yielding a “coefficient enlargement” effect for a range of t

and (near) unbiasedness for large t,

When Pλ,τ is a member of the TWIN class, we call the minimizer of (4.2) a TWIN estimator.

Penalties that meet all of the two mountains (TWIN) criteria resemble two symmetrical

hill or mountain shapes centered around 0 when taken as a function of |t|. The tuning
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parameter τ specifies the precise location of the peaks of the “mountains”, i.e. where the

penalty achieves its maximum value. The second criteria above guarantees that adjusting

λ will eventually result in a large enough penalty to set any coefficient to zero. The third

property in criterion 3 above results in what we call coefficient enlargement in the sense

that some estimates are slightly biased away from zero; see Figures 4.1c and 4.2. The TWIN

class can be further delineated based on the limiting behavior of Pλ,τ (t). The first subclass

of TWIN penalties, which we call TWIN-a, is defined as all TWIN penalties which only

achieve zero derivative in the limit. The second subclass, TWIN-b, has derivative equal to

zero for all t ≥ d for some constant d > 0. This distinction results in different properties and

our theoretical derivations will handle them separately.

The pattern of decreased penalization for t > τ is inspired by multiple testing procedures,

wherein smaller p-values are compared with lower thresholds, for example Benjamini and

Hochberg (1995). From the regression point of view (assuming equal variance of each

coefficient estimate), smaller p-values correspond to stronger signals, i.e. variables with

larger regression estimates. Thus the behavior of TWIN is opposite that of another recently

proposed data-adaptive penalty, SLOPE (Bogdan et al., 2015), which penalizes coefficients

whose estimates are larger more heavily than those whose estimates are smaller.

In the following we introduce two specific TWIN penalties that will be used throughout

this paper for demonstration purposes. While the theoretical results in this paper apply to

all TWIN penalties, our numerical examples and our data analysis focus on the following

two specific penalties in the TWIN class.

Example 4.1 (TWIN-a).

Pλ,τ (t) =


λc(1− (1− t/τ)2) t ≤ m1τ

λcd1τ/t t > m1τ

, (4.3)

where d1 > 0 andm1 > 0 are calculated such that the function above is continuous and has matching

derivatives at m1 and c is a normalizing constant defined such that P ′λ,τ (0+) = λ. The term c can
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be dropped for clarity or ease of implementation. A direct calculation shows that d1 = 32/27 and

m1 = 4/3. Note that letting τ → 0 and λτ → 1/(cd1) yields Pλ,τ (t) = 1/t, which is the reciprocal

Lasso of Song and Liang (2015).

Example 4.2 (TWIN-b).

Pλ,τ (t) =


λc(1− (1− t/τ)2) t ≤ m2τ

λc[(t− d2)2/τ2 + h] m2τ < t < d2

λch t > d2

, (4.4)

where h ∈ (0, 1) and d2 > 0, m2 > 1 are calculated such that the function above is continuous

and has matching derivatives at m2τ and d2 and again c is a normalizing constant defined such

that P ′λ,τ (0+) = λ. A straightforward calculation shows that d2 = (1 +
√

2(1− h))τ and m2 =

1 +
√

(1− h)/2. The parameter h can be chosen to balance convexity of the penalty, and hence

computational stability, with effect enlargement, however we simply choose h = 1/2.

Examples 2.1 and 2.2 differ only in their behavior for t > τ .

Remark 4.3. If τ → ∞ and λc/τ → λ∗/2, both TWIN-a and TWIN-b become the Lasso penalty

with tuning parameter λ∗.

To better understand the behavior of TWIN penalties, let us consider the following

univariate penalized least squares problem

1

2
(z − θ)2 + Pλ,τ (|θ|). (4.5)

Fan and Li (2001) note that a good penalty function should meet three key criteria, namely i)

(near) unbiasedness ii) sparsity, and iii) continuity of the minimizer of (4.5) with respect

to z. TWIN meets the first two criteria, however, like for the hard-thresholding function

(Antoniadis, 1997; Fan, 1997) and for the reciprocal Lasso (Song and Liang, 2015), it does

not always meet the third. Specifically, for a range of values of τ , the minimizer of (4.5)
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is not continuous in z; see Figure 4.1c. Thus, in some sense, the tuning parameter τ of

TWIN offers a trade-off between continuity and computational stability. In spite of added

computational instability, we find that TWIN with values of τ resulting in a discontinuous

estimator often performs remarkably well in practice. Both examples TWIN-a (Example

2.1) and TWIN-b (Example 2.2) are computationally convenient, because they both admit

closed-form solutions for univariate (4.5), allowing for faster coordinate-descent algorithms

with simple updates.

Figure 4.2 displays the regularization paths of the Lasso, SCAD, MCP, TWIN-a and

TWIN-b penalties from a simulated dataset with n = 200, p = 1000 among which only 10

active variables are related to the response, the covariates are generated independently from

N(0, Σ) with Σij = 0.5|i−j|, and z ∼ N(0, In). The coefficients for the 10 active variables are

given by (−1/2, 2/3,−5/6, 1,−7/6, 4/3,−3/2, 5/3,−11/6, 2). The horizontal gray dashed

lines are the oracle least squares estimates for the 10 active variables. Due to the low sample

size, correlations between inactive variables and the response range between -0.21 and

0.22. The correlations between active variables and the response range in magnitude from

0.07 to 0.45 and are thus often dominated by random correlations with the response. Due

in part to these correlations, the Lasso selects multiple inactive variables early on in the

regularization path, a phenomenon studied rigorously in Su et al. (2017). Note that TWIN

results in estimates which are inflated for a range of λ. Due to the fact that the derivative

of the TWIN-a penalty is never exactly zero, it results in increased coefficient enlargement

compared with TWIN-b. As we justify in Section 4.2.3, this added enlargement effect may be

more beneficial in scenarios with strong correlations between covariates. Smaller coefficients,

however, can still receive shrinkage towards zero by TWIN depending on the value of τ .

This behavior can be helpful in scenarios where prediction is a priority.

4.2.2 Heuristics of TWIN

In this subsection, based on heuristic arguments, we provide insights into why the TWIN

estimator yields reduced false discoveries compared with the Lasso, SCAD and MCP. The
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Figure 4.1: Panel (a) compares the penalty functions for TWIN-a and TWIN-b with the Lasso
and MCP all with with λ = 1 (and λc = 1 in the case of TWIN). The extra tuning parameter
γ for MCP is set to 1.4. Panel (b) compares the corresponding derivative functions. Panel (c)
compares the thresholding functions for all of the penalties.
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Figure 4.2: Plot of coefficient paths as the λ tuning parameter is varied for TWIN-a and -b
in comparison with that of the Lasso, SCAD, and MCP. The top left plot is TWIN-a with
τ = 0.1, the top middle is TWIN-b with τ = 0.1, and the top right is TWIN-a with τ = 0.5.
Only variables V 1− V 10 have nonzero coefficients in this example and only these variables
are labeled on the right of each plot if selected.

arguments in this section roughly follow and extend the arguments in Su et al. (2017). For

simplicity, in this section we fix σ = 0 as the following can be extended to cases with

noise. Consider a Gaussian random design matrixX which has i.i.d. N(0, 1/n) entries and

consider an oracle TWIN estimator with known true support Ao = {j : βj 6= 0} as obtained

by

β̂Ao = argmin
bAo∈Rεp

1

2
||y −XAobAo ||2 +

∑
j∈Ao

Pλ,τ (|bj |), (4.6)

where Ao is of approximate size εp, 0 < ε < 1, and n, p→∞. The matrixXAo is comprised

of columns indexed by Ao from the full design matrixX . If |EβAo [x′i(y−XAoβ̂Ao)]| ≤ λ for

all i ∈ Āo, where Āo = {1, . . . , p}\Ao, the KKT condition (4.12) suggests in expectation that
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extending β̂Ao by adding zeros to Āo results in a solution of (4.2). If for some j ∈ Āo,

|EβAo [x′j(y −XAoβ̂Ao)]| > λ, (4.7)

then we must consider the reduced problem (4.6) with supportAo∪{j} instead ofAo in order

to yield an equivalent solution with (4.2). Hence, (4.7) provides evidence of false discoveries.

Since β̂Ao is independent ofXĀo , by conditioning onXAo ,EβAo [x′j(y−XAoβ̂Ao)] is normally

distributed with mean zero and variance n−1‖EβAo [XAo(βAo − β̂Ao)]‖2.

To compare TWIN with the Lasso, observe that when n > k, the largest singular value

ofXAo(X
′
AoXAo)

−1 is bounded, thus with probability approaching one,

n−1‖EβAo [XAo(βAo − β̂Ao)]‖2

=n−1‖XAo(X
′
AoXAo)

−1EβAo [sgn(β̂Ao)P
′
λ,τ (|β̂Ao |)]‖2

≤c0n
−1

{
λ2#{j ∈ Ao, |Eβj [β̂j ]| < γλ}+ sup

t≥γλ
|P ′λ,τ (t)|2#{j ∈ Ao, |Eβj [β̂j ]| ≥ γλ}

}
,

(4.8)

where c0 is some constant and γ is defined in (4.13) which indicates the region where P ′λ,τ is

approximately zero. For Lasso estimators, we know P ′(·) ≡ λ and thus the right-hand side

of (4.8) is of order λ when |Ao| is linear in p. In other words, Lasso estimators satisfy (4.7)

for a number of variables in Āo linear in p, which causes a non-vanishing false discovery

proportion; see Su et al. (2017). TWIN estimators, however, yield (near) unbiasedness, which

results in supt≥γλ |P ′λ,τ (t)|2 close to 0. If the distribution of βAo is such that the minimal

absolute value of true coefficients is larger than a certain threshold with a large probability

(as in, e.g., Tibshirani (2011)), then #{j ∈ Ao, |Eβj [β̂j ]| < γλ}/n→ 0 and thus the right-hand

side of (4.8) approaches 0 for TWIN estimators, resulting in a vanishing proportion of false

discoveries.

To compare TWIN with SCAD and MCP, we note that although these penalties are

all (nearly) unbiased, TWIN penalties possess an enlargement property for estimates with

absolute values of a middling range; see, Figure 4.1 for illustration. The enlargement property
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can compensate in some sense for the shrinkage error of estimates near zero. Specifically,

we can bound the left-hand side of (4.8) as follows:

n−1‖EβAo [XAo(βAo − β̂Ao)]‖2 = n−1‖XAo(X
′
AoXAo)

−1EβAo [sgn(β̂Ao)P
′
λ,τ (|β̂Ao |)]‖2

≤ c1n
−1‖EβAo [P ′λ,τ (|β̂Ao |)]‖2

(4.9)

for some constant c1 ≥ 0. Since SCAD, MCP and TWIN yield shrinkage for weak signals,

P ′(|β̂j |) > 0 for small β̂j . However, the enlargement property of TWIN enablesP ′λ,τ (|β̂j |) < 0

for βj with middling magnitudes, which compensates for positiveP ′λ,τ (|β̂j |)’s and results in a

smaller bound in (4.9). Thus for j ∈ Āo, the conditional variance ofEβAo [x′j(y−XAoβ̂Ao)] has

a smaller upper bound for TWIN, implying that TWIN is likely to give a smaller proportion

of false discoveries than SCAD and MCP. Moreover, it is evident from extensive simulations

in Section 5.3 that TWIN can be significantly better than SCAD and MCP in the linear

sparsity regime with strong positive and negative correlations between inactive and active

variables.

4.2.3 The role of the tuning parameter τ

TWIN’s tuning parameter τ has an important impact on the selection behavior of TWIN. We

note that the reciprocal Lasso may yield overly sparse solutions when the underlying truth is

not extremely sparse, and the Lasso may over-select variables when the underlying solution

is indeed quite sparse. The tuning parameter τ balances between these two extremes. As

τ tends to 0 and to ∞, TWIN becomes the reciprocal Lasso and the Lasso, respectively,

allowing for a dynamic range of selection behavior. We now conduct a simulation study to

investigate the finite sample properties of TWIN as τ is varied. Data are generated under

model (4.1) where the data-generating setup is described in Section 5.3 and the coefficients in

the linear model are generated as described in Model 3 in Section 5.3. We evaluate selection

performance by investigating the average FDR versus true discovery rate of variable selection

(TDR) curves as the tuning parameter λ is varied. The curves are displayed in Figure 4.3.

Generally, smaller values of τ tend to result in better selection characteristics as λ is
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Figure 4.3: The results above are for a simulation with data generated under Model 3
described in Section 5.3. Models are fit using the TWIN-a penalty.

varied, however this comes at a cost of computational instability. The smallest value of τ

considered works well in low correlation settings, but poorly with high correlations and

when many covariates are selected. Slightly larger values of τ such as 0.25 to 0.75 tend to

have better performance in low signal settings with high correlations. Over all settings,

including a more complete set of simulations presented in the Supplementary Material,

values of 0.1 and 0.15 tend to work the best. However, in practice, it may be the case that τ

must be increased or decreased to some degree for ideal performance. In the Supplementary

Material we further investigate the role of τ on prediction performance. The message is

similar for prediction, however in scenarios with very low signal, larger values of τ are

preferable if prediction is the primary goal. As τ increases, the model which minimizes the

mean squared prediction error tends to be larger in size. It is important to bear in mind that

these investigations only span a small number of possibilities and thus do not always reflect
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how selection and estimation performance vary with τ .

4.3 Selection Properties

In this section we investigate the selection properties of TWIN estimators. In particular,

we show that TWIN is selection consistent when a non-vanishing fraction of variables are

important. Further, TWIN yields a finite sample FDR bound under orthogonal designs. We

also provide universal values for both tuning parameters λ and τ for which the selection

consistency results hold. For low-dimensional regimes, these values do not depend on

any unknown quantities other than the noise level. We begin by studying the selection

properties for orthogonal designs and then extend these results to random Gaussian designs.

Hereafter, we denote β̂ as a TWIN estimator (distinctions between TWIN-a and TWIN-b

will be made when warranted), β as the true coefficient vector, and

Â ≡ {j : β̂j 6= 0}, Ao ≡ {j : βj 6= 0}, and k ≡ |Ao| = #{j : βj 6= 0}. (4.10)

4.3.1 Orthogonal designs

To gain insights about the TWIN estimator, we first consider orthogonal designs. Under

orthogonality, the optimality conditions for TWIN results in the following thresholding rule

as the solution to

β̂ = sgn(X ′y)
(
|X ′y| − P ′λ,τ (|β̂|)

)
+

,

where the sign function sgn(t) ≡ I{t > 0} − I{t < 0}. See Figure 4.1c for an illustration.

We note that when |β̂j | > τ , the absolute value of the resulting estimator is larger than

the absolute value of the data. We call this effect the enlargement property since TWIN

amplifies estimates for moderately large |βj |. However, TWIN yields (nearly) unbiased

estimates for sufficiently large |βj |. This overall behavior is different from the “unbiasedness”

property of SCAD (Fan and Li, 2001) and MCP (Zhang, 2010), and is also different from the

“shrinkage” property of the Lasso. We now present an upper bound of the FDR of TWIN
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under orthogonal designs.

Proposition 4.4. Suppose that the data are generated from the linear model (4.1) with an orthogonal

design X and z ∼ N(0,σ2Ip). Then for any α ∈ [0, 1] the false discovery rate (FDR) and the

family-wise error rate (FWER) for TWIN estimators obey,

FDR = E

[
#{j ∈ Â\Ao}
|Â| ∨ 1

]
≤ α

(
1− k

p

)
, FWER = P

{
∃j ∈ Â\Ao

}
= α,

by choosing

min
t∈R
{|t|+ P ′λ,τ (|t|)} = σΦ−1(1− α/2p). (4.11)

If there are multiple pairs of (τ ,λ) satisfying (4.11), we select the pair resulting in the largest number

of selected variables so as to increase power.

There are significant challenges in showing similar finite sample bounds for TWIN with

a random design due to the estimation error of regression coefficients. See, for example,

Bogdan et al. (2015). Instead, we show that the FDR asymptotically approaches zero in

Theorem 4.9.

4.3.2 Random designs

In this section we study the selection properties of TWIN under random Gaussian designs

where the columns ofX have i.i.d. N(0, 1/n) entries so that the columns are approximately

normalized. Random designs are widely utilized in the statistics literature for studying

regression methods. See, for example, Candès et al. (2006); Zou (2006); Meinshausen and

Yu (2009); Van de Geer and Bühlmann (2009); Su and Candès (2016). Such designs are a

sensible starting point for theoretical analysis of model selection properties due to weak

correlations between the different predictors, as they obey restricted isometry properties

(Candès and Tao, 2005) or restricted eigenvalue conditions (Bickel et al., 2009) with high

probability. However, based on our numerical experiments, we suspect similar results may

hold for designs with significant correlations and we leave this for future work.
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The rest of this section is organized as follows. We first introduce main assumptions in

Section 4.3.2.1 and then provide probability bounds of correct selection for TWIN in two

cases: the global minimizer of (4.1) in the regular case where rank(X) = p in Section 4.3.2.2

and the local solution in the degenerate case where rank(X) < p in Section 4.3.2.3.

4.3.2.1 Working assumptions and linear sparsity

We assume throughout Section 4.3.2 that p,n→∞ and n/p→ δ for some constant δ > 0.

Further, as in Su et al. (2017), we assume that β1, . . . ,βp are independent copies of a random

variable Π which satisfies EΠ2 < ∞ and P(Π 6= 0) = ε where ε ∈ (0, 1) is some constant.

Hence, our assumptions accommodate linear sparsity where the expected value of k equals

to ε ·p. An asymptotic regime such as is discussed in Wainwright (2009), among other works,

where the proportion of nonzero coefficients vanishes in the limit of p does not allow for

linear sparsity. As noted in Su et al. (2017), studying penalized regression methods in the

linear sparsity regime yields theoretical results which accurately describe variable selection

and estimation performance across a wide range of practical settings, as it can accommodate

scenarios with relatively high dimension and a moderately low level of sparsity in addition

to scenarios with very sparse signals. See Bayati and Montanari (2012); Su et al. (2017) for

extended discussion on the merits of the linear sparsity assumption.

For notational simplicity, we consider in Section 4.3.2 and Section 4.4 that mint∈R{|t|+

P ′λ,τ (|t|)} = P ′λ,τ (0+) = λ, however the results in these two sections can be straightforwardly

generalized to the case 0 < mint∈R{|t|+ P ′λ,τ (|t|)} < λ. A TWIN estimator β̂ follows


x′j(y −Xβ̂) = sgn(β̂j)P

′
λ,τ (|β̂j |), β̂j 6= 0,

|x′j(y −Xβ̂)| ≤ λ, β̂j = 0.

(4.12)

Equations (4.12) are the Karush-Kuhn-Tucker (KKT) conditions for the global minimization

of (4.2). In general, solutions of (4.12) include all local minimizers of (4.2).
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4.3.2.2 Probability bounds for selection consistency

We first provide probability bounds for selection consistency when n > p and n and p both

tend to infinity. To clarify the distinction between TWIN-a and TWIN-b members of the

TWIN class and to aid the presentation of theoretic results, we introduce an additional

parameter γ that describes the limiting behavior of P ′λ,τ (t) as follows:

P ′λ,τ (t)


< 0 and |P ′λ,τ (t)| = o(λ), when t ≥ γλ, for TWIN-a;

= 0, when t ≥ γλ, for TWIN-b.

(4.13)

In particular, TWIN-b becomes flat beyond a certain region while TWIN-a only has a 0

derivative beyond a certain range in the limit; see the illustration in Figure 4.1b. We consider

the TWIN-a and TWIN-b variants of TWIN separately, as they exhibit slightly different

behavior. Recall that our theoretical exposition applies to all TWIN-a and TWIN-b penalties,

not just the specific examples introduced in Section 4.2.1. We first present a non-asymptotic

bound for selection consistency with TWIN-a penalties.

Theorem 4.5. Suppose that n > p, Â and Ao are defined in (4.10). Let β̂ be the TWIN-a estimator

in (4.2) for λ ≥ {[(1−ϑ)
√
δ/ε− 1]−1(1 +ϑ) + 1}(1 +ϑ)σ

√
2 log p and τ ≥ (1− δ−1/2−ϑ)−2λ

with any ϑ > 0. Then if |βj | > γλ + σ
√

(2 + 4ϑ) log k(1 − ε1/2δ−1/2 − ϑ)−1 for all j ∈ Ao, we

have
P
{
Â 6= Ao

}
≤ P

{
β̂ 6= β̂o or sgn(β̂) 6= sgn(β)

}
≤ e−nσ2ϑ2/2 + e−kϑ

2/2 + 3e−nϑ
2/2 +

√
πϑk−ϑ.

In particular for large n, TWIN-a can arbitrarily control both type I and type II errors to low levels

under the linear sparsity regime, which yields P{Â = Ao} → 1.

Corollary 4.6. Suppose that n > p and ε ≤ 0.25. Let β̂ be the TWIN-a estimator in (4.2) for

λa,univ = (1 + δ−1/2)σ
√

2 log p and τa,univ = (0.99 − δ−1/2)−2λa,univ. Then if |βj | ≥ γλa,univ +

σ
√

2 log k(1− ε1/2δ−1/2)−1 for all j ∈ Ao, P{β̂ 6= β̂o or sgn(β̂) 6= sgn(β)} → 0.

The universal parameters λa,univ and τa,univ do not require knowledge of the sparsity
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level. The condition ε ≤ 0.25 is only a technical requirement for the proof, however, it is a

reasonable assumption in many applications. Now, we consider the TWIN-b penalty and

provide a similar non-asymptotic bound for its selection consistency.

Theorem 4.7. Suppose that n > p, Â and Ao are defined in (4.10). Let β̂ be the TWIN-b estimator

in (4.2) for λ ≥ (1 + 3ϑ)
√

1− εδ−1σ
√

2 log p and τ ≥ (1− δ−1/2 − ϑ)−2λ with any ϑ > 0. Then

if |βj | > γλ+ σ
√

(2 + 4ϑ) log k(1− ε1/2δ−1/2 − ϑ)−1 for all j ∈ Ao, we have

P
{
Â 6= Ao

}
≤ P

{
β̂ 6= β̂o or sgn(β̂) 6= sgn(β)

}
≤ e−ϑ2(n−k)σ2/2 + 2e−nϑ

2/2 +
√
πϑ(p− k)−ϑ +

√
πϑk−ϑ.

In particular for large n, TWIN-b can arbitrarily control both type I and type II errors to low levels

under the linear sparsity regime, which yields P{Â = Ao} → 1.

Corollary 4.8. Suppose that n > p. Let β̂ be the TWIN-b estimator in (4.2) for λb,univ = σ
√

2 log p

and τb,univ = (0.99 − δ−1/2)−2λb,univ. Then if |βj | ≥ γλb,univ + σ
√

2 log k(1 − ε1/2δ−1/2)−1 for

all j ∈ Ao, we have P{β̂ 6= β̂o or sgn(β̂) 6= sgn(β)} → 0.

Similar to Corollary 4.6, the universal parameters λb,univ and τb,univ do not require knowl-

edge of the sparsity level. Extensive simulation studies demonstrating the effectiveness of

the universal parameters and extended discussion on handling unknown noise level are

presented in the Supplementary Material.

4.3.2.3 Selection consistency for high-dimensional regression

Now we consider the high-dimensional case where p > n and k < n and show the selection

consistency of TWIN. For brevity, we only present results for TWIN-b as the following

theorem can be generalized to the TWIN-a similarly as Section 4.3.2.2.

Theorem 4.9. Suppose that p > n, Â and Ao are defined in (4.10). Let β̂ be the TWIN-b estimator

in (4.2) for λ ≥ max{(1 + 3ϑ)
√

1− εδ−1σ
√

2 log p, 2[1 + ϑ +
√

(ε/δ + 1)/2]σ
√

2c̃+ 1} and

τ ≥ (1 −
√

(ε/δ + 1)/2 − ϑ)−2λ with any ϑ > 0 and c̃ ≡ [(1 − ε) log(1 − ε) − (δ − ε) log(δ −
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ε) − (1 − δ) log(1 − δ)]/δ. Then if |βj | > γλ + σ
√

(2 + 4ϑ) log k(1 − ε1/2δ−1/2 − ϑ)−1 for all

j ∈ Ao and ε/δ ≤ 0.12, we have

P
{
Â 6= Ao

}
≤ P

{
β̂ 6= β̂o or sgn(β̂) 6= sgn(β)

}
≤ e−ϑ2(n−k)σ2/2 + 2e−nϑ

2/2 +
√
πϑ(p− k)−ϑ

+
√
πϑk−ϑ +

{
[c̃+ (n− k)−1]

√
2π(n− k)

}−1
.

Corollary 4.10. Suppose that p > n. Let β̂ be the TWIN-b estimator in (4.2) for λb,univ =

σ
√

2 log p and τ ′univ ≥ [0.99 −
√

(ε/δ + 1)/2]−2λb,univ. Then if |βj | ≥ γλb,univ + σ
√

2 log k(1 −

ε1/2δ−1/2)−1 for all j ∈ Ao and ε/δ ≤ 0.12, we have P{β̂ 6= β̂o or sgn(β̂) 6= sgn(β)} → 0.

The parameter λb,univ is the same as in Corollary 4.8 and does not require knowl-

edge about the sparsity level. For τ ′univ to avoid a requirement of exact knowledge of

the sparsity level, we can use a prior upper bound on ε, denoted by ε′, and set τ ′univ =

[0.99−
√

(ε′/δ + 1)/2]−2λb,univ, which satisfies the condition of Corollary 4.10.

Theorem 4.9 and Corollary 4.10 show that in the case of high-dimensionality and linear

sparsity, TWIN estimators have false discovery rate and true discovery rate (TDR) obeying

lim
n→∞

FDR = lim
n→∞

E

[
#{j ∈ Â\Ao}
|Â| ∨ 1

]
= 0, lim

n→∞
TDR = lim

n→∞
E

[
#{j ∈ Â ∩Ao}

k ∨ 1

]
= 1.

Theorem 4.9 also implies that n = (δ/ε+ o(1))k > 8.33k is sufficient for perfect recovery. It

is known in the compressed sensing literature that in the no noise case, n Gaussian samples

with n ≥ 2(1 + o(1))k log(p/k) = 2(1 + o(1))k log(1/ε) are required for perfect support

recovery using l1-based methods; see, e.g., Donoho and Tanner (2010). Stricter conditions

are usually assumed in the statistics literature for perfect recovery, for example, k/p→ 0 in

Song and Liang (2015) and (k log p)/n→ 0 in Su and Candès (2016).
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4.4 Estimation Properties

In this section, we investigate the minimax optimality of estimation with TWIN estimators

under random Gaussian designs and linear sparsity. In the Supplementary Material, we

present corresponding results for minimax optimality under orthogonal designs. As noted

in the literature (Su and Candès, 2016), minimax optimality results for orthogonal designs do

not in general imply similar results for Gaussian designs because of the sample correlations

among the columns of Gaussian designs. The goal of this section is to establish the minimax

optimality of TWIN estimators under Gaussian designs and linear sparsity.

4.4.1 Risk lower bound under linear sparsity

The following result gives an explicit lower bound of asymptotic risk under the linear

sparsity and random Gaussian designs.

Theorem 4.11. Suppose that k/p → ε ∈ (0, 1) as p → ∞. Let β be from the model (4.1) and the

columns ofX have i.i.d. N(0, 1/n) entries. Then for any ϑ ∈ (0, 1), we have

∞
β̃

sup
‖β‖0≤k

P

{
‖β̃ − β‖2

2σ2k log(1/ε)
> 1− ϑ

}
= 1,

where the infimum is taken over all measurable estimators.

Similar results for random designs can be found in the literature; see, for example, Ye

and Zhang (2010); Raskutti et al. (2011); Su and Candès (2016). However, the main difference

of such results and Theorem 4.11 is that instead of assuming k/p→ 0 and (k log p)/n→ 0,

Theorem 4.11 considers the linear sparsity regime k/p→ εwith unknown constant ε ∈ (0, 1)

and provides the exact constant in front of the rate.

4.4.2 Risk upper bounds for TWIN estimators

We first give a probabilistic bound on the asymptotic risk for TWIN-a estimators.
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Theorem 4.12. Suppose that p,n → ∞ with n/p → δ for some constant δ > 1 and k/p → ε

for some constant 0 < ε < 1. Let β̂ be the TWIN-a estimator in (4.2) for λ = {[(1 − ϑ)
√
δ/ε −

1]−1(1 + ϑ) + 1}(1 + ϑ)σ
√

2 log p and τ ≥ (1− δ−1/2 − ϑ)−2λ for arbitrary ϑ > 0. Then,

sup
‖β‖0≤k

P

{
‖β − β̂‖2

C1(ε, δ) · 2σ2k log p
≤ 1

}
→ 1, (4.14)

where the constant C1(ε, δ) =
{ √

3
[(1−λτ−1)δ1/2ε−1/2−2]1/2

+ 1
}2

[(δ1/2ε−1/2 − 1)−1 + 1]2.

We make the following remarks on the above theorem. First, comparing Theorem 4.12

with the lower bound result Theorem 4.11, there is a difference in their logarithm terms,

which is actually due to the unknown sparsity level. More specifically, when k is unknown,

a tight upper bound for 1/ε is p. Hence, TWIN-a estimators are minimax rate optimal.

Second, C1(ε, δ) is close to one when ε is small, which meets the constant in Theorem 4.11.

Third, we have shown in Corollary 4.6 that universal tuning parameters λa,univ and τa,univ

yield selection consistency. The following result shows further that these universal tuning

parameters yield asymptotic estimation risk with the minimax optimal rate.

Corollary 4.13. Suppose that p,n → ∞ with n/p → δ for some constant δ > 1 and k/p → ε

for some constant 0 < ε ≤ 0.25. Let β̂ be the TWIN-a estimator in (4.2) for λa,univ = (1 +

δ−1/2)σ
√

2 log p and τa,univ = (0.99− δ−1/2)−2λa,univ. Then, sup‖β‖0≤k P{‖β − β̂‖
2/[C ′1(ε, δ) ·

2σ2k log p] ≤ 1} → 1 with constant C ′1(ε, δ) = {
√

3/[(1.98 − δ−1/2)ε−1/2 − 2]1/2 + 1}2(1 +

δ−1/2)2.

A similar probabilistic bound on the asymptotic risk holds for TWIN-b estimators.

Theorem 4.14. Suppose that p,n → ∞ with n/p → δ for some constant δ > 1 and k/p → ε for

some constant 0 < ε < 1. Let β̂ be the TWIN-b estimator in (4.2) forλ = (1+3ϑ)
√

1− εδ−1σ
√

2 log p

and τ ≥ (1− δ−1/2 − ϑ)−2λ for arbitrary ϑ > 0. Then,

sup
‖β‖0≤k

P

{
‖β − β̂‖2

C2(ε, δ) · 2σ2k log p
≤ 1

}
→ 1, (4.15)
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where the constant C2(ε, δ) =
[ √

3
(δ1/2ε−1/2−2)1/2 + 1

]2
(1− εδ−1).

We make the following remarks on the above theorem. First, similar to the discussion

after Theorem 4.12, TWIN-b estimators are minimax rate optimal. Second, C2(ε, δ) is close

to one when ε is small, which also meets the constant in Theorem 4.11. Third, we note

C1(ε, δ) > C2(ε, δ), which implies TWIN-b estimators achieve a smaller upper bound of

asymptotic risk than TWIN-a estimators when ε > 0. Heuristically, this is due to the

unbiasedness property of the TWIN-b estimators, whereas TWIN-a estimators are only

nearly unbiased and often result in stronger enlargement effects. Fourth, Corollary 4.8

shows that universal tuning parameters λb,univ and τb,univ yield selection consistency and

now the following result shows they also yield the minimax optimal rate.

Corollary 4.15. Suppose that p,n → ∞ with n/p → δ for some constant δ > 1 and k/p → ε

for some constant 0 < ε < 1. Let β̂ be the TWIN-b estimator in (4.2) for λb,univ = σ
√

2 log p and

τb,univ = (0.99− δ−1/2)−2λb,univ. Then, sup‖β‖0≤k P{‖β − β̂‖
2/[C ′2(ε, δ) · 2σ2k log p] ≤ 1} → 1

with constant C ′2(ε, δ) = [
√

3/(δ1/2ε−1/2 − 2)1/2 + 1]2.

Finally, we remark that results in Theorem 4.12 and 4.14 can be generalized to the

high-dimensional case where p > n and k < n as in Section 4.3.2.3.

4.5 Numerical Studies

In this section we seek to demonstrate the variable selection properties of the TWIN penalty

under various challenging and realistic high dimensional scenarios. In this section we

simulate data under model (4.1) where the number of non-zero elements in β is very small

relative to the dimension p. We generateX from a multivariate Gaussian distribution with

covariance matrix Σ ∈ Rp×p with Σij = ρ|i−j|. Larger |ρ| indicates stronger correlations

between predictors. The correlation parameter ρ is varied from (0,−0.75,−0.90), the sample

size is set to 125 and 250, and p is set to 1000. We focus on ρ ≤ 0, as most data for regression

tasks exhibit both positive and negative correlations. We set the variance of the error term
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such that the signal-to-noise ratio (SNR), defined as SNR =
√
βTΣβ/σ, is 3, 5, and 10.

Given the number of active variables in the models considered below, this range of the

signal-to-noise ratio makes it very difficult to recover the active variables. In all of the

above settings the k active coefficients are chosen uniformly at random from all p covariates

with magnitudes of the active coefficients generated under the following two schemes:

i.) independent random variates from a uniform distribution on [−2, 0.5] ∪ [0.5, 2] and ii.)

(−c)j−1 for the jth of k active variables. Under Models 1 and 3, we generate coefficients

from scheme i.) with k = 50 and k = 25, respectively, and under Models 2 and 4 we

generate coefficients from scheme ii.) with c = 0.95 and c = 0.8, respectively, and k = 50

and k = 25, respectively. The beta-min condition is not satisfied under scheme ii.), as the

smallest nonzero coefficients are close to 0 and much smaller than the largest coefficients,

whereas under scheme i.) coefficients are bounded away from 0.

We compare TWIN-a and TWIN-b with the Lasso, SCAD, and MCP. We use the R package

ncvreg (Breheny and Huang, 2011) to implement SCAD and MCP and use the R package

glmnet (Friedman et al., 2010) to implement the Lasso. Throughout the simulations, we set

the γ tuning parameter for MCP to be 1.4 as recommended in Zhang (2010) and for SCAD to

be 3.7, as recommended in Fan and Li (2001). The bandwidth tuning parameter τ of TWIN-a

and TWIN-b is set to be 0.1 throughout the simulations. In the Supplementary Material

we introduce two algorithms for computation for the TWIN penalty. The first algorithm

is a modification of coordinate descent and is denoted as CD and the second algorithm is

a hybrid local linear approximation (Zou and Li, 2008) and coordinate descent algorithm,

which we denote as MCLLA for mixed coordinate local linear approximation. We investigate

the performance of TWIN using both CD and MCLLA using random coordinate updates

instead of cyclical updates, as described in the Supplementary Material.

As we wish to understand the underlying operating characteristics of all methods with

respect to FDR and TDR, we evaluate each method by investigating the relationship between

FDR and TDR as the selection tuning parameter λ is varied. In Figures 4.4 and 4.5 we display

average FDR versus TDR curves under Models 1-4 averaged over 100 independent datasets.
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To demonstrate predictive performance under the same simulation settings, we display in

Figure 4.6 the average square root of the mean squared prediction error (RMSE) versus the

number of nonzero coefficients for each method. Due to space concerns, prediction results

for Models 3 and 4 are included in the Supplementary Material. The RMSE is evaluated on

an independent dataset of size 5000. The independent dataset is generated anew for each

replication of the simulation study.

We first evaluate the variable selection results. In settings with more active variables

(Models 1 and 2), both TWIN-a and TWIN-b outperform all other methods when there are

correlations between covariates. In the no correlation setting (ρ = 0), TWIN-a and TWIN-b

both outperform SCAD and the Lasso, but have similar albeit slightly worse performance

than MCP in high SNR and/or sample size settings. However, TWIN-a and TWIN-b tend

to perform better than MCP in most low-signal and/or low sample size settings. In settings

with 25 active variables (Models 3 and 4), the comparisons are similar, except SCAD performs

nearly as well as TWIN-a and TWIN-b when ρ = −0.9 under Model 3 and slightly better

than TWIN-a and TWIN-b when ρ = −0.9 under Model 4.

Regarding prediction performance, we first consider results under Models 1 and 2. In

low SNR settings, the Lasso and SCAD tend to perform the best, with the Lasso achieving

the smallest minimum RMSE, albeit with models which are on average much larger than

models which minimize RMSE under different penalties. Like MCP and unlike SCAD and

the Lasso, both TWIN-a and TWIN-b tend to achieve their minimum RMSE with models

that are of approximately the correct size of the underlying data-generating model. In high

correlation settings and large signals, TWIN tends to have the best minimum RMSE of all

methods including the Lasso.

Comparing the MCLLA and CD algorithms for TWIN-a and TWIN-b, we find that

MCLLA tends to outperform CD in small sample size settings, however when the sample

size is larger, CD performs better. This trend holds in additional simulation studies presented

in the Supplementary Material. In the Supplementary Material we present results with

p = 2000 under Models 1 and 2 and under two similar models with an increased number of
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active variables (k = 100). The results are quite similar, further substantiating our theoretical

results.

4.6 Analysis of Polymerase Chain Reaction (PCR) Study

Lan et al. (2006) conducted an experiment to investigate the relationship between gene

expression and gene function in mice. In the study gene expression levels were measured

on 22,575 genes of 29 male and 31 female mice using Affymetrix MOE430 microarrays. To

examine gene function, three phenotypes phosphoenopyruvate carboxykinase (PEPCK),

glycerol-3-phosphate acyltransferase (GPAT), and stearoyl-CoA desaturase 1 (SCD1) were

measured for each of the mice by quantitative real-time PCR. The data are publicly available

from the Gene Expression Omnibus (GEO) project (http://www.ncbi.nlm.nih.gov/

geo via accession number GSE3330).

For ease of presentation we restrict our focus to analysis of the SCD1 phenotype, which

is a key enzyme in the metabolism of fatty acids. As there is no natural validation data

available for this study, we compare different methods by repeatedly drawing random

splits of the 60 samples into 55 training samples and 5 testing samples. As a preprocessing

step we take a log transformation of the gene expression levels. Using each comparator

method we fit a model predicting SCD1 using all 22,575 gene expression levels. The sample

correlations of the design matrix range from -0.83 to 0.99 with 10th and 90th quantiles of

-0.22 and 0.24, respectively. Each method is evaluated by the average out-of-sample mean

squared prediction error (MSPE) on the testing samples (MSPE = S−1
∑S

s=1

∑
i∈Itest,s(yi−

X ′iβ̂train,s)
2/|Itest,s|, where Itest,s are the indices of the testing samples for the sth replication

and β̂train,s is an estimate of β using the training samples from the sth replication). We

repeat this procedure S = 100 times. We consider the Lasso, MCP, SCAD, and TWIN

penalties in our analysis and for all methods use 10-fold cross validation for selection of

the tuning parameter λ. The additional tuning parameters for all methods were chosen as

described in Section 5.3. Due to the small sample size, we utilize the MCLLA algorithm for

http://www.ncbi.nlm.nih.gov/geo
http://www.ncbi.nlm.nih.gov/geo
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Figure 4.4: The results above are for a simulation with data generated under Model 1 (top
panel) and Model 2 (bottom panel).
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Figure 4.5: The results above are for a simulation with data generated under Model 3 (top
panel) and Model 4 (bottom panel).
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TWIN. We also investigated TWIN with τ = 0.15 and the results were similar.

The average MSPE and number of selected variables for each method are reported in

Table 4.1. Both TWIN-a and TWIN-b have better predictive performance than all other

methods except the Lasso while retaining very parsimonious models. MCP selects about

half has many genes as TWIN on average, but its MSPE is significantly worse than that

of both TWIN-a and TWIN-b. Both TWIN penalties also yield stable results across the

replications. The top two genes selected by both TWIN-a and TWIN-b are the same genes

and are selected in all 100 replications by both penalties. The Lasso, MCP, and SCAD all

selected one of these two genes for all replications. The gene selected second most often by

TWIN was selected in all replications for the Lasso, but was only selected 10 times by SCAD

and was never selected by MCP. The third most commonly selected gene for the TWIN

penalties was the same gene for both TWIN-a (selected 44 times) and TWIN-b (selected 56

times). This gene was selected 88 times by the Lasso, 30 times by SCAD, and was never

selected by MCP.

Method Lasso MCP SCAD TWIN-a TWIN-b

MSPE 0.613(0.058) 0.760(0.048) 0.740(0.048) 0.609(0.040) 0.651(0.049)
Number Selected 40.58(1.23) 1.66(0.10) 26.16(0.74) 3.16(0.14) 3.58(0.16)

Table 4.1: Average test set MSPE and number of variables selected by Lasso, MCP, SCAD,
TWIN-a, and TWIN-b. Standard errors are in parentheses. Note that n−1

∑n
i=1(yi − ȳ)2 =

2.090, where ȳ is the average of the response values.
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Chapter 5

Towards Theoretical Understanding

of Large Batch Training in Stochastic

Gradient Descent

5.1 Introduction

Deep neural networks are typically trained by stochastic gradient descent (SGD) and its

variants. These methods update the weights using an estimated gradient from a small

fraction of large training data. Although deep neural networks are highly complex and

non-convex, the SGD training models possess good properties in the sense that saddle points

can be avoided (Ge et al., 2015) and “bad” local minima vanish exponentially (Choromanska

et al., 2015; Dauphin et al., 2014). However, a central challenge remains about why and

when SGD training neural networks tend to generalize well to unseen data despite the fact

of heavily over-parameterization and overfitting (Zhang et al., 2017).

Recently, Keskar et al. (2016) proposed a hypothesis based on empirical experiments that

(i) large-batch methods tend to converge to sharp minimizers of the training function and

(ii) the sharp minimum causes a worse generalization. These two parts of the hypothesis

are important for understanding the SGD in the deep neural networks. In this paper, we
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focus on the first part of the hypothesis. Extensive numerical results corroborate the positive

correlation between large-batch methods and sharp minimizers; see, e.g., Dinh et al. (2017);

Hoffer et al. (2017). However, the theoretical result for supporting this observation is limited

in the literature. Our work fills some gap in this important direction by providing new results

on the properties of SGD in both finite-time regime where the number of SGD iterations is

finite and asymptotic regime where the number of SGD iterations is sufficiently large. As a

result, we can justify and provide new insights into the first part of the hypothesis by Keskar

et al. (2016).

The main contributions of this paper are summarized as follows:

• We manage to use the finite-time escaping time of SGD from one local minimum to its

nearest local minimum as an approach for justifying the hypothesis by Keskar et al.

(2016).

• We prove that SGD tends to converge to flatter minima in the asymptotic regime

regardless of the batch size. However, it may take exponential time to converge. This

result provides new insights into the hypothesis by Keskar et al. (2016).

• We derive new results showing that the SGD with a larger learning rate to batch

size ratio tends to converge to a flat minimum faster, however, its generalization

performance could be worse than the SGD with a smaller learning rate to batch size

ratio.

5.2 Main Results

Suppose the training set consists of N samples. we define Ln(·) as the loss function for the

sample n ∈ {1, . . . ,N}. Then L(·) = E[Ln(·)] is the risk function, where the expectation

is taken with respect to the population of data. Let w be the vector of unknown model

parameters in Rd.
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Figure 5.1: A sketch of “flat” and “sharp” minima for one-dimensional case (left panel) and
two-dimensional case (right panel). The vertical axis indicates the value of the loss function.

The mini-batch SGD estimates the gradient g with some mini-batch B, a set of M

randomly selected sample indices from {1, . . . ,N}, by ĝ(B)(w) = 1
M

∑
n∈B∇Ln(w). We

consider the stochastic gradient descent with learning rate γk and mini-batch batch size Mk,

and it gives the update rule

wk+1 = wk −
γk
Mk

∑
n∈Bk

∇Ln(wk). (5.1)

Here, k indexes the update step, and |Bk| = Mk. We call (5.1) a small batch training if

Mk << N and typically Mk ∈ {64, 128, 256}. In contrast, we call (5.1) a large batch training if

Mk/N is some non-negligible positive constant and typically Mk/N = 10%. We allow the

diminishing learning rate γk and varying batch size Mk in (5.1), which is motivated from

practice that SGD converges to the optimum by decreasing the learning rate.

KMNST hypothesis We call the following hypothesis proposed by Keskar et al. (2016) as

the KMNST hypothesis since K-M-N-S-T is the collection of author initials in Keskar et al.

(2016): Large batch training tends to converge to the sharp minimizer of the training function. A

conceptual sketch of “sharp” (and relatively, “flat”) minima is plotted in Figure 5.1. The

theory built in this Section 5.2 aims to justify the KMNST hypothesis.
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5.2.1 Stochastic Differential Equation for SGD

We consider SGD as a discretization of stochastic differential equations. Let Var[∇Ln(w)] ≡

σ2(w), which is finite and positive definite for typical loss functions. In Appendix D.1, we

show that for independent and identically distributed (iid) samples and w in any bounded

domain,

E[ĝ(B)(w)] = ∇L(w), Var[ĝ(B)(w)] = M−1σ2(w).1 (5.2)

We can write the mini-batch SGD (5.1) as

wk+1 = wk − γk∇L(wk) +
γk√
Mk

ε,

where ε has zero mean and variance σ(w) by (5.2). We consider a stochastic differential

equation (SDE):

dW(t) = −∇L(W(t))dt−

√
γ(t)

M(t)
σ(W(t))dB(t), W(0) = w0. (5.3)

By the Euler scheme, the SDE (5.3) can be discretized to obtain the mini-batch SGD (5.1); see,

e.g., Mandt et al. (2017); Jastrzebski et al. (2017); Li et al. (2017). The stochastic Brownian term

B(t) in (5.3) accounts for the random fluctuations due to the use of mini-batches for gradient

estimation in (5.1). Note that (5.3) allows the batch size and step size to be time-dependent.

We consider the gradient covariance to be isotropic:

σ2(w) = β(w) · I, (5.4)

where β(w) may depend on w. A similar assumption has been made in the literature, see

e.g., Jastrzebski et al. (2017); Chaudhari et al. (2018), where they assume β(w) ≡ β is a
1Hoffer et al. (2017); Jastrzebski et al. (2017) obtain a similar result as the (5.2) but in a different sense.

Specifically, (5.2) takes the expectation and variance with respect to the underlying population, however, Hoffer
et al. (2017); Jastrzebski et al. (2017) take the expectation and variance with respect to the sampling distribution
of B ∈ {1, . . . ,N}. Note that (5.2) is preferable if we want to analyze the risk function L(·) instead of the sample
average loss N−1[L1(·) + · · ·+ LN (·)] and if we regard the training data only a subset of the true underlying
population.
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Figure 5.2: A sketch of two local minimizer w̌1 and w̌2 of a risk function. The w∗ is the
saddle point between w̌1 and w̌2 and the H is the relative height of w∗ to w̌1.

constant. Let p(w, t) be the probability density function of the solution W(t) to the SDE

(5.3). We derive the following characteristics for p(w, t) in Appendix D.2.

Lemma 5.1. The p(w, t) satisfies the following Fokker-Planck equation:

∂tp = ∇ ·
([
∇
(
L(w) +

γ(t)β(w)

2M(t)

)]
p+

γ(t)β(w)

2M(t)
∇p
)

, p(w, 0) = δ(w0), (5.5)

where δ(·) denotes the delta function.

Note that the drift term in (5.5) is −∇[L(w) + γ(t)β(w)/{2M(t)}] 6= −∇L(w), which

implies the SGD does not follow the mean drift −∇L(w) to be its update direction. Specifi-

cally, a larger γ(t)/M(t) ratio corresponds to a drift term deviate more from the mean drift

−∇L(w). This sheds light on the possible case that even the SGD with a larger γ(t)/M(t)

ratio tends to converge to a flat minimum faster (to be justified in Section 5.2.3), its gener-

alization performance could be worse than the SGD with a smaller γ(t)/M(t) ratio (to be

illustrated in Section 5.3).

The results derived in this Section 5.2.1 can be related with the KMNST hypothesis in

the following sense: the dynamics of SGD would depend on the γ(t)/M(t) ratio instead of

the γ or M separately, which is clear from the experiments in Section 5.3.
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5.2.2 KMNST Hypothesis in the Finite-Time Regime

We first consider the behavior of SGD in the finite-time regime t < ∞, which is typical

in the practice. Specifically, we are interested in the escape time of SGD from one local

minimizer w̌1 to its nearest local minimizer w̌2. Refer to the Figure 5.2 as an illustration. Let

w∗ be the saddle point2 between w̌1 and w̌2. By the definition of w∗, the Hessian ∆L(w∗)

can be shown to have a single negative eigenvalue −λ∗ (e.g., Berglund (2013)). By the

Eyring-Kramers formula, we have the following theorem.

Theorem 5.2. Let τw̌1→w̌2 be the transition time from w̌1 to w̌2 for W(t), then

E[τw̌1→w̌2 ] =
2π

λ∗

√
|∆L(w∗)|
|∆L(w̌1)|

eH·2M(w̌1)/[γ(w̌1)β(w̌1)]{1 +O
(√
ε log(ε−1)

)
}

where |∆L(·)| represents for the determinate of the Hessian, H = H(w∗, w̌1) ≡ L(w∗) − L(w̌1)

is the relative height of w∗ to w̌1, M(w̌1) is the batch size of the SGD at w̌1, γ(w̌1) is the learning

rate of the SGD at w̌1, and β is defined in (5.4).

The above theorem is proved by Bovier et al. (2004, 2005) and in a more general case by

Berglund (2013). From this theorem, one can see that the transition time depends on three

factors, the diffusion factor γβ/M in the SGD, the potential barrier H(w∗, w̌1) that SGD has

to climb in order to escape w̌1, and the determinant of the Hessian at w̌1 and w∗.

The results shown in this Section 5.2.2 can explain the KMNST hypothesis as follows. A

larger batch sizeM of SGD at local minimizer w̌1 corresponds to a longer escaping time from

w̌1, which is modeled by E[τw̌1→w̌2 ]. Hence, even if w̌1 corresponds to a sharp minimum

with a large |∆L(w̌1)|, the exponential term exp[H · 2M(w̌1)/[γ(w̌1)β(w̌1)]] could dominate

the escaping time. As a result, the large batch training will be trapped at a sharp minimizer

in the finite-time regime, which is the same as observed by Keskar et al. (2016) that large batch

training tends to converge to the sharp minimizer of the training function. On the other hand, if
2There are possibly multiple saddle points between w̌1 and w̌2. We define w∗ as the saddle point with the

minimal height among all saddle points in the following sense. Let w(t), 0 ≤ t ≤ 1, be any continuous path
from w̌1 to w̌2. Denote by ŵ = arg infw:w(0)=w̌1,w(1)=w̌2

supt∈[0,1] L(w(t)) the path with the minimal saddle
point height among all continuous path. We define that w∗ = maxt∈[0,1] ŵ(t).
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the batch size is small, then exp[H · 2M(w̌1)/[γ(w̌1)β(w̌1)]] is small. As a result, only when

|∆L(w̌1)| is small enough, then SGD can be trapped at this minimizer, which implies that

small batch training tends to converge to flatter minima.

However, these phenomena will change in the asymptotic regime t→∞ as explained in

Section 5.2.3.

5.2.3 KMNST Hypothesis in the Asymptotic Regime

Main assumptions. In this section, we consider the asymptotic regime that t → ∞ and

suppose the following three assumptions3:

(A.1) L(w) is confinement: lim‖w‖→+∞ L(w) = +∞ and
∫
e−L(w)dw < +∞.

(A.2) lim‖w‖→+∞
{
‖∇L(w)‖2/2−∇ · ∇L(w)

}
= +∞, where ∇ · ∇L denotes the trace of

the Hessian for L. Moreover, lim‖w‖→+∞
{
∇ · ∇L(w)/‖∇L(w)‖2

}
= 0.

(A.3) There exists a constant M , such that
∣∣∣e−L(w)

(
‖∇L(w)‖2 −∇ · ∇L(w)

)∣∣∣ ≤M .

We show in Appendix D.3 that (A.1) – (A.3) hold for typical loss functions such as the

regularized mean cross entropy and the square loss functions. These assumptions appear

commonly in the diffusion process literature, see, e.g., Pavliotis (2014). In particular, (A.1)

ensures the Gibbs density function pG(w) = e−L(w) is well defined, and (A.2) is sufficient

for the measure µ(w) =
∫
pG(w)dw =

∫
e−L(w)dw to satisfy the Poincaré inequality (e.g.,

Pavliotis (2014); Raginsky et al. (2017)):

∫
‖∇f(w)‖2 dµ(w) ≥ CP

∫ (
f(w)−

∫
f(w)dµ(w)

)2

dµ(w), for some CP > 0, (5.6)

holds for any f satisfying
∫
f2(w)dw <∞.

We first give the stationary solution for the Fokker-Planck equation (5.5) when t→∞.
3We note that if the parameter vector w lies in a bounded region, then the Gibbs density is well defined

only if
∫
e−L(w)dw <∞, the Poincaré inequality is always true, and the assumption (A.3) is always true. Thus,

although the mean cross entropy loss with bounded parameters does not satisfy (A.1) or (A.2), our results in
this section still hold for the mean cross entropy loss.
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Lemma 5.3. Under the assumption (A.1) and suppose β(w) ≡ β, then (5.5) has a stationary

solution

p∞(w) = κe−η∞L(w),

where

η∞ = 2M/[γβ(w̌)]

with the limiting batch size M = limt→∞M(t), the limiting learning rate γ = limt→∞ γ(t), and

the convergent local minimizer w̌. The constant κ in the above formula is a normalization factor

such that
∫
p∞(w) = 1.

Proof for this lemma is given in Appendix D.4. We remark that for general β(w) depend-

ing on w, the existence and an explicit form of stationary solution for (5.5) remain an open

question in the literature. Hence, we focus on β(w) ≡ β in this section.

Similar results as Lemma 5.3 can be found in related work, e.g., Jastrzebski et al. (2017).

However, it is not clear whether p(w, t) converges to p∞(w), not to mention how fast that

p(w, t) would converge to p∞(w). The following theorem gives a positive answer to this

question, which later provides a new insight into the justification of KMNST hypothesis.

Theorem 5.4. Under assumptions (A.1) – (A.3), the probability density function p(w, t) of W(t)

converges to the stationary solution p∞(w). Moreover, there exists T > 0 such that for any t > T ,

∥∥∥∥∥p(w, t)− p∞(w)√
p∞(w)

∥∥∥∥∥
2

L2(Rd)

≤ C(t,T )e−CP ·(t−T )/η∞ ,

whereCP is a constant define in (5.6) andC(t,T ) = CP ·(t−T )/η∞+
∥∥(p(T )− p∞)/

√
p∞
∥∥2

L2(Rd)
.

The proof for this theorem is given in Appendix D.5. We also give a quantification

of constant T in Appendix D.6. Three remarks on Theorem 5.4 are as follows. First, this

theorem shows that p(w, t) always converges to p∞ with an exponential rate regardless of

the initial value. This theorem provides a theoretical ground for the work that manages to

understand p(w, t) based on analysis of the stationary distribution p∞ (see, e.g., Jastrzebski
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et al. (2017)). Second, it is known (Raginsky et al., 2017) the Poincaré constant CP ∝ ed,

where d is the dimension of the parameter w. In the setting of the deep neural networks, CP

can be very large and it takes exponential time t > ed such that p(w, t) would approach to

the stationary distribution p∞. Therefore, the results only based on the stationary solution

do not reveal information in the finite-time regime. Third, the convergence rate is relatively

faster with a larger γ/M since it corresponds to a smaller η∞. The last two remarks are

illustrated by experiments in Section 5.3.

We now characterize W(t) in the asymptotic regime t → ∞ based on the stationary

distribution p∞, and we give the proof of the following theorem in Appendix D.7.

Theorem 5.5. Let w̌ be a local minimizer. Then,

lim
ε→0

P(|W(∞)− w̌| ≤ ε) =
κe−2η∞L(w̌)

η
d/2
∞
√
|∆L(w̌)|

lim
ε→0

eη∞ε2 d∏
j=1

√
1− e−ε2η∞λj/π

 ,

where d is the dimension of w, λjs and |∆L(w̌)| represent the eigenvalues and the determinant of

loss function Hessian ∆L(w̌), respectively, and the constants κ, η∞ are defined in Lemma 5.3.

Given the complex form of the probability in Theorem 5.5, we give numerical illustrations

in Appendix D.8. To appreciate the implication of Theorem 5.5, we consider any two local

minimizers w̌1 and w̌2 with the same value of L(w̌1) = L(w̌2). Then,

lim
ε→0

P(|W(∞)− w̌1| ≤ ε)
P(|W(∞)− w̌2| ≤ ε)

=

√
|∆L(w̌2)|
|∆L(w̌1)|

. (5.7)

The ratio of probability (5.7) implies that in the asymptotic regime t→∞, the probability of

SGD converging to a flatter minimum with a smaller determinant |∆L(·)| is always larger

than the probability of SGD converging to a sharper minimum with a larger determinant

|∆L(·)|. Moreover, (5.7) does not depend on the batch size or learning rate, but it only

depends on the determinant of Hessian at the local minimum.

The results derived in this Section 5.2.3 provide some new insights into the KMNST

hypothesis: SGD tends to converge to flatter minima regardless of the batch size M (or
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Figure 5.3: Log of Frobenius norm of Hessian as a function of epochs. Three (γ,M) pairs
(0.01, 128), (0.1, 128) and (0.2, 256) are studied, which are denoted in red, blue and green,
respectively. The left plot shows 10 experiments for each of three (γ,M) pairs and the right
plot shows the average of 10 experiments. Total 180 epochs are trained.

the ratio γ/M ) in the asymptotic regime t → ∞ as shown by (5.7). However, it may take

exponential time ed to converge, where d is the dimension of the model parameter w. The

experiments in Section 5.3 further corroborate these theoretical finding.

5.3 Numerical Experiments

In this section, we show experiments to corroborate the theoretical findings in the pre-

vious section. We train 4-layer batch-normalized ReLU MLPs on MNIST with differ-

ent learning rate γ and batch size M . Specifically, we use three γ/M ratios: γ/M =

0.01/128, 0.1/128, 0.2/256. As is common for such tasks, the mean cross entropy loss is

used as the loss function. We discussed in Section 5.2.1 that this loss satisfies our assump-

tions for theoretical analysis.

Geometry of SGD updates. Figure 5.3 shows the log of Frobenius norm of Hessian for

minima obtained by SGD. Due to the high computational cost for computing the determinant

of the Hessian, we use the Frobenius norm of the Hessian as a substitute. Note that a larger

Frobenius norm of Hessian corresponds to a sharper minimum. The Frobenius norm is

approximated using the method in Wu and Zhu (2017). Note that the dynamics of SGD

behave similar across 10 experiments for each of three γ/M ratios as shown in the left plot
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of Figure 5.3. Hence we focus on the averaged dynamics as in the right plot of Figure 5.3.

Three main results can be observed from Figure 5.3:

• First, for the same γ/M ratio (e.g., γ/M = 0.1/128 and 0.2/256), the minima obtained

by SGD have the very similar norm of the Hessian. This illustrates the Lemma 5.1, 5.3

and Theorem 5.2 that the dynamics and geometry of the minima obtained by SGD

would depend on the ratio γ/M instead of individual γ or M separately. A similar

phenomenon is also observed by Jastrzebski et al. (2017).

• Second, since the SGD is trained using 180 epochs, the dynamics of SGD in Figure

5.3 fall in the finite-time regime. It is clear that the rate of SGD tending to a flatter

minimum (i.e., with a smaller norm of the Hessian) with a larger γ/M ratio (e.g.,

γ/M = 0.1/128) is faster compared to with a smaller γ/M ratio (e.g., γ/M = 0.01/128).

This illustrates the finite-time analysis in Theorem 5.2 that the SGD with a smaller

γ/M ratio is easier to be trapped around a minimum and hence the SGD tends to other

minima slower. As a result, the Hessian of minima changes slower for SGD with a

smaller γ/M ratio.

• Third, Figure 5.3 also sheds light on the dynamics of SGD in the asymptotic regime.

The SGD tends to converge to a flatter minimum regardless of the γ/M ratio, which

demonstrates Theorem 5.5 and its corollary (5.7). However, the convergence rate is

slow, in particular for the SGD with a small γ/M ratio, which is theoretically shown

in Theorem 5.4 and its following remarks.

Training and generalization of SGD. Figure 5.4 shows the training accuracy and loss for

the model trained by SGD. We run 10 experiments. It is clear that the training accuracy

and loss are very close across 10 experiments for each of three γ/M ratios. Thus, we focus

on interpreting the training and generalization performance of the model obtain from one

experiment, which is shown in Figure 5.5. Three main results can be observed from Figure

5.5:
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Figure 5.4: The left plot shows the training accuracy as a function of epochs and the right
plot shows the cross entropy loss as a function of epochs. Three (γ,M) pairs (0.01, 128),
(0.1, 128) and (0.2, 256) are studied, which are denoted in red, blue and green, respectively.
Both plots show 10 experiments for each of three (γ,M) pairs. Total 180 epochs are trained.

Figure 5.5: The top left plot shows the training and test accuracy as a function of epochs.
The top right plot gives the zoomed in performance of the accuracy when epochs are no
less than 25. The bottom left plot shows the cross entropy loss as a function of epochs. The
bottom right plot gives the zoomed in performance of the loss when epochs are no less than
25. Three (γ,M) pairs (0.01, 128), (0.1, 128) and (0.2, 256) are studied, which are denoted
in red, blue and green, respectively. Total 200 epochs are trained.
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• First, for the same γ/M ratio (e.g., γ/M = 0.1/128 and 0.2/256), the training error and

test error are very close. This meets our expectation since the dynamics of SGD only

depends on the ratio γ/M as discussed above and the models trained by SGD with

the same γ/M ratio should behave similarly.

• Second, the model obtained with a larger γ/M ratio (e.g., γ/M = 0.1/128) gives a

better training accuracy and a smaller training loss compared with the case of a smaller

γ/M ratio (e.g., γ/M = 0.01/128). This can be partially justified by our finite-time

analysis in Theorem 5.2 that the SGD with a larger γ/M ratio is easier to escape a local

minimum.

• Third, the model obtained with a smaller γ/M ratio gives a smaller test loss after a

certain time (it is after 100 epochs in the bottom right plot of Figure 5.5). This can be

explained by Lemma 5.1 and its following remark. Specifically, a smaller γ/M ratio

corresponds a mean drift deviates less from the mean drift −∇L(w), where −∇L(w)

is the drift for a global minimizer of the risk function L(w). This shows a tradeoff

between the large and small γ/M ratio in the sense of the training and test loss.

5.4 Related Work

The modeling of SDE for approximating SGD is well studied in the literature. See, e.g.,

Mandt et al. (2017); Poggio et al. (2017); Li et al. (2017); Jastrzebski et al. (2017); Chaudhari

and Soatto (2018) and the references therein. Different from these work, we give a new

result in Lemma 5.1, which not only gives the dynamics of SDE solution but also connects

with the generalization performance. We also derive the theory for the SDE solution in the

asymptotic regime, especially the convergence rate.

We clarify the definition of the sharpness in multi-dimensional cases. We find that the

production of eigenvalues, or equivalently, the determinant of the risk function Hessian

at minimizers is appropriate. Similar results have been derived in Jastrzebski et al. (2017);

Dziugaite and Roy (2017).
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The work by Jastrzebski et al. (2017) remarkably emphasize how the learning rate to

batch size ratio affects the SGD and they also relate with the KMNST hypothesis. Here are

some differences between Jastrzebski et al. (2017) and ours.

• Jastrzebski et al. (2017) use the stationary probability p∞(w) to explain that the be-

havior of the SGD. However, we show that it takes the exponential time for p(w, t)

to converge to p∞(w) in the setting of the deep neural network. Hence, p∞(w) can-

not fully explain the behavior of SGD in the practical finite-time regime. Our work

adds new elements to this picture by studying the escaping time of SGD from a local

minimum in the sense of finite-time regime and we also give a new result on the

convergence rate of p(w, t)→ p∞(w).

• In particular, the stationary probability in Jastrzebski et al. (2017) can not explain

the KMNST hypothesis when two local minimizers w̌1 and w̌2 having a same risk

L(w̌1) = L(w̌2). In this case, the result of Jastrzebski et al. (2017) coincides with

(5.7) and it is independent of M or γ, which is undesired in explaining the KMNST

hypothesis. On the other hand, there may exist many minima with a same risk value

but different Hessians for a deep neural network. Therefore, our finite-time results

can give a better explanation to the KMNST hypothesis in this case.
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Chapter 6

Another Look at Statistical

Calibration: A Non-Asymptotic

Theory and Prediction-Oriented

Optimality

6.1 Introduction

In engineering and sciences, computer models are increasingly used for studying complex

physical systems such as cosmology, weather forecasting, material science, and shock physics

(Santner et al., 2003). Let Y denote the output from a physical system ζ(·) with the input X .

Let {(Xi,Yi) : i = 1, . . . ,n} be independent copies of random pair (X,Y ) from a regression

model:

Y = ζ(X) + ε, (6.1)

where the random error ε follows aN (0,σ2) distribution and the design pointX has support

on Ω = [0, 1]d. Let η(x, θ) denote a computer model for approximating ζ(x) with inputs

x ∈ Ω and calibration parameters θ ∈ Θ ⊂ Rp. The values of θ cannot be directly observed and
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typically unknown in the physical data. As George Box famously stated “All models are wrong,

but essentially some are useful”, even the best computer models are only approximations of

reality. It is possible to enhance the quality of the computer model η(x, θ) by tuning or

calibrating the calibration parameters θ. But in most practical scenarios, the computer output

η(x, θ) cannot fit the physical response ζ(x) perfectly, regardless of how the calibration

parameters θ are best tuned (Kennedy and O’Hagan, 2001; Santner et al., 2003). Another

practical fact is that only a limited number n of training data are available from the physical

experiment in (6.1) to tune θ.

By simultaneously following these two practical considerations, we take a new look at the

calibration problem. Our purpose is to optimally predict ζ(·) by calibrating θ and estimating

the model discrepancy ζ(·)−η(·, θ) based on a finite number of physical data. To this end, we

use nonparametric approaches to modeling the physical system and the discrepancy function.

We establish a non-asymptotic minimax estimation risk for nonparametric regression and

achieve the optimal risk by using regularized estimators in the reproducing kernel Hilbert

space (RKHS) (Aronszajn, 1950; Wahba, 1990). We show that our prediction oriented

calibration is equivalent to finding the minimizer of model discrepancy under the RKHS

norm. We further establish an exact statistical guarantee in the sense that for a finite sample

of physical observations, the prediction error is minimized by using the computer model

calibrated with the proposed method. Furthermore, we provide an algorithm to estimate

the optimal calibration parameters and the model discrepancy.

6.1.1 Comparison to Existing Work

We discuss the differences between our calibration method and other frequentist calibration

methods in the literature. Joseph and Melkote (2009) considers calibration using a parametric

form of discrepancy. We use a nonparametric approach in RKHS to better modeling the

physical system and the model discrepancy. Nonparametric methods have been used in

related works including Tuo and Wu (2015) and Wong et al. (2017). Specifically, Tuo and

Wu (2015) proposes the L2-calibration by minimizing the model discrepancy under the
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L2-norm. Wong et al. (2017) performs calibration by minimizing the model discrepancy

under the empirical l2-norm. Below are the main differences between Tuo and Wu (2015);

Wong et al. (2017) and ours.

• Different methods. Calibration in Tuo and Wu (2015), Wong et al. (2017) and our work

minimize different norms of the model discrepancy: the L2-norm in Tuo and Wu

(2015), the empirical l2-norm in Wong et al. (2017) and the RKHS norm in our method.

• Different analyses. Theoretical results in Tuo and Wu (2015) and Wong et al. (2017)

are based on asymptotics assuming the number of physical observations go to infinity.

Our theory is based on finite-sample properties of calibration and prediction following

the fact that usually, only a finite number of physical data are available.

• Different results. The L2-calibration in Tuo and Wu (2015) minimizes the distance

between the physical system and the imperfect computer model, but not directly

for predicting the physical system. Wong et al. (2017) performs the least square

calibration and then estimates the model discrepancy in the RKHS. For a finite number

of physical observations, the estimation error of discrepancy can be large. To overcome

this difficulty, our calibration method minimizes the predictive mean squared error

for a finite sample of physical data with statistical guarantees.

Bayesian calibration was studied by Kennedy and O’Hagan (2001); Oakley and O’Hagan

(2004); Higdon et al. (2004, 2008); Joseph and Yan (2015); Plumlee (2017); Tuo and Wu (2018),

among others. Our frequentist calibration method is easier to compute and complements

these Bayesian methods. Furthermore, we will discuss a connection between our method

and these Bayesian methods in Section 6.4.

Our non-asymptotic minimax theory is inspired by recent developments of concentration

inequalities that provide valid statistical inference and estimation results for finite samples.

Existing research on concentration inequalities typically addresses finite dimensional pa-

rameters for parametric models. Because our interest is computer model calibration, we

develop a non-asymptotic minimax theory for nonparametric models. The novelty of our
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work is to find an explicit form of the constant besides the well-known rate for nonparamet-

ric estimations in the finite-sample regime. Moreover, we prove the constant is minimax

optimal by showing it exactly matches the minimax lower bound. These results are new in

the nonparametric statistics literature and they are the key to our new calibration method.

The remainder of the article is organized as follows. In Section 6.2, we discuss the identi-

fiability issue and formulate a prediction-oriented optimal calibration method. In Section

6.3, we establish a non-asymptotic minimax theory and apply it to the prediction-oriented

calibration method. In Section 6.4, we develop an algorithm for computing our calibration

procedure and build a connection between our method and the Bayesian calibration method.

In Section 6.5, we provide synthetic and real examples to corroborate the derived theory

and illustrate some advantages of the proposed calibration method. Technical proofs are

delegated to the Appendix.

6.2 Prediction-Oriented Calibration

Since the computer model is imperfect for modeling the physical system, η(·, θ) 6≡ ζ(·) for

any θ ∈ Θ. A model discrepancy function δ(·, θ) def
= ζ(·)−η(·, θ) is commonly used (Kennedy

and O’Hagan, 2001; Martins-Filho et al., 2008). Equivalently, write

ζ(x) ≡ η(x, θ) + δ(x, θ), ∀x ∈ Ω, θ ∈ Θ. (6.2)

The goal is to accurately predict ζ(·) using the computer model, which requires calibrating

θ and estimating δ(·, θ) simultaneously with a finite physical sample in (6.1). Two main

difficulties arise. The identifiability issue of θ to be discussed in Section 6.2.1 and the non-

negligible estimation error of δ(·, θ) due to the finite sample of the physical data. These two

issues motivate our calibration method in Section 6.2.2.
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6.2.1 The Identifiability Issue

Suppose that ζ(·) resides in a RKHS (H, ‖ · ‖H) on Ω = [0, 1]d. One example ofH is the mth

order Sobolev spaceWm
2 (Ω) with 2m > d:

Wm
2 (Ω) =

{
g(·) ∈ L2(Ω)

∣∣∣ ∂α1+···+αd

∂α1x1 · · · ∂αdxd
g(·) ∈ L2(Ω),

∀α1, . . . αd ∈ N with α1 + · · ·+ αd ≤ m
}

.

See Wahba (1990) for an explicit form of kernel associated withWm
2 (Ω). Since η(·, θ) approx-

imates the physical system ζ(·), we assume the following regularity condition for η(·, θ).

Assumption 1. For any θ ∈ Θ, the computer model η(·, θ) ∈ H.

An analogy of Assumption 1 was already used in Plumlee (2017). Unlike our assumption

of the RKHS function space, Plumlee (2017) considers a function space of bounded mixed

derivatives. In practice, one can choose the RKHSH by studying the smoothness of computer

model η(·, θ). Assumption 1 implies that for any θ ∈ Θ, δ(·, θ) = ζ(·) − η(·, θ) ∈ H. This

observation leads to a potential identifiability issue for θ. For example, for two different

θ1 6= θ2 ∈ Θ, their corresponding model discrepancies δ(·, θ1) = ζ(·)− η(·, θ1) and δ(·, θ2) =

ζ(·) − η(·, θ2) are both in H. This implies that both (θ1, δ(·, θ1)), (θ2, δ(·, θ2)) ∈ Θ × H are

true for model (6.2). There are infinitely many pairs (θ, δ(·, θ)) ∈ Θ × H true for (6.2) by

arbitrarily choosing θ ∈ Θ and using δ(·, θ) = ζ(·) − η(·, θ). This identifiability issue was

first noticed by K. Beven and P. Diggle in their discussion of Kennedy and O’Hagan (2001).

6.2.2 Definition of Prediction-Oriented Calibration

Denote by Π the sampling distribution of Xi in (6.1) which is independent of εi and satisfies

Π(Ω) = 1. Here, Π is assumed to be absolutely continuous with respect to Lebesgue’s

measure. Let X∗ be drawn from Π and Y ∗ = ζ(X∗) + ε∗ = η(X∗, θ) + δ(X∗, θ) + ε∗ with

ε∗ ∼ N (0,σ2). Then for a fixed θ ∈ Θ, the minimal predictive mean squared error for
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predicting Y ∗ is

∞
δ̃n
E
{
Y ∗ − [η(X∗, θ) + δ̃n(X∗, θ)]

}2

= σ2 +∞
δ̃n
‖δ(·, θ)− δ̃n(·, θ)‖2L2(Π),

(6.3)

where the infimum is taken over all estimators δ̃n that are measurable functions of {(Xi,Yi−

η(Xi, θ)) : i = 1, . . . ,n} for a given θ.

The identifiability issue discussed in Section 6.2.1 indicates that there are infinitely many

pairs of (θ, δ(·, θ)) ∈ Θ×H satisfying model (6.2). For a finite sample size n, the minimal

estimation error∞
δ̃n
‖δ(·, θ)− δ̃n(·, θ)‖L2(Π) does not vanish (Cover and Thomas, 2006). Since

η(·, θ) is generally nonlinear, different choices of θ ∈ Θ correspond to δ(·, θ) with distinct

minimal estimation errors∞
δ̃n
‖δ(·, θ)− δ̃n(·, θ)‖L2(Π). This heuristic argument is justified

in Section 6.3.

This observation also motivates us to define optimal calibration θopt-pred to minimize the

minimal predictive mean squared error (6.3) uniformly for ζ ∈ H over θ ∈ Θ. Equivalently,

we define

θopt-pred def
= arg min

θ∈Θ

{
∞
δ̃n
‖δ(·, θ)− δ̃n(·, θ)‖L2(Π)

}
, (6.4)

which holds uniformly for ζ ∈ H. Here, the superscript “opt-pred” denotes “optimal

for prediction”. By definition and (6.3), θopt-pred in (6.4) is optimal for predicting Y ∗. We

assume the unicity of the minimizer in the definition (6.4) as used in Tuo and Wu (2015);

Plumlee (2017). Our theoretical results can be extended to the non-unicity case with similar

arguments. We will introduce an algorithm in Section 6.4 to estimate θopt-pred from the

training data. The formulation of θopt-pred in (6.4) is frequentist. We will discuss in Section

6.4.1 the differences between θopt-pred and other frequentist calibration methods, including

the L2-calibration method in Tuo and Wu (2015) and the least square calibration method in

Wong et al. (2017).
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6.3 Main Results

Existing theory for calibration, including Tuo and Wu (2015) and Wong et al. (2017), adopts

the asymptotic arguments that the number of observations of physical experiment goes

to infinity. In Section 6.3.1, we present a non-asymptotic minimax risk for nonparametric

models and apply it to the model calibration problem in Section 6.3.2. In Section 6.3.3, we

show the improvement in prediction achieved by incorporating data from computer models.

6.3.1 Non-Asymptotic Minimax Theory for Nonparametric Regressions

We consider the nonparametric regression in (6.1), where ζ(·) resides in the RKHS (H, ‖ ·‖H).

Let K : Ω× Ω→ R be a Mercer kernel generating (H, ‖ · ‖H). By the spectral theorem, K

admits the eigenvalue decomposition:

K(x,x′) =
∑
ν≥1

λνφν(x)φν(x′),

where λ1 ≥ λ2 ≥ · · · ≥ 0 are the eigenvalues and {φν : ν ≥ 1} are the corresponding

eigenfunctions such that 〈φν ,φν′〉L2(Π) = δνν′ . Here, δνν′ is the Kronecker delta. We assume

the polynomial decay rate of eigenvalues in Assumption 2. This assumption is commonly

used and holds for Sobolev spaceH =Wm
2 (Ω) with Lebesgue measure on Ω (Wahba, 1990).

Assumption 2. For 2m > d, suppose that for any ν ≥ 1, the eigenvalues satisfy cλν−2m/d ≤

λν ≤ Cλν−2m/d with constants 0 < cλ < Cλ <∞, and the eigenfunctions are uniformly bounded:

maxx∈Ω |φν(x)| ≤ cφ with a constant cφ for any ν ≥ 1.

Our main results in Theorems 6.1 and 6.2, which find an explicit form of the constant

besides the well-known rate in the finite-sample regime. We first show an upper bound of

non-asymptotic estimation error for regularized estimators in the RKHS:

ζ̂nλ = arg min
g∈H

{
1

n

n∑
i=1

[Yi − g(Xi)]
2 + λ‖g‖2H

}
, (6.5)
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where λ > 0 is the smoothing parameter.

Theorem 6.1. Under the regression model (6.1) where ζ ∈ H and Assumption 2 holds, there exists

a constant 0 < C∗ <∞ not depending on n,σ,m, d, ‖ζ‖H such that for any n ≥ 1 and α0 = 3.36,

with probability at least 99.99%,

‖ζ̂nλ − ζ‖2L2(Π) ≤ C∗

[
1 + α

2m−d
2m+d

0 n−
2m−d
4m+2d

(
1 +

σ

‖ζ‖H

)− 2d
2m+d

]2

· α
4m

2m+d

0 n−
2m

2m+d (‖ζ‖H + σ)2

(
1 +

σ

‖ζ‖H

)− 2d
2m+d

.

Here, ζ̂nλ is defined by (6.5) and λ is chosen appropriately.

We relegate the proof of Theorem 6.1 to the Appendix. The proof is established by

using results from empirical processes such as the maximal inequalities and concentration

inequalities (Kosorok, 2008), and deriving some new techniques to address the finite sample

and key quantities of interest ‖ζ‖H and σ. The probability 99.99% can be improved to any

probability that closer to 100% by increasing α0. The formula for appropriately chosen λ

is given in the Appendix. In practice, λ can be estimated by the method of generalized

cross-validation (GCV) (Craven and Wahba, 1978), which does not need knowledge of σ or

the RKHS norm of ζ. We give details on using GCV in Section 6.4.

We now establish that the non-asymptotic risk achieved by ζ̂nλ in Theorem 6.1 is minimax

optimal. Here, the minimax optimality is in the sense that there exists a data generating

process, for which the lower bound of non-asymptotic risk in the worst-case scenario exactly

matches the upper bound derived in Theorem 6.1.

Theorem 6.2. Under the regression model (6.1) where ζ ∈ H and Assumption 2 holds, there exist
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constants σ0,n0 ∈ (0,∞) such that for any σ ≥ σ0 and n ≥ n0,

∞
ζ̃n

sup
ζ∈H

P

‖ζ̃n − ζ‖2L2(Π) ≥ C∗

[
1 + α

2m−d
2m+d

0 n−
2m−d
4m+2d

(
1 +

σ

‖ζ‖H

)− 2d
2m+d

]2

·α
4m

2m+d

0 n−
2m

2m+d (‖ζ‖H + σ)2

(
1 +

σ

‖ζ‖H

)− 2d
2m+d

}
> 0.

Here, the infimum is taken over all estimators ζ̃n that are measurable functions of data {(Xi,Yi) :

i = 1, . . . ,n}, and the constants C∗,α0 are defined in Theorem 6.1.

The proof of this theorem is given in the Appendix. It is based on Fano’s lemma and our

new developments to address key quantities of interest ‖ζ‖H and σ besides the rate.

We make three remarks on this theorem. First, the conventional asymptotic convergence

rate can be recovered from Theorem 6.1. Since 2m > d in Assumption 2,

α
2m−d
2m+dn−

2m−d
4m+2d

(
1 +

σ

‖ζ‖H

)− 2d
2m+d

= o(1), as n→∞.

Thus Theorem 6.1 yields that ‖ζ̂nλ− ζ‖2L2(Π) = OP{n−2m/(2m+d)} as n→∞. This rate is well

known (Cox, 1984; Wahba, 1990).

Second, Theorems 6.1 and 6.2 together immediate imply that the minimax optimal risk

for estimating ζ ∈ H in the finite-sample regime is

‖ζ̃n − ζ‖2L2(Π) = C∗

[
1 + α

2m−d
2m+d

0 n−
2m−d
4m+2d

(
1 +

σ

‖ζ‖H

)− 2d
2m+d

]2

· α
2m−d
2m+d

0 n−
2m

2m+d (‖ζ‖H + σ)2

(
1 +

σ

‖ζ‖H

)− 2d
2m+d

,

(6.6)

where the constantC∗ is defined in Theorem 6.1. This non-asymptotic minimax risk indicates

the dependence on the signal-to-noise ratio ‖ζ‖H/σ and the magnitude of signal and noise

‖ζ‖H + σ.

Third, we point out a tradeoff between approximation errors and prediction errors

of the regularized estimator (6.5) in the finite-sample regime. A smaller λ compared to
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the appropriately chosen λ in Theorem 6.1, corresponds to a smaller approximation error
1
n

∑n
i=1[Yi − ζ̂nλ(Xi)]

2 (Wahba, 1990). On the other hand, a smaller λ yields a large risk for

prediction ‖ζ̂nλ − ζ‖2L2(Π) as implied by the proof of Theorem 6.1.

6.3.2 Optimal Calibration and Prediction

We apply the non-asymptotic minimax theory in Section 6.3.1 to derive an equivalent form

for the optimal calibration in (6.4).

Proposition 6.3. Under Assumptions 1 and 2, the optimal calibration defined in (6.4) is equivalent

to finding the minimizer of model discrepancy under the RKHS norm:

θopt-pred = arg minθ∈Θ {‖ζ(·)− η(·, θ)‖H} .

Based on this proposition, we derive an algorithm to estimate θopt-pred from a given

dataset in Section 6.4. The proof of Proposition 6.3 is given in the Appendix. Here are

some explanations. If the model discrepancy ζ(·) − η(·, θ) has a small RKHS norm, the

discrepancy is a simple function in the RKHS. Since the number of data points from (6.1) is

limited, a simpler function should have a more accurate estimator. As discussed in Section

6.2, a more accurate discrepancy estimator gives a smaller prediction error for the physical

system. Proposition 6.3 justifies the use of RKHS norm to measure the model discrepancy

with theoretical guarantees. This procedure is different from using L2-norm (Tuo and Wu,

2015) and empirical l2-norm (Wong et al., 2017).

We now discuss the non-asymptotic minimax risk for predicting ζ(·) based on θopt-pred.

Recall that the model discrepancy δ(·, θ) = ζ(·) − η(·, θ). We define regularized model

discrepancy estimators in the RKHS as

δ̂nλ(·, θ) = arg min
h∈H

{
1

n

n∑
i=1

[Yi − η(Xi, θ)− h(Xi)]
2 + λ‖h‖2H

}
, (6.7)

where λ > 0 is the smoothing parameter. As a corollary of Theorem 6.1, we present an
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upper bound of predictive mean squared errors when using computer model calibrated by

θopt-pred and regularized discrepancy estimators.

Corollary 6.4. Under the regression model (6.1) where ζ ∈ H and Assumptions 1 and 2 hold, then

for any n ≥ 1, with probability at least 99.99%,

∥∥∥[η(·, θopt-pred) + δ̂nλ(·, θopt-pred)
]
− ζ(·)

∥∥∥2

L2(Π)

≤ C∗

[
1 + α

2m−d
2m+d

0 n−
2m−d
4m+2d

(
1 +

σ

minθ∈Θ ‖δ(·, θ)‖H

)− 2d
2m+d

]2

· α
4m

2m+d

0 n−
2m

2m+d

(
min
θ∈Θ
‖δ(·, θ)‖H + σ

)2(
1 +

σ

minθ∈Θ ‖δ(·, θ)‖H

)− 2d
2m+d

.

Here, δ̂nλ is defined by (6.7), and λ is chosen appropriately, and the constants C∗,α0 are defined in

Theorem 6.1.

The formula for an appropriately chosen λ in Corollary 6.4 is provided in Appendix. In

practice, λ can be estimated using the GCV in Section 6.4. As a corollary of Theorem 6.2,

the following result gives a ower bound of predictive mean squared errors when using the

computer model calibrated by θopt-pred and any estimators of model discrepancy.

Corollary 6.5. Under the regression model (6.1) where ζ ∈ H and Assumptions 1 and 2 hold, there

exist constants σ′0,n′0 ∈ (0,∞) such that for any σ ≥ σ′0 and n ≥ n′0,

∞
δ̃n

sup
ζ∈H

P
{∥∥∥[η(·, θopt-pred) + δ̃n(·)

]
− ζ(·)

∥∥∥2

L2(Π)

≥ C∗

[
1 + α

2m−d
2m+d

0 n−
2m−d
4m+2d

(
1 +

σ

minθ∈Θ ‖δ(·, θ)‖H

)− 2d
2m+d

]2

α
2m−d
2m+d

0

·n−
2m

2m+d

(
min
θ∈Θ
‖δ(·, θ)‖H + σ

)2(
1 +

σ

minθ∈Θ ‖δ(·, θ)‖H

)− 2d
2m+d

}
> 0.

Here, the infimum is taken over all estimators δ̃n that are measurable functions of data {(Xi,Yi −

η(Xi, θ
opt-pred)) : i = 1, . . . ,n}, and the constants C∗,α0 are defined in Theorem 6.1.



95

We give the proof of Corollaries 6.4 and 6.5 in the Appendix. These corollaries together

imply that the non-asymptotic minimax optimal risk for predicting ζ ∈ H when using the

computer model calibrated by θopt-pred and an estimator of model discrepancy is

∥∥∥[η(·, θopt-pred) + δ̃n(·)
]
− ζ(·)

∥∥∥2

L2(Π)

= C∗

[
1 + α

2m−d
2m+d

0 n−
2m−d
4m+2d

(
1 +

σ

minθ∈Θ ‖δ(·, θ)‖H

)− 2d
2m+d

]2

α
4m

2m+d

0

· n−
2m

2m+d

(
min
θ∈Θ
‖δ(·, θ)‖H + σ

)2(
1 +

σ

minθ∈Θ ‖δ(·, θ)‖H

)− 2d
2m+d

.

This minimax risk is minimal over θ ∈ Θ and it can be achieved by

ζ
opt-pred
nλ (·) def

= η(·, θopt-pred) + δ̂nλ(·, θopt-pred), (6.8)

where δ̂nλ is defined by (6.7).

6.3.3 Improved Prediction Using the Computer Model

The minimax optimal predictor (6.8) combines the merits of the parametric computer model

and the nonparametric discrepancy estimator. We compare (6.8) with its counterpart of the

minimax optimal predictor (6.5) without using the computer model.

Theorem 6.6. Under the regression model (6.1) where ζ ∈ H and Assumptions 1 and 2 hold, if

min
θ∈Θ
‖ζ(·)− η(·, θ)‖H < ‖ζ‖H, (6.9)

then ζopt-pred
nλ (·) defined by (6.8) with the aid of the computer model achieves a smaller minimax risk

than ζ̂nλ(·) defined by (6.5) without using the information of the computer model.

The proof of this theorem is given in the Appendix. We make three remarks on this

theorem. First, the computer model η(·, θ) is built based on some physics knowledge of the

system ζ(·) and Proposition 6.3 shows that η(·, θopt-pred) is the best approximation to ζ(·)
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within the family {η(·, θ), θ ∈ Θ}. Although the computer model is imperfect for modeling

the physical system, η(·, θopt-pred) can still capture some major shape of ζ(·) and consequently

ζ(·) − η(·, θopt-pred) has less variation or smoother in H than the original ζ(·) does. This

motivates the assumption of minθ∈Θ ‖ζ(·) − η(·, θ)‖H = ‖ζ(·) − η(·, θopt-pred)‖H < ‖ζ‖H in

(6.9).

Second, Theorem 6.6 indicates that it is statistically more efficient to learn the residual

function ζ(·)− η(·, θ) than to learn the original unreferenced function ζ(·).

Third, the predictor (6.8) is a parametrically-guided nonparametric predictor, where

η(·, θ) can have a parametric form.

6.4 An Algorithm for Optimal Calibration

We propose an algorithm to compute the optimal calibration θopt-pred defined in (6.4). From

Proposition 6.3,

θopt-pred = arg min
θ∈Θ

{
‖δ(·, θ)‖2H

}
, (6.10)

where the discrepancy δ(·, θ) is subject to the constraint (6.2). By evaluating (6.2) at the

training data from model (6.1),

Yi = ζ(Xi) + εi = η(Xi, θ) + δ(Xi, θ) + εi, ∀θ ∈ Θ, i = 1, . . . ,n. (6.11)

Using the Lagrange multiplier method for the optimization (6.10) with constraint (6.11), we

find θ ∈ Θ and δ(·) ∈ H by minimizing

1

n

n∑
i=1

[Yi − η(Xi, θ)− δ(Xi)]
2 + λ‖δ‖2H, λ > 0. (6.12)

Here, the tuning of λ is critical for achieving good predictions for ζ(·). We provide more

discussions in Section.

The optimization problem in (6.12) can be solved iteratively as follows. We intro-

duce some notation. Recall that K is the reproducing kernel of (H, ‖ · ‖H). Let Σ be the
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n × n kernel matrix with ijth entry K(Xi,Xj). Denote by −→Y = (Y1, . . . ,Yn)>, η(
−→
X , θ) =

(η(X1, θ), . . . , η(Xn, θ))>, δ(−→X , θ) = (δ(X1, θ), . . . , δ(Xn, θ))>, and ζ(
−→
X ) = (ζ(X1), . . . , ζ(Xn))>.

For any fixed θ ∈ Θ, the minimizer δ(·) of (6.12) is the same as the regularized estimator

δ̂nλ(·, θ) in (6.7). By the representer lemma (Kimeldorf and Wahba, 1971),

δ̂nλ(·, θ) =
n∑
i=1

ciK(Xi, ·), (6.13)

where the coefficient c = (c1, . . . , cn)> ∈ Rn is given by

c = c(θ) = (Σ + nλI)−1[
−→
Y − η(

−→
X , θ)]. (6.14)

In practice, σ2 = E[ε2] is not generally known and λ can be estimated by GCV (Craven and

Wahba, 1978). Let A(λ) be the influence matrix satisfying δ̂nλ(
−→
X , θ) = A(λ)[

−→
Y − η(

−→
X , θ)].

The GCV estimate of λ is the minimizer of

GCV(λ) =
n−1‖

−→
Y − η(

−→
X , θ)− δ̂nλ(

−→
X , θ)‖2

[n−1tr(I−A(λ))]2
. (6.15)

The GCV estimate is consistent for minimizing the mean squared errors in Theorem 6.1 and

Corollary 6.4 (see, Li (1986); Wahba (1990)).

For any fixed δ(·) = δ̂nλ(·, θ) from (6.13), the minimizer θ of (6.12) is equivalent to

arg min
θ∈Θ

{
(
−→
Y − η(

−→
X , θ))>(Σ + nλI)−1(

−→
Y − η(

−→
X , θ))

}
. (6.16)

Since the objective function in (6.16) is a weighted version of the empirical l2-norm, (6.16)

gives a different calibration result than the least square calibration method (6.17).

Putting the above building blocks together, our algorithm for optimizing (6.12) iterates

between (6.13) and (6.16). The algorithm shares a similar spirit as the coordinate descent

method (Wright, 2015). The algorithm can start with the calibration parameters from the

least square calibration method. Applying later iterations of the algorithm continuously
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improves the initial values for prediction. This procedure is summarized in Algorithm

1 with a prespecified value τ > 0, e.g., τ = 10−3. Our experience indicates that a small

number of iterations is sufficient to obtain good performance of the algorithm.

Algorithm 1 Optimal calibration for prediction
1: Input: Noisy data {(Xi,Yi) : i = 1, . . . ,n} and computer model η(·, θ)
2: Initialize: Solve the least square calibration (6.17). Let θ(0) = θ̂l2n
3: for k = 1, 2, . . . until ‖θ(k) − θ(k−1)‖l2 ≤ τ do
4: Solve for δ̂nλ(·, θ(k−1)) in (6.13) and tune λ by GCV
5: With the selected λ, update θ by (6.16) and obtain θ(k)

6: end for
7: Let θ̂opt-pred

n = θ(k). Solve for δ̂nλ(·, θ̂opt-pred
n ) in (6.13) and tune λ by GCV

8: Output: Calibration parameter θ̂
opt-pred
n and optimal predictor η(·, θ̂opt-pred

n ) +

δ̂nλ(·, θ̂opt-pred
n )

Proposition 6.7. The estimated optimal calibration θ̂opt-pred
n from Algorithm 1 is consistent: θ̂opt-pred

n →P

θopt-pred.

Numerical examples in Section 6.5 show that θ̂opt-pred
n outperform existing frequentist

and Bayesian calibrations in term of prediction with finite samples. We provide theoretical

comparisons in Sections 6.4.1 and 6.4.2.

6.4.1 Comparison to Existing Frequentist Calibration Methods

We compare the calibration θ̂opt-pred
n obtained by Algorithm 1 with two other frequentist

calibration methods: the L2-calibration and the least square calibration. The L2-calibration

method in Tuo and Wu (2015) is defined as follows:

θ̂L2
n = arg min

θ∈Θ

{
‖ζ̂nλ(·)− η(·, θ)‖L2(Π)

}
,

where ζ̂nλ(·) is defined by (6.5). The least square calibration method in Wong et al. (2017)

minimizes the model discrepancy equipped with the empirical l2-norm:

θ̂l2n = arg min
θ∈Θ

{
1

n

n∑
i=1

[Yi − η(Xi, θ)]
2

}
. (6.17)
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Wong et al. (2017) estimates the model discrepancy after calibrating θ = θ̂l2n :

δ̂nλ(·, θ̂l2n ) = arg min
h∈H

{
1

n

n∑
i=1

[Yi − η(Xi, θ̂
l2
n )− h(Xi)] + λ‖h‖2H

}
,

and a predictor for ζ(·) is given by η(·, θ̂l2n ) + δ̂nλ(·, θ̂l2n ).

Remark 6.8. The differences among θ̂opt-pred, θ̂L2
n , and θ̂l2n are as follows.

• Calibration. θ̂opt-pred
n →P θ

opt-pred = arg minθ∈Θ {‖ζ(·)− η(·, θ)‖H} and θ̂L2
n , θ̂l2n →P θ

L2
def
=

arg minθ∈Θ

{
‖ζ(·)− η(·, θ)‖L2(Π)

}
. The calibration θ̂opt-pred

n is different from θ̂L2
n and θ̂l2n .

• Prediction. For a finite sample, the predictors based on θopt-pred achieve a smaller minimax

predictive mean squared error compared to predictors based on θL2 .

We provide a proof of Remark 6.8 in the Appendix.

6.4.2 Connection to Existing Bayesian Calibration Methods

The connection between frequentist and Bayesian calibrations was first established by Tuo

and Wu (2016, 2018). Specifically, Tuo and Wu (2018) derives that under Gaussian process

priors, the maximum a posteriori (MAP) estimate of θ and δ(·) in Bayesian calibration of

Kennedy and O’Hagan (2001) agrees with the minimizer of the objective function (6.12)

if λ = σ2/nβ. Similar results for the posterior mean of θ and δ(·) have appeared in the

literature (e.g., Kimeldorf and Wahba (1971); Wahba (1990); Santner et al. (2003)), where

details are provided in the Appendix for completeness. The original work of Tuo and Wu

(2016) shows that the MLE of θ is the same as (6.10) if physical data are noiseless (σ = 0).

We add a few new remarks on the differences between our method and the Bayesian cal-

ibration of Kennedy and O’Hagan (2001). First, λ = σ2/nβ is unknown in practice. Kennedy

and O’Hagan (2001) proposes to place a noninformative prior on β and use Markov chain

Monte Carlo sampler (Geman and Geman, 1984) to draw β, σ, θ, and δ(·, θ). However, this ap-

proach cannot guarantee the orthogonality in the sense that 〈ζ(·)− η(·, θ), ∂η(·, θ)/∂θ〉H 6= 0
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even as n gets very large (Plumlee, 2017). Our θopt-pred satisfies the orthogonality by Propo-

sition 6.3 and the KKT condition.

Second, there is a lack of identifiability in Bayesian calibration of Kennedy and O’Hagan

(2001); see, e.g., Gramacy et al. (2015). We note in Kennedy and O’Hagan (2001) that each

random sampling of β and σ gives different calibration θ, which corresponds to different

predictions (see, Section 6.2). On the other hand, the orthogonality property of θopt-pred

ensures to avoid the identifiability issue. Given the consistency result of Proposition 6.7, our

calibration θ̂opt-pred has smaller prediction errors and variances than Bayesian calibration of

Kennedy and O’Hagan (2001). This observation is corroborated by the theory in Section 6.3

and the numerical examples in Section 6.5.

Third, the physical data are generally noisy. The original result for σ = 0 in Tuo and Wu

(2016) cannot be generalized to σ 6= 0. Our contributions include to provide justifications

that θopt-pred gives the minimax optimal predictions in the finite-sample regime if σ 6= 0 (see,

Corollaries 6.4 and 6.5).

The Bayesian calibration method is more time consuming to compute than frequentist

calibration methods such as ours. Different from Kennedy and O’Hagan (2001) and our

θopt-pred, Plumlee (2017) suggests constructing new priors for δ(·, θ) in order to satisfy the

orthogonality. Plumlee (2017) requires computing the gradient of (estimated) computer

model while the proposed θopt-pred does not.

6.5 Simulation and Real Examples

We illustrate the prediction accuracy of the proposed calibration method using several

examples. Our simulation study consists of Examples 6.9–6.11, where the tuning parameters

for regularized estimators are selected by the GCV. The prediction accuracy is measured

by the predictive mean squared error estimated by a Monte Carlo sample of 1, 000, 000 test

data, where the designs are drawn from the same distribution as training data. A real data

example is given in Example 6.12.
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Example 6.9. Consider a physical system ζ(x) = exp(πx/5) sin 2πx,x ∈ [0, 1]. The physical data

are generated by (6.1) with Xi ∼ Unif([0, 1]), εi ∼ N (0,σ2) for i = 1, . . . , 50. Four different noise

variances are investigated: σ2 = 0.1, 0.25, 0.5, 1. Suppose that the computer model is

η(x, θ) = ζ(x)−
√
θ2 − θ + 1(sin 2πθx+ cos 2πθx) for θ ∈ [−1, 1].

Since θ2 − θ + 1 ≥ 3/4 for any −1 ≤ θ ≤ 1, the model discrepancy between η(·, θ) and ζ(·)

always exists no matter how θ is chosen. We use the Matérn kernel K(x1,x2) = (1 + |x1 −

x2|/ψ) exp{−|x1 − x2|/ψ}, where the scale parameter ψ is chosen by the five-fold cross-validation

minimization (see, e.g., Efron and Tibshirani (1993)). Figure 6.1 plots the squared model discrepancy

with different norms: ‖ζ(·) − η(·, θ)‖2L2(Π) and ‖ζ(·) − η(·, θ)‖2H. The corresponding minimizers

are different given as θL2 ≈ −0.1780 and θopt-pred ≈ 0.3740 (a local minimizer of ‖ζ(·)− η(·, θ)‖2H

in [−0.4, 0] is θopt-pred ≈ −0.1230), which illustrates the first part of Remark 6.8.

Figure 6.1: Normalized model discrepancy equipped with L2(Π)-norm and RKHS-norm in
Example 6.9.

We compare the prediction accuracy of four frequentist calibration methods:
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1) The computer model withL2-calibration (abbreviated as “No Bias Corr.”), which is the η(·, θ̂L2
n )

in Section 6.4.1 without the model discrepancy correction;

2) The nonparametric predictor (abbreviated as “N.P.”), which is the ζ̂nλ(·) obtained by (6.5) in

Section 6.3.1;

3) The predictor in Wong et al. (2017) (abbreviated as “LS. Cal.”), which is the η(·, θ̂l2n ) +

δ̂nλ(·, θ̂l2n ) in Section 6.4.1 based on the least square calibration;

4) Our predictor (abbreviated as “Opt. Cal.”), which is the ζopt-pred
nλ in Section 6.3.2 based on the

proposed calibration and computed by Algorithm 1 in Section 6.4.

For each chosen noise variance, we replicate the data generation, calibration and prediction proce-

dures 1,000 times and average the results for each method across the replicates. The resulting average

predictive mean squared errors and its associated standard errors are given in Table 6.1. The com-

puter model with L2-calibration (i.e., “No Bias Corr.”) gives the largest predictive mean squared

error, which shows that an estimator for the model discrepancy is necessary. “No Bias Corr.” has

the smallest standard error which is not surprising because the parametric estimation of θ here has

a faster rate of convergences than nonparametric estimations required for other three methods. Table

6.1 indicates that our method “Opt. Cal.” and the predictor in Wong et al. (2017) “LS. Cal.” out-

perform the nonparametric predictor “N.P.”. This advantage illustrates the improved predictions by

computer models as indicated in Theorem 6.6. Furthermore, “Opt. Cal.” gives smaller prediction

errors than “LS. Cal.”, which agrees with the second part of Remark 6.8. Overall, for a finite sample

size n = 50 , the proposed method “Opt. Cal.” outperforms the other frequentist predictors in the

settings studied.

Example 6.10. Consider a two-dimensional physical system

ζ(x1,x2) =
2

3
exp(x1 + 0.2)− x2 sin 0.4 + 0.4

+ exp(−x1)

(
x1 +

1

2

)(
x2

2 + x2 + 1
)

, (x1,x2) ∈ [0, 1]2.
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Table 6.1: Comparison of predictive mean squared errors for Example 6.9. PMSE = predictive
mean squared error, SE = standard error

σ2 = 0.1 σ2 = 0.25
Average of PMSE SE of PMSE Average of PMSE SE of PMSE

No Bias Corr. 0.3492 0.0174 0.3601 0.0270

N.P. 0.1701 0.0594 0.2327 0.0680

LS. Cal. 0.1152 0.0604 0.1693 0.0580

Opt. Cal. 0.0922 0.0515 0.1434 0.0552

σ2 = 0.5 σ2 = 1
Average of PMSE SE of PMSE Average of PMSE SE of PMSE

No Bias Corr. 0.3744 0.0407 0.3985 0.0666

N.P. 0.2810 0.0930 0.3417 0.1367

LS. Cal. 0.1924 0.0683 0.2074 0.0853

Opt. Cal. 0.1684 0.0656 0.1838 0.0788

Suppose that the computer model is

η(x1,x2; θ1, θ2) =
2

3
exp(x1 + θ1)− x2 sin θ2 + θ2, (θ1, θ2) ∈ [0, 1]2.

The model discrepancy exists between η(·; θ1, θ2) and ζ(·). Assume the physical data are gener-

ated by (6.1) with a uniform design on [0, 1]2 and n = 50. We consider four levels of σ2 =

0.03, 0.05, 0.07, 0.1, and use the Matérn kernel K(x1,x2) = (1 + ‖x1 − x2‖/ψ) exp{−‖x1 −

x2‖/ψ} with ψ chosen by the five-fold cross-validation minimization. For each level of σ2, we repli-

cate the data generation, calibration and prediction procedures 1,000 times for all the methods and

average the results for each method across the replicates. Table 6.2 summarizes the results. It is clear

that the proposed method “Opt. Cal.” outperforms the other three frequentist calibration methods in

terms of the predictive mean squared error.

Example 6.11. We now compare the proposed calibration method with some Bayesian calibration
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Table 6.2: Comparison of predictive mean squared errors for Example 6.10. PMSE = predic-
tive mean squared error, SE = standard error

σ2 = 0.03 σ2 = 0.05
Average of PMSE SE of PMSE Average of PMSE SE of PMSE

No Bias Corr. 0.1690 0.0027 0.1691 0.0027

N.P. 0.1155 0.0512 0.1823 0.0850

LS. Cal. 0.0611 0.0198 0.0743 0.0212

Opt. Cal. 0.0564 0.0187 0.0691 0.0205

σ2 = 0.07 σ2 = 0.1
Average of PMSE SE of PMSE Average of PMSE SE of PMSE

No Bias Corr. 0.1692 0.0028 0.1694 0.0028

N.P. 0.2425 0.1159 0.3327 0.1453

LS. Cal. 0.0825 0.0224 0.0906 0.0235

Opt. Cal. 0.0776 0.0220 0.0863 0.0234

method. Consider a falling ball example in Plumlee (2017) where the physical system is

ζ(x) = 8 +
5

2
log

(
50

49
− 50

49
tanh

(
tanh−1(

√
0.02) +

√
2x
)2
)

, x ∈ [0, 1]

and the computer model derived from Newton’s second law is η(x; v0, g) = 8 + v0x− gx2/2. Here,

calibration parameters (v0, g) are the vertical velocity and the acceleration rate, respectively. The

model discrepancy exists between ζ(·) and η(·; v0, g). Suppose that the physical data are generated

by (6.1) with a uniform design on [0, 1] and n = 30. We compare the proposed method “Opt. Cal.”

with two Bayesian methods in terms of prediction accuracy:

1) The Bayesian method of Kennedy and O’Hagan (2001) (abbreviated as “KO”);

2) The Bayesian predictor using an orthogonal Gaussian process in L2-norm as the prior (abbre-

viated as “OGP”) proposed by Plumlee (2017).

The Matérn kernel K(x1,x2) = (1 + |x1 − x2|/ψ) exp{−|x1 − x2|/ψ} with parameter ψ = 1

is used as the reproducing kernel for “Opt. Cal.” and the prior covariance function for both “KO”
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and “OGP”. Four levels of σ2 = 0.0025, 0.01, 0.0625, 0.25 are considered. For each level of σ2,

we replicate the data generation, calibration and prediction procedures 1,000 times. Table 6.3 sum-

marizes the prediction results. Here “KO” has large prediction errors and large posterior variances

compared with “OGP” and “Opt. Cal.”. This is because of the identifiability issue inherent to “KO”

as discussed in Section 6.4.2. “OGP” provides stable and accurate predictions and our method “Opt.

Cal.” gives even smaller prediction errors.

Table 6.3: Comparison of predictive mean squared errors for Example 6.11. PMSE = predic-
tive mean squared error, SE = standard error

σ2 = 0.0025 σ2 = 0.01
Average of PMSE SE of PMSE Average of PMSE SE of PMSE

KO 0.5413 2.3944 5.8596 29.0264

OGP 0.0147 0.0132 0.0230 0.0249

Opt. Cal. 0.0091 0.0084 0.0166 0.0168

σ2 = 0.0625 σ2 = 0.25
Average of PMSE SE of PMSE Average of PMSE SE of PMSE

KO 1.4644 4.3802 18.5433 97.3962

OGP 0.0500 0.0478 0.0952 0.0995

Opt. Cal. 0.0318 0.0338 0.0620 0.0677

Example 6.12 (Real data example). We analyze a real dataset from a single voltage clamp exper-

iment on sodium ion channels of cardiac cell membranes. This dataset consists of 19 outputs and

is from Plumlee (2017). The response variable is the normalized current for maintaining a fixed

membrane potential of −35mV and the input variable is the logarithm of time. Suppose the com-

puter model for this experiment is the Markov model for sodium ion channels given by η(x, θ) =

e>1 exp(exp(x)A(θ))e4, where θ = (θ1, θ2, θ3)> ∈ R3, e1 = (1, 0, 0, 0)>, e4 = (0, 0, 0, 1)>, and

A(θ) =



−θ2 − θ3 θ1 0 0

θ2 −θ1 − θ2 θ1 0

0 θ2 −θ1 − θ2 θ1

0 0 θ2 −θ1


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For this example, we compare the frequentist methods in Example 6.9 and 6.10, and Bayesian methods

in Example 6.11. The Matérn kernelK(x1,x2) = (1+|x1−x2|/ψ) exp{−|x1−x2|/ψ}withψ = 1

is used for all methods and the Metropolis-Hastings algorithm is applied to sample from the posterior

of θ for Bayesian methods. In each experiment, we perform five-fold cross-validation minimization

where the data is randomly partitioned into five roughly equal-sized parts: four parts are for training

and the rest part is for testing. The cross-validation process is repeated five times, with each of the

five parts is used once for testing. Then, the five predictive mean squared errors are averaged to give

a single predictive mean squared error. We replicate the data generation, calibration and prediction

procedure 100 times and average the results.

Table 6.4 summarizes the prediction results, with the abbreviations of the methods given in Ex-

amples 6.9 and 6.11. “No Bias Corr.” gives the largest predictive mean squared error among the four

frequentist methods, indicating the existence of model discrepancy. Here all the frequentist methods

outperform the two Bayesian methods. “N.P.” outperforms “LS. Cal.”. This indicates that if the

calibration parameter is not chosen well, the use of computer model does not improve prediction.

Overall, the proposed method ‘Opt. Cal.” gives the smallest prediction error among all the methods

applied to this example.

Table 6.4: Comparison of predictive mean squared errors for Example 6.12. PMSE = predic-
tive mean squared error, SE = standard error

Average of PMSE SE of PMSE

KO 0.0045 0.0131

OGP 9.4387× 10−4 0.0022

No Bias Corr. 4.2823× 10−4 6.2333× 10−4

N.P. 2.5916× 10−4 2.2522× 10−4

LS. Cal. 3.0521× 10−4 6.3797× 10−4

Opt. Cal. 1.6323 × 10−4 2.1335× 10−4
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Chapter 7

Discussions and Future Works

In this thesis, we study statistical methods for complex problems in five different settings.

We discuss potential future work of the content of this thesis in a few important directions.

Chapter 2 have obtained new minimax optimal rates for nonparametric estimation when

data from first-order partial derivatives are available. These results deal with function esti-

mation and partial derivative estimation in functional ANOVA models. Statistical modeling

of derivative model is an increasing important problem in engineering, economics and other

fields. Our theoretical results provide justification why incorporation of partial derivatives

can improve convergence rates in estimation. It would be of interest to incorporate deriva-

tive data to another type of functional ANOVA model in Stone (1994); Huang (1998). In

particular, Stone (1994) studies sums of tensor products of polynomial splines (as opposed

to the smoothing approach in ours) to estimate components of a functional ANOVA model

and Huang (1998) investigates the projection estimate in fitting a functional ANOVA model.

If the order of interactions r = 1 in (2.2), the results in Section 2.3–2.5 still hold for the

functional ANOVA model in Stone (1994); Huang (1998). If 1 < r ≤ d in (2.2), it requires

more work to extend our results to cover the minimax rates of convergences with derivatives

for the functional ANOVA model in Stone (1994); Huang (1998). Given the interplay between

data collection and data modeling in applications like computer experiments, it would be

interesting to connect our developed convergence results with the underlying structure of a
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chosen design used for data generation.

Chapter 3 studies a framework to integrate longitudinal features from the structural MR

images for AD prediction based on varying coefficient models. We propose a novel variable

selection method by combining smoothing splines and Lasso, which enables simultaneous

selection and estimation and is adaptive to heterogeneous longitudinal data. To illustrate the

effectiveness of the proposed method, we conduct experiments with the ADNI dataset and

show that the proposed method outperforms the state-of-the-art longitudinal analysis meth-

ods. Our work is the first in the literature to model nonlinear progressions of longitudinal

features and propose a novel effective variable selection method for the high-dimensional

setting. This method shows superior performance in real data AD prediction. It is promising

and easy to implement the proposed method in other longitudinal data analysis examples.

There are many interesting future directions. For example, we only use MR images for

AD prediction in this paper. It is of interest to apply the proposed method to integrate

multi-modal data including MRI, PET, and functional MRI. We expect the integration of

multi-modal information would further improve the accuracy of the AD prediction.

Chapter 4 proposes a novel class of penalties for regression problems. The desirable

theoretical properties of TWIN derive from its unique shape, which acts to inflate coefficient

estimates in a certain range, thus alleviating issues in selection arising from shrinkage

pseudo-noise. Probabilistic bounds for selection consistency were established under a

challenging linear sparsity regime with random Gaussian designs. Minimax optimality was

also established under the same data-generating regimes. Empirically, TWIN shows good

performance even under scenarios with strong correlations in the design, suggesting that

TWIN’s theoretical properties may be extendible to more realistic data-generating scenarios.

Motivated by this, we expect that exploration of TWIN’s theoretical behavior under designs

with significant correlation may be fruitful. In this work we provided asymptotically-

motivated choices for the tuning parameters, however, the development of comprehensive

strategies for simultaneous selection of τ and λ based on finite sample analysis is another

interesting avenue of future research.
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Chapter 5 investigates the relationship between the sharpness of the minima that SGD

converges to with the ratio of the step size and the batch size. Using the SDE as the approx-

imation of SGD, we explain part of the hypothesis proposed by Keskar et al. (2016) that

large-batch methods tend to converge to sharp minimizers of the training function using

the escaping time theorem in the finite-time regime. We prove that for the isotropic case

the probability density function of SGD will converge to the stationary solution for any

initial data regardless of the time varying step size and batch size. We give the convergence

rate, which indicates that with a larger ratio of the learning rate and the batch size, the

probability will converge faster to the stationary solution. Asymptotically the probability

of converging to the global minimum is independent of the batch size and learning rate,

but it only depends on the sharpness of the minimum. We verify these theoretical findings

with numerical experiments. There are many directions for further study such as how the

ratio of the step size and batch size influence the generalization error. In our experiment, it

indicates that with a larger learning rate to batch size ratio the generalization error is worse.

Further theoretical analysis is desired. Another interesting topic is to study the stationary

solution and the evolution the probability density function of SGD when the variance matrix

is anisotropic, which remain open questions.

Chapter 6 provides a new look at the model calibration problem in computer models.

This viewpoint simultaneously considers two facts regarding how computer models are

used in practice: computer models are inadequate for physical systems, regardless how

the calibration parameters are tuned; and only a finite number of data points are avail-

able from the physical experiment to calibrate a related computer model. We establish

a non-asymptotic minimax theory and derive an optimal prediction-oriented calibration

method. Through several examples, the proposed calibration method has some advantages

in prediction when compared with some existing calibration methods. We have developed

an algorithm to carry out the proposed calibration method and built a link between our

method and the Bayesian calibration method. Beyond the calibration of computer models,

our method can be applied to calibrate unknown parameters for general misspecified models
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in statistics and engineering. In many applications, bounded linear functional information

such as derivative data are observed or can be easily calculated together with the function

observations. It would be of interest to include all these data in our proposed calibration

method. Furthermore, it is likely to extend our results to non-i.i.d. distributed designs; for

example, general triangular arrays of non-random designs. This paper does not address

these important questions, and we leave them open for future research.
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Appendix A

Appendix For: Minimax Optimal

Rates of Estimation in Functional

ANOVA Models with Derivatives

This section consists of six parts. In Section A.1, we give a brief review on RKHS for the

SS-ANOVA model and on the Fréchet derivative. In Section A.2, we give the proofs for

results with deterministic designs of Section 2.3. In Section A.3, we show the proofs for

results with random designs of Section 2.4. In Section A.4, we prove the results of estimating

partial derivatives of Section 2.5. In Section A.5, we present key lemmas used in the proofs.

All auxiliary technical lemmas are deferred to Section A.6.

A.1 Review of RKHS and Fréchet Derivative

A.1.1 RKHS for the SS-ANOVA Model

The SS-ANOVA model (2.2) truncates the sequence up to r interactions. Without loss of

generality, we still denote the corresponding function space in (2.3) byH, which is the direct

sum of some set of the orthogonal subspaces in the decomposition ⊗dj=1H1. Denote by
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‖ · ‖⊗dj=1H1
the norm on ⊗dj=1H1, which is induced by the component norms ‖ · ‖H1 . Define

‖ · ‖H as the norm on H by restricting ‖ · ‖⊗dj=1H1
to H. Then H is a RKHS equipped with

‖ · ‖H. The quadratic penalty J(·) in (2.10) is defined as a squared semi-norm onH induced

by a univariate penalty inH1. For example, whenH1 =Wm
2 (X1), it is common to choose

J(·) for penalizing only the smooth components of a function. In this case, an explicit form

is given in Wahba (1990).

Now we introduce some additional notation. Define a family of the multi-index −→ν by

V = {−→ν = (ν1, . . . , νd)
> ∈ Nd,

where at most r ≥ 1 of νks are not equal to 1},
(A.1)

which will be used later since f0 in the SS-ANOVA model (2.2) is truncated up to r interac-

tions.

A.1.2 Fréchet Derivative of Operator

Let X and Y be the normed linear spaces. The Fréchet derivative of an operator F : X 7→ Y

is a bounded linear operator DF (a) : X 7→ Y with

lim
h→0,h∈X

‖F (a+ h)− F (a)−DF (a)h‖Y
‖h‖X

= 0.

For illustration, ifF (a+h)−F (a) = Lh+R(a,h) with a linear operatorL and ‖R(a,h)‖Y /‖h‖X →

0 as h→ 0, then by the above definition, L = DF (a) is the Fréchet derivative of F (·). The

reader is referred to elementary functional analysis textbooks such as Cartan (1971) for a

thorough investigation on Fréchet derivative.

Lemma A.1. Denote the loss function in (2.10) by ln(f). With the norm ‖ · ‖R in (A.19), the first
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order Fréchet derivative of the functional ln(·) for any f , g ∈ H is

Dln(f)g =
2

n(p+ 1)

[
1

σ2
0

n∑
i=1

{f(t
(0)
i )− y(0)

i }g(t
(0)
i )

+

p∑
j=1

1

σ2
j

n∑
i=1

{
∂f(t

(j)
i )

∂tj
− y(j)

i

}
∂g(t

(j)
i )

∂tj

 .

The second order Fréchet derivative of ln(·) for any f , g,h ∈ H is

D2ln(f)gh =
2

n(p+ 1)

[
1

σ2
0

n∑
i=1

g(t
(0)
i )h(t

(0)
i )

+

p∑
j=1

1

σ2
j

n∑
i=1

∂g(t
(j)
i )

∂tj

∂h(t
(j)
i )

∂tj

 .

Proof. By direct calculations, we have

ln(f + g)− ln(f) =
2

n(p+ 1)

[
1

σ2
0

n∑
i=1

{f(t
(0)
i )− y(0)

i }g(t
(0)
i )

+

p∑
j=1

1

σ2
j

n∑
i=1

{
∂f(t

(j)
i )

∂tj
− y(j)

i

}
∂g(t

(j)
i )

∂tj

+Rn(f , g),

where

Rn(f , g) =
1

n(p+ 1)

 1

σ2
0

n∑
i=1

g2(t
(0)
i ) +

p∑
j=1

1

σ2
j

n∑
i=1

{
∂g(t

(j)
i )

∂tj

}2


= ‖g‖20 +O(n−1/2),

and the ‖ · ‖0 norm is given in (A.20). Note that |Rn(f , g)|/‖g‖R → 0 as ‖g‖R → 0 and

n1/2‖g‖R → ∞. This proves the first part of the lemma. For the second order Fréchet

derivative, note that

Dln(f + h)g −Dln(f)g

=
2

n(p+ 1)

 1

σ2
0

n∑
i=1

g(t
(0)
i )h(t

(0)
i ) +

p∑
j=1

1

σ2
j

n∑
i=1

∂g(t
(j)
i )

∂tj

∂h(t
(j)
i )

∂tj

 ,
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which is linear in h. By definition of Fréchet derivatives, we conclude the form ofD2ln(f)gh

in the lemma.

We remark that following a similar derivation in the above proof, we can obtain the

first and the second order Fréchet derivatives of the functional l∞(·) in (A.26) and (A.28),

respectively.

A.2 Proofs for Section 2.3: Deterministic Designs

For brevity, we consider the regular lattice l1 = · · · = ld = l and n = ld. Other regular

lattices can be showed similarly. Write

ψ1(t) = 1, ψ2ν(t) =
√

2 cos 2πνt, ψ2ν+1(t) =
√

2 sin 2πνt, (A.2)

for ν ≥ 1. Since f0 has periodic boundaries on X d1 , {ψν(t)}ν≥1 forms an orthonormal system

in L2(X1) and an eigenfunction system forK. For a d-dimensional vector−→ν = (ν1, . . . , νd) ∈

Nd, write

ψ−→ν (t) = ψν1(t1) · · ·ψνd(td) and λ−→ν = λν1λν2 · · ·λνd , (A.3)

where λνks and ψνk(tk)s are defined according to the Mercer’s theorem,k = 1, . . . , d. Then,

any function f(·) inH admits the Fourier expansion f(t) =
∑
−→ν ∈Nd θ−→ν ψ−→ν (t), where θ−→ν =

〈f(t),ψ−→ν (t)〉L2 , and J(f) =
∑
−→ν ∈Nd λ

−1
−→ν θ

2−→ν . We also write f0(t) =
∑
−→ν ∈Nd θ

0−→ν ψ−→ν (t).

By Page 23 of Wahba (1990), it is known that

l−1
l∑

i=1

ψµ(i/l)ψν(i/l) =


1, if µ = ν = 1, . . . , l,

0, if µ 6= ν,µ, ν = 1, . . . , l.

Define
−→
ψ −→ν = (ψ−→ν (t1), . . . ,ψ−→ν (tn))>,
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where {t1, . . . , tn} are the regular lattice design points. Thus, we have

〈
−→
ψ −→ν ,

−→
ψ −→µ 〉n =


1, if νk = µk = 1, . . . , l; k = 1, . . . , d,

0, if there exists some k such that νk 6= µk,

where 〈·, ·〉n is the empirical inner product in Rn. This implies that {
−→
ψ −→ν | νk = 1, . . . , l; k =

1, . . . , d} form an orthogonal basis in Rn with respect to the empirical norm ‖ · ‖n. Denote

the observed data vectors by y(0) = (y
(0)
1 , . . . , y

(0)
n )> and y(j) = (y

(j)
1 , . . . , y

(j)
n )>, and write


z

(0)
−→ν = 〈y(0),

−→
ψ −→ν 〉n,

z
(j)
ν1,...,2νk−1,...,νd

= (2π)−1〈y(j),
−→
ψ ν1,...,2νk,...,νd〉n,

z
(j)
ν1,...,2νk,...,νd

= −(2π)−1〈y(j),
−→
ψ ν1,...,2νk−1,...,νd〉n,

(A.4)

for νk = 1, . . . , l and k = 1, . . . , d. Then, z(0)
−→ν = θ̃0−→ν + δ

(0)
−→ν and z

(j)
−→ν = νj θ̃

0−→ν + δ
(j)
−→ν , where

θ̃0−→ν = θ0−→ν +
∑

µk≥l+1,k=1,...,d θ
0−→µ 〈
−→
ψ −→ν ,

−→
ψ −→µ 〉n. The errors δ(0)

−→ν satisfy

E[δ
(0)
−→ν ] =

1

n

n∑
i=1

E[ε
(0)
i ]
−→
ψ −→ν (i) ≤ 1

n

√√√√ n∑
i=1

{E[ε
(0)
i ]}2

√√√√ n∑
i=1

−→
ψ 2−→ν (i) = o(n−1/2),

Var[δ(0)
−→ν ] =

1

n2

n∑
i=1

Var[ε(0)
i ]
−→
ψ 2−→ν (i) +

1

n2

∑
i 6=i′

Cov[ε
(0)
i , ε

(0)
i′ ]
−→
ψ −→ν (i)

−→
ψ −→ν (i′)

≤ σ2
0

n
· 1

n

n∑
i=1

−→
ψ 2−→ν (i) +

2

n2

∑
i 6=i′

Cov[ε
(0)
i , ε

(0)
i′ ]

= O(n−1) +
2

n2

∑
i 6=i′

o(|i− i′|−Υ) = O(n−1) + o(n−1) = O(n−1).

Similarly for any j, δ(j)
−→ν s have mean o(n−1/2) and covariances O(n−1) .
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A.2.1 Proof of Minimax Lower Bound: Theorem 2.1

We now prove the lower bound for estimating functions under the regular lattice. By the

data transformation (A.4), it suffices to show the optimal rate in a special case


z

(0)
−→ν = θ0−→ν + δ

(0)
−→ν ,

z
(j)
−→ν = νjθ

0−→ν + δ
(j)
−→ν , for 1 ≤ j ≤ p,

(A.5)

where δ(j)
−→ν ∼ N (0,σ2

j /n) are independent. For any −→ν ∈ Nd, if we have the prior that

|θ̃0−→ν | ≤ π−→ν , then the minimax linear estimator is

θ̂L−→ν =
σ−2

0 z
(0)
−→ν +

∑p
j=1 σ

−2
j νjz

(j)
−→ν

n−1π−2
−→ν + σ−2

0 +
∑p

j=1 σ
−2
j ν2

j

,

and the minimax linear risk is

n−1

n−1π−2
−→ν + σ−2

0 +

p∑
j=1

σ−2
j ν2

j

−1

.

By Lemma 6 and Theorem 7 in Donoho et al. (1990), if σ2
j s are known, the minimax risk of

estimating θ0−→ν under the model (A.5) is larger than 80% of the minimax linear risk of the

hardest rectangle subproblem, and the latter linear risk is

RL = n−1 max∑
−→ν ∈V(1+λ−→ν )π2−→ν =1

∑
−→ν ∈V

n−1π−2
−→ν + σ−2

0 +

p∑
j=1

σ−2
j ν2

j

−1

, (A.6)

where λ−→ν is the product of eigenvalues in (A.3) and recall that the set V is defined in (A.1).

We use the Lagrange multiplier method to find π2−→ν for solving (A.6). Let a be the scalar

multiplier and define

L(π2−→ν , a) =
∑
−→ν ∈V

n−1π−2
−→ν + σ−2

0 +

p∑
j=1

σ−2
j ν2

j

−1

− a(1 + λ−→ν )π2−→ν .
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Taking partial derivative with respect to π2−→ν gives

∂L

∂π2−→ν
= n−1

n−1 +

σ−2
0 +

p∑
j=1

σ−2
j ν2

j

π2−→ν

−2

− a(1 + λ−→ν ) = 0.

This implies

π̂2−→ν =

σ−2
0 +

p∑
j=1

σ−2
j ν2

j

−1 [
b(1 + λ−→ν )−1/2 − n−1

]
+

,

where b = (na)−1/2. On one hand, plugging the above formula into the constraint
∑
−→ν ∈V(1+

λ−→ν )π2−→ν = 1 gives

∑
−→ν ∈V

d∏
k=1

ν2m
k

σ−2
0 +

p∑
j=1

σ−2
j ν2

j

−1 [
b

d∏
k=1

ν−mk − n−1

]
+

� 1.

By restricting
∏d
k=1 νk ≤ (nb)1/m, this becomes

∑
−→ν ∈V,

∏d
k=1 νk≤(nb)1/m

σ−2
0 +

p∑
j=1

σ−2
j ν2

j

−1

×

(
b

d∏
k=1

νmk − n−1
d∏

k=1

ν2m
k

)
� 1.

(A.7)

On the other hand, the linear risk in (A.6) can be written as

RL � n−1
∑

−→ν ∈V,
∏d
k=1 νk≤(nb)1/m

(
1− 1

nb

d∏
k=1

νmk

)

×

σ−2
0 +

p∑
j=1

σ−2
j ν2

j

−1

.

(A.8)

We discuss for RL in the above (A.8) under the condition (A.7) for three cases with 0 ≤ p ≤

d− r, d− r < p < d and p = d.

If 0 ≤ p ≤ d − r, since −→ν ∈ V, there are at most r of ν1, . . . , νd not equal to 1, which
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implies that the number of combinations of non-1 indices being summed in (A.7) is no

greater than C1
d + C2

d + · · ·+ Crd <∞. Due to the term (σ−2
0 +

∑p
j=1 σ

−2
j ν2

j )−1, the largest

terms of the summation (A.7) over −→ν ∈ V correspond to the combinations of indices where

as fewer ν1, . . . , νp being summed as possible, for example, vk ≡ 1 for k ≤ p and k > p+ r,

and (νp+1, . . . , νp+r) ∈ Nr are non-1. Thus, (A.7) is equivalent to

∑
∏r
k=1 νp+k≤(nb)1/m

(
b

r∏
k=1

νmp+k − n−1
r∏

k=1

ν2m
p+k

)
� 1.

Using the integral approximation, we have

∫
∏r
k=1 xp+k≤(nb)1/m,xp+k≥1

(
b

r∏
k=1

xmp+k −
1

n

r∏
k=1

x2m
p+k

)
dxp+1 · · · dxp+r � 1.

By letting zj =
∏

1≤k≤j xp+k, j = 1, 2, . . . , r, we have

∫ (nb)1/m

1

[∫ zr

1
· · ·
∫ z2

1

(
bzmr −

1

n
z2m
r

)
z−1

1 · · · z
−1
r−1dz1 · · · dzr−1

]
dzr � 1,

where the left-hand side term is the order of n(m+1)/mb(2m+1)/m[log(nb)]r−1 and hence

b � n−(m+1)/(2m+1)(log n)−m(r−1)/(2m+1). (A.9)

The linear risk in (A.8) becomes

RL � n−1

∫
∏r
k=1 xp+k≤(nb)1/m,xp+k≥1

(
1− 1

nb

r∏
k=1

xmp+k

)

� [log(nb)]r−1n−1+1/mb1/m � [n(log n)1−r]−2m/(2m+1),

where the last step is by (A.9).

If d− r < p < d, as discussed in the previous case, the number of combinations of non-1

indices being summed is finite, and the largest terms of the summation (A.7) over −→ν ∈ V

correspond to the combinations of indices where as fewer than ν1, . . . , νp being summed as
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possible, for example, vk ≡ 1 for k ≤ d− r, and (νd−r+1, . . . , νd) ∈ Nr are non-1. Thus, (A.7)

is equivalent to

∑
∏r
k=1 νd−r+k≤(nb)1/m

(
b

r∏
k=1

νmd−r+k − n−1
r∏

k=1

ν2m
d−r+k

)

×

1 +

p∑
j=d−r+1

ν2
j

−1

� 1.

Using the integral approximation, we have

∫
∏r
k=1 xd−r+k≤(nb)1/m,xd−r+k≥1

(
b

r∏
k=1

xmd−r+k − n−1
r∏

k=1

x2m
d−r+k

)

×

1 +

p∑
j=d−r+1

x2
j

−1

dxd−r+1 · · · dxd � 1.

By letting zj = xp+1xp+2 · · ·xj , j = p+ 1, . . . , d, we get

1 �
∫
xd−r+1···xpzd≤(nb)1/m

[∫ zd

1
· · ·
∫ zp+2

1(
bxmd−r+1 · · ·xmp zmd −

1

n
x2m
d−r+1 · · ·x2m

p z2m
d

)
z−1
p+1 · · · z

−1
d−1

×
(
1 + x2

d−r+1 + · · ·+ x2
p

)−1
dzp+1 · · · dzd−1

]
dxd−r+1 · · · dxpdzd

=

∫
xd−r+1···xpzd≤(nb)1/m

bxmd−r+1 · · ·xmp zmd
(

1− 1

nb
xmd−r+1 · · ·xmp zmd

)
× (log zd)

d−p−1
(
1 + x2

d−r+1 + · · ·+ x2
p

)−1
dxd−r+1 · · · dxpdzd

� [log(nb)]d−p−1n1+1/mb2+1/m,

where the last step is by Lemma A.18 in Section A.6. Hence,

b � n−(m+1)/(2m+1)(log n)−m(d−p−1)/(2m+1). (A.10)
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The linear risk in (A.8) becomes

RL � n−1

∫
∏d
k=d−r+1 xk≤(nb)1/m,xk≥1

(
1− 1

nb
xmd−r+1 · · ·xmd

)
· (1 + x2

d−r+1 + · · ·+ x2
p)
−1dxd−r+1 · · · dxd

� n−1

∫
xd−r+1···xpzd≤(nb)1/m

(
1− 1

nb
xmd−r+1 · · ·xmp zmd

)
(log zd)

d−p−1

· (1 + x2
d−r+1 + · · ·+ x2

p)
−1dxd−r+1 · · · dxpdzd

� [log(nb)]d−p−1n−1+1/mb1/m,

where the second step uses the same change of variables by letting zj = xp+1xp+2 · · ·xj ,

j = p+ 1, . . . , d, and the last step is by Lemma A.18 in Section A.6. By (A.10), we have

RL � [n(log n)1+p−d]−2m/(2m+1).

If p = d, as discussed in the previous two cases, the number of combinations of non-1

indices being summed is finite, and the largest terms of the summation (A.7) over −→ν ∈ V

correspond to any combinations of r non-1 indices, for example, νk ≡ 1 for k ≥ r + 1, and

(ν1, . . . , νr) ∈ Nr. Thus, (A.7) is equivalent to

∑
∏r
k=1 νk≤(nb)1/m

(
b

r∏
k=1

νmk − n−1
r∏

k=1

ν2m
k

)(
1 +

r∑
k=1

ν2
k

)−1

� 1.

Using the integral approximation, we have

1 �
∫
∏r
k=1 xk≤(nb)1/m,xk≥1

(
b

r∏
k=1

xmk − n−1
r∏

k=1

x2m
k

)(
1 +

r∑
k=1

x2
k

)−1

dx1 · · · dxr

�
∫
∏r
k=1 xk≤(nb)1/m,xk≥1

b

r∏
k=1

xmk

(
1 +

r∑
k=1

x2
k

)−1

dx1 · · · dxr



121

By letting β = m > 1 and α = 2 in Lemma A.19 in Section A.6, we have for any r ≥ 1,

b � n−(mr+r−2)/(2mr+r−2). (A.11)

The linear risk in (A.8) becomes

RL � n−1

∫
∏r
k=1 xk≤(nb)1/m,xk≥1

(
1− 1

nb
xm1 · · ·xmr

)
· (1 + x2

1 + · · ·+ x2
r)
−1dx1 · · · dxr

� n−1

∫
∏r
k=1 xk≤(nb)1/m,xk≥1

(1 + x2
1 + · · ·+ x2

r)
−1dx1 · · · dxr

�
[
n−1(nb)(r−2)/(mr)

]
1r≥3 +

[
n−1 log(nb)

]
1r=2 +

(
n−1

)
1r=1,

where the last step uses Lemma A.19 in Section A.6 by letting β = 0 and α = 2. By (A.11),

we have

RL �
[
n−(2mr)/[(2m+1)r−2]

]
1r≥3 +

[
n−1 log(n)

]
1r=2 + n−11r=1,

where the constant factor does not depend on n. This completes the proof.

A.2.2 Proof of Minimax Upper Bound: Theorem 2.2

We now prove the theorem for only r = d and p = d− 1. Other cases can be proved similarly

with slight changes.

Using the discrete transformed data (A.4), the regularized estimator f̂nλ by (2.10) can be

obtained through

θ̂−→ν = arg min
θ̃−→ν ∈R

 1

n(p+ 1)

 1

σ2
0

∑
−→ν ∈V ,‖−→ν ‖min≤l

(
z

(0)
−→ν − θ−→ν

)2

+

p∑
j=1

1

σ2
j

∑
−→ν ∈V ,‖−→ν ‖min≤l

(
z

(j)
−→ν − νjθ−→ν

)2

+ λ
∑

−→ν ∈V ,‖−→ν ‖min≤l

λ−→ν θ
2−→ν


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and f̂nλ(t) =
∑

−→ν ∈V,‖−→ν ‖min≤l
θ̂−→ν ψ−→ν (t), where V is defined in (A.1). Direct calculations give

θ̂−→ν =
σ−2

0 z
(0)
−→ν +

∑p
j=1 σ

−2
j νjz

(j)
−→ν

σ−2
0 +

∑p
j=1 σ

−2
j ν2

j + λλ−1
−→ν

.

The deterministic error of f̂nλ can be analyzed by two parts. On one hand, since f0 ∈ H

and λν � ν−2m, we know
∑
−→ν ∈V,‖−→ν ‖min≥l+1(θ0−→ν )2 � n−2m. This is the truncation error due

to θ̂−→ν = 0 for νk ≥ l + 1, 1 ≤ k ≤ d. On the other hand, note that 〈
−→
ψ −→ν ,

−→
ψ −→µ 〉2n ≤ 1 and then

 ∑
−→µ∈V,‖−→µ‖min≥l+1

θ0−→µ 〈
−→
ψ −→ν ,

−→
ψ −→µ 〉n

2

≤
∑

−→µ∈V,‖−→µ‖min≥l+1

(θ0−→µ )2 � n−2m.

Thus,

∑
−→ν ∈V,‖−→ν ‖min≤l

(
Eθ̂−→ν − θ0−→ν

)2

.
∑

−→ν ∈V,‖−→ν ‖min≤l

(λλ−1
−→ν θ

0−→ν )2 + [Eδ(0)
−→ν ]2 +

∑p
j=1 ν

2
j [Eδ(j)

−→ν ]2

(σ−2
0 +

∑p
j=1 σ

−2
j ν2

j + λλ−1
−→ν )2

+ n−2m+1

≤ λ2 sup
−→ν ∈V

λ−1
−→ν(

σ−2
0 +

∑p
j=1 σ

−2
j ν2

j + λλ−1
−→ν

)2

∑
−→ν ∈V

λ−1
−→ν (θ0−→ν )2

+ o(n−1)
∑

−→ν ∈V,‖−→ν ‖min≤l

1 +
∑p

j=1 ν
2
j

(1 +
∑p

j=1 ν
2
j + λν2m

1 · · · ν2m
d )2

+ n−2m+1

� λ2J(f0) sup
−→ν ∈V

ν2m
1 · · · ν2m

d

(1 +
∑p

j=1 ν
2
j + λν2m

1 · · · ν2m
d )2

+ o{n−1λ−1/2m}+ n−2m+1,

where the last step uses Lemma A.12 in Section A.5.3 with a = 0 and p = d− 1. Define that

Bλ(−→ν ) =
ν2m

1 · · · ν2m
d

(1 +
∑p

j=1 ν
2
j + λν2m

1 · · · ν2m
d )2

.

For the sup−→ν ∈VBλ(−→ν ) term above, suppose that
∏d
j=1 ν

2m
j > 0 is fixed and denoted by x−1,

then Bλ(−→ν ) is maximized by letting
∑p

j=1 ν
2
j be as small as possible, where p = d− 1. This
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suggests ν1 = ν2 = · · · = νp = 1, and

sup
−→ν ∈V

Bλ(−→ν ) � sup
x>0

x−1

(1 + λx−1)2
� λ−1,

where the last step is achieved when x � λ. Combining all parts of bias gives

∑
−→ν ∈V

(
Eθ̂−→ν − θ0−→ν

)2
= O

{
λJ(f0) + n−2m+1

}
+ o{n−1λ−1/2m}, (A.12)

where the constant factor on the upper bound does not depend on n.

The stochastic error is bounded as follows:

∑
−→ν ∈V

E
(
θ̂−→ν − Eθ̂−→ν

)2
=

∑
−→ν ∈V,‖−→ν ‖min≤l

n−1(σ−2
0 +

∑p
j=1 σ

−2
j ν2

j )

(σ−2
0 +

∑p
j=1 σ

−2
j ν2

j + λλ−1
−→ν )2

.
∑

−→ν ∈V,‖−→ν ‖min≤l

1 +
∑p

j=1 ν
2
j

n(1 +
∑p

j=1 ν
2
j + λν2m

1 · · · ν2m
d )2

.

Using Lemma A.12 in Section A.5.3 with a = 0 and p = d− 1, we have

∑
−→ν ∈V

E
(
θ̂−→ν − Eθ̂−→ν

)2
= O

{
n−1λ−1/2m

}
. (A.13)

Combining (A.12) and (A.13) and letting λ � n−2m/(2m+1) completes the proof.

A.3 Proofs of Results in Section 2.4: Random Designs

A.3.1 Proof of the Minimax Lower Bound: Theorem 2.3

We establish the lower bound for the random design via Fano’s lemma. It suffices to consider

a special case where noises ε(0) and ε(j)s are independent Gaussian with zero mean and

unit variance, and Π(0) and Π(j)s are uniform, andH1 is generated by periodic kernels.

LetN be a natural number whose value will be clear later. We first derive the eigenvalue

decay rate for the kernel Kd which generates the RKHSH. For a given τ > 0, the number of
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multi-indices −→ν = (ν1, . . . , νr) ∈ Nr satisfying ν−2m
1 · · · ν−2m

r ≥ τ is the same as the number

of multi-indices such that ν1 · · · νr ≤ τ−1/(2m), which amounts to

∑
ν2···νr≤τ−1/(2m)

τ−1/(2m)/(ν2 · · · νr) = τ−1/(2m)

 ∑
ν≤τ−1/(2m)

1/ν

r−1

� τ−1/(2m)(log 1/τ)r−1.

(A.14)

Denote by λN (Kd) the N th eigenvalues of Kd. By inverting (A.14), obtain

λN (Kd) �
[
N(logN)1−r]−2m

.

Hence, the multi-indices −→ν = (ν1, . . . , νr) ∈ Nr satisfying ν1 · · · νr ≤ N correspond to the

first

c0N(logN)r−1

eigenvalues ofKd for some constant c0. Let b = {b−→ν : ν1 · · · νr ≤ N} ∈ {0, 1}c0N(logN)r−1 be a

length-{c0N(logN)r−1} binary sequence, and {λ̃−→ν : ν1 · · · νr ≤ N} be the first c0N(logN)r−1

eigenvalues of Kd. Denote by {λ̃−→ν +c0N(logN)r−1 : ν1 · · · νr ≤ N} the {c0N(logN)r−1 + 1}th,

{c0N(logN)r−1 + 2}th,. . . , {2c0N(logN)r−1}th eigenvalues of Kd.

For brevity, we only prove for the case p = d and r ≥ 3. The other cases p = d, r ≤ 2

and 0 ≤ p < d can be showed similarly. We deal with the differences among these cases for

deterministic designs in Section A.2.1. Write

fb(t1, . . . , tr) = N−1/2+1/r
∑

ν1···νr≤N
b−→ν
(
1 + ν2

1 + · · ·+ ν2
r

)−1/2

× λ̃1/2
−→ν +c0N(logN)r−1ψ−→ν +c0N(logN)r−1(t1, . . . , tr),

where ψ−→ν +c0N(logN)r−1(t1, . . . , tr) are the corresponding eigenfunctions of λ̃−→ν +c0N(logN)r−1



125

of Kd. Note that

‖fb‖2H = N−1+2/r
∑

ν1···νr≤N
b2−→ν (1 + ν2

1 + · · ·+ ν2
r )−1

≤ N−1+2/r
∑

ν1···νr≤N
(1 + ν2

1 + · · ·+ ν2
r )−1 � 1,

where the last step by Lemma A.19, and this implies fb(·) ∈ H.

By the Varshamov-Gilbert bound, e.g., Tsybakov (2009), there exists a collection of binary

sequences {b(1), . . . , b(M)} ⊂ {0, 1}c0N(logN)r−1 such that

M ≥ 2c0N(logN)r−1/8

and

H(b(l), b(q)) ≥ c0N(logN)r−1/8, ∀1 ≤ l < q ≤M ,

where H(·, ·) is the Hamming distance. Then, for b(l), b(q) ∈ {0, 1}c0N(logN)r−1 ,

‖fb(l) − fb(q)‖
2
L2

≥ N−1+2/r(2N)−2m
∑

ν1···νr≤N
(1 + ν2

1 + · · ·+ ν2
r )−1

[
b
(l)
−→ν − b

(q)
−→ν

]2

≥ N−1+2/r(2N)−2m
∑

c17N/8≤ν1···νr≤N

(1 + ν2
1 + · · ·+ ν2

r )−1

= c2N
−2m

for some constants c1 and c2, where the last step is by Lemma A.19.

On the other hand, for any b(l) ∈ {b(1), . . . , b(M)}, by Lemma A.19,

‖fb(l)‖
2
L2

+

p∑
j=1

‖∂fb(l)/∂tj‖
2
L2
≤ N−1+2/r

∑
ν1···νr≤N

ν−2m
1 · · · ν−2m

r

[
b
(l)
−→ν

]2

≤ N−1+2/r
∑

ν1···νr≤N
ν−2m

1 · · · ν−2m
r = c3N

−2m+2/r(logN)r−1
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for some constant c3.

A standard argument gives that the lower bound can be reduced to the error probability

in a multi-way hypothesis test (Tsybakov, 2009). Specifically, let Θ be a random variable

uniformly distributed on {1, . . . ,M}. Note that

∞f̃ sup
f0∈H

P
{
‖f̃ − f0‖2L2

≥ 1

4
min

b(l) 6=b(q)
‖fb(l) − fb(q)‖

2
L2

}
≥ ∞

Θ̂
P{Θ̂ 6= Θ}, (A.15)

where the infimum on the right-hand side is taken over all decision rules that are measurable

functions of the data. By Fano’s lemma,

P
{

Θ̂ 6= Θ|t(0)
1 , . . . , t(0)

n ; . . . ; t
(p)
1 , . . . , t(p)

n

}
≥ 1− 1

logM
×[

1
t
(0)
1 ,...,t

(0)
n ;...;t

(p)
1 ,...,t

(p)
n

(y
(0)
1 , . . . , y(0)

n , . . . , y
(p)
1 , . . . , y(p)

n ; Θ) + log 2
]

,

(A.16)

where 1
t
(0)
1 ,...,t

(0)
n ;...;t

ep
1 ,...,t

ep
n

(y
(0)
1 , . . . , y

(0)
n , . . . , y

(p)
1 , . . . , y

(p)
n ) is the mutual information between

Θ and {y(0)
1 , . . . , y

(0)
n , . . . , y

(p)
1 , . . . , y

(p)
n }with the design points {t(0)

1 , . . . , t
(0)
n ; . . . ; t

(p)
1 , . . . , t

(p)
n }

being fixed. We can derive that

E
t
(0)
1 ,...,t

(0)
n ;...;t

(p)
1 ,...,t

(p)
n

·
[
1
t
(0)
1 ,...,t

(0)
n ;...;t

(p)
1 ,...,t

(p)
n

(
y

(0)
1 , . . . , y(0)

n , . . . , y
(p)
1 , . . . , y(p)

n ; Θ
)]

≤
(
M

2

)−1 ∑
b(l) 6=b(q)

E
t
(0)
1 ,...,t

(0)
n ;...;t

(p)
1 ,...,t

(p)
n
K
(
Pf

b(l)
|Pf

b(q)

)

≤ n(p+ 1)

2

(
M

2

)−1 ∑
b(l) 6=b(q)

E
t
(0)
1 ,...,t

(0)
n ;...;t

(p)
1 ,...,t

(p)
n
‖fb(l) − fb(q)‖

2
∗n,

(A.17)

where K(·|·) is the Kullback-Leibler distance, Pf is conditional distribution of y(0)
i and y(j)

i s

given {t(0)
1 , . . . , t

(0)
n ; . . . ; t

(p)
1 , . . . , t

(p)
n }, and the norm ‖ · ‖∗ is defined as

‖f‖2∗n =
1

n(p+ 1)

n∑
i=1

[f(t
(0)
i )]2 +

p∑
j=1

[∂f(t
(j)
i )/∂tj ]

2

 , ∀f : X r1 7→ R.
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Thus,
E
t
(0)
1 ,...,t

(0)
n ;...;t

(p)
1 ,...,t

(p)
n

·
[
1
t
(0)
1 ,...,t

(0)
n ;...;t

(p)
1 ,...,t

(p)
n

(y
(0)
1 , . . . , y(0)

n , . . . , y
(p)
1 , . . . , y(p)

n ; Θ)
]

≤ n(p+ 1)

2

(
M

2

)−1 ∑
b(l) 6=b(q)

 ‖fb(l) − fb(q)‖2L2

+

p∑
j=1

‖∂fb(l)/∂tj − ∂fb(q)/∂tj‖
2
L2


≤ n(p+ 1)

2
max

b(l) 6=b(q)

 ‖fb(l) − fb(q)‖2L2

+

p∑
j=1

‖∂fb(l)/∂tj − ∂fb(q)/∂tj‖
2
L2


≤ 2n(p+ 1) max

b(l)∈{b(1),...,b(M)}

‖fb(l)‖2L2
+

p∑
j=1

‖∂fb(l)/∂tj‖
2
L2


≤ 2c3n(p+ 1)N−2m+2/r(logN)r−1.

(A.18)

Now, (E.15) yields

∞f̃ sup
f0∈H

P
{
‖f̃ − f0‖2L2

≥ 1

4
c2N

−2m

}
≥ ∞

Θ̂
P{Θ̂ 6= Θ}

≥ 1− 1

logM

[
E1

t
(0)
1 ,...,t

(0)
n ;...;t

(p)
1 ,...,t

(p)
n

(y
(0)
1 , . . . , y(0)

n , . . . , y
(p)
1 , . . . , y(p)

n ; Θ) + log 2
]

≥ 1− 2c3n(p+ 1)N−2m+2/r(logN)r−1 + log 2

c0(log 2)N(logN)r−1/8
.

Taking N = c4n
r/(2mr+r−2) with an appropriate choice of c4, we have

lim sup
n→∞

∞f̃ sup
f0∈H

P
{
‖f̃ − f0‖2L2

≥ C3n
−2mr/(2mr+r−2)

}
> 0,

where C3 does not depend on n. This completes the proof.
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A.3.2 Proof of the Minimax Upper Bound: Theorem 2.4

Preliminaries for the proof We define a new norm for any f ∈ H,

‖f‖2R =
1

p+ 1

[
1

σ2
0

∫
f2(t)dΠ(0)(t)

+

p∑
j=1

1

σ2
j

∫ {
∂f(t)

∂tj

}2

dΠ(j)(t)

+ J(f).

(A.19)

Note that ‖ · ‖R is a norm since it is a quadratic form and is equal to zero if and only if f = 0.

Let 〈·, ·〉R be the inner product associated with ‖ · ‖R. The following lemma shows that ‖ · ‖R

is well defined inH and is equivalent to the RKHS norm ‖ · ‖H. In particular, ‖f‖R <∞ if

and only if ‖f‖H <∞. The proof of this lemma is given in Section A.5.1.

Lemma A.2. The norm ‖ · ‖R is equivalent to ‖ · ‖H inH.

We introduce another norm ‖ · ‖0 given by

‖f‖2R =
1

p+ 1

[
1

σ2
0

∫
f2(t)dΠ(0)(t)

+

p∑
j=1

1

σ2
j

∫ {
∂f(t)

∂tj

}2

dΠ(j)(t)

 .

(A.20)

We define a function space F0 to be the direct sum of some set of the orthogonal subspaces

in the decomposition of ⊗dj=1L2(X1) as in (2.3) and equipped with the norm ‖ · ‖0. Let 〈·, ·〉0

be the inner product associated with ‖ · ‖0 in F0.

For the above two norms, we introduce some additional notation. Denote the loss

function in (2.10) by ln(f), that is,

ln(f) =
1

n(p+ 1)

 1

σ2
0

n∑
i=1

{f(t
(0)
i )− y(0)

i }
2 +

p∑
j=1

1

σ2
j

n∑
i=1

{
∂f(t

(j)
i )

∂tj
− y(j)

i

}2
 ,

and write lnλ(f) = ln(f) + λJ(f). Then the regularized estimator f̂nλ = arg minf∈H lnλ(f).

Denote the expected loss by l∞(f) = Eln(f) and write l∞λ(f) = l∞(f)+λJ(f). Since l∞λ(f)
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a positive quadratic form in f ∈ H, it has a unique minimizer inH given by

f̄∞λ = arg min
f∈H

l∞λ(f).

Thus, we decompose

f̂nλ − f0 = (f̂nλ − f̄∞λ) + (f̄∞λ − f0),

where (f̂nλ − f̄∞λ) is referred to the stochastic error and (f̄∞λ − f0) is referred to the

deterministic error. If data Y (0) and Y (j)s in (2.1) are observed without random noises as

in deterministic computer experiments, then the total error is only the deterministic error

with f̂nλ − f0 = f̄∞λ − f0. For brevity, we omit the subscripts of f̄∞λ and f̂nλ hereafter if no

confusion occurs.

Outline of the proof Before proceeding to the proof, we make two remarks on the setup

of Theorem 2.4. First, since the distributions Π(0) and Π(j)s are known, by the inverse

transform sampling, it suffices to consider the uniform distribution. A detailed discussion

on this transform is given in Lemma A.17. Second, it suffices to assume f0 to have a periodic

boundary on X d1 in the proof of the theorem. This is because f0 is a tensor product function

and each component function space is supported in a compact domain. Thus, we can

smoothly extend f0 to a larger compact support domain and achieve periodicity on the new

boundary, e.g., uniformly zero on the new boundary. These two simplifications make the

proof easier to present.

Recall that the trigonometrical basis on L2(X1) is ψ1(t) = 1, ψ2ν(t) =
√

2 cos 2πνt and

ψ2ν+1(t) =
√

2 sin 2πνt for ν ≥ 1. Write

φ−→ν (t1, . . . , td) =
ψν1(t1) · · ·ψνd(td)
‖ψν1(t1) · · ·ψνd(td)‖0

. (A.21)

Since f0 has a periodic boundary on X d1 and π(j) ≡ 1, {φ−→ν (t) : −→ν ∈ V}, where V in

(A.1) forms an orthogonal basis for H in 〈·, ·〉R; an orthogonal system for L2(X d1 ); and an

orthonormal basis for F0 in 〈·, ·〉0, that is 〈φ−→ν (t),φ−→µ (t)〉0 = δ−→ν −→µ , where δ−→ν −→µ is Kronecker’s
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delta. Hence, any f ∈ H has the decomposition

f(t1, . . . , td) =
∑
−→ν ∈V

f−→ν φ−→ν (t1, . . . , td), where f−→ν = 〈f(t),φ−→ν (t)〉0. (A.22)

We denote a positive scalar series {ρ−→ν }ν∈V such that 〈φ−→ν ,φ−→µ 〉R = (1 + ρ−→ν )δ−→ν −→µ . Then,

J(f) = 〈f , f〉R − 〈f , f〉0 =
∑
−→ν ∈V

ρ−→ν f
2−→ν . (A.23)

First, we analyze the deterministic error (f̄−f0). By (A.22), write f0(t) =
∑
−→ν ∈V f

0−→ν φ−→ν (t)

and f̄(t) =
∑
−→ν ∈V f̄−→ν φ−→ν (t). Note the bias satisfies E[ε

(j)
i ] = o(n−1/2), we have l∞(f) =∑

−→ν ∈V(f−→ν − f0−→ν )2+o(n−1/2)
√∑

−→ν ∈V(f−→ν − f0−→ν )2 + 1 and

f̄−→ν =
f0−→ν (1 + κ−→ν )

1+κ−→ν + λρ−→ν
, where κ−→ν = o(1), ∀−→ν ∈ V. (A.24)

An upper bound of the deterministic error will be given in Lemma A.3.

Second, we analyze the stochastic error (f̂ − f̄). The existence of the following Fréchet

derivatives is guaranteed by Lemma A.1:

Dln(f)g =
2

n(p+ 1)

[
1

σ2
0

n∑
i=1

{f(t
(0)
i )− y(0)

i }g(t
(0)
i )

+

p∑
j=1

1

σ2
j

n∑
i=1

{
∂f(t

(j)
i )

∂tj
− y(j)

i

}
∂g(t

(j)
i )

∂tj

 ,

(A.25)

Dl∞(f)g =
2

p+ 1

[
1

σ2
0

∫ {
f(t)− f0(t)+o(n−1/2)

}
g(t)dΠ(0)(t)

+

p∑
j=1

1

σ2
j

∫ {
∂f(t)

∂tj
− ∂f0(t)

∂tj
+o(n−1/2)

}
∂g(t)

∂tj
dΠ(j)(t)

 ,

(A.26)
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D2ln(f)gh =
2

n(p+ 1)

[
1

σ2
0

n∑
i=1

g(t
(0)
i )h(t

(0)
i )

+

p∑
j=1

1

σ2
j

n∑
i=1

∂g(t
(j)
i )

∂tj

∂h(t
(j)
i )

∂tj

 ,

(A.27)

D2l∞(f)gh =
2

p+ 1

[
1

σ2
0

∫
g(t)h(t)dΠ(0)(t)

+

p∑
j=1

1

σ2
j

∫
∂g(t)

∂tj

∂h(t)

∂tj
dΠ(j)(t)

 = 2〈g,h〉0,

(A.28)

where Dln(f), Dl∞(f), D2ln(f)g, and D2l∞(f)g are bounded linear operators on H. By

Riesz representation theorem, with slight abuse of notation, write

Dln(f)g = 〈Dln(f), g〉R, Dl∞(f)g = 〈Dl∞(f), g〉R,

D2ln(f)gh = 〈D2ln(f)g,h〉R, D2l∞(f)gh = 〈D2l∞(f)g,h〉R.

From Oden and Reddy (2012); Weinberger (1974), there exists a bounded linear operator

U : F0 7→ H such that Uφ−→ν = (1 + ρ−→ν )−1φ−→ν and 〈f ,Ug〉R = 〈f , g〉0 for any f ∈ H and

g ∈ F0, and the restriction of U to H is self-adjoint and positive definite. By (A.28), we

further derive

D2l∞λ(f)φ−→ν (t) = 2(U + λ(I − U))φ−→ν (t) = 2(1 + ρ−→ν )−1(1 + λρ−→ν )φ−→ν (t).

Define that Gλφ−→ν = 1
2D

2l∞λ(f̄)φ−→ν . By the Lax-Milgram theorem, Gλ : H 7→ H has a

bounded inverse G−1
λ onH, and

G−1
λ φ−→ν = (1 + ρ−→ν )(1 + λρ−→ν )−1φ−→ν . (A.29)

Define

f̃∗ = f̄ − 1

2
G−1
λ Dlnλ(f̄).
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Then the stochastic error can be decomposed as

f̂ − f̄ = (f̃∗ − f̄) + (f̂ − f̃∗).

The two terms on the right-hand side will be studied separately and their upper bounds

will be given in Lemma A.4 and Lemma A.5, respectively.

Finally, we define the following norm to serve as a basis for further development. For

f ∈ H,

‖f‖2L2(a) =
∑
−→ν ∈V

(
1 +

ρ−→ν
‖φ−→ν ‖2L2

)a
f2−→ν ‖φ−→ν ‖

2
L2

, for 0 ≤ a ≤ 1, (A.30)

where f−→ν = 〈f ,φ−→ν 〉0. By direct calculations, when a = 0 this norm coincides with ‖ · ‖L2

on F0, and when a = 1 this norm is equivalent to ‖ · ‖R onH.

Details of the proof Now we give the details by following the above outline. First, we

present an upper bound of the deterministic error (f̄ − f0).

Lemma A.3. For any 0 ≤ a ≤ 1, the deterministic error satisfies

‖f̄ − f0‖2L2(a) =


O
{
λ1−aJ(f0)

}
when 0 ≤ p < d,

O{λ
(1−a)mr
mr−1 J(f0)} when p = d.

Proof. For any 0 ≤ a ≤ 1, by (A.23) and (A.24), we have

‖f̄ − f0‖2L2(a)

=
∑
−→ν ∈V

(
1 +

ρ−→ν
‖φ−→ν ‖2L2

)a(
λρ−→ν

1+κ−→ν + λρ−→ν

)2

(f0−→ν )2‖φ−→ν ‖2L2

. λ2 sup
−→ν ∈V

(1 + ρ−→ν /‖φ−→ν ‖2L2
)aρ−→ν ‖φ−→ν ‖2L2

(1 + λρ−→ν )2

∑
−→ν ∈V

ρ−→ν (f0−→ν )2

. λ2J(f0) sup
−→ν ∈V

(
∏d
k=1 ν

2m
k )1+a

(1 +
∑p

j=1 ν
2
j + λ

∏d
k=1 ν

2m
k )2

.

(A.31)
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Write

Bλ(−→ν ) =
(
∏d
k=1 ν

2m
k )1+a

(1 +
∑p

j=1 ν
2
j + λ

∏d
k=1 ν

2m
k )2

, −→ν ∈ V.

We discuss Bλ(−→ν ) for 0 ≤ p ≤ d− 1 and p = d separately.

For 0 ≤ p ≤ d− 1, since −→ν ∈ V, there are at most r of ν1, . . . , νd not equal to 1. Suppose

for any x =
∏d
k=1 ν

−2m
k > 0 fixed. Then Bλ(−→ν ) is maximized by letting

∑p
j=1 ν

2
j be as small

as possible, which implies ν1 = ν2 = · · · = νp = 1. Then,

sup
−→ν ∈V

Bλ(−→ν ) � sup
(νp+1,...,ν(p+r)∧d)>∈Nr∧(d−p)

∏(p+r)∧d
k=p+1 ν

2m(1+a)
k

(1 + λ
∏(p+r)∧d
k=p+1 ν2m

k )2

� sup
x>0

x−(1+a)

(1 + λx−1)2
� λ−(a+1),

(A.32)

where the last step is achieved when x � λ.

For p = d, since −→ν ∈ V and by the symmetry of coordinates v1, . . . , vd, assume that all

indices except v1, . . . , vr being 1. Letting z =
∏r
j=1 ν

−2m
j > 0, we have

sup
−→ν ∈V

Bλ(−→ν ) � sup
z>0

z−(1+a)

(z−1/mr + λz−1)2
� λ

2−(1+a)mr
mr−1 , (A.33)

where the last step is achieved when z � λmr/(mr−1). Combining (A.31), (A.32) and (A.33)

we complete the proof.

Second, we establish an upper bound of (f̃∗ − f̄), which is a part of the stochastic error.

Lemma A.4. When 0 ≤ p < d, we have for any 0 ≤ a < 1− 1/2m,

‖f̃∗ − f̄‖2L2(a) = OP

{
n−1λ−(a+1/2m)[log(1/λ)](d−p)∧r−1

}
.
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When p = d, we have for any 0 ≤ a ≤ 1,

‖f̃∗ − f̄‖2L2(a)

=



OP

{
n−1λ

mr
1−mr (a+ r−2

2mr )
}

, if r ≥ 3;

OP
{
n−1 log(1/λ)

}
, if r = 2, a = 0; OP

{
n−1

}
, if r = 2, 0 < a ≤ 1;

OP
{
n−1

}
, if r = 1, a < 1

2m ; OP
{
n−1 log(1/λ)

}
, if r = 1, a = 1

2m ;

OP

{
n−1λ

1−2ma
2m−2

}
, if r = 1, a > 1

2m .

Proof. Notice that Dln,λ(f̄) = Dln,λ(f̄) − Dl∞,λ(f̄) = Dln(f̄) − Dl∞(f̄). Hence, for any

g ∈ H,

E
[

1

2
Dln,λ(f̄)g

]2

= E
[

1

2
Dln(f̄)g − 1

2
Dl∞(f̄)g

]2

.
1

n(p+ 1)2

p∑
j=0

Var
[

1

σ2
j

{
∂f̄(t(j))

∂tj
− Y (j)

}
∂g(t(j))

∂tj

]

+

p∑
j=0

σ−4
j

n2(p+ 1)2

∑
i 6=i′

Cov
[(

∂f̄(t
(j)
i )

∂tj
− y(j)

i

)
∂g(t

(j)
i )

∂tj
,

(
∂f̄(t

(j)
i′ )

∂tj
− y(j)

i′

)
∂g(t

(j)
i′ )

∂tj

]

+
∑
j 6=k

σ−2
j σ−2

k

n2(p+ 1)2

n∑
i,i′=1

Cov
[(

∂f̄(t
(j)
i )

∂tj
− y(j)

i

)
∂g(t

(j)
i )

∂tj
,

(
∂f̄(t

(k)
i′ )

∂tk
− y(j)

i′

)
∂g(t

(k)
i′ )

∂tk

]

.
1

n(p+ 1)

[
1

σ4
0

E
{
f̄(t(0))− f0(t(0))

}2
{g(t(0))}2 +

1

σ2
0

E{g(t(0))}2

+

p∑
j=1

1

σ4
j

E

{
∂f̄(t(j))

∂tj
− ∂f0(t(j))

∂tj

}2{
∂g(t(j))

∂tj

}2

+

p∑
j=1

1

σ2
j

E

{
∂g(t(j))

∂tj

}2


+ o(n−1)
1

(p+ 1)2

p∑
j,k=0

E

[
∂g(t(j))

∂tj

]
E

[
∂g(t(k))

∂tk

]

.
1

n(p+ 1)

[
1

σ4
0

c2d
K ‖f̄ − f0‖2RE

{
g(t(0))

}2
+

1

σ2
0

E
{
g(t(0))

}2

+

p∑
j=1

1

σ4
j

c2d
K ‖f̄ − f0‖2RE

{
∂g(t(j))

∂tj

}2

+

p∑
j=0

1

σ2
j

E

{
∂g(t(j))

∂tj

}2
 . n−1‖g‖20,

(A.34)

where the second step is due to
∑

i 6=i′ Cov[ε
(j)
i , ε

(k)
i′ ] =

∑
i 6=i′ o(|i− i′|−Υ) = o(n). The third
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step above is by Lemma A.2, A.14 and the Cauchy-Schwarz inequality. The last step above

is by Lemma A.3 and the definition of the norm ‖ · ‖0. From the definition of G−1
λ in (A.29),

we have that ∀g ∈ H,

∥∥G−1
λ g
∥∥2

L2(a)
=
∑
−→ν ∈V

(
1 +

ρ−→ν
‖φ−→ν ‖2L2

)a
(1 + λρ−→ν )−2 ‖φ−→ν ‖2L2

〈g,φ−→ν 〉2R.

Then by the definition of f̃∗,

E‖f̃∗ − f̄‖2L2(a) = E
∥∥∥∥1

2
G−1
λ Dlnλ(f̄)

∥∥∥∥2

L2(a)

=
1

4
E

∑
−→ν ∈V

(
1 +

ρ−→ν
‖φ−→ν ‖2L2

)a
(1 + λρ−→ν )−2‖φ−→ν ‖2L2

〈Dlnλ(f̄),φ−→ν 〉2R


≤
∑
−→ν ∈V

(
1 +

ρ−→ν
‖φ−→ν ‖2L2

)a
(1 + λρ−→ν )−2‖φ−→ν ‖2L2

E
[

1

2
Dlnλ(f̄)φ−→ν

]2

. n−1
∑
−→ν ∈V

(
1 +

ρ−→ν
‖φ−→ν ‖2L2

)a
(1 + λρ−→ν )−2 ‖φ−→ν ‖2L2

‖φ−→ν ‖20

� n−1Na(λ),

where the fourth step is by (A.34) and the last step is because of ‖φ−→ν ‖0 = 1, ‖φ−→ν ‖2L2
�

(1 +
∑p

j=1 ν
2
j )−1, ρ−→ν � (1 +

∑p
j=1 ν

2
j )−1

∏d
k=1 ν

2m
k , and Na(λ) is defined in Lemma A.12.

Hence, by Lemma A.12, we complete the proof.

Then, we give an upper bound of (f̂ − f̃∗), which is another part of the stochastic error.

Since lnλ(f) is a quadratic form of f , the Taylor expansion of Dlnλ(f̂) = 0 at f̄ gives

Dlnλ(f̄) +D2lnλ(f̄)(f̂ − f̄) = 0,

and by the definition of f̃∗ and Gλ, we have

Dlnλ(f̄) +D2l∞λ(f̄)(f̃∗ − f̄) = 0.
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Thus, Gλ(f̂ − f̃∗) = 1
2D

2l∞(f̄)(f̂ − f̄)− 1
2D

2ln(f̄)(f̂ − f̄), and

f̂ − f̃∗ = G−1
λ

[
1

2
D2l∞(f̄)(f̂ − f̄)− 1

2
D2ln(f̄)(f̂ − f̄)

]
. (A.35)

Lemma A.5. If n−1λ−(2a+3/2m)[log(1/λ)]r−1 → 0 and 1/2m < a < (2m− 3)/4m, we have for

any 0 ≤ c ≤ a+ 1/m,

‖f̂ − f̃∗‖2L2(c) = oP

{
‖f̃∗ − f̄‖2L2(c)

}
.

Proof. A sufficient condition for this lemma is that for any 1/(2m) < a < (2m − 3)/(4m)

and 0 ≤ c ≤ a+ 1/m,

‖f̂ − f̃∗‖2L2(c)

=



OP
{
n−1λ−(c+a+1/2m)[log(1/λ)]r∧(d−p)−1

}
·‖f̂ − f̄‖2L2(a+1/m), if 0 ≤ p < d,

OP

{
n−1λ

mr
1−mr (a+c+ r−2

2mr )
}
‖f̂ − f̄‖2L2(a+1/m), if p = d, r ≥ 3,

OP
{
n−1

}
‖f̂ − f̄‖L2(a+1/m), if p = d, r = 2,

OP

{
n−1λ

1−2m(a+c)
2m−2

}
‖f̂ − f̄‖L2(a+1/m), if p = d, r = 1.

(A.36)

This is because once (A.36) established, by letting c = a+ 1/m and under the assumption

n−1λ−(2a+3/2m)[log(1/λ)]r−1 → 0, we have

‖f̂ − f̃∗‖2L2(a+1/m) = oP(1)‖f̂ − f̄‖2L2(a+1/m).

By the triangle inequality, we have ‖f̃∗−f̄‖L2(a+1/m) ≥ ‖f̂−f̄‖L2(a+1/m)−‖f̂−f̃∗‖L2(a+1/m) =

[1−oP(1)]‖f̂− f̄‖L2(a+1/m), which implies ‖f̂− f̄‖2L2(a+1/m) = OP{‖f̃∗− f̄‖2L2(a+1/m)}. Thus,

by (A.36) and Lemma A.4, we complete the proof.
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We now are in the position to prove (A.36). For any 0 ≤ c ≤ a+ 1/m, by (A.35), we have

‖f̂ − f̃∗‖2L2(c)

≤
∑
−→ν ∈V

(
1 +

ρ−→ν
‖φ−→ν ‖2L2

)c
(1 + λρ−→ν )−2‖φ−→ν ‖2L2

· 1

p+ 1
·

[∑n
i=1(f̂ − f̄)(t

(0)
i )φ−→ν (t

(0)
i )

nσ2
0

−
∫

(f̂ − f̄)(t)φ−→ν (t)dΠ(0)(t)

σ2
0

]2

+

p∑
j=1

∑n
i=1

∂(f̂−f̄)
∂tj

(t
(j)
i )

∂φ−→ν
∂tj

(t
(j)
i )

nσ2
j

−

∫ ∂(f̂−f̄)(t)
∂tj

∂φ−→ν (t)
∂tj

dΠ(j)(t)

σ2
j

2
 .

(A.37)

For brevity, we denote f(t) = ∂f/∂t0. Let gj(t) = 1
σ2
j

∂(f̂−f̄)
∂tj

∂φ−→ν
∂tj

and g0(t) = 1
σ2

0
(f̂ − f̄)φ−→ν .

Hence, we can do the expansion on the basis {φ−→µ }−→µ∈Nd ,

gj(t) =
∑
−→µ∈Nd

Qj−→µφ−→µ (t), where Qj−→µ = 〈gj(t),φ−→µ (t)〉0. (A.38)

Unlike (A.22) with the multi-index −→ν ∈ V, we require −→µ ∈ Nd in (A.38) since now gj(t)is a

product function. By Cauchy-Schwarz inequality,

[
1

nσ2
j

n∑
i=1

∂(f̂ − f̄)

∂tj
(t

(j)
i )

∂φ−→ν
∂tj

(t
(j)
i )− 1

σ2
j

∫
∂(f̂ − f̄)(t)

∂tj

∂φ−→ν (t)

∂tj

]2

=

 ∑
−→µ∈Nd

Qj−→µ

(
1

n

n∑
i=1

φ−→µ (t
(j)
i )−

∫
φ−→µ (t)

)2

≤

 ∑
−→µ∈Nd

(Qj−→µ )2

(
1 +

ρ−→µ
‖φ−→µ ‖2L2

)a
‖φ−→µ ‖2L2


·

 ∑
−→µ∈Nd

(
1 +

ρ−→µ
‖φ−→µ ‖2L2

)−a
‖φ−→µ ‖−2

L2

(
1

n

n∑
i=1

φ−→µ (t
(j)
i )−

∫
φ−→µ (t)

)2
 .

(A.39)

By Lemma A.16, if a > 1/2m, then the sum of the first part in the right-hand side of (A.39)
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over j = 0, 1, . . . , p is bounded by

p∑
j=0

∑
−→µ∈Nd

(
1 +

ρ−→µ
‖φ−→µ ‖2L2

)a
‖φ−→µ ‖2L2

〈
∂(f̂ − f̄)

∂tj

∂φ−→ν
∂tj

,φ−→µ

〉2

0

. ‖f̂ − f̄‖2L2(a+1/m)

p∑
j=0

∑
−→µ∈Nd

(
1 +

ρ−→µ
‖φ−→µ ‖2L2

)a
‖φ−→µ ‖2L2

〈
∂φ−→ν
∂tj

,φ−→µ

〉2

0

. ‖f̂ − f̄‖2L2(a+1/m)

(
1 +

ρ−→ν
‖φ−→ν ‖2L2

)a
‖φ−→ν ‖2L2

1 +

p∑
j=1

ν2
j


� ‖f̂ − f̄‖2L2(a+1/m)

(
1 +

ρ−→ν
‖φ−→ν ‖2L2

)a
.

(A.40)

The second part in the right-hand side of (A.39) can be bounded by

E

 ∑
−→µ∈Nd

(
1 +

ρ−→µ
‖φ−→µ ‖2L2

)−a
‖φ−→µ ‖−2

L2

(
1

n

n∑
i=1

φ−→µ (t
(j)
i )−

∫
φ−→µ (t)

)2


≤ n−1
∑
−→µ∈Nd

(
1 +

ρ−→µ
‖φ−→µ ‖2L2

)−a
‖φ−→µ ‖−2

L2

∫
φ2−→µ (t)

� n−1
∑
−→µ∈Nd

(
1 +

ρ−→µ
‖φ−→µ ‖2L2

)−a
. n−1

∑
−→µ∈Nd

µ−2ma
1 · · ·µ−2ma

d

≤ n−1

 ∞∑
µ1=1

µ−2ma
1

d

� n−1,

(A.41)

where the third step uses ρ−→µ /‖φ−→µ ‖2L2
� µ2m

1 · · ·µ2m
d , and the fourth step holds for a > 1/2m.

Combing (A.40) and (A.41), we have that for a > 1/2m,

p∑
j=0

E

 ∑
−→µ∈Nd

Qj−→µ

(
1

n

n∑
i=1

φ−→µ (t
(j)
i )−

∫
φ−→µ (t)

)2

.
1

n
‖f̂ − f̄‖2L2(a+1/m)

(
1 +

ρ−→ν
‖φ−→ν ‖2L2

)a
.

(A.42)
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Put all together Therefore, if 1/2m < a < (2m− 3)/4m and 0 ≤ c ≤ a+ 1/m, (A.37) and

(A.42) imply that

E‖f̂ − f̃∗‖2L2(c) . n−1‖f̂ − f̄‖2L2(a+1/m)Na+c(λ).

By Lemma A.12 we complete the proof for (A.36) and this lemma.

Finally, we combine Lemma A.3, Lemma A.4 and Lemma A.5 to obtain the following

proposition.

Proposition A.6. Under the conditions of Theorem 2.3 and assuming the distributions Π(0) and

Π(j)s are known. If 1/2m < a < (2m− 3)/4m, m > 2, and n−1λ−(2a+3/2m)[log(1/λ)]r−1 → 0,

then for any c ∈ [0, a+ 1/m], the f̂ given by (2.10) satisfies, when 0 ≤ p < d,

‖f̂ − f0‖2L2(c) = O{λ1−cJ(f0)}+OP

{
n−1λ−(c+1/2m)[log(1/λ)]r∧(d−p)−1

}
,

and when p = d,

‖f̂ − f0‖2L2(c)

=



O

{
λ

(1−c)mr
mr−1 J(f0)

}
+OP

{
n−1λ

mr
1−mr (c+

r−2
2mr )

}
if r ≥ 3,

O
{
λ

2m
2m−1J(f0)

}
+OP

{
n−1 log(1/λ)

}
if r = 2, c = 0,

O

{
λ

2(1−c)m
2m−1 J(f0)

}
+OP

{
n−1λ

2mc
1−2m

}
if r = 2, c > 0,

O

{
λ

(1−c)m
m−1 J(f0)

}
+OP

{
n−1

}
if r = 1, c < 1

2m ,

O
{
λ

2m−1
2(m−1)J(f0)

}
+OP

{
n−1 log(1/λ)

}
if r = 1, c = 1

2m ,

O

{
λ

(1−c)m
m−1 J(f0)

}
+OP

{
n−1λ

1−2mc
2m−2

}
if r = 1, c > 1

2m .

Many results on the regularized estimator f̂ can be derived from Proposition A.6 includ-

ing Theorem 2.4. In fact, for p = d and r ≥ 3, by letting λ � n
− 2mr−2

(2m+1)r−2 , a = 1/2m+ ε for

some ε > 0 and c = 0, we have the condition n−1λ−(2a+3/2m)[log(1/λ)]r−1 → 0 is equivalent
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to

− 1 +
5(mr − 1)

2m2r +mr − 2m
< 0, (A.43)

and m > 2 is sufficient for (A.43). Thus, the conditions for Proposition A.6 are satisfied.

Similarly, we can verify that when p = d and r = 2, λ � [n(log n)]−(2m−1)/2m satisfies

the conditions for Proposition A.6. When p = d and r = 1, λ . n−(m−1)/m satisfies the

conditions for the above proposition. When 0 ≤ p ≤ d − r, λ � [n(log n)1−r]−2m/(2m+1)

satisfies the conditions for the above Proposition, as well as when d− r < p < d by letting

λ � [n(log n)1+p−d]−2m/(2m+1). This completes the proof for Theorem 2.4.

A.3.3 Proof of Corollary 2.5

This corollary can be directly derived from Proposition A.6 in the main text. Observe that

∫
X d1

[
∂df̂nλ(t)

∂t1 · · · ∂td
− ∂df0(t)

∂t1 · · · ∂td

]2

dt � ‖f̂nλ − f0‖L2(1/m).

If d− r < p < d, we let c = a = 1/m and λ � [n(log n)1+p−d]−2m/(2m+1) in Proposition A.6,

then the condition n−1λ−(2a+3/2m)[log(1/λ)]r−1 → 0 is equivalent to

− 1 + 7/(2m+ 1) < 0, (A.44)

and m > 3 is sufficient for (A.44). Thus the condition for Proposition A.6 are satisfied, and

Proposition A.6 yields the rate of convergence for ‖f̂nλ − f0‖L2(1/m) is

OP

(
[n(log n)1+p−d]−2(m−1)/(2m+1)

)
.

Similarly, if 0 ≤ p ≤ d − r, we let λ � [n(log n)1−r]−2m/(2m+1); if p = d and r ≥ 3, let

λ � n−2(mr−1)/(2mr+r−2); if p = d and r = 2, let λ � n−(2m−1)/2m; if p = d and r = 1,

let λ � n−(2m−2)/(2m−1), then the conditions for Proposition A.6 will be satisfied. This

completes the proof.
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A.4 Proofs of Results in Section 2.5: Estimating Partial

Derivatives

We now turn to prove the results for estimating partial derivatives under the random design.

A.4.1 Proof of Minimax Lower Bound: Theorem 2.6

The minimax lower bound will be established by using Fano’s lemma but the proof is

different from Section A.3.1 in construction details. It suffices to consider a special case that

noises ε(0) and ε(j)s are Gaussian with σ0 = 1 and σj = 1, and Π(0) and Π(j)s are uniform,

andH1 is generated by periodic kernels. For simplicity, we still use the notation introduced

in Section A.3.1. In the rest of this section, without less of generality, we consider estimating

∂f0/∂t1(·) with p ≥ 1.

First, the number of multi-indices −→ν = (ν1, . . . , νr) ∈ Nr satisfying

ν
(m−1)/m
1 ν2 · · · νr ≤ N

is c′0Nm/(m−1), where c′0 is some constant. Define a length-{c′0Nm/(m−1)} binary sequence

as

b = {b−→ν : ν
(m−1)/m
1 ν2 · · · νr ≤ N} ∈ {0, 1}c′0Nm/(m−1)

.

We write

hb(t1, . . . , tr) = N−m/2(m−1)
∑

ν
(m−1)/m
1 ν2···νr≤N

b−→ν
(
1 + ν2

1 + · · ·+ ν2
r

)−1/2

×
[
ν

(m−1)/m
1 ν2 · · · νr +N

]−m
ψν1(t1)ψν2(t2) · · ·ψνr(tr).
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where ψνk(tj)s are the trigonometric basis in (A.2). Note that

‖hb‖2H . N−m/(m−1)
∑

ν
(m−1)/m
1 ν2···νr≤N

b2−→ν ν
2
1

(
1 + ν2

1 + · · ·+ ν2
r

)−1

≤ N−m/(m−1)
∑

ν
(m−1)/m
1 ν2···νr≤N

ν2
1

(
1 + ν2

1 + · · ·+ ν2
r

)−1 � 1,

where the last step is by Lemma A.21 in Section A.6. Hence, hb(·) ∈ H.

Then, using the Varshamov-Gilbert bound, there exists a collection of binary sequences

{b(1), . . . , b(M)} ⊂ {0, 1}c′0Nm/(m−1) such that

M ≥ 2c
′
0N

m/(m−1)/8

and

H(b(l), b(q)) ≥ c′0Nm/(m−1)/8, ∀1 ≤ l < q ≤M .

For b(l), b(q) ∈ {0, 1}c′0Nm/(m−1) , we have

∥∥∥∥∂hb(l)∂t1
− ∂hb(q)

∂t1

∥∥∥∥2

L2

≥ c′N−m/(m−1)(2N)−2m
∑

ν
(m−1)/m
1 ν2···νr≤N

ν2
1(1 + ν2

1 + · · ·+ ν2
r )−1

[
b
(l)
−→ν − b

(q)
−→ν

]2

≥ c′N−m/(m−1)(2N)−2m
∑

c′17N/8≤ν(m−1)/m
1 ν2···νr≤N

ν2
1(1 + ν2

1 + · · ·+ ν2
r )−1

= c′2N
−2m

for some constant c′, c′1 and c′2, where the last step is by Lemma A.21 in Section A.6. On the
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other hand, for any b(l) ∈ {b(1), . . . , b(M)},

‖hb(l)‖
2
L2

+

p∑
j=1

‖∂hb(l)/∂tj‖
2
L2

≤ N−m/(m−1)N−2m
∑

ν
(m−1)/m
1 ν2···νr≤N

[
b
(l)
−→ν

]2
≤ c′3N−2m

with some constant c′3, where the last step is a corollary of Lemma A.21.

Last, by the same argument as (A.15), (E.15), (A.17) and (A.18) in the main text, we obtain

∞f̃ sup
f0∈H

P

{∥∥∥∥f̃(t)− ∂f0(t)

∂t1

∥∥∥∥2

L2

≥ 1

4
c′2N

−2m

}

≥ 1− 2c′3n(p+ 1)N−2m + log 2

c′0(log 2)Nm/(m−1)/8
.

Taking N = c′4n
(m−1)/(2m2−m) with an appropriately chosen c′4, we have

lim sup
n→∞

∞f̃ sup
f0∈H

P

{∥∥∥∥f̃(t)− ∂f0(t)

∂t1

∥∥∥∥2

L2

≥ C4n
−2(m−1)/(2m−1)

}
> 0,

where the constant factor C4 does not depend on n. This completes the proof.

A.4.2 Proof of Minimax Upper Bound: Theorem 2.7

We continue to use the notation and definitions such as the minimizer f̄ , the Fréchet deriva-

tives Dln(f)g, Dl∞(f)g, D2ln(f)gh, D2l∞(f)gh, the operator G−1
λ and most importantly f̃∗

in Section A.3.2. Unlike Section A.3.2, here we do not require Π(j)s are known nor f0 has

periodic boundaries on X d1 by some transformation. For brevity, we consider the random

errors to be centered and independent in this proof while the general error structure (2.4)

can be similarly studied as Section A.3.2.

By the assumption that Π(j)s are bounded away from 0 and infinity, we have for any

1 ≤ j ≤ p, ∫
X d1

[
∂f̂nλ(t)

∂tj
− ∂f0(t)

∂tj

]2

dt . ‖f̂ − f0‖20.
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Hence, the following lemma is sufficient for proving Theorem 2.7.

Lemma A.7. Under the conditions of Theorem 2.6, then f̂nλ given by (2.10) satisfies

lim
C′4→∞

lim sup
n→∞

sup
f0∈H

P
{
‖f̂ − f0‖20 > C ′4n

−2(m−1)/(2m−1)
}

= 0,

if the tuning parameter λ is chosen by λ � n−2(m−1)/(2m−1).

A lemma for the proof In H, the quadratic form 〈f , f〉0 is completely continuous with

respect to 〈f , f〉R. By the theory in Section 3.3 of Weinberger Weinberger (1974), there

exists an eigen-decomposition for the generalized Rayleigh quotient 〈f , f〉0/〈f , f〉R in H,

where we denote the eigenvalues are {(1 + γν)−1}ν≥1 and the corresponding eigenfunctions

are {(1 + γν)−1/2ξν}ν≥1. Thus, 〈ξν , ξµ〉R = (1 + γν)δνµ and 〈ξν , ξµ〉0 = δνµ, where δνµ is

Kronecker’s delta. The following lemma gives the decay rate of γν and its proof is given in

Section A.5.2.

Lemma A.8. By the well-ordering principle, the elements in the set


1 +

p∑
j=1

ν2
j

 d∏
k=1

ν−2m
k : −→ν ∈ V


can be ordered from large to small, where V is defined in (A.1). Denote by {γ′ν}ν≥1 the ordered

sequence. Then γν � (γ′ν)−1.

The proof of this lemma is delegated to Section A.5.2. The lemma bridges the gap

between the proof needed for Lemma A.7 and the proof for Theorem 2.4 shown in Section

A.3.2 since the eigenvalues ρ−→ν in Section A.3.2 satisfies ρ−→ν � (1 +
∑p

j=1 ν
2
j )−1

∏d
k=1 ν

2m
k .

Hence in later analysis, we can exchange the use of {γν , ν ∈ N} and {ρ−→ν : −→ν ∈ V} in some

asymptotic calculation settings.
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For any function f ∈ H, it can be decomposed as

f(t1, . . . , td) =
∑
ν∈N

fνξν(t1, . . . , td), where fν = 〈f(t), ξν(t)〉0,

and J(f) = 〈f , f〉R − 〈f , f〉0 =
∑

ν∈N γνf
2
ν .

First, we present an upper bound of the deterministic error (f̄ − f0).

Lemma A.9. The deterministic error satisfies

‖f̄ − f0‖20 = O {λJ(f0)} .

Proof. For any 0 ≤ a ≤ 1,

‖f̄ − f0‖20 =
∞∑
ν=1

(
λγν

1 + λγν

)2

(f0
ν )2

≤ λ2 sup
ν∈N

γν
(1 + λγν)2

∞∑
ν=1

γν(f0
ν )2

≤ λ2J(f0) sup
x>0

x−1

(1 + λx−1)2

� λ2J(f0)λ−1 = λJ(f0),

where the fourth step is achieved when x � λ.

Second, we show an upper bound of (f̃∗− f̄), which accounts for a part of the stochastic

error.

Lemma A.10. For 1 ≤ p ≤ d, then if m > 5/4, we have

‖f̃∗ − f̄‖20 = OP

{
n−1λ−1/(2m−2)

}
.

Proof. As shown in (A.34), E[1
2Dln,λ(f̄)g]2 = O{n−1‖g‖20}. By the definition ofG−1

λ in (A.29),

‖G−1
λ g‖20 =

∞∑
ν=1

(1 + λγν)−2 〈g, ξν〉2R, ∀g ∈ H.
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Thus,

E‖f̃∗ − f̄‖20 =
1

4
E

[ ∞∑
ν=1

(1 + λγν)−2〈Dlnλ(f̄), ξν〉2R

]

≤
∞∑
ν=1

(1 + λγν)−2E
[

1

2
Dlnλ(f̄)ξν

]2

. n−1
∞∑
ν=1

(1 + λγν)−2

� n−1M0(λ),

where the last step is because of Lemma A.8, and Ma(λ) for 0 ≤ a ≤ 1 is defined in Lemma

A.13 of Section A.5.4. Hence, we complete the proof by using Lemma A.13.

Then, we give an upper bound of (f̂ − f̃∗), which accounts for another part of the

stochastic error.

Lemma A.11. If n−1λ−[a+ma/(m−1)+3/2m] [log(1/λ)]r−1 → 0 and 1/2m < a < (2m − 3)/2m,

we have

‖f̂ − f̃∗‖20 = oP

{
n−1λ−1/(2m−2)

}
.
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Proof. Observe that

E‖f̂ − f̃‖20 � E
∑
−→ν ∈V

(1 + λγ−→ν )−2

[
1

2
D2l∞(f̄)(f̂ − f̄)φ−→ν −

1

2
D2ln(f̄)(f̂ − f̄)φ−→ν

]2

≤ E
∑
−→ν ∈V

(1 + λγ−→ν )−2

× 1

p+ 1


[

1

nσ2
0

n∑
i=1

(f̂ − f̄)(t
(0)
i )φ−→ν (t

(0)
i )− 1

σ2
0

∫
(f̂ − f̄)(t)φ−→ν (t)Π(0)(t)

]2

+

p∑
j=1

[
1

nσ2
j

n∑
i=1

∂(f̂ − f̄)

∂tj
(t

(0)
i )

∂φ−→ν
∂tj

(t
(0)
i )− 1

σ2
j

∫
∂(f̂ − f̄)(t)

∂tj

∂φ−→ν (t)

∂tj
Π(0)(t)

]2


. n−1‖f̂ − f̄‖2L2(a+1/m)

∑
−→ν ∈V

(
1 +

ρ−→ν
‖φ−→ν ‖2L2

)a
(1 + λρ−→ν )−2

= n−1‖f̂ − f̄‖2L2(a+1/m)Ma(λ)

≤
{
n−1λ−[a+3/2m+ma/(m−1)][log(1/λ)]r−1

}
n−1λ−1/(2m−2),

where the first step exchange the use of {γν , ν ∈ N} and {ρ−→ν : −→ν ∈ V}, the third step is by

(A.42), and the last step is Lemma A.4, Lemma A.5 and Lemma A.13 in Section A.5.4. The

above inequality holds for any 1/2m < a < (2m− 3)/2m. This completes the proof.

Last, we combine Lemma A.9, Lemma A.10 and Lemma A.11. By lettingλ � n−2(m−1)/(2m−1)

and a = 1/2m+ ε for some ε > 0, then

n−1λ−(a+3/2m+ma/(m−1))[log(1/λ)]r−1 → 0

holds as long as m > 2. Therefore, we conclude that for any 1 ≤ p ≤ d and m > 2,

‖f̂ − f0‖20 = O {λJ(f0)}+OP

{
n−1λ−1/(2m−2)

}
+ oP

{
n−1λ−1/(2m−2)

}
= OP

{
n−2(m−1)/(2m−1)

}
.

This completes the proof for Lemma A.7 and the proof for Theorem 2.7 .
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A.5 Key Lemmas

Now we prove and show some keys lemmas used for the proofs in Section A.3, Section A.2

and Section A.4. We remind the reader that the proofs in this section rely on some lemmas

to be stated later in Section A.6.

A.5.1 Proof of Lemma A.2

The norm ‖ · ‖R is equivalent to ‖ · ‖H inH.

Proof. Observe that for any g ∈ H, by the assumption that Π(0) and Π(j)s are bounded away

from 0 and infinity, we have

1

p+ 1

 1

σ2
0

∫
g2(t)Π(0)(t) +

p∑
j=1

1

σ2
j

∫ {
∂g(t)

∂tj

}2

Π(j)(t)


≤ c1

∫ g2(t) +

p∑
j=1

∫ {
∂g(t)

∂tj

}2
 ≤ c2 · c2d

K ‖g‖2H,

for some constant c1 and c2, where the last step is by Lemma A.14. Hence

‖g‖2R ≤ (c2c
2d
K + 1)‖g‖2H. (A.45)

One the other hand, for any g ∈ H we can do the orthogonal decomposition g = g0 + g1

where 〈g0, g1〉H = 0, g0 is in the null space of J(·) and g1 is in the orthogonal space of the

null space of J(·) inH. Since the null space of J(·) has a finite basis which forms a positive

definite kernel matrix, we assume the minimal eigenvalue of the kernel matrix is µ′min > 0.

Then there exists a constant c3 > 0 such that

‖g0‖2R ≥ c3‖g0‖2L2
≥ c3µ

′
min‖g0‖2H. (A.46)
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For g1, we have ‖g1‖2R ≥ J(g1) = ‖g1‖2H. Thus, for any g ∈ H,

‖g‖2R ≥ c3

∫ (
g0 + g1

)2
+ ‖g1‖2H

≥ c3

{
‖g0‖2L2

+
1 + c3

c3
‖g1‖2L2

− 2‖g0‖L2‖g1‖L2

}
≥ c3

1 + c3
‖g0‖2L2

,

where the second inequality is by ‖g1‖2H ≥ ‖g1‖2L2
. Then by (A.46), we obtain ‖g‖2R ≥

(1 + c3)−1c3µ
′
min‖g0‖2H. Together with ‖g‖2R ≥ J(g1) = ‖g1‖2H, we have

‖g‖2R ≥
(

1 +
1 + c3

c3µ′min

)−1

‖g‖2H. (A.47)

Combining (A.45) and (A.47) completes the proof.

A.5.2 Proof of Lemma A.8

Proof. When d = 1, this problem is solved in Cox (1988). Their method is finding an

orthonormal basis in L2(X1) to simultaneously diagonalize 〈f , f〉0 and 〈f , f〉R, and then

obtain the decay rate of γν . However, their method cannot be applied to our case when

2 ≤ p ≤ d. Alternatively, we use the Courant-Fischer-Weyl min-max principle to prove the

lemma.

Note that for any f ∈ H, the norm ‖f‖20 is equivalent to

∫
f2 +

p∑
j=1

∫ (
∂f(t)

∂tj

)2

.

From Lemma A.2, the norm ‖ · ‖2R is equivalent to ‖ · ‖2H. Now by applying the mapping

principle [see, e.g., Theorem 3.8.1 in Weinberger (1974)], we may replace 〈f , f〉0 by
∫
f2 +∑p

j=1

∫
(∂f/∂tj)

2 and 〈f , f〉R by ‖f‖2H, and the resulting eigenvalues {γ′′ν}ν≥1 of {
∫
f2 +∑p

j=1

∫
(∂f/∂tj)

2}/‖f‖2H satisfy

γ′′ν � (1 + γν)−1. (A.48)
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Thus, we only need to study {γ′′ν}ν≥1. Since f ∈ H has the tensor product structure, we

denote by λ−→ν [{
∫
f2 +

∑p
j=1

∫
(∂f/∂tj)

2}/〈f , f〉H] the −→ν th eigenvalue of the generalized

Rayleigh quotient, where −→ν ∈ V and V is defined in (A.1).

Second, by the assumption that λν � ν−2m,H1 is equivalent to a Sobolev spaceWm
2 (X1)

and the trigonometric functions {ψν}ν≥1 in (A.2) form an eigenfunction basis ofH1 up to a

m-dimensional linear space of polynomials of order less than m. See, for example, Wahba

Wahba (1990). Denote the latter linear space of polynomials by G. Denote by Fµ and F⊥µ

the linear spaces spanned by {ψν : 1 ≤ ν ≤ µ} and {ψν : ν ≥ µ+ 1}, respectively. For any
−→ν = (ν1, ν2, . . . , νd) ∈ V, by the Courant-Fischer-Weyl min-max principle,

λ(ν1−m)∨0,(ν2−m)∨0,...,(νd−m)∨0


∫
f2 +

p∑
j=1

∫ (
∂f

∂tj

)2

/
〈f , f〉H


≥ min

f∈H∩⊗dk=1{Fνk∩G⊥}


∫
f2 +

p∑
j=1

∫ (
∂f

∂tj

)2

/
〈f , f〉H


≥ c1

1 +

p∑
j=1

ν2
j

 d∏
k=1

ν−2m
k

for some constant c1 > 0, where the last inequality is by the fact that dψ2ν−1(t)/dt =

2Πνψ2ν(t) and dψ2ν(t)/dt = −2Πνψ2ν−1(t). On the other hand,

λν1+m,ν2+m,...,νd+m


∫
f2 +

p∑
j=1

∫ (
∂f

∂tj

)2

/
〈f , f〉H


≤ max

f∈H∩⊗d{F⊥k−1∩G⊥}


∫
f2 +

p∑
j=1

∫ (
∂f

∂tj

)2

/
〈f , f〉H


≤ c2

1 +

p∑
j=1

ν2
j

 d∏
k=1

ν−2m
k
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for some constant c2 > 0. Thus, for any −→ν ∈ V,

λ−→ν


∫
f2 +

p∑
j=1

∫ (
∂f

∂tj

)2

/
〈f , f〉H

 �
1 +

p∑
j=1

ν2
j

 d∏
k=1

ν−2m
k .

This implies γ′ν = γ′′ν , where γ′ν is defined in Lemma A.8. Together with (A.48), we complete

the proof.

A.5.3 Definition of Na(λ) and Its Upper Bound

Lemma A.12. Recall that V as a family of multi-index −→ν is defined in (A.1). We let

Na(λ) =
∑
−→ν ∈V

(∏d
k=1 ν

2m
k

)a (
1 +

∑p
j=1 ν

2
j

)
(

1 +
∑p

j=1 ν
2
j + λ

∏d
k=1 ν

2m
k

)2 . (A.49)

Then, when 0 ≤ p < d, we have for any 0 ≤ a < 1− 1/2m,

Na(λ) = O
{
λ−a−1/2m [log(1/λ)](d−p)∧r−1

}
,

and when p = d, we have for any 0 ≤ a ≤ 1,

Na(λ) =



O
{
λ

mr
1−mr (a+ r−2

2mr )
}

, if r ≥ 3;

O {log(1/λ)} , if r = 2, a = 0; O {1} , if r = 2, 0 < a ≤ 1;

O {1} , if r = 1, a < 1
2m ; O {log(1/λ)} , if r = 1, a = 1

2m ;

O
{
λ

1−2ma
2m−2

}
, if r = 1, a > 1

2m .

Proof. We will discuss three separate cases for 0 ≤ p ≤ d− r, d− r < p < d and p = d.

First, consider 0 ≤ p ≤ d− r. Since −→ν ∈ V, there are at most r of ν1, . . . , νd not equal to

1, which implies that the number of combinations of non-1 indices being summed in (A.49)

is no greater than C1
d + C2

d + · · ·+ Crd <∞. Due to the appearance of (1 +
∑p

j=1 ν
2
j ) in the

denominator of (A.49), the largest terms of the summation (A.49) over −→ν ∈ V correspond
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to the combinations of r indices where as few ν1, . . . , νp being summed as possible, which

is the indices −→ν = (νk1 , νk2 , . . . , νkr)
> ∈ Nr with k1, k2, . . . , kr > p. Thus, by the integral

approximation,

Na(λ)

�
∞∑

νp+1=1

· · ·
∞∑

νp+r−1=1

∞∑
νp+r=1

∏p+r
k=p+1 ν

2ma
k(

1 + λ
∏p+r
k=p+1 ν

2m
k

)2

�
∫ ∞

1

∫ ∞
1
· · ·
∫ ∞

1

(
1 + λxbp+1 · · ·xbp+r−1x

b
p+r

)−2
dxp+1 · · · dxp+r−1dxp+r,

where b = 2m/(2ma + 1). Let zk = xp+1xp+2 · · ·xk for k = p + 1, . . . , p + r. By using the

change of variables to replace (xp+1, . . . ,xp+r) by (zp+1, . . . , zp+r) and zp+r by x = λ1/bzp+r,

Na(λ)

�
∫ ∞

1

∫ zp+r

1
· · ·
∫ zp+2

1

(
1 + λzbp+r

)−2
z−1
p+1 · · · z

−1
p+r−1dzp+1 · · · dzp+r−1dzp+r

�
∫ ∞

1
(1 + λzbp+r)

−2(log zp+r)
r−1dzp+r

� λ−1/b

∫ ∞
λ1/b

(1 + xb)−2
(
log x− b−1 log λ

)r−1
dx

� λ−a−1/2m [log(1/λ)]r−1 ,

where the last step follows from the fact that 2b > 1 for any 0 ≤ a < (2m− 1)/(2m).

Second, we consider d− r < p < d. As discussed in the previous case, the number of

combinations of non-1 indices being summed is finite, and the largest terms of the summation

(A.49) over −→ν ∈ V correspond to the indices −→ν = (νk1 , . . . , νkr+p−d , νp+1, . . . , νd)
> ∈ Nr,
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where the indices k1, . . . , kr+p−d ≤ p. Thus, by the integral approximation,

Na(λ)

�
∞∑

vd−r+1=1

· · ·
∞∑
vd=1

∏d
k=d−r+1 ν

2ma
k

(
1 +

∑p
k=d−r+1 ν

2
k

)(
1 +

∑p
k=d−r+1 ν

2
k + λ

∏d
k=d−r+1 ν

2m
k

)2

�
∫ ∞

1
· · ·
∫ ∞

1

1 + x
b/m
d−r+1 + · · ·+ x

b/m
p(

1 + x
b/m
d−r+1 + · · ·+ x

b/m
p + λxbd−r+1 · · ·xbd

)2dxd−r+1 · · · dxd,

where b = 2m/(2ma+ 1). Set zk = xp+1xp+2 · · ·xk for k = p+ 1, . . . , d. By using the change

the variables to replace (xp+1, . . . ,xd) by (zp+1, . . . , zd), and zd by x = λ1/bzd, and x by

u = xd−r+1 · · ·xp · x. We have

Na(λ) �
∫ ∞

1
· · ·
∫ ∞

1

[∫ ∞
1

∫ zd

1
· · ·
∫ zp+2

1

x
b/m
d−r+1

(
1 + x

b/m
d−r+1 + · · ·xb/mp + λxbd−r+1 · · ·xbpzbd

)−2

·z−1
p+1 · · · z

−1
d−1dzp+1 · · · dzd−1dzd

]
dxd−r+1 · · · dxp

� λ−1/b

∫ ∞
1
· · ·
∫ ∞

1

[∫ ∞
λ1/b

x
b/m
d−r+1(1 + x

b/m
d−r+1 + · · ·xb/mp + xbd−r+1 · · ·xbpxb)−2

·
(
log x− b−1 log λ

)d−p−1
dx

]
dxd−r+1 · · · dxp

. λ−1/b

∫ ∞
λ1/b

[∫ ∞
1
· · ·
∫ ∞

1

x
b/m
d−r+1

(
1 + x

b/m
d−r+1 + · · ·+ xb/mp + ub

)−2
x−1
d−r+1 · · ·x

−1
p

·
(
log u− log xd−r+1 − · · · − log xp − b−1 log λ

)d−p−1
dxd−r+1 · · · dxp

]
du.

By Lemma A.15, then for any 0 < τ < 1,

(
1 + x

b/m
d−r+1 + x

b/m
d−r+2 + · · ·+ xb/mp + ub

)−2

.
(

1 + x
b/m
d−r+2 + · · ·+ xb/mp + ub

)−1+τ
·
(
x
b/m
d−r+1

)−(1+τ)
.
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Together with the fact
∫∞

1 t−1−τ (log t)kdt <∞ for any k <∞, we have

Na(λ) . λ−1/b

∫ ∞
λ1/b

[∫ ∞
1
· · ·
∫ ∞

1(
1 + x

b/m
d−r+2 + · · ·+ xb/mp + ub

)−1+τ
x−1
d−r+2 · · ·x

−1
p

·
(
log u− log xd−r+2 − · · · − log xp − b−1 log λ

)d−p−1
dxd−r+2 · · · dxp

]
du.

Continuing this procedure gives

Na(λ) . λ−1/b

∫ ∞
λ1/b

(
1 + ub

)−(1−τ)p−d+r (
log u− b−1 log λ

)d−p−1
du.

Since for any ε > 0 and d− r < p < d, we know if τ < ε/d,

(1− τ)p−d+r ≥ 1− τ(p− d+ r) ≥ 1− τ(d− 1) > 1− ε.

Hence, for any 0 ≤ a < (2m− 1)/(2m), there exists τ such that (1− τ)p−d+r > a+ 1/(2m) =

1/b. Therefore,

Na(λ) . λ−1/b [log(1/λ)]d−p−1 = λ−a−1/2m [log(1/λ)]d−p−1 .

Finally, we consider p = d. As argued in the previous two cases, the number of combina-

tions of non-1 indices being summed is finite. Now since p = d, by the symmetry of indices,

the largest terms of the summation (A.49) over −→ν ∈ V correspond to any combinations of r
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non-1 indices, for example, the first r indices. Thus, by the integral approximation,

Na(λ)

�
∞∑
ν1=1

· · ·
∞∑

νr−1=1

∞∑
νr=1

∏r
k=1 ν

2ma
k

(
1 +

∑r
k=1 ν

2
k

)(
1 +

∑r
k=1 ν

2
k + λ

∏r
k=1 ν

2m
k

)2
�
∫ ∞

1

∫ ∞
1
· · ·
∫ ∞

1

1 + x
b/m
1 + · · ·+ x

b/m
r−1 + x

b/m
r(

1 + x
b/m
1 + · · ·+ x

b/m
r + λxb1 · · ·xbr−1x

b
r

)2

dx1 · · · dxr−1dxr

where b = 2m/(2ma+ 1). Observe that if x1 · · ·xr−1xr . λmr/[b(1−mr)], then

λxb1 · · ·xbr−1x
b
r . x

b/m
1 + · · ·+ x

b/m
r−1 + xb/mr .

By Lemma A.19 with β = 0 and α = b/m ≤ 2, we have

Na(λ) �
∫
x1···xr−1xr.λmr/[b(1−mr)](

1 + x
b/m
1 + · · ·+ x

b/m
r−1 + xb/mr

)−1
dx1 · · · dxr−1dxr

�



λ
mr

1−mr (a+ r−2
2mr ), if r ≥ 3;

log(1/λ), if r = 2, a = 0; λ
2ma

1−2m , if r = 2, 0 < a ≤ 1;

1, if r = 1, a < 1
2m ; log(1/λ), if r = 1, a = 1

2m ;

λ
1−2ma
2m−2 , if r = 1, a > 1

2m .

(A.50)

On the other hand, if λmr/[b(1−mr)](x1 · · ·xr−1xr)
−1 = o(1), without less of generality, we



156

assume xr = min{x1, · · · ,xr}. Let z = λ1/bx1 · · ·xr−1xr. By changing xr to z, we have

Na(λ) �
∫
λmr/[b(1−mr)](x1···xr−1xr)−1=o(1)(

1 + x
b/m
1 + · · ·+ xb/mr + λxb1 · · ·xbr−1x

b
r

)−1
dx1 · · · dxr−1dxr

. λ−1/b

∫
λ1/[b(1−mr)]z−1=o(1),λ−(r−1)/(br)z(r−1)/r≤x1···xr−1≤λ−1/bz(

1 + x
b/m
1 + · · ·+ x

b/m
r−1 + zb

)−1
x−1

1 · · ·x
−1
r−1dx1 · · · dxr−1dz

. λ−1/b

∫
λ1/[b(1−mr)]z−1=o(1)

[∫
λ−(r−1)/(br)z(r−1)/r≤x1···xr−1≤λ−1/bz(

x
b/m
1 + · · ·+ x

b/m
r−1

)−τ
x−1

1 · · ·x
−1
r−1dx1 · · · dxr−1

]
zb(−1+τ)dz

. λ−1/b

∫
λ1/[b(1−mr)]z−1=o(1)

λτ/(mr)z−τb/(mr) · zb(−1+τ)dz

= o
[
λ

mr
1−mr (a+ r−2

2mr )
]

,

(A.51)

where the third step follows from the Lemma A.20 in Section A.6 for β = −1 and α = τb/m.

Combining (A.50) and (A.51), we complete the proof for p = d and this lemma.

A.5.4 Definition of Ma(λ) and Its Upper Bound

Lemma A.13. Recall that V as a family of multi-index −→ν is defined in (A.1). We let

Ma(λ) =
∑
−→ν ∈V

(∏d
k=1 ν

2m
k

)a
[
1 + λ

∏d
k=1 ν

2m
k (1 +

∑p
j=1 ν

2
j )−1

]2 .

When m > 5/(4− 2a), we have for any 1 ≤ p ≤ d and 0 ≤ a ≤ 1,

Ma(λ) = O
{
λ−(2ma+1)/(2m−2)

}
.
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Proof. We first show for any 1 ≤ s ≤ r,

∞∑
ν1=1

· · ·
∞∑
νr=1

∏r
k=1 ν

2ma
k[

1 + λ
∏r
k=1 ν

2m
k (1 +

∑s
j=1 ν

2
j )−1

]2

�
∞∑
ν1=1

· · ·
∞∑
νr=1

∏r
k=1 ν

2ma
k[

1 + λ
∏r
k=1 ν

2m
k (1 + ν2

s )−1
]2 .

(A.52)

Note that in (A.52), the left-hand side is greater than the right-hand side up to some constant.

On the contrary, observe that

∞∑
ν1=1

· · ·
∞∑
νr=1

∏r
k=1 ν

2ma
k[

1 + λ
∏r
k=1 ν

2m
k (1 +

∑s
j=1 ν

2
j )−1

]2

�
∞∑
ν1=1

· · ·
∞∑
νr=1

s∑
i=1

(1 + ν2
i )2
∏r
k=1 ν

2ma
k(

1 +
∑s

j=1 ν
2
j + λ

∏r
k=1 ν

2m
k

)2

�
∞∑
ν1=1

· · ·
∞∑
νr=1

(1 + ν2
s )2
∏r
k=1 ν

2ma
k(

1 +
∑s

j=1 ν
2
j + λ

∏r
k=1 ν

2m
k

)2

≤
∞∑
ν1=1

· · ·
∞∑
νr=1

∏r
k=1 ν

2ma
k[

1 + λ
∏r
k=1 ν

2m
k (1 + ν2

s )−1
]2 .

This proves (A.52). Moreover, note that

∞∑
ν1=1

· · ·
∞∑
νr=1

∏r
k=1 ν

2ma
k[

1 + λ
∏r
k=1 ν

2m
k (1 + ν2

s )−1
]2

≥
∞∑
ν1=1

· · ·
∞∑
νr=1

∏r
k=1 ν

2ma
k(

1 + λ
∏r
k=1 ν

2m
k

)2 .

(A.53)

Now return to the proof of the lemma. Since −→ν ∈ V and 1 ≤ p ≤ d, by (A.52), (A.53) and

the integral approximation, we have

Ma(λ) �
∞∑
ν1=1

· · ·
∞∑
νr=1

∏r
k=1 ν

2ma
k[

1 + λ
∏r
k=1 ν

2m
k (1 + ν2

r )−1
]2

�
∫ ∞

1

∫ ∞
1
· · ·
∫ ∞

1

[
1 + λxb1 · · ·xbr−1x

b(m−1)/m
r

]−2
dx1 · · · dxr−1dxr,
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where b = 2m/(2ma + 1). Let z = λm/[b(m−1)]x
m/(m−1)
1 · · ·xm/(m−1)

r−1 xr and change xr to z.

Then,

Ma(λ)

� λ−m/[b(m−1)]

∫ ∞
λ−m/[b(m−1)]

∫ ∞
1
· · ·
∫ ∞

1[
1 + zb(m−1)/m

]−2
x
−m/(m−1)
1 · · ·x−m/(m−1)

d−1 dx1 · · · dxd−1dz

� λ−m/[b(m−1)]

∫ ∞
λ−m/[b(m−1)]

[
1 + zb(m−1)/m

]−2
dz,

≤ λ−m/[b(m−1)]

∫ ∞
0

[
1 + zb(m−1)/m

]−2
dz

= O
{
λ−(2ma+1)/(2m−2)

}
,

where the second step is because m/(m − 1) > 1 and the last step holds for any m >

5/(4− 2a).

A.5.5 Boundedness of Functions in the RKHSH

Lemma A.14. For any g ∈ H, there exists a constant cK which is independent of g such that

sup
t∈X d1

|g(t)| ≤ cdK‖g‖H,

and

sup
t∈X d1

|∂g/∂tj(t)| ≤ cdK‖g‖H, ∀1 ≤ j ≤ d.

Proof. Since we assume that K is continuous in the compact domain X1 and satisfies (2.9),

there exists some constant cK such that

sup
t∈X1

|K(t, t)| ≤ cK and sup
t∈X1

∣∣∣∣∂2K(t, t)

∂t∂t′

∣∣∣∣ ≤ cK .
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This implies for any t ∈ X d1 ,

∥∥∥∥∂Kd(t, ·)
∂tj

∥∥∥∥2

H
=

∣∣∣∣∣∂2K(tj , tj)

∂tj∂t′j

∣∣∣∣∣∏
l 6=j
|K(tl, tl)| ≤ cdK .

Thus, for any g ∈ H, by the Cauchy-Schwarz inequality,

sup
t∈X d1

∣∣∣∣∂g(t)

∂tj

∣∣∣∣ ≤ sup
t∈X d1

∥∥∥∥∂Kd(t, ·)
∂tj

∥∥∥∥
H
‖g‖H ≤ cdK‖g‖H, ∀1 ≤ j ≤ d.

Similarly, we can show that supt |g(t)| ≤ cdK‖g‖H.

A.6 Auxiliary Technical Lemmas

Lemma A.15 (A variant of Young’s inequality). For any a, b ≥ 0 and 0 < τ < 1, we have

(a+ b)−2 ≤ (1− τ)1−τ (1 + τ)1+τ

4
a−(1+τ)b−(1−τ). (A.54)

When τ is small, the coefficient (1− τ)1−τ (1 + τ)1+τ/4 is close to 1/4.

Proof. To prove (A.54), it is sufficient to show

a+ b ≥ 2(1− τ)−(1−τ)/2(1 + τ)−(1+τ)/2a(1+τ)/2b(1−τ)/2.

Letting p = 2/(1 + τ), a′ = a1/p, b′ = [b/(p− 1)](p−1)/p, the above formula is equivalent to

a′

p
+

(b′)p/(p−1)

p/(p− 1)
≥ a′b′,

which holds by Young’s inequality. This completes the proof.

Lemma A.16 (Bounding the norm of product of functions). For any f , g ∈ ⊗dH1, a > 1/2m,
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and 1 ≤ p ≤ d, we have that

∑
−→ν ∈Nd

(
1 +

ρ−→ν
‖φ−→ν ‖2L2

)a
‖φ−→ν ‖2L2

〈
∂f(t)

∂tj

∂g(t)

∂tj
,φ−→ν (t)

〉2

0

. ‖f‖2L2(a+1/m)

 ∑
−→ν ∈Nd

(
1 +

ρ−→ν
‖φ−→ν ‖2L2

)a
‖φ−→ν ‖2L2

〈
∂g(t)

∂tj
,φ−→ν (t)

〉2

0

 .

Proof. Recall that {ψν(t)}ν≥1 is the trigonometrical basis on L2(X1) and φ−→ν (·) is defined in

(A.21). Write ψ−→ν (t) = ψν1(t1)ψν2(t2) · · ·ψνd(td). Note that

∑
−→ν ∈Nd

(
1 +

ρ−→ν
‖φ−→ν ‖2L2

)a
‖φ−→ν ‖2L2

〈f ,φ−→ν 〉20 =
∑
−→ν ∈Nd

(
1 +

ρ−→ν
‖φ−→ν ‖2L2

)a(∫
X d1
fψ−→ν

)2

.

By Theorem A.2.2 and Corollary A.2.1 in Lin (1998), if a > 1/2m, then for any f , g ∈ ⊗dH1,

∑
−→ν ∈Nd

(
1 +

ρ−→ν
‖φ−→ν ‖2L2

)a(∫
X d1
fgψ−→ν

)2

.

 ∑
−→ν ∈Nd

(
1 +

ρ−→ν
‖φ−→ν ‖2L2

)a(∫
X d1
fψ−→ν

)2
 ∑
−→ν ∈Nd

(
1 +

ρ−→ν
‖φ−→ν ‖2L2

)a(∫
X d1
gψ−→ν

)2
 .
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Thus,

∑
−→ν ∈Nd

(
1 +

ρ−→ν
‖φ−→ν ‖2L2

)a
‖φ−→ν ‖2L2

〈
∂f(t)

∂tj

∂g(t)

∂tj
,φ−→ν (t)

〉2

0

=
∑
−→ν ∈Nd

(
1 +

ρ−→ν
‖φ−→ν ‖2L2

)a(∫
X d1

∂f(t)

∂tj

∂g(t)

∂tj
ψ−→ν (t)

)2

.

 ∑
−→ν ∈Nd

ν2
j

(
1 +

d∏
k=1

ν2m
k

)a(∫
X d1
f(t)ψ−→ν (t)

)2


×

 ∑
−→ν ∈Nd

(
1 +

ρ−→ν
‖φ−→ν ‖2L2

)a(∫
X d1

∂g(t)

∂tj
ψ−→ν (t)

)2


≤

 ∑
−→ν ∈Nd

[
1 +

d∏
k=1

ν2m
k

]a+ 1
m
(∫
X d1
f(t)ψ−→ν (t)

)2


×

 ∑
−→ν ∈Nd

(
1 +

ρ−→ν
‖φ−→ν ‖2L2

)a(∫
X d1

∂g(t)

∂tj
ψ−→ν (t)

)2


� ‖f‖2L2(a+1/m)

 ∑
−→ν ∈Nd

(
1 +

ρ−→ν
‖φ−→ν ‖2L2

)a(∫
X d1

∂g(t)

∂tj
ψ−→ν (t)

)2
 .

This completes the proof.

Lemma A.17 (Inverse transformation). Assume that design points t(j)s have known distribution

Π(j)s which are supported on X d1 . Then, there exists a linear transformation to data (t(j),Y (j))

such that transformed design points x(j)s are independently uniformly distributed on X d1 and the

transformed responses Z(j)s are the jth first-order partial derivative data of some function.

Proof. As remarked after (2.12), the design under our consideration has the following struc-

ture: different types design points can be grouped to some sets, where within the sets

different types design points are drawn identically and across the sets the design points are

drawn independently. We give the proof for two cases as follows for illustration.

First, we consider that function observations and partial derivatives data share a common

design, i.e., t
(j)
i = t

(k)
i , ∀1 ≤ i ≤ n, 0 ≤ j < k ≤ p. Write t(j) = (t

(j)
1 , . . . , t

(j)
d ) ∈ X d1 . We
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allow covariates of t(j) can be correlated, that is the density of t(j) is decomposed as:

dΠ(j)(t1, . . . , td) = dΠ
(j)
d (td)dΠ

(j)
d−1(td−1|td) · · · dΠ

(j)
1 (t1|td, td−1, . . . , t2).

Now let
x

(j)
d = Π

(j)
d (t

(j)
d ), x

(j)
d−1 = Π

(j)
d−1(t

(j)
d−1|t

(j)
d ), . . . ,

x
(j)
1 = Π

(j)
1 (t

(j)
1 |t

(j)
d , t

(j)
d−1 . . . , t

(j)
2 ).

Then, x(j) = (x
(j)
1 ,x

(j)
2 , . . . ,x

(j)
d ) is uniformly distributed on X d1 . Define that

h(x1,x2, . . . ,xd)

= f({Π(j)
1 }
−1(x1|xd, . . . ,x2), {Π(j)

2 }
−1(x2|xd, . . . ,x3), . . . , {Π(j)

d }
−1(xd)).

Thus,

∂h(x)

∂xj
=

j∑
k=1

∂f(t)

∂tk
· ∂tk
∂xj

=

j−1∑
k=1

∂f

∂tk
· ∂tk
∂xj

+
∂f

∂tj
· 1

dΠ
(j)
j (tj |td, . . . , tj+1)

.

With the design x(j) defined, we transform the responses Y (j)s to Z(j)s by letting Z(0) = Y (0)

and for any j = 1, . . . , p,

Z(j) =

j−1∑
k=1

Y (k)
∂t

(j)
k (x

(j)
d ,x

(j)
d−1 . . . ,x

(j)
k )

∂xj
+

Y (j)

dΠ
(j)
j (t

(j)
j |t

(j)
d , . . . , t

(j)
j+1)

.

Write

σ̃2
j =

j−1∑
k=1

σ2
k

[
∂t

(j)
k

∂xj
(x

(j)
d ,x

(j)
d−1, . . . ,x

(j)
k )

]2

+
σ2
j

[dΠ
(j)
j (t

(j)
j |t

(j)
d , . . . , t

(j)
j+1)]2

.

Then, it is clear that Z(j) = ∂h/∂xj(x
(j)) + ε̃(j), where the errors ε̃(j)s are independent

centered noises with variance σ̃2
j s.

Second, we consider that not all types of function observations and partial derivatives

data share a common design, i.e., ∃0 ≤ j 6= k ≤ p and 1 ≤ i ≤ n such that t
(j)
i 6= t

(k)
i .

We require the c(j)ovariates of each t(j) are independent, that is the density of t(j) can be
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decomposed as:

dΠ(j)(t1, . . . , td) = dΠ
(j)
1 (t1)dΠ

(j)
2 (t2) · · · dΠ

(j)
d (td)

Now let

x
(j)
1 = Π

(j)
1 (t

(j)
1 ), x

(j)
2 = Π

(j)
2 (t

(j)
2 ), . . . , x

(j)
d = Π

(j)
d (t

(j)
d ).

Then x(j) = (x
(j)
1 ,x

(j)
2 , . . . ,x

(j)
d ) is uniformly distributed on X d1 . Define the function

h(x1, . . . ,xd) = f({Π(j)
1 }
−1(x1), {Π(j)

2 }
−1(x2), . . . , {Π(j)

d }
−1(xd)).

Thus, we have
∂h(x)

∂xj
=
∂f(t)

∂tj
· ∂tj(xj)

∂xj
=
∂f(t)

∂tj
· 1

dΠ
(j)
j (tj)

.

Correspondingly, the responses Y (j) is transformed to Z(j), 0 ≤ j ≤ p, by letting Z(0) =

Y (0) and Z(j) = Y (j)/dΠ
(j)
j (t

(j)
j ) for 1 ≤ j ≤ d, and write the transformed variance σ̃2

j =

σ2
j /[dΠ

(j)
j (t

(j)
j )]2.

Lemma A.18. Suppose that s ≥ 1, β ≥ 0 and β 6= 1, and r ≥ 1. Then

∫
x1···xr·z≤Ξ,xk≥1,z≥1

xβ1 · · ·x
β
r z

β(log z)s(x2
1 + · · ·+ x2

r)
−1dx1 · · · dxrdz

� Ξβ+1(log Ξ)s, as Ξ→∞.

Proof. For any τ ≥ 1, we have {1 ≤ z ≤ Ξτ−r, 1 ≤ xk ≤ τ , k = 1, . . . , r} ⊂ {x1 · · ·xr · z ≤

Ξ, z ≥ 1,xk ≥ 1, k = 1, . . . , r}. Thus, if Ξ→∞,

∫
x1···xr·z≤Ξ,xk≥1,z≥1

xβ1 · · ·x
β
r z

β(log z)s(x2
1 + · · ·+ x2

r)
−1dx1 · · · dxrdz

≥
∫ Ξτ−r

1

∫ τ

1
· · ·
∫ τ

1
zβ(log z)sxβ−2

1 · · ·xβ−2
r dx1 · · · dxrdz

� Ξβ+1τ−r(β+1)(log Ξ− r log τ)sτ r(β−1).

Let τ → 1, we have
∫
x1···xr·z≤Ξ,xk≥1,z≥1(log z)s(x2

1 + · · ·+ x2
r)
−1dx1 · · · dxrdz & Ξβ+1(log Ξ)s.
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On the other hand, define u = x1 · · ·xr · z and change the variable z to u. We have that

as Ξ→∞,

∫
x1···xr·z≤Ξ,xk≥1,z≥1

xβ1 · · ·x
β
r z

β(log z)s(x2
1 + · · ·+ x2

r)
−1dx1 · · · dxrdz

=

∫ Ξ

1

∫ u

1

∫ u/xr

1
· · ·
∫ u/(xrxr−1···x2)

1
uβ(log u− log xr − · · · − log x1)s

·
(
x2

1 + · · ·+ x2
r−1 + x2

r

)−1
x−1

1 · · ·x
−1
r−1x

−1
r dx1 · · · dxr−1dxrdu

.
∫ Ξ

1

∫ u

1

∫ u/xr

1
· · ·
∫ u/(xrxr−1···x2)

1
uβ(log u− log xr − · · · − log x1)s

· x−1−2/r
1 · · ·x−1−2/r

r−1 x−1−2/r
r dx1 · · · dxr−1dxrdu

.
∫ Ξ

1
uβ(log u)sdu � Ξβ+1(log Ξ)s,

where the second step is by Lemma A.15. This completes the proof.

Lemma A.19. Suppose that β ≥ 0 and 0 < α ≤ 2. Then, as Ξ→∞,

∫
x1···xr≤Ξ,xk≥1

r∏
k=1

xβk(xα1 + xα2 + · · ·+ xαr )−1dx1 · · · dxr

�



Ξβ+1−α/r, if r ≥ 3;

log(Ξ), if r = 2,β = α/2− 1; Ξβ+1−α/2 if r = 2,β > α/2− 1;

1, if r = 1,β < α− 1; log(Ξ) if r = 1,β = α− 1;

Ξβ−α+1 if r = 1,β > α− 1.

Proof. By the symmetry of covariates,

∫
x1···xr≤Ξ,xk≥1

r∏
k=1

xβk(xα1 + xα2 + · · ·+ xαr )−1dx1 · · · dxr

�
∫
x1···xr≤Ξ,x1≥x2≥···≥xr≥1

r∏
k=1

xβk(xα1 + xα2 + · · ·+ xαr )−1dxr · · · dx1

:= E .
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First we prove when r ≥ 3, as Ξ→∞, we have

E . Ξβ+1−α/r. (A.55)

For this, define the set K =

{
0 ≤ k ≤ r − 2 :

(
Ξ

x1···xr−k−1

)1/(k+1)
≤ xr−k−1

}
. If K is not

empty, we denote the smallest element inK by k∗. Then 0 ≤ k∗ ≤ r−2. For any (x1, . . . ,xr) ∈

{(x1, . . . ,xr) : x1 · · ·xr ≤ Ξ,x1 ≥ x2 ≥ · · · ≥ xr ≥ 1,xr ≤ xr−1 ≤ Ξ
x1···xr−1

}, we have



1 ≤ xr−k ≤ xr−k−1 for 0 ≤ k ≤ k∗ − 1,

1 ≤ xr−k∗ ≤
(

Ξ
x1···xr−k∗−1

)1/(k∗+1)
for k = k∗,

xr−k ≥
(

Ξ
x1···xr−k−1

)1/(k+1)
for k∗ + 1 ≤ k ≤ r − 2,

x1 ≥ Ξ1/r for k = r − 1.

(A.56)

Thus, as Ξ→∞,

E .
∫
x1···xr≤Ξ,x1≥x2≥···≥xr≥1{

(x1)β−α/(r−1) · · · (xr−k∗−1)β−α/(r−1)
}
xβr−k∗

·
{

(xr−k∗+1)β−α/(r−1) · · · (xr)β−α/(r−1)
}
dx

�
∫
x1···xr≤Ξ,x1≥x2≥···≥xr≥1{

(x1)β−α/(r−1) · · · (xr−k∗−1)β−α/(r−1)
}

· (xr−k∗)[β+1−α/(r−1)]k∗+βdxr−k∗dxr−k∗−1 · · · dx1

�
∫
x1···xr≤Ξ,x1≥x2≥···≥xr≥1{

(x1)−1−α/[(r−1)(k∗+1)] · · · (xr−k∗−1)−1−α/[(r−1)(k∗+1)]
}

· Ξβ+1−αk∗/[(r−1)(k∗+1)]dxr−k∗−1 · · · dx1

= Ξβ+1−α/r,

(A.57)

where the first step uses xr−k∗ ≥ 1 and Lemma A.15, the second step uses xr−k ≤ xr−k−1 for
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all k ≤ k∗ − 1 in (A.56), the third step uses the upper bound on xr−k∗ in (A.56), the fourth

step uses the lowers bounds on xr−k for all k∗ + 1 ≤ k ≤ r − 2 in (A.56). If K is empty, then

for any (x1, . . . ,xr) ∈ {(x1, . . . ,xr) : x1 · · ·xr ≤ Ξ,x1 ≥ x2 ≥ · · · ≥ xr ≥ 1,xr ≤ xr−1 ≤

Ξ/(x1 · · ·xr−1)}, it satisfies

1 ≤ xk ≤ xk−1 for any 2 ≤ k ≤ r, and 1 ≤ x1 ≤ Ξ1/r.

Thus, as Ξ→∞,

E =

∫ Ξ1/r

1
· · ·
∫ xr−2

1

∫ xr−1

1
r∏

k=1

xβk(xα1 + xα2 + · · ·+ xαr−1 + xαr )−1dxrdxr−1 · · · dx1

.
∫ Ξ1/r

1
· · ·
∫ xr−2

1

∫ xr−1

1

x
β−α/r
1 · · ·xβ−α/rr−1 xβ−α/rr dxrdxr−1 · · · dx1 � Ξβ+1−α/r.

(A.58)

Combining (A.57) and (A.58) completes the proof for (A.55).

On the other hand, when r ≥ 3 and as Ξ→∞,

E ≥
∫ Ξ1/r

1
· · ·
∫ xr−2

1

∫ xr−1

1
r∏

k=1

xβk(xα1 + · · ·+ xαr−1 + xαr )−1dxrdxr−1 · · · dx1

≥
∫ Ξ1/r

1
· · ·
∫ xr−2

1

∫ xr−1

1
r∏

k=1

xβk · r
−1x−α1 dxrdxr−1 · · · dx1 � Ξβ+1−α/r.

(A.59)

Therefore, combining (A.55) and (A.59) completes the proof of the lemma for r ≥ 3.
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Then we consider for r = 2. For 0 < α ≤ 2,

E ≤ 2

∫ √Ξ

1

∫ x1

1
xβ−α1 xβ2dx2dx1 + 2

∫ Ξ

√
Ξ

∫ Ξ/x1

1
xβ−α1 xβ2dx2dx1

�


log(Ξ) when 2β + 2− α = 0

Ξβ+1−α/2 when 2β + 2− α > 0

as Ξ→∞. (A.60)

On the other hand, we have

E ≥
∫ √Ξ

1

∫ x1

1
xβ1x

β
2 (xα1 + xα2 )−1dx2dx1

≥ 2−1

∫ √Ξ

1

∫ x1

1
xβ−2

1 xβ2dx2dx1

�


log(Ξ) when 2β + 2− α = 0

Ξm when 2β + 2− α > 0

as Ξ→∞.

(A.61)

Combining (A.60) and (A.61) completes the proof of the lemma for r = 2.

Finally, we consider for r = 1. Note that
∫ Ξ

1 xβ1x
−α
1 dx1 � 1 when 0 ≤ β < α − 1, and∫ Ξ

1 xβ1x
−α
1 dx1 � log(Ξ) when β = α− 1, and

∫ Ξ
1 xβ1x

−α
1 dx1 � Ξβ−α+1 when β > α− 1. This

complete the proof.

Lemma A.20. Suppose that β ≤ −1 and α > 0. Then, as Ξ→∞,

∫
x1···xr≥Ξ,xk≥1

r∏
k=1

xβk(xα1 + xα2 + · · ·+ xαr )−1dx1 · · · dxr � Ξβ+1−α/r.

Proof. The proof is similar to the proof for Lemma A.19. We omit the details here.

Lemma A.21. Suppose that m > 1. Then, as Ξ→∞,

∫
x

(m−1)/m
1 x2···xr≤Ξ,xk≥1

(x2
1 + x2

2 + · · ·+ x2
r)
−1x2

1dx1 · · · dxr � Ξm/(m−1).

Proof. When r = 1, the lemma can be verified by direct calculations. In what follows,
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assume r ≥ 2. First, we show that the left-hand side of the formula above is larger than

the right-hand side up to some constant. It suffices to consider a subset of (x1,x2, . . . ,xr)

which satisfy x(m−1)/m
1 ≥ x2 ≥ · · · ≥ xr ≥ 1. Let u1 = x

(m−1)/m
1 , and uj = u1x2 · · ·xj for

2 ≤ j ≤ r. By changing variables (x1,x2, . . . ,xr) to (u1,u2, . . . ,ur), the left-hand side in the

lemma satisfies

∫
x

(m−1)/m
1 x2···xr≤Ξ,xk≥1

(x2
1 + x2

2 + · · ·+ x2
r)
−1x2

1dx1 · · · dxr

≥
∫
x

(m−1)/m
1 x2···xr≤Ξ,xk≥1

(rx2
1)−1x2

1dx1 · · · dxr

= r−1

∫ Ξ

1

∫ ur

u
(r−1)/r
r

· · ·
∫ u2

u
1/2
2

u
1/(m−1)
1 u−1

1 · · ·u
−1
r−1du1 · · · dur−1dur

� Ξm/(m−1).

Second, we show that right-hand side of the formula above is larger than the left-hand side

up to some constant. Note that (x2
1 + x2

2 + · · ·+ x2
r)
−1x2

1 ≤ 1, so the left-hand side satisfies

∫
x

(m−1)/m
1 x2···xr≤Ξ,xk≥1

(x2
1 + x2

2 + · · ·+ x2
r)
−1x2

1dx1 · · · dxr

≤
∫
x

(m−1)/m
1 x2···xr≤Ξ,xk≥1

1dx1 · · · dxr

= r−1

∫ Ξ

1

∫ ur

u
(r−1)/r
r

· · ·
∫ u2

u
1/2
2

u
1/(m−1)
1 u−1

1 · · ·u
−1
r−1du1 · · · dur−1dur

� Ξm/(m−1).

This completes the proof.
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Appendix B

Appendix For: High-Dimensional

Smoothing Splines with Application

to Alzheimer’s Disease Prediction

Using Longitudinal and

Heterogeneous Magnetic Resonance

Imaging

B.1 ADNI Database Description

The Alzheimer’s Disease Neuroimaging Initiative (ADNI) was launched in 2003 by the

National Institute on Aging (NIA), the National Institute of Biomedical Imaging and Bio-

engineering (NIBIB), the Food and Drug Administration (FDA), private pharmaceutical

companies, and non-profit organization, as a $60 million, five year public-private partner-

ship.
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The Principal Investigator of ADNI is Michael W. Weiner, MD, VA Medical Center and

University of California – San Francisco. ADNI is the result of efforts of many coinvestigators

from a broad range of academic institutions and private corporations. ADNI recruited from

over 50 sites across the U.S. and Canada. The initial phase of ADNI recruited 800 adults,

aged 55 to 90 and having a study partner able to provide an independent evaluation of

functioning, to participate in the research. Among them, there are approximately 200 healthy

control older individuals to be followed for 3 years, 400 people with MCI to be followed for 3

years, and 200 people with early AD to be followed for 2 years. See www.adni-info.org

for up-to-date information.

The primary goal of ADNI has been to test whether serial Magnetic Resonance Imaging

(MRI), Positron Emission Tomography (PET), other biological markers, and clinical and

neuropsychological assessment can be combined to measure the progression of MCI and

early AD. Criteria for the different diagnostic groups are summarized in Table B.1. Cog-

nitively healthy control (HC) subjects must have no significant cognitive impairment or

impaired activities of daily living. Clinical diagnosed Alzheimer’s disease patients (AD)

must have had mild AD and had to meet the National Institute of Neurological and Com-

municative Disorders and Stroke–Alzheimer’s Disease and Related Disorders Association

(NINCDS/ADRDA) criteria for probable AD in McKhann et al. (1984). The mild cognitive

impairment subjects (MCI) should meet defined criteria for MCI but do not meet the criteria

in McKhann et al. (1984) and the MCI subjects should have largely intact general cognition

as well as functional performance. Study subjects should have given written informed

consent at the time of enrollment for imaging and genetic sample collection and completed

questionnaires approved by each participating sites Institutional Review Board (IRB).

B.2 Preprocessing of the Brain MRI Used Here

The structural MRI used in this study are cortical gray matter volumes processed us-

ing FreeSurfer software version 4.4 longitudinal image processing framework (https:

www.adni-info.org
https://surfer.nmr.mgh.harvard.edu/
https://surfer.nmr.mgh.harvard.edu/
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Table B.1: ADNI recruitment criteria of CN, MCI and AD subjects. AD: Alzheimer’s disease;
CDR: Clinical Dementia Rating; HC: Healthy controls; MCI: Mild cognitive impairment;
MMSE: Mini-Mental State Examination; Edu : years of education.

HC MCI AD
Memory complaints Absent Present Present
CDR 0 0.5 0.5-1.0
Delayed recall Logical 16 Edu:≥ 9 16 Edu:≤ 8 16 Edu:≤ 8
Memory II subscale of 8-15 Edu:≥ 5 8-15 Edu:≤ 4 8-15 Edu:≤ 4
WMSR 0-7 Edu:≥ 3 0-7 Edu:≤ 2 0-7 Edu:≤ 2

//surfer.nmr.mgh.harvard.edu/) (“ucsffsl” file). This dataset has been used in, for

example, Mah et al. (2015); Toledo et al. (2014); Tosun et al. (2011). Specifically, subjects

with a 1.5-T MRI were included in the dataset where the scans were preprocessed by certain

correction methods including gradwarp, B1 calibration, N3 correction, and skull-stripping

(see, e.g., Jack Jr et al. (2008) for detail), and the FreeSurfer 4.4 implements the symmetric

registration Reuter et al. (2010) and unbiased robust template estimation Reuter et al. (2012).

Only MRIs which passed the quality control for all the areas were included in our study.

There are total 393 ROIs of brain MRI created by FreeSurfer 4.4 and they consist of volumes

of brain regions obtained after cortical parcellation and white matter parcellation, surface

area of the brain regions and cortical thickness of the brain regions. However, some ROIs

are missing more than 90% across all samples due to the preprocessing. In Section 3.3 of the

paper, we use 324 ROIs with at most 20% missing values across the preprocessed samples.

B.3 Proof of Theorem 3.1

Denote by A(b,β1(·) . . . ,βp(·)) the functional to be minimized in (3.3). It is clear that

A(b,β1(·) . . . ,βp(·)) is convex and continuous in βj(·)s. Denote by J(β1(·) . . . ,βp(·)) =

λ
∑p

j=1 ‖βj‖HK , and without loss of generality, we assumeλ = 1. Denote by cK = maxi,ν K
1/2(tiν , tiν)

and cx = maxj,i,ν |xij(tiν)|. By Cauchy-Schwarz inequality, for any i = 1, . . . ,n, ν =

https://surfer.nmr.mgh.harvard.edu/
https://surfer.nmr.mgh.harvard.edu/
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1, . . . ,mi,

|
p∑
j=1

βj(tiν)xij(tiν)| = |〈
p∑
j=1

βj(·)xij(tiν),K(tiν , ·)〉HK |

≤ ‖
p∑
j=1

βj(·)xij(tiν)‖HKK(tiν , tiν) ≤ cK‖
p∑
j=1

βj(·)xij(tiν)‖HK ≤ cKcxJ(b, . . . ,βp).

(B.1)

Denote ρ = maxi,ν{y2
iν + |yiν |+ 1}. Consider the set

Ω = {β1(·), . . . ,βp(·) ∈ HK , b ∈ R : J(β1(·), . . . ,βp(·)) ≤ ρ, |b| ≤ ρ1/2 + (cKcx + 1)ρ}.

Since Ω is closed, convex, and bounded set, there exists a minimizer for (3.3) in Ω. Denote

the minimizer by β̃0, β̃1(·), . . . , β̃p(·). Then, A(β̃0, β̃1(·), . . . , β̃p(·)) ≤ A(0, 0, . . . , 0) < ρ. On

the other hand, for any β1(·), . . . ,βp(·) ∈ HK satisfying J(β1(·), . . . ,βp(·)) > ρ. It is clear

that A(b,β1(·) . . . ,βp(·)) ≥ J(β1(·), . . . ,βp(·)) > ρ. For any β1(·), . . . ,βp(·) ∈ HK with

J(β1(·), . . . ,βp(·)) ≤ ρ and |b| > ρ1/2 + (cKcx + 1)ρ, (B.1) implies that for any i = 1, . . . ,n,

ν = 1, . . . ,mi,

|b+

p∑
j=1

βj(tiν)xij(tiν)− yiν | > ρ1/2 + (cKcx + 1)ρ− cKcxρ− ρ = ρ1/2.

Hence, A(b,β1(·), . . . ,βp(·)) > ρ. Therefore, for any b,β1(·), . . . ,βp(·) 6∈ Ω, we have that

A(b,β1(·), . . . ,βp(·)) > A(β̃0, β̃1(·), . . . , β̃p(·)), where β̃0, β̃1(·), . . . , β̃p(·) is the minimizer of

(3.3). This completes the proof.

B.4 Algorithm

This algorithm is based on Theorem 3.2 whose proof is given later in Appendix B.5. Consider

for any fixed θ1, . . . , θp ≥ 0. If θj = 0 for some j, then βj = 0 in the optimization (3.4).

Without less of generality, let θ1, . . . , θp > 0 and (3.4) is equivalent to the smoothing spline
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type problem: find b ∈ R,β1(·), . . . ,βp(·) ∈ HK to minimize

1

N

n∑
i=1

mi∑
ν=1

[yiν − b−
p∑
j=1

βj(tiν)xij(tiν)]2 +

p∑
j=1

(τ0θ
−1
j )‖βj‖2HK . (B.2)

By the representer lemma wah, β1(·), . . . ,βp(·) have a closed form expression:

βj(t) =
n∑
i=1

mi∑
ν=1

cjiνK(tiν , t), ∀j = 1, . . . , p.

Define a mi1 ×mi2 matrix Σ
(i1,i2)
j by

Σ
(i1,i2)
j =


xi1j(ti11)K(ti21, ti11) · · · xi1j(ti11)K(ti2mi2 , ti11)

...
...

xi1j(ti1mi1 )K(ti21, ti1mi1 ) · · · xi1j(ti1mi1 )K(ti2mi2 , ti1mi1 )


and let Σj be aN ×N (N =

∑n
i=1mi) matrix where the (i1, i2)thmi1 ×mi2 matrix is Σ

(i1,i2)
j .

Define kernel matrix Σ by

Σ =

(
Σ1 Σ2 · · · Σp

)
∈ RN×N ·p.

Let the unknown coefficient vector cj be

cj =

(
cj11 · · · cj1m1

· · · cjn1 · · · cjnmn

)>
∈ RN ,

and

c =

(
{c1}> {c2}> · · · {cp}>

)>
∈ RNp.

Write the response vector y as

y =

(
y11 · · · y1m1 · · · yn1 · · · ynmn

)>
∈ RN .
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Let 1N be the column vector consisting of N 1’s. Then (B.2) becomes

1

N
(y − Σc− b1N )> (y − Σc− b1N ) +

p∑
j=1

(τ0θ
−1
j ){cj}>Σjc

j ,

which has the unique solution given as follows:

b̂ = [1>N (1N×N − ΣΣ̃−1Σ>)1N ]−1 · 1>N (1N×N − ΣΣ̃−1Σ>)y,

ĉ = Σ̃−1Σ>(y − 1N b̂),

(B.3)

where Σ̃ = Σ>Σ +Ndiag{(τ0θ
−1
1 )Σ1, . . . , (τ0θ

−1
p )Σp}.

Note that when θ1, . . . , θp are fixed, (3.4) is equivalent to find b ∈ R, c ∈ RNp to minimize

1

N
(y − b1N −

p∑
j=0

θjΣjc
j)> · (y − b1N −

p∑
j=0

θjΣjc
j) +

p∑
j=0

(τ0θj){cj}>Σjc
j . (B.4)

The minimizer of (B.4) is

b = b̂ and cj = θ−1
j ĉj , j = 0, 1, . . . , p,

where b̂ and ĉ are given by (B.3).

On the other hand, consider when c is fixed, then the minimization of (3.4) is equivalent

to

min
θ,b
‖y −

p∑
j=0

θjΣjc
j − b1N‖2 +Nτ0

p∑
j=0

θj{cj}>Σjc
j +Nτ1

p∑
j=0

θj ,

s.t. θj ≥ 0, j = 0, 1, . . . , p,

which can be written as

min
θ,b
‖y −

p∑
j=0

θjΣjc
j − b1N‖2 +Nτ0

p∑
j=0

θj{cj}>Σjc
j ,

s.t. θj ≥ 0, j = 0, 1, . . . , p;

p∑
j=0

θj ≤M ,

(B.5)
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for some M ≥ 0.

Therefore, we propose the algorithm of iterating (B.4) and (B.5) for giving the minimizer

of (3.4). We observe in simulations that the objective function in optimization (3.4) decreases

quickly in the first iteration and after the first iteration the objective function is close to the

objective function at convergence. This motivates us to consider the following one-step

update algorithm:

1. Initialization: fix θj = 1 for j = 0, 1, . . . , p.

2. Solve for c and b in (B.4) and tune τ0 according to the generalized cross-validation

(GCV). Fix τ0 at the chosen value in all later steps.

3. For c and b obtained in step 2, solve for θ in (B.5) with a fixed M .

4. With θ obtained in step 3, solve for c and b in (B.4).

We choose the best M in Step 3 according to the fivefold cross-validation. In the simulations

we find that when τ0 is fixed according to step 2, the optimal M seems to be close to the

number of important components. This gives a range to determine the tuning for M .

B.5 Proof of Theorem 3.2

Recall thatA(b,β1(·), . . . ,βp(·)) denotes the functional in (3.3). LetB(θ1, . . . , θp; b,β1(·), . . . ,βp(·))

be the functional in (3.4). Observe that

τ0θ
−1
j ‖βj‖

2
HK + τ1θj ≥ 2τ

1/2
0 τ

1/2
1 ‖βj‖HK = λ2‖βj‖HK , ∀θj ≥ 0,

and the equality in the above formula holds if and only if θj = τ
1/2
0 τ

−1/2
1 ‖βj‖HK . Therefore,

B(θ1, . . . , θp; b,β1(·), . . . ,βp(·)) ≥ A(b,β1(·), . . . ,βp(·)), ∀θj ≥ 0,

and the equality holds if and only if θj = τ
1/2
0 τ

−1/2
1 ‖βj‖HK for all j = 1, . . . , p. This completes

the proof.
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Appendix C

Appendix For: Selection and

Estimation Optimality in High

Dimensions with the TWIN Penalty

This material is organized as follows. Section C.1 contains additional minimax optimality

results under orthogonal designs. Section C.2 contains proofs for the main results of the

paper. Section C.3 gives key lemmas for the proof of main results. Section C.4 presents two

coordinate-wise algorithms for TWIN and Section C.5 presents i) simulation results illus-

trating the effectiveness of the universal tuning parameter values, ii) additional simulation

results for a higher dimension and higher number of active variables, iii) further simulation

results investigating the impact of τ on TWIN-a and TWIN-b, and iv) prediction simulation

results left out of the main text due to space constraints.
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C.1 Additional Theoretical Results

C.1.1 Orthogonal Designs

For orthogonal designs, multiplying both sides of (4.1) byX ′ results in the Gaussian sequence

model

y = β + z, z ∼ N(0,σ2Ip). (C.1)

Note that the above model and (4.1) are statistically equivalent. Sparse mean vector estima-

tion under the above Gaussian sequence model has been widely-studied in the literature;

see, for example, Bickel (1981); Donoho and Johnstone (1994); Foster and George (1994).

However, to our knowledge, only an implicit lower bound of asymptotic risk under linear

sparsity, where k/p → ε ∈ (0, 1) as p → ∞, has been established (Johnstone, 2017). The

following result gives an explicit lower bound under this linear sparsity, where the proof is

given later in Section C.2.2.

Theorem C.1. Suppose that k/p→ ε ∈ (0, 1) as p→∞. Let β be from the model (C.1). Then

∞
β̃

sup
‖β‖0≤k

E‖β̃ − β‖2 ≥ 2σ2(1− ε)2k log(1/ε),

where the infimum is taken over all measurable estimators.

We make the following two remarks for Theorem C.1. First, there is a small difference

between the lower bound 2σ2k(1− ε)2 log(1/ε) given in Theorem C.1 for orthogonal designs

and the lower bound 2σ2k log(1/ε) given in Theorem 4.11 for random Gaussian designs.

This difference vanishes when ε is small (close to 0). The difference between two lower

bounds shows that it is fundamentally more difficult to estimate unknown coefficients

under Gaussian random designs, which is partially due to the sample correlation among

the columns of design matrix.

Second, the following implicit lower bound is given in the Theorem 8.20 of Johnstone
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(2017):

∞
β̃

sup
‖β‖0≤k

E‖β̃ − β‖2 = (1 + o(1))σ2pβ0(ε),

where β0(·) is a univariate Bayes minimax risk for all priors satisfying the linear sparsity

k/p → ε ∈ (0, 1). The Proposition 8.18 of Johnstone (2017) shows that β0(ε) ≥ ε for all

0 ≤ ε ≤ 1. Together, they imply

∞
β̃

sup
‖β‖0≤k

E‖β̃ − β‖2 ≥ (1 + o(1))σ2k. (C.2)

Comparing the lower bound in Theorem C.1 with the lower bound in (C.2), it is clear that

2σ2k(1− ε)2 log(1/ε) > σ2k when ε < 0.33. Since k/p < 0.33 is a reasonable assumption in

many applications, Theorem C.1 provides a sharper lower bound than (C.2).

Now we give the asymptotic risk for TWIN estimators under orthogonal designs and

the linear sparsity.

Theorem C.2. Suppose that p → ∞ with k/p → ε for some constant ε > 0. Let β̂ be the TWIN-

a or TWIN-b estimator in (4.2) and β be from the model (C.1). Let mint∈R{|t| + P ′λ,τ (|t|)} =

σ(1− ε)
√

2 log(1/ε). Then,

sup
‖β‖0≤k

E‖β̂ − β‖2 = [1 + c(ε)] 2σ2(1− ε)2k log(1/ε),

with c(ε) = 2√
π log(1/ε)ε1−(1−ε)2 (1−ε)

.

The proof of Theorem C.2 is given in Section C.2.2. We make the following remarks

regarding the above theorems. First, comparing Theorem C.2 with the lower bound result

of Theorem C.1, it is clear that TWIN estimators are minimax rate optimal. Second, the

constant c(ε) decreases as ε decreases, and c(ε) approaches to zero when ε is close to zero.

For example, c(ε) = 0.58 when ε = 0.01, and c(ε) = 1.28 when ε = 0.1. Third, if ε = 0 (i.e.,

k/p→ 0 as p→∞), the lower bound of asymptotic risk is known; see, for example, Donoho
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and Johnstone (1994); Johnstone (2017), which is

∞
β̃

sup
‖β‖0≤k

E‖β̃ − β‖2 = (1 + o(1))2σ2k log(p/k). (C.3)

We note that (C.3) is different from the lower bound in Theorem C.1. The reason is that

k/p are in different sparsity regimes. The following theorem shows that TWIN estimators

achieve the asymptotic minimax risk when k/p→ 0 as p→∞.

Theorem C.3. Suppose that k/p→ 0 as p→∞. Let β be from the model (C.1). Then TWIN with

mint∈R{|t|+ P ′λ,τ (|t|)} = σ
√

2 log(p/k) achieves the minimax optimal risk

sup
‖β‖0≤k

E‖β̂ − β‖2 = (1 + o(1)) 2σ2k log(p/k).

The proof of Theorem C.3 is given in Section C.2.2

C.2 Proofs of Main Results

C.2.1 Proofs for Section 4.3

In this section, we give proofs for Section 4.3 in the following order: Proposition 4.4, Theorem

4.7, Corollary 4.8, Theorem 4.5, Corollary 4.6, Theorem 4.9, and Corollary 4.10.

C.2.1.0.1 Proof of Proposition 4.4 We are testing p hypotheses Hi : βi = 0, i = 1, . . . , p.

Suppose that the first p − k hypotheses are null, i.e., βi = 0 for i ≤ p − k. We reject Hi if

and only if β̂i 6= 0. Let V be the number of false rejections and R be the number of total

rejections. Hence,

FDR = E
[

V

R ∨ 1

]
=

p∑
r=1

1

r
E

[
p−k∑
i=1

1{Hi is rejected }1{R=r}

]
. (C.4)
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Note that when Hi is a null hypothesis,

{
X ′z : Hi is rejected and R = r

}
=

{
X ′z : |yi| > min

t∈R
{|t|+ P ′λ,τ (|t|)} and R̃ = r − 1

}
,

where R̃ is the number of total rejections when applying TWIN with same parameters to

the following data

X̃ ′z = (x′1z, . . . ,x′i−1z,x′i+1z, . . . ,x′nz).

Let mint∈R{|t|+ P ′λ,τ (|t|)} = σΦ−1(1− α/2p) for any α ∈ [0, 1], then

P (Hi rejected and R = r) = P
(
|x′iz| > min

t∈R
{|t|+ P ′λ,τ (|t|)} and R̃ = r − 1

)
= P

(
|x′iz| > min

t∈R
{|t|+ P ′λ,τ (|t|)}

)
P
(
R̃ = r − 1

)
=
α

p
P
(
R̃ = r − 1

)
.

where the second equality is from the independence of x′iz and X̃ ′z. Plugging this equality

into equation (C.4) gives

FDR =
α(p− k)

p

p∑
r=1

1

r
P(R̃ = r − 1) ≤ α

(
1− k

p

)
.

Given mint∈R{|t| + P ′λ,τ (|t|)} = σΦ−1(1 − α/2p) for any α ∈ [0, 1], it is easy to see that

FWER = α, which completes the proof.

C.2.1.0.2 Proof of Theorem 4.7 Denote by τλ ≡ τ/λ. If τλ ≥ (1 − δ−1/2 − ϑ)−2, then

Lemma C.4 implies that

λmin(X ′X)− τ−1
λ > 0 with probability at least 1− e−nϑ2/2. (C.5)
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Let λ be fixed and λ0 = P ′λ,τ (0+). Define h(t) ≡ τ−1
λ t2/2 + Pλ,τ (|t|)− λ0|t|. Note that both

TWIN-a and TWIN-b satisfy

∞0<t1<t2{P ′λ,τ (t2)− P ′λ,τ (t1)}/(t2 − t1) = −τ−1
λ ,

then h(t) is a continuously differentiable convex function. Note that the penalized loss in

(4.2) can be written as

L(b;λ, τ) =

{
1

2
‖y −Xb‖2 − 1

2τλ
‖b‖2

}
+

p∑
j=1

{λ0|bj |+ h(|bj |)},

where on the right-hand side, the first part is strictly convex due to (C.5), and the second

part is also strictly convex. Thus, L(b;λ, τ) is strictly convex in b ∈ Rp. On the other hand,

observe that if b = 0, L(b;λ, τ) = ‖y‖2/(2n) is bounded, thus y → β̂ maps bounded sets

of y ∈ Rn to bounded sets of β̂ in Rp. Since L(b;λ, τ) is continuous and convex in b and

is continuous in y, the global minimizer of L(b;λ, τ) is unique and continuous in y. Thus,

(4.12) is the KKT condition and its solution β̂ is unique.

Let β̂LS
Ao be the oracle least squares estimator on the true support Ao:

β̂LS
Ao = arg min

b∈Rk
‖y −XAob‖2. (C.6)

We define two sets Ω1 and Ω2 as follows, where λ1 ≤ λ2 are two positive parameters:

Ω1(λ1) ≡
{

max
j 6∈Ao

|x′j(y −XAoβ̂
LS
Ao)| < λ1

}
,

Ω2(λ2) ≡
{

min
j∈Ao

sgn(βj)β̂
LS
j > γλ2

}
.

For any j ∈ Ao, it is clear that x′j(y − XAoβ̂
LS
Ao) = 0. If |β̂LS

j | ≥ γλ2, then by definition

of TWIN-b, P ′λ,τ (|β̂LS
j |) = 0. Thus, the vector which is equal to β̂LS

Ao for the components

corresponding to Ao and 0 otherwise is the unique solution of the KKT condition (4.12) and

sgn(β̂LS
Ao) = sgn(βAo) for all λ1 ≤ λ ≤ λ2 in the intersection of Ω1 and Ω2.
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Observe that y−XAoβ̂
LS
Ao is equal to the projection of z onto the orthogonal complement

of XAo . Conditional on z and XAo , X ′Āo(y − XAoβ̂
LS
Ao) is distributed as i.i.d. centered

Gaussian random variables with variance ‖y −XAoβ̂
LS
Ao‖2/n. Hence, we can write

X ′Āo(y −XAoβ̂
LS
Ao)

d
=
‖y −XAoβ̂

LS
Ao‖√

n
(ζ1, . . . , ζp−k)

′,

where the ζj terms are i.i.d. N(0, 1) independent of ‖y−XAoβ̂
LS
Ao‖. Observe that y−XAoβ̂

LS
Ao

is equal to the projection of z onto the orthogonal complement ofXAo , and the orthogonal

complement ofXAo of dimension n− k has uniform orientation. Thus by Lemma C.5, we

know that for an arbitrary small constant ϑ > 0,

P
{
‖y −XAoβ̂

LS
Ao‖ > (1 + ϑ)σ

√
n− k

}
≤ e−ϑ2(n−k)σ2/2. (C.7)

Observe that

P
{

max
1≤j≤p−k

ζ2
j > (2 + 4ϑ) log(p− k)

}
≤ Eemax1≤j≤p−k ζ

2
j /(2+ϑ)

e(1+ϑ) log(p−k)
≤
∑

1≤j≤p−k Ee
ζ2
j /(2+ϑ)

e(1+ϑ) log(p−k)
≤
√
πϑ(p− k)

e(1+ϑ) log(p−k)
=

√
πϑ

(p− k)ϑ
,

(C.8)

where the first step is by the Markov’s inequality. By (C.7) and (C.8), we have that

‖y −XAoβ̂
LS
Ao‖ ≤ (1 + ϑ)σ

√
n− k, max

1≤j≤p−k
|ζ|2j ≤ (2 + 4ϑ) log(p− k)

hold simultaneously with probability at least 1− e−ϑ2(n−k)σ2/2 −
√
πϑ/(p− k)ϑ. Thus, if

λ1 ≥ (1 + 3ϑ)σ
√

2 log p

√
1− ε

δ

= (1 + 3ϑ)σ
√

2 log(p− k)

√
1− ε

δ
+ o(1), with ε < δ,

(C.9)

we have

1− P {Ω1(λ1)} ≤ e−ϑ2(n−k)σ2/2 +

√
πϑ

(p− k)ϑ
. (C.10)



183

By Lemma C.4, we know the minimum singular value ofXAo satisfies

σmin(XAo) ≥ 1−
√
k/n− ϑ with probability at least 1− e−nϑ2/2. (C.11)

Denote by ‖A‖max the maximum absolute value of entries in any matrix A. From (C.11),

with probability at least 1− e−nϑ2/2, we have

‖(X ′AoXAo)
−1‖max ≤ ‖(X ′AoXAo)

−1‖2

≤ σ−2
min(XAo) ≤ (1−

√
ε/δ − ϑ)−2 <∞,

(C.12)

LetM(ε, δ) := (1−
√
ε/δ − ϑ)−2. Conditioning onXAo ,

(X ′AoXAo)
−1X ′Aoz ≡ σ · (ξ′1, . . . , ξ′k) ∼ σ ·N(0, (X ′AoXAo)

−1),

where the terms ξ′j are independent of z. Since ∀1 ≤ j ≤ k, Ee|ξ
′
j |2/(2+ϑ)M(ε,δ) ≤

√
πϑ, we

have by Markov’s inequality,

P
{

max
1≤j≤k

(ξ
′
j)

2 > (2 + 4ϑ)M(ε, δ) log k

}
≤ Eemax1≤j≤k(ξ

′
j)

2/(2+ϑ)M(ε,δ)

e(1+ϑ) log k
=

∑
1≤j≤k Ee

|ξ′j |2/(2+ϑ)M(ε,δ)

k1+ϑ
≤
√
πϑ

kϑ
→ 0,

which together with (C.12) implies that

‖(XAoXAo)
−1X ′Aoz‖∞ = σ max

1≤j≤k
|ξ′j | ≤ σ

√
(2 + 4ϑ) log k(1−

√
ε/δ − ϑ)−1 (C.13)

with probability at least 1− e−nϑ2/2−
√
πϑ/kϑ. Recall that β̂LS

Ao = βAo + (X ′AoXAo)
−1X ′Aoz,

and if

|βj | > γλ2 + σ
√

(2 + 4ϑ) log k(1−
√
ε/δ − ϑ)−1, ∀j ∈ Ao,

we have

min
j∈Ao

sgn(βj)β̂
LS
j ≥ min

j∈Ao
|βj | − ‖(X ′AoXAo)

−1X ′Aoz‖∞ > γλ2 (C.14)
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with probability at least 1− e−nϑ2/2−
√
πϑ/kϑ. The result follows by combining (C.5), (C.10)

and (C.14).

C.2.1.0.3 Proof of Corollary 4.8 This corollary can be directly justified from the Theorem

4.7.

C.2.1.0.4 Proof of Theorem 4.5 Denote by β̂Ao the solution to the reduced penalization

problem with the oracle support:

β̂Ao = arg min
b∈Rk

1

2
‖y −XAob‖2 +

k∑
j=1

Pλ,τ (|bj |)

 . (C.15)

As discussed in the proof of Theorem 4.7, if τλ ≡ τ/λ ≥ (1− δ−1/2 − ϑ)−2, then (4.12) is the

KKT condition and the TWIN estimator is unique with probability at least 1− e−nϑ2/2.

By Borell’s inequality, we know that with probability at least 1− e−nϑ2/2,

‖X ′Āoz‖∞ ≤ max
1≤i≤n

|x1i|

√√√√ n∑
i=1

z2
i ≤ σ(1 + ϑ)

√
2 log p. (C.16)

Observe that

X ′ĀoXAo(βAo − β̂Ao) = X ′ĀoXAo(X
′
AoXAo)

−1(X ′Ao(y −XAoβ̂Ao)−X ′Aoz).

Conditional on z, the terms in X ′Aoz are distributed as i.i.d. centered Gaussian random

variables with variance ‖z‖2/n. Write

X ′Aoz
d
=
‖z‖√
n

(ζ1, . . . , ζk)
′,

where ζj are i.i.d. N(0, 1) independent of ‖z‖. By Lemma C.5 we have,

P
{
‖z‖ ≥ σ

√
n(1 + ϑ)

}
≤ e−ϑ2nσ2/2 and P

{√
ζ2

1 + · · ·+ ζ2
k ≥
√
k(1 + ϑ)

}
≤ e−kϑ2/2.
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Thus with probability at least 1− e−ϑ2nσ2/2 − e−kϑ2/2,

‖X ′Aoz‖ ≤ σ
√
k(1 + ϑ)2. (C.17)

From the proof of Theorem 4.7, we know that if

|βj | > γλ+ σ
√

(2 + 4ϑ) log k(1−
√
ε/δ − ϑ)−1, ∀j ∈ Ao,

and

|P ′λ,τ (|β̂j |)| = o(λ), ∀j ∈ Ao, (C.18)

then with probability at least 1− e−nϑ2/2 −
√
πϑ/kϑ,

min
j∈Ao

sgn(βj)β̂j ≥ min
j∈Ao

|βj | − ‖(X ′AoXAo)
−1X ′Aoz‖∞ − |P ′λ,τ (|β̂j |)| > γλ. (C.19)

On the other hand, if (C.19) is true, then by the definition of TWIN-a and the uniqueness of

the estimator, we conclude that (C.18) holds. Combining (C.17) and (C.18), then

‖X ′Ao(y −XAoβ̂Ao)−X ′Aoz‖ ≤ ‖P ′λ,τ (|β̂Ao |)‖+ ‖X ′Aoz‖ ≤
√
k · o(λ) + (1 + ϑ)2σ

√
k

with probability at least 1− e−ϑ2nσ2/2 − e−kϑ2/2 − e−nϑ2/2 −
√
πϑ/kϑ. By Lemma C.4,

‖XAo(X
′
AoXAo)

−1‖ ≤ 1

1−
√
ε/δ − ϑ

holds with probability at least 1− e−nϑ2/2. Therefore, we have

‖X ′ĀoXAo(βAo − β̂Ao)‖∞

= ‖X ′ĀoXAo(X
′
AoXAo)

−1(X ′Ao(y −XAoβ̂Ao)−X ′Aoz)‖∞

≤
√

2 log(p− k)

n
‖XAo(X

′
AoXAo)

−1(X ′Ao(y −XAoβ̂Ao)−X ′Aoz)‖

≤
[
(1− ϑ)

√
δ/ε− 1

]−1
[σ(1 + ϑ)2 + o(λ)]

√
2 log p.

(C.20)
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with probability at least 1 − e−nσ2ϑ2/2 − e−kϑ2/2 − 2e−nϑ
2/2 −

√
πϑ/kϑ. Combining (C.16)

and (C.20), with probability at least 1− e−nσ2ϑ2/2 − e−kϑ2/2 − 3e−nϑ
2/2 −

√
πϑ/kϑ,

‖X ′Āo(y −XAoβ̂Ao)‖∞

≤ ‖X ′ĀoXAo(βAo − β̂Ao)‖∞ + ‖X ′Āoz‖∞

≤
{

[(1− ϑ)
√
δ/ε− 1]−1[σ(1 + ϑ)2 + o(λ)] + σ(1 + ϑ)

}√
2 log p.

(C.21)

Hence, by letting λ ≥ {[(1− ϑ)
√
δ/ε− 1]−1(1 + ϑ) + 1}(1 + ϑ)σ

√
2 log p, we complete the

proof.

C.2.1.0.5 Proof of Corollary 4.6 Note that
√
δ/ε − 1 >

√
δ for ε ≤ 1/4. The rest of the

proof follows directly from Theorem 4.5.

C.2.1.0.6 Proof of Theorem 4.9 For m ≥ 1, we define a semi-norm for any v ∈ Rn as

ζ(v;m,Ao) ≡ max

{
‖(PA − PAo)v‖√

m
: Ao ⊆ A ⊆ {1, . . . , p}, |A| = m+ k

}
,

where PA is the orthogonal projection from Rn to the span of {xj : j ∈ A} and recall that

{xj} are columns of the design matrixX . Let {λ(x) : x ∈ [0,∞)} be a continuous path with

λ(0) = +∞ and limx→∞ λ
(x) = 0 and β(x) be the TWIN estimator corresponding to λ = λ(x).

Let x1 = ∞x≥0{λ(x) < max{(1 + 3ϑ)
√

1− εδ−1σ
√

2 log p, 2[1 + ϑ +
√

(ε/δ + 1)/2]ζ(y; (k −

n)/2,Ao)}} and ϑ > 0. Note that Pλ,τ satisfies λ(1− t/(τλλ))+ ≤ |P ′λ,τ (t)| ≤ λ, where recall

that τλ ≡ τ/λ.

By Lemma 1 and Remark 5 in Zhang (2010), together with Lemma C.4, we have that

with probability at least 1− e−nϑ2/2,

#{j 6∈ Ao : β̂
(x)
j 6= 0} < K∗k for 0 ≤ x ≤ x1,
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where K∗ is a constant satisfying

K∗ ≤ [1 + ϑ+
√

(1 +K∗)εδ−1]2[1− ϑ−
√

(1 +K∗)εδ−1]−2 − 1/2. (C.22)

We further require that K∗ satisfies

(K∗ + 1)k ≤ (k + n)/2. (C.23)

A sufficient condition for the existence of K∗ satisfying (C.22) and (C.23) is by letting

[1 + ϑ+
√

(1 +K∗)εδ−1]2[1− ϑ−
√

(1 +K∗)εδ−1]−2 − 1/2 ≤ {(k + n)/2}/k − 1.

In order that the above inequality holds, it suffices to require

ε/δ ≤ 0.12.

We let

τλ ≥
(

1− ϑ−
√

(ε/δ + 1)/2
)−2

,

then from the proof of Theorem 4.7, we know (C.23) ensures the uniqueness of the TWIN

estimator. On the other hand, ζ(y; (n−k)/2,Ao) = ζ(z; (n−k)/2,Ao) as shown in the proof

of Theorem 6 in Zhang (2010). By Lemma 2 in Zhang (2010), we have that

P
{
ζ(z; (n− k)/2,Ao) ≤ σ

√
2 log p̃θ

}
≥ 1− θ/2√

log p̃θ
∀θ ∈ (0, 1],

where p̃θ is defined as the solution of

2 log p̃θ − 1− log(2 log p̃θ) =
4

n− k

{
log

(
p− k

(n− k)/2

)
+ log

(
1

θ

)}
. (C.24)
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Therefore, we can let


λ ≥ max

{
(1 + 3ϑ)

√
1− εδ−1σ

√
2 log p, 2[1 + ϑ+

√
(ε/δ + 1)/2]σ

√
2 log p̃θ

}
,

|βj | > γλ+ σ
√

(2 + 4ϑ) log k(1− ε1/2δ−1/2 − ϑ)−1.

From the proof of Theorem 4.7, it is known that the unique TWIN estimator β̂ = β̂LS
Ao , the

oracle LSE defined in (C.6). When n is large, we have

P
{
Â 6= Ao

}
≤ P

{
β̂ 6= β̂o or sgn(β̂) 6= sgn(β)

}
≤ e−ϑ2(n−k)σ2/2 + 2e−nϑ

2/2 +
√
πϑ(p− k)−ϑ +

√
πϑk−ϑ

+
θ

(2 log p̃θ − 1 + 2/(n− k))
√

(n− k)π/2
.

Now let θ = 1; it is known from (C.24) that when n is large,

log p̃1 =
1

δ
[(1− ε) log(1− ε)− (δ − ε) log(δ − ε)− (1− δ) log(1− δ)] +

1

2
+ o(1)

= c̃+
1

2
+ o(1),

where c̃ ≡ [(1− ε) log(1− ε)− (δ − ε) log(δ − ε)− (1− δ) log(1− δ)]/δ.

C.2.1.0.7 Proof of Corollary 4.10 The corollary follows by directly verifying the condi-

tions of Theorem 4.9. In particular, note that c̃ ≡ [(1− ε) log(1− ε)− (δ− ε) log(δ− ε)− (1−

δ) log(1−δ)]/δ increases as ε decreases. Hence c̃ ≤ log δ−1+(δ−1+1) log(1−δ)−1 ≡ c̃′, which

is a constant. Then as p→∞, σ
√

2 log p > 4σ
√

2c̃′ + 1 ≥ 2[1 + ϑ+
√

(ε/δ + 1)/2]σ
√

2c̃+ 1.

C.2.2 Proofs for Section C.1

Now we give proofs for estimation properties of TWIN under the orthogonal designs in

Section C.1. The proofs for results are organized in the following order: Theorem C.1,

Theorem C.2, and Theorem C.3.
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C.2.2.0.1 Proof of Theorem C.1 From the scale invariance, we only need to prove for

σ = 1. By the max-min inequality (see, e.g., Johnstone (2017)), we have for any ϑ > 0,

∞
β̃

sup
‖β‖0≤k

EΠ‖β̃ − β‖2 ≥ sup
‖Π‖0≤k

∞
β̃
EΠ‖β̃ − β‖2, (C.25)

Here, Π denotes any distribution on Rp such that any realization β obeys ‖β‖0 ≤ k. Without

loss of generality, assume that p/k = 1/ε is an integer since otherwise we can replace p

with p′ = kbp/kc, where bp/kc denotes the integer part of p/k, and let Π be supported on

{1, . . . , p′}. We decompose {1, . . . , p} into k blocks as follows

{1, . . . , 1/ε}, {1/ε+ 1, . . . , 2/ε}, . . . , {(k − 1)/ε+ 1, . . . , k/ε},

and choose a particular prior Π as to uniformly random select a coordinate in each block

and set its amplitude to
√

2 log(1/ε). Then the total loss can be decomposed as ‖β̃ − β‖2 =

L1 + · · ·+Lk, where Lj is the loss from coordinates on the jth block {(j− 1)/ε+ 1, . . . , j/ε}.

We first prove for any j = 1, . . . , k,

∞
β̃
E[Lj ] ≥ 2(1− ε)2 log(1/ε). (C.26)

Without loss of generality, let j = 1 and I be the index in {1, . . . , 1/ε}whose amplitude is

set to
√

2 log(1/ε) by Π. Observe that

E[L1] =

1/ε∑
i=1

E[β̃i − βi]2 =

1/ε∑
i=1

[
(1− ε)Eβi=0[β̃2

i ] + εE
βi=
√

2 log(1/ε)
[β̃i − βi]2

]
≥ E

β1=
√

2 log(1/ε)
[β̃1 − β1]2 = t2εEβ1=

√
2 log(1/ε)

[P(I = 1|y)− 1]2,

where the last step uses the fact E[βi|y] =
√

2 log(1/ε)P(I = i|y). Now we only need to

study P(I = 1|y). Recall that if I = 1, then y1 =
√

2 log(1/ε) + z1, yi = zi for 2 ≤ i ≤ 1/ε,
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and

PΠ{I = 1|y} =
e
√

2 log(1/ε)y1∑1/ε
i=1 e
√

2 log(1/ε)yi
=
e
√

2 log(1/ε)z1+2 log(1/ε)∑1/ε
i=1 e
√

2 log(1/ε)zi

=

1 + {(1/ε− 1)−1e− log(1/ε)

1/ε∑
i=2

e
√

2 log(1/ε)zi}{(1/ε− 1)e− log(1/ε)−
√

2 log(1/ε)z1}

−1

,

By Jensen’s inequality and the independence among the zi terms, we have

E[PΠ{I = 1|y}]

≥ [1 + E{(1/ε− 1)−1e− log(1/ε)

1/ε∑
i=2

e
√

2 log(1/ε)zi}{(1/ε− 1)e− log(1/ε)−
√

2 log(1/ε)z1}]−1 = ε,

and similarly, E[PΠ{I = 1|y}]2 ≥ ε2. Then, (C.26) follows and by the independence of

L1, . . . ,Lk,

sup
‖Π‖0≤k

∞
β̃
EΠ‖β̃ − β‖2 ≥ 2(1− ε)2k log(1/ε).

We complete the proof by (C.29).

C.2.2.0.2 Proof of Theorem C.2 In this proof, we set σ = 1 and assume without loss of

generality that βj ≥ 0. Let the risk function be r(λ, τ ;βj) = E[β̂j − βj ]2 and r(λ, τ ;β) =∑p
j=1 r(λ, τ ;βj) = E‖β̂ − β‖2. Let κ := κ(λ, τ) = mint∈R{|t|+ P ′λ,τ (|t|)}. For a given x ∈ R,

the TWIN estimator β̂(x) is the solution of

β̂(x) = sgn(x)
(
|x| − P ′λ,τ (|β̂(x)|)

)
+

.

Denote φ(·) as the standard normal density function. By breaking the range of integration

into regions (−∞,−κ), [−κ,κ], (κ,∞), we have

r(λ, τ ;βj) =

∫ −κ
−∞

[
x+ P ′λ,τ (|β̂j(x)|)− βj

]2
φ(x− βj)dx

+ β2
j

∫ κ

−κ
φ(x− βj)dx+

∫ ∞
κ

[
x− P ′λ,τ (|β̂j(x)|)− βj

]2
φ(x− βj)dx.

(C.27)
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First, we consider βj = 0. Note that λ = O(κ) and we can rewrite (C.27) as

r(λ, τ ; 0) = 2

∫ ∞
κ

[
x− P ′λ,τ (|β̂j(x)|)

]2
φ(x)dx

≤ 4

∫ ∞
κ

x2φ(x)dx+ 4

∫ ∞
κ
{P ′λ,τ (|β̂j(x)|)}2φ(x)dx

≤ 4

∫ ∞
κ

x2φ(x)dx+ 4λ2

∫ ∞
κ

φ(x)dx

= 4κφ(κ) as κ→∞.

where the last step is due to
∫∞
κ φ(x)dx ≤ κ−1φ(κ).

Then, we consider 0 < βj ≤ κ where (C.27) can be bounded by

r(λ, τ ;βj) ≤ β2
j

∫ βj+κ

βj−κ
φ(x)dx+ 1−

∫ κ−βj

−κ−βj

[
x+ P ′λ,τ (β̂j(x+ βj))

]2
φ(x)dx

≤ 1 + β2
j

∫ ∞
βj−κ

φ(x)dx ≤ 1 + κ2.

For the last case, we consider βj ≥ κ. Set α = βj − λ ≥ 0 and define g(α) = (κ +

α)2
∫∞
α φ(x)dx. We have

g′(α) = (λ+ α)φ(α)h(α), where h(α) = 2

(∫ ∞
α

φ(x)dx/φ(α)

)
− κ− α,

and h(0) =
√

2π − λ. When λ ≥
√

2π, then h(0) ≤ 0. By direct calculation and the fact that∫∞
α φ(x)dx ≤ φ(α)/α, we know that h is decreasing and hence h(α) ≤ 0 on [0,∞). Thus,

g(α) ≤ g(0) = κ2/2. Now, (C.27) can be bounded by

r(λ, τ ;βj) ≤ β2
j

∫ βj+κ

βj−κ
φ(x)dx+ 1−

∫ 0

−κ−βj

[
x+ P ′λ,τ (β̂j(x+ βj))

]2
φ(x)dx

≤ 1 + β2
j

∫ ∞
βj−κ

φ(x)dx ≤ 1 + κ2/2.
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Therefore, r(λ, τ ;βj) ≤ 1 + κ2 for any βj 6= 0 and we can bound the risk as follows

r(λ, τ ;β) ≤ (p− k) · r(λ, τ ; 0) + k · sup
βj

r(λ, τ ;βj)

≤ 4pκφ(κ) + k(κ2 + 1).

(C.28)

Let κ = (1− ε)
√

2 log(1/ε). Then φ(κ) = φ(0)e−κ
2/2 = φ(0)ε(1−ε)

2 . Consequently,

sup
‖β‖0≤k

r(λ, τ ;β) ≤ 4p(1− ε)
√

2 log(1/ε) · φ(0)ε(1−ε)
2

+ k[2(1− ε)2 log(1/ε) + 1]

= (1− ε)22k log(1/ε)

(
1 +

2√
π log(1/ε)ε1−(1−ε)2(1− ε)

)
.

This completes the proof.

C.2.2.0.3 Proof of Theorem C.3 The proof here is the same as the proof for Theorem C.2

except that we should let mint∈R{|t| + P ′λ,τ (|t|)} = σ
√

2 log(p/k) in the risk upper bound

(C.28).

C.2.3 Proofs for Section 4.4

In this section, we present proofs for the estimation properties of TWIN under the random

Gaussian designs discussed in Section 4.4. The proofs for results are organized in the

following order: Theorem 4.11, Theorem 4.12, and Theorem 4.14.

C.2.3.0.1 Proof of Theorem 4.11 From the scale invariance, we only need to prove for

σ = 1. By the max-min inequality , we have for any ϑ > 0,

∞
β̃

sup
‖β‖0≤k

P

{
‖β̃ − β‖2

2k log(1/ε)
> 1− ϑ

}
≥ sup
‖Π‖0≤k

∞
β̃
PΠ

{
‖β̃ − β‖2

2k log(1/ε)
> 1− ϑ

}
. (C.29)

Here, Π denotes the prior on Rp such that any realization β obeys ‖β‖0 ≤ k, and PΠ{·}

denotes that β follows the prior Π. As in the proof of Theorem C.1, we assume that p/k is
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an integer and then decompose {1, . . . , p} into k blocks:

{1, . . . , 1/ε}, {1/ε+ 1, . . . , 2/ε}, . . . , {(k − 1)/ε+ 1, . . . , k/ε}.

Let Lj be the loss from coordinates on the jth block {(j − 1)/ε+ 1, . . . , j/ε} for j = 1, . . . , k.

Define the prior Π such that we select a coordinate in each block at uniformly random and

set the selected coordinate’s amplitude to

tε =
√

2 log(1/ε)− log
√

2 log(1/ε). (C.30)

For any ϑ > 0, there exists ε0 such that for any 0 < ε < ε0,

2(1− ϑ) log(1/ε) ≤ (1− ϑ/2)t2ε .

From (C.29), it suffices to derive the following result in order to complete the proof for

Theorem 4.11:

sup
‖Π‖0≤k

∞
β̃
PΠ

{
‖β̃ − β‖2/(kt2ε ) > 1− ϑ/2

}
= 1. (C.31)

We first prove that for any ϑ > 0,

sup
0≤ε≤1

∞
β̃
PΠ

{
L1/t

2
ε > 1− ϑ/2

}
= 1. (C.32)

Let I be the index in {1, . . . , 1/ε}whose amplitude is set to tε by Π. Note that L1 =
∑1/ε

i=1 β̃
2
i +

t2ε − 2tεβ̃I , then

L1 ≤ (1− ϑ/2)t2ε ⇐⇒ β̃I ≥
2
∑1/ε

i=1 β̃
2
i + ϑt2ε

4tε
. (C.33)

Denote D as the set of indices i ∈ {1, . . . , 1/ε} such that β̃i ≥ (2
∑1/ε

i=1 β̃
2
i + ϑt2ε )/(4tε). Let

β̃min be the minimum value of these β̃i and then

β̃min ≥
2
∑1/ε

i=1 β̃
2
i + ϑt2ε

4tε
≥ 2|D|β̃2

min + ϑt2ε
4tε

≥
2
√

2|D|β̃2
min · ϑt2ε

4tε
,
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which gives |D| ≤ 2ϑ−1. Observe that we can rewrite the linear equation as follows:

y = Xβ + z = X(1)β(1) +X−(1)β−(1) + z,

whereX(1) and β(1) are the first 1/ε columns ofX and β, respectively. Then

X−(1)β−(1) + z ∼ N(0, (t2ε (k − 1)/n+ 1)In),

andX−(1)β−(1) + z is independent ofX(1) and β(1). Since t2ε (k− 1)/n = t2εε/δ + oP(t2ε ), we

can write

y = X(1)β(1) + (tε
√
ε/δ + 1) · z̃, where z̃ ∼ N(0, 1).

By conditioning onX and y, then

PΠ

{
L1/t

2
ε ≤ 1− ϑ/2

}
= PΠ {I ∈ D} =

∑
i∈D exp{(tεx′iy − t2ε‖xi‖2/2)/(tε

√
ε/δ + 1)2}∑1/ε

i=1 exp{(tεx′iy − t2ε‖xi‖2/2)/(tε
√
ε/δ + 1)2}

,

which implies that PΠ

(
L1/t

2
ε ≤ (1− ϑ/2)

)
is maximized if D is the set of indices i corre-

sponding to the largest values of (tεx
′
iy − t2ε‖xi‖2/2)/(tε

√
ε/δ + 1)2. Hence,

PΠ

{
L1/t

2
ε ≤ 1− ϑ/2

}
≤ PΠ

{
x′Iy − tε‖xI‖2/2 is at least the [2ϑ−1]th largest

}
. (C.34)

We now study that right-hand side of (C.34). Without loss of generality, let I = 1. Observe

that for i 6= 1,

(x′iy − tε‖xi‖2/2)− (x′1y − tε‖x1‖2/2)

= [x′i((tε
√
ε/δ + 1) · z̃ + tεx1)− tε‖xi‖2/2]− [(tε

√
ε/δ + 1)x′1z̃ + tε‖x1‖2/2].

Denote C1 ≡= x′1z̃ and ‖x1‖2 ≡ C1/
√
n, then

(tε
√
ε/δ + 1)x′1z̃ + tε‖x1‖2/2 = (tε

√
ε/δ + 1) · C1 + (1 + C2/

√
n)tε/2. (C.35)
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Note that
x′i((tε

√
ε/δ + 1) · z̃ + tεx1)− tε‖x1‖2/2

=d ‖(tε
√
ε/δ + 1) · z̃ + tεx1‖xi,1 − tεx2

i,1/2− tε‖xi,−1‖2/2,

(C.36)

where xi,−1 is xi without the entry xi,1. Now we study the terms on the right-hand side of

(C.36) separately. First, since ‖xi,−1‖2 = x2
i,2 + · · ·+x2

i,n →p 1, we know that with probability

approaching one,

∣∣∣∣#{2 ≤ i ≤ 1/ε : ‖xi,−1‖ ≤ 1}
1/ε− 1

− 1

2

∣∣∣∣ ≤ c1

2

√
ε

1− ε
, (C.37)

where c1 is some positive constant. Using the normal approximation, we know that, for

example, if c1 = 3, then (C.37) holds with probability equals to 99.7%

Second, observe that

P
{

max
1≤i≤1/ε

x2
i,1 ≥

2 log(1/ε)

n

}
≤ 1

2
− 1

2

[
1− 2

{
1− Φ

(√
2 log(1/ε)

)}]1/ε

≤ 1

ε

[
1− Φ

(√
2 log(1/ε)

)]
≤ 1

ε

φ(
√

2 log(1/ε))√
2 log(1/ε)

=
1√

2π
√

2 log(1/ε)
,

which implies

max
1≤i≤1/ε

x2
i,1 ≤

2 log(1/ε)

n
holds with probability ≥ 1− [2

√
π log(1/ε)]−1. (C.38)

Third, it is clear that

‖(tε
√
ε/δ + 1) · z̃ + tεx1‖ ≥ ‖(tε

√
ε/δ + 1) · z̃‖ − tε‖x1‖

≥ (tε
√
ε/δ + 1) ·

√
n− tε holds with probability one.

(C.39)

Combining (C.37), (C.38), and (C.39), with probability at least 1− [2
√
π log(1/ε)]−1, in order

to prove the supreme of the right-hand side of (C.34) over 0 ≤ ε ≤ 1 is zero, it suffices to
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show that sup0≤ε≤1 P
{
Q ≤ 2ϑ−1

}
= 0, where

Q ≡#

{
2 ≤ i ≤ 1/ε− 1

2
+
c1

√
1/ε− 1

2
:

√
nxi,1 >

[
tε +

tε log(1/ε)

n
+ (tε

√
ε/δ + 1)C1 +

C2tε√
n

]/[
(tε
√
ε/δ + 1)− tε/

√
n
]}

.

As n→∞,

[
tε +

tε log(1/ε)

n
+ (tε

√
ε/δ + 1)C1 +

C2tε√
n

]/[
(tε
√
ε/δ + 1)− tε/

√
n
]

→ (
√
ε/δ + t−1

ε )−1 + C1,

where C1 ≡ x′1z̃ is defined in (C.35). Let ξi ≡
√
nxi,1 ∼ N(0, 1). Then for any i ≥ 1,

P
{
ξi > (

√
ε/δ + t−1

ε )−1 + C1

}
= 1− Φ

(
tε/
√

2

tε
√
ε/δ + 1

)

≥ c
tε
√
ε/δ + 1

tε/
√

2
· exp

−1

2

(
tε/
√

2

tε
√
ε/δ + 1

)2


for some constant c, and we have

sup
0≤ε≤1

{
P
{
ξi > (

√
ε/δ + t−1

ε )−1 + C1

}
· ε−1

}
= sup

0≤ε≤1

{[
1− Φ

(√
δ/(2ε)

)]
· ε−1

}
= +∞.

(C.40)
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Observe that

sup
0≤ε≤1

P

{
#

{
2 ≤ i ≤ 1/ε− 1

2
+
c1

√
1/ε− 1

2
: ξi >

√
δ/ε+ C1

}
>

2

ϑ

}

≥ 1−∞0≤ε≤1Φ

 2
ϑ − P(ξ2 >

√
δ/ε+ C1)(1/ε−3

2 +
c1
√

1/ε−1

2 )√
P(ξ2 >

√
δ/ε+ C1)[1− P(ξ2 >

√
δ/ε+ C1)] · (1/ε−3

2 +
c1
√

1/ε−1

2 )


≥ sup

0≤ε≤1
Φ

√P(ξ2 >
√
δ/ε+ C1) · (1/ε− 3

2
+
c1

√
1/ε− 1

2
)

− 2/ϑ√
P(ξ2 >

√
δ/ε+ C1) · (1/ε−3

2 +
3
√

1/ε−1

2 )


= 1

where the last step is by (C.40). Hence, sup0≤ε≤1 P{Q ≤ 2ϑ−1} = 0 and by (C.34), we

complete the proof for (C.32).

Now we complete the proof for (C.31) by observing that

PΠ

{
‖β̃ − β‖2/(kt2ε ) > 1− ϑ/2

}
≥ 1−

[
PΠ

{
L1/t

2
ε ≤ 1− ϑ/2

}]k
≥ 1− k

[
1− PΠ

{
L1/t

2
ε > 1− ϑ/2

}]
= kPΠ

{
L1/t

2
ε > 1− ϑ/2

}
− (k − 1),

(C.41)

and ‖Π‖0 ≤ k is equivalent to 0 ≤ ε ≤ 1. Then, we obtain (C.31) by applying (C.32) to (C.41).

This completes the proof.

C.2.3.0.2 Proof of Theorem 4.12 Define

β̃Ao = argmin
b∈Rk

1

2
||βAo +X ′Aoz − b||2 +

k∑
j=1

Pλ,τ (|bj |)

 .

For any j ∈ Ao, β̃Ao,j = βj +X ′jz − P ′λ,τ (|β̃Ao,j |)sgn(β̃Ao,j) and

|β̃Ao,j − βj | = |X ′jz − P ′λ,τ (|β̃Ao,j |)sgn(β̃Ao,j)| ≤ |X ′jz|+ |P ′λ,τ (|β̃Ao,j |)|.
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Let τλ ≡ τ/λ ≥ (1 − δ−1/2 − ϑ)−2. As shown in the proof of Theorem 4.5, the TWIN-a

estimator is unique with probability at least 1−e−nϑ2/2. By (C.21), since λ = {[(1−ϑ)
√
δ/ε−

1]−1(1 + ϑ) + 1}(1 + ϑ)σ
√

2 log p, we have

‖β̂ − β‖ = ‖β̂Ao − βAo‖,

and

P{|P ′λ,τ (|β̃Ao,j |)| ≤ [(
√
δ/ε− 1)−1 + 1]σ

√
2 log p} → 1.

From the proof of Theorem 4.5, we know |X ′jz| = oP{[(
√
δ/ε−1)−1 + 1]σ

√
2 log p} and then

P

{
‖β̃Ao − βAo‖2

[(
√
δ/ε− 1)−1 + 1]22σ2k log p

≤ 1

}
→ 1. (C.42)

Now we show that

P


‖β̃Ao − β̂Ao‖2

3[(
√
δ/ε−1)−1+1]2

(1−τ−1
λ )
√
δ/ε−2

2σ2k log p
≤ 1

→ 1. (C.43)

By definition of β̂Ao and β̃Ao , they minimize the following L1(b) and L2(b) with b ∈ Rk,

respectively,

L1(b) :=
1

2
‖XAo(βAo − b)‖2 + z′XAo(βAo − b) +

k∑
j=1

Pλ,τ (|bj |),

L2(b) :=
1

2
‖βAo − b‖2 + z′XAo(βAo − b) +

k∑
j=1

Pλ,τ (|bj |).

(C.44)

By Lemma C.4, we know that all the eigenvalues of X ′AoXAo lie in (1 −
√
ε/δ, 1 +

√
ε/δ)
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with overwhelming probability. Thus,

L2(β̃Ao)−
√
ε/δ

2
‖βAo − β̃Ao‖2 ≤ L1(β̃Ao) ≤ L2(β̃Ao) +

√
ε/δ

2
‖βAo − β̃Ao‖2,

L2(β̂Ao)−
√
ε/δ

2
‖βAo − β̂Ao‖2 ≤ L1(β̂Ao) ≤ L2(β̂Ao) +

√
ε/δ

2
‖βAo − β̂Ao‖2.

Thus,

L2(β̃Ao) +

√
ε/δ‖βAo − β̃Ao‖2

2
≥ L1(β̃Ao) ≥ L1(β̂Ao)

≥ L2(β̂Ao)−
√
ε/δ‖βAo − β̂Ao‖2

2
.

(C.45)

Note that τλ ≥ (1− δ−1/2 − ϑ)−2 > 1, then L2 is strongly convex and

L2(β̂Ao) ≥ L2(β̃Ao) +
(1− τ−1

λ )‖β̃Ao − β̂Ao‖2

2
.

Plugging the above formula into the right-hand side of (C.45) gives

(1− τ−1
λ )‖β̃Ao − β̂Ao‖2

2
−
√
ε/δ‖βAo − β̂Ao‖2

2
≤
√
ε/δ‖βAo − β̃Ao‖2

2
.

Since
√
ε/δ‖βAo − β̂Ao‖2/2 ≤

√
ε/δ‖β̃Ao − β̂Ao‖2 +

√
ε/δ‖βAo − β̃Ao‖2, we have

‖β̃Ao − β̂Ao‖2 ≤
3
√
ε/δ

1− τ−1
λ − 2

√
ε/δ
‖βAo − β̃Ao‖2.

Together with (C.42), then (C.43) follows. Now combining (C.42) with (C.43), we complete

the proof for this theorem.

C.2.3.0.3 Proof of Corollary 4.13 Since
√
δ/ε−1 >

√
δ for ε ≤ 1/4 and now λ = λa,univ =

(1 + δ−1/2)σ
√

2 log p, we have P{|P ′λ,τ (|β̃Ao,j |)| ≤ (1 + δ−1/2)σ
√

2 log p} → 1. Following the

proof of Theorem 4.12, we obtain that with probability approaching one,

‖β̃Ao − βAo‖2 ≤ (1 + δ−1/2)22σ2k log p,

‖β̃Ao − β̂Ao‖2 ≤
3(1 + δ−1/2)2

(1− λa,univτ
−1
a,univ)

√
δ/ε− 2

2σ2k log p.
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Then,

‖β − β̂‖2 = ‖βAo − β̂Ao‖2

≤

{ √
3

[(1− λa,univτ
−1
a,univ)δ1/2ε−1/2 − 2]1/2

+ 1

}2

(1 + δ−1/2)22σ2k log p

≤

{ √
3

[(1.98− δ−1/2)ε−1/2 − 2]1/2
+ 1

}2

(1 + δ−1/2)22σ2k log p,

which completes the proof.

C.2.3.0.4 Proof of Theorem 4.14 We follow the proof of Theorem 4.12. By (C.9),P{|P ′λ,τ (|β̃Ao,j |)| ≤

σ
√

1− ε/δ
√

2 log p} → 1. Recall that L1(b) and L2(b) are defined in (C.44). Note that L2(·)

is strongly convex on a open connected neighborhood containing β̂Ao and β̃Ao where

Pλ,τ (·) ≡ 0. This implies

L2(β̂Ao) ≥ L2(β̃Ao) +
‖β̃Ao − β̂Ao‖2

2
.

Plugging the above formula into the right-hand side of (C.45) gives

‖β̃Ao − β̂Ao‖2

2
−
√
ε/δ‖βAo − β̂Ao‖2

2
≤
√
ε/δ‖βAo − β̃Ao‖2

2
.

Thus,

‖β̃Ao − β̂Ao‖2 ≤
3
√
ε/δ

1− 2
√
ε/δ
‖βAo − β̃Ao‖2.

The rest of proof follows the idea in the proof of Theorem 4.12.

C.2.3.0.5 Proof of Corollary 4.15 Sinceλ = λb,univ = σ
√

2 log p, we haveP{|P ′λ,τ (|β̃Ao,j |)| ≤

σ
√

2 log p} → 1. Following the proof of Theorem 4.12, we obtain that with probability ap-

proaching to one,

‖β̃Ao − βAo‖2 ≤ 2σ2k log p, ‖β̃Ao − β̂Ao‖2 ≤
3√

δ/ε− 2
2σ2k log p.
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Then,

‖β − β̂‖2 = ‖βAo − β̂Ao‖2 ≤

[ √
3

(δ−1/2ε−1/2 − 2)1/2
+ 1

]2

2σ2k log p,

which completes the proof.

C.3 Key Lemmas

Lemma C.4. For anyA ⊂ {1, . . . , p}with |A| < n, the largest and smallest eigenvalues ofX ′AXA

satisfy for any ϑ > 0,

λmax(X ′AXA) < (1 +
√
|A|/n+ ϑ)2, λmin(X ′AXA) > (1−

√
|A|/n− ϑ)2

with probability at least 1− e−nϑ2/2.

Proof. Classical theory on Wishart matrices gives that the smallest singular value ofXA is

larger than 1 −
√
|A|/n − ϑ with probability at least 1 − e−nϑ2/2 and the largest singular

value of XA is smaller than 1 +
√
|A|/n + ϑ with probability at least 1 − e−nϑ2/2; see, for

example, Vershynin (2012). We complete the proof by noticing that n/p→ δ.

For ease of presentation of our proofs, we re-state in Lemmas C.5 and C.6 two lemmas

presented in the Supplement to Su et al. (2017). We use these lemmas throughout our proofs.

Lemma C.5. For any positive integer d and ϑ ≥ 0, we have

P(
√
χ2
d ≥
√
d+ ϑ) ≤ e−ϑ2/2.

Lemma C.6. For any positive integer d and any ϑ ≥ 0, we have

P
(
χ2
d ≤ ϑd

)
≤ (eϑ)d/2.
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C.4 Coordinate Descent Algorithms for TWIN

In order to develop algorithms for computation of penalized regression problems with

TWIN penalties, we focus on minimization of the following univariate penalized regression

problem:

J(b) =
1

2
(z − b)2 + Pλ,τ (|b|), (C.46)

where z = x′y. In the typical coordinate descent fashion, we propose to loop through

each of the variables and minimize with respect to its corresponding coefficient and hence

the emphasis on (C.46). A coordinate descent algorithm for the TWIN class of penalties is

described in Algorithm 2. Algorithm 2 follows Algorithm 1 of Mazumder et al. (2011) for

nonconvex penalties with a few modifications. It is known that a cyclic coordinate descent

algorithm for penalties with discontinuous thresholding operations may not be convergent

(Mazumder et al., 2011; Patrascu and Necoara, 2015). However, in practice we find with a

few modifications, coordinate descent can be quite effective. In particular, similar to ideas

in Patrascu and Necoara (2015) we randomize the coordinate updates instead of cycling

through in a deterministic ordering of variables. Secondly, we do not take full steps in

the direction of the univariate minimizers of (C.46). Instead, we only take partial steps,

as guided by the parameter α in Algorithm 2. We find that choosing α = 1/2 works well

in practice. This encourages less “greedy” updates and thus the iterates are less likely to

get stuck in poor local minima. Studying the theoretical properties of this approach is an

interesting direction of future work. We also note that since the TWIN penalty is non-convex,

two different random seeds could potentially yield different local solutions. As such, one

potential optimization strategy is to run Algorithm 2 several times and choose the solution

with the best loss.

Algorithm 2 works well when the sample size is not too small, however, we have found

that with very small sample sizes TWIN, and in particular TWIN-b, can be unstable when τ

and λ are such that TWIN is discontinuous. To mitigate instability in these scenarios, we

developed a coordinate descent-based hybrid local linear approximation (LLA) algorithm
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based on ideas from the local linear approximation algorithm of Zou and Li (2008). The

basic idea is to construct a local linear approximation to the penalty function for small to

medium sized coefficients:

Pλ,τ (|bj |) ≈


Pλ,τ (|bj |) if bj > τ and P ′′λ,τ (|bj |) ≥ 0

Pλ,τ (|βj |) + P ′λ,τ (|βj |)(|bj − |βj ||) otherwise, for bj ≈ βj .

At iteration k we then use this approximation to replace minimization of C.46 with mini-

mization of

J̃(bj) =


1
2(z − bj)2 + Pλ,τ (|bj |) if bj > τ and P ′′λ,τ (|bj |) ≥ 0

1
2(z − bj)2 + P ′λ,τ (|β̃(k−1)

j |)|bj | otherwise.
(C.47)

The resulting algorithm, which we call the MCLLA algorithm for mixed coordinate local

linear approximation, is described in Algorithm 3.

C.5 Additional Simulation Results

C.5.1 Simulation Illustrating Universal Tuning Parameters

In this section we conduct a simulation to evaluate the finite sample validity of the universal

tuning parameters λa,univ, λb,univ, and τuniv from Corollaries 4.6 and 4.8 from the main

text. We simulate data under model (4.1) and generate X from a multivariate Gaussian

distribution with identity covariance matrix. The nonzero terms in β are generated from

independent uniform random variables on [−2,−1] ∪ [1, 2]. The tuning parameters for both

TWIN-a and TWIN-b are chosen as the universal values from Corollaries 4.6 and 4.8 from

the main text. We vary the sample size n, the number of variables p, the number of active

variables k, and the standard deviation σ of the error term. For implementation purposes, we

take δ to be n/p instead of the limit of n/p. In this simulation we use the true data-generating

noise level σ, however it can be straightforwardly estimated using the approach presented in
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Algorithm 2 Coordinate descent for (4.2) with TWIN penalties

1. Input a grid of decreasing λ values {λ0, . . . ,λL−1} and a grid of decreasing τ values
{τ0, τ0/2, τ0/2

2, . . . , τ0/2
T−1}.

2. For each combination (τ0/2
t,λ`) ∈ {τ0, τ0/2, τ0/2

2, . . . , τ0/2
T−1} × {λ0, . . . ,λL−1}, re-

peat the following procedure:

(i) At iteration k loop through the following univariate updates for each j ∈
Pk(1, . . . , p)

β̃
(k),†
j ← Sτt

(
n∑
i=1

(yi − ỹji )xij ,λ`

)
β̃

(k)
j ← αβ̃

(k),†
j + (1− α)

[
(1− I(β̃

(k−1),†
j = 0, β̃

(k),†
j = 0))β̃

(k−1)
j

]
(C.48)

where ỹji =
∑

m6=j xikβ̃
(k−1)
m , Sτ (β̃,λ) = argminβ J(β), where J(β) is defined in

(C.46), α ∈ (0, 1], and Pk(1, . . . , p) are permutations of the variable indexes, until
the update vectors β̃ = (β̃1, . . . , β̃p) converge to β∗. The term 1 − I(β̃

(k−1),†
j =

0, β̃
(k),†
j = 0) is to allow estimates to be exactly 0 if two successive thresholding

iterates are 0. The permutations Pk(1, . . . , p) may be identity mappings, i.e.
Pk(1, . . . , p) = (1, . . . , p), and thus result in a repeated ordered cycling through
the variables, but we find that uniformly at random permutations are more
effective.

(ii) Set β̂τt,λ` ← β∗

Section 5 of Zhang (2010). This simulation is low-dimensional, however in high-dimensional

scenarios, the degrees of freedom must be estimated. The approach of Theorems 7 and 8 of

Zhang (2010) can be extended to TWIN for such a purpose.

The simulation is replicated 500 times. For each simulation we record the resulting

FDR and TDR values. The average FDR and TDR values for simulations with n = 1000

are presented in Table C.1 and for n = 2000 in Table C.2. In almost all settings the FDR is

nearly zero and the TDR is quite high, even under the more difficult scenarios with large k

and large σ. The results improve across all settings as the sample size increases. From the

results, it appears that the universal tuning parameter values are conservative in terms of

the FDR, rarely yielding any false discoveries.
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Algorithm 3 Mixed coordinate local linear approximation descent for (4.2) with TWIN
penalties

1. Input a grid of decreasing λ values {λ0, . . . ,λL−1} and a grid of decreasing τ values
{τ0, τ0/2, τ0/2

2, . . . , τ0/2
T−1}.

2. For each combination (τ0/2
t,λ`) ∈ {τ0, τ0/2, τ0/2

2, . . . , τ0/2
T−1} × {λ0, . . . ,λL−1}, re-

peat the following procedure:

(i) At iteration k loop through the following univariate updates for each j ∈
Pk(1, . . . , p)

β̃
(k),†
j ← Sτt,`1

(
n∑
i=1

(yi − ỹji )xij ,λ`

)
β̃

(k)
j ← αβ̃

(k),†
j + (1− α)

[
(1− I(β̃

(k−1),†
j = 0, β̃

(k),†
j = 0))β̃

(k−1)
j

]
where ỹji =

∑
m6=j xikβ̃

(k−1)
m , Sτ ,`1(β̃,λ) = argminβ J̃(β), where J̃(β) is defined

in (C.47), α ∈ (0, 1], and Pk(1, . . . , p) are permutations of the variable indexes,
until the update vectors β̃ = (β̃1, . . . , β̃p) converge to β∗.

(ii) Set β̂τt,λ` ← β∗

C.5.2 Additional Simulation Settings

In this section we provide additional simulation results extending the simulations from

Section 5.3 of the main text. We keep the simulation settings the same as in the main text

with a few changes. We increase the dimension to p = 2000 and use sample sizes of 250

and 500. We generate data under Models 1 and 2 and under two similar models with an

increased number of active variables (k = 100). In this simulation we generate the covariates

with a block diagonal covariance matrix where each block is size 1000 and is constructed

in the same way as the full covariance matrix Σ, i.e. with element in the ith row and jth

column equal to ρ|i−j|. In addition to Models 1 and 2 from Section 5 of the main text, we

also simulate data under the following two models, Models 5 and 6, which both have 100

active variables:

Model 5 A randomly chosen 100 elements of β are generated as independent uniform

random variables on [−2, 0.5] ∪ [0.5, 2] and the rest are 0.
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TWIN-a TWIN-b
FDR TDR FDR TDR

n p k σ Mean SD Mean SD Mean SD Mean SD

1000 100 10 1 0.00000 0.00000 0.95700 0.06972 0.00000 0.00000 0.95740 0.06939
3 0.00000 0.00000 0.93380 0.07855 0.00000 0.00000 0.93380 0.07855
5 0.00000 0.00000 0.91700 0.08358 0.00000 0.00000 0.91720 0.08365

50 1 0.00000 0.00000 0.88224 0.04798 0.00000 0.00000 0.88260 0.04782
3 0.00000 0.00000 0.87516 0.05047 0.00000 0.00000 0.87552 0.05026
5 0.00023 0.00225 0.85768 0.05181 0.00023 0.00225 0.85812 0.05144

100 1 0.00000 0.00000 0.81698 0.04142 0.00000 0.00000 0.81750 0.04130
3 0.00000 0.00000 0.80868 0.04139 0.00000 0.00000 0.80910 0.04149
5 0.00000 0.00000 0.80046 0.04237 0.00000 0.00000 0.80080 0.04217

500 10 1 0.00000 0.00000 0.95340 0.07056 0.00000 0.00000 0.95360 0.07055
3 0.00000 0.00000 0.94180 0.07045 0.00000 0.00000 0.94180 0.07045
5 0.00000 0.00000 0.92480 0.08318 0.00000 0.00000 0.92480 0.08318

50 1 0.00018 0.00205 0.88124 0.05069 0.00018 0.00205 0.88128 0.05069
3 0.00044 0.00310 0.87604 0.05143 0.00044 0.00310 0.87604 0.05143
5 0.00244 0.00723 0.86428 0.05627 0.00244 0.00723 0.86432 0.05633

100 1 0.00720 0.00929 0.81198 0.04427 0.00720 0.00929 0.81200 0.04423
3 0.00998 0.01103 0.81218 0.04226 0.01000 0.01105 0.81222 0.04230
5 0.01958 0.01593 0.79904 0.04292 0.01958 0.01593 0.79908 0.04296

Table C.1: FDR and TDR averaged over 500 simulation replications with sample sizes
n = 1000 and tuning parameters set as their universal values. The values in the “SD”
columns are standard deviations, not standard errors.

Model 6 A randomly chosen 100 elements of β are (−0.975)j−1 for j = 1, . . . , 100 and the

rest are 0.

The results from these simulations are consistent with the simulation results from the

main text and thus we do not discuss them in-depth.

C.5.3 Extensive Evaluation of the TWIN’s τ Tuning Parameter

In this simulation we present expanded results comparing TWIN with different values

for the τ tuning parameter. In particular, we present simulation studies under all of the

simulation settings described in Section 5 of the main text. The FDR-TPR results for TWIN-a

are presented in Figures C.9, C.10, C.11, and C.12 and the RMSE-model size results for

TWIN-a are presented in Figures C.13, C.14, C.15, and C.16. Results for TWIN-b mirror

results for TWIN-a and are thus not included, but can be made available by contacting the

authors. The FDR-TPR results for TWIN-b are presented in Figures C.17, C.18, C.19, and
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TWIN-a TWIN-b
FDR TDR FDR TDR

n p k σ Mean SD Mean SD Mean SD Mean SD

2000 100 10 1 0.00000 0.00000 0.96900 0.05608 0.00000 0.00000 0.97040 0.05376
3 0.00000 0.00000 0.95620 0.06626 0.00000 0.00000 0.95700 0.06557
5 0.00000 0.00000 0.94360 0.06978 0.00000 0.00000 0.94480 0.06930

50 1 0.00000 0.00000 0.92192 0.03920 0.00000 0.00000 0.92252 0.03904
3 0.00000 0.00000 0.91928 0.04208 0.00000 0.00000 0.91976 0.04215
5 0.00000 0.00000 0.90976 0.04200 0.00000 0.00000 0.91024 0.04187

100 1 0.00000 0.00000 0.88312 0.03750 0.00000 0.00000 0.88374 0.03740
3 0.00000 0.00000 0.87766 0.03623 0.00000 0.00000 0.87814 0.03618
5 0.00000 0.00000 0.87062 0.03471 0.00000 0.00000 0.87120 0.03464

500 10 1 0.00000 0.00000 0.97300 0.05382 0.00000 0.00000 0.97300 0.05382
3 0.00000 0.00000 0.96040 0.05830 0.00000 0.00000 0.96040 0.05830
5 0.00000 0.00000 0.94940 0.06594 0.00000 0.00000 0.94940 0.06594

50 1 0.00000 0.00000 0.92344 0.04067 0.00000 0.00000 0.92348 0.04067
3 0.00000 0.00000 0.91752 0.03801 0.00000 0.00000 0.91752 0.03801
5 0.00000 0.00000 0.90772 0.04513 0.00000 0.00000 0.90788 0.04499

100 1 0.00006 0.00083 0.87956 0.03699 0.00006 0.00083 0.87964 0.03701
3 0.00007 0.00088 0.88002 0.03524 0.00007 0.00088 0.88016 0.03521
5 0.00032 0.00224 0.87226 0.03451 0.00032 0.00224 0.87242 0.03445

Table C.2: FDR and TDR averaged over 500 simulation replications with sample sizes
n = 2000 and tuning parameters set as their universal values. The values in the “SD”
columns are standard deviations, not standard errors.

C.20. For the sake of space, results for prediction performance for TWIN-b are left out, but

can be provided by contacting the authors.

C.5.4 Remaining Prediction Results from Main Text

In this section we include in Figure C.21 the prediction results under Models 3 and 4 that

were excluded from the main text.
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Figure C.1: The results above are for a simulation with data generated under Model 1 with
p = 2000.
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Figure C.2: The results above are for a simulation with data generated under Model 2 with
p = 2000.
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Figure C.3: The results above are for a simulation with data generated under Model 5 with
p = 2000.
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Figure C.4: The results above are for a simulation with data generated under Model 6 with
p = 2000.
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Figure C.5: The results above are for a simulation with data generated under Model 1 with
p = 2000.
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Figure C.6: The results above are for a simulation with data generated under Model 2 with
p = 2000.
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Figure C.7: The results above are for a simulation with data generated under Model 5 with
p = 2000.
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Figure C.8: The results above are for a simulation with data generated under Model 6 with
p = 2000.
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Figure C.9: The results above are for a simulation for TWIN-a with data generated under
Model 1.
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Figure C.10: The results above are for a simulation for TWIN-a with data generated under
Model 2 with p = 1000.
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Figure C.11: The results above are for a simulation for TWIN-a with data generated under
Model 3 with p = 1000.
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Figure C.12: The results above are for a simulation for TWIN-a with data generated under
Model 4 with p = 1000.
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Figure C.13: The results above are for a simulation for TWIN-a with data generated under
Model 1 with p = 1000.
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Figure C.14: The results above are for a simulation for TWIN-a with data generated under
Model 2 with p = 1000.
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Figure C.15: The results above are for a simulation for TWIN-a with data generated under
Model 3 with p = 1000.
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Figure C.16: The results above are for a simulation for TWIN-a with data generated under
Model 4 with p = 1000.
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Figure C.17: The results above are for a simulation for TWIN-b with data generated under
Model 1.
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Figure C.18: The results above are for a simulation for TWIN-b with data generated under
Model 2 with p = 1000.
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Figure C.19: The results above are for a simulation for TWIN-b with data generated under
Model 3 with p = 1000.
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Figure C.20: The results above are for a simulation for TWIN-b with data generated under
Model 4 with p = 1000.
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Figure C.21: The results above are for a simulation with data generated under Model 3 (top
panel) and Model 4 (bottom panel) with p = 1000.
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Appendix D

Appendix For: Towards Theoretical

Understanding of Large Batch

Training in Stochastic Gradient

Descent

D.1 Proof of (5.2)

For the first part, without less of generality, we consider w is in any bounded domain of R.

Then

∇L(w) =
d

dw
E[Ln(w)] = lim

h→0

1

h
{E[Ln(w + h)]− E[Ln(w)]}

= lim
h→0

E
{
Ln(w + h)− Ln(w)

h

}
= lim

h→0
E {∇Ln(w + τ(h))} .

where the last step is by the mean value theorem with some 0 < τ(h) < h. Due to continuity

of∇Ln, we can use the dominated convergence theorem and have

lim
h→0

E {∇Ln(w + τ(h))} = E
{

lim
h→0
∇Ln(w + τ(h))

}
= E {∇Ln(w)} .
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This completes the proof of the first part. By assuming the iid of the data, we have Var[ĝ(B)] =

M−1σ2(w). This completes the proof of the second part.

D.2 Proof of Lemma 5.1

We start to consider when β(w) ≡ β is a constant and follow the strategy in Kolpas et al.

(2007) to derive the Fokker-Planck equation. First, consider W(t) = W (t) ∈ R. Note that for

SGD the correspondingW (t) is a Markov process, then the Chapman-Kolmogorov equation

gives

p (W (t3)|W (t1)) =

∫ +∞

−∞
p (W (t3)|W (t2) = w) p (W (t2) = w|W (t1)) dw.

Consider the integral

I =

∫ +∞

−∞
h(w)∂tp(w, t|W )dw,

where h(w) is a smooth function with compact support. Observe that

∫ +∞

−∞
h(w)∂tp(w, t|W )dw = lim

∆t→0

∫ +∞

−∞
h(w)

(
p(w, t+ ∆t|W )− p(w, t|W )

∆t

)
dw.

Letting Z be an intermediate point. Applying the Chapman-Kolmogorov identity on the

right hand side yields

lim
∆t→0

1

∆t

(∫ +∞

−∞
h(w)

∫ +∞

−∞
p(w, ∆t|Z)p(Z, t|W )dZdw −

∫ +∞

−∞
h(w)p(w, t|W )dw

)
.

By changing the limits of integration in the first term and letting w approach Z in the second

term, we obtain

lim
∆t→0

1

∆t

(∫ +∞

−∞
p(Z, t|W )

∫ +∞

−∞
p(w, ∆t|Z)(h(w)− h(Z))dwdZ

)
.
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Expand h(w) as a Taylor series about Z, we can write the above integral as

lim
∆t→0

1

∆t

(∫ +∞

−∞
p(Z, t|W )

∫ +∞

−∞
p(w, ∆t|Z)

∞∑
n=1

h(n)(Z)
(w − Z)n

n!

)
dwdZ.

Now we define the function

D(n)(Z) =
1

n!

1

∆t

∫ +∞

−∞
p(w, ∆t|Z)(w − Z)ndw.

We can write the integral I as

∫ +∞

−∞
h(w)∂tp(w, t|W )dw =

∫ +∞

−∞
p(Z, t|W )

∞∑
n=1

D(n)(Z)h(n)(Z)dZ.

Integrating by parts n times gives

∂tp(w, t) =
∞∑
n=1

− ∂n

∂Zn

[
D(n)(Z)p(Z, t|W )

]
.

Let D(1)(w) = −L(w), D(2)(w) = −γ(t)β/[2M(t)] and D(n)(w) = 0 for all n ≥ 3, the above

equation yields

∂tp(w, t) =
∂

∂w
[∇L(w)p(w, t)] +

∂

∂w2

[
γ(t)β

2M(t)
p(w, t)

]
,

which is the Fokker-Planck equation in one variable. For the multidimensional case W =

(W1,W2, . . . ,Wp) ∈ Rp, the above procedure can be easily generalized to get

∂tp(w, t) =

p∑
i=1

∂

∂wi
[∇L(w)p(w, t)] +

p∑
i=1

∂2

∂w2
i

[
γ(t)β

2M(t)
p(w, t)

]
= ∇ ·

(
∇L(w)p+

γ(t)β

2M(t)
∇p
)

.

(D.1)
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Since W(0) = w0, p(w, 0) = δ(w0). This completes the derivation of the Fokker-Planck

equation for constant β(w) = β. For deriving (5.5), we can apply (D.1) and notice that

∇
[
γ(t)β(w)

2M(t)
p

]
= ∇

[
γ(t)β(w)

2M(t)

]
p+

γ(t)β(w)

2M(t)
∇p.

This completes the proof.

D.3 Discussion on the Main Assumptions (A.1) – (A.3).

We verify (A.1) and (A.2) for the L2 loss and the mean cross entropy loss. Denote by

{(xn, yn), 1 ≤ n ≤ N} the set of training data. Without loss of generality, consider

Var[yn|xn] = 1.

First, we consider the L2 loss: L(w) = (w −w0)>E[xnx
>
n ](w −w0) + 1. By assumption

that σ2(w) is positive definite, we have

lim
‖w‖→+∞

L(w) ≥ lim
‖w‖→+∞

λmin{E[xnx
>
n ]}‖w −w0‖2 + 1

≥ lim
‖w‖→+∞

λmin{E[xnx
>
n ]}[‖w‖2/2− ‖w0‖2/2] + 1 = +∞,

(D.2)

where λmin{·} denotes the minimal eigenvalue. Note that

∫
e−L(w)dw =

∫
e−(w−w0)>E[xnx>n ](w−w0)−1

≤
∫
e−λmin{E[xnx>n ]}[‖w‖2/2−‖w0‖2/2]−1 < +∞,

This proves (A.1). To prove (A.2), we note that

‖∇L(w)‖2/2 = 2(w −w0)>{E[xnx
>
n ]}2(w −w0),

and

∇ · ∇L(w) = Tr{E[xnx
>
n ]},
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and similarly to (D.2) we can prove

lim
‖w‖→+∞

{
‖∇L(w)‖2/2−∇ · ∇L(w)

}
= +∞,

and

lim
‖w‖→+∞

{
∇ · ∇L(w)/‖∇L(w)‖2

}
= 0.

The assumption (A.3) can be verified straightforwardly as (A.2).

Second, we consider the mean cross entropy loss regularized with the l2 penalty for

logistic regression. Without loss of generality, we only consider the binary classification:

L(w) = E[−yn log ŷn − (1− yn) log(1− ŷn)] + λ‖w‖2 with ŷn = 1/(1 + e−w·xn). Note that

lim
‖w‖→+∞

L(w) ≥ λ‖w‖2 = +∞,

∫
e−L(w)dw ≤

∫
e−λ‖w‖

2
dw < +∞.

This proves (A.1). To prove (A.2), note that ∇L(w) = E[−xnyn + xn/(1 + e−w·xn)] + 2λw

and −∇ · ∇L(w) = e−w·xn
(1+ew·xn )2 [2P(yn = 1) − 1]Tr(xnx>n ). Since λ‖w‖2 → ∞, we have that

‖∇L(w)‖2/2−∇ ·∇L(w)→∞ and∇·∇L(w)/‖∇L(w)‖2 → 0 as ‖w‖ → ∞. Similarly, the

assumption (A.3) can be verified as (A.2). This completes the proof.

D.4 Proof of Lemma 5.3

Let η(t) = 2M(t)/[γ(t)β]. By setting ∂tp = 0, it can be verified that p∞(w) = κe−η∞L(w)

satisfies

∇ · (∇L(w)p+
1

η(t)
∇p) = 0.

Since β(w) ≡ β and the assumption (A.1) ensures that e−η∞L(w) is well-defined, p∞(w) is a

stationary solution.
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D.5 Proof of Theorem 5.4

Parallel to the notation of p∞(w) = κe−η∞L(w), we let

p̂(w, t) ≡ κ(t)e−η(t)L(w),

where η(t) = 2M(t)
γ(t)β(t) andκ(t) is a time-dependent normalization factor such that

∫
p̂(w, t)dw =

1. Observe that (5.5) can be written as

∂tp =
1

η
∇w ·

(
p̂∇w

(
p

p̂

))
. (D.3)

Let p̂ be p̂(t, w) = p∞(w)δ(t, w), where δ(t, w) ≡ κ(t)
κ eL(w)(η∞−η(t)). Denote by h the scaled

distance from p to p∞:

h ≡ p− p∞√
p∞

,

then h satisfies the following equation,

∂th =
1

η
√
p∞
∇w ·

[
p̂∇w

(
1

δ
+

h
√
p∞δ

)]
=

1

η
√
p∞
∇w ·

[
p∞

(
∇wLδ̂ +∇wLδ̂

(
h
√
p∞

)
+∇w

(
h
√
p∞

))]
,

(D.4)

where δ̂(t) = η(t)− η∞. Multiplying h to the both sides of (D.4) and integrating it over x,

after integration by parts, one has,

1

2
∂t ‖h‖2 =

δ̂

η

∫
h
√
p∞
∇w · (p∞∇wL) dw︸ ︷︷ ︸

I

+
δ̂

η

∫
1

2

∥∥∥∥ h
√
p∞

∥∥∥∥2

∇w · (p∞∇wL) dw︸ ︷︷ ︸
II

− 1

η

∫
p∞

∥∥∥∥∇w

(
h
√
p∞

)∥∥∥∥2

dw︸ ︷︷ ︸
III

.

Note that

∇w · (p∞∇wL) = p∞

(
∇w · ∇wL− η∞ ‖∇wL‖2

)
,
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so by Assumption A3, one has

|∇w · (p∞∇wL)| ≤ p2/3
∞ max{1, η∞}M ,

which implies

I ≤ max{1, η∞}M
2

(
‖h‖2 +

∫
p1/3
∞ dw

)
.

For term II , first Assumption A3 is equivalent to

lim
‖w‖→∞

∇w · ∇wL

2η∞ ‖∇wL‖2
= 0. (D.5)

Furthermore, Assumption A2 and (D.5) implies that lim‖w‖→∞ ‖∇wL‖2 → +∞, so there

exists a constant R, such that

∇w · ∇wL− 2η∞ ‖∇wL‖2 ≤ η∞, η∞ ‖∇wL‖2 ≥ η∞, for ∀ ‖w‖ > R.

Therefore one has,

∇w · ∇wL− η∞ ‖∇wL‖2 ≤ 0, for ∀ ‖w‖ > R.

By the continuity of the loss function, for ‖w‖ ≤ R, there exists a constant C2, such that

∣∣∣∇w · ∇wL− η∞ ‖∇wL‖2
∣∣∣ ≤ C2, for ∀ ‖w‖ < R.

Combining the above two inequality gives the bound for term II ,

|II| ≤ C2

2
‖h‖2 .

Thus combine the estimates for the term I and II , one has

I + II ≤ C1 ‖h‖2 + C1, (D.6)
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where C1 = 1
2 max{1, η∞}max

{∫
p

1/3
∞ dw, 1 + C2

2

}
M .

For term III , under Assumption A2, one has the following Poincaré inequality (see, e.g.,

Pavliotis (2014)) on p∞dw,

∫ ∥∥∥∥∇w

(
h
√
p∞

)∥∥∥∥2

p∞ dw ≥ CP
∫ (

h
√
p∞
−
∫
h
√
p∞dw

)2

p∞ dw.

In addition, the fact that
∫
h
√
p∞ dw = 0 gives

III ≥ CP ‖h‖2 . (D.7)

The reason why
∫
h
√
p∞ dw = 0 comes from the conservation of mass. That is, if one

integrates (D.3) over w and uses integration by parts,

∂t

(∫
p(w, t) dw

)
= 0,

which implies
∫
h
√
p∞ dw =

∫
p dw −

∫
p∞ dw = 0. So combining (D.6) and (D.7) gives,

1

2
∂t ‖h‖2 +

CP
η
‖h‖2 ≤ C1δ̂

η

(
‖h‖2 + 1

)
(D.8)

Since η(t)→ η∞ > 0 as t→∞, so there exists T large enough, such that for ∀t > T ,

δ̂ = |η(t)− η∞| ≤ min

{
η∞
3

,
CP
3C1

}
. (D.9)

Plugging δ̂ ≤ c
2C1

into (D.8), one has

1

2
∂t ‖h‖2 +

2CP
3η
‖h‖2 ≤ CP

3η
, for ∀t > T . (D.10)

Futhermore, (D.9) also implies 2η∞/3 ≤ η(t) ≤ 4η∞/3, which indicates that

2CP
3η
≥ CP

2η∞
,

CP
3η
≤ CP

2η∞
.
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Therefore, (D.10) becomes

1

2
∂t ‖h‖2 +

CP
2η∞

‖h‖2 ≤ CP
2η∞

, for ∀t > T .

Integrate the above equation from T to t > T , one has,

‖h(t)‖2 ≤
(
‖h(T )‖2 +

CP
η∞

(t− T )

)
− CP
η∞

∫ t

T
‖h(s)‖2 ds.

By Gronwall’s Inequality, one ends up with,

‖h(t)‖2 ≤
(
CP
η∞

(t− T ) + ‖h(T )‖2
)
e
−CP
η∞

(t−T )
.

Remark D.1. There are some work in the literature about the convergence of the Fokker-Planck

equation solution. However, most of these results focus on the convex L(w). See, e.g., Arnold et al.

(2001); Pavliotis (2014). These results are different from the case under our consideration.

D.6 Mathematical Quantification of the Constant T in Theorem

5.4

We note that T should be large enough such that for all t > T ,

|η(t)− η∞| ≤ min

{
η∞
3

,
CP
3C1

}
, where C1 =

M

2
max{1, η∞}max

{∫
p1/3
∞ dw, 1 +

C2

2

}
.

Here C2 > 0 is the bound for
∣∣∣∇w · ∇wL− η∞ ‖∇wL‖2

∣∣∣ in bounded domain {‖w‖ < R},

such that

∇w · ∇wL− η∞ ‖∇wL‖2 ≤


0, for ∀ ‖w‖ > R,

C2, for ∀ ‖w‖ < R.

This quantification of T is based on the proof in Section D.5.
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D.7 Proof of Theorem 5.5

Let

Pε(w̌) = P(‖Wγ(∞)− w̌‖ ≤ ε)

be the probability of W (∞) staying in the ε-neighborhood of global minimum w̌, and the

probability density function of W (∞) is p∞, then

Pε(w̌) =

∫
‖w−w̌‖2≤ε2

κe−η∞L(w)dw

=

∫
‖w−w̌‖2≤ε2

κe−η∞[L(w̌)+(w−w̌)′∆L(w̌)(w−w̌)+o{(w−w̌)2}]dw

Since w̌ is a local minimum of L(w), so ∆L(w̌) is positive definite, then there exists an

orthogonal matrix O and diagonal matrix Λ, such that ∆L = O′ΛO. For simplicity, we

assume ∆L = Λ = diag(λ1, · · · ,λd).

lim
ε→0

Pε(w̌) = lim
ε→0

κe−η∞L(w̌)

∫
‖w‖2≤ε2

d∏
j=1

e−η∞λjwjdw

 eη∞ε2
= lim

ε→0

κe−η∞L(w̌)
d∏
j=1

1√
η∞λj

∫ ε
√
η∞λj

−ε
√
η∞λj

e−w
2
dw

 eη∞ε2
= lim

ε→0

κe−η∞L(w̌)

η
d/2
∞

d∏
j=1

1√
λj

(
Φ
(
ε
√
η∞λj

)
− Φ

(
−ε
√
η∞λj

)) eη∞ε2 ,

where the first equality comes from change of variable w−w̌→ w, and the second one comes

from η∞λjwj → wj . Here φ(·) in the last equality is the cumulative density function for

standard normal distribution. Using the approximation of the cumulative density function

in Polya (1945), one can simplify the above equation by

lim
ε→0

Pε(w̌) = lim
ε→0

κe−2η∞L(w̌)

η
d/2
∞

d∏
j=1

√
1− e−ε2η∞λj/π

λj

 eη∞ε2
= lim
ε→0

κe−2η∞L(w̌)

η
d/2
∞ det(∆L(w̌))

eη∞ε2 d∏
j=1

√
1− e−ε2η∞λj/π

 .
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This completes the proof.

D.8 Numerical Illustrations of Theorem 5.5

To illustrate Theorem 5.5, we explore three different examples showing how the probability

changes with respect to M/γ, ∆L(w̌), and the variance σ2(w̌) = β(w̌):

• Example 1: Consider the risk function L(w) has three different global minima wi,

i = 1, 2, 3, with different Hessians 4.5, 12.5, and 28.125, respectively. We are interested

in the probability of the mini-batch SGD limk→∞wk staying in the ε-neighborhood of

global minima with respect to the ratio M/γ, where M is the batch size and γ is the

learning rate. The results are shown in Figure D.1.

• Example 2: Consider the variance of SGD has four different levels: 5, 10, 50, 100. We

are interested in the probability of the mini-batch SGD limk→∞wk staying in the ε-

neighborhood of a same global minimum of L(w) with respect to the ratio M/γ. The

results are shown in Figure D.2.

• Example 3: Consider two-dimensional cases. We are interested in the risk func-

tion L(w) has two different global minima and furthermore, L(w) has two different

global minima. For two minima case, we consider L(w) has two different Hessians

(2.42, 0.022) and (2.22, 0.222). For three minima case, we consider L(w) has three

different Hessians (15, 20), (14.22, 42.66), and (102.13, 25.53).

Results. The results of Example 1 are given in Figure D.1. We draw the following conclu-

sions.

• First, if the batch size M and learning rate γ are the same, then W(∞) is more likely

to stay near the flat minimum whose Hessian is smaller.
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Figure D.1: Illustration of Example 1 with ε = 0.1. The left panel shows the probability of
W (∞) staying in the ε-neighborhood of different global minima. The right panel compares
the differences of probabilities that W (∞) staying in the ε-neighborhood of different global
minima.

Figure D.2: Illustration of Example 1 with ε = 0.1. The left panel shows the probability
of W (∞) staying in the ε-neighborhood under different SGD variances σ2(w̌). The right
panel compares the differences of probabilities that W (∞) staying in the ε-neighborhood of
different σ(w̌).
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Figure D.3: Illustration of Example 3 with ε = 0.1. The left panel shows the probability
of the limiting mini-batch SGD limk→∞wk staying in the ε-neighborhood of two different
global minima. The right panel shows the probability of three different global minima.

• Second, as the ratio M/γ increases, the probability of W(∞) converging to a flatter

minimum will increase faster than that of a sharper minimum.

• Third, if the ratio of Hessians (the Hessian at a sharp minima divides the Hessian at a

flat minima) increases, the difference of probabilities would increase as illustrated in

the right panel of Figure D.1. Moreover, if we increase the ratio M/γ, the difference of

probabilities becomes more distinct.

The results of Example 2 are given in Figure D.2. We draw the following conclusion.

• If the variance σ(w̌) increases, the effect of the ratio M/γ for the probability that

converging to the global minimum will decrease. That implies as σ(w̌) increases, the

probability of SGD converging to a flat minimum will increase slower.

The results of Example 3 are given in Figure D.3. We draw the following conclusion.

• For a same ratio M/γ, if the product of the eigenvalues of the Hessian increases, then

W(∞) will be more likely to stay near the minimum. For a same sharpness of the

minimum, if one increase the batch size or decrease the learning rate, W(∞) will be

more likely to stay near the minimum.
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• We conclude that the product of eigenvalues of the Hessian matrix will affect the

probability ofW (∞) staying in the ε-neighborhood of the minimum, which is different

from the sum of eigenvalues, the smallest eigenvalue, or the largest eigenvalue for

multi-dimensional cases.
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Appendix E

Appendix For: Another Look at

Statistical Calibration: A

Non-Asymptotic Theory and

Prediction-Oriented Optimality

This section consists of three parts. In Section E.1, we give proofs for main results of Section

6.3. In Section E.2, we prove results of Section 6.4. In Section E.3, we present a key lemma.

E.1 Proofs for Section 6.3

E.1.1 Upper Bound Result: Theorem 6.1

We define a new norm ‖ · ‖ inH by

‖g‖2 = ‖g‖2L2(Π) + ‖g‖2H, ∀g ∈ H.

Note that ‖ · ‖ is a norm because that ‖ · ‖2 defined above is a quadratic form and it equals

to zero if and only if g = 0. Since the density function of Π is bounded away from zero
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and infinity, there exists some constant c > 0 such that ‖g‖2L2(Π) ≤ c‖g‖2H. Thus, ‖g‖2 ≤

(c+1)‖g‖2H. This together with the fact ‖g‖2H ≤ ‖g‖2 imply that ‖ ·‖ and ‖ ·‖H are equivalent.

In particular, ‖g‖ < ∞ if and only if ‖g‖H < ∞. Let 〈·, ·〉 be the inner product associated

with ‖ · ‖, which can be constructed as follows:

〈g1, g2〉 =
1

4
(‖g1 + g2‖2 − ‖g1 − g2‖2), ∀g1, g2 ∈ H.

Then 〈g1, g2〉 = 〈g1, g2〉L2(Π) + 〈g1, g2〉H. Denote by R(·, ·) the reproducing kernel associated

with (H, ‖ · ‖). By Mercer’s theorem, we have the following eigenvalue decomposition:

R(x,x′) =
∑
ν≥1

(1 + λ−1
ν )−1φν(x)φν(x′).

Let gν = 〈g,φν〉L2(Π) for any g ∈ H. Then

‖g‖2 =

∞∑
ν=1

(1 + λ−1
ν )g2

ν , ‖g‖2L2(Π) =

∞∑
ν=1

g2
ν , ‖g‖2H =

∞∑
ν=1

λ−1
ν g2

ν .

Now, we define a norm ‖ · ‖a for any 0 ≤ a ≤ 1 by

‖g‖2a =

∞∑
ν=1

(1 + λ−aν )g2
ν .

It is clear that ‖g‖0 =
√

2‖g‖L2(Π) and ‖g‖1 = ‖g‖. Let 〈·, ·〉a be the inner product associated

with ‖ · ‖a for any 0 ≤ a ≤ 1 (Cox, 1984).

Write

ln(g) =
1

2n

n∑
i=1

[Yi − g(Xi)]
2,

and lnλ(g) = ln(g) + 1
2λ‖g‖

2
H. Then, ζ̂nλ = arg ming∈H lnλ(g). Denote by l∞(g) = E[ln(g)],

then l∞(g) = 1
2(σ2 + ‖ζ − g‖2L2(Π)). Write

ζ̄∞λ = arg min
g∈H

l∞λ(g), where l∞λ(g) = l∞(g) +
1

2
λ‖g‖2H.
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We now can decompose the estimation error of ζ̂nλ as follows:

ζ̂nλ − ζ = (ζ̂nλ − ζ̄∞λ) + (ζ̄∞λ − ζ).

Here, the two terms on the right-hand side are referred to as the stochastic error and the

deterministic error, respectively. We study these two terms separately in the following.

Step 1: Deterministic error Denote by ζν = 〈ζ,φν〉L2(Π). Then ζ(·) =
∑∞

ν=1 ζνφν(·). It is

clear that

ζ̄∞λ =
∞∑
ν=1

ζν

1 + λ · λ−1
ν
φν(·).

Denote ζ̄ν = ζν/(1 + λ · λ−1
ν ). The following lemma gives a non-asymptotic result for the

deterministic error.

Lemma E.1. For any n ≥ 1,

‖ζ̄∞λ − ζ‖a ≤


1
2(1 + a)(1+a)/2(1− a)(1−a)/2λ(1−a)/2‖ζ‖H, if 0 ≤ a < 1,

‖ζ‖H, if a = 1.

Proof. For any 0 ≤ a ≤ 1, we have

‖ζ̄∞λ − ζ‖2a =
∞∑
ν=1

(1 + λ−aν )(ζ̄ν − ζν)2

≤ λ2 sup
ν≥1

(1 + λ−aν )λ−1
ν

(1 + λ · λ−1
ν )2

∞∑
ν=1

λ−1
ν ζ2

ν

= λ2‖ζ‖2H sup
ν≥1

(1 + λ−aν )λ−1
ν

(1 + λ · λ−1
ν )2

.

Observe that

sup
ν≥1

(1 + λ−aν )λ−1
ν

(1 + λ · λ−1
ν )2

≤ sup
x>0

(1 + x−a)x−1

(1 + λx−1)2
≤


(1+a)1+a(1−a)1−a

2λa+1 , if 0 ≤ a < 1,

λ−2, if a = 1.
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This completes the proof.

Step 2: Stochastic error For any g, g1, g2 ∈ H, we have the first- and second-order Fréchet

derivatives as follows:

Dln(g)g1 = − 1

n

n∑
i=1

[Yi − g(Xi)]g1(Xi), Dl∞(g)g1 = −〈ζ − g, g1〉L2(Π)

D2ln(g)g1g2 =
1

n

n∑
i=1

g1(Xi)g2(Xi), D2l∞(g)g1g2 = 〈g1, g2〉L2(Π).

Here, the Fréchet derivatives are defined in ‖·‖-norm. SinceD2l∞λ(ζ̄)φνφµ = 〈D2l∞λ(ζ̄)φν ,φµ〉 =

(1 + λ · λ−1
ν )δνµ and ‖φν‖ = (1 + λ−1

ν )1/2, we have

[
D2l∞λ(ζ̄)

]−1
φν = (1 + λ · λ−1

ν )−1(1 + λ−1
ν )φν . (E.1)

Define that

ζ̃†
def
= ζ̄∞λ −

[
D2l∞λ(ζ̄∞λ)

]−1
Dlnλ(ζ̄∞λ),

then we can decompose the stochastic error as follows:

ζ̂nλ − ζ̄∞λ = (ζ̃† − ζ̄∞λ) + (ζ̂nλ − ζ̃†). (E.2)

We study the two terms on the right-hand side of (E.2) separately. For simplicity of the

notations, we abbreviate the subscripts of ζ̂nλ and ζ̄∞λ in the rest of this section.

For any 0 ≤ a ≤ 1 and λ > 0, we define ∆(a,λ) by satisfying

∆(a,λ) ≥ λa+d/2m
∞∑
ν=1

(1 + λ−aν )(1 + λ · λ−1
ν )−2. (E.3)

Under Assumption 2, there exists a ∆(a,λ) < ∞. The following lemma gives a non-

asymptotic bound for (ζ̃† − ζ̄) in (E.2).
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Lemma E.2. For any 0 ≤ a ≤ 1 and n ≥ 1, we have that with probability at least 1− 3 exp(−α2),

‖ζ̃† − ζ̄‖2a ≤
{
αA‖ζ‖H + cφσ(1 +

√
2α)
}2

∆(a,λ)n−1λ−(a+d/2m).

Here, cφ is define in Assumption 2, ∆(a,λ) is defined in (E.3), and A is a constant to be given in

(E.29).

Proof. Observe that

Dlnλ(ζ̄) = Dlnλ(ζ̄)−Dl∞λ(ζ̄) = Dln(ζ̄)−Dl∞(ζ̄).

Thus,
sup
ν≥1
|Dlnλ(ζ̄)φν |

≤ sup
ν≥1

∣∣∣∣∣ 1n
n∑
i=1

{
(ζ − ζ̄)(Xi)φν(Xi)− E[(ζ − ζ̄)(X)φν(X)]

}∣∣∣∣∣
+ sup

ν≥1

∣∣∣∣∣ 1n
n∑
i=1

εiφν(Xi)

∣∣∣∣∣ .
(E.4)

We consider the two terms on the right-hand side of (E.4) seperately. For the first term,

since Lemma E.1 implies ‖ζ − ζ̄‖ ≤ ‖ζ‖H, we can apply Lemma E.4 in Section E.3 by letting

g = ζ − ζ̄ and t = αA‖ζ‖H. Then, with probability at least 1− 2 exp(−α2),

sup
ν≥1

∣∣∣∣∣ 1n
n∑
i=1

[
(ζ − ζ̄)(Xi)φν(Xi)− E{(ζ − ζ̄)(X)φν(X)}

]∣∣∣∣∣ ≤ αA‖ζ‖H√
n

.

Then we consider the second term in (E.4). Let Σφν = [φν(Xi)φν(Xj)]1≤i,j≤n and −→ε =

(ε1, . . . , εn)>. The uniform version of the Hanson-Wright inequality for suprema of quadratic

forms (Talagrand, 1996) gives

P
(

sup
ν≥1

σ−2−→ε >Σφν
−→ε > sup

ν≥1

{
tr(Σφν ) + 2

√
tr(Σ2

φν
)α+ 2‖Σφν‖α2

})
≤ exp(−α2).
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Observe that tr(Σφν ) =
∑n

i=1 φ
2
ν(Xi) ≤ nc2

φ and

‖Σφν‖ ≤
√

tr(Σ2
φν

) =

√√√√ n∑
i,j=1

φ2
ν(Xi)φ2

ν(Xj) ≤ nc2
φ,

we have probability at least 1− exp(−α2) such that

sup
ν≥1

∣∣∣∣∣ 1n
n∑
i=1

εiφν(Xi)

∣∣∣∣∣ ≤ cφσ(1 +
√

2α)√
n

.

Therefore, (E.4) implies that with probability at least 1− 3 exp(−α2),

sup
ν≥1
|Dlnλ(ζ̄)φν | ≤ αA‖ζ‖Hn−1/2 + cφσ(1 +

√
2α)n−1/2. (E.5)

By the definition of ζ̃† and (E.1), with probability at least 1− 3 exp(−α2),

‖ζ̃† − ζ̄‖2a = ‖[D2l∞λ(ζ̄)]−1Dlnλ(ζ̄)‖2a

=

∞∑
ν=1

(1 + λ−aν )(1 + λ · λ−1
ν )−2[Dlnλ(ζ̄)φν ]2

≤
{

sup
ν

[Dlnλ(ζ̄)φν ]2
} ∞∑
ν=1

(1 + λ−aν )(1 + λ · λ−1
ν )−2

≤
[αA‖ζ‖H + cφσ(1 +

√
2α)]2

n

∞∑
ν=1

(1 + λ−aν )(1 + λ · λ−1
ν )−2

≤
[αA‖ζ‖H + cφσ(1 +

√
2α)]2

n
∆(a,λ)λ−(a+d/2m),

This completes the proof for Lemma E.2.

For any 0 < b ≤ 1, we define cb as

cb
def
=
∞∑
ν=1

(1 + λ−bν )−1. (E.6)

Then, cb <∞ by Assumption 2. Now we give a non-asymptotic bound for (ζ̂ − ζ̃†) in (E.2).
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Lemma E.3. For any ρ > 0 and α > 0, if there exists some b ∈ (d/2m, 1] such that

n−1λ−(b+d/2m) <
ρ2

∆(b,λ){2α2c4
φcb + [αA‖ζ‖H + cφσ(1 +

√
2α)]2}

, (E.7)

then with probability at least 1− 5 exp(−α2),

‖ζ̂ − ζ̃†‖2a <
2α2c4

φcb∆(a,λ)ρ2

(1− ρ)2
n−1λ−(a+d/2m), ∀0 ≤ a ≤ 1.

Here, cφ is define in Assumption 2, ∆(a,λ) is defined in (E.3), cb is defined in (E.6), and A is a

constant to be given in (E.29).

Proof. By the definition of ζ̃†, we have that

Dlnλ(ζ̄) = D2l∞λ(ζ̄)(ζ̄ − ζ̃†).

Since lnλ is quadratic,

Dlnλ(ζ̂) = Dlnλ(ζ̄) +D2lnλ(ζ̄)(ζ̂ − ζ̄) = 0.

Thus,

D2l∞λ(ζ̄)(ζ̂ − ζ̃†) = D2l∞(ζ̄)(ζ̂ − ζ̄)−D2ln(ζ̄)(ζ̂ − ζ̄),

and this implies

ζ̂ − ζ̃† = [D2l∞λ(ζ̄)]−1(D2l∞(f̄)−D2ln(ζ̄))(ζ̂ − ζ̄).
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Recall that ζ̄ =
∑∞

ν=1 ζ̄νφν . Let ζ̂ =
∑∞

ν=1 ζ̂νφν . By the Cauchy-Schwarz inequality,

‖ζ̂ − ζ̃†‖2a =
∞∑
ν=1

(1 + λ−aν )(1 + λ · λ−1
ν )−2

×

 ∞∑
j=1

(ζ̂j − ζ̄j)

(
1

n

n∑
i=1

φj(Xi)φν(Xi)− 〈φj ,φν〉L2(Π)

)2

≤
∞∑
ν=1

(1 + λ−aν )(1 + λ · λ−1
ν )−2

 ∞∑
j=1

(ζ̂j − ζ̄j)2(1 + λ−bj )


×

 ∞∑
j=1

(1 + λ−bj )−1

[
1

n

n∑
i=1

φj(Xi)φν(Xi)− 〈φj ,φν〉L2(Π)

]2
 .

Since |φj(Xi)φν(Xi)| ≤ c2
φ and φj(·)φν(·) is measurable, by applying the McDiarmid’s

inequality, we have that with probability at least 1− 2 exp(−α2),

sup
j,ν≥1

[
1

n

n∑
i=1

φj(Xi)φν(Xi)− 〈φj ,φν〉L2(Π)

]2

≤
2α2c4

φ

n
. (E.8)

Combining (E.3), (E.6), and (E.8), for any d/2m < b ≤ 1, we have probability at least

1− 2 exp(−α2),

‖ζ̂ − ζ̃†‖2a ≤
2α2c4

φ∆(a,λ)cb

n
λ−(a+d/2m)‖ζ̂ − ζ̄‖2b . (E.9)

Take a = b, then with probability at least 1− 2 exp(−α2),

‖ζ̂ − ζ̃†‖2b ≤
2α2c4

φ∆(b,λ)cb

n
λ−(b+d/2m)‖ζ̂ − ζ̄‖2b .

If (E.7) holds, then ‖ζ̂− ζ̃‖b < ρ‖ζ̂− ζ̄‖b and ‖ζ̃− ζ̄‖b ≥ ‖ζ̂− ζ̄‖b−‖ζ̂− ζ̃‖b > (1−ρ)‖ζ̂− ζ̄‖b.

By Lemma E.2, with probability at least 1− 5 exp(−α2),

‖ζ̂ − ζ̄‖2b <
[αA‖ζ‖H + cφσ(1 +

√
2α)]2∆(b)

(1− δ)2n
λ−(b+d/2m) <

ρ2

(1− ρ)2
.

where the second inequality is from (E.7). We complete the proof by plugging the above

inequality to (E.9).
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Step 3: Putting it together We consider for a = 0. Let

∆(0,λ) =
4m

4m− d
C
d/2m
λ ,

which satisfies the definition (E.3) and does not depend on λ. Let

λ = n−
2m

2m+d

{
2
√

∆(0,λ)

[
αA+

σcφ(1 +
√

2α)

‖ζ‖H

]} 4m
2m+d

= n−
2m

2m+d

{
4

√
m

4m− d
C

d
4m
λ

[
αA+

σcφ(1 +
√

2α)

‖ζ‖H

]} 4m
2m+d

.

(E.10)

Here, A is a constant not depending on n,σ, ‖ζ‖H. Then for any b ∈ (d/2m, 1) and ρ

satisfying

ρ > cρn
−m(1−b)

2m+d α
2m(1−b)

2m+d

(
1 +

σ

‖ζ‖H

)− 2mb+d
2m+d

(‖ζ‖H + σ),

the λ defined in (E.10) satisfies the condition (E.7) in Lemma E.3. Thus, Lemma E.3 implies

‖ζ̂ − ζ̃†‖L2(Π) ≤ c̃α
4m−d
2m+dn−

4m−d
4m+2d (‖ζ‖H + σ)

(
1 +

σ

‖ζ‖H

)− 3d
2m+d

, (E.11)

for some constant c̃ not depending on n,σ,m, d, ‖ζ‖H. Combining Lemma E.1, E.2 and E.3,

with probability at least 1− 8 exp(−α2),

‖ζ̂ − ζ‖L2(Π) ≤ C∗

[
1 + α

2m−d
2m+dn−

2m−d
4m+2d

(
1 +

σ

‖ζ‖H

)− 2d
2m+d

]

· α
2m

2m+dn−
m

2m+d (‖ζ‖H + σ)

(
1 +

σ

‖ζ‖H

)− d
2m+d

,

for some constant C∗ not depending on n,σ,m, d, ‖ζ‖H, and λ given by (E.10). In particular,

let α = α0 = 3.36, and we have 1− 8 exp(−α2
0) = 99.99%, and which completes the proof of

Theorem 6.1.
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E.1.2 Lower Bound Result: Theorem 6.2

Let N be a natural number to be defined later and b = {bν : ν = 1, . . . ,N} ∈ {0, 1}N be a

length-N binary sequence. Recall that λνs and φν(·)s are the eigenvalues and eigenfunctions

of K(·, ·), respectively, and they satisfy Assumption 2. We define a set of functions ζb(·)

indexed by b:

ζb(·) = c†N−
1
2

N∑
ν=1

bνλ
1
2
ν+Nφν+N (·),

where the constant c† is defined as a positive root of the following equation of z:

z −
[
1 + α

2m−d
2m+d

0 n−
2m−d
4m+2d

(
1 +

σ

z

)− 2d
2m+d

]
·
(

2 + 2α
2m−d
2m+d

0

)−1

(z + σ)
(

1 +
σ

z

)− d
2m+d

= 0.

(E.12)

A positive root exists since left-hand side of equation is smaller than 0 when z > 0 and

z → 0 and greater than 0 when z → +∞, and it is continuous in z. By definition, ζb(·) is a

finite linear combination of kernel eigenfunctions. Moreover,

‖ζb(·)‖2H = (c†)2N−1
N∑
ν=1

b2ν ≤ (c†)2, (E.13)

which is finite.

By the Varshamov-Gilbert bound, there exists a collection of binary sequences {b(1), . . . , b(M)} ⊂

{0, 1}N such that M ≥ eN/8 with the pairwise Hamming distance satisfying

H(b(l), b(q)) ≥ N

8
, ∀1 ≤ l < q ≤M .



253

From Assumption 2, we have that for any b(l), b(q) ∈ {0, 1}N ,

‖ζb(l) − ζb(q)‖
2
L2(Π) ≥ cλ(c†)2N−1(2N)−

2m
d

N∑
ν=1

[
b
(l)
ν − b(q)ν

]2

≥ cλ(c†)2N−1(2N)−
2m
d
N

8

= 2−3− 2m
d cλ(c†)2N−

2m
d .

On the other hand by Assumption 2, we have that for any b(l) ∈ {b(1), . . . , b(M)},

‖ζb(l)‖
2
L2(Π) ≤ Cλ(c†)2N−1N−

2m
d

N∑
ν=1

[
b
(l)
−→ν

]2

≤ Cλ(c†)2N−
2m
d .

Following a standard argument, the lower bound of estimating the true function ζ(·) can

be reduced to the error probability in a multi-way hypothesis test (Chapter 2 of Tsybakov

(2009)). Let Θ be a random variable uniformly distributed on the discrete set {1, . . . ,M}

and let the true function ζ = ζb(Θ) . Let Θ̂ be an estimator of Θ based on the data {(Xi,Yi) :

i = 1, . . . ,n} that are generated by (6.1). Following Chapter 2 of Tsybakov (2009),

∞
ζ̃n

sup
ζ∈H

P
{
‖ζ̃n − ζ‖2L2(Π) ≥

1

4
min

b(l) 6=b(q)
‖ζb(l) − ζb(q)‖

2
L2(Π)

}
≥ ∞

Θ̂∈{1,...,M}P{Θ̂ 6= Θ}

=∞
Θ̂∈{1,...,M}EX1,...,XnP

{
Θ̂ 6= Θ|X1, . . . ,Xn

}
,

(E.14)

where the infimum is taken over all estimators ζ̃n that are measurable functions of the data

{(Xi,Yi) : i = 1, . . . ,n}. By Fano’s lemma (Chapter 2 of Tsybakov (2009)),

P
{

Θ̂ 6= Θ|X1, . . . ,Xn

}
≥ 1−

1X1,...,Xn(Y1, . . . ,Yn; Θ) + log 2

logM
, (E.15)

where 1X1,...,Xn(Y1, . . . ,Yn) is the mutual information between {Y1, . . . ,Yn} and Θ with

{X1, . . . ,Xn} being held fixed. Let K(·|·) be the Kullback-Leibler distance and Pζ be the
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conditional distribution of Yis given {X1, . . . ,Xn}. Thus,

EX1,...,Xn [1X1,...,Xn (Y1, . . . ,Yn; Θ)]

≤
(
M

2

)−1 ∑
b(l) 6=b(q)

EX1,...,XnK
(
Pζ

b(l)
|Pζ

b(q)

)

≤ n

2

(
M

2

)−1 ∑
b(l) 6=b(q)

EX1,...,Xn

[
1

nσ2

n∑
i=1

(ζb(l)(Xi)− ζb(q)(Xi))
2

]

≤ n

2σ2

(
M

2

)−1 ∑
b(l) 6=b(q)

‖ζb(l) − ζb(q)‖
2
L2(Π)

≤ n

2σ2
max

b(l) 6=b(q)
‖ζb(l) − ζb(q)‖

2
L2(Π)

≤ 2n

σ2
max

b(l)∈{b(1),...,b(M)}
‖ζb(l)‖

2
L2(Π)

≤ 2n

σ2
Cλ(c†)2N−

2m
d .

Combining (E.14) and (E.15) yields that

∞
ζ̃n

sup
ζ∈H

P
{
‖ζ̃n − ζ‖2L2(Π) ≥ 2−5− 2m

d cλ(c†)2N−
2m
d

}
≥ 1− 1

logM
[E1X1,...,Xn(Y1, . . . ,Yn; Θ) + log 2]

≥ 1− 16Cλ(c†)2n

N1+ 2m
d σ2

− 8 log 2

N
.

Define N = c∗nd/(2m+d), where

c∗
def
= α

− 2d
2m+d

0

(
2 + 2α

2m−d
2m+d

0

)− d
m

C
− d

2m
∗ c

d
2m
λ 2−

5d
2m
−1.

By the definition of c†, and by the fact that the right-hand side of (E.12) is monotone increasing
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in z > 0, and by the inequality (E.13), when σ is held fixed,

∞
ζ̃n

sup
ζ∈H

P

‖ζ̃n − ζ‖2L2(Π) ≥

[
1 + α

2m−d
2m+d

0 n−
2m−d
4m+2d

(
1 +

σ

‖ζ‖H

)− 2d
2m+d

]2

·C∗n−
2m

2m+dα
4m

2m+d

0 (‖ζ‖H + σ)2

(
1 +

σ

‖ζ‖H

)− 2d
2m+d

}

≥ 1−
16Cλ

[
1 + α

2m−d
2m+d

0 n−
2m−d
4m+2d

(
1 + σ

‖ζ‖H

)− 2d
2m+d

]2

(‖ζ‖H + σ)2(
2 + 2α

2m−d
2m+d

0

)2 (
1 + σ

‖ζ‖H

) 2d
2m+d

(c∗)1+ 2m
d σ2

− 8 log 2

c∗n
d

2m+d

.

The right-hand side of above inequality is monotone decreasing in σ and n. Hence, there

exists some constants 0 < σ0,n0 <∞ such that for any σ ≥ σ0 and n ≥ n0, the right-hand

side of above inequality is positive. This completes the proof.

E.1.3 The Optimal Calibration Result: Proposition 6.3

In order to derive an equivalent form for θopt-pred that holds uniformly for ζ ∈ H, it is

necessary to use the minimax optimal risk for estimating δ(·, θ) for all δ(·, θ) ∈ H. This is

because δ(·, θ) = ζ(·) − η(·, θ), and δ(·, θ) ∈ H holds for any θ ∈ Θ by Assumption 1, and

computer models η(·, θ) are given functions. By replacing ζ(·) with δ(·, θ) in Theorems 6.1

and 6.2, we have ∀θ ∈ H,

∞
δ̃n

sup
δ∈H
‖δ̃n(·, θ)− δ(·, θ)‖2L2(Π)

= C∗

[
1 + α

2m−d
2m+d

0 n−
2m−d
4m+2d

(
1 +

σ

‖δ(·, θ)‖H

)− 2d
2m+d

]2

· α
2m−d
2m+d

0 n−
2m

2m+d (‖δ(·, θ)‖H + σ)2

(
1 +

σ

‖δ(·, θ)‖H

)− 2d
2m+d

.

(E.16)
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By the definition of θopt-pred in (6.4),

θopt-pred = arg min
θ∈Θ

{
∞
δ̃n
‖δ(·, θ)− δ̃n(·, θ)‖L2(Π)

}
, ∀ζ ∈ H

= arg min
θ∈Θ

{
∞
δ̃n

sup
δ∈H
‖δ(·, θ)− δ̃n(·, θ)‖L2(Π)

}
= arg min

θ∈Θ
{‖δ(·, θ)‖H} = arg min

θ∈Θ
{‖ζ(·)− η(·, θ)‖H} ,

where the third step is by the fact that parameters n,σ,m, d are fixed in the setting of

computer model calibrations and the right-hand side of (E.16) is monotonically increasing

as the RKHS norm ‖δ(·, θ)‖H increases. The last step above is by the definition of δ(·, θ).

E.1.4 The Optimal Prediction Result: Corollaries 6.4 and 6.5

By the same arguments as the proof of Theorem 6.1 and replace ζ(·) with δ(·, θ), we have

that for any θ ∈ Θ, n ≥ 1, with probability at least 99.99%,

min
λ>0
‖δ̂nλ(·, θ)− δ(·, θ)‖2L2(Π)

≤ C∗

[
1 + α

2m−d
2m+d

0 n−
2m−d
4m+2d

(
1 +

σ

‖δ(·, θ)‖H

)− 2d
2m+d

]2

· α
4m

2m+d

0 n−
2m

2m+d (‖δ(·, θ)‖H + σ)2

(
1 +

σ

‖δ(·, θ)‖H

)− 2d
2m+d

,

where the C∗ > 0 is the same as in Theorem 6.1 and it does not depend on n,σ, ‖δ(·, θ)‖H.

The optimal λ in the above inequality is

λ = n−
2m

2m+d

{
4

√
m

4m− d
C

d
4m
λ

[
αA+

σcφ(1 +
√

2α)

‖ζ(·)− η(·, θopt-pred)‖H

]} 4m
2m+d

,

where A is defined in the proof of Theorem 6.1 and it does not depend on quantities

n,σ, ‖ζ − η(·, θopt-pred)‖H. By Proposition 6.3, we prove the Corollary 6.4.

Now we show Corollary 6.5. Similar to Theorem 6.2 and replacing ζ(·) with δ(·, θ), we
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have that for any θ ∈ Θ,

∞
δ̃n

sup
δ(·,θ)∈H

P
{
‖δ̃n(·, θ)− δ(·, θ)‖2L2(Π)

≥ C∗

[
1 + α

2m−d
2m+d

0 n−
2m−d
4m+2d

(
1 +

σ

‖δ(·, θ)‖H

)− 2d
2m+d

]2

·α
4m

2m+d

0 n−
2m

2m+d (‖δ(·, θ)‖H + σ)2

(
1 +

σ

‖δ(·, θ)‖H

)− 2d
2m+d

}
> 0.

By Proposition 6.3, we complete the proof.

E.1.5 Improvement of Prediction by Computer Models: Theorem 6.6

By comparing the finite-sample minimax risks of ζopt-pred
nλ and ζ̂nλ(·), if (6.9) holds,

min
λ>0

sup
ζ∈H
‖ζopt-pred
nλ (·)− ζ(·)‖2L2(Π) < min

λ>0
sup
ζ∈H
‖ζ̂nλ(·)− ζ(·)‖2L2(Π),

where ζopt-pred
nλ (·) and ζ̂nλ(·) are defined by (6.8) and (6.5), respectively. This completes the

proof.

E.2 Proofs for Section 6.4

E.2.1 Consistency Result: Proposition 6.7

Recall the model discrepancy is defined by δ(·, θ) = ζ(·) − η(·, θ) for any θ ∈ Θ. We have

data given by {(Xi,Yi − η(Xi, θ)) : i = 1, . . . ,n}. The GCV estimate, denoted by λG(θ), is

consistent for minimizing the predictive mean squared errors (MSE) (Li, 1986; Wahba, 1990).

Note that λG(θ) depends on θ with the given data. Following the same argument in Section

E.1.1, the optimal λopt for minimizing the predictive MSE of δ(·, θ) is given by (E.10) with

ζ(·) replaced by δ(·, θ). That is, as n→∞,

λG(θ)→P λ
opt = n−

2m
2m+d

{
2

√
4m

4m− d
C
d/4m
λ

[
αA+

σcφ(1 +
√

2α)

‖δ(·, θ)‖H

]} 4m
2m+d

.
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Here, the constants Cλ,α,A, cφ are specified in Section E.1.1. It is obvious that λopt in the

above equation is monotone decreasing as ‖δ(·, θ)‖H increases.

Now consider the objective function in (6.16) when λ is selected by GCV. Denote the

vector of random noises −→ε def
= (ε1, . . . , εn)>. Then, if θ is at convergence,

(
−→
Y − η(

−→
X , θ))>(Σ + nλG(θ)I)−1(

−→
Y − η(

−→
X , θ))

= −→ε >(Σ + nλG(θ)I)−1−→ε + δ(
−→
X , θ)>(Σ + nλG(θ)I)−1δ(

−→
X , θ)

+ 2−→ε >(Σ + nλG(θ)I)−1δ(
−→
X , θ).

(E.17)

Let the eigenvector eigenvalue decomposition of Σ be UDU>, where U is orthogonal and

D is diagonal with the νth element λνn > 0. By Assumption 2, it is known that λνn �

nν−2m/d when n is large (Koltchinskii and Giné, 2000). Here, we write for two positive

sequences an and bn, an � bn if an/bn is bounded away from zero and infinity. Denote

that U>δ(−→X , θ) = (δ1n, . . . , δnn)> and U>−→ε = (ε1n, . . . , εnn)> ∼ N (0,σ2I). We study three

terms on the right-hand side of (E.17) separately.

The first term can be written as

−→ε >(Σ + nλG(θ)I)−1−→ε =
n∑
ν=1

ε2
νn

λνn + nλG(θ)
,

which is a sum of weighted chi-square random variables. By standard concentration in-

equalities (Boucheron et al., 2013), for any γ ∈ (0, 1),

(1− γ)
n∑
ν=1

σ2

λνn + nλG(θ)
≤

n∑
ν=1

ε2
νn

λνn + nλG(θ)

≤
n∑
ν=1

σ2

λνn + nλG(θ)
+ 2γ

n∑
ν=1

(
σ2

λνn + nλG(θ)

)2
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holds with probability at least 1− exp(−γ2n/4)− exp(−2γ2n(2m−d)/(2m+d)). Note that

n∑
ν=1

σ2

λνn + nλG(θ)
� σ2

n

n∑
ν=1

1

ν−2m/d + λG(θ)

� σ2

n

∫ n

x=1

1

x−2m/d + λG(θ)
� σ2λ−1

G (θ),

and similarly,

(
n∑
ν=1

σ2

λνn + nλG(θ)

)2

� σ4

n2

n∑
ν=1

(
1

ν−2m/d + λG(θ)

)2

� σ4n−1λ−2
G (θ),

Since λG(θ) � n−2m/(2m+d), we have that

(
n∑
ν=1

σ2

λνn + nλG(θ)

)2

= o

{
n∑
ν=1

σ2

λνn + nλG(θ)

}
.

Thus when n is large, by letting γ = n−(2m−d)/(6m+3d),

−→ε >(Σ + nλG(θ)I)−1−→ε =
n∑
ν=1

σ2

λνn + nλG(θ)
(E.18)

holds with probability approaching one.

The second term on the right-hand side of (E.17) satisfies

δ(
−→
X , θ)>(Σ + nλG(θ)I)−1δ(

−→
X , θ)

=

n∑
ν=1

δ2
νn

λνn + nλG(θ)
≤

n∑
ν=1

δ2
νn

λνn
≤ ‖δ(·, θ)‖2H,

(E.19)

where the last step can be proved as follows. Let h ∈ Hminimize ‖h‖2H subject to h(Xi) =

δ(Xi, θ). Then h(·) =
∑n

i=1 c
h
iK(·,xi) and ch = Σ−1δ(

−→
X , θ). Then

‖δ(·, θ)‖2H ≥ ‖h(·)‖2H =
(
ch
)>

Σch =

n∑
ν=1

δ2
νn/λνn.
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Thus, comparing (E.19) with (E.18), when n is large,

δ(
−→
X , θ)>(Σ + nλG(θ)I)−1δ(

−→
X , θ) = o

{−→ε >(Σ + nλG(θ)I)−1−→ε
}

.

The third term on the right-hand side of (E.17), by the Cauchy-Schwarz inequality,

satisfies
−→ε >(Σ + nλG(θ)I)−1δ(

−→
X , θ) = o

{−→ε >(Σ + nλG(θ)I)−1−→ε
}

. (E.20)

Combining (E.18), (E.19) and (E.20), we know that the left-hand side of (E.17) indeed

satisfies, when n is large,

(
−→
Y − η(

−→
X , θ))>(Σ + nλG(θ)I)−1(

−→
Y − η(

−→
X , θ))

= −→ε >(Σ + nλG(θ)I)−1−→ε =
n∑
ν=1

σ2

λνn + nλG(θ)
,

which is decreasing asλG(θ) increases. Recall thatλG(θ) is monotone decreasing as ‖δ(·, θ)‖H =

‖ζ(·)− η(·, θ)‖H increases. Therefore, minimizing over θ ∈ Θ for

(
−→
Y − η(

−→
X , θ))>(Σ + nλG(θ)I)−1(

−→
Y − η(

−→
X , θ))

leads to the minimizer θ̂opt-pred
n that also minimizes ‖ζ(·)− η(·, θ)‖H. By Proposition 6.3, we

complete the proof.

E.2.2 Comparison with Frequentist Calibrations: Remark 6.8

For the calibration part, Proposition 6.7 establishes θ̂opt-pred
n →P θ

opt-pred and Tuo and Wu

(2015) has shown that θ̂L2
n →P θ

L2 . On the other hand, it is known that θ̂l2n converges to the

minimizer of Kullback-Leibler distance between ζ(·) and η(·, θ) (see, e.g., White (1982)), that

is, θ̂l2n →a.s. θ
L2 , which also implies that θ̂l2n →P θ

L2 .

Then we consider the prediction part. Both the predictors, η(·, θ̂L2
n ) in Tuo and Wu (2015)

and η(·, θ̂l2n ) + δ̂nλ(·, θ̂l2n ) in Wong et al. (2017), are based on calibrations around θL2 . Note
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that as λ → ∞, the regularized estimator defined in (6.7) satisfies δ̂nλ(·, θL2) → 0 where

θ = θL2 (see, e.g., Wahba (1990)). Then

‖η(·, θL2)− ζ(·)‖2L2(Π) ≥ min
λ>0
‖η(·, θL2) + δ̂nλ(·, θL2)− ζ(·)‖2L2(Π). (E.21)

That is, the predictor with discrepancy estimator in Wong et al. (2017) would achieve smaller

predictive MSE than the predictor without discrepancy estimator in Tuo and Wu (2015).

Similar to Corollary 6.4 and 6.5, we can show that the right-hand side of (E.21) achieves the

minimax optimal risk with θ = θL2 and

min
λ>0
‖η(·, θL2) + δ̂nλ(·, θL2)− ζ(·)‖2L2(Π)

= C∗

[
1 + α

2m−d
2m+d

0 n−
2m−d
4m+2d

(
1 +

σ

‖δ(·, θL2)‖H

)− 2d
2m+d

]2

α
4m

2m+d

0

· n−
2m

2m+d
(
‖δ(·, θL2)‖H + σ

)2(
1 +

σ

‖δ(·, θL2)‖H

)− 2d
2m+d

holds with probability at least 99.99%, where the constants C∗,α0 are defined in Theorem

6.1. Comparing this result with the minimax optimal risk when θ = θopt-pred as shown

in Section 6.3.2, we have that the predictors based on θopt-pred achieve a smaller minimax

predictive mean squared error compared to predictors based on θL2 , since

‖δ(·, θL2)‖H ≥ ‖δ(·, θopt-pred)‖H = min
θ∈Θ
‖δ(·, θ)‖H.

This completes the proof.

E.2.3 Posterior Mean of Calibration Parameters

In this section, we give details on the classical result that under Gaussian process priors, the

Bayesian posterior mean of θ and δ(·) agrees with (6.12) given a special choice of λ.
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We consider the following Gaussian process priors:

ζ(x) = η(x, θ) + δ(x), where

η(x, θ) =

p∑
j=1

θjhj(x), θ ∼ N (0,αI), δ(x) ∼ GP{0,βK(·, ·)},
(E.22)

where hj(x)s are deterministic functions, GP stands for Gaussian stochastic process, and

α,β are positive hyperparameters. The kernelK(·, ·) is associated with the RKHS (H, ‖ · ‖H).

Although the GP assumption in (E.22) implies that δ(·) 6∈ H with probability one (see,

Driscoll (1973)), the well-known duality between RKHS and Hilbert space spanned by a

family of Gaussian variables (see, e.g., Wahba (1990)) ensures that Bayesian estimates under

GP priors are RKHS regularized estimates.

The proof here is adapted from Wahba (1990). Let T be the n× n matrix with ijth entry

hj(Xi). Under the priors in (E.22), we have that

E[ζ(x)|
−→
Y ] = (h1(x), . . . ,hM (x))E[θ|

−→
Y ] + E[δ(x)|

−→
Y ]. (E.23)

On the other hand,

E[
−→
Y
−→
Y >] = αTT> + βΣ + σ2I,

E[ζ(x)
−→
Y ] = αT


h1(x, θ)

...

hM (x, θ)

+ β


K(X1,x)

...

K(Xn,x)

 .

This yields the posterior mean given by

E[ζ(x)|
−→
Y ]

= {E[ζ(x)
−→
Y ]}>{E[

−→
Y
−→
Y >]}−1−→Y

= (h1(x), . . . ,hM (x))αβ−1T>
(
αβ−1TT> + Σ + σ2β−1I

)−1−→
Y

+ (K(X1,x), . . . ,K(Xn,x))
(
αβ−1TT> + Σ + σ2β−1I

)−1−→
Y .

(E.24)
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Note that
θ̂†

def
= lim

α→∞
αβ−1T>(αβ−1TT> + Σ + σ2β−1I)−1

= {T>(Σ + σ2β−1I)−1T}−1T>(Σ + σ2β−1I)−1,

and
δ̂†

def
= lim

α→∞
(αβ−1TT> + Σ + σ2β−1I)−1

= (Σ + σ2β−1I)−1{I − T (T>(Σ + σ2β−1I)−1T )−1T>(Σ + σ2β−1I)−1}.

From Chapter 1 of Wahba (1990), (θ̂†, δ̂†) is the solution to the smoothing splines,

(θ̂†, δ̂†) = arg min
θ∈Θ,δ∈H

 1

n

n∑
i=1

Yi − p∑
j=1

θjhj(Xi)− δ(Xi)

2

+
σ2

nβ
‖δ‖2H

 .

Note that the above objective function is same as (6.12) by letting λ = σ2/nβ.

Compare (E.23) with (E.24), we conclude that under the prior (E.22) with improper

α → ∞, the posterior mean of θ and δ(·) agrees with the minimizer of objective function

(6.12) if λ = σ2/nβ.

E.3 Key Lemma

Lemma E.4. Recall that R(·, ·) is the reproducing kernel associated with (H, ‖ · ‖). Suppose that

cR = supx∈Ω

√
R(x,x) is finite. Then for any t ≥ 0 and ν ≥ 1, we have

P

 sup
ν≥1

g:‖g‖≤‖ζ‖H

∣∣∣∣∣ 1√
n

n∑
i=1

{g(Xi)φν(Xi)− E[g(X)φν(X)]}

∣∣∣∣∣ ≥ t


≤ 2 exp

(
− t2

A2‖ζ‖2H

)
.

Here, A is a constant given in (E.29) and it does not depend on n,σ, ‖ζ‖H.

Proof. For any g1, g2 satisfying ‖g1‖ ≤ ‖ζ‖H, ‖g2‖ ≤ ‖ζ‖H, we have that for any ν ≥ 1,

|g1(Xi)φν(Xi)− g2(Xi)φν(Xi)| ≤ max
x∈Ω
|g1(x)− g2(x)|cφ,
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where cφ is defined in Assumption 2. Let

Zn(g,φν) =
1√
n

n∑
i=1

[g(Xi)φν(Xi)− E{g(X)φν(X)}] .

Since Π(Ω) = 1, by the Azuma-Hoeffding inequality, we have for any t > 0,

P(|Zn(g1,φν)− Zn(g2,φν)| ≥ t)

≤ 2 exp

(
− t2

8c2
φ maxx∈Ω |g1(x)− g2(x)|2

)
.

(E.25)

In the following, we apply the maximal inequalities for empirical process (Kosorok (2008)).

Recall that the Orlics norm ‖Z‖ψ2 for any random variable Z is

‖Z‖ψ2

def
= ∞c>0 {Eψ2(|Z|/c) ≤ 1} ,

where ψ2(x)
def
= exp(x2)− 1. By (E.25) and Lemma 8.1 in Kosorok (2008), we obtain that

‖|Zn(g1,φν)− Zn(g2,φν)|‖ψ2
≤
√

24cφ‖g1 − g2‖L∞(Ω). (E.26)

Let τ =
√

log 3
2 and ψ(x) = ψ2(τx). Then, ψ(·) is convex, nondecreasing with ψ(0) = 0 and

ψ(1) ≤ 1
2 . Moreover, since ∀x, y ≥ 1, τx2

(τx
2(y2−1) + 1− τy2

) ≥ τ(τy
2−1 + 1− τy2

) > 2− τy2 ,

we have ψ(x)ψ(y) ≤ ψ(xy). From the proof of Lemma 8.2 in Kosorok (2008), for any random

variables Z1, . . . ,Zk, ∥∥∥∥max
1≤i≤k

Zi

∥∥∥∥
ψ2

≤ 2

τ
ψ−1

2 (k) max
1≤i≤k

‖Zi‖ψ2 . (E.27)

We define a ball B‖ζ‖H(‖ · ‖) = {g ∈ H : ‖g‖ ≤ ‖ζ‖H}. It is known the covering number of

B‖ζ‖H(‖ · ‖) denoted by

N
{
κ,B‖ζ‖H(‖ · ‖), ‖ · ‖L∞(Ω)

}
, for any κ > 0,
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has the following bound (Edmunds and Triebel, 1996):

logN
{
κ,B‖ζ‖H(‖ · ‖), ‖ · ‖L∞(Ω)

}
≤ c0

(
‖ζ‖H
κ

)d/m
. (E.28)

Here, c0 is independent of ‖ζ‖H and κ. Note for any g ∈ B‖ζ‖H(‖ · ‖) and x ∈ Ω, |g(x)| =

|〈g(·),R(x, ·)〉| ≤ ‖g‖
√
R(x,x). Hence, ‖g‖L∞(Ω) = maxx∈Ω |g(x)| ≤ ‖ζ‖H · cR. By the

general maximal inequality (see, Theorem 8.4 in Kosorok (2008)), (E.26), (E.27) and (E.28),

we obtain that∥∥∥∥∥∥∥∥ sup
ν≥1

g1,g2∈B‖ζ‖H
(‖·‖),‖g1−g2‖L∞(Ω)≤‖ζ‖H·cR

|Zn(g1,φν)− Zn(g2,φν)|

∥∥∥∥∥∥∥∥
ψ2

≤ A‖ζ‖H,

where
A = A(cφ, cR, d,m)

=
32
√

6cφc
m/d
0√

log 1.5

∫ c
−m/d
0 cR

0

√
log[1 + exp(x−d/m)]dx

+
40
√

6cφcR√
log 1.5

√
log[1 + exp(21−d/mc0c

−d/m
R )].

(E.29)

By letting g2 = 0 in (E.29) and the Lemma 8.1 in Kosorok (2008), we complete the proof.
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Chaudhari, P., A. Oberman, S. Osher, S. Soatto, and G. Carlier

2018. Deep relaxation: partial differential equations for optimizing deep neural networks.

Research in the Mathematical Sciences, 5(3):1–30.

Chaudhari, P. and S. Soatto

2018. Stochastic gradient descent performs variational inference, converges to limit cycles

for deep networks. 2018 Information Theory and Applications Workshop (ITA), IEEE, Pp. 1–

10.

Chen, X., , B. E. Ankenman, and B. L. Nelson

2013. Enhancing stochastic kriging metamodels with gradient estimators. Operations

Research, 61(2):512–528.



269

Chincarini, A., F. Sensi, L. Rei, G. Gemme, S. Squarcia, R. Longo, F. Brun, and et al.

2016. Integrating longitudinal information in hippocampal volume measurements for the

early detection of alzheimer’s disease. NeuroImage, 125:834–847.

Choromanska, A., M. Henaff, M. Mathieu, G. B. Arous, and Y. LeCun

2015. The loss surfaces of multilayer networks. Artificial Intelligence and Statistics (AIS-

TATS), Pp. 192–204.

Cover, T. M. and J. A. Thomas

2006. Elements of Information Theory. New York: John Wiley & Sons.

Cox, D. D.

1984. Multivariate smoothing spline functions. SIAM Journal on Numerical Analysis,

21(4):789–813.

Cox, D. D.

1988. Approximation of method of regularization estimators. The Annals of Statistics,

16(2):694–712.

Cox, D. D. and F. O’Sullivan

1990. Asymptotic analysis of penalized likelihood and related estimators. The Annals of

Statistics, 18(4):1676–1695.

Craven, P. and G. Wahba

1978. Smoothing noisy data with spline functions. Numerische mathematik, 31(4):377–403.

Dauphin, Y. N., R. Pascanu, C. Gulcehre, K. Cho, S. Ganguli, and Y. Bengio

2014. Identifying and attacking the saddle point problem in high-dimensional non-convex

optimization. Advances in Neural Information Processing Systems (NIPS), Pp. 2933–2941.

Dinh, L., R. Pascanu, S. Bengio, and Y. Bengio

2017. Sharp minima can generalize for deep nets. International Conference on Machine

Learning (ICML), Pp. 1019–1028.



270

Donoho, D. L. and I. M. Johnstone

1994. Ideal spatial adaptation by wavelet shrinkage. Biometrika, 81(3):425–455.

Donoho, D. L., R. C. Liu, and B. MacGibbon

1990. Minimax risk over hyperrectangles, and implications. The Annals of Statistics,

18(3):1416–1437.

Donoho, D. L. and J. Tanner

2010. Exponential bounds implying construction of compressed sensing matrices, error-

correcting codes, and neighborly polytopes by random sampling. IEEE Transactions on

Information Theory, 56(4):2002–2016.

Driscoll, M. F.

1973. The reproducing kernel hilbert space structure of the sample paths of a gaussian

process. Probability Theory and Related Fields, 26(4):309–316.

Dziugaite, G. K. and D. M. Roy

2017. Computing nonvacuous generalization bounds for deep (stochastic) neural networks

with many more parameters than training data. arXiv preprint arXiv:1703.11008.

Edmunds, D. E. and H. Triebel

1996. Function Spaces, Entropy Numbers, Differential Operators. Cambridge, UK: Cambridge

University Press.

Efron, B. and R. J. Tibshirani

1993. An Introduction to the Bootstrap. London, UK: Chapman and Hall.

Fan, J.

1997. Comments on wavelets in statistics: a review by A. Antoniadis. Journal of the Italian

Statistical Society, 6(2):131–138.



271

Fan, J. and R. Li

2001. Variable selection via nonconcave penalized likelihood and its oracle properties.

Journal of the American Statistical Association, 96(456):1348–1360.

Foster, D. P. and E. I. George

1994. The risk inflation criterion for multiple regression. The Annals of Statistics, 22(4):1947–

1975.

Frees, E. W. and E. A. Valdez

1998. Understanding relationships using copulas. North American Actuarial Journal, 2(1):1–

25.

Friedman, J., T. Hastie, and R. Tibshirani

2010. Regularization paths for generalized linear models via coordinate descent. Journal

of Statistical Software, 33(1):1–22.

Ge, R., F. Huang, C. Jin, and Y. Yuan

2015. Escaping from saddle points–online stochastic gradient for tensor decomposition.

Conference on Learning Theory (COLT), Pp. 797–842.

Geman, S. and D. Geman

1984. Stochastic relaxation, gibbs distributions, and the bayesian restoration of images.

IEEE Transactions on Pattern Analysis and Machine Intelligence, 6(6):721–741.

Glasserman, P.

2013. Monte Carlo Methods in Financial Engineering. New York: Springer Science & Business

Media.

Gramacy, R. B., D. Bingham, J. P. Holloway, M. J. Grosskopf, C. C. Kuranz, E. Rutter, M. Tran-

tham, and P. R. Drake

2015. Calibrating a large computer experiment simulating radiative shock hydrodynamics.

The Annals of Applied Statistics, 9(3):1141–1168.



272

Gu, C.

2013. Smoothing Spline ANOVA Models. New York: Springer Science & Business Media.

Hall, P., J. W. Kay, and D. M. Titterington

1990. Asymptotically optimal difference-based estimation of variance in nonparametric

regression. Biometrika, 77(3):521–528.

Hall, P. and A. Yatchew

2007. Nonparametric estimation when data on derivatives are available. The Annals of

Statistics, 35(1):300–323.

Hall, P. and A. Yatchew

2010. Nonparametric least squares estimation in derivative families. Journal of Econometrics,

157(2):362–374.

Hastie, T. and R. Tibshirani

1990. Generalized Additive Models. London, UK: Chapman & Hall/CRC.

Hastie, T. and R. Tibshirani

1993. Varying-coefficient models. Journal of the Royal Statistical Society: Series B (Method-

ological), 55(4):757–779.

Higdon, D., J. Gattiker, B. Williams, and M. Rightley

2008. Computer model calibration using high-dimensional output. Journal of the American

Statistical Association, 103(482):570–583.

Higdon, D., M. Kennedy, J. C. Cavendish, J. A. Cafeo, and R. D. Ryne

2004. Combining field data and computer simulations for calibration and prediction.

SIAM Journal on Scientific Computing, 26(2):448–466.

Hoffer, E., I. Hubara, and D. Soudry

2017. Train longer, generalize better: closing the generalization gap in large batch training

of neural networks. Advances in Neural Information Processing Systems, Pp. 1731–1741.



273

Huang, J. Z.

1998. Projection estimation in multiple regression with application to functional anova

models. The Annals of Statistics, 26(1):242–272.

Jack Jr, C. R., M. A. Bernstein, N. C. Fox, P. Thompson, G. Alexander, D. Harvey, B. Borowski,

and et al.

2008. The alzheimer’s disease neuroimaging initiative (adni): Mri methods. Journal of

Magnetic Resonance Imaging, 27(4):685–691.

Jack Jr, C. R., D. S. Knopman, W. J. Jagust, R. C. Petersen, M. W. Weiner, P. S. Aisen, L. M.

Shaw, and et al

2013. Tracking pathophysiological processes in alzheimer’s disease: an updated hypo-

thetical model of dynamic biomarkers. The Lancet Neurology, 12(2):207–216.

Jack Jr, C. R., D. S. Knopman, W. J. Jagust, L. M. Shaw, P. S. Aisen, M. W. Weiner, R. C.

Petersen, and J. Q. Trojanowski

2010. Hypothetical model of dynamic biomarkers of the alzheimer’s pathological cascade.

The Lancet Neurology, 9(1):119–128.

Jack Jr, C. R., V. J. Lowe, S. D. Weigand, H. J. Wiste, M. L. Senjem, D. S. Knopman, and M. M.

a. a. Shiung

2009. Serial pib and mri in normal, mild cognitive impairment and alzheimer’s disease:

implications for sequence of pathological events in alzheimer’s disease. Brain, 132(5):1355–

1365.

Jastrzebski, S., Z. Kenton, D. Arpit, N. Ballas, A. Fischer, Y. Bengio, and A. Storkey

2017. Three factors influencing minima in sgd. arXiv preprint arXiv:1711.04623.

Johnstone, I. M.

2017. Gaussian estimation: Sequence and wavelet models.



274

Jones, B. L. and J. A. Mereu

2002. A critique of fractional age assumptions. Insurance: Mathematics and Economics,

30(3):363–370.

Joseph, V. R. and S. N. Melkote

2009. Statistical adjustments to engineering models. Journal of Quality Technology, 41(4):362–

375.

Joseph, V. R. and H. Yan

2015. Engineering-driven statistical adjustment and calibration. Technometrics, 57(2):257–

267.

Kennedy, M. C. and A. O’Hagan

2001. Bayesian calibration of computer models. Journal of the Royal Statistical Society: Series

B (Statistical Methodology), 63(3):425–464.

Keskar, N. S., D. Mudigere, J. Nocedal, M. Smelyanskiy, and P. T. P. Tang

2016. On large-batch training for deep learning: Generalization gap and sharp minima.

International Conference on Learning Representations (ICLR).

Kimeldorf, G. and G. Wahba

1971. Some results on tchebycheffian spline functions. Journal of Mathematical Analysis

and Applications, 33(1):82–95.

Kolpas, A., J. Moehlis, and I. G. Kevrekidis

2007. Coarse-grained analysis of stochasticity-induced switching between collective

motion states. Proceedings of the National Academy of Sciences, 104(14):5931–5935.

Koltchinskii, V. and E. Giné
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