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Abstract

This thesis is focused on developing theory and computational methods for a set of problems
involving complex data.

Chapter 2 studies multivariate nonparametric predictions with gradient information.
Gradients can be easily estimated in stochastic simulations and computer experiments.
We propose a unified framework to incorporate the noisy and correlated gradients into
predictions. We show theoretically, through minimax optimal rates of convergence, that
incorporating gradients tends to significantly improve predictions with deterministic or
random designs.

Chapters 3 proposes high-dimensional smoothing splines with applications to Alzheimer’s
disease (AD) prediction. While traditional prediction based on structural MRI uses imag-
ing acquired at a single time point, a longitudinal study is more sensitive in detecting
early pathological changes of the AD. Our novel method can be applied to extract features
from heterogeneous and longitudinal MRI for the AD prediction, outperforming existing
methods.

Chapters 4 introduces a novel class of variable selection penalties called TWIN, which
provides sensible data-adaptive penalization. Under a linear sparsity regime, we show
that TWIN penalties have a high probability of selecting correct models and result in
minimax optimal estimators. We demonstrate in challenging and realistic simulation settings
with high correlations between active and inactive variables that TWIN has high power in
variable selection while controlling the number of false discoveries, outperforming standard

penalties.



Xvi

Chapters 5 investigates generalizations of mini-batch SGD in deep neural networks. We
theoretically justify a hypothesis that large-batch SGD tends to converge to sharp minimizers
by providing new properties of SGD. In particular, we give an explicit escaping time of SGD
from a local minimum in the finite-time regime and prove that SGD tends to converge to
flatter minima in the asymptotic regime (although may take exponential time to converge)
regardless of the batch size.

Chapter 6 provides another look at statistical calibration problems in computer models.
This viewpoint is inspired by two overarching practical considerations: (i) Many computer
models are inadequate for perfectly modeling physical systems; (ii) Only a finite number
of data are available from physical experiments to calibrate related computer models. We

provide a non-asymptotic theory and derive a novel prediction-oriented calibration method.



Chapter 1

Introduction

The main focus of this dissertation is to develop theory and computational methods for
a set of problems involving complex data: (i) Statistical machine learning for “big data”,
where data are heterogeneous, high-dimensional, and high-volume, and (ii) Uncertainty

quantification for model errors in the non-asymptotic regime.

1.1 Statistical Machine Learning for Complex Data Sets

First, the heterogeneous and complex nature of data is increasingly collectable in the era
of big data. As an example, derivative observations are available in many applications.
Economists estimate cost functions, where data on factor demands and costs are collected
together, and the demand functions are partial derivatives of the cost function by Shephard’s
Lemma. In dynamic systems and traffic engineering, real-time motion sensors can record
velocity, acceleration in addition to position. To date, the fundamental question of how
much benefit can be gained by incorporating noisy derivative data into function estimation
and prediction has not been answered satisfactorily.

Chapter 2 aims to propose new nonparametric methods to incorporate derivatives for
estimation and show that incorporation of first-order partial derivatives can adequately

improve minimax optimal rates. In particular, the general multivariate nonparametric



functional ANOVA models can be estimated as efficiently as additive models by incorporating
first-order partial derivatives.

Second, data heterogeneity is common in many existing datasets. A motivating example
for my work is a longitudinal study where brain magnetic resonance imaging (MRI) is used
to detect early pathological changes of Alzheimer’s disease (AD). Two main difficulties arise
here: (i) the longitudinal scans are collected in a highly inconsistent manner across and
within subjects; (ii) the regions of interest (ROIs) in brain MRI is of a large amount and
atrophy at heterogeneous rates (e.g.,the atrophy rate of entorhinal cortex is significantly
higher than that of hippocampus). Chapters 3 provides a statistical modeling solution to
simultaneously consider these two sources of heterogeneity.

Chapter 3 utilizes varying-coeffficient models (Hastie and Tibshirani, 1993) to capture
these nonlinear relations and to model the heterogeneous atrophies of ROIs, which is
motivated by the fact that functional relations between atrophies of AD-related ROIs and
changes in clinical cognition are nonlinear in time (Jack Jr et al., 2010). In order to identify
important AD-related ROIs from the plethora of possible ROIs in brain MRI data, we
proposes a novel feature selection method for nonparametric varying-coefficient models.
Our idea is to combine the smoothing splines and an /;-penalty in the penalized likelihood
framework, which can simultaneously select AD-related ROIs and estimate their smooth
heterogenous progressions. Our method is robust to the inconsistency among longitudinal
scans and can be applied to general longitudinal studies with heterogeneous data structures.
We introduce a computationally efficient algorithm to implement the proposed method.

Third, discovering linear relationships between high-dimensional covariates and an
outcome remains a challenging problem when a significant fraction of covariates is im-
portant in predicting a response. Considering examples of human biology; it is sensible
that more relevant predictors may be included when an increasing amount of genetic
or microbiome information is leveraged, especially for gene-gene, gene-environment, or
microbiome-environment interactions. In this setting it is crucial to provide variable selec-

tion methods which are able to yield high power in variable selection while controlling the



number of false discoveries.

Chapter 4 address this problem with a novel class of penalties where larger coefficients
are subjected to attenuated penalization. The proposed penalty class results in estimators
that are selection consistent and asymptotically minimax in high-dimensional scenarios
under a linear sparsity regime. We show theoretically and through extensive simulations that
our method gives higher power while controlling FDR under the cases of strong correlations
and weak signals, compared with standard penalties.

Fourth, big data is marked by its massive size. To economize the computational cost,
the stochastic gradient descent (SGD) method is almost ubiquitously used for optimization
tasks, including the training of deep neural networks (DNNs). Standard gradient descent
proceeds iteratively via the gradient of the objective function, while SGD adopts an unbiased
but variable estimate of the true gradient. The stochasticity in SGD is proportional to the
ratio of the step size and the batch size of samples used in gradient estimations and the effect
of the batch size on generalization performance remains an elusive but critical problem.
The understanding how geometry and generalization performance of models trained by
SGD relate with the batch size of SGD is limited in the literature. Recently, a hypothesis by
Keskar et al. (2016) that “large batch SGD tends to converge to sharp minimizers of the training
function” has received increasing attentions.

Chapter 5 provides a theoretical justification to this conjecture, with the tools from
empirical process theory and nonlinear partial differential equations. As part of my ongoing
effort, I am working to extend the current work to explain the generalization mystery that

large batch SGD tends to generalize less well on unseen data.

1.2 Uncertainty Quantification and A Non-Asymptotic Theory

Computer models constructed on partial differential equations and other mathematical
physics tools are increasingly used to facilitate the study of complex systems. As George

Box famously stated “All models are wrong, but essentially some are useful” — even the best



computer models are only approximations of reality and the model errors always exist.
Optimal predictions for real systems are only possible by combining the information from
expensive data and the insights from the complex but imperfect structure of computer
models.

Chapter 6 proposes a new method for quantifying uncertainties in computer models by fol-
lowing this line of thinking. The uncertainties of computer models come from model errors
and unknown calibration parameters that cannot be directly measured. As an example of a
calibration parameter, the soil permeability in underground water simulations is important
but its true value is rarely known. We propose to identify calibration parameters by mini-
mizing the distance between computer models and collected data in the reproducing kernel
Hilbert space (RKHS) norm. We provide justification of the use of RKHS norm as opposed
to the Ly norm, as it not only incorporates Lo-distance information, but also sensitivity
information. Theoretically, our calibration method is shown to give the minimal predictive
mean squared error for any finite sample with statistical guarantees. This result is based
on a novel sharp bound for nonparametric estimation error in the finite-sample regime.
We introduce an algorithm to carry out the proposed calibration method. Beyond calibra-
tion of computer models, our method can be applied to calibrate unknown parameters for
misspecified models in statistics and engineering.

The dissertation is concluded by a few remarks on future works in Chapter 7.



Chapter 2

Minimax Optimal Rates of Estimation
in Functional ANOVA Models with

Derivatives

2.1 Introduction

Derivative observations for complex systems are available in many applications. In dynamic
systems and traffic engineerings, real-time motion sensors can record velocity, acceleration
in addition to positions. Economists estimate cost functions, where data on factor demands
and costs are collected together, and the demand functions are partial derivatives of the
cost function by Shephard’s Lemma (Hall and Yatchew, 2007, 2010). In actuarial science,
mortality force data can be obtained from demography, which together with samples for
the survival distribution can yield derivatives for the survival distribution function. In
computer experiments, partial derivatives are available by using differentiation mechanisms
at little additional cost.

We consider the problem of nonparametric regression with data from the function
itself and its first-order partial derivatives. Let 9 f(t)/0t; denote the jth first-order partial

derivative of a scalar function f(t) of d covariates t = (¢1,...,t4). Consider a multivariate



regression model

YO — f(t®) 4 €0,
(2.1)

Y0 =0fo/ot;(t9) + €9, 1<) <p.
Here, V(%) is the observation of the function under design t(*) and Y'/) is the observation of
the jth first-order partial derivative under design t\/). Suppose that t(*), t(/) s are supported
on X with &; = [0,1]. Assume the random errors ¢ and ¢)s are uncentered and
correlated. Let p € {1,...,d} denote the number of different types of first-order partial
derivatives available. Without loss of generality, we focus on the first p covariates in (2.1).
Assume that {(tgj), yi(j)) :i=1,...,n} are copies of (tV), Y9)) for j =0,1,...,p.

We use the smoothing spline analysis of variance (SS-ANOVA) (Wahba, 1990) for model-
ing fo(t) which assumes a tensor product structure and smoothness properties on lower
dimensions. This framework is desirable for many applications with derivative data. For
illustration, consider cost function estimation in economics (Hall and Yatchew, 2007). Write
the cost as fo(t1,...,tq), with t4 being the level of output and (¢1,...,ts—1) the prices
of the d — 1 factor inputs. The first order partial derivatives of f, with respect to in-
put prices is the quantities of factor inputs, which are available together with the cost
itself. The Cobb-Douglas production function (Varian, 1992) yields that fo(t1,...,tq) =
[co 1e H;l;% (c/cj)i/€ H;l;% t;j / thl/ ¢, which is an SS-ANOVA function, where cy is the effi-

ciency parameter, cq,...,cq—1 are elasticity parameters, andc=c1 + - +cq_1.

2.1.1 Existing Work and Our Contributions

Our work is related to the pioneering work of Hall and Yatchew (2007) which proposed
kernel estimators to incorporate derivative data and established improved rates of conver-
gence. Their method replaces local averages with nonlocal averages from partial derivatives.
Provided that data on sufficient mixed higher-order partial derivatives are available, local
averaging can be avoided and the root-n consistency can be achieved. Since obtaining

higher-order derivatives can be difficult in practice, this work focuses on data from first-



order partial derivatives and under a relaxed error structure. Hall and Yatchew (2010)
consider series-type estimators to incorporate derivatives under deterministic designs. Main

differences between Hall and Yatchew (2007, 2010) and ours are as follows:

e Function space. We consider SS-ANOVA functions that have a tensor product structure,
which is not explored in Hall and Yatchew (2007, 2010). The tensor product structure
in our model can improve the convergence rate exponentially with p types of first-order
partial derivatives as in (2.5) and (2.7). For p = d — 1 in (2.1), we achieve the same rate
as additive models. Our simulations in the Supplemental Materials corroborate this
improvement of convergence rates. For situations where the true function cannot be
well modeled by tensor product functions with squared approximation error O(n™!),
the first-order partial derivatives only cannot substantially improve the estimation
error and use higher-order derivatives are necessary as shown in Hall and Yatchew

(2007).

e Estimation approach. We propose a new estimator in the RKHS to incorporate first-
order partial derivatives. See Theorems 2.2 and 2.4 for its minimax optimality under
both deterministic and random designs. Its easy interpretability for estimation in SS-
ANOVA provides a direct description of interactions (Wahba et al., 1995). In remarks
after (2.11) and (2.12), we observe that the first-order partial derivatives have an effect
on reducing interactions of a SS-ANOVA function in terms of the optimal rates. Since
the first derivatives help achieve the root-n consistency in univariate estimation, the
tensor product structure of SSSANOVA allows the components with partial derivative

data to be estimated with the root-n consistency and reduce the interactions.

e Error structure. Our approach broadens the i.i.d. error structure in Hall and Yatchew
(2007, 2010) to allow the random errors to have certain bias and correlation. This
relaxed assumption is in line with applications where derivatives are estimated from

function observations.



The rest of the article is organized as follows. We provide additional notation and a
summary of main results in Section 2.2. We give the main results on estimating functions
with deterministic designs in Section 2.3 and random designs in Section 2.4. We consider
the optimal rates of estimating first-order partial derivatives in Section 2.5. We describe
results of a real example in Section 2.6. Another real application and extensive simulations

together with all proofs are relegated to the Appendix.

2.2 Notation and Summary of Main Results

2.2.1 SS-ANOVA and Error Structure

The SS-ANOVA model has the following form:

d
fo(t) = constant + Z Jor(te) + Z forg(testi) + -+, (2.2)

k=1 k<j

where the fj;s are the main effects, the fy;;s are the two-way interactions, and so on.
Components on the right hand side satisfy side conditions to assure identifiability. The
series is truncated to some order r of interactions to enhance interpretability. Here, fy(¢) is a
full or truncated interaction SS-ANOVA model if r = d or 1 < r < d, respectively. We assume
that fo € H, where H is a RKHS corresponding to the decomposition (2.2). Let #* be a
function space of functions of t;, over X; such that f X, for(tr)dty = 0 for any for(tx) € HE,

and {1} be the space of constant functions. Construct the tensor product space H as

H

é ({1} @ %]

k=l (2.3)

d
={1}e) Haod [’H’“@Hj} SR
k=1 k<j
where the second equality is the expansion of the tensor product. The components of the
SS-ANOVA decomposition (2.2) are in the mutually orthogonal subspaces of H in (2.3).

We further assume that all component functions come from a common RKHS (#1, || - ||2,)



givenby H* = H; fork=1,...,d. Let K : X; x X — R be a Mercer kernel generating the
RKHS #; and write Kq ((t1,...,ta) ", (t},...,t)) ") = K(t1,}) - - - K(t4,t,). Then Ky is the
reproducing kernel of RKHS (H, || - ||%) (Aronszajn, 1950).
Suppose the random errors €(?) and ¢1/)s in (2.1) satisfy
E[e] = o(n™/?), Var[e?)] = 6% < oo,

| (2.4)
Cov[e?, M =0 (]i —4'|"") forsomeY > 1,

i 0

wherei # ¢ and j,k = 0,1,...,p. Random errors in derivative data can be uncentered and
correlated. The short-range correlations is assumed in (2.4) for some T > 1 since partial
derivatives are usually calculated using local function data. The error structure (2.4) is
reasonable when derivatives are estimated by methods like the infinitesimal perturbation

analysis (Glasserman, 2013).

2.2.2 Deterministic Design

We derive the minimax optimal convergence rates for estimating fy(-) and its partial deriva-
tives 0 fo/0t;(-). First consider regular lattices, or called tensor product designs. Suppose
that the eigenvalues of the K decay polynomially with the vth largest eigenvalue of the
order v~2™. In Section 2.3, we show that the minimax optimal rate for estimating a full
interaction (r = d) SS-ANOVA model fy € H is

0O F sup E/Xd V(t) - fo(t)rdt

foeH

—2m/(2m+1) (2.5)

C1 [n(log n)P=4] if 0 <p<d,

Cs {n’l(log n)dfl + n72md/[(2m+1)d72]} ifp=d,
where the infimum is taken over all measurable estimators, and C, Cs are constants not

depending on n. If 0 < p < d, the above rate is the minimax optimal rate for estimating a

(d — p) dimensional full interaction SS-ANOVA model with only function observations (Gu,
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2013; Lin, 2000). If p = d and d > 3, the minimax optimal rate in (2.5) becomes

. 2
00 f Sup E/ {f(t) — fo(t)} dt = Con~2md/[@m+1)d=2] (2.6)
foEH X{i

The rate in (2.6) converges faster than the optimal rate n~2™/(2m+1)

for additive models given
in Hastie and Tibshirani (1990); Stone (1985). If p = d and d = 2, the minimax optimal rate
in (2.5) is n!logn. If p = d and d = 1, the root-n consistency is achieved in (2.5) and this
phenomenon is observed in Hall and Yatchew (2007, 2010).

The results for truncated interaction SS-ANOVA models (r < d) with derivatives will

be given in Section 2.3. In particular, for the additive model » = 1 and p = d, the minimax

optimal rate is n !, which coincides with the parametric convergence rate.

2.2.3 Random Design

We are interested in obtaining sharp results for random designs. Suppose that design points
t(®) and t)s are independently drawn from distributions I1(%) and TI¥)s with support on
X{. In Section 2.4, we show that the minimax optimal rate for estimating a full interaction
(r = d) SSSANOVA model fy € H is

—2m/(2m+1)

00 fsotég){IP’ {/X{i [f(t) - fo(t)]2 dt > Cs <[n(10g n)l—i-p—d} Lo<p<d o

n [n—l(log n)d—l I n—2md/[(2m+1)d—2}] 1pd> } — 0,

where (3 is a constant scalar not depending on n. Results for truncated interaction (r < d)
SS-ANOVA models will be given in Section 2.4. In addition, the minimax optimal rates are
obtained for estimating 0 f,/0t;(-) for j € {1,...,p} and both full and truncated SS-ANOVA

models. These rates are

~ 2
cof sup P { | [ -osor,w] ae> cw—?(m—”/@m—U} >0, (8
0 1
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where C; does not depend on n. This result holds regardless of the values of d and r. The
rate is the same as the optimal rate for estimating 0f,/0t;(-) if fo comes from a univariate

function space H; (Stone, 1980, 1982) instead of the d-variate function space .

2.3 Minimax Risks with Deterministic Designs

This section provides the minimax optimal rates of estimating f(-) with model (2.1) and
regular lattices. A regular lattice of size n = I3 x --- x Iy on X{ is a collection of design
points {t1,...,t,} = {(ti 1, tin2, -5 tigd) | ik = 1,..., Ik, k =1,...,d}, where t; ,, = j/li,
j=1,...,lg,k =1,...,d. This design is often used in statistics when the true function
fo is a functional ANOVA model. Under the regular lattice design, it is reasonable to
assume fo : X{ — R to have a periodic boundary condition as any finite-length sequence

{f(t1),..., f(tn)} can be associated with a periodic sequence

fper (il/lla e 7id/ld)

= > > fl/h—aquiafla—qa), Vi, .. i) € Z°

q1=—00 qd=—00

by letting f(-) = 0 outside X{ and at the unobserved boundaries of X{!. On the other hand,
any finite-length sequence { f(t;), ..., f(t,)} can be recovered from the periodic sequence
fPEC).

Recall that K is the reproducing kernel for component RKHS #, which is a symmetric
positive semi-definite, square integrable function on X; x &;. We require an additional

differentiability condition on kernel K:

2

mK(t,t,) S C(Xl X /Yl) (2.9)

A straightforward explanation on this condition is as follows. Denote by (-, -)3; the inner
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product of RKHS H in (2.3). Then, for any g € H,

ag(t) 8<97Kd(t7')>7'[ < 8Kd(t7')>
ot ot ’ "

- A\
where the last step is by the continuity of (-, -)3;. This implies that the composite functional
of evaluation and partial differentiation dg/0t;(t) is a bounded linear functional in H and
has a representer 0K(t,-)/0t; in H.

From Mercer’s theorem (Riesz and Sz.-Nagy, 1955), K admits a spectral decomposition
K(t, t/> = Z /\u%(t)%(t'),
v=1

where Ay > Ay > --- > 0 are its eigenvalues and {¢, : v > 1} are the corresponding
eigenfunctions.
We are now in the position to present our main results. We first state a minimax lower

bound under regular lattices.

Theorem 2.1. Assume that \, =< v=2™ for some m > 3/2, and design points t(©) and tU), j =
1,...,d, are from the regular lattice. Suppose that fo € H has periodic boundaries on X and is
truncated up to r interactions in (2.2). Then under the error structure (2.4), as n — oo,

007 sup E/X (7))~ ()]t

fo€H

C1 [n(logn)t=(d=p)Ar] ~2m/(2m+1) : fo<p<d

02{n—1(10g n)r—l + n—2mr/[(2m+1)r—2]}’ lfp —d

where constants C, Cy do not depend on n.

For two scalars {a, b}, a V b denotes their maximizer and a A b denotes their minimizer.
We relegate the proof of Theorem 2.1 to Section A.2.1 in the Appendix. Next, we show
the lower bounds of convergence rates in Theorem 2.1 are obtainable. We consider the

method of regularization by simultaneously minimizing the empirical losses of function
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observations and partial derivative observations with a single penalty:

QZX(“ fE™)}
+f; L - 2}

J =1

fn,\ =argmin{ ———
fern n(p
(2.10)

+)\J(f)}

where the weighted squared error loss may be replaced by other convex losses, and J{(-)
is a quadratic penalty associated with RKHS #, and A > 0 is a tuning parameter. By the
2

representer lemma (Wahba, 1990), (2.10) has a closed-form solution. If the variances o7

]S are

unknown, we can replace ajzs in (2.10) by consistent estimators for the variances (Hall et al.,
1990). For estimator (2.10), the empirical loss of partial derivatives adds a further regularity
restriction to the estimation compared with the traditional smoothing splines in Wahba

(1990). The following theorem shows fn A in (2.10) is minimax rate optimal.

Theorem 2.2. Under the conditions of Theorem 2.1, Fox given by (2.10) satisfies

B[ [ - o]

C} [n(logn)t=(d=p)Ar] —2m/(2m+1)

if0<p<d,

C/ —1(10g n)r—l + n—2mr/[(2m+1)r—2] ifp =d,

where constants C7, Ch do not depend on n, if the tuning parameter X is chosen by A < [n(log n) 1_(d_p)/\r} ~2m/2m+l)

when 0 < p < d,and A < n~Cmr=2/I@m+0r=2 yohen p = d,r > 3,and X < (nlogn)~Zm—1/2m

whenp = d,r =2,and X\ <n~"D/™ when p = d, r = 1.

For two positive sequences a,, and b,, a, < b, (or a, 2 b,) means that there exists a
constant ¢ > 0 (or ¢ > 0) such that a,, < ¢b,, (or a,, > ¢b,) for all n. The proof of Theorem

2.2 is presented in Section A.2.2 in the Appendix. Theorems 2.1 and 2.2 together imply that
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with model (2.1) and regular lattices, the minimax optimal rate for estimating fo € H is

E /X [Fw - )] at

C, [n(log n)l—(d—p)/\r] —2m/(2m+1) , if0<p<d, (2.11)

C’Q{nfl(log n)rfl + n72mr/[(2m+1)r72]}’ ifp=d,

and the estimator in RKHS achieves (2.11). We make several remarks. First, suppose there is
no derivative data. Then, (2.11) recovers [n(log n)'~¢]~2™/(2m+1) and this rate is known (Gu,
2013). For a large n, the exponential term (log n)?~! makes the full d-interaction SS-ANOVA
model impractical for large d. On the contrary, suppose partial derivatives data are available.
Then, (2.11) gives n=2™/m+1) for any d > 1, which coincides with the classical optimal
rate for additive models (Hastie and Tibshirani, 1990; Stone, 1985) and is not affected by the
dimension d.

Second, if partial derivative observations are available on all covariates with p = d, then
the optimal rate can be improved. In addition to (2.6) for r = d and d > 3, we point out some
other interesting cases. For the additive model with » = 1 and d > 1, (2.11) provides the
minimax rate n~!. For the pairwise interaction model with r = 2 and d > 1, (2.11) provides
the minimax rate n~! log n, which is different from n~! only by a log n multiplier.

Third, we remark on an “interaction reduction” phenomenon in the sense that the optimal
rate for estimating an unknown SS-ANOVA model by incorporating partial derivative data is
the same as the optimal rate for estimating a reduced interaction SS-ANOVA without derivative
data. For example, with r = d and p = 1, (2.11) gives [n(logn)'~(¢=D]=2m/Cm+1) wwhich is
the same rate as r = d — 1 and p = 0 involving no derivative data but a lower degree of
interactions. And, with r = d and p = 2, (2.11) gives [n(logn)'~(¢=2)]=2m/2m+1) which is
the same rate as » = d — 2 and p = 0 involving no derivative observations but two lower
degrees of interactions. Similarly, we can extend the same discussiontop = 3,...,d — 1.

Fourth, the proofs for Theorems 2.1 and 2.2 indicate that when p = d, both the squared

bias and variance are smaller in magnitude than p < d, and when d — r» < p < d, only the
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variance is smaller in magnitude than 0 <p < d —r.
Finally, let ng denote the sample size on (t(*), V(¥)) and n; denote the sample sizes on
(t(j ), Yy W) ), where 1 < j < p. If ng and n;s are not all identical to n, n in (2.11) can be replaced

by minlgjgp nj.

2.4 Minimax Risks with Random Designs

We now turn to random designs for the minimax optimal rates of estimating fy(-) with the
regression model (2.1). Parallel to Theorem 2.1, we have the following minimax lower bound

of estimation under random designs.

Theorem 2.3. Assume that \, =< v=>™ for some m > 3/2, and design points t©©) and t\9) j =
1,...,d, are independently drawn from T1°) and TIU)s, respectively. Suppose that TI®) and T17)s
have densities bounded away from zero and infinity, and f, € H is truncated up to r interactions in

(2.2). Then under the error structure (2.4), as n — oo,

—2m/(2m+1)

00 F Sup P {/Xd [f(t) — fg(t)rdt > C4 ([n(logn)l_(d_p)w} Lo<p<d

fo€EH

+ [n_l(log n) !+ n_er/[(ZmH)r_Q}] 1p=d> } >0

where constant Cs does not depend on n.

The lower bound is established via Fano’s lemma (Tsybakov, 2009). The proof is deferred
to Section A.3.1. Next, we show the lower bounds of convergence rates in Theorem 2.3 can

be achieved by using the estimator (2.10) in RKHS.

Theorem 2.4. Under the conditions of Theorem 2.3, we assume that 1O gnd 119Ds are known, and
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m > 2. Then, fm in (2.10) satisfies

lim limsup sup P{/X‘i [ﬁw\(t) - fo(t)rdt

Ci—00 n—oo foeH G

} —2m/(2m+1)

> CY <[n(log n)l_(d_p)/\r Lo<p<d

+ [nil(log n)rfl + n72mr/[(2m+1)r72]} 1p:d> } -0

=2m/CGmHL) hen 0 <p<d, and

if the tuning parameter X is chosen by A < [n(logn)1=(@=P)A"]
A < = @mr=2/[CmA0r=2) yohey p = d,r > 3, and X < (nlogn)~@=D/2" when p = d,r = 2,

and X < n~(m=D/M when p = d, r = 1. In other words, fn,\ is rate optimal.

We use the linearization method in Cox and O’Sullivan (1990) to prove Theorem 2.4.
The key ingredient of this method is to pick a suitable basis such that the expected loss
of the regularization and the quadratic penalty J(-) can be simultaneously diagonalized.
Our situation is unique in the sense that the loss function in (2.10) is the sum of squared
error losses for both the function and partial derivatives but we are only interested in
estimating the function itself in Theorem 2.4. This induces a third positive semi-definite
functional, which is the squared error loss of function estimation. But three functionals are
not guaranteed to be simultaneously diagonized, this making the direct application of the
linearization method infeasible. We present a detailed proof in Section A.3.1.

Theorems 2.3 and 2.4 together demonstrate the fundamental limit rate of the squared

error loss for estimating fy € H with model (2.1) and random designs is

—2m/(2m+1)
[n(log n)lf(dfp)/\r] Lo<p<d

2.12)
+ [nfl(logn)rfl +n72mr/[(2m+l)r72] 1p:d

in a probabilistic sense, and the estimator in RKHS achieves (2.12). The minimax rate is
the same as that with the regular lattice. We make several remarks on (2.12). First, the five

remarks following (2.11) for the mean squared situation hold for (2.12) in a probabilistic
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sense. Second, for the special case when p = 0, (2.12) recovers the minimax optimal rate of
convergence Op { [n(log n)!~"]~2m/(m+D1 for SS-ANOVA models, which is known in Lin
(2000). Third, the squared error loss in Theorems 2.3 and 2.4 can be replaced by squared
prediction error [ {ﬁL A(t) — fo(t)}2dTTIO)(t) and it achieves the same minimax optimal rate
as (2.12).

As a byproduct of Theorem 2.4, we obtain the following result of estimating the mixed

partial derivatives 0% f;/0t; - - - Ot4(t) by its natural estimator 8% fpx [0ty - -~ Otq(t).

Corollary 2.5. Under the conditions of Theorem 2.4 and m > 3, then

Di—00 n—oo focH Oty --- 0ty B Oty --- 0ty

i d 2
lim Timsup sup IP{/ [8 Jux(t) 0% fo(t) ] gt
Xd

—2(m—1)/(2m+1)
] Lo<p<d

> D} <[n(log n)l—(d=p)Ar

+ [n—2(m—1)r/[(2m+1)r—2]} 1pd> } —0,

)1—(d—p)/\7‘] —2m/(2m+1)

if the tuning parameter X is chosen by A < [n(logn when 0 < p < d, and

A\ = pn—@mr=2)/[2m+1)r=2] ;phen p=d.

2.5 Minimax Risk for Estimating Partial Derivatives

Suppose noisy observations of data on the function and some partial derivatives in (2.1) are
available. We are interested in the optimal rate for estimating first-order partial derivatives
by using all observed data. For brevity, we only consider random designs although similar
results can be obtained for regular lattices. The following theorem gives the minimax lower

bound for estimating 0fy/0t;, 1 < j < p.

Theorem 2.6. Assume that \, < v=2™ for some m > 2 and design points t©) and t), j =
1,...,d, are independently drawn from T1°) and T1U)s, respectively. Suppose that TI®) and T1)s

have densities bounded away from zero and infinity, and fo € H is truncated up to r interactions in
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(2.2). Then under the error structure (2.4), forany j € {1,...,p}and 1 <r < d,asn — oo,

2
o007 sup P / f(t) — 9folt) dt > Cyn2m=1/CGm=1) & ~ ¢,
d fo€H xd ot

where constant Cy does not depend on n.

We will prove this theorem in Section A.4.1 in the Appendix. As a natural estimator for

0fo/0t;, 8fn A/0t; achieves the lower bound of convergence rates in Theorem 2.6.

Theorem 2.7. Under the conditions of Theorem 2.6, Fox given by (2.10) satisfies that for any j €

{1,....ptand 1 <r <d,

lim limsup sup P dt > Cﬁn_2(m_l)/(2m_l) —0,

04/14)00 n—oo foe’H

/ ofnlt)  9h®)]’

if the tuning parameter X is chosen by \ < n~2(m=1)/2m=1),

The proof of this theorem is given in Section A.4.2 in the Appendix. When r = 1, this
result coincides with Corollary 2.5. Unlike Theorem 2.4 and Corollary 2.5, the distributions
1) and I1¢)s are not assumed to be known.

Theorems 2.6 and 2.7 together give the minimax optimal rate for estimating 0 fo/0t;,
provided in (2.8). Since the optimal rate in (2.8) holds regardless of the value of p > 1,
first-order partial derivative data on different covariates do not improve the optimal rates
for estimating each other. For example, given noisy data on fo(-) and 0fo/0t;(-), data on

0fo/0ty(-) do not improve the minimax optimal rate for estimating df,/0t;(-) if 1 < k #

J<p.

2.6 Real Data and Simulation Examples

This section consists of four examples. We give a real example on actuarial life table in
Example 2.8 to demonstrate benefits of incorporating first-order partial derivatives for

estimation. We provide another real application of multivariate estimation in manufacturing
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in Example 2.9. We present simulations in Example 2.10 and 2.11 to corroborate the proposed

theory and compare our estimator with the estimator in Hall and Yatchew (2007).

Example 2.8 (Survival distribution in actuarial life table). The life table in actuarial prac-
tice provides probabilities of survival and death at integer ages (Frees and Valdez, 1998) In order
to value payments that are not at integer ages, actuaries need to make a fractional age assump-
tion for probabilities of surviving at fractional ages. This is smoothing the data given at inte-
ger ages for survival function estimation. We consider a real data of U.S. 2015 period life table
(www.ssa.gov/OACT/STATS/tabledc6.html#fn2) for the Social Security area of male
and female population separately. Write fo(t) as the survival distribution function and u(t) as the

force of mortality function. Then,

fot) = —fo(t)u(®).
Here, data on fo(t) can be calculated using the death probability in life table and w(t) can be estimated
by divided differences using 1(t) the number of people that survive at age t (Jones and Mereu, 2002),

(t—1)—U(t+1) 31(0) — 41(1) +1(2)

u(t) = o W0 = 21(0)

The data on fy(t), denoted by Y©), and the estimate of u(t) together yield the data on derivative
fb(t), denoted by Y. The random error of YO and Y1) for the current data satisfies our error

structure (2.4).

Table 2.1: MSE of only incorporating Y () and MSE of incorporating YO &Y™ for Example
2.8. The MSEs are in the unit of 10~*

n=>5 n=10 n=15 n=20

Male Incorporating Y (*) 15.3674 6.7944 1.7687 0.1745
Incorporating Y (O&Y (1) 7.4381 1.6488 0.3446 0.0227
Incorporating Y (©) 23.0655 9.9948  2.2299  0.5925

Incorporating Y (O&Y™)  9.4745 24790 0.4091 0.0755

Female

We compare our proposed estimator (2.10) by whether not incorporating derivative data. We use


www.ssa.gov/OACT/STATS/table4c6.html#fn2

20

Table 2.2: MSE of incorporating Y (9 &Y () relative to MSE of only incorporating Y (*) for
Example 2.8

n=5 n=10 n=15 n=20

Male 0.4840 0.2426 0.1948 0.1301
Female 0.4108 0.2480 0.1835 0.1274

the Matérn kernel K (t,t') = (1 + |t — t'|/1 + |t — t'|?/3v?) exp(—|t — t'| /), which satisfies
the differentiability condition (2.9). Here, the scale parameter 1) is chosen by the five-fold cross-
validation, and the tuning parameter X in (2.10) is selected by GCV. The training data are selected
as the equally spaced integers t in the range [0, 119] with varying sample sizes n = 5,10, 15, 20.
The boundaries {0,119} are included in the training set. The MSE= E[fox — fol? is estimated by
a test set consisting of all 120 samples witht € {0, 1, --- ,119}. Table 2.1 summarizes the averaged
MSEs over 200 experiments in each setting. A significant improvement of estimation is achieved by
incorporating the derivative data. Table 2.2 provides the ratios of MSE of incorporating Y(©) Y1)
relative to MSE of only incorporating Y ©). The ratios decrease as the sample size increases, which

confirms our theorem that incorporating derivatives accelerates the rate.

Example 2.9 (Production time of CLFAS). The closed-loop flexible assembly system (CLEFAS)
in the design for manufacturing is known to be effective in lowering production cost and increas-
ing flexibility; see, e.g., Suri and Leung (1987); Chen et al. (2013). A significant amount of cost
is required for building a CLFAS. Hence, it is important to rapidly and accurately estimate the per-
formance of CLFAS. We show in this example that first-order partial derivatives can be estimated at
little cost and incorporating of them can significantly improve the estimation accuracy.

As shown in Figure 2.1, consider a CLFAS consisting of six automatic workstations that is con-
nected by a conveyor with six pallets in the system. Unfinished parts are loaded and unloaded through
workstation 1 and proceed through CLFAS on the pallets. The operation time at workstation j,
1 < j <6, is given by

tj + 1{jam at station j} - R;,

where t; is the fixed machine production time (in minutes) and R; is the additional random time
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Figure 2.1: Diagram of the closed-loop flexible assembly system for Example 2.9

to clear the machine j if it jams. Let p; be the probability that a part causes jam at workstation j.
In our experiment, we set p; = 0.005 and R; to be i.i.d. uniformly drawn from [6,66]. Because
the operation times are random, queueing would occur. We are interested in predicting the expected
production time of the first 5000 parts completed by the CLFAS, and we denote it by fo(t1, ..., ts) as
a function of t;s. The estimation of fo helps identify the bottleneck workstations so that resources can
be better distributed. If no queue occurs, fo(ti,...,ts) isa SSFANOVA function since it is additive
inty,...,te. The analysis below can be generalized to any number of workstations or pallets.

The following algorithm gives data on function fo and the unbiased estimators for partial deriva-
tives Ofy/0tj, 1 < j < 6. The algorithm is based on the infinitesimal perturbation analysis (IPA)
(Suri and Leung, 1987), which simply adds some accumulator variables A;, ;, to be updated during

the simulation.
1. Initialize: Aj, j, <= 0 for ji,jo =1,...,6.
2. At the end of an operation at station j, let A; ; < A; ; +1,7=1,...,6.

3. Ifa pallet leaving station j, Qoing to station ji terminates an idle period of station ji, then set

Ajiva — Ajhjzl j2 - ]-, . ,6,
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4. If a pallet leaving station j; going to station ji terminates a blocked period of station ji, then

set Aj1,j2 — A]ng, jo=1,...,6.

5. At the end of the simulation, let P denote the total number of parts completed and L be total
length of simulation in time unites. The data on fo is given by Y ©)(t) = L/P. The IPA
estimator for Ofy/0t; is YU (t) = Ag;/P,j=1,...,6.

The random noises exist in data Y(*) and Y U)s due to the stochastic nature of CLFAS. We com-
pare estimation results of incorporating partial derivative data and not incorporating derivatives into
our estimator (2.10), where the tuning parameter in (2.10) is selected by GCV. The tensor product
Matérn kernel H?Zl(l + [ty — i1/ + [t — 517 /303) exp(=|t; — t;] /1) is used, where ;s are
chosen by the five-fold cross-validation. The experimental design is 100 uniform random points in
[3,9]%. To address the impact of stochastic noises, we replicate 100 experiments of CLFAS at each
design point with a run length of P = 5000 and average data. We note two facts of this data gen-
erating. First, obtaining function value at a new design point requires to conduct the experiment
100 more times. This is expensive compared with obtaining partial derivatives which only requires
to record a small matrix A shown in above algorithm. Second, the error correlation only exists for
function value and partial derivatives at the same design, not between components at different design
points. Hence, this error structure satisfies our assumption (2.4).

The MSE= E|[f,\ — fo]? is estimated by a Monte Carlo sample of 1000 test points in [3,9]°.
Because the true production costs fo at the test points are unknown, we approximated them by repli-
cating 1000 experiments of CLFAS at each test point. The experiment of CLFAS is programmed in
VBA. We replicate the above procedures for 100 times to compare the MSEs obtained by only incorpo-
rating function data Y©) and by incorporating both function and derivatives Y ©) Yy () . [y (6),
Figure 2.2 gives the box plots of MSEs over these 100 macro-replications. It is evident that incorpo-

rating partial derivatives leads to a significant improvement of the estimation error.

Example 2.10 (Cost function in econometrics). In this example, we compare our estimator (2.10)

with the estimator in Hall and Yatchew (2007). We adopt a similar simulation setting of Hall and
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Box plots of MSEs in the CLFAS Example
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Figure 2.2: The box plots of MSEs for Example 2.9

Yatchew (2007) for estimating cost function. The true cost is

1 3 —w 3 cy 1
—TeoTen c1+co+c3 )\ cateates
folta, ta, ts,ta) = ¢ 7279 [ (C [0t
12

v=1 v=1

where t1,t2, t3 are the prices of three factor inputs, t4 is the level of output produced, c is the effi-
ciency parameter, and cy, co, c3 are elasticity parameters. Clearly, fo has the tensor product structure
(2.3). As in Hall and Yatchew (2007), we fix t3 = 1 since the cost function is homogeneous of degree

one in (t1,to,t3), that is, fo(t1,ta,t3,ta) = tafo(t1/ts,t2/ts, 1,t4). Suppose data are given on

Y(O) = fO(t17t27 17t4> + 6(0)

Y(j) = 8f0(t1(79i27 7t4) + 6(‘7), fOTj = 1, 2.
J

Set co =1,¢1 =0.8,¢c2 = 0.7,c3 = 0.6. Let the designs for t,ty and t4 be i.i.d. uniformly drawn
from [0.5,1.5]. Suppose that e¥). j = 0,1,2 are Gaussian with zero means, standard deviations

0.35, and correlation p.
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Table 2.3: MSE of our estimator only incorporating Y (°), MSE of the estimator in Hall and
Yatchew (2007) incorporating Y 0&YM&Y 2, and MSE of our estimator incorporating
Y0 &Y M&Y @ for Example 2.10. The MSEs are in the unit of 10~

Our estimator Hall and Yatchew (2007) Our estimator
withonly Y with YO&Y D&Y @ with YO &y D&y ()
p=20 127.1471 61.4098 47.4739
n=100 p=04 128.9210 63.1006 49.8963
p=20.9 129.6300 64.5989 51.9224
p=0 76.6199 33.3001 24.1501
n=200 p=04 77.7602 35.0696 25.5342
p=20.9 77.9138 36.2591 27.0137
p=0 36.1925 16.3861 9.3499
n=500 p=04 38.0683 18.2355 10.4708
p=0.9 38.9311 18.7698 11.0498
p=0 21.8570 9.2788 4.5364
n=1000 p=04 22.4943 10.4801 5.1468
p=0.9 22.9499 10.6193 5.3288

We compare the proposed estimator (2.10) with the estimator in Hall and Yatchew (2007) under
varying sample size n = 100, 200, 500, 1000 and correlation p = 0,0.4,0.9. For our estimator
(2.10), the tensor product Matérn kernel T[;_, 5 ,(1 + [t; — )1 /15 + [t; — 17 /3¢7) exp(—|t; —
t%1/1b;) is used, where 1);s are chosen by the five-fold cross-validation and the X in (2.10) is selected
by GCV. For the estimator in Hall and Yatchew (2007), the kernel smoothing with tensor product
Matérn kernel is used for local averaging in the (t1,t4) or (t2, t4) directions as the Example 3 of Hall
and Yatchew (2007), and then estimators are averaged. The bandwidth parameters for the estimator
in Hall and Yatchew (2007) are chosen by the five-fold cross-validation. The MSE= E[fnx — fo]2is
estimated by a Monte Carlo sample of 10° test points in [0.5,1.5]3.

Table 2.3 gives the MSEs of our estimator (2.10), the MSEs of estimator in Hall and Yatchew
(2007), and additionally the MSE of (2.10) with only function data Y (©) as the reference. In each

combination of n and p, the MSEs are averaged over 1000 replicated simulations. It is clear from
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Table 2.3 that the MSEs of incorporating partial derivatives are significantly smaller than the MSEs
without derivatives. Moreover, the performance of our estimator compares favorably with the esti-
mator in Hall and Yatchew (2007).

Table 2.4 gives the MSEs of our estimator relative to MSEs of the estimator in Hall and Yatchew
(2007) by incorporating V() Y () 'Y (). The ratio decreases with the sample size. This phenomenon
is expected since our estimator converges at the rate of additive models (see, Theorem 2.4), which is
faster than the convergence rate of nonparametric dimension not exceeding two by Hall and Yatchew
(2007).

Table 2.4: MSE of our estimator incorporating Y (&Y (V&Y (?) relative to MSE of the esti-
mator in Hall and Yatchew (2007) incorporating Y () &Y (1 &y ()

p=0 p=04 p=20.9
n = 100 0.7731 0.7907 0.8038
n = 200 0.7252 0.7281 0.7450
n = 500 0.5706 0.5742 0.5887
n = 1000 0.4889 0.4911 0.5018

Example 2.11 (The Black-Scholes call option pricing). In many stochastic simulations, first-order
partial derivatives can be obtained with negligible effort compared to obtain the function observation
itself. As an illustration, we study an example of pricing a call option. We would illustrate our
theoretical results in this example.

The Black-Scholes stochastic differential equation is commonly used to model the price S; of a
stock at time t through dS; = rSdt + 0 SedWy,t > 0, where Wy is Wiener process, r is the risk-
free rate, and o is the volatility parameter of stock price. This equation has a closed-form solution:
Sy = Soexp{(r — 302)t + o\/tZ}, where Z ~ N(0, 1). The European call option is a right to buy

a stock at the presepcified date t = T with a prespecified price K and the function value is

YO = e T(Sp — K.
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The goal is to estimate the net present value of this option with fixed T, K:

fo(So, 7,03 T, K) = E[Y ], (2.13)

The sensitivities of interest are the partial derivatives of fo with respect to the parameters (Sp,r, o)
while holding (T, K) fixed. Partial derivative estimators for 0 fo/0So, 0 fo/Or, O fo/Oo obtained by

the infinitesimal perturbation analysis (IPA) are, respectively,

yM — 75T 1{Sr > K},
So
Y@ = —7y© 4 e TTSp . 1{Sp > K}, (2.14)

1 1
y® — e*TT;[log(ST/SO) —(r+ 502)T]ST -1{St > K}.

It can be shown that IPA estimators (2.14) are unbiased, that is e.g., E[Y )] = 0 fo/Sy. We refer
to Glasserman (2013); L’Ecuyer (1990) for details.

In this experiment, we fix T = 1 and K = 100. The experiment design is as follows. Choose
I equally spaced design points for each of three covariates: So € [80,120], » € [0.01,0.05], and
o € [0.2,1] with | = 7,14,21. The end points of each interval are always included. Hence the
design has the tensor product structure with sample size n = 73,143,213, To address the impact
of stochastic simulation noise, we simulate ¢ = 1000, 2000, 5000 i.i.d. replications of St at each
design point and average, and the independent sampling is used across design points. Here, a larger
q corresponds to smaller noise variances of Y /s,

Two facts of this data generating are noted. First, obtaining function value at a new design point
requires to generate q new random numbers for getting St. However, obtaining a partial derivative
estimate in (2.14) does not need any new random number. Second, the error correlation only exists
for function value and partial derivatives at the same design, not between components at different

design points. Hence, this error structure satisfies assumption (2.4).
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Figure 2.3: Estimation error of our regularized estimator incorporating different levels of
partial derivatives for Example 2.11. The y-axis is in the log scale.

We compare estimation results of our proposed estimator (2.10) with different levels of par-
tial derivative data. We use the tensor product Matérn kernel H?zl(l + Ity — t1/¢5 + 15 —
t512/3¢3) exp(—|t; — t|/1;), which satisfies the differentiability condition (2.9). Here, the scale
parameter 1);s are chosen by the five-fold cross-validation, and the tuning parameter X in (2.10)

is selected by GCV. It is known that fo(So,r,o;T, K) defined in (2.13) has an explicit solution
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fo(So,7r,031,100) = So® (—dy + o) — 100e "® (—dy) when T = 1, K = 100, where dy =
o Hlog 100 — log(So) — (r — 02 /2)] and ®(-) is the cdf of the standard normal distribution. The
MSE= E[fnx — fo)2 is estimated by a Monte Carlo sample of 10000 test points in [80,120] X
0.01,0.05] x [0.2,1].

Figure 2.3 shows the estimation error, E[f, — fol2, when the sample size n. = 73,143,213
for each combination of q and different levels of partial derivatives—only function data (i.e., p = 0),
function data with one type of first partial derivative (i.e., p = 1), function data with two types of first
partial derivatives (i.e., p = 2), function data with three types of first partial derivatives (i.e., p = 3).
The results are averaged over 1000 simulations in each setting. The y-axis is in the log scale. Figure
2.3 suggests the estimation error converges exponentially with the number of types of first partial
derivatives (i.e., p), which agrees with our theoretical results. We also observe that the convergence
rate increases when incorporating p = 3 partial derivatives compared with p < 2. This also confirms
our theoretical finding that the faster rate n=* (log n )~ +-n=2md/(2m+1)d=2] j5 gchieved when using
all first partial derivatives p = d, compared to the rate [n(logn)' P~ =2m/Cm+1) when p < d,
where d = 3 in this example. Furthermore, Figure 2.3 indicates that within each n the slopes are
very close across different q, and the slopes get steeper when n increases. For example, we provide in
Table 2.5 the ratios of MSE of incorporating Y (O Y (1) and Y ) (i.e., p = 2) relative to MSE of only
incorporating Y ©) (i.e., p = 0). This further corroborates our derived results that incorporating
derivatives leads to the faster convergence rates. Finally, it is clear that the estimation error decreases
as the stochastic error decreases (i.e., q increases).

Table 2.5: MSE of incorporating Y (0 &Y (V&Y () relative to MSE of only incorporating Y ()
for Example 2.11

n q=1000 ¢ =2000 ¢ = 5000
73 = 343 0.6818  0.6789  0.6612
143 = 2744 0.5850  0.5848  0.5835
213 = 9261 0.5484 0.5483 0.5294

In this stochastic simulation example, partial derivatives can be easily estimated by (2.14) with-

out additional cost. Although the function fq does not have tensor product structure, our estimator
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with first-order partial derivatives gives substantial improvements in function estimation. For ex-
ample, the MSE of n = 73, ¢ = 1000 with three types of partial derivatives included is even smaller
than the MSE of n = 143,q = 1000 with no partial derivative included. This shows the use of
derivatives saves the computational cost for sampling at new designs in order to achieve a same

estimation accuracy.
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Chapter 3

High-Dimensional Smoothing
Splines with Application to
Alzheimer’s Disease Prediction Using
Longitudinal and Heterogeneous

Magnetic Resonance Imaging

3.1 Introduction

Alzheimer’s Disease (AD) is the most common cause of dementia in the aged population
(Prince et al., 2013). In order to prevent disease progression and take therapeutic treatment
in the earliest stage, it is vital to identify AD-related pathological biomarkers of progression
and diagnose early-stage AD. A considerable amount of research has been devoted to the
use of structured magnetic resonance imaging (MRI) for early-stage AD diagnosis; e.g.,
Jack Jr et al. (2010, 2013). The structural MRI provides measures of cerebral atrophy and it is

shown to be most closely coupled with clinical symptoms in AD (Jack Jr et al., 2009).
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Figure 3.1: Illustration of heterogenous longitudinal data with p covariates.

Most work in the literature focus on the cross-sectional study with MRI collected at one
single time point; see, e.g., Aguilar et al. (2013); Liu et al. (2016); Tzourio-Mazoyer et al. (2002).
However, the cross-sectional study could be insensitive to early pathological changes. As an
alternative, longitudinal analysis of structural abnormalities has recently attracted attentions
(Chincarini et al., 2016; Yau et al., 2015; Zhang et al., 2012). Most of these existing longitudinal
studies focus on the atrophy of a few well-known biomarkers such as the hippocampus,
entorhinal cortex, and ventricular cortex. However, these prespecified regions of interest
(ROIs) may be insufficient to capture the full morphological abnormality pattern of the
brain MRI. Besides it, a few other issues remain as challenges in the longitudinal analysis.
First, longitudinal scans across subjects are usually inconsistent. For example, subjects
could have different scanning time and different total number of scans. Second, the total
number of ROIs in the brain is large compared with the number of subjects, which poses
a challenge to select AD-rated longitudinal biomarkers from the whole brain. Third, the
rates of longitudinal change in different ROIs are different and this heterogeneity should be
accounted by the modeling of progression.

The goal of this paper is to identify important AD-related ROIs in the whole brain MRI
with longitudinal MRI data and use the selected ROIs for AD prediction. Specifically, we use

the varying coefficient model (Hastie and Tibshirani, 1993) to characterize the heterogeneous
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changes of different ROIs in structural MRI. This model also allows a nonlinear functional
modeling between MRI and clinical cognition functions. We propose a novel feature selection
method by combining the smoothing splines and a /;-penalty, which can simultaneously
select and estimate AD-related ROIs. We provide an efficient algorithm to implement
the proposed feature selection method. Then the prediction is performed based on the
selected longitudinal features and estimated varying coefficients. Our method is robust to
the inconsistency among longitudinal scans and is adaptive to the heterogeneity of changes
in different ROIs. The use of varying coefficient models is motivated by the hypothetical AD
dynamic biomarkers curves proposed by Jack Jr et al. (2010, 2013), where their principle is
that the rates of change over time for MRI and clinical cognition functions are in a temporally
ordered manner. Hence, the functional relationship between the atrophy of MRI and the
change in clinical cognition functions must be nonlinear in time.

To evaluate our method, we perform experiments using data from the Alzheimer’s
Disease Neuroimaging Initiative (ADNI). We predict future clinical changes of mild cognitive
impairment (MCI) subjects with brain MRI data. The MCl is a prodromal stage of AD. The
prediction of clinical changes help to determine whether a MCI subject will convert into AD
at a future time point, which is vital for early diagnosis of AD.

Main differences between this paper and existing longitudinal studies in Chincarini et al.

(2016); Yau et al. (2015); Zhang et al. (2012) are as follows.

e Different feature representations. We use the varying coefficient model to characterize
nonlinear and smooth progression of longitudinal features, which is motivated by
clinical findings and the dynamic biomarker curve in Jack Jr et al. (2010, 2013). On
the other hand, Chincarini et al. (2016); Yau et al. (2015); Zhang et al. (2012) use linear

representations for features.

e Different scalability to heterogenous longitudinal scans. Different from Chincarini
et al. (2016); Yau et al. (2015); Zhang et al. (2012), our method does not require same

scanning times and a same number of scans across samples.
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¢ Different feature selections. We proposed a novel feature selection method by combin-
ing smoothing splines with a /;-penalty, which allows to simultaneously select and
estimate features. This is different from the two-step method in Zhang et al. (2012) by
doing the selection and estimation separately and Chincarini et al. (2016); Yau et al.

(2015) by only using pre-selected features.

The rest of the paper is organized as follows. We introduce our method in Section 3.2.
We give experiment results in Section 3.3. Additional material and proofs are relegated to

Appendix.

3.2 Methodology

The varying coefficient model (Hastie and Tibshirani, 1993) can describe time-dependent
covariate effects on the responses. Given scaled time ¢ € [0, 1], the response functional Y'(-)

is related to covariates X (-), ..., X,(-) through
p
Y(t)=b+ > Bit)X;(t)+e(t), beER, (3.1)
j=1

where the centered noise process ¢(-) is independent of X;;(-)s. The model (3.1) allows a
nonlinear relationship between X;(-)s and Y'(-) be letting the coefficients ;(-)s vary on
t. On the other hand, (3.1) has an additive structure on covariates X;(-)s, which enables
efficient estimations of coefficients j3;(-)s.

In practice, data are obtained for subjecti = 1,...,n at time ¢;,, where v =1,2,...,m;,
and 0 < tj; < tjp < -+ < tiy, < 1. Note that m; and ¢;,s are allowed to be different for
different subjects i. Denote X(t;;) = x;; and let y;,, be the response for subject i at time ¢;,,
then (3.1) implies

p
Yir = b+ Z Bj(tiv)xij(ti) + e(ti), beR. 3.2)

7=1
The structure of heterogenous longitudinal data is illustrated in Figure 3.1, where some

subjects could have missing feature values at certain time point. The number of covariates p in
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(3.2) can be larger than the sample size n, and then (3.2) becomes a high-dimensional model.
Since some covariates might be irrelevant with the response, we want to select important
covariates X (-)s based on data (3.2) and use the selected covariates for prediction.

We propose a new method to simultaneously select covariates and estimate their corre-
sponding varying coefficients as follows. Assume that varying coefficients 51 (-), 52(-), . .., Bp(*)
reside in a reproducing kernel Hilbert space (RKHS) (H k., || - ||, ) with the reproducing
kernel K (-,-) (Wahba, 1990). Find (), B2(-), ..., Bp(-) € Hk and b € R to minimize

2
p

n  m; P
%ZZ Yiw — b Z ti)aii(ti) |+ A 185l (3.3)

i=1 v=1 j=1 j=1

where N = " ' m; and || - ||, is the RKHS norm. The first term in (3.3) measures the
goodness of data fitting and the second term merits the selection property by the /;-like
penalty Z?Zl |82, - We first provide the following theorem to justify the existence of

minimizer for (3.3).

Theorem 3.1. There exists a minimizer of (3.3) that is in the domain f1(-),. .., Bp(-) € Hx and

beR.

The proof of this theorem is given in Appendix B.3. The variable selection method (3.3)
is new in the literature and (3.3) is efficient for optimization since it is convex in 3;(-)s and it
has only one tuning parameter A. We provide an algorithm in Appendix B.4.

The following theorem gives further insights into (3.3) that it is indeed a combination of

the smoothing splines (Wahba, 1990) and the Lasso (Tibshirani, 1996).

Theorem 3.2. Consider the following optimization problem. Find (51(-),...,Bp(-) € Hk and

01,...,0p,b € R to minimize

*Zzyw—b Zﬁj iv xu 7,1/ +TOZ(9 1”/6]”?-[1(—’_7—129]7

i=1 v=1 j=0 (3.4)
st.0;>0,7=0,1,...,p,
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where Ty is a constant and Ty is a tuning parameter. Let 71 = \*/(47y). The following equivalence

holds.

1) If (30,31(-), . ,Bp(-)) minimizes (3.3), by letting 9] = 7-&/27-1_1/2”6]“%[{, we have that

(é\lu e 7é\p; B\Ov //6\1(.)7 st 76}7()) minimizes (34)

2) If there exists ((/9\1,...,(/9\,,;30,31(-),...,Ep()) minimizes (3.4), then (30,31(-),...,@)(-))

minimizes (3.3).

We give the proof of this theorem in Appendix B.5. Note that (3.4) is a combination of

the smoothing splines and the Lasso since the first two terms:

n m; p
722:%1/_ —Z (w)xm +TOZH lHﬁ]H’HK_}—TlZH
=1 v=1 j=1

is actually the same as the smoothing splines in nonparametric statistics (Wahba, 1990), and

the last term

is actually the same as the Lasso penalty (Tibshirani, 1996) for the weights 6;s.

Let X, Xj,,..., X, be s of selected features by (3.3), 1 < j; < jo < --- < j5 < p,
and le , @-2, N Bjs be the corresponding estimated varying coefficients by (3.3). Then the
(t) at time ¢ is

prediction model for a new subject with features X7 (t), X7, (?),..., X},

FH(8) = B X3 () + B X5 (8) + -+ B, XL.(1).

3.2.1 Dataset for experiments

Data used in the preparation of this article were obtained from the Alzheimer’s Disease Neu-
roimaging Initiative (ADNI) database (adni.loni.usc.edu). The ADNI was launched
in 2003 as a public-private partnership, led by Principal Investigator Michael W. Weiner,

MD. The primary goal of ADNI has been to test whether serial magnetic resonance imaging
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(MRI), positron emission tomography (PET), other biological markers, and clinical and neu-
ropsychological assessment can be combined to measure the progression of mild cognitive
impairment (MCI) and early Alzheimer’s disease (AD). More descriptions on the ADNI
database is in Appendix B.1.

3.3 Experiment Results

We corroborate our method by predicting future clinical changes of MCI subjects. Generally,
some MCI subjects will convert into AD after certain time (i.e., MCI converters, MCI-C for
short), while others will not convert (i.e., MCI non-converters, MCI-NC for short) Zhang
et al. (2012). The prediction of clinical change in a MCI subject help to determine whether
the subject will convert into AD at a future time point, which is a central task for the early
diagnosis of AD. We summarize the baseline demographic information of ADNI subjects
studied here in Table 3.1.
Table 3.1: Demographics of ADNI subjects studied here

MCI-C MCI-NC
(n = 74) (n = 98)
Male/Female 44 / 30 61 /37

Age (years) 73.03 £ 6.65 74.35+7.47
Edu. (years) 1551 £3.05 15.59 £ 3.07

The preprocessing steps for brain MR imaging used here are described in Appendix
B.2. Specifically, we have total 324 ROIs for each imaging. For MCI subjects, MRI scans
were performed at baseline (bl), 6 months (M06), one year (M12), 18 months (M18), two
years (M24), three years (M36), and four years (M48). However, some subjects may miss
a few visit times and hence they do not have MRI scans at these time points. We choose
n = 172 MCI subjects who have M48 imaging data. Table 3.2 lists the distributions of visit

times for these 172 MCI subjects, where, e.g., 6 of MCI-C subjects make at most 3 visits
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among the scheduled six times (bl, M06, M12, M18, M24, M36) such that they have at most

3 longitudinal MRI scans.

Table 3.2: Distribution of visit times for ADNI subjects studied here

MCI-C  MCI-NC
(n="74) (n=98)

< 3 scans 6 6
4 scans 8 14
5 scans 15 33
6 scans 45 45

———————————————————

Cortical Thickness Average of
Right Entorhinal

Cortical Thickness Average of
Right Parahippocampal

Abnormality Magnitude

Figure 3.2: Flowchart of the proposed method.
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Our goal is to use longitudinal information (from bl up to M36) to predict the clinical
changes of MCI subjects at M48. Since the empirical evidences suggest that the rates of
change over time for structural MRI and clinical cognition functions are in a temporally
ordered manner (Jack Jr et al., 2010, 2013), a nonlinear modeling for the functional relation-
ship between the atrophy of MRI and the change in clinical cognition functions is necessary.
Hence, the varying coefficient model (3.1) is used. We choose the Alzheimer’s Disease As-
sessment Scale — Cognitive Subscale (ADAS-Cog) as the response clinical cognitive test score
Y () and it ranges from 70 (severe cognitive impairment) to 0 (no cognitive impairment).
The ADAS-Cog measures disturbances of memory, language, and other cognitive abilities.
The covariates X(-)s include 324 MR imaging ROIs and 3 demographic covariates: age,
gender, and education years. The index ¢ in (3.1) should be identifiable and we let ¢ be
the scaled time relative to subjects enter the ADNI study. We normalize the time to the
unit interval [0, 1]. Figure 3.2 gives the flowchart of our method, where the abnormality
magnitude measures the shrinkage of a feature by comparing the average of normal subjects
that progressed to AD over time relative to the average of normal subjects that did not
progress to AD over time with ADNI dataset. For example, Figure 3.2 shows the thickness
of right parahippocampal cortex and thickness of right entorhinal cortex significantly decrease
over time for subjects progressed to AD compared to subjects did not progress. These two
features are selected by our method for prediction.

We build six models by using six different levels of longitudinal information:

e Model 1: bl.

Model 2: bl+MO06 (including subjects have missings at bl).

Model 3: bl+M06+M12 (including subjects have missings at bl or M06).

Model 4: bl+M06+M12+M18 (including subjects have missings at bl, M06 or M12).

Model 5: bl+M06+M12+M18+M24 (including subjects have missings at bl, M06, M12
or M18).
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e Model 6: bl+M06+M12+M18+M24+M36 (including subjects have missings at bl, M06,
M12, M18, or M24).

4.5 4 — MCI-C
MCI—-NC

3.0 1

Prediction Accuracy for ADAS-Cog

0.5 1

Model 1 Model 2 Model 3 Model 4 Model 5 Model 6

Figure 3.3: The prediction comparisons of our method using six levels of longitudinal data.

Following the flowchart in Figure 3.2, we first perform the feature selection method
in (3.3) for each of the six models. In each experiment, we randomly leave out half of
samples in both MCI-C and MCI-NC for prediction. For the training of each model, a 10-fold
cross validation is performed to select the tuning parameter X in (3.3). The experiments
are replicated for 100 times. We summarized the mean squared prediction accuracy in
Figure 3.3. It is clear that the longitudinal data can significantly improve the prediction
results compared with only using baseline information. And the more longitudinal data
included, the better prediction will be obtained. We also observe that the prediction results
for MCI-NC are slightly better compared with MCI-C, which can be explained by the fact
that MCI-NC subjects have more stable clinical status and less varied clinical scores.

We give examples of selected feature in Figure 3.4. These are four ROIs that consistently
selected in Model 6 for 100 experiments. Figure 3.4 demonstrates the varying coefficients
of the ROIs. Specifically, gender is an important factor and different ROIs have different

functional relations with clinical functions (i.e., the maximum effect of each biomarker
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Figure 3.4: Examples of selected features for Model 6.

varies over the course of disease progression). This confirms the evidence and hypothesis

in Sabuncu et al. (2011); Schuff et al. (2012) that atrophy does not affect all regions of the

brain simultaneously, but perhaps in a sequential manner.

Prediction Accuracy for ADAS-Cog

—— Our method
Method using the group Lasso
—-= Method using hippocamal volume

=

Model 1 Model 2 Model 3 Model 4 Model 5

Model 6

Figure 3.5: The prediction comparisons of three methods for MCI-C.

Now we compare our method (3.3) with other two state-of-the-art methods:

e The longitudinal analysis in Chincarini et al. (2016) which only uses the hippocampal

volume shrinkage rate as the feature.

e Thelongitudinal analysis in Zhang et al. (2012) which use linear feature representations
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—— Our method
Method using the group Lasso
—-= Method using hippocamal volume

Prediction Accuracy for ADAS-Cog
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Figure 3.6: The prediction comparisons of three methods for MCI-NC.

and a group Lasso for variable selection (e.g., Yuan and Lin (2006)).

Since the methods in Chincarini et al. (2016); Zhang et al. (2012) require same scanning
times and a same number of scans across samples, we perform Model 1-6 for AD prediction
with samples having no missing visits. In each experiment, we randomly leave out half of
samples in both MCI-C and MCI-NC for prediction. For the training of each model, a 10-fold
cross validation is performed to select the tuning parameters in (3.3) and in Chincarini
et al. (2016); Zhang et al. (2012). The experiments are replicated for 100 times. The mean
squared prediction accuracy for MCI-C are summarized in Figure 3.5 and the mean squared
prediction accuracy for MCI-NC are summarized in Figure 3.6. It is clear that our proposed
method consistently achieves better prediction performances for both MCI-C and MCI-NC.
The reason of the superior performance of our method is due to the modeling of nonlinear
progression of longitudinal features and selecting important features from the whole brain

instead of only using a prespecified feature for prediction.
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Chapter 4

Selection and Estimation Optimality
in High Dimensions with the TWIN

Penalty

4.1 Introduction

Discovering relevant relationships between a large number of variables and an outcome
continues to be an eminently challenging problem in statistics and a major interest in a
wide variety of scientific disciplines. Decades of research has focused on variable selection
techniques to identify relevant variables. Among these techniques, penalized regression-
based methods such as the Lasso (Tibshirani, 1996), smoothly-clipped absolute deviation
(SCAD) (Fan and Li, 2001), and the minimax concave penalty (MCP) (Zhang, 2010) have been
widely explored, as they often perform well in practice, have computational advantages, and
possess desirable variable selection properties. However, selection consistency results for
penalized methods often require the imposition of relatively extreme levels of sparsity on
the data generating mechanism and thus may not accurately describe real world data. For
example, when modeling health outcomes of patients, such as hospitalization risk or human

phenotypes, the relevant risk factors may be highly varied and numerous. As human biology
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is extraordinarily complex, it is sensible that more relevant predictors may be included
when an increasing amount of genetic or microbiome information is leveraged, especially
when considering gene-gene, gene-environment, or microbiome-environment interactions
(Nadeau and Topol, 2006; Martin et al., 2007; Bull and Plummer, 2014; Shreiner et al., 2015).
As such, methodological and theoretical advances in variable selection commensurate with
this possibility are needed.

In this paper we seek to address this gap with a novel class of penalties. The proposed
penalty class results in estimators that are provably selection consistent and asymptoti-
cally minimax in high-dimensional scenarios under linear sparsity and relatively weak
assumptions regarding the data-generating mechanism. We call our penalty class the two
mountains penalty class, or TWIN (TWo mountalNs) for short, as the shape of the penalty
function resembles two mountains centered around the origin. The general shape of the
two mountains penalty class makes it amenable to controlling the false discovery rate of
variable selections (FDR) while retaining high power of selection and is thus instrumental to
its desirable selection properties. Furthermore, the shape of TWIN penalty functions, illus-
trated in Figure 4.1a, results in sensible data-adaptive penalization where larger coefficients
are subjected to attenuated penalization. Throughout this paper we show that this general
pattern of penalization yields advantageous selection and estimation properties. Extensive
simulations buttress our theoretical results and demonstrate the superior finite sample
selection and estimation properties of our penalty in scenarios with strong correlations
between relevant and irrelevant variables.

The core of this paper centers around the ubiquitous linear model, which posits that the
relationship between a set of predictors and a response variable has the following linear
form:

y=XgG+z, 4.1)

where y € R" is a vector of responses, X = (x1,...,x,) € R"*? is a random matrix with

each column representing samples of a particular predictor, 3 = (f1,...,0p) € RPisa
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vector which relates the predictors to a mean response value, and z ~ N (0, 021,,) is an error
term independent of X. We adopt the familiar penalized regression framework, wherein

sparse estimates B of B3 are achieved by minimizing a penalized least squares objective with
penalty P(-):

~ ' 1 p
B =argmin { |y — Xbl*+ > P(bj]) ¢ - (4.2)
beRr j=1

The Lasso falls under this framework with P(|b|) = |b|. The focus of this paper is on a new
class of penalty functions P(-), which will be introduced in Section 4.2.

We highlight three main contributions of this work:

1. We propose a novel class of penalty functions for variable selection, which provide
data-adaptive penalization in a manner which results empirically in favorable selection
and prediction performance. We provide two examples of the penalty class which are

amenable to computationally efficient algorithms.

2. We provide selection consistency results for the proposed class of penalty functions in
both the high dimensional (p > n) and low-dimensional settings under linear sparsity.
Similar to SLOPE (Bogdan et al., 2015), our penalty admits a finite sample bound for
the FDR under orthogonality and is thus a candidate for future study of FDR control

under more general designs.

3. We establish new minimax optimal risk under the linear sparsity. Moreover, we show

that TWIN estimators are minimax optimal for both orthogonal and random designs.

The remainder of this paper is organized as follows. We introduce our proposed class
of penalty functions in Section 4.2. In Section 4.3 we study the key selection properties
of the TWIN penalty and in Section 4.4 we present minimax optimality results. Section
5.3 investigates the numerical properties of the TWIN penalty in comparison with other
standard penalties using extensive simulation studies. In Section 4.6 we analyze a microarray

study relating gene expression levels to a phenotype in mice with the TWIN penalty.



45
4.2 Methodology

421 The TWIN penalty class and examples

The “two mountains” penalty class is defined by a general shape, which has the appearance
of two mountains centered around the origin. Figure 4.1a depicts the archetypal shape
of TWIN with two examples of the penalty class in comparison with the shapes of the
Lasso penalty and the MCP. The motivation of the two mountains shape is clear: it has a
singularity at zero, thus allowing for variable selection, and it penalizes small coefficients
more heavily and relaxes the amount of penalization for large coefficients, effectuating the
idea that variables with larger coefficients are more likely to be related to our response. Thus,
it provides data-adaptive penalization of coefficients. However, the relationship between
the magnitude of penalization is not monotone with coefficient size, as it is potentially
unreasonable to assume that all small coefficients are necessarily unimportant.

The TWIN penalty class Py -(t) is indexed by two parameters A, 7 > 0 and satisfies the

following criteria:
1. Py, (¢) is continuous and nonnegative for ¢ € Rt with P -(0) = 0;
2. supyso P\ +(t) = oo forany t # 0;
3. The derivative of the penalty is continuous except at the origin and satisfies

e P _(0+) = A which enables the selection of variables,
e Py (t)is positive for 0 < ¢ < 7 and decreases to 0 such that P, _(7) =0,

e P{ (t) is nonpositive for ¢t > 7, first decreasing in a neighborhood after 7 and
then increasing to 0, yielding a “coefficient enlargement” effect for a range of ¢

and (near) unbiasedness for large ¢,

When P, ; is a member of the TWIN class, we call the minimizer of (4.2) a TWIN estimator.
Penalties that meet all of the two mountains (TWIN) criteria resemble two symmetrical

hill or mountain shapes centered around 0 when taken as a function of |¢{|. The tuning
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parameter 7 specifies the precise location of the peaks of the “mountains”, i.e. where the
penalty achieves its maximum value. The second criteria above guarantees that adjusting
A will eventually result in a large enough penalty to set any coefficient to zero. The third
property in criterion 3 above results in what we call coefficient enlargement in the sense
that some estimates are slightly biased away from zero; see Figures 4.1c and 4.2. The TWIN
class can be further delineated based on the limiting behavior of P, ,(t). The first subclass
of TWIN penalties, which we call TWIN-a, is defined as all TWIN penalties which only
achieve zero derivative in the limit. The second subclass, TWIN-b, has derivative equal to
zero for all t > d for some constant d > 0. This distinction results in different properties and
our theoretical derivations will handle them separately.

The pattern of decreased penalization for ¢ > 7 is inspired by multiple testing procedures,
wherein smaller p-values are compared with lower thresholds, for example Benjamini and
Hochberg (1995). From the regression point of view (assuming equal variance of each
coefficient estimate), smaller p-values correspond to stronger signals, i.e. variables with
larger regression estimates. Thus the behavior of TWIN is opposite that of another recently
proposed data-adaptive penalty, SLOPE (Bogdan et al., 2015), which penalizes coefficients
whose estimates are larger more heavily than those whose estimates are smaller.

In the following we introduce two specific TWIN penalties that will be used throughout
this paper for demonstration purposes. While the theoretical results in this paper apply to
all TWIN penalties, our numerical examples and our data analysis focus on the following

two specific penalties in the TWIN class.

Example 4.1 (TWIN-a).

Ae(1—(1—t/7)%) t<mr
P)\,T(t) = ’ (43)

AediT/t t>maT

where d; > 0and my > 0are calculated such that the function above is continuous and has matching

derivatives at my and c is a normalizing constant defined such that P§ _(0+) = A. The term c can
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be dropped for clarity or ease of implementation. A direct calculation shows that dy = 32/27 and
m1 = 4/3. Note that letting T — 0 and A\t — 1/(cd1) yields P . (t) = 1/t, which is the reciprocal
Lasso of Song and Liang (2015).

Example 4.2 (TWIN-b).

;

Ae(1—(1—t/7)%) t<mar
P)\,T(t) = AC[(t — d2)2/7'2 + h] moT <t <dsy> (4.4)

Ach t > do

where h € (0,1) and d > 0, mg > 1 are calculated such that the function above is continuous
and has matching derivatives at moT and dy and again c is a normalizing constant defined such
that P _(0+) = . A straightforward calculation shows that dy = (1 + V2(1 = h))r and my =
1+ /(1 — h)/2. The parameter h can be chosen to balance convexity of the penalty, and hence

computational stability, with effect enlargement, however we simply choose h = 1/2.
Examples 2.1 and 2.2 differ only in their behavior for ¢t > 7.

Remark 4.3. If 7 — oo and Ac/T — X*/2, both TWIN-a and TWIN-b become the Lasso penalty

with tuning parameter \*.

To better understand the behavior of TWIN penalties, let us consider the following

univariate penalized least squares problem
1 2
S (5= 67 + P (10). 45)

Fan and Li (2001) note that a good penalty function should meet three key criteria, namely i)
(near) unbiasedness ii) sparsity, and iii) continuity of the minimizer of (4.5) with respect
to z. TWIN meets the first two criteria, however, like for the hard-thresholding function
(Antoniadis, 1997; Fan, 1997) and for the reciprocal Lasso (Song and Liang, 2015), it does

not always meet the third. Specifically, for a range of values of 7, the minimizer of (4.5)



48

is not continuous in z; see Figure 4.1c. Thus, in some sense, the tuning parameter 7 of
TWIN offers a trade-off between continuity and computational stability. In spite of added
computational instability, we find that TWIN with values of 7 resulting in a discontinuous
estimator often performs remarkably well in practice. Both examples TWIN-a (Example
2.1) and TWIN-b (Example 2.2) are computationally convenient, because they both admit
closed-form solutions for univariate (4.5), allowing for faster coordinate-descent algorithms
with simple updates.

Figure 4.2 displays the regularization paths of the Lasso, SCAD, MCP, TWIN-a and
TWIN-b penalties from a simulated dataset with n = 200, p = 1000 among which only 10
active variables are related to the response, the covariates are generated independently from
N(0, %) with ;; = 0.5/, and 2 ~ N (0, I,,). The coefficients for the 10 active variables are
given by (—1/2,2/3,-5/6,1,—7/6,4/3,-3/2,5/3,—11/6,2). The horizontal gray dashed
lines are the oracle least squares estimates for the 10 active variables. Due to the low sample
size, correlations between inactive variables and the response range between -0.21 and
0.22. The correlations between active variables and the response range in magnitude from
0.07 to 0.45 and are thus often dominated by random correlations with the response. Due
in part to these correlations, the Lasso selects multiple inactive variables early on in the
regularization path, a phenomenon studied rigorously in Su et al. (2017). Note that TWIN
results in estimates which are inflated for a range of A. Due to the fact that the derivative
of the TWIN-a penalty is never exactly zero, it results in increased coefficient enlargement
compared with TWIN-b. As we justify in Section 4.2.3, this added enlargement effect may be
more beneficial in scenarios with strong correlations between covariates. Smaller coefficients,
however, can still receive shrinkage towards zero by TWIN depending on the value of 7.

This behavior can be helpful in scenarios where prediction is a priority.

4.2.2 Heuristics of TWIN

In this subsection, based on heuristic arguments, we provide insights into why the TWIN

estimator yields reduced false discoveries compared with the Lasso, SCAD and MCP. The
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Figure 4.1: Panel (a) compares the penalty functions for TWIN-a and TWIN-b with the Lasso
and MCP all with with A = 1 (and Ac = 1 in the case of TWIN). The extra tuning parameter
~ for MCP is set to 1.4. Panel (b) compares the corresponding derivative functions. Panel (c)
compares the thresholding functions for all of the penalties.
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Figure 4.2: Plot of coefficient paths as the ) tuning parameter is varied for TWIN-a and -b
in comparison with that of the Lasso, SCAD, and MCP. The top left plot is TWIN-a with
7 = 0.1, the top middle is TWIN-b with 7 = 0.1, and the top right is TWIN-a with 7 = 0.5.
Only variables V'1 — V10 have nonzero coefficients in this example and only these variables
are labeled on the right of each plot if selected.

arguments in this section roughly follow and extend the arguments in Su et al. (2017). For
simplicity, in this section we fix o = 0 as the following can be extended to cases with
noise. Consider a Gaussian random design matrix X which has i.i.d. N(0,1/n) entries and
consider an oracle TWIN estimator with known true support A° = {j : 3; # 0} as obtained
by

~ 1
Bae = argmin _ly — Xaobaol >+ > Prr(lbj]), (4.6)
b qo ERP jeAe

where A° is of approximate size ep,0 < € < 1, and n, p — oco. The matrix X 40 is comprised

of columns indexed by A° from the full design matrix X. If |Eg,, [x;(y — X 40 B 40)]| < Afor

alli € A°, where A° = {1,...,p}\ A°, the KKT condition (4.12) suggests in expectation that
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extending ,@ 10 by adding zeros to A° results in a solution of (4.2). If for some j € A°,
B [ (y — XaoBac)]| > A, 4.7)

then we must consider the reduced problem (4.6) with support A°U{;j} instead of A° in order
to yield an equivalent solution with (4.2). Hence, (4.7) provides evidence of false discoveries.
Since B 40 is independent of X ., by conditioning on X 40, Eg ,, [:z:;- (y—X 40 B 40)] is normally
distributed with mean zero and variance n|[Eg,, [X 40 (B0 — Bao)] ||

To compare TWIN with the Lasso, observe that when n > k, the largest singular value

of X 40(X "o X 40) ! is bounded, thus with probability approaching one,

n Y Eg o [Xa0(Bae — Bao)]l?

=1 | X a0 (Xgo X a0) "B, [sgn(Bac) P (1B ]I (4.8)

<con™* {AQ#{J' € A% [Eg,[B;]] < vA} + sup | P} (t) P41 € A° [Eg, [B)]] > W\}} ;
27

where ¢ is some constant and + is defined in (4.13) which indicates the region where P//\,r is
approximately zero. For Lasso estimators, we know P’(-) = X and thus the right-hand side
of (4.8) is of order A when | A°| is linear in p. In other words, Lasso estimators satisfy (4.7)
for a number of variables in A° linear in p, which causes a non-vanishing false discovery
proportion; see Su et al. (2017). TWIN estimators, however, yield (near) unbiasedness, which
results in sup; | Py ,(?) 2 close to 0. If the distribution of B 4. is such that the minimal
absolute value of true coefficients is larger than a certain threshold with a large probability
(asin, e.g., Tibshirani (2011)), then #{j € A, [Eg, [BJH < yA}/n — 0and thus the right-hand
side of (4.8) approaches 0 for TWIN estimators, resulting in a vanishing proportion of false
discoveries.

To compare TWIN with SCAD and MCP, we note that although these penalties are
all (nearly) unbiased, TWIN penalties possess an enlargement property for estimates with

absolute values of a middling range; see, Figure 4.1 for illustration. The enlargement property
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can compensate in some sense for the shrinkage error of estimates near zero. Specifically,

we can bound the left-hand side of (4.8) as follows:

0 Eg o [X a0 (Bae — Bao)]|I> = 07| X 40 (X 4o X 40) 'Eg,,, [sgn(Bac) Py, (1B ]|

i 4.9)
<can Y Eg,. [P+ (1Bac])] [&

for some constant ¢; > 0. Since SCAD, MCP and TWIN yield shrinkage for weak signals,
P(] Bj |) > 0 forsmall @ However, the enlargement property of TWIN enables P, _(( Bj ) <0
for 8; with middling magnitudes, which compensates for positive P} _ (| Bj |)’s and resultsin a
smaller bound in (4.9). Thus for j € A°, the conditional variance of Eg ,,, [m; (y—X 40 B 40)] has
a smaller upper bound for TWIN, implying that TWIN is likely to give a smaller proportion
of false discoveries than SCAD and MCP. Moreover, it is evident from extensive simulations
in Section 5.3 that TWIN can be significantly better than SCAD and MCP in the linear
sparsity regime with strong positive and negative correlations between inactive and active

variables.

4.2.3 The role of the tuning parameter 7

TWIN'’s tuning parameter 7 has an important impact on the selection behavior of TWIN. We
note that the reciprocal Lasso may yield overly sparse solutions when the underlying truth is
not extremely sparse, and the Lasso may over-select variables when the underlying solution
is indeed quite sparse. The tuning parameter 7 balances between these two extremes. As
7 tends to 0 and to co, TWIN becomes the reciprocal Lasso and the Lasso, respectively,
allowing for a dynamic range of selection behavior. We now conduct a simulation study to
investigate the finite sample properties of TWIN as 7 is varied. Data are generated under
model (4.1) where the data-generating setup is described in Section 5.3 and the coefficients in
the linear model are generated as described in Model 3 in Section 5.3. We evaluate selection
performance by investigating the average FDR versus true discovery rate of variable selection
(TDR) curves as the tuning parameter ) is varied. The curves are displayed in Figure 4.3.

Generally, smaller values of 7 tend to result in better selection characteristics as A is
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Figure 4.3: The results above are for a simulation with data generated under Model 3
described in Section 5.3. Models are fit using the TWIN-a penalty.

varied, however this comes at a cost of computational instability. The smallest value of 7
considered works well in low correlation settings, but poorly with high correlations and
when many covariates are selected. Slightly larger values of 7 such as 0.25 to 0.75 tend to
have better performance in low signal settings with high correlations. Over all settings,
including a more complete set of simulations presented in the Supplementary Material,
values of 0.1 and 0.15 tend to work the best. However, in practice, it may be the case that 7
must be increased or decreased to some degree for ideal performance. In the Supplementary
Material we further investigate the role of 7 on prediction performance. The message is
similar for prediction, however in scenarios with very low signal, larger values of 7 are
preferable if prediction is the primary goal. As 7 increases, the model which minimizes the
mean squared prediction error tends to be larger in size. It is important to bear in mind that

these investigations only span a small number of possibilities and thus do not always reflect
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how selection and estimation performance vary with 7.

4.3 Selection Properties

In this section we investigate the selection properties of TWIN estimators. In particular,
we show that TWIN is selection consistent when a non-vanishing fraction of variables are
important. Further, TWIN yields a finite sample FDR bound under orthogonal designs. We
also provide universal values for both tuning parameters A and 7 for which the selection
consistency results hold. For low-dimensional regimes, these values do not depend on
any unknown quantities other than the noise level. We begin by studying the selection
properties for orthogonal designs and then extend these results to random Gaussian designs.
Hereafter, we denote ,@ as a TWIN estimator (distinctions between TWIN-a and TWIN-b

will be made when warranted), 3 as the true coefficient vector, and
A={j:B;#0}, A°={j:8;#0}, and k=|A°=#{j:B; #0}. (4.10)

4.3.1 Orthogonal designs

To gain insights about the TWIN estimator, we first consider orthogonal designs. Under
orthogonality, the optimality conditions for TWIN results in the following thresholding rule

as the solution to

B =sgn(X'y) (IX'y - P} (8)) .

where the sign function sgn(t) = I{t > 0} — I{t < 0}. See Figure 4.1c for an illustration.
We note that when | BJ| > 7, the absolute value of the resulting estimator is larger than
the absolute value of the data. We call this effect the enlargement property since TWIN
amplifies estimates for moderately large |3;|. However, TWIN yields (nearly) unbiased
estimates for sufficiently large |3;|. This overall behavior is different from the “unbiasedness”

property of SCAD (Fan and Li, 2001) and MCP (Zhang, 2010), and is also different from the

“shrinkage” property of the Lasso. We now present an upper bound of the FDR of TWIN
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under orthogonal designs.

Proposition 4.4. Suppose that the data are generated from the linear model (4.1) with an orthogonal
design X and z ~ N(0,0%1,). Then for any o € [0, 1] the false discovery rate (FDR) and the
family-wise error rate (FWER) for TWIN estimators obey,

DR — E | 71 € A\A%} _a(l—k>, PWER:]P{H;'GE\AO} —a,
|A| V1 p
by choosing
min{|t] + Py -([t])} = 0®~* (1 - a/2p). (4.11)
e b

If there are multiple pairs of (7, \) satisfying (4.11), we select the pair resulting in the largest number

of selected variables so as to increase power.

There are significant challenges in showing similar finite sample bounds for TWIN with
a random design due to the estimation error of regression coefficients. See, for example,
Bogdan et al. (2015). Instead, we show that the FDR asymptotically approaches zero in
Theorem 4.9.

4.3.2 Random designs

In this section we study the selection properties of TWIN under random Gaussian designs
where the columns of X have i.i.d. N(0,1/n) entries so that the columns are approximately
normalized. Random designs are widely utilized in the statistics literature for studying
regression methods. See, for example, Candés et al. (2006); Zou (2006); Meinshausen and
Yu (2009); Van de Geer and Biithlmann (2009); Su and Candes (2016). Such designs are a
sensible starting point for theoretical analysis of model selection properties due to weak
correlations between the different predictors, as they obey restricted isometry properties
(Candes and Tao, 2005) or restricted eigenvalue conditions (Bickel et al., 2009) with high
probability. However, based on our numerical experiments, we suspect similar results may

hold for designs with significant correlations and we leave this for future work.
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The rest of this section is organized as follows. We first introduce main assumptions in
Section 4.3.2.1 and then provide probability bounds of correct selection for TWIN in two
cases: the global minimizer of (4.1) in the regular case where rank(X) = p in Section 4.3.2.2

and the local solution in the degenerate case where rank(X) < p in Section 4.3.2.3.

4.3.2.1 Working assumptions and linear sparsity

We assume throughout Section 4.3.2 that p,n — oo and n/p — ¢ for some constant 6 > 0.
Further, as in Su et al. (2017), we assume that 1, ..., 3, are independent copies of a random
variable II which satisfies EII> < oo and P(II # 0) = ¢ where ¢ € (0, 1) is some constant.
Hence, our assumptions accommodate linear sparsity where the expected value of k£ equals
to € p. An asymptotic regime such as is discussed in Wainwright (2009), among other works,
where the proportion of nonzero coefficients vanishes in the limit of p does not allow for
linear sparsity. As noted in Su et al. (2017), studying penalized regression methods in the
linear sparsity regime yields theoretical results which accurately describe variable selection
and estimation performance across a wide range of practical settings, as it can accommodate
scenarios with relatively high dimension and a moderately low level of sparsity in addition
to scenarios with very sparse signals. See Bayati and Montanari (2012); Su et al. (2017) for
extended discussion on the merits of the linear sparsity assumption.

For notational simplicity, we consider in Section 4.3.2 and Section 4.4 that min;cg{|t| +
Py ([t} = Py ,(0+) = A, however the results in these two sections can be straightforwardly

generalized to the case 0 < miner{[t| + Py ,([t|)} < A. A TWIN estimator B follows

@(y — XB) = sgn(B) F{ ,(1Bi]), B; #0,

@)(y — XB)| < A, Bj =0,

(4.12)

Equations (4.12) are the Karush-Kuhn-Tucker (KKT) conditions for the global minimization

of (4.2). In general, solutions of (4.12) include all local minimizers of (4.2).



57

4.3.2.2 Probability bounds for selection consistency

We first provide probability bounds for selection consistency when n > p and n and p both
tend to infinity. To clarify the distinction between TWIN-a and TWIN-b members of the
TWIN class and to aid the presentation of theoretic results, we introduce an additional

parameter ~y that describes the limiting behavior of P; _(t) as follows:

< 0and |P{  (t)] =0o(\), whent>~\, for TWIN-a;
P (t) ’ (4.13)

=0, when t > v, for TWIN-b.

In particular, TWIN-b becomes flat beyond a certain region while TWIN-a only has a 0
derivative beyond a certain range in the limit; see the illustration in Figure 4.1b. We consider
the TWIN-a and TWIN-b variants of TWIN separately, as they exhibit slightly different
behavior. Recall that our theoretical exposition applies to all TWIN-a and TWIN-b penalties,
not just the specific examples introduced in Section 4.2.1. We first present a non-asymptotic

bound for selection consistency with TWIN-a penalties.

Theorem 4.5. Suppose that n > p, Aand A° are defined in (4.10). Let B be the TWIN-a estimator
in (4.2) for A > {[(1 = 9)/6/e = 1] (1 +9) +1}(1 +9)ov/2Togpand 7 > (1 — 62 —9) 72\
with any 9 > 0. Then if |3j| > Y\ + 0+/(2 + 49) log k(1 — €'/2571/2 —9)~! forall j € A°, we
have

P{A+ A%} <P{B# B orsgn(B) # sgn(B) |

< eI g omROP/2 | 30?2 4\ /g,

In particular for large n, TWIN-a can arbitrarily control both type I and type 1I errors to low levels

under the linear sparsity regime, which yields P{A = A°} — 1.

Corollary 4.6. Suppose that n > p and € < 0.25. Let B be the TWIN-a estimator in (4.2) for
)\a,univ — (1 + 5_1/2)0'\/ 210gp and Ta,univ = (0-99 - 5_1/2)_2)\a,um‘v- Then Zf |/6j‘ Z ’Y)\a,univ +
ov/2Tog k(1 — €/2671/2)=1 for all j € A°, P{B # [3° or sgn(B) # sgn(8)} — 0.

The universal parameters Aq univ and 7, univ do not require knowledge of the sparsity
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level. The condition e < 0.25 is only a technical requirement for the proof, however, it is a
reasonable assumption in many applications. Now, we consider the TWIN-b penalty and

provide a similar non-asymptotic bound for its selection consistency.

Theorem 4.7. Suppose that n > p, Aand A° are defined in (4.10). Let 8 be the TWIN-b estimator

in (4.2) for A\ > (1 +39)V1 — ed—Loy/2logpand v > (1 — 6~1/2 —9) 2\ with any 9 > 0. Then
if 18| > YA+ 0/ (2 + 49) log k(1 — €!/2671/2 — 9)~L for all j € A°, we have

P{A#4°} <P{B#B orsgn(B) #sgn(B)}

< e P(=R)T*/2 4 9e=n?/2 4 \/r(p — k)Y 4+ ok .

In particular for large n, TWIN-b can arbitrarily control both type I and type II errors to low levels

under the linear sparsity regime, which yields P{A = A°} — 1.

Corollary 4.8. Suppose that n > p. Let ,@ be the TWIN-b estimator in (4.2) for Xy yniv = 0+/21log p
and Ty umiv = (0.99 — 6™Y2) 72Xy yuiv. Then if | 35| > Y Noumiv + ov/21og k(1 — € /2671/2)=1 for
all j € A°, we have IF’{B + [3° or sgn(ﬁ) #sgn(B)} — 0.

Similar to Corollary 4.6, the universal parameters \j yniv and 7 uniy do not require knowl-
edge of the sparsity level. Extensive simulation studies demonstrating the effectiveness of
the universal parameters and extended discussion on handling unknown noise level are

presented in the Supplementary Material.

4.3.2.3 Selection consistency for high-dimensional regression

Now we consider the high-dimensional case where p > n and k£ < n and show the selection
consistency of TWIN. For brevity, we only present results for TWIN-b as the following

theorem can be generalized to the TWIN-a similarly as Section 4.3.2.2.

Theorem 4.9. Suppose that p > n, Aand A° are defined in (4.10). Let B be the TWIN-b estimator
in (4.2) for X > max{(1 + 39)V1 — ed—Lo\/2Togp,2[1 + 9 + \/(¢/6 + 1)/2]0+/2¢ + 1} and
> (1 —/(e/d+1)/2 =) 2Awithany 9 > 0and ¢ = [(1 — €)log(1 — €) — (6 — €) log(d —
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€) — (1 — 6)log(1 — 6)]/8. Then if |B;] > Y\ + /(2 + 409) log k(1 — €'/2671/2 — 9)~1 for all

je A%and e/d < 0.12, we have

P{Az A7} <P{B# P orsgn(B) # sgn(B) |

< 6—192(717’6)0'2/2 + 26*7“92/2 + \/ﬁ(p — k)iﬁ
-1

+%@wﬂ+ﬂaun—m4]2ﬂn—m}

Corollary 4.10. Suppose that p > n. Let B be the TWIN-b estimator in (4.2) for Xpuniv =

ov/2logp and 7, > [0.99 — \/(e/6 + 1) /2] 7> Xy unio- Then if |Bj| > YNy univ + 0/2Tog k(1 —
26~ Y2y forall j € A° and ¢/6 < 0.12, we have P{B # B° or sgn(B) # sgn(8)} — 0.

The parameter Ap yniv is the same as in Corollary 4.8 and does not require knowl-

edge about the sparsity level. For 7},

" niv to avoid a requirement of exact knowledge of

the sparsity level, we can use a prior upper bound on ¢, denoted by €', and set 7, =
[0.99 — \/(¢//8 + 1)/2] "2 \p univ, which satisfies the condition of Corollary 4.10.
Theorem 4.9 and Corollary 4.10 show that in the case of high-dimensionality and linear

sparsity, TWIN estimators have false discovery rate and true discovery rate (TDR) obeying

#{j € A\A°%}
|A]v1

#{j € An A°}
kV1

lim FDR = lim E

n—oo n—oo

=0, lim TDR = lim E[

n—oo n—o0

Theorem 4.9 also implies that n = (§/e + o(1))k > 8.33k is sufficient for perfect recovery. It
is known in the compressed sensing literature that in the no noise case, n Gaussian samples
with n > 2(1 + o(1))klog(p/k) = 2(1 + o(1))klog(1/e) are required for perfect support
recovery using /;-based methods; see, e.g., Donoho and Tanner (2010). Stricter conditions
are usually assumed in the statistics literature for perfect recovery, for example, k/p — 0 in

Song and Liang (2015) and (klogp)/n — 0 in Su and Candes (2016).



60

4.4 Estimation Properties

In this section, we investigate the minimax optimality of estimation with TWIN estimators
under random Gaussian designs and linear sparsity. In the Supplementary Material, we
present corresponding results for minimax optimality under orthogonal designs. As noted
in the literature (Su and Candes, 2016), minimax optimality results for orthogonal designs do
not in general imply similar results for Gaussian designs because of the sample correlations
among the columns of Gaussian designs. The goal of this section is to establish the minimax

optimality of TWIN estimators under Gaussian designs and linear sparsity.

4.4.1 Risk lower bound under linear sparsity

The following result gives an explicit lower bound of asymptotic risk under the linear

sparsity and random Gaussian designs.

Theorem 4.11. Suppose that k/p — € € (0,1) as p — oo. Let (3 be from the model (4.1) and the
columns of X have i.i.d. N(0,1/n) entries. Then for any ¥ € (0, 1), we have

18 - BII?
ooz sup P{—————>1-9, =1,
? I8k {202%10%(1/6)

where the infimum is taken over all measurable estimators.

Similar results for random designs can be found in the literature; see, for example, Ye
and Zhang (2010); Raskutti et al. (2011); Su and Candeés (2016). However, the main difference
of such results and Theorem 4.11 is that instead of assuming k/p — 0 and (klogp)/n — 0,
Theorem 4.11 considers the linear sparsity regime k/p — € with unknown constant € € (0, 1)

and provides the exact constant in front of the rate.

4.4.2 Risk upper bounds for TWIN estimators

We first give a probabilistic bound on the asymptotic risk for TWIN-a estimators.
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Theorem 4.12. Suppose that p,n — oo with n/p — 0 for some constant 6 > 1 and k/p — €
for some constant 0 < e < 1. Let B be the TWIN-a estimator in (4.2) for X = {[(1 —0)\/0/e —
M1 +9) + 131 +9)ov2Togpand T > (1 — 62 —9) =2\ for arbitrary © > 0. Then,

w0 P4 o g 51 (4.14)
18lo<t | C1(€,6) - 20%klogp — )

2
where the constant C (e, 8) = {[(17)\7_1)51\//25671/272}1/2 + 1} (612712 — 1)1 +1]2,

We make the following remarks on the above theorem. First, comparing Theorem 4.12
with the lower bound result Theorem 4.11, there is a difference in their logarithm terms,
which is actually due to the unknown sparsity level. More specifically, when k is unknown,
a tight upper bound for 1/¢ is p. Hence, TWIN-a estimators are minimax rate optimal.
Second, C1 (e, d) is close to one when € is small, which meets the constant in Theorem 4.11.
Third, we have shown in Corollary 4.6 that universal tuning parameters A\, univ and 74 univ
yield selection consistency. The following result shows further that these universal tuning

parameters yield asymptotic estimation risk with the minimax optimal rate.

Corollary 4.13. Suppose that p,n — oo with n/p — 0 for some constant § > 1 and k/p — €
for some constant 0 < e < 0.25. Let B be the TWIN-a estimator in (4.2) for Agunio = (1 +
§=1/2)a/2Tog p and Touniv = (0.99 — 6~/2) "2 \g univ. Then, supy g, <x P8 — BII>/[C} (e, 6) -
202klogp] < 1} — 1 with constant C'(e,8) = {V/3/[(1.98 — 67 1/2)e=1/2 — 2]1/2 4 1}2(1 +
§-1/2)2,

A similar probabilistic bound on the asymptotic risk holds for TWIN-b estimators.

Theorem 4.14. Suppose that p,n — oo with n/p — & for some constant 6 > 1 and k/p — € for
some constant 0 < € < 1. Let Bbe the TWIN-b estimator in (4.2) for A = (14+39)v1 — ed~lo/2logp
and T > (1 — 612 —9) =2\ for arbitrary © > 0. Then,

sup P 18— BHQ <1\ 1 @15)
1B8lo<k | C2(€,0) - 20%klogp ~ )




62

2
where the constant Ca(e,§) = m +1| (1—esY).

We make the following remarks on the above theorem. First, similar to the discussion
after Theorem 4.12, TWIN-b estimators are minimax rate optimal. Second, C>(¢, ) is close
to one when ¢ is small, which also meets the constant in Theorem 4.11. Third, we note
Ci(e,0) > Ca(e, ), which implies TWIN-b estimators achieve a smaller upper bound of
asymptotic risk than TWIN-a estimators when ¢ > 0. Heuristically, this is due to the
unbiasedness property of the TWIN-b estimators, whereas TWIN-a estimators are only
nearly unbiased and often result in stronger enlargement effects. Fourth, Corollary 4.8
shows that universal tuning parameters A, yniv and 7, univ yield selection consistency and

now the following result shows they also yield the minimax optimal rate.

Corollary 4.15. Suppose that p,n — oo with n/p — 0 for some constant § > 1 and k/p — ¢
for some constant 0 < e < 1. Let B be the TWIN-b estimator in (4.2) for Ny yniv = 0+/21ogp and
Toamio = (0.99 = 57Y2) 72X, . Then, sup) gy, <i P{IIB — BI*/[Ch(e,0) - 20%klogp] < 1} — 1
with constant Ch(e,8) = [V/3/(6Y/2e71/2 = 2)1/2 112,

Finally, we remark that results in Theorem 4.12 and 4.14 can be generalized to the

high-dimensional case where p > n and k < n as in Section 4.3.2.3.

4.5 Numerical Studies

In this section we seek to demonstrate the variable selection properties of the TWIN penalty
under various challenging and realistic high dimensional scenarios. In this section we
simulate data under model (4.1) where the number of non-zero elements in 3 is very small
relative to the dimension p. We generate X from a multivariate Gaussian distribution with
covariance matrix ¥ € RP*? with X;; = pli=Jl. Larger |p| indicates stronger correlations
between predictors. The correlation parameter p is varied from (0, —0.75, —0.90), the sample
size is set to 125 and 250, and p is set to 1000. We focus on p < 0, as most data for regression

tasks exhibit both positive and negative correlations. We set the variance of the error term
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such that the signal-to-noise ratio (SNR), defined as SNR = \/,m /o, is 3, 5, and 10.
Given the number of active variables in the models considered below, this range of the
signal-to-noise ratio makes it very difficult to recover the active variables. In all of the
above settings the £ active coefficients are chosen uniformly at random from all p covariates
with magnitudes of the active coefficients generated under the following two schemes:
i.) independent random variates from a uniform distribution on [—2,0.5] U [0.5, 2] and ii.)
(—c)i~1 for the jth of k active variables. Under Models 1 and 3, we generate coefficients
from scheme i.) with k¥ = 50 and k£ = 25, respectively, and under Models 2 and 4 we
generate coefficients from scheme ii.) with ¢ = 0.95 and ¢ = 0.8, respectively, and k£ = 50
and k = 25, respectively. The beta-min condition is not satisfied under scheme ii.), as the
smallest nonzero coefficients are close to 0 and much smaller than the largest coefficients,
whereas under scheme i.) coefficients are bounded away from 0.

We compare TWIN-a and TWIN-b with the Lasso, SCAD, and MCP. We use the R package
ncvreg (Breheny and Huang, 2011) to implement SCAD and MCP and use the R package
glmnet (Friedman et al., 2010) to implement the Lasso. Throughout the simulations, we set
the  tuning parameter for MCP to be 1.4 as recommended in Zhang (2010) and for SCAD to
be 3.7, as recommended in Fan and Li (2001). The bandwidth tuning parameter 7 of TWIN-a
and TWIN-b is set to be 0.1 throughout the simulations. In the Supplementary Material
we introduce two algorithms for computation for the TWIN penalty. The first algorithm
is a modification of coordinate descent and is denoted as CD and the second algorithm is
a hybrid local linear approximation (Zou and Li, 2008) and coordinate descent algorithm,
which we denote as MCLLA for mixed coordinate local linear approximation. We investigate
the performance of TWIN using both CD and MCLLA using random coordinate updates
instead of cyclical updates, as described in the Supplementary Material.

As we wish to understand the underlying operating characteristics of all methods with
respect to FDR and TDR, we evaluate each method by investigating the relationship between
FDR and TDR as the selection tuning parameter \ is varied. In Figures 4.4 and 4.5 we display

average FDR versus TDR curves under Models 1-4 averaged over 100 independent datasets.
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To demonstrate predictive performance under the same simulation settings, we display in
Figure 4.6 the average square root of the mean squared prediction error (RMSE) versus the
number of nonzero coefficients for each method. Due to space concerns, prediction results
for Models 3 and 4 are included in the Supplementary Material. The RMSE is evaluated on
an independent dataset of size 5000. The independent dataset is generated anew for each
replication of the simulation study:.

We first evaluate the variable selection results. In settings with more active variables
(Models 1 and 2), both TWIN-a and TWIN-b outperform all other methods when there are
correlations between covariates. In the no correlation setting (p = 0), TWIN-a and TWIN-b
both outperform SCAD and the Lasso, but have similar albeit slightly worse performance
than MCP in high SNR and/or sample size settings. However, TWIN-a and TWIN-b tend
to perform better than MCP in most low-signal and/or low sample size settings. In settings
with 25 active variables (Models 3 and 4), the comparisons are similar, except SCAD performs
nearly as well as TWIN-a and TWIN-b when p = —0.9 under Model 3 and slightly better
than TWIN-a and TWIN-b when p = —0.9 under Model 4.

Regarding prediction performance, we first consider results under Models 1 and 2. In
low SNR settings, the Lasso and SCAD tend to perform the best, with the Lasso achieving
the smallest minimum RMSE, albeit with models which are on average much larger than
models which minimize RMSE under different penalties. Like MCP and unlike SCAD and
the Lasso, both TWIN-a and TWIN-b tend to achieve their minimum RMSE with models
that are of approximately the correct size of the underlying data-generating model. In high
correlation settings and large signals, TWIN tends to have the best minimum RMSE of all
methods including the Lasso.

Comparing the MCLLA and CD algorithms for TWIN-a and TWIN-b, we find that
MCLLA tends to outperform CD in small sample size settings, however when the sample
size is larger, CD performs better. This trend holds in additional simulation studies presented
in the Supplementary Material. In the Supplementary Material we present results with

p = 2000 under Models 1 and 2 and under two similar models with an increased number of
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active variables (k = 100). The results are quite similar, further substantiating our theoretical

results.

4.6 Analysis of Polymerase Chain Reaction (PCR) Study

Lan et al. (2006) conducted an experiment to investigate the relationship between gene
expression and gene function in mice. In the study gene expression levels were measured
on 22,575 genes of 29 male and 31 female mice using Affymetrix MOE430 microarrays. To
examine gene function, three phenotypes phosphoenopyruvate carboxykinase (PEPCK),
glycerol-3-phosphate acyltransferase (GPAT), and stearoyl-CoA desaturase 1 (SCD1) were
measured for each of the mice by quantitative real-time PCR. The data are publicly available
from the Gene Expression Omnibus (GEO) project (http://www.ncbi.nlm.nih.gov/
geo via accession number GSE3330).

For ease of presentation we restrict our focus to analysis of the SCD1 phenotype, which
is a key enzyme in the metabolism of fatty acids. As there is no natural validation data
available for this study, we compare different methods by repeatedly drawing random
splits of the 60 samples into 55 training samples and 5 testing samples. As a preprocessing
step we take a log transformation of the gene expression levels. Using each comparator
method we fit a model predicting SCD1 using all 22,575 gene expression levels. The sample
correlations of the design matrix range from -0.83 to 0.99 with 10th and 90th quantiles of
-0.22 and 0.24, respectively. Each method is evaluated by the average out-of-sample mean
squared prediction error (MSPE) on the testing samples (M SPE = S~1 Zle Y ic Tiest.s (yi —
X B\tmmsy /| Itest,s|, where I;c4 s are the indices of the testing samples for the sth replication
and Btmm,s is an estimate of 3 using the training samples from the sth replication). We
repeat this procedure S = 100 times. We consider the Lasso, MCP, SCAD, and TWIN
penalties in our analysis and for all methods use 10-fold cross validation for selection of
the tuning parameter \. The additional tuning parameters for all methods were chosen as

described in Section 5.3. Due to the small sample size, we utilize the MCLLA algorithm for


http://www.ncbi.nlm.nih.gov/geo
http://www.ncbi.nlm.nih.gov/geo
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Figure 4.4: The results above are for a simulation with data generated under Model 1 (top
panel) and Model 2 (bottom panel).
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Figure 4.5: The results above are for a simulation with data generated under Model 3 (top
panel) and Model 4 (bottom panel).
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Figure 4.6: The results above are for a simulation with data generated under Model 1 (top

panel) and Model 2 (bottom panel).
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TWIN. We also investigated TWIN with 7 = 0.15 and the results were similar.

The average MSPE and number of selected variables for each method are reported in
Table 4.1. Both TWIN-a and TWIN-b have better predictive performance than all other
methods except the Lasso while retaining very parsimonious models. MCP selects about
half has many genes as TWIN on average, but its MSPE is significantly worse than that
of both TWIN-a and TWIN-b. Both TWIN penalties also yield stable results across the
replications. The top two genes selected by both TWIN-a and TWIN-b are the same genes
and are selected in all 100 replications by both penalties. The Lasso, MCP, and SCAD all
selected one of these two genes for all replications. The gene selected second most often by
TWIN was selected in all replications for the Lasso, but was only selected 10 times by SCAD
and was never selected by MCP. The third most commonly selected gene for the TWIN
penalties was the same gene for both TWIN-a (selected 44 times) and TWIN-b (selected 56

times). This gene was selected 88 times by the Lasso, 30 times by SCAD, and was never

selected by MCP.
Method Lasso MCP SCAD TWIN-a TWIN-b
MSPE 0.613(0.058)  0.760(0.048)  0.740(0.048)  0.609(0.040)  0.651(0.049)

Number Selected ~ 40.58(1.23)  1.66(0.10)  26.16(0.74)  3.16(0.14) 3.58(0.16)

Table 4.1: Average test set MSPE and number of variables selected by Lasso, MCP, SCAD,
TWIN-a, and TWIN-b. Standard errors are in parentheses. Note that n=' > | (y; — §)? =
2.090, where y is the average of the response values.
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Chapter 5

Towards Theoretical Understanding
of Large Batch Training in Stochastic

Gradient Descent

5.1 Introduction

Deep neural networks are typically trained by stochastic gradient descent (SGD) and its
variants. These methods update the weights using an estimated gradient from a small
fraction of large training data. Although deep neural networks are highly complex and
non-convex, the SGD training models possess good properties in the sense that saddle points
can be avoided (Ge et al., 2015) and “bad” local minima vanish exponentially (Choromanska
et al., 2015; Dauphin et al., 2014). However, a central challenge remains about why and
when SGD training neural networks tend to generalize well to unseen data despite the fact
of heavily over-parameterization and overfitting (Zhang et al., 2017).

Recently, Keskar et al. (2016) proposed a hypothesis based on empirical experiments that
(i) large-batch methods tend to converge to sharp minimizers of the training function and
(ii) the sharp minimum causes a worse generalization. These two parts of the hypothesis

are important for understanding the SGD in the deep neural networks. In this paper, we
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focus on the first part of the hypothesis. Extensive numerical results corroborate the positive
correlation between large-batch methods and sharp minimizers; see, e.g., Dinh et al. (2017);
Hoffer et al. (2017). However, the theoretical result for supporting this observation is limited
in the literature. Our work fills some gap in this important direction by providing new results
on the properties of SGD in both finite-time regime where the number of SGD iterations is
finite and asymptotic regime where the number of SGD iterations is sufficiently large. As a
result, we can justify and provide new insights into the first part of the hypothesis by Keskar
et al. (2016).

The main contributions of this paper are summarized as follows:

e We manage to use the finite-time escaping time of SGD from one local minimum to its
nearest local minimum as an approach for justifying the hypothesis by Keskar et al.

(2016).

e We prove that SGD tends to converge to flatter minima in the asymptotic regime
regardless of the batch size. However, it may take exponential time to converge. This

result provides new insights into the hypothesis by Keskar et al. (2016).

e We derive new results showing that the SGD with a larger learning rate to batch
size ratio tends to converge to a flat minimum faster, however, its generalization
performance could be worse than the SGD with a smaller learning rate to batch size

ratio.

5.2 Main Results

Suppose the training set consists of IV samples. we define L,,(-) as the loss function for the
sample n € {1,...,N}. Then L(-) = E[L,(-)] is the risk function, where the expectation
is taken with respect to the population of data. Let w be the vector of unknown model

parameters in R%.
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Figure 5.1: A sketch of “flat” and “sharp” minima for one-dimensional case (left panel) and
two-dimensional case (right panel). The vertical axis indicates the value of the loss function.

The mini-batch SGD estimates the gradient g with some mini-batch B, a set of M
randomly selected sample indices from {1,...,N}, by g®)(w) = L >, VL,(w). We
consider the stochastic gradient descent with learning rate ~; and mini-batch batch size M},
and it gives the update rule

Wit = Wi — 2 3 VL (wy). (5.1)

My,
nEBy

Here, k indexes the update step, and |By| = M. We call (5.1) a small batch training if
M}, << N and typically M}, € {64,128,256}. In contrast, we call (5.1) a large batch training if
M;,/N is some non-negligible positive constant and typically M, /N = 10%. We allow the
diminishing learning rate +;, and varying batch size M, in (5.1), which is motivated from
practice that SGD converges to the optimum by decreasing the learning rate.

KMNST hypothesis We call the following hypothesis proposed by Keskar et al. (2016) as
the KMNST hypothesis since K-M-N-5-T is the collection of author initials in Keskar et al.
(2016): Large batch training tends to converge to the sharp minimizer of the training function. A
conceptual sketch of “sharp” (and relatively, “flat”) minima is plotted in Figure 5.1. The

theory built in this Section 5.2 aims to justify the KMNST hypothesis.
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5.2.1 Stochastic Differential Equation for SGD

We consider SGD as a discretization of stochastic differential equations. Let Var[V L, (w)] =
o?(w), which is finite and positive definite for typical loss functions. In Appendix D.1, we
show that for independent and identically distributed (iid) samples and w in any bounded
domain,

Eg® (w)] = VL(w), Varg®(w)] = M~lo?(w).! (5.2)
We can write the mini-batch SGD (5.1) as

Vk
VM,

Wit1 = W — 7 VL(wy) + €,

where € has zero mean and variance o (w) by (5.2). We consider a stochastic differential

equation (SDE):
dW (t) = =V L(W(t))dt — PY(tt))a(W(t))dB(t), W(0) = wy. (5.3)

By the Euler scheme, the SDE (5.3) can be discretized to obtain the mini-batch SGD (5.1); see,
e.g., Mandt et al. (2017); Jastrzebski et al. (2017); Li et al. (2017). The stochastic Brownian term
B(¢) in (5.3) accounts for the random fluctuations due to the use of mini-batches for gradient
estimation in (5.1). Note that (5.3) allows the batch size and step size to be time-dependent.

We consider the gradient covariance to be isotropic:
o?(w) = B(w) -1, (5.4)

where 3(w) may depend on w. A similar assumption has been made in the literature, see

e.g., Jastrzebski et al. (2017); Chaudhari et al. (2018), where they assume f(w) = fis a

"Hoffer et al. (2017); Jastrzebski et al. (2017) obtain a similar result as the (5.2) but in a different sense.
Specifically, (5.2) takes the expectation and variance with respect to the underlying population, however, Hoffer
et al. (2017); Jastrzebski et al. (2017) take the expectation and variance with respect to the sampling distribution
of B € {1,..., N}. Note that (5.2) is preferable if we want to analyze the risk function L(-) instead of the sample
average loss N™'[L1(+) + - - + Ln(-)] and if we regard the training data only a subset of the true underlying
population.
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Figure 5.2: A sketch of two local minimizer w; and W of a risk function. The w* is the
saddle point between w; and W, and the H is the relative height of w* to w.

constant. Let p(w, t) be the probability density function of the solution W (¢) to the SDE

(5.3). We derive the following characteristics for p(w, t) in Appendix D.2.

Lemma 5.1. The p(w, t) satisfies the following Fokker-Planck equation:

208, 220

Op=V- ([V <L(W) + M) M (1) Vp) ; p(w,0) = d(wo), (5.5)

where §(-) denotes the delta function.

Note that the drift term in (5.5) is —V[L(w) + v(t)B(w)/{2M(t)}] # —VL(w), which
implies the SGD does not follow the mean drift —V L(w) to be its update direction. Specifi-
cally, a larger ~(t) /M (t) ratio corresponds to a drift term deviate more from the mean drift
—V L(w). This sheds light on the possible case that even the SGD with a larger ~(t)/M (t)
ratio tends to converge to a flat minimum faster (to be justified in Section 5.2.3), its gener-
alization performance could be worse than the SGD with a smaller ~(t) /M (¢) ratio (to be
illustrated in Section 5.3).

The results derived in this Section 5.2.1 can be related with the KMNST hypothesis in
the following sense: the dynamics of SGD would depend on the v(t) /M (t) ratio instead of

the v or M separately, which is clear from the experiments in Section 5.3.
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5.2.2 KMNST Hypothesis in the Finite-Time Regime

We first consider the behavior of SGD in the finite-time regime ¢ < oo, which is typical
in the practice. Specifically, we are interested in the escape time of SGD from one local
minimizer wy to its nearest local minimizer wo. Refer to the Figure 5.2 as an illustration. Let
w* be the saddle poilnt2 between w; and wo. By the definition of w*, the Hessian AL(w™)
can be shown to have a single negative eigenvalue —\* (e.g., Berglund (2013)). By the

Eyring-Kramers formula, we have the following theorem.

Theorem 5.2. Let Ty, —w, be the transition time from v to W for W (t), then

21 JJALW)| pon(wn)/y(w1)B(w1)] -1
e \AL(vVvl)]e {1+O(\/Elog(e ))}

E[T‘M %Vvvz] =

where |AL(-)| represents for the determinate of the Hessian, H = H(w*, W) = L(w*) — L(W)
is the relative height of w* to Wy, M (W) is the batch size of the SGD at W, y(W1) is the learning
rate of the SGD at w1, and 3 is defined in (5.4).

The above theorem is proved by Bovier et al. (2004, 2005) and in a more general case by
Berglund (2013). From this theorem, one can see that the transition time depends on three
factors, the diffusion factor v5/M in the SGD, the potential barrier H (w*, w;) that SGD has
to climb in order to escape w1, and the determinant of the Hessian at w; and w*.

The results shown in this Section 5.2.2 can explain the KMNST hypothesis as follows. A
larger batch size M of SGD at local minimizer w; corresponds to a longer escaping time from
w1, which is modeled by E[7w, w,]. Hence, even if w; corresponds to a sharp minimum
with a large |AL(w )|, the exponential term exp[H - 2M (V1) /[y(W1)5(¥1)]] could dominate
the escaping time. As a result, the large batch training will be trapped at a sharp minimizer
in the finite-time regime, which is the same as observed by Keskar et al. (2016) that large batch

training tends to converge to the sharp minimizer of the training function. On the other hand, if

’There are possibly multiple saddle points between v and 2. We define w* as the saddle point with the
minimal height among all saddle points in the following sense. Let w(t),0 < ¢t < 1, be any continuous path
from W1 to Wo. Denote by @ = arginfy,..,0)=vw, ,w(1)=ws SUP;e0,1] L(w(t)) the path with the minimal saddle
point height among all continuous path. We define that w* = max;¢[o,1) @(t).
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the batch size is small, then exp[H - 2M (W) /[y(W1)5(W1)]] is small. As a result, only when
|AL(v1)| is small enough, then SGD can be trapped at this minimizer, which implies that
small batch training tends to converge to flatter minima.

However, these phenomena will change in the asymptotic regime ¢t — oo as explained in

Section 5.2.3.

5.2.3 KMNST Hypothesis in the Asymptotic Regime

Main assumptions. In this section, we consider the asymptotic regime that ¢t — oo and

suppose the following three assumptions®:

(A1) L(w) is confinement: 1im | _, oo L(W) = +oc and [ e LW dw < 4o0.

(A2) limjw|to0 {IVL(W)|?/2 = V- VL(W)} = +00, where V - VL denotes the trace of
the Hessian for L. Moreover, lim 400 {V - VL(W)/||[VL(w)|*} = 0.

(A.3) There exists a constant M, such that ‘ L(w) (HVL w)|? - V- VL(w ))‘ <M.

We show in Appendix D.3 that (A.1) — (A.3) hold for typical loss functions such as the
regularized mean cross entropy and the square loss functions. These assumptions appear
commonly in the diffusion process literature, see, e.g., Pavliotis (2014). In particular, (A.1)

ensures the Gibbs density function p(;(w) = e~ L(W)

is well defined, and (A.2) is sufficient
for the measure p(w) = [ pg(w)dw = [ e “W)dw to satisfy the Poincaré inequality (e.g.,

Pavliotis (2014); Raginsky et al. (2017)):

2
/ IV f(w)|? du(w) > Cp / (f(w)— / f(w)du(w)) du(w), for some Cp >0, (5.6)

holds for any f satisfying [ f?(w)dw < oc.

We first give the stationary solution for the Fokker-Planck equation (5.5) when ¢ — oo.

3We note that if the parameter vector w lies in a bounded region, then the Gibbs density is well defined
only if [ e~ “™)dw < oo, the Poincaré inequality is always true, and the assumption (A.3) is always true. Thus,
although the mean cross entropy loss with bounded parameters does not satisfy (A.1) or (A.2), our results in
this section still hold for the mean cross entropy loss.
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Lemma 5.3. Under the assumption (A.1) and suppose (w) = (3, then (5.5) has a stationary
solution

Poo(W) = He—nooL(W)7

where

Too = 2M /[7B(W)]

with the limiting batch size M = lim;_,oo M (t), the limiting learning rate v = lim;_,o y(t), and
the convergent local minimizer w. The constant r in the above formula is a normalization factor

such that [ peo(w) = 1.

Proof for this lemma is given in Appendix D.4. We remark that for general 5(w) depend-
ing on w, the existence and an explicit form of stationary solution for (5.5) remain an open
question in the literature. Hence, we focus on (w) = (5 in this section.

Similar results as Lemma 5.3 can be found in related work, e.g., Jastrzebski et al. (2017).
However, it is not clear whether p(w, t) converges to p.(w), not to mention how fast that
p(w,t) would converge to po(w). The following theorem gives a positive answer to this

question, which later provides a new insight into the justification of KMNST hypothesis.

Theorem 5.4. Under assumptions (A.1) — (A.3), the probability density function p(w,t) of W (t)

converges to the stationary solution p~,(w). Moreover, there exists T' > 0 such that for any t > T,

2
p(W, t) — P (W)

Poo(W)

< O, T)e=Crt=D/n
L2(R9)

where Cp is a constant define in (5.6) and C(t,T) = Cp-(t—T) /1o +|| ((T) = poo)/ /pooHi2(Rd).

The proof for this theorem is given in Appendix D.5. We also give a quantification
of constant 7" in Appendix D.6. Three remarks on Theorem 5.4 are as follows. First, this
theorem shows that p(w, t) always converges to p., with an exponential rate regardless of
the initial value. This theorem provides a theoretical ground for the work that manages to

understand p(w, t) based on analysis of the stationary distribution p (see, e.g., Jastrzebski
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et al. (2017)). Second, it is known (Raginsky et al., 2017) the Poincaré constant Cp ed,
where d is the dimension of the parameter w. In the setting of the deep neural networks, Cp
can be very large and it takes exponential time ¢ > e such that p(w, t) would approach to
the stationary distribution p,. Therefore, the results only based on the stationary solution
do not reveal information in the finite-time regime. Third, the convergence rate is relatively
faster with a larger v/M since it corresponds to a smaller 7. The last two remarks are
illustrated by experiments in Section 5.3.

We now characterize W (¢) in the asymptotic regime ¢ — oo based on the stationary

distribution p..,, and we give the proof of the following theorem in Appendix D.7.

Theorem 5.5. Let w be a local minimizer. Then,

—21)00 L(W) d
lim P([W(00) — | < ¢) = —o—————lim | [[ V1 - e=@nei/m

e—0 77%2 [AL(w)| <0

where d is the dimension of w, Ajs and |AL(W)| represent the eigenvalues and the determinant of

loss function Hessian AL(W), respectively, and the constants k, 1o are defined in Lemma 5.3.

Given the complex form of the probability in Theorem 5.5, we give numerical illustrations
in Appendix D.8. To appreciate the implication of Theorem 5.5, we consider any two local

minimizers w; and wo with the same value of L(w;) = L(W3). Then,

i PUW (00) v:vll <6 _ IAL(V:Vz)I_ (5.7)
=0 P([W(00) — wa| <€) |AL(W1)|

The ratio of probability (5.7) implies that in the asymptotic regime ¢ — oo, the probability of

SGD converging to a flatter minimum with a smaller determinant |AL(-)| is always larger
than the probability of SGD converging to a sharper minimum with a larger determinant
|AL(-)|. Moreover, (5.7) does not depend on the batch size or learning rate, but it only
depends on the determinant of Hessian at the local minimum.

The results derived in this Section 5.2.3 provide some new insights into the KMNST

hypothesis: SGD tends to converge to flatter minima regardless of the batch size M (or
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Figure 5.3: Log of Frobenius norm of Hessian as a function of epochs. Three (v, M) pairs
(0.01,128), (0.1,128) and (0.2, 256) are studied, which are denoted in red, blue and green,
respectively. The left plot shows 10 experiments for each of three (v, M) pairs and the right
plot shows the average of 10 experiments. Total 180 epochs are trained.

the ratio v/M) in the asymptotic regime ¢ — oo as shown by (5.7). However, it may take
exponential time e? to converge, where d is the dimension of the model parameter w. The

experiments in Section 5.3 further corroborate these theoretical finding.

5.3 Numerical Experiments

In this section, we show experiments to corroborate the theoretical findings in the pre-
vious section. We train 4-layer batch-normalized ReLU MLPs on MNIST with differ-
ent learning rate v and batch size M. Specifically, we use three /M ratios: v/M =
0.01/128,0.1/128,0.2/256. As is common for such tasks, the mean cross entropy loss is
used as the loss function. We discussed in Section 5.2.1 that this loss satisfies our assump-
tions for theoretical analysis.

Geometry of SGD updates. Figure 5.3 shows the log of Frobenius norm of Hessian for
minima obtained by SGD. Due to the high computational cost for computing the determinant
of the Hessian, we use the Frobenius norm of the Hessian as a substitute. Note that a larger
Frobenius norm of Hessian corresponds to a sharper minimum. The Frobenius norm is
approximated using the method in Wu and Zhu (2017). Note that the dynamics of SGD

behave similar across 10 experiments for each of three /M ratios as shown in the left plot
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of Figure 5.3. Hence we focus on the averaged dynamics as in the right plot of Figure 5.3.

Three main results can be observed from Figure 5.3:

e First, for the same /M ratio (e.g., v/M = 0.1/128 and 0.2/256), the minima obtained
by SGD have the very similar norm of the Hessian. This illustrates the Lemma 5.1, 5.3
and Theorem 5.2 that the dynamics and geometry of the minima obtained by SGD
would depend on the ratio /M instead of individual v or M separately. A similar

phenomenon is also observed by Jastrzebski et al. (2017).

e Second, since the SGD is trained using 180 epochs, the dynamics of SGD in Figure
5.3 fall in the finite-time regime. It is clear that the rate of SGD tending to a flatter
minimum (i.e., with a smaller norm of the Hessian) with a larger v/M ratio (e.g.,
~v/M = 0.1/128) is faster compared to with a smaller /M ratio (e.g., v/M = 0.01/128).
This illustrates the finite-time analysis in Theorem 5.2 that the SGD with a smaller
/M ratio is easier to be trapped around a minimum and hence the SGD tends to other
minima slower. As a result, the Hessian of minima changes slower for SGD with a

smaller v/M ratio.

e Third, Figure 5.3 also sheds light on the dynamics of SGD in the asymptotic regime.
The SGD tends to converge to a flatter minimum regardless of the /M ratio, which
demonstrates Theorem 5.5 and its corollary (5.7). However, the convergence rate is
slow, in particular for the SGD with a small /M ratio, which is theoretically shown

in Theorem 5.4 and its following remarks.

Training and generalization of SGD. Figure 5.4 shows the training accuracy and loss for
the model trained by SGD. We run 10 experiments. It is clear that the training accuracy
and loss are very close across 10 experiments for each of three /M ratios. Thus, we focus
on interpreting the training and generalization performance of the model obtain from one
experiment, which is shown in Figure 5.5. Three main results can be observed from Figure

5.5:
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Figure 5.5: The top left plot shows the training and test accuracy as a function of epochs.
The top right plot gives the zoomed in performance of the accuracy when epochs are no
less than 25. The bottom left plot shows the cross entropy loss as a function of epochs. The
bottom right plot gives the zoomed in performance of the loss when epochs are no less than
25. Three (v, M) pairs (0.01,128), (0.1,128) and (0.2, 256) are studied, which are denoted
in red, blue and green, respectively. Total 200 epochs are trained.
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e First, for the same /M ratio (e.g., v/M = 0.1/128 and 0.2/256), the training error and
test error are very close. This meets our expectation since the dynamics of SGD only
depends on the ratio v/M as discussed above and the models trained by SGD with

the same /M ratio should behave similarly.

e Second, the model obtained with a larger +/M ratio (e.g., v/M = 0.1/128) gives a
better training accuracy and a smaller training loss compared with the case of a smaller
~/M ratio (e.g., v/M = 0.01/128). This can be partially justified by our finite-time
analysis in Theorem 5.2 that the SGD with a larger /M ratio is easier to escape a local

minimum.

e Third, the model obtained with a smaller /M ratio gives a smaller test loss after a
certain time (it is after 100 epochs in the bottom right plot of Figure 5.5). This can be
explained by Lemma 5.1 and its following remark. Specifically, a smaller /M ratio
corresponds a mean drift deviates less from the mean drift —VL(w), where —V L(w)
is the drift for a global minimizer of the risk function L(w). This shows a tradeoff

between the large and small v/M ratio in the sense of the training and test loss.

5.4 Related Work

The modeling of SDE for approximating SGD is well studied in the literature. See, e.g.,
Mandt et al. (2017); Poggio et al. (2017); Li et al. (2017); Jastrzebski et al. (2017); Chaudhari
and Soatto (2018) and the references therein. Different from these work, we give a new
result in Lemma 5.1, which not only gives the dynamics of SDE solution but also connects
with the generalization performance. We also derive the theory for the SDE solution in the
asymptotic regime, especially the convergence rate.

We clarify the definition of the sharpness in multi-dimensional cases. We find that the
production of eigenvalues, or equivalently, the determinant of the risk function Hessian
at minimizers is appropriate. Similar results have been derived in Jastrzebski et al. (2017);

Dziugaite and Roy (2017).
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The work by Jastrzebski et al. (2017) remarkably emphasize how the learning rate to
batch size ratio affects the SGD and they also relate with the KMNST hypothesis. Here are

some differences between Jastrzebski et al. (2017) and ours.

e Jastrzebski et al. (2017) use the stationary probability p.,(w) to explain that the be-
havior of the SGD. However, we show that it takes the exponential time for p(w, t)
to converge to p.(w) in the setting of the deep neural network. Hence, po(w) can-
not fully explain the behavior of SGD in the practical finite-time regime. Our work
adds new elements to this picture by studying the escaping time of SGD from a local
minimum in the sense of finite-time regime and we also give a new result on the

convergence rate of p(w,t) — poo(W).

e In particular, the stationary probability in Jastrzebski et al. (2017) can not explain
the KMNST hypothesis when two local minimizers w; and w3 having a same risk
L(w1) = L(Wg2). In this case, the result of Jastrzebski et al. (2017) coincides with
(6.7) and it is independent of M or v, which is undesired in explaining the KMNST
hypothesis. On the other hand, there may exist many minima with a same risk value
but different Hessians for a deep neural network. Therefore, our finite-time results

can give a better explanation to the KMNST hypothesis in this case.
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Chapter 6

Another Look at Statistical
Calibration: A Non-Asymptotic
Theory and Prediction-Oriented

Optimality

6.1 Introduction

In engineering and sciences, computer models are increasingly used for studying complex
physical systems such as cosmology, weather forecasting, material science, and shock physics
(Santner et al., 2003). Let Y denote the output from a physical system ((-) with the input X.
Let {(X;,Y;) : i =1,...,n} be independent copies of random pair (X,Y") from a regression
model:

Y =((X) +e, 6.1)

where the random error ¢ follows a A/ (0, 02) distribution and the design point X has support
on = [0,1]¢. Let n(x,#) denote a computer model for approximating ¢(r) with inputs

x € Q and calibration parameters € © C RP. The values of § cannot be directly observed and
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typically unknown in the physical data. As George Box famously stated “All models are wrong,
but essentially some are useful”, even the best computer models are only approximations of
reality. It is possible to enhance the quality of the computer model 7(z, §) by tuning or
calibrating the calibration parameters . But in most practical scenarios, the computer output
n(x, ) cannot fit the physical response ((z) perfectly, regardless of how the calibration
parameters 6 are best tuned (Kennedy and O’Hagan, 2001; Santner et al., 2003). Another
practical fact is that only a limited number n of training data are available from the physical
experiment in (6.1) to tune 6.

By simultaneously following these two practical considerations, we take a new look at the
calibration problem. Our purpose is to optimally predict ((-) by calibrating # and estimating
the model discrepancy ¢(-) —7(-, #) based on a finite number of physical data. To this end, we
use nonparametric approaches to modeling the physical system and the discrepancy function.
We establish a non-asymptotic minimax estimation risk for nonparametric regression and
achieve the optimal risk by using regularized estimators in the reproducing kernel Hilbert
space (RKHS) (Aronszajn, 1950; Wahba, 1990). We show that our prediction oriented
calibration is equivalent to finding the minimizer of model discrepancy under the RKHS
norm. We further establish an exact statistical guarantee in the sense that for a finite sample
of physical observations, the prediction error is minimized by using the computer model
calibrated with the proposed method. Furthermore, we provide an algorithm to estimate

the optimal calibration parameters and the model discrepancy.

6.1.1 Comparison to Existing Work

We discuss the differences between our calibration method and other frequentist calibration
methods in the literature. Joseph and Melkote (2009) considers calibration using a parametric
form of discrepancy. We use a nonparametric approach in RKHS to better modeling the
physical system and the model discrepancy. Nonparametric methods have been used in
related works including Tuo and Wu (2015) and Wong et al. (2017). Specifically, Tuo and

Wu (2015) proposes the La-calibration by minimizing the model discrepancy under the
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La-norm. Wong et al. (2017) performs calibration by minimizing the model discrepancy
under the empirical l;-norm. Below are the main differences between Tuo and Wu (2015);

Wong et al. (2017) and ours.

¢ Different methods. Calibration in Tuo and Wu (2015), Wong et al. (2017) and our work
minimize different norms of the model discrepancy: the Ly-norm in Tuo and Wu

(2015), the empirical l;-norm in Wong et al. (2017) and the RKHS norm in our method.

e Different analyses. Theoretical results in Tuo and Wu (2015) and Wong et al. (2017)
are based on asymptotics assuming the number of physical observations go to infinity.
Our theory is based on finite-sample properties of calibration and prediction following

the fact that usually, only a finite number of physical data are available.

e Different results. The Ls-calibration in Tuo and Wu (2015) minimizes the distance
between the physical system and the imperfect computer model, but not directly
for predicting the physical system. Wong et al. (2017) performs the least square
calibration and then estimates the model discrepancy in the RKHS. For a finite number
of physical observations, the estimation error of discrepancy can be large. To overcome
this difficulty, our calibration method minimizes the predictive mean squared error

for a finite sample of physical data with statistical guarantees.

Bayesian calibration was studied by Kennedy and O’Hagan (2001); Oakley and O’Hagan
(2004); Higdon et al. (2004, 2008); Joseph and Yan (2015); Plumlee (2017); Tuo and Wu (2018),
among others. Our frequentist calibration method is easier to compute and complements
these Bayesian methods. Furthermore, we will discuss a connection between our method
and these Bayesian methods in Section 6.4.

Our non-asymptotic minimax theory is inspired by recent developments of concentration
inequalities that provide valid statistical inference and estimation results for finite samples.
Existing research on concentration inequalities typically addresses finite dimensional pa-
rameters for parametric models. Because our interest is computer model calibration, we

develop a non-asymptotic minimax theory for nonparametric models. The novelty of our
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work is to find an explicit form of the constant besides the well-known rate for nonparamet-
ric estimations in the finite-sample regime. Moreover, we prove the constant is minimax
optimal by showing it exactly matches the minimax lower bound. These results are new in
the nonparametric statistics literature and they are the key to our new calibration method.

The remainder of the article is organized as follows. In Section 6.2, we discuss the identi-
fiability issue and formulate a prediction-oriented optimal calibration method. In Section
6.3, we establish a non-asymptotic minimax theory and apply it to the prediction-oriented
calibration method. In Section 6.4, we develop an algorithm for computing our calibration
procedure and build a connection between our method and the Bayesian calibration method.
In Section 6.5, we provide synthetic and real examples to corroborate the derived theory
and illustrate some advantages of the proposed calibration method. Technical proofs are

delegated to the Appendix.

6.2 Prediction-Oriented Calibration

Since the computer model is imperfect for modeling the physical system, 7(-, 0) # ((-) for
any 6 € ©. A model discrepancy function d(-, #) aef ¢(-)—n(-,0) is commonly used (Kennedy
and O'Hagan, 2001; Martins-Filho et al., 2008). Equivalently, write

C(x) =n(x,0) 4+ 6(x,0), Ve e, 6 €0O. (6.2)

The goal is to accurately predict ¢(-) using the computer model, which requires calibrating
¢ and estimating (-, §) simultaneously with a finite physical sample in (6.1). Two main
difficulties arise. The identifiability issue of § to be discussed in Section 6.2.1 and the non-
negligible estimation error of 6(-, #) due to the finite sample of the physical data. These two

issues motivate our calibration method in Section 6.2.2.
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6.2.1 The Identifiability Issue

Suppose that ¢(-) resides in a RKHS (H, | - [|3) on 2 = [0, 1]. One example of # is the mth
order Sobolev space W5 (Q2) with 2m > d:

oM ttad

W) = { o) € L) g

g(+) € La2(9),

‘v’al,...adGNWithal—l—-~-—|—ozdSm}.

See Wahba (1990) for an explicit form of kernel associated with W5*(2). Since 7(-, §) approx-

imates the physical system ((-), we assume the following regularity condition for 7(-, ).
Assumption 1. For any 6 € ©, the computer model n(-,6) € H.

An analogy of Assumption 1 was already used in Plumlee (2017). Unlike our assumption
of the RKHS function space, Plumlee (2017) considers a function space of bounded mixed
derivatives. In practice, one can choose the RKHS # by studying the smoothness of computer
model 7(-,0). Assumption 1 implies that for any § € ©, 6(-,0) = ¢(-) — n(-,0) € H. This
observation leads to a potential identifiability issue for §. For example, for two different
01 # 02 € O, their corresponding model discrepancies d(-, 61) = ((-) — n(-,01) and 6(-, 02) =
¢(-) — n(-,02) are both in H. This implies that both (61,3(-,61)), (2,9(-,62)) € © x H are
true for model (6.2). There are infinitely many pairs (6,0(-,6)) € © x H true for (6.2) by
arbitrarily choosing 6 € © and using 6(-,6) = ((-) — n(-,6). This identifiability issue was
first noticed by K. Beven and P. Diggle in their discussion of Kennedy and O’Hagan (2001).

6.2.2 Definition of Prediction-Oriented Calibration

Denote by II the sampling distribution of X; in (6.1) which is independent of ¢; and satisfies
II(©2) = 1. Here, II is assumed to be absolutely continuous with respect to Lebesgue’s
measure. Let X* be drawn from IT and Y* = {(X*) + ¢* = n(X*,0) + §(X*, 0) + * with

e* ~ N(0,0%). Then for a fixed § € ©, the minimal predictive mean squared error for
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predicting Y* is
~ 2
ooz E {Y* — [(X*,0) + 30 (X, 9)]}

n

(6.3)
= 0”4 o0z 16(-,0) = 0u (-, 0) 17, m):

where the infimum is taken over all estimators gn that are measurable functions of {(X;,Y; —

n(X;,0)):i=1,...,n} fora given 6.

The identifiability issue discussed in Section 6.2.1 indicates that there are infinitely many
pairs of (0,4(-,0)) € © x H satisfying model (6.2). For a finite sample size n, the minimal
estimation error oog ||4(-, ) — (-, 0)] L, (1) does not vanish (Cover and Thomas, 2006). Since
(-, 0) is generally nonlinear, different choices of # € O correspond to 4(-, §) with distinct
minimal estimation errors ooz {|6(-,6) — on (-, 0)]] Lo()- This heuristic argument is justified
in Section 6.3.

This observation also motivates us to define optimal calibration °P*P™d to minimize the
minimal predictive mean squared error (6.3) uniformly for ( € H over § € ©. Equivalently,
we define

gotPed L arg min { ooz [10(-,0) = 3 0)ll aq | (6.4)
0cO

which holds uniformly for ( € H. Here, the superscript “opt-pred” denotes “optimal
for prediction”. By definition and (6.3), #°P*P™d in (6.4) is optimal for predicting Y*. We
assume the unicity of the minimizer in the definition (6.4) as used in Tuo and Wu (2015);
Plumlee (2017). Our theoretical results can be extended to the non-unicity case with similar
arguments. We will introduce an algorithm in Section 6.4 to estimate goptpred from the
training data. The formulation of §°P*P 4 in (6.4) is frequentist. We will discuss in Section
6.4.1 the differences between #°P*Ped and other frequentist calibration methods, including
the Lo-calibration method in Tuo and Wu (2015) and the least square calibration method in

Wong et al. (2017).
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6.3 Main Results

Existing theory for calibration, including Tuo and Wu (2015) and Wong et al. (2017), adopts
the asymptotic arguments that the number of observations of physical experiment goes
to infinity. In Section 6.3.1, we present a non-asymptotic minimax risk for nonparametric
models and apply it to the model calibration problem in Section 6.3.2. In Section 6.3.3, we

show the improvement in prediction achieved by incorporating data from computer models.

6.3.1 Non-Asymptotic Minimax Theory for Nonparametric Regressions

We consider the nonparametric regression in (6.1), where ((-) resides in the RKHS (H, || - ||2)-
Let K : Q x 2 — R be a Mercer kernel generating (#, || - ||#). By the spectral theorem, K

admits the eigenvalue decomposition:

K(l’, ‘T/) = Z )\qu)y(l')qf)y(l',),

v>1

where \; > Xy > --- > 0 are the eigenvalues and {¢, : v > 1} are the corresponding
eigenfunctions such that (¢, ¢,/) Lo(11) = v Here, 6,/ is the Kronecker delta. We assume
the polynomial decay rate of eigenvalues in Assumption 2. This assumption is commonly

used and holds for Sobolev space H = W5 (1) with Lebesgue measure on 2 (Wahba, 1990).

Assumption 2. For 2m > d, suppose that for any v > 1, the eigenvalues satisfy cyv=>"/? <
A\ < Chv~ 24 with constants 0 < ¢y < Cy < oo, and the eigenfunctions are uniformly bounded:

maxgeq | (x)| < cp with a constant cy for any v > 1.

Our main results in Theorems 6.1 and 6.2, which find an explicit form of the constant
besides the well-known rate in the finite-sample regime. We first show an upper bound of

non-asymptotic estimation error for regularized estimators in the RKHS:

Cur = argmin{iZm — 9(Xy)? +A||g||%}, (6.5)

9eH i=1
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where A > 0 is the smoothing parameter.

Theorem 6.1. Under the regression model (6.1) where ( € H and Assumption 2 holds, there exists
a constant 0 < Cy < oo not depending on n, o, m,d, ||C||y such that for any n > 1 and ap = 3.36,

with probability at least 99.99%,

1 = <l < C

2d 12
2m—d _ -
1+a§2+dn_% <1+ o ) 2m+d
[1q|E”

2d

) T 2m4d

4m

2m
T (ol o) (14

o
€11
Here, (,,», is defined by (6.5) and X is chosen appropriately.

We relegate the proof of Theorem 6.1 to the Appendix. The proof is established by
using results from empirical processes such as the maximal inequalities and concentration
inequalities (Kosorok, 2008), and deriving some new techniques to address the finite sample
and key quantities of interest |||/ and o. The probability 99.99% can be improved to any
probability that closer to 100% by increasing «. The formula for appropriately chosen A
is given in the Appendix. In practice, A can be estimated by the method of generalized
cross-validation (GCV) (Craven and Wahba, 1978), which does not need knowledge of ¢ or
the RKHS norm of (. We give details on using GCV in Section 6.4.

We now establish that the non-asymptotic risk achieved by (o in Theorem 6.1 is minimax
optimal. Here, the minimax optimality is in the sense that there exists a data generating
process, for which the lower bound of non-asymptotic risk in the worst-case scenario exactly

matches the upper bound derived in Theorem 6.1.

Theorem 6.2. Under the regression model (6.1) where ( € H and Assumption 2 holds, there exist
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constants oo, ng € (0, 00) such that for any o > og and n > ny,

2m—d — 2’
sm—a —d o 2m+d
00 1+ a2m+dn 4m+2d (1 + ) ]

~sup P ¢ ¢
& 5up P 16—l el

4am

2d
2m _m
a?“n2MdmmH+w2Q+-” ) }>o

[IqE

Here, the infimum is taken over all estimators C,, that are measurable functions of data {(X;,Y;) :

i=1,...,n}, and the constants C., o are defined in Theorem 6.1.

The proof of this theorem is given in the Appendix. It is based on Fano’s lemma and our
new developments to address key quantities of interest |||/ and o besides the rate.
We make three remarks on this theorem. First, the conventional asymptotic convergence

rate can be recovered from Theorem 6.1. Since 2m > d in Assumption 2,

[[§[

2m—d _ 2m—d_ o 2m—+d
a2mFdn” dm$2d | ] + =o(l), asn— oo.

Thus Theorem 6.1 yields that ||En,\ - C||%2(H) = Op{n=2m/@m+d)} as n — oo. This rate is well
known (Cox, 1984; Wahba, 1990).
Second, Theorems 6.1 and 6.2 together immediate imply that the minimax optimal risk

for estimating ¢ € H in the finite-sample regime is

2m—d — 524 2

n— 2 d

1 + a37rL+dn 4m+2dd (1 _|_ U) m-+
1€l

160 = ¢I1F ) =

(6.6)

2m—d

__2m_ —)
arandewH+®20*wmﬂ> |

where the constant C. is defined in Theorem 6.1. This non-asymptotic minimax risk indicates
the dependence on the signal-to-noise ratio ||(||%/c and the magnitude of signal and noise
1<l + o

Third, we point out a tradeoff between approximation errors and prediction errors

of the regularized estimator (6.5) in the finite-sample regime. A smaller A\ compared to
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the appropriately chosen X in Theorem 6.1, corresponds to a smaller approximation error
LS Y- Cn A(X;)]? (Wahba, 1990). On the other hand, a smaller ) yields a large risk for

prediction [|Coy — ¢ H%Q(n) as implied by the proof of Theorem 6.1.

6.3.2 Optimal Calibration and Prediction

We apply the non-asymptotic minimax theory in Section 6.3.1 to derive an equivalent form

for the optimal calibration in (6.4).

Proposition 6.3. Under Assumptions 1 and 2, the optimal calibration defined in (6.4) is equivalent

to finding the minimizer of model discrepancy under the RKHS norm:

eopt—pred = arg IIliIl9€@ {HC() - 7)('» 9)”’}-[} .

Based on this proposition, we derive an algorithm to estimate §°P*Pd from a given
dataset in Section 6.4. The proof of Proposition 6.3 is given in the Appendix. Here are
some explanations. If the model discrepancy ¢(-) — (-, 6) has a small RKHS norm, the
discrepancy is a simple function in the RKHS. Since the number of data points from (6.1) is
limited, a simpler function should have a more accurate estimator. As discussed in Section
6.2, a more accurate discrepancy estimator gives a smaller prediction error for the physical
system. Proposition 6.3 justifies the use of RKHS norm to measure the model discrepancy
with theoretical guarantees. This procedure is different from using Lo-norm (Tuo and Wu,
2015) and empirical />-norm (Wong et al., 2017).

We now discuss the non-asymptotic minimax risk for predicting ¢(-) based on §°PtPred,
Recall that the model discrepancy 6(-,0) = ¢(-) — n(-,8). We define regularized model

discrepancy estimators in the RKHS as

dur (-, 0) = arg min {12[1@ —n(X;,0) — h(Xi)]* + AHhH%} , (6.7)

n
heH Py

where A > 0 is the smoothing parameter. As a corollary of Theorem 6.1, we present an



94

upper bound of predictive mean squared errors when using computer model calibrated by

goptPred and regularized discrepancy estimators.

Corollary 6.4. Under the regression model (6.1) where ( € H and Assumptions 1 and 2 hold, then
for any n > 1, with probability at least 99.99%,

H [77(', gﬂpt—pred) + gm\(.’ eopt—pred)} B C()‘ 2

Lo(IT)
o _Ld 2
o o 2m
<Cy|l4agm™n” 42””;‘1<1+ ' 3 > +
mingee [|6(-, )%
ST R 5 2 1 it o
mtd )~ et .
g (i ot O+ ) (14 )

Here, b,y is defined by (6.7), and X is chosen appropriately, and the constants C., o are defined in
Theorem 6.1.

The formula for an appropriately chosen A in Corollary 6.4 is provided in Appendix. In
practice, A can be estimated using the GCV in Section 6.4. As a corollary of Theorem 6.2,
the following result gives a ower bound of predictive mean squared errors when using the

computer model calibrated by §°PtPd and any estimators of model discrepancy.

Corollary 6.5. Under the regression model (6.1) where ( € H and Assumptions 1 and 2 hold, there

exist constants o), n{, € (0, 00) such that for any o > of, and n > ny,

2

oo sup]P’{H[ (-, 07 7e0) 45, () | - g(-)(

on CEH Lo(11)
2m—d om—d o _%id 2 2m—d
> Cy |14 ag™ " dmsad <1+ . ) ag"
mingee [|0(-, )%

__2m 5 2 1 g _Ziid 0
. 2m+d > 0.
n (32“” 6 >”””> ( +min9€@||5<-,e>m>

Here, the infimum is taken over all estimators O that are measurable functions of data {(X;,Y; —

n(X;, 0PPed)) - i = 1,...,n}, and the constants C., ag are defined in Theorem 6.1.
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We give the proof of Corollaries 6.4 and 6.5 in the Appendix. These corollaries together
imply that the non-asymptotic minimax optimal risk for predicting ( € H when using the

computer model calibrated by §°PtPred and an estimator of model discrepancy is

2

| [ 002) 13, ()] = <)

L (1T)

__2d q2
1 +a§:zlgn_42$;2dd <1 + — g > e aé’ﬁd
mingee [|6(+,0)[|%

= (C,

2d

i (it o) (1 )
-n_ 2m+d | min ||6(-, +o + — .
6co " mingee [|6(+, 0)(|%

This minimax risk is minimal over ¢ € © and it can be achieved by

Co§t—pred(_) d:ef 77(" eopt—pred) + gn)\(.’ QOPt‘Pred), (6.8)

n

where 3,,, is defined by (6.7).

6.3.3 Improved Prediction Using the Computer Model

The minimax optimal predictor (6.8) combines the merits of the parametric computer model
and the nonparametric discrepancy estimator. We compare (6.8) with its counterpart of the

minimax optimal predictor (6.5) without using the computer model.

Theorem 6.6. Under the regression model (6.1) where ¢ € H and Assumptions 1 and 2 hold, if

min [|¢(-) =0 )l < [IClla, (6.9)

then Cff\t'p wd(-) defined by (6.8) with the aid of the computer model achieves a smaller minimax risk

than Cox(-) defined by (6.5) without using the information of the computer model.

The proof of this theorem is given in the Appendix. We make three remarks on this
theorem. First, the computer model 7(-, #) is built based on some physics knowledge of the

system ((-) and Proposition 6.3 shows that 7(-, 9°P*Ped) is the best approximation to ¢(-)
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within the family {7(-,0),6 € ©}. Although the computer model is imperfect for modeling
the physical system, (-, 9°PtPed) can still capture some major shape of ¢(-) and consequently
¢(-) — n(-,0°P*Pred) has less variation or smoother in A than the original ¢(-) does. This
motivates the assumption of mingeg [|C(-) — 1(+,0)[l2 = [|C(-) — (-, 8PP ||l < |||y in
(6.9).

Second, Theorem 6.6 indicates that it is statistically more efficient to learn the residual
function ((-) — 7(+, #) than to learn the original unreferenced function ((-).

Third, the predictor (6.8) is a parametrically-guided nonparametric predictor, where

n(-,0) can have a parametric form.

6.4 An Algorithm for Optimal Calibration

We propose an algorithm to compute the optimal calibration §°PtPred defined in (6.4). From
Proposition 6.3,

gopt-pred — arg rgin {16¢,0)[13,} . (6.10)
S

where the discrepancy §(-, ) is subject to the constraint (6.2). By evaluating (6.2) at the

training data from model (6.1),
Y, = C(Xz) +é& = U(Xi,e) + (5(XZ,H) +e&, V€O, i=1,... n. (6.11)

Using the Lagrange multiplier method for the optimization (6.10) with constraint (6.11), we

find 6 € © and §(-) € H by minimizing
1 n
— > 1Y = (X0, 0) = 6(X)P + Alo]3, A >0, (6.12)
i=1

Here, the tuning of ) is critical for achieving good predictions for {(-). We provide more
discussions in Section.
The optimization problem in (6.12) can be solved iteratively as follows. We intro-

duce some notation. Recall that K is the reproducing kernel of (H, || - ||%). Let ¥ be the
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n x n kernel matrix with ijth entry K(X;, X;). Denote by Y = (Y1,...,Y)T, 77(?, 0) =
(U(ng)v"'vn Xnae 7 9 lee)a'"75(Xn79))-r/and<(?) = (C(X1)7>C(Xn))—r
For any fixed 6 € ©, the minimizer 6(-) of (6.12) is the same as the regularized estimator

on A(+, 0) in (6.7). By the representer lemma (Kimeldorf and Wahba, 1971),

=> aK(Xy,), (6.13)
i=1
where the coefficient ¢ = (ci,...,¢,)" € R" is given by
c=c(0) = (S +nAD) Y —n(X,0)] (6.14)

In practice, 0% = E[¢?] is not generally known and \ can be estimated by GCV (Craven and
Wahba, 1978). Let A()) be the influence matrix satisfying gn,\(?, 0) = A(A)[? - n(?, 0)].
The GCV estimate of A is the minimizer of

DY = (X.0) — 3 (X.0)]

GCV()) = [n—Ttr(T— A(N))2

(6.15)

The GCV estimate is consistent for minimizing the mean squared errors in Theorem 6.1 and
Corollary 6.4 (see, Li (1986); Wahba (1990)).

For any fixed §(-) = bn A(+, 8) from (6.13), the minimizer 0 of (6.12) is equivalent to

argmin{7 (X,0)T (S +nA) "1 (Y — )?9} (6.16)

0cO

Since the objective function in (6.16) is a weighted version of the empirical lo-norm, (6.16)
gives a different calibration result than the least square calibration method (6.17).

Putting the above building blocks together, our algorithm for optimizing (6.12) iterates
between (6.13) and (6.16). The algorithm shares a similar spirit as the coordinate descent
method (Wright, 2015). The algorithm can start with the calibration parameters from the

least square calibration method. Applying later iterations of the algorithm continuously
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improves the initial values for prediction. This procedure is summarized in Algorithm
1 with a prespecified value 7 > 0, e.g., 7 = 1073. Our experience indicates that a small

number of iterations is sufficient to obtain good performance of the algorithm.

Algorithm 1 Optimal calibration for prediction

1: Input: Noisy data {(X;,Y;) : i =1,...,n} and computer model 7(-, 0)

2: Initialize: Solve the least square calibration (6.17). Let 90 = @773

3: fork =1,2,... until [|§(®) — gD, < 7 do

4: Solve for gn,\(~, 6 =1)) in (6.13) and tune \ by GCV

5: With the selected ), update 6 by (6.16) and obtain §(*)

6: end for

7. Let 05P"Pd — (k) Solve for Sn (- gfbpt_pred) in (6.13) and tune A by GCV

8: Output: Calibration parameter oPePed and optimal predictor n(-, é?lpt_pred) +

" ~opt-pred
5n/\(‘79np pre )

Proposition 6.7. The estimated optimal calibration oo from Algorithm 1 is consistent: g

gopt-pred

Numerical examples in Section 6.5 show that for P

outperform existing frequentist
and Bayesian calibrations in term of prediction with finite samples. We provide theoretical

comparisons in Sections 6.4.1 and 6.4.2.

6.4.1 Comparison to Existing Frequentist Calibration Methods

We compare the calibration ggp t-pred obtained by Algorithm 1 with two other frequentist

calibration methods: the Lo-calibration and the least square calibration. The Ly-calibration

method in Tuo and Wu (2015) is defined as follows:

G2 = argmin {|Gur() = 1, 0) o }
0cO

where (,, A(+) is defined by (6.5). The least square calibration method in Wong et al. (2017)

minimizes the model discrepancy equipped with the empirical lo-norm:

0cO n -«

@,ﬁ = arg min {1 zn:[Y; — (X, 9)]2} . (6.17)
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Wong et al. (2017) estimates the model discrepancy after calibrating § = @f:

n

N 1<
Onr(+,012) = argmin { DY = (X5, 02) — h(X)] + Auhna} :
=1

and a predictor for ¢(-) is given by 7(, 02) + S, (-, 012).

Remark 6.8. The differences among govt-pred, 5,%2, and 9773 are as follows.

o Calibration. 87" sy 0Pt7d = arg mingee {[|C() — n(-, 0) |3} and 92,82 —p 672 2

arg mingeg {[/C(-) — n(-,0)l, )} The calibration OV is different from 022 and 012,

e Prediction. For a finite sample, the predictors based on 0°P*P™*? achieve a smaller minimax

predictive mean squared error compared to predictors based on 2.

We provide a proof of Remark 6.8 in the Appendix.

6.4.2 Connection to Existing Bayesian Calibration Methods

The connection between frequentist and Bayesian calibrations was first established by Tuo
and Wu (2016, 2018). Specifically, Tuo and Wu (2018) derives that under Gaussian process
priors, the maximum a posteriori (MAP) estimate of § and 4(-) in Bayesian calibration of
Kennedy and O’Hagan (2001) agrees with the minimizer of the objective function (6.12)
if \ = 02/nf3. Similar results for the posterior mean of § and (-) have appeared in the
literature (e.g., Kimeldorf and Wahba (1971); Wahba (1990); Santner et al. (2003)), where
details are provided in the Appendix for completeness. The original work of Tuo and Wu
(2016) shows that the MLE of @ is the same as (6.10) if physical data are noiseless (¢ = 0).
We add a few new remarks on the differences between our method and the Bayesian cal-
ibration of Kennedy and O’Hagan (2001). First, A\ = 0 /n/3 is unknown in practice. Kennedy
and O’Hagan (2001) proposes to place a noninformative prior on 5 and use Markov chain
Monte Carlo sampler (Geman and Geman, 1984) to draw (3, o, 6, and 4 (-, #). However, this ap-

proach cannot guarantee the orthogonality in the sense that ({(-) —n(-,0),9n(-,6)/00)% # 0
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even as n gets very large (Plumlee, 2017). Our §°PtPred gatisfies the orthogonality by Propo-
sition 6.3 and the KKT condition.

Second, there is a lack of identifiability in Bayesian calibration of Kennedy and O’Hagan
(2001); see, e.g., Gramacy et al. (2015). We note in Kennedy and O’Hagan (2001) that each
random sampling of 3 and o gives different calibration §, which corresponds to different
predictions (see, Section 6.2). On the other hand, the orthogonality property of §°PtPred
ensures to avoid the identifiability issue. Given the consistency result of Proposition 6.7, our
calibration §°PtPred has smaller prediction errors and variances than Bayesian calibration of
Kennedy and O'Hagan (2001). This observation is corroborated by the theory in Section 6.3
and the numerical examples in Section 6.5.

Third, the physical data are generally noisy. The original result for ¢ = 0 in Tuo and Wu
(2016) cannot be generalized to o # 0. Our contributions include to provide justifications
that 9°P*Pred gives the minimax optimal predictions in the finite-sample regime if o # 0 (see,
Corollaries 6.4 and 6.5).

The Bayesian calibration method is more time consuming to compute than frequentist
calibration methods such as ours. Different from Kennedy and O’Hagan (2001) and our
goptpred Plumlee (2017) suggests constructing new priors for (-, §) in order to satisfy the
orthogonality. Plumlee (2017) requires computing the gradient of (estimated) computer

model while the proposed §°P*Pd does not.

6.5 Simulation and Real Examples

We illustrate the prediction accuracy of the proposed calibration method using several
examples. Our simulation study consists of Examples 6.9—-6.11, where the tuning parameters
for regularized estimators are selected by the GCV. The prediction accuracy is measured
by the predictive mean squared error estimated by a Monte Carlo sample of 1, 000, 000 test
data, where the designs are drawn from the same distribution as training data. A real data

example is given in Example 6.12.
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Example 6.9. Consider a physical system ((x) = exp(mx/5) sin 2wz, x € [0, 1]. The physical data
are generated by (6.1) with X; ~ Unif([0,1]),&; ~ N(0,02) fori = 1,...,50. Four different noise

variances are investigated: o = 0.1,0.25,0.5, 1. Suppose that the computer model is

n(z,0) = {(x) — V02 — 0 + 1(sin 20z + cos 2n0z) for 6 € [—1,1].

Since 62 — 0 +1 > 3/4 for any —1 < 6 < 1, the model discrepancy between n(-,0) and ((-)
always exists no matter how 6 is chosen. We use the Matérn kernel K(x1,z2) = (1 + |x1 —
x2| /) exp{—|z1 — x2|/1}, where the scale parameter 1) is chosen by the five-fold cross-validation
minimization (see, e.g., Efron and Tibshirani (1993)). Figure 6.1 plots the squared model discrepancy
with different norms: ||((-) — n(-, 0)||%2(H) and ||C(-) — n(-,0)||3,. The corresponding minimizers
are different given as 972 ~ —0.1780 and 0P ™ ~ 0.3740 (a local minimizer of ||(-) — n(-,0) |13,
in [—0.4,0] is 0PPed ~ —0.1230), which illustrates the first part of Remark 6.8.

Normalized model discrepancy

Figure 6.1: Normalized model discrepancy equipped with Ly (II)-norm and RKHS-norm in
Example 6.9.

We compare the prediction accuracy of four frequentist calibration methods:
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1) The computer model with Lo-calibration (abbreviated as “No Bias Corr.”), which is the n (-, @%2)

in Section 6.4.1 without the model discrepancy correction;

2) The nonparametric predictor (abbreviated as “N.P.”), which is the Cn A(+) obtained by (6.5) in
Section 6.3.1;

3) The predictor in Wong et al. (2017) (abbreviated as “LS. Cal.”), which is the n(-, 02) +

n

On AG @7”2) in Section 6.4.1 based on the least square calibration;

4) Our predictor (abbreviated as “Opt. Cal.”), which is the CZ’i\t_p " in Section 6.3.2 based on the

proposed calibration and computed by Algorithm 1 in Section 6.4.

For each chosen noise variance, we replicate the data generation, calibration and prediction proce-
dures 1,000 times and average the results for each method across the replicates. The resulting average
predictive mean squared errors and its associated standard errors are given in Table 6.1. The com-
puter model with Lo-calibration (i.e., “No Bias Corr.”) gives the largest predictive mean squared
error, which shows that an estimator for the model discrepancy is necessary. “No Bias Corr.” has
the smallest standard error which is not surprising because the parametric estimation of 6 here has
a faster rate of convergences than nonparametric estimations required for other three methods. Table
6.1 indicates that our method “Opt. Cal.” and the predictor in Wong et al. (2017) “LS. Cal.” out-
perform the nonparametric predictor “N.P.”. This advantage illustrates the improved predictions by
computer models as indicated in Theorem 6.6. Furthermore, “Opt. Cal.” gives smaller prediction
ervors than “LS. Cal.”, which agrees with the second part of Remark 6.8. Overall, for a finite sample
size n = 50 , the proposed method “Opt. Cal.” outperforms the other frequentist predictors in the

settings studied.

Example 6.10. Consider a two-dimensional physical system

2
C(x1,22) = 3 exp(z1 +0.2) — x2sin0.4 4 0.4

1
+ exp(—x1) <:L'1 + 2) (x% + z9 + 1) . (z1,20) €10,1)%
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Table 6.1: Comparison of predictive mean squared errors for Example 6.9. PMSE = predictive
mean squared error, SE = standard error

c?=0.1 o =0.25
Average of PMSE SE of PMSE  Average of PMSE  SE of PMSE
No Bias Corr. 0.3492 0.0174 0.3601 0.0270
N.P. 0.1701 0.0594 0.2327 0.0680
LS. Cal. 0.1152 0.0604 0.1693 0.0580
Opt. Cal. 0.0922 0.0515 0.1434 0.0552
0?=0.5 oc?=1
Average of PMSE  SE of PMSE  Average of PMSE ~ SE of PMSE
No Bias Corr. 0.3744 0.0407 0.3985 0.0666
N.P. 0.2810 0.0930 0.3417 0.1367
LS. Cal. 0.1924 0.0683 0.2074 0.0853
Opt. Cal. 0.1684 0.0656 0.1838 0.0788

Suppose that the computer model is

2 .
77(.731,1‘2; 91, 02) = § exp(wl + 01) — T2 511102 + 92, (01, 92) S [0, 1]2.

The model discrepancy exists between n(-;61,02) and ((-). Assume the physical data are gener-
ated by (6.1) with a uniform design on [0,1)> and n = 50. We consider four levels of 0% =
0.03,0.05,0.07,0.1, and use the Matérn kernel K(x1,x2) = (1 + ||x1 — z2||/¢) exp{—||z1 —
xo|| /1 } with 1 chosen by the five-fold cross-validation minimization. For each level of o2, we repli-
cate the data generation, calibration and prediction procedures 1,000 times for all the methods and
average the results for each method across the replicates. Table 6.2 summarizes the results. It is clear
that the proposed method “Opt. Cal.” outperforms the other three frequentist calibration methods in

terms of the predictive mean squared error.

Example 6.11. We now compare the proposed calibration method with some Bayesian calibration
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Table 6.2: Comparison of predictive mean squared errors for Example 6.10. PMSE = predic-
tive mean squared error, SE = standard error

o? =0.03 o? = 0.05
Average of PMSE SE of PMSE  Average of PMSE  SE of PMSE
No Bias Corr. 0.1690 0.0027 0.1691 0.0027
N.P. 0.1155 0.0512 0.1823 0.0850
LS. Cal. 0.0611 0.0198 0.0743 0.0212
Opt. Cal. 0.0564 0.0187 0.0691 0.0205
o =0.07 c?=0.1
Average of PMSE  SE of PMSE  Average of PMSE ~ SE of PMSE
No Bias Corr. 0.1692 0.0028 0.1694 0.0028
N.P. 0.2425 0.1159 0.3327 0.1453
LS. Cal. 0.0825 0.0224 0.0906 0.0235
Opt. Cal. 0.0776 0.0220 0.0863 0.0234

method. Consider a falling ball example in Plumlee (2017) where the physical system is

C(x) =8+ glog (ig - % tanh (tanhfl(\/0.0Q) + \/i&?) 2> , € 10,1]

and the computer model derived from Newton's second law is n(z;vo, g) = 8 + vox — gz /2. Here,
calibration parameters (vo, g) are the vertical velocity and the acceleration rate, respectively. The
model discrepancy exists between ((-) and n(-;vo, g). Suppose that the physical data are generated
by (6.1) with a uniform design on [0, 1] and n = 30. We compare the proposed method “Opt. Cal.”

with two Bayesian methods in terms of prediction accuracy:
1) The Bayesian method of Kennedy and O’Hagan (2001) (abbreviated as “KO");

2) The Bayesian predictor using an orthogonal Gaussian process in Lo-norm as the prior (abbre-

viated as “OGP”) proposed by Plumlee (2017).

The Matérn kernel K (z1,x2) = (1 + |x1 — x2|/¢) exp{—|x1 — x2|/¢} with parameter ) = 1

is used as the reproducing kernel for “Opt. Cal.” and the prior covariance function for both “KO”
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and “OGP”. Four levels of 0* = 0.0025,0.01,0.0625, 0.25 are considered. For each level of o2,
we replicate the data generation, calibration and prediction procedures 1,000 times. Table 6.3 sum-
marizes the prediction results. Here “KO” has large prediction errors and large posterior variances
compared with “OGP” and “Opt. Cal.”. This is because of the identifiability issue inherent to “KO”
as discussed in Section 6.4.2. “OGP” provides stable and accurate predictions and our method “Opt.
Cal.” gives even smaller prediction errors.

Table 6.3: Comparison of predictive mean squared errors for Example 6.11. PMSE = predic-
tive mean squared error, SE = standard error

0% =0.0025 0% =0.01
Average of PMSE SE of PMSE  Average of PMSE SE of PMSE
KO 0.5413 2.3944 5.8596 29.0264
OGP 0.0147 0.0132 0.0230 0.0249
Opt. Cal. 0.0091 0.0084 0.0166 0.0168
0% =0.0625 0% =0.25
Average of PMSE SE of PMSE  Average of PMSE  SE of PMSE
KO 1.4644 4.3802 18.5433 97.3962
OGP 0.0500 0.0478 0.0952 0.0995
Opt. Cal. 0.0318 0.0338 0.0620 0.0677

Example 6.12 (Real data example). We analyze a real dataset from a single voltage clamp exper-
iment on sodium ion channels of cardiac cell membranes. This dataset consists of 19 outputs and
is from Plumlee (2017). The response variable is the normalized current for maintaining a fixed
membrane potential of —35mV and the input variable is the logarithm of time. Suppose the com-
puter model for this experiment is the Markov model for sodium ion channels given by n(x,0) =

e exp(exp(x)A(0))eq, where @ = (61,02,03)" € R3, e; = (1,0,0,0)", eq = (0,0,0,1)T, and

—6y — 05 01 0 0
A(6) = 09 —01 — 65 01 0
0 02 —01—02 0

0 0 02 —01
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For this example, we compare the frequentist methods in Example 6.9 and 6.10, and Bayesian methods
in Example 6.11. The Matérn kernel K (1, x2) = (1+4|x1—x2|/v) exp{—|x1—x2| /¢ } withp =1
is used for all methods and the Metropolis-Hastings algorithm is applied to sample from the posterior
of 0 for Bayesian methods. In each experiment, we perform five-fold cross-validation minimization
where the data is randomly partitioned into five roughly equal-sized parts: four parts are for training
and the rest part is for testing. The cross-validation process is repeated five times, with each of the
five parts is used once for testing. Then, the five predictive mean squared errors are averaged to give
a single predictive mean squared error. We replicate the data generation, calibration and prediction
procedure 100 times and average the results.

Table 6.4 summarizes the prediction results, with the abbreviations of the methods given in Ex-
amples 6.9 and 6.11. “No Bias Corr.” gives the largest predictive mean squared error among the four
frequentist methods, indicating the existence of model discrepancy. Here all the frequentist methods
outperform the two Bayesian methods. “N.P.” outperforms “LS. Cal.”. This indicates that if the
calibration parameter is not chosen well, the use of computer model does not improve prediction.
Owerall, the proposed method ‘Opt. Cal.” gives the smallest prediction error among all the methods

applied to this example.

Table 6.4: Comparison of predictive mean squared errors for Example 6.12. PMSE = predic-
tive mean squared error, SE = standard error

Average of PMSE  SE of PMSE

KO 0.0045 0.0131
OGP 9.4387 x 1074 0.0022
No Bias Corr. 4.2823 x 10~* 6.2333 x 1074
N.P. 2.5916 x 107*  2.2522 x 1074
LS. Cal. 3.0521 x 107*  6.3797 x 1074

Opt. Cal. 1.6323 x 10~%  2.1335 x 10~*
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Chapter 7

Discussions and Future Works

In this thesis, we study statistical methods for complex problems in five different settings.
We discuss potential future work of the content of this thesis in a few important directions.

Chapter 2 have obtained new minimax optimal rates for nonparametric estimation when
data from first-order partial derivatives are available. These results deal with function esti-
mation and partial derivative estimation in functional ANOVA models. Statistical modeling
of derivative model is an increasing important problem in engineering, economics and other
tields. Our theoretical results provide justification why incorporation of partial derivatives
can improve convergence rates in estimation. It would be of interest to incorporate deriva-
tive data to another type of functional ANOVA model in Stone (1994); Huang (1998). In
particular, Stone (1994) studies sums of tensor products of polynomial splines (as opposed
to the smoothing approach in ours) to estimate components of a functional ANOVA model
and Huang (1998) investigates the projection estimate in fitting a functional ANOVA model.
If the order of interactions » = 1 in (2.2), the results in Section 2.3-2.5 still hold for the
functional ANOVA model in Stone (1994); Huang (1998). If 1 < r < d in (2.2), it requires
more work to extend our results to cover the minimax rates of convergences with derivatives
for the functional ANOVA model in Stone (1994); Huang (1998). Given the interplay between
data collection and data modeling in applications like computer experiments, it would be

interesting to connect our developed convergence results with the underlying structure of a
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chosen design used for data generation.

Chapter 3 studies a framework to integrate longitudinal features from the structural MR
images for AD prediction based on varying coefficient models. We propose a novel variable
selection method by combining smoothing splines and Lasso, which enables simultaneous
selection and estimation and is adaptive to heterogeneous longitudinal data. To illustrate the
effectiveness of the proposed method, we conduct experiments with the ADNI dataset and
show that the proposed method outperforms the state-of-the-art longitudinal analysis meth-
ods. Our work is the first in the literature to model nonlinear progressions of longitudinal
features and propose a novel effective variable selection method for the high-dimensional
setting. This method shows superior performance in real data AD prediction. It is promising
and easy to implement the proposed method in other longitudinal data analysis examples.
There are many interesting future directions. For example, we only use MR images for
AD prediction in this paper. It is of interest to apply the proposed method to integrate
multi-modal data including MRI, PET, and functional MRI. We expect the integration of
multi-modal information would further improve the accuracy of the AD prediction.

Chapter 4 proposes a novel class of penalties for regression problems. The desirable
theoretical properties of TWIN derive from its unique shape, which acts to inflate coefficient
estimates in a certain range, thus alleviating issues in selection arising from shrinkage
pseudo-noise. Probabilistic bounds for selection consistency were established under a
challenging linear sparsity regime with random Gaussian designs. Minimax optimality was
also established under the same data-generating regimes. Empirically, TWIN shows good
performance even under scenarios with strong correlations in the design, suggesting that
TWIN'’s theoretical properties may be extendible to more realistic data-generating scenarios.
Motivated by this, we expect that exploration of TWIN'’s theoretical behavior under designs
with significant correlation may be fruitful. In this work we provided asymptotically-
motivated choices for the tuning parameters, however, the development of comprehensive
strategies for simultaneous selection of 7 and A based on finite sample analysis is another

interesting avenue of future research.
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Chapter 5 investigates the relationship between the sharpness of the minima that SGD
converges to with the ratio of the step size and the batch size. Using the SDE as the approx-
imation of SGD, we explain part of the hypothesis proposed by Keskar et al. (2016) that
large-batch methods tend to converge to sharp minimizers of the training function using
the escaping time theorem in the finite-time regime. We prove that for the isotropic case
the probability density function of SGD will converge to the stationary solution for any
initial data regardless of the time varying step size and batch size. We give the convergence
rate, which indicates that with a larger ratio of the learning rate and the batch size, the
probability will converge faster to the stationary solution. Asymptotically the probability
of converging to the global minimum is independent of the batch size and learning rate,
but it only depends on the sharpness of the minimum. We verify these theoretical findings
with numerical experiments. There are many directions for further study such as how the
ratio of the step size and batch size influence the generalization error. In our experiment, it
indicates that with a larger learning rate to batch size ratio the generalization error is worse.
Further theoretical analysis is desired. Another interesting topic is to study the stationary
solution and the evolution the probability density function of SGD when the variance matrix
is anisotropic, which remain open questions.

Chapter 6 provides a new look at the model calibration problem in computer models.
This viewpoint simultaneously considers two facts regarding how computer models are
used in practice: computer models are inadequate for physical systems, regardless how
the calibration parameters are tuned; and only a finite number of data points are avail-
able from the physical experiment to calibrate a related computer model. We establish
a non-asymptotic minimax theory and derive an optimal prediction-oriented calibration
method. Through several examples, the proposed calibration method has some advantages
in prediction when compared with some existing calibration methods. We have developed
an algorithm to carry out the proposed calibration method and built a link between our
method and the Bayesian calibration method. Beyond the calibration of computer models,

our method can be applied to calibrate unknown parameters for general misspecified models
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in statistics and engineering. In many applications, bounded linear functional information
such as derivative data are observed or can be easily calculated together with the function
observations. It would be of interest to include all these data in our proposed calibration
method. Furthermore, it is likely to extend our results to non-i.i.d. distributed designs; for
example, general triangular arrays of non-random designs. This paper does not address

these important questions, and we leave them open for future research.
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Appendix A

Appendix For: Minimax Optimal
Rates of Estimation in Functional

ANOVA Models with Derivatives

This section consists of six parts. In Section A.1, we give a brief review on RKHS for the
SS-ANOVA model and on the Fréchet derivative. In Section A.2, we give the proofs for
results with deterministic designs of Section 2.3. In Section A.3, we show the proofs for
results with random designs of Section 2.4. In Section A.4, we prove the results of estimating
partial derivatives of Section 2.5. In Section A.5, we present key lemmas used in the proofs.

All auxiliary technical lemmas are deferred to Section A.6.

A.1 Review of RKHS and Fréchet Derivative

A.1.1 RKHS for the SS-ANOVA Model

The SS-ANOVA model (2.2) truncates the sequence up to r interactions. Without loss of
generality, we still denote the corresponding function space in (2.3) by H, which is the direct

sum of some set of the orthogonal subspaces in the decomposition ®;l:1’H,1. Denote by
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| - H®;;:1H1 the norm on ®§-l:17-l1, which is induced by the component norms || - ||3,. Define
|| - l2 as the norm on H by restricting || - H®?:1H1 to H. Then H is a RKHS equipped with
|| - ll2. The quadratic penalty J(-) in (2.10) is defined as a squared semi-norm on # induced
by a univariate penalty in #;. For example, when H; = W3*(&1), it is common to choose
J(+) for penalizing only the smooth components of a function. In this case, an explicit form
is given in Wahba (1990).

Now we introduce some additional notation. Define a family of the multi-index v by

V:{ﬁ: (Vl,...,l/d)T ENd,
(A1)

where at most r > 1 of vs are not equal to 1},

which will be used later since fj in the SSSANOVA model (2.2) is truncated up to r interac-

tions.

A.1.2 Fréchet Derivative of Operator
Let X and Y be the normed linear spaces. The Fréchet derivative of an operator F': X — Y
is a bounded linear operator DF'(a) : X — Y with

i IF(a+1) = F(a) = DF(@hlly

=0.
h—0,heX Il x

For illustration, if '(a+h)—F(a) = Lh+R(a, h) with alinear operator L and || R(a, h)||y /|| k|| x —
0 as h — 0, then by the above definition, L = DF'(a) is the Fréchet derivative of F(-). The
reader is referred to elementary functional analysis textbooks such as Cartan (1971) for a

thorough investigation on Fréchet derivative.

Lemma A.1. Denote the loss function in (2.10) by 1,,(f). With the norm || - || r in (A.19), the first
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order Fréchet derivative of the functional l,,(-) for any f,g € H is

= S )~ 5 1g(”)
0 =1

+zp: 1= fore?) )| gt
o2 at; i at; |-
j=1 "7 i=1 J J

n(p+1

] ':

The second order Fréchet derivative of 1,,(-) for any f,g,h € H is

2 1
Dl (f)gh = =3 gt
iyl "L 9g(t) on(tl)
= of = Ot ot

Proof. By direct calculations, we have

ln(f +g) - ln(f) =

x i{f(t&% — M6
90 51

N (9f 9 dg(t;”) £47)
+Zaz Yi ot;

R.(f,9),

where

= llgll +O(n™"?),
and the || - ||o norm is given in (A.20). Note that |R,(f,9)|/ll9llr — 0 as |g|lr — 0 and

n'/?||g||[r — oo. This proves the first part of the lemma. For the second order Fréchet

derivative, note that

Dl (f +h)g — Dln(f)g

n n (4) (4)
2 1 (0) (0) LS| dg(t;”)) Oh(t;")
- |= £ (! il J i

T | ) + X
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which is linear in k. By definition of Fréchet derivatives, we conclude the form of D?1,,(f)gh

in the lemma. O

We remark that following a similar derivation in the above proof, we can obtain the
first and the second order Fréchet derivatives of the functional I (+) in (A.26) and (A.28),

respectively.

A.2 Proofs for Section 2.3: Deterministic Designs

For brevity, we consider the regular lattice [y = --- =13 = land n = 1%, Other regular

lattices can be showed similarly. Write
V1(t) =1, o (t) = V2cos2mvt, ho,y1(t) = V2sin 2mut, (A.2)

for v > 1. Since fy has periodic boundaries on X, {1, (t)},>1 forms an orthonormal system

in Ly(X1) and an eigenfunction system for K. For a d-dimensional vector V= (v1,...,1q) €
N, write

7!}7 (t) = ¢V1 (tl) T wl/d (td) and )‘7 = >‘V1 )‘V2 T )‘Vdv (A3)
where \,, s and ¢, (t;)s are defined according to the Mercer’s theorem,k = 1,...,d. Then,

any function f(-) in % admits the Fourier expansion f(t) = > 3 cya 05 ¢35 (t), where 04 =

(F(£), 95 (8)) 1y and J(f) = Xgepa A 0. We also write fo(t) = 3 epya 050 (£)-
By Page 23 of Wahba (1990), it is known that

! 1, fpu=v=1,...,1,
I i/ (if1) =
i=1 0, ifuv,uv=1,...,1.

Define

Vo= Watr),. .., (ta)T,
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where {ti,...,t,} are the regular lattice design points. Thus, we have

1, ify, = =1,....,:k=1,....d
— — 5 k 1225 ) 5 Uy ’ 5 Uy
(Yo, vpin=

0, if there exists some k such that vy # py,

%
where (-, -),, is the empirical inner product in R”. This implies that {¢' 3 | vy =1,...,l;k =
1,...,d} form an orthogonal basis in R" with respect to the empirical norm || - ||,,. Denote

the observed data vectors by y(¥) = (y%o), oy T and yO) = (y%j), ., y)T, and write

ﬁ
2(70) = <y(0)7 w7>7’b7
. R
Zz(jjl?...,2yk—1,...,z/d = (27r)_1<y(j)> 7/}1/17--~72Vk7-~~,1’d>n7 (A4)
. N =
Zz(/i),...,2uk,...,ud = _(277)_1<y(J)7 wV17-~-72Vk_17--~7Vd>n7

fory, =1,....,land k = 1,...,d. Then, z(ﬁ) = 97 + 5(70) and 2(7]) = 1/]97 + 5%), where

907 = 0% + 3 Skl 0ﬁ<¢7, 7/1ﬁ>n- The errors 5(70) satisfy

= %ZE[EEO)]$ :LJ Z{E Z(0 }2\] Zﬁ%(l) _ o(n*1/2),
=1 i=1

1 & —. 1 T
VarldD) = 5 > Varlg"| %) + 5 >~ Covle” . )45 (1) ¥ 5 (i)
j= ii!
1 ==y .
<P LS YL+ 3 Conlel®,
=1 14
2 o _ _ _
! +ﬁ20(|z—2/| N =0m Y +ont)=0m").

i

(9)

Similarly for any j, }'s have mean o(n~!/?) and covariances O(n"?) .
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A.2.1 Proof of Minimax Lower Bound: Theorem 2.1

We now prove the lower bound for estimating functions under the regular lattice. By the

data transformation (A.4), it suffices to show the optimal rate in a special case

A0 g 50 "
z(_j;) = 1/]97 +5g), for1 < j <p,

where 5%) ~ N(0, 02 /n) are independent. For any 7 e NY, if we have the prior that

|9 | < 73, then the minimax linear estimator is

~ oy 27 +Z] 105 V]z%)

oL, — ,
v 7T7+0_ +Z]1J_22

and the minimax linear risk is

-1

nt —i—ao +ZU_2 2

By Lemma 6 and Theorem 7 in Donoho et al. (1990), if a?s are known, the minimax risk of
estimating 6%, under the model (A.5) is larger than 80% of the minimax linear risk of the
hardest rectangle subproblem, and the latter linear risk is

~1
P
RE =pn~1 max Z n_17T§2 + 062 + Z 0;21/]2 , (A.6)
Yvev(IHAp)mg=1 573 j=1
where A4 is the product of eigenvalues in (A.3) and recall that the set V' is defined in (A.1).
We use the Lagrange multiplier method to find 72 for solving (A.6). Let a be the scalar

multiplier and define

P
L(?T%, a) = Z nilrr%? +o5%+ Z 0;21/32 —a(l+ )\7)71?—).
vev j=1
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Taking partial derivative with respect to 7r27 gives

oL .
9 = ntnTh 4+ ot + 2204_21/2 7r27 —a(l+Ayp)=0.
v

This implies
-1

P
75 =og? + Zaj—?uf [b(l + )2 - n—1L ,
j=1
where b = (na)~'/2. On one hand, plugging the above formula into the constraint > — v (14
Ap )73 =1 gives
-1

d D d
vi o 4+ ) o cv; bllv,™—n" = 1.
2 =2 : 22 ; 1
j=1 k=1

Vevk=1 4

By restricting [[%_; vz < (nb)Y/™, this becomes
y 8 1lk=1

-1

p
2 o0+ 05
VeV [T, vk (nb)t/m =1 (A7)
d d
X (bHV?—n1HV£m> = 1.
k=1 k=1

On the other hand, the linear risk in (A.6) can be written as

_ 14
R =< p7t Z (b)l/m<1—anUk>

7€V,Hd: V< k=1
e » (A.8)

We discuss for R” in the above (A.8) under the condition (A.7) for three cases with 0 < p <
d—r,d—r<p<dandp=d.

Ifo<p<d-r, since U € V, there are at most r of vi,...,vq not equal to 1, which
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implies that the number of combinations of non-1 indices being summed in (A.7) is no

greater than Cj + C3 + -+ 4+ Cj < oo. Due to the term (o3 + >°7_, 027) 7!, the largest

terms of the summation (A.7) over ¥ € V correspond to the combinations of indices where
as fewer v, . .., v, being summed as possible, for example, vy =1 fork <pand k > p+,

and (Vp41, ..., Vptr) € N' are non-1. Thus, (A.7) is equivalent to

Z (b f[ Vpik — n~! f[ usz> = 1.
k=1 k=1

HZ:l Vp+k§(”b)l/m

Using the integral approximation, we have

T T
1
m 2m -
/T ) bllxp+k—;||:cp+k drpsr - drpy, < 1.
iy @prrs (b)) zp 21\ 5y k=1

By letting z; = ngkgj Tpyk, J = 1,2,...,7, we have

(nb)l/m Zr 29 1
/ [/ . / (bz;” - n23m> 21—1 . zr__lldzl . --dzrl} dz, <1,
1 1 1

where the left-hand side term is the order of n(™+1/mp2m+1)/m{log(np)]"~! and hence

b= nf(m+1)/(2m+1) (log n)fm(rfl)/(2m+1)_ (A9)

The linear risk in (A.8) becomes

1 T
RE=nt 1 T
[Tht Zp+a<(nb)Y/ ™ 2y x>1 n k=1

- [log(nb)]r71n71+l/mb1/m — [n(logn)177~]727rz/(2m+1)7

where the last step is by (A.9).
If d — r < p < d, as discussed in the previous case, the number of combinations of non-1
indices being summed is finite, and the largest terms of the summation (A.7) over ¥ € V

correspond to the combinations of indices where as fewer than v, . . ., v, being summed as
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possible, for example, vy, = 1 for k < d —r, and (Vg—r+1,...,v4) € N" are non-1. Thus, (A.7)

is equivalent to

Z (bHVd bk T HV r+k>
[Tizs Vd—r+k§(nb)1/m
-1

Using the integral approximation, we have

| bnxd de
[They @a—ria<(nb)V/™ 2y, >1

-1

P
x |1+ Z a:j2 drg_pi1---drg < 1.
j=d—r+1

By letting z; = xpp12p12-- x5, j =p+1,...,d, we get

Zp+2
= / 1 / /
Td—r+4+1° zpzd<(nb) /m

1
2m 2m _2m —1 —1
<bl’d rpl Ty 2 pld=re1 Tp Zd | 2
1+ 22 )71y d d dz,d
X ( +2y_ T+ :cp) Zpt1-c dzZd—1| ATg_pi1 - dTpdzg

1
_ by (1- Lam L ama
Tg_py1--xpza<(nb)t/m nb

e 1
x (log zg)4P~1 (1+ Ty ot x%) drg—pi1 - dxpdzg

- [lOg(nb)]d_p_1n1+1/mb2+1/m,
where the last step is by Lemma A.18 in Section A.6. Hence,

~ - (mt1)/@mi) ~m(d—p—1)/(2m+1)
b=n (logn) (A.10)
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The linear risk in (A.8) becomes

1
L _ . —1 m m
R"=n /d <1bxd—r+1“'xd
Hk:dﬂurl zp<(nb)/ Mz >1 n

: (1 + 1'3_7"4_1 + -+ xi)ildl'dfrJrl to dwd

1
o —1 m m.,m d—p—1
=n / (1 — Tl T ) (log zq)
Tg—ri1-Tpza<(nb)l/™ n

(ot wg)*ldxd,wl < dxpdzg

o [l()g(nb>]d—p—1,'7/—1-i-1/777ubl/m7

where the second step uses the same change of variables by letting z; = zp i 12p42-- - 25,

j=p+1,...,d and the last step is by Lemma A.18 in Section A.6. By (A.10), we have

RL - [n(log n)1+p—d]—2m/(2m+1)‘

If p = d, as discussed in the previous two cases, the number of combinations of non-1
indices being summed is finite, and the largest terms of the summation (A.7) over ¥ € V
correspond to any combinations of r non-1 indices, for example, v, = 1 for kK > r + 1, and

(v1,...,vy) € N'. Thus, (A7) is equivalent to

T T r -1
Z <leJ]T—’I”L_1HV]3m) (1—}—21/,3) = 1.
k=1 k=1

[Theq ve<(nb)t/m k=1

Using the integral approximation, we have
r T r -1
(bHa:ZL —n! Hﬂszm> (1 +Zx%> dxy - - - dx,
k=1 k=1 k=1
T r -1
me?(l—i—in) dzy - --dz,
k=1

1= /
[The1 2k<(nb)V/ ™z >1

/1_12—1 zp<(nb)t/ ™ >1 k=1
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By letting 5 = m > 1 and a = 2 in Lemma A.19 in Section A.6, we have for any r > 1,

b= n—(mr+r—2)/(2m'r+r—2)' (A.11)

The linear risk in (A.8) becomes

RLXn—l/ (1—11-71"...;(;77?1)
[Ty e <(nb)!/ ™ 2p,>1 nb

(42t 42 Ny - day

xn‘l/ (1+af+- +a2) ey - - day
[They 2k <(nb)Y/ ™ 2p>1

= [nil(nb)(rﬁ)/(m’”)} L>3 + [n7 ' log(nb)] 1—2 + (n71) 1,1,

where the last step uses Lemma A.19 in Section A.6 by letting 3 = 0 and « = 2. By (A.11),
we have

RL ~ n—(ZmT)/[(2m+l)T—2]:| 17‘23 + [n—l log(n)] 1o + n_llrzl,

where the constant factor does not depend on n. This completes the proof.

A.2.2 Proof of Minimax Upper Bound: Theorem 2.2

We now prove the theorem for only » = d and p = d — 1. Other cases can be proved similarly
with slight changes.
Using the discrete transformed data (A.4), the regularized estimator ﬁl A by (2.10) can be

obtained through

RG]

05 = argmin
{ 7e‘/’||7||min§l

éﬁeR n(p+ 1)

p .
+Z% > (zg>_yj97)2 +A ) /\79?—)}

i=1 "7 DeV | P|lmin<l TV 7 lmin <!
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and Fox (t) = D [9\71/,7 (t), where V is defined in (A.1). Direct calculations give
7€V7”7”mingl

i o, z7 -1—2] 1 o; I/]Z%)

+Z] 195 j+)‘>‘§1.

The deterministic error of f,,, can be analyzed by two parts. On one hand, since fy € H
and A, < v, we know 35 cv 1 7)msi41(0%)? < n~ ™. This is the truncation error due

t09,7—0foryk>l+1 1 < k < d. On the other hand, notethat(z/;g»,z/zﬁ) < 1 and then

2

Z ‘9%<$73 E)ﬁ)n < Z (9%)2 < p2m

ﬁev:”ﬁHminZl+1 ﬁevvllﬁ”minZlJrl

Thus,

Z (E§7 — 0%)2

VEV[|P |min<l
< Z ()\)\7 9?—)) [E(S? ] z] V3 [E5 (4 ] ) R

GeviTaa (000 T X0 G

\-L
S )\2 ;up 7 — 5 Z A%1(0%>2
EV( +E] 1 ] ‘72"')\)\7) 7EV
1+ Z 1
+o(n™1) Z j= ] N L ami
7€Vvll7\|min§l( +Z] 1Y Vi AT vim)
1/12m ysm

= A J(fo) sup + ofn ATV} 42l

7EV(1+Z]1]+)\V Vd )
where the last step uses Lemma A.12 in Section A.5.3 with a = 0 and p = d — 1. Define that

2m 2m
il

(L0, 2+ e

BA\(V) =

For the supy <y B (7) term above, suppose that [ ™ > ( is fixed and denoted by 271,

]1J

then By (7/) is maximized by letting $°?_, v2 be as small as possible, where p = d — 1. This

j=1Yj
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suggests vy =1vp =--- =1, =1, and
» v 1
sup B) =sup———5 X AT,
vev ) z>0 (1 + Az~1)2

where the last step is achieved when = =< \. Combining all parts of bias gives

3 (E% ~ 9%)2 = O {\J(fo) +n 2" 4 ofn~IA1/2my (A.12)
vev

where the constant factor on the upper bound does not depend on n.

The stochastic error is bounded as follows:

S E(iy-E;) = Y nHog” + 355005 ))
v V)= (o 243 21/2—1-)\)\ 1)2
vev VeV, P min<l =17 v

< Z 1+Z] 1 ]
~J 2m 2
Fev e Mt e v AT g

Using Lemma A.12 in Section A.5.3 with a = 0 and p = d — 1, we have
~ N2
S E (97 - Eeﬁ) ~0 {nflxl/%} . (A.13)
vev

Combining (A.12) and (A.13) and letting \ =< n~=2™/(m+1) completes the proof.

A.3 Proofs of Results in Section 2.4: Random Designs

A.3.1 Proof of the Minimax Lower Bound: Theorem 2.3

We establish the lower bound for the random design via Fano’s lemma. It suffices to consider

a special case where noises ¢(”) and ¢/)s are independent Gaussian with zero mean and

unit variance, and II(?) and II¢)s are uniform, and #; is generated by periodic kernels.
Let N be a natural number whose value will be clear later. We first derive the eigenvalue

decay rate for the kernel K; which generates the RKHS #. For a given 7 > 0, the number of
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multi-indices ¥ = vi,...,v.) € N" satisfyin 72 yo2m > 1 s the same as the number
y g 1 r

of multi-indices such that vy - - - v, < 77/2™) which amounts to

r—1
Z 7-*1/(2771)/@2 ) = F—1/(2m) Z 1/v
Vgerup <r—1/(2m) y<r—1/(2m) (A.14)
= 7 1/@2m) (log 1/7’)7"_1.
Denote by Ay (K 4) the Nth eigenvalues of K. By inverting (A.14), obtain
An(Eq) = [N(log N)'=7] 72"
Hence, the multi-indices 7/ = (v1,...,v,) € N satisfying v; - - - v, < N correspond to the

first

coN (log N)™ 1

eigenvalues of K for some constant co. Letb = {by : v1--- v, < N} € {0, 1}c0Nog N pea
length-{coN (log N)"~'} binary sequence, and {\ : v; - - - . < N} be the first coN (log N)"
eigenvalues of K. Denote by {5\,—)+CON(IOgN)r4 vy v < N} the {coN(log N)" ! + 1}th,
{coN(log N)"~! + 2}th,..., {2¢oN (log N)"~1}th eigenvalues of K.

For brevity, we only prove for the case p = d and r > 3. The other cases p = d, r < 2
and 0 < p < d can be showed similarly. We deal with the differences among these cases for

deterministic designs in Section A.2.1. Write

fb(tla"'vtr):N_1/2+1/r Z b7 (1+V%++V1?)_1/2

vy v <IN

$1/2
X )\7+CON(log N)rflwvhrcoN(log N)r-1 (tl, ce 7tr)7

where ¥5 4 . n(10g Nyr-1 (15 - - - s ;) are the corresponding eigenfunctions of P +eoN(log N)—1
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of K ;. Note that

Ifollfy = N2 S (1 4 )

ZRE 289\
SNTHETON Qi) =,
vy SN
where the last step by Lemma A.19, and this implies f;(-) € H.
By the Varshamov-Gilbert bound, e.g., Tsybakov (2009), there exists a collection of binary

sequences {b(1), ... b0} c {0,1}0N0eN)""" such that

M > 9¢oN (log N)T1/8

and

HOY,0@) > ¢oN(log N)"™'/8, V1<l<q<M,

where H(-, ) is the Hamming distance. Then, for (), b(@) ¢ {0, 1}c0N(os Ny

I fyr — Fo |7,

2
> N—1+2/T(2N)—2m Z (1 + I/% 4t V2)_1 [b%) _ b(ﬁq)}

r
v <N

> N—1+2/r(2N)—2m Z (1 + I/% 4 VE)_I
c1TN/8<vy-+vp <N

= 62N72m

for some constants c¢; and ¢y, where the last step is by Lemma A.19.

On the other hand, for any b®) € {p(),... s}, by Lemma A.19,

p 2
13, + D 10f /0817, < N7 ST w2 )]

Jj=1 vi-vp<N

< NTHRT STy N2 (g N
TN
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for some constant c3.
A standard argument gives that the lower bound can be reduced to the error probability
in a multi-way hypothesis test (Tsybakov, 2009). Specifically, let © be a random variable

uniformly distributed on {1, ..., M}. Note that

1 ~
fSUp P{Hf follz, > 1 b(})nln | for — fb(Q)”LQ} > oogP{© # O}, (A.15)

where the infimum on the right-hand side is taken over all decision rules that are measurable

functions of the data. By Fano’s lemma,

P{@7&@\tg‘”,...,t<0>;...;tgm,...,t;m} S 1

X
n
log M (A.16)
0
[1t<o> RONENG t<p>(y§),---,yﬁo),--~7y§p),--~,yﬁp);9)+10g2},
1 oeentn ety Tyt
wherel o) ) yen e (ygo), TTCU .,ygp), .., y)) is the mutual information between
1 seebn LT T

© and {ygo), T ,y§p>,...,ynp } with the design points {tﬁ‘”, ot ;tﬁp), . ,tq(zp)}

being fixed. We can derive that

Eo 40, o @
0
' [1t§°’, bt (y§ )’__'7%0)7_“,y§p)7m7y7(lp);@)}
M\~ A7
= ( 9 ) Z Et§0>,...,t$?>;...;tgm,...,tﬁf)’C (be(w ‘be(q)> (A17)
b £p(@)
-1
nip+1) (M
< (2)< 5 ) > Eo o, 0 ol = fyo [
b ZpD
where K(-|-) is the Kullback-Leibler distance, P is conditional distribution of yz@ and yi(j s
given {t'” .t .t . t%1, and the norm | - ||, is defined as
n P

10 = s o A U+ S 0r ey /on)2 b vr 22 o R
i=1

J=1
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Thus,
Ego 0, 4@ 40
0
: [1,5(0) RONERONN: WD, 7y§p),---,y£p);@)}
1 oeebn ety ety
-1
np+1) (M
< (2)<2> > < o = hli,
b £p(a)

p
+ > 110f30/0t; — 0 fya /0411,

j=1

(A.18)
n(p+1) 2
< 2 a3 | fs = fo@llL,
p

+ ) 10fyw /0t; — Ofy /0517,

=1

p
2 12
<200+ D) x| 0 I+ 3 100 041,
< 2e3n(p + 1)N~2m+2/7 (Jog N1,
Now, (E.15) yields

~ 1 B
oo sup P{17 = fll, = Jeann ]
fo€H

> 0ogP{O # 0}
1

_ (0) (0) (p)
>1 Tog M [Eltgopn_t(ox -ty’),...,tﬁf’)(yl YRR )

1 2¢csn(p + 1)N=2m+2/7(log N)"™~1 + log 2
- co(log 2)N(log N)r—1/8

vy P 0) +log 2

Taking N = ¢4n’/?™+7=2) with an appropriate choice of c4, we have

n—o0

lim supoo 7 sup IP’{Hf — foll2, > an_2mT/(2mT+T_2)} > 0,
! foeH :

where ('3 does not depend on n. This completes the proof.
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A.3.2 Proof of the Minimax Upper Bound: Theorem 2.4

Preliminaries for the proof We define a new norm for any f € H,

k=57 |2 [ Fan

+Z 2/ { o }QdHU)(t)] ).

Note that || - || g is a norm since it is a quadratic form and is equal to zero if and only if f = 0.

(A.19)

Let (-, -) g be the inner product associated with || - || . The following lemma shows that || - ||z
is well defined in # and is equivalent to the RKHS norm || - ||. In particular, || f||r < oo if

and only if || f||% < oo. The proof of this lemma is given in Section A.5.1.
Lemma A.2. The norm || - || g is equivalent to || - ||3 in H.

We introduce another norm || - ||p given by

HfH%a—]H_l[ [ rwane
e

We define a function space Fj to be the direct sum of some set of the orthogonal subspaces

(A.20)

in the decomposition of ®?:1L2(X1) as in (2.3) and equipped with the norm || - ||o. Let (-, -)o
be the inner product associated with || - ||p in Fp.

For the above two norms, we introduce some additional notation. Denote the loss

function in (2.10) by [,,(f), that is,

2
1 LS 0 - ~ 1 (-~ Jas t(j )
ln(f)—m Ug;{f(ti }2+ZU2Z{ ij}],

J =1

and write l,x(f) = l,(f) + AJ(f). Then the regularized estimator Fax = arg min gy I (f)-
Denote the expected loss by I (f) = El,,(f) and write loox (f) = loo(f) + AJ(f). Since loor(f)
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a positive quadratic form in f € #, it has a unique minimizer in H given by

Foor = arg minlaox(f)-
feH

Thus, we decompose

Fox = fo = (Far = Foor) + (foor — Jo),

where (fn)\ — fsor) is referred to the stochastic error and (f..x — fo) is referred to the
deterministic error. If data Y(?) and Y@)s in (2.1) are observed without random noises as
in deterministic computer experiments, then the total error is only the deterministic error
with fn x — fo = foor — fo. For brevity, we omit the subscripts of f..) and fn \ hereafter if no

confusion occurs.

Outline of the proof Before proceeding to the proof, we make two remarks on the setup
of Theorem 2.4. First, since the distributions I1(") and 11/)s are known, by the inverse
transform sampling, it suffices to consider the uniform distribution. A detailed discussion
on this transform is given in Lemma A.17. Second, it suffices to assume f, to have a periodic
boundary on X{ in the proof of the theorem. This is because fy is a tensor product function
and each component function space is supported in a compact domain. Thus, we can
smoothly extend fj to a larger compact support domain and achieve periodicity on the new
boundary, e.g., uniformly zero on the new boundary. These two simplifications make the
proof easier to present.

Recall that the trigonometrical basis on La(X7) is 91(t) = 1, 19, (t) = v/2 cos 2rvt and

Yay41(t) = V/2sin 27wt for v > 1. Write

G (t1, ... tg) = Yy (t1) - - - Yy, (ta)

[l (t1) - b, (ta)llo” (A21)

Since fy has a periodic boundary on X and 7U) = 1, {¢3(t) : 7 € V}, where V in
(A.1) forms an orthogonal basis for # in (-, -) g; an orthogonal system for Ly(X{); and an

orthonormal basis for [ in (-, -)o, that is (¢35 (t), ¢33 (t))o = d552, where 05 is Kronecker’s
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delta. Hence, any f € H has the decomposition

fltr, o ta) = D fadp(t,... ta), where f5 = (f(t),d5(t))o. (A.22)

vev

We denote a positive scalar series {py; }ev such that (¢, ¢2)r = (1 + pp )05 5 Then,

T = Hr= o= D pofa (A23)

vev

First, we analyze the deterministic error ( f— fo). By (A.22), write fo(t) = Y5 cv f%qﬁy (t)
and f(t) = Y. ycv f5éw(t). Note the bias satisfies E[e")] = o(n=1/2), we have Ioo(f) =

Swev(fo — 1340 12)\ /S o ey (fz — f%)? +1and

- f%(l + k)

h =o(1), V¥V € V. A24
Ry where k3 = o(1), € (A.24)

An upper bound of the deterministic error will be given in Lemma A.3.
Second, we analyze the stochastic error (f— f)- The existence of the following Fréchet

derivatives is guaranteed by Lemma A.1:

Dh(fs = oy | o7 L) — oot
: . 00(t) (A.25)
+;a§2{ _ (>} gatj ]
Dy = 557 | 2 [ {1101 = terrotn™7)} gty

(A.26)

9

J

pi af(t)  dfo(t) o(n—1/2 dg(t) () (¢
PIETAC bt el il
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2 1~ (001, . (0)
D2ln(f)gh—n(p+1) 0(2);9“1' Jh(t; )
(A.27)
_|_Z Z (t(]))
J i=1 Ot 7
Dloe(f)gh = pil [018 / g(6)h(t)dI ) (t)

(A.28)

J

p
+; = / agij)aat@dﬂ(j)(t)] = 2(g, ho,

where DI, (f), Dloo(f), D*1,(f)g, and D%l (f)g are bounded linear operators on H. By

Riesz representation theorem, with slight abuse of notation, write

Dln(f)g = <Dln(f)vg>Ra Dloo(f)g = <Dloo(f)vg>Ra

D%, (f)gh = (D?Lu(f)g: )R, D*lo(f)gh = (D*loo(f)g, M) -

From Oden and Reddy (2012); Weinberger (1974), there exists a bounded linear operator
U : Fy— Hsuchthat Upy = (1 + py) oy and (f,Ug)r = (f,g)o for any f € H and
g € Fp, and the restriction of U to H is self-adjoint and positive definite. By (A.28), we

further derive

D2loor(f)d5 (t) = 2(U + XNI = U))p(t) = 2(1 + p5) " (1 + Ao )5 ().

Define that Gy¢o = 7D2 loox(f)¢-. By the Lax-Milgram theorem, Gy : H — H has a
v = v by g

bounded inverse G; on H, and

Gylop = 1+ pz) 1+ Xop) 'op. (A.29)

Define

f*= F 563 Dl ().
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Then the stochastic error can be decomposed as

f=f=(F-n+F-7)
The two terms on the right-hand side will be studied separately and their upper bounds
will be given in Lemma A.4 and Lemma A.5, respectively.

Finally, we define the following norm to serve as a basis for further development. For

feH,

p
vVev 2

where f3 = (f, ¢3)0. By direct calculations, when a = 0 this norm coincides with || - ||,

on Fy, and when a = 1 this norm is equivalent to || - ||z on H.

Details of the proof Now we give the details by following the above outline. First, we

present an upper bound of the deterministic error (f — fo).

Lemma A.3. Forany 0 < a < 1, the deterministic error satisfies

~ ) O {\""J(fo)} when 0 < p < d,
If = f0||L2(a) =

l—a)mr

O{)\(mr—l J(fo)} whenp=d.

Proof. For any 0 < a < 1, by (A.23) and (A.24), we have

I1F = follf)
Z ( P )a Apyr 2 012 2
-y (14 P2, ( ) 26w,
5% lowlz, ) \1trp + 0w
1+ 2 \a 2 (A.31)
<% sup (1 +pz/lowllz,) /)27”515?“@ S oo (%)

d 2m\14+a
LV
,S/\QJ(fo) sup ]EH]“*; k )d TS
vev (1+ ijl vi + M= ™)
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Write

B\(V) = (T i) veV.
(1+ 30 2+ AT ™)

We discuss B )\(7) for 0 <p < d—1and p = d separately.

For 0 < p < d—1,since ¥ € V, there are at most 7 of vy, . .., 4 not equal to 1. Suppose

V2 be as small

forany z = []¢_, v 2™ > 0 fixed. Then By (%) is maximized by letting >y

as possible, which implies v; = v = --- = v, = 1. Then,

H (p+r)Nd 2m(1+a)
k=p+1
sup B\(V) = sup - /\d
vev (Vp+15eV(pyryng) T ENTAEP) (1+ )‘Hkp p:_l Vlgm)z
—(1+4a)
X
= sup ————— = \~(et]),
b (14 Az 1)2

(A.32)

where the last step is achieved when = =< .
For p = d, since 7 € Vand by the symmetry of coordinates vy, . .., v4, assume that all

indices except vy, ..., v, being 1. Letting z = [[’_, 1/;27” > 0, we have

7(1+a) 2—(1+a)mr

V4

sup By(7) = su 0 N A.33
S = e .

where the last step is achieved when 2z = N/ (mr—=1) Combining (A.31), (A.32) and (A.33)

we complete the proof. O
Second, we establish an upper bound of (f* — f), which is a part of the stochastic error.

Lemma A.4. When 0 < p < d, we have for any 0 < a <1—1/2m,

If* - JFH%Q(Q) = Op {n_l)\_(a+l/2m) [log(l/)\)](d_p)M_l} .
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When p = d, we have for any 0 < a < 1,

17 = Fl1Z 00

(0p [l e > 3

Op {n~tlog(1/N)}, ifr=2,a=0; Op{n~'},ifr=20<a<l;
Op{n7'},ifr=1a<s~; Op{nltlog(l/\)}, ifr=1a=5;

1 1—2ma s 1
\Op{n A 2m=2 }, ifr=1a> 5.

Proof. Notice that DI, x(f) = Diy(f) — Dlso)(f) = DI,(f) — Dl (f). Hence, for any
g€ H,

0
(aﬂti”)_y_ dg(t! ><af<t§7>>_y@> ag(tﬁf'))]
ot; ‘ ot; T\ 0Ot v ot;

aft) 0 ag(t) (o7y)) 9 dg(ty”)
ot ‘ ot; T\ ot g Ot

T [ () = O} (o) + SEl(e )

0
1 F(£9) afo(t(j)) 2 dg(t9) S 1 dg(t) 2
+ Z O?E { ; 8tj 6tj + Z OTQE at]’

j=1
_ 1 dg(t) dg(t™)
+oln 1)(p+1)2 Z_:OE[ ot; ]E[ oty ]

1 1 2 1 2
~n<p+1)[ cKIf - follRIE{< >>} —l-agE{g(t(U))}
- () 2 D 9 () 2
+ 3 ekl - f”RE{ o )} +Z;E{%§§j)}]5nlg3,
j:1 7=0 "J

(A.34)
where the second step is due to }, Cov[egj), eg,k)] = iz o(i =7 1) = o(n). The third
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step above is by Lemma A.2, A.14 and the Cauchy-Schwarz inequality. The last step above
is by Lemma A.3 and the definition of the norm || - [|o. From the definition of G} in (A.29),

we have that Vg € H,

1G5 90170 = D (1 ] J”’,’, ) (14 2o3) 2 6512, (9, 63 %-
vev Lo

Then by the definition of f *,

2

- _ 1 _
BIF Tl =B 565 D)
1 ‘ .
=GB (1 2 ) L hee) P en 3Dl 600k
= U el
a 1 ) 9
<2 <1+ ||¢p7||2 ) (L4 Ap9) 2llbw |11,E |:2Dln)\(f)¢?:|
vev VIIL,
71 14\ -2 2 2
;V( i ¢7||L2) (14 203) 2 163 12,1651
=n"1N,()),

where the fourth step is by (A.34) and the last step is because of ||¢3|o = 1, Hgbﬁ”% =
L+ v) ™ pg =< (L4 X5 v))™ TI¢_, v2™, and N,()) is defined in Lemma A.12.

Hence, by Lemma A.12, we complete the proof. ]

Then, we give an upper bound of ( f — f*), which is another part of the stochastic error.

~

Since I,,\(f) is a quadratic form of f, the Taylor expansion of Dl,,,(f) = 0 at f gives

Dl (f) + Dan (F)(f — ) =0,

and by the definition of f* and G, we have

Dln)\(.f) +D21c>o)\( )(f* - f) =0.
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Thus, G\(f — f*) = LD (F)(f — f) — $DL.(f)(f — f), and

f-f=ay BD%@( )T~ 1)~ 5 D) - f)] . (A35)

Lemma A.5. If n= '\~ (a+3/2m)[1og(1/\)]""1 — 0and 1/2m < a < (2m — 3)/4m, we have for
any0<c<a+1/m,

1F = 7130 = o2 {17 = P, } -

Proof. A sufficient condition for this lemma is that for any 1/(2m) < a < (2m — 3)/(4m)

and0<c<a-+1/m,

1F = 170
Op {nfl)\f(chaJrl/Zm) [log(l/)\ﬂr‘/\(dfp)fl}

Nf = f"%z(a+1/m)a if 0 <p <d,

| (A.36)
~{0p {nfl)\il_mr(a+c+m)} 1 = FI2 asijmy: ifp=dir >3,
OIP’ {n_l} ||.]/e\_ f”Lg(a—f—l/m)v ifp:d,T:2,
1 1—2m(a+c) ~ _ .
Opyn= A 22" o |[f = fllzoari/m)s ifp=d,r=1.
\

This is because once (A.36) established, by letting ¢ = a 4+ 1/m and under the assumption

n~IA~Rat3/2m)[1og(1/X)]"~1 — 0, we have
1 = 02 ar1ym) = 2 OIF = Pl (as1/m)-
By the triangle inequality, we have || 7~ fll 1, (a1 /m) = | F = Fll oot 1jm)y =1 F = F* | Lotarsm) =

(1= 08 (U1~ Fll a1/, which implies | F= FI2, 1y = 02 LI = FI2 sy - Thus,

by (A.36) and Lemma A.4, we complete the proof.
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We now are in the position to prove (A.36). For any 0 < ¢ < a + 1/m, by (A.35), we have

1F = 710

< 1 Pu ¢ . \ —2 2 L

7%%( +!¢7H%2> L+ 203) oL, - =

{ T = DePon ) J(F- f)(t)sbﬁ(t)dH(O)(t)rJr (A37)
nod g

2

7 ot j
2 2
noj

3 [ .

s (f ‘f) (69)) 222 (0 I (faf)(t) 5¢ﬁ( 992 (®) g110) (t)
=1

<.

For brevity, we denote f(t) = 0f/0ty. Let g;(t) = %8(8;,]0)6?% and go(t) = i(f— oo

Hence, we can do the expansion on the basis {¢; } 77 ene,

= Y QLou(t), where QL = (g;(t), ¢72(t))o. (A38)
HeNd

Unlike (A.22) with the multi-index 7 € V, we require I € N%in (A.38) since now gj(t)isa

product function. By Cauchy-Schwarz inequality,

= 2 2
1,087 Gy _ L [ O = () dop(t)
[”022 tzj ot () a?/ ot ot
2
- ZQﬁ< quﬁt(j /¢ﬁ )
ﬁeNd
@ (A.39)
< RYA NI P 9
<| > e ( b mz) ¢m2]
Y - 2
’i 2 (1 )
' b - 9y — o) |
L%( ll%n%) lowlz, (n;%(z )~ [ ont M

By Lemma A.16, if a > 1/2m, then the sum of the first part in the right-hand side of (A.39)
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over j =0,1,...,pis bounded by

%( = \\L2>a'!¢mr%2<< . 8¢7 >
o

- 0
5 Hf_f”%g(aJrl/m)Z Z <1 H¢ ”2 ) H¢ ¢7 >

j=0 [ eNd

) (A.40)
s P
S Hf - f||%2(a+1/m) (1 + ”¢7H%2) H¢7”L2 ( ZVJQ)

f ’ l a+1l/m 1 (Z) [

The second part in the right-hand side of (A.39) can be bounded by

. ) )
Pi (1 @)y _
ELZN (” Hmu%) Vol <n§¢ﬁ(ti -/ W”)
<n 1} <1+H ;j) ozl / 62 (t)
e a (A41)
= ( = u) ST DN TR

HeNd L eNd

d
0
< nfl Z Ml—Qma - nil,
p1=1

where the third step uses p3; /|| 1|7, =< 1™

M*@

-+ u2™, and the fourth step holds for a > 1/2m.
Combing (A.40) and (A.41), we have that for a > 1/2m,

p

Y E

J=0

2
S @ (;Zm(t?)) - / ¢ﬁ(t)>]

HeNd i=1

(A.42)
) Py
E\If FIZ s (a1 /m) ( ||¢7||L2>
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Put all together Therefore, if 1/2m < a < (2m —3)/4mand 0 <c¢ < a+1/m, (A.37) and
(A.42) imply that

ENf = 70 S 7 1 = FlT st m NateV)-

By Lemma A.12 we complete the proof for (A.36) and this lemma. O

Finally, we combine Lemma A.3, Lemma A.4 and Lemma A.5 to obtain the following

proposition.

Proposition A.6. Under the conditions of Theorem 2.3 and assuming the distributions 11(©) and
1Ys are known. If 1/2m < a < (2m — 3)/4m, m > 2, and n~ '\~ (Re+3/2m)[1og(1 /X))~ = 0,

then for any ¢ € [0,a + 1/m], the fgiven by (2.10) satisfies, when 0 < p < d,

1F = ol = O =T (fo)} + Op { = A(H/2m log(1/ n) =P L

and when p = d,

1F = foll3 )

( (A—c)ymr mr r—
0 {)\ lmT_1 ‘](f())} + OIP’ {nfl)\m(ﬁ—ﬁi)} ifr > 3’

Az 1J(fo) }—i—O]p {n"tlog(1/N)} ifr =2,¢=0,

1y 2me ) .
Azt J(fo) +0p{n )\172m}zfr:2,c>0,

}+Op{n Wifr=1,c< &

}+O]p{n Log( 1/)\)} ifrzl,c:ﬁ,

0
%) {A“ni—)l J(fo)} +0p {n A TE Y ifr =105 oL

Many results on the regularized estimator f can be derived from Proposition A.6 includ-
ing Theorem 2.4. In fact, for p = d and r > 3, by letting A <n TR ,a =1/2m + € for

some € > 0 and ¢ = 0, we have the condition n~'A\~(2¢+3/2™)[1og(1/))]"~! — 0 is equivalent
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to
5(mr —1)
2m2r 4+ mr — 2m

-1+ <0, (A.43)

and m > 2 is sufficient for (A.43). Thus, the conditions for Proposition A.6 are satisfied.

2m=1)/2m gatisfies

Similarly, we can verify that when p = dand r = 2, A < [n(log n)]*(
the conditions for Proposition A.6. Whenp =dandr =1, A S n~(m=1)/m satisfies the
conditions for the above proposition. When 0 < p < d — r, A < [n(logn)!~"]~2m/(m+1)

satisfies the conditions for the above Proposition, as well as when d — r < p < d by letting

A < [n(logn)*+p=d)=2m/(2m+1) This completes the proof for Theorem 2.4.

A.3.3 Proof of Corollary 2.5

This corollary can be directly derived from Proposition A.6 in the main text. Observe that

dt = || fox — follLa1/my-

/ U far(t)  9fo(t)
vd | Ot1--- Oty Oty --- Oty

Ifd—r <p<d weletc=a=1/mand \ < [n(logn)' P~ ~2m/(2m+1) in Proposition A.6,

then the condition n~*A\~(24+3/2m)[log(1/X)]"~1 — 0 is equivalent to
14 T7/2m+1) <0, (A44)

and m > 3 is sufficient for (A.44). Thus the condition for Proposition A.6 are satisfied, and

Proposition A.6 yields the rate of convergence for an x — foll Lo(1/m) 18
Op ([n(log n)”p*d]*?(m*l)/(?mH)) '

Similarly, if 0 < p < d — 7, we let A\ < [n(logn)'~"]=2™/Cm+1); if p = dand r > 3, let
A\ < p2mr=1)/@mrtr=2). iy — Jand r = 2, let A < n~@mD/2m. if y, — dand r = 1,
let A < n~(2m=2)/(m=1) then the conditions for Proposition A.6 will be satisfied. This

completes the proof.
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A.4 Proofs of Results in Section 2.5: Estimating Partial

Derivatives

We now turn to prove the results for estimating partial derivatives under the random design.

A.4.1 Proof of Minimax Lower Bound: Theorem 2.6

The minimax lower bound will be established by using Fano’s lemma but the proof is
different from Section A.3.1 in construction details. It suffices to consider a special case that
noises ¢(?) and ¢)s are Gaussian with og = 1 and ¢; = 1, and TI(*) and 11)s are uniform,
and H; is generated by periodic kernels. For simplicity, we still use the notation introduced

in Section A.3.1. In the rest of this section, without less of generality, we consider estimating

8f0/8t1(-) Withp Z 1.

First, the number of multi-indices 7 = (vy, . ..,1,) € N” satisfying
V{mfl)/mug coevp <N

is ¢y N™/(m=1) where ¢}, is some constant. Define a length-{c, N™/(™~1)} binary sequence
as

b={by : V{mfl)/mug v < N} € {0, 1}66Nm/(m_1).

We write

ho(ty, ... t,) = N~™/2m=1) Z b (1+V%+"'+V§)_1/2
u{m_l)/myg---urgN

) [y 4 N () (82) - ().



142

where 1, (t;)s are the trigonometric basis in (A.2). Note that

|2, < N—m/(m=1) 3 vl (1+ 074412
Z{m_l)/mzzg---zzrgN
< N~m/(m=1) Z V%(l—l—l/%—i-'”—i-Vz)_le,

y{mil)/mygn-l/TSN

where the last step is by Lemma A.21 in Section A.6. Hence, h(-) € H.

Then, using the Varshamov-Gilbert bound, there exists a collection of binary sequences

{6 pDY {0, 1}‘36Nm/(m_1) such that
M > N8

and

H(b(l),b(Q)) > cgNm/(m_l)/& Vi<li<qg< M.

For b(l), b(q) c {07 1}06Nm/<m71>/ we have

Ohy B Ohya) 2
oty oty Lo
2

> ¢ N/ =) (g )2 Z BAl+vi+- -+t {b(ﬁl) - b(;)]
V%m_l)/mug---urgN

> ¢ N~/ (m= (g N)~2m Z A+vi+ )t
ATN/B<U ™ T My <N

= LNT2m

for some constant ¢, ¢j and ¢, where the last step is by Lemma A.21 in Section A.6. On the
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other hand, for any () € {p™) ... ()},

p
Ihyoll7, + Y 10hyw /01117,

j=1
< NTm/(mml) y—2m > [b%)r < NI

yim_l)/mug---ng

with some constant ¢4, where the last step is a corollary of Lemma A.21.

Last, by the same argument as (A.15), (E.15), (A.17) and (A.18) in the main text, we obtain

6fO(t) 2 1 2m
sup P coN~
T poen {Hf o iz, ~ =17

~ 2¢n(p+1)N™ 2m 4 log 2
- c(log 2) N™/(m=1) /3

Taking N = ¢,n(m~1/ (2m*=m) with an appropriately chosen ¢, we have

dfo(t) |
lim SUPOO 7 SUp P Hf fo(t)
n—o00 f0€7-[ atl Lo

> Oyn —2(m—1)/(2m— 1)} >0,
where the constant factor Cy does not depend on n. This completes the proof.

A.4.2 Proof of Minimax Upper Bound: Theorem 2.7

We continue to use the notation and definitions such as the minimizer f, the Fréchet deriva-
tives DIy, (f)g, Dloo(f)g, D2l (f)gh, D%l (f)gh, the operator G} * and most importantly f*
in Section A.3.2. Unlike Section A.3.2, here we do not require IU)s are known nor f, has
periodic boundaries on X{ by some transformation. For brevity, we consider the random
errors to be centered and independent in this proof while the general error structure (2.4)
can be similarly studied as Section A.3.2.

By the assumption that I1¥/)s are bounded away from 0 and infinity, we have for any

~ 2
afn)\(t) afﬂ(t) N 2
/X[ oo ] 4t < 117~ foll:

1<j<p
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Hence, the following lemma is sufficient for proving Theorem 2.7.

Lemma A.7. Under the conditions of Theorem 2.6, then Fox given by (2.10) satisfies

lim limsup sup IP){HJ?— folld > C’Z’ln_%m_l)/@m_l)} =0,

04/14)00 n—oo foe’H

if the tuning parameter X is chosen by \ < n~2(m=1)/2m=1),

A lemma for the proof In H, the quadratic form (f, f)o is completely continuous with
respect to (f, f)r. By the theory in Section 3.3 of Weinberger Weinberger (1974), there
exists an eigen-decomposition for the generalized Rayleigh quotient (f, f)o/(f, f)r in H,
where we denote the eigenvalues are {(1 +7,) '}, >1 and the corresponding eigenfunctions
are {(1 +v,)7Y2¢6,}u>1. Thus, (£,,&.0r = (1 +7,)0u, and (£,,€,.)0 = d,,,, where §,,, is
Kronecker’s delta. The following lemma gives the decay rate of v, and its proof is given in

Section A.5.2.

Lemma A.8. By the well-ordering principle, the elements in the set

{(1+Zp:u]2> ﬁuk2m:76V}

can be ordered from large to small, where V is defined in (A.1). Denote by {~,},>1 the ordered

sequence. Then vy, < ()%

The proof of this lemma is delegated to Section A.5.2. The lemma bridges the gap
between the proof needed for Lemma A.7 and the proof for Theorem 2.4 shown in Section
A.3.2 since the eigenvalues py in Section A.3.2 satisfies p; = (1 +>_F_, v7)™! T, v2m.

Hence in later analysis, we can exchange the use of {v,,» € N} and {p5 : ¥ € V} in some

asymptotic calculation settings.
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For any function f € H, it can be decomposed as

f(tl, . ,td) = Zfz/gu(tlw . ~atd)v where fl/ = <f(t)vfu(t)>07

veN

and J(f) = <faf>R_ <faf>0 = ZI/EN’YVfE'

First, we present an upper bound of the deterministic error (f — fo).

Lemma A.9. The deterministic error satisfies

If = follg = O {AJ(fo)}-

Proof. Forany 0 <a <1,

_ s My \ 2
17— a3 =3 (155 ) @y

v=1

(o]

v 042

< ANsup—1Y

S ATSUD e ;%(fu)
-1

< )2 v
> J(fO) iilg (1 n )\.1‘71)2

= N2 J(fo) A~ = AJ(fo),

where the fourth step is achieved when x < A. O

Second, we show an upper bound of (f* — f), which accounts for a part of the stochastic

error.

Lemma A.10. For 1 < p <d, then if m > 5/4, we have
1F* = FI = Op {ntam/@m=2},

Proof. Asshownin (A.34), E[3Dl,, \(f)g]> = O{n~1||g||2}. By the definition of G, 'in (A.29),

oo

G glls =D (1 + M) 9,60k, Vg €H.
v=1
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Thus,

T _ 1
Bl|f* - 73 = E

Z(l + )\’71,)_2<Dln)\( _)’ §V>%?]

v=1

00 2
<> 1+ M) °E |:;Dln>\(f)§u:|
v=1

Sty (14 My) 7
v=1
= n" 1 My(N),
where the last step is because of Lemma A.8, and M, () for 0 < a < 1 is defined in Lemma
A.13 of Section A.5.4. Hence, we complete the proof by using Lemma A.13. O

Then, we give an upper bound of (f — f*), which accounts for another part of the

stochastic error.

Lemma A.11. [f n~ ' \~letma/(m=1+3/2m] 1691 /X)]""1 — 0 and 1/2m < a < (2m — 3)/2m,

we have

|F = I3 = op {n~tA"H/Cm=D 1
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Proof. Observe that

2
E|f - fIF=<E Y (1+xp)~ BD%( )~ Fow — 5 DT - f>¢,—,»}
vev
<E Z (14 M) 2

w2 X = D05 e - 5 [(7= Diteson®o

—~
-+
—~

~

t,)) — —
ot () a3 ot ot

~O(f - f) 0))3¢7 0, 1 /3(J?— IO) 3¢7(t)n(0)(t)

J

1 F_F pv _
S NF = Al ariym D (1+ N ) (14 Apy) 2
vev Lo

= ”_1”1?* f||%2(a+1/m)Ma()\)

< {nflAf[a+3/2m+ma/(mfl)] [lOg(l/A)]ril} nfl)\fl/(meQ)’

where the first step exchange the use of {7,,» € N} and {p : ¥ € V}, the third step is by
(A.42), and the last step is Lemma A.4, Lemma A.5 and Lemma A.13 in Section A.5.4. The

above inequality holds for any 1/2m < a < (2m — 3)/2m. This completes the proof. O

Last, we combine Lemma A.9, Lemma A.10 and Lemma A.11. By letting A < n~2(m—1)/(m-1)

and a = 1/2m + € for some € > 0, then
n—l)\—(a+3/2m+ma/(m—1))[log(l/)\)]r—l 0
holds as long as m > 2. Therefore, we conclude that forany 1 < p < dand m > 2,

1F = foll} = O QAT (fo)} + Op { a7/} g [y =1y -1/ 21

— Op {nﬂ(mfl)/@mfl)} .

This completes the proof for Lemma A.7 and the proof for Theorem 2.7 .
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A.5 Key Lemmas

Now we prove and show some keys lemmas used for the proofs in Section A.3, Section A.2
and Section A.4. We remind the reader that the proofs in this section rely on some lemmas

to be stated later in Section A.6.

A.5.1 Proof of Lemma A.2

The norm || - || r is equivalent to || - |3 in H.

Proof. Observe that for any g € H, by the assumption that TI() and I1()s are bounded away

from 0 and infinity, we have
1|1 SN g(t) %
1 - 9 (¢
p+1 [03/ Z; ]2/{ } ©
[/ +Z/{ ot }] 2~ gl

for some constant c; and ¢, where the last step is by Lemma A.14. Hence

lgll% < (cacié + 1)| 1913 (A.45)

One the other hand, for any g € H we can do the orthogonal decomposition g = ¢° + g
where (g%, g1)3 = 0, ¢° is in the null space of J(-) and ¢! is in the orthogonal space of the
null space of J(-) in H. Since the null space of J(-) has a finite basis which forms a positive
definite kernel matrix, we assume the minimal eigenvalue of the kernel matrix is p/ , > 0.

Then there exists a constant c3 > 0 such that

19°11% = esllg®l17, = csttiminllg I3 (A.46)
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For g', we have ||g*(|% > J(¢") = Ilg*||3,- Thus, for any g € #,

2
lol% > es / (° +¢")% + 19",

14c3
> e {16°1, + L2, - 29l
a3 02
>
> 22|,

where the second inequality is by [|g"[|3, > [lg"||7,. Then by (A.46), we obtain ||g|% >

(1 -+ ¢3) sl llg°1%. Together with glf% > J(g") = [lg'[13,, we have

T4+c3\ 7!
ol > (1+ 25 ) ol (A47)
Combining (A.45) and (A.47) completes the proof. O

A.5.2 Proof of Lemma A.8

Proof. When d = 1, this problem is solved in Cox (1988). Their method is finding an
orthonormal basis in Ls(&}) to simultaneously diagonalize (f, f)o and (f, f)r, and then
obtain the decay rate of 7,. However, their method cannot be applied to our case when
2 < p < d. Alternatively, we use the Courant-Fischer-Weyl min-max principle to prove the
lemma.

Note that for any f € H, the norm || f||3 is equivalent to

[rex ()

From Lemma A.2, the norm || - ||% is equivalent to || - ||2,. Now by applying the mappin
R q H y applying ppmng

principle [see, e.g., Theorem 3.8.1 in Weinberger (1974)], we may replace (f, f)o by [ f? +
. [(0f/0t;)* and (f, f)r by || f||3,, and the resulting eigenvalues {v//},>1 of {[ f? +
G=1J(01/0t;)*} /1 £113, satisfy

W= (L) (A48)



150

Thus, we only need to study {7, },>1. Since f € H has the tensor product structure, we
denote by Ay [{ [ f* + X0_, [(Df/0t;)*}/(f, [)n] the T'th eigenvalue of the generalized
Rayleigh quotient, where 7 € V and V is defined in (A.1).

Second, by the assumption that \, < v=2™, H; is equivalent to a Sobolev space W§*(X})
and the trigonometric functions {4, },>1 in (A.2) form an eigenfunction basis of #; up to a
m-dimensional linear space of polynomials of order less than m. See, for example, Wahba
Wahba (1990). Denote the latter linear space of polynomials by G. Denote by 7, and F, j
the linear spaces spanned by {¢,, : 1 <v < u} and {¢, : v > p + 1}, respectively. For any

U = (v1,14,...,1v4) € V, by the Courant-Fischer-Weyl min-max principle,

p 8 2
)\(Vl*m)\/U,(Z/Q*m)VO,‘..,(l/d—m)vo |:{/f2+z/ (&i) }/<f,f>7_[]
j=1
> ; 2 P af \?
= fennsi o (Fu 0oty /f +;/<8t]> (fs Fn
D d
> |1+ v | [Tw™
Jj=1 k=1

for some constant ¢; > 0, where the last inequality is by the fact that di,_1(t)/dt =
211w1pg,, (t) and dipg, (t)/dt = —211v1pg,—1(t). On the other hand,

Nt H / f2+jé / (%)2} / <f,f>H]
Sfe?—tm@%%?flngl} |:{/f2+jzp;/<éi];>2}/<f’f>H]

P d
<o 1> | TTw
j=1 k=1
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for some constant c; > 0. Thus, for any VeV,

o [{reE )/ on

This implies 7., = 7./, where ~,, is defined in Lemma A.8. Together with (A.48), we complete

(1+]Z:V ) Hl/_zm

the proof. O

A.5.3 Definition of N,()\) and Its Upper Bound

Lemma A.12. Recall that V as a family of multi-index U is defined in (A.1). We let

(i) (1 25001)

N,()\) = .
7ev<1+231 v+ AT v )

(A.49)

Then, when 0 < p < d, we have for any 0 < a <1 —1/2m,
Na(A) = O {772 [log(1/ 1) 4PN

and when p = d, we have for any 0 < a < 1,

;

O{Al mr( +2mr)}’ l’fy"237
O{log(1/N)}, ifr=2,a=0; O{l},ifr=20<a<l,
O{1}, ifr=1a< 5= O{log(1/N)}, ifr =1,a = &;

127277120, . . 1
\O{A m— }, Zfr—l,a>%.

Proof. We will discuss three separate cases for0 <p<d—r,d—r <p<dandp =d.
First, consider 0 < p < d — r. Since U €V, there are at most r of vi,...,vqgnot equal to
1, which implies that the number of combinations of non-1 indices being summed in (A.49)

is no greater than C} + C% + - - - + C; < cco. Due to the appearance of (1 + > %_, v?) in the

j=1Yj

denominator of (A.49), the largest terms of the summation (A.49) over Vev correspond
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to the combinations of r indices where as few v, ..., 1, being summed as possible, which
is the indices 7 = (Vkys Vkgs -« - ukr)T € N” with kq, kg, ...,k > p. Thus, by the integral

approximation,

S 9] 00 p+r 2ma

=Y - Y % h=p+1 Yk

2
J'_
vptr1=1 Vptr—1=1vpp,r=1 (1 + A £:;+1 Z/I%m)

oo 00 o) b b b -2
= /1 /1 . /1 (1 + Az, -xp+r_1xp+r) dxpi1 -+ - depyr_1dTpr,

where b = 2m/(2ma + 1). Let z;, = xpp12p2---xp fork =p+1,...,p+ r. By using the

change of variables to replace (Tpi1, -, Zpir) BY (2p+1s -+, 2ptr) and 2,40 by & = V02,1,

Na(N)
O fZptr Zp+2 b -2 -1 1

= /1 /1 T /1 (1 + )‘Zp—l-r) Zpt1”t” Zp+r—1dzp+l o dzpyr—1dzpyy
(o)

= /1 (1+ /\ZZH)*z(log Zpir) rdzpis

= /\_1/b/ (1+2%)72 (logz — b~ ' log )\)T_l dx
A

1/b

< AT log (1/0)]

where the last step follows from the fact that 20 > 1 forany 0 < a < (2m — 1)/(2m).
Second, we consider d — r < p < d. As discussed in the previous case, the number of
combinations of non-1 indices being summed is finite, and the largest terms of the summation

(A.49) over vev correspond to the indices v = (Vkys - - - Vkyypar Vptls - oy vg)| € N,
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where the indices k1, ..., k.4 p_q < p. Thus, by the integral approximation,

Na(X)

% oo d 2ma D 2
& S M 0T
= - D)

P 2 d 2
Vd—r41=1  vg=1 (1 + Zk:dﬂud Vi, + A Hk:dﬂ%l Vkm>

o oo L+a™ 4"
= 2d$d—r+1"'dxd7
1 1 (1+x2/_7:+1+~~+xg/m+)\xz_r+1~-x2)

where b = 2m/(2ma +1). Set zj, = Tpr12pr2---x for k = p+1,...,d. By using the change
the variables to replace (zp41,...,24) by (2p41,...,24), and zq by @ = Az, and x by

U= Tg_pt1--Tp-x. Wehave

NQ(A)X/l“’.../l“’ [/1“/1d/1+

-2
b/m b/m b/m b b b
Ty iy <1—|—xd774+1—|—-~-xp +)\:L‘d_r+1-~-xpzd

-1 -1
Fpy1 2y qdzpy- - dzd_1dzd} drg—yiq---dxp

1 1 AL/

b/m b/m

b/m | b b.by—2
T (Mt g ™t ag - apa”)

- (logz — b~ llog A) d-p-1 dac] dzg_riq1---dzp

<A—1/b/°° [/“/“
~ A6 [J1 1

—2
b/m b/m b/m b -1 -1
Ta—rt1 (1 tTlqppr oty U ) Lgery1 " Tp

- (logu — logz4—yt1 — -+ — logz, — b~ ' log A)CHH dTg_pi1- - dxp] du.

By Lemma A.15, then forany 0 < 7 < 1,

—2
<1 + ‘Tzc)l/j:f-‘rl + xg/jfﬁ +eoet xg/m + ub>

—1+7 —(1+7)
S (1ralfm ) () T
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Together with the fact [ ¢! (log t)*dt < oo for any k < oo, we have

a5
ALe L1 1

—1+4+7
(1 + wZ/_"Z+2 +ooot xg/m + ub) Ty Ty

- (logt —log xg_pyn — - —logay, — b log \) " " dag_pya- - day | du.
Continuing this procedure gives

—(1—7)p—d+r
) 4 (logu — b log )\)d_p_l du.

NAMSA*“/

(1 +ul
AL/b

Since forany € > 0 and d — r < p < d, we know if 7 < €/d,
A= " >1—7(p—d+r)>1—-7(d-1)>1—¢

Hence, forany 0 < a < (2m — 1)/(2m), there exists 7 such that (1 — 7)P=9+" > a +1/(2m) =

1/b. Therefore,
Na()\) SJ )\_1/b [log(l//\)]d—p—l — A—a—l/2m [log(l/)\)]d_p_l .

Finally, we consider p = d. As argued in the previous two cases, the number of combina-
tions of non-1 indices being summed is finite. Now since p = d, by the symmetry of indices,

the largest terms of the summation (A.49) over ¥ € V correspond to any combinations of r



non-1 indices, for example, the first  indices. Thus, by the integral approximation,

Na(X)

- i f: i [Ties Vl%ma (1 + 2kt Vl%)
v1=1

2
e (U + 2oy v + M ™)

Wl o0 L™+ )™
= . ) 1 b/m b/m b b b 2
(1—1—3:1 + -+ +)\$1"'mr—1mr>

dry---dry_1dz,

where b = 2m/(2ma + 1). Observe thatif x; - - - z,_12, < A/ b(l=mr)] then

b b b b/m b/m b/m
Aml"'xr—lxrrsxl +"'+£CT71+$7./ :

By Lemma A.19 with § = 0 and o = b/m < 2, we have

No(N) =< /
331...mrilxrrg)\mr/[b(l—mr)]

-1
(1 —f—xl{/m + +xi/jrf +$?/m> dzy - dz,_1dz,

mr r—2
Am(‘”m)j ifr > 3;

log(1/A), if r =2,a=0; A2, ifr=20<a<1;

X

1,ifr=1,a< ﬁ; log(1/A), ifr =1,a =

2m’

1—2ma . 1
A=z ifr=1,a> 5.
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(A.50)

On the other hand, if \™/[b(1—m7)] (x1---zr_12,)" " = o(1), without less of generality, we
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assume z, = min{z,--- ,z,}. Let z = L R By changing x, to z, we have

Ny(\) =<
( ) /)\mr/[b(lm”](wl-"l‘r—ﬂﬁr)_lzo(l)

—1
(1 + xli/m +o 2™ b xfﬂ,le) dxy -+ - dry_1dx,

5 Afl/b /
Al/[b(l_mT)]z_l:o(l),)\_(T_l)/(bT)Z<T_1)/T§x1---xr,1§/\_1/bz

-1
(1 + x?/m +- xb/,nf + zb) oyt dey - dop_adz

r

S A_l/b /
Al/[b(lfmr)]z_lzo(l)

-7
(xli/m + -t J:,IZ/,Wf) xl_l e :E,T,lldxl cedap_q | 2XCHT A

(A51)

//\(r1)/(br)z('r1)/T<x1‘,,x7‘_1<)\1/bz

< /\1/b/ AT/ () = b/ (mr) | b(=147) g,
~ AL/[b(=mr)]z—1=5(1)

= o [Are (5]

where the third step follows from the Lemma A.20 in Section A.6 for § = —1 and o = 7b/m.

Combining (A.50) and (A.51), we complete the proof for p = d and this lemma. O

A.5.4 Definition of M,(\) and Its Upper Bound

Lemma A.13. Recall that V as a family of multi-index U is defined in (A.1). We let

M) = (szl Vl?”)
vev L+ AT v (L + X0, v)) ]

5.
When m > 5/(4 — 2a), we have forany 1 <p <dand0<a <1,

M,(\) =0 {)\—(2ma+1)/(2m—2)} '
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Proof. We first show forany 1 < s <,

Z Z Hkl

2
B s ]

T 2ma
-y z e vi

_112°
ot oo T A Temy 2™ +v2) 71

(A52)

Note that in (A.52), the left-hand side is greater than the right-hand side up to some constant.

On the contrary, observe that

00 00 H Qma
Z Z k=1Y - 3
n=1 =1 [1 F ATy v (1 + 2 =1 Vﬂz)il}

- S Shy ( ) Hk LY Qma
=D 2> 2
vi=1 vr=1i=1 (1+Z] 1 j +)‘Hk 1Y )
NN (L +v3)? ey vi™
1/12:1 urzzl <1 + 25525+ A e V£m>2
U

5
=1 =1 14+ ATy (1 + v2) 71

This proves (A.52). Moreover, note that

ioo Hkl 2ma

S S DA T )
11 rl[ Hk—lk( )} (A53)

Now return to the proof of the lemma. Since VeVandl <p<d, by (A.52), (A.53) and

the integral approximation, we have

Z Z i 1 Vl?ma

2
m=1l =1 1+)‘Hk R+ v2)T }

-2
1 1 1
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where b = 2m/(2ma + 1). Let z = )\m/[b(m_l)]x;n/(mfl) - -x;nf/l(mfl)xr and change z, to z.

Then,

Mq(X)

~ \-m/lb(m—1)] > /°°
Am/[b(m 1)] 1 1

-2
[1 + m=1)/m } ;m/(m b -$gﬁ/(m_1)d:n1 cedxgoqdz
= A—m/[b(m—1)] /OO [1 + zb(m_l)/m} - dz,
m/[b(m—1)]
00 -2
< )\—m/[b(m—l)]/ [1 L Zb(m—l)/m} "
0

—0 { x<2ma+1)/<2m72>} 7

where the second step is because m/(m — 1) > 1 and the last step holds for any m >

5/(4 — 2a). O

A.5.5 Boundedness of Functions in the RKHS #

Lemma A.14. Forany g € H, there exists a constant cx which is independent of g such that

sup [g(t)] < cillgl.
texd

and

sup [9g/0t; (t)| < cicllgllae, V1 <j<d.
texy

Proof. Since we assume that K is continuous in the compact domain &’ and satisfies (2.9),

there exists some constant cx such that

sup |[K(t,t)| <cx and  sup
tei tei

otor | = K

i)



159

This implies for any t € X¢,
P |PEt)

DK 4(t
at;01,

815]

[T1K @ 0] < ck.
I#j

L
Thus, for any g € H, by the Cauchy-Schwarz inequality,

dg(t)
ot;

8Kd(t7 )
ot

sup gl < ckllglln, V1<j<d.

texy

< sup
texyd

’

Similarly, we can show that supy, |g(t)| < c%||g/|%-

O
A.6 Auxiliary Technical Lemmas
Lemma A.15 (A variant of Young’s inequality). For any a,b > 0and 0 < 7 < 1, we have
_ 1—7 1+7
(a + b)_2 < (1 T) (1 + T) a_(H_T)b_(l_T). (A54)

4
When 7 is small, the coefficient (1 — 7)'=7(1 + 7)1*7 /4 is close to 1/4.

Proof. To prove (A.54), it is sufficient to show

a+b>2(1- 7-)f(l—r)/2(1 + 7_)*(1+T)/2a(1+7)/2b(177—)/2.

Letting p = 2/(1 4+ 7), a' = a'/?, ¥ = [b/(p — 1)]P~1)/?, the above formula is equivalent to

o (b/)p/(p—l)

.
p  p/lp—1)

which holds by Young's inequality. This completes the proof. O

Lemma A.16 (Bounding the norm of product of functions). For any f,g € @%H1, a > 1/2m,
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and 1 < p < d, we have that
Of(t) dg(t) >2
1+ b (t
7ZN< - ||L2> oz |L2< S0 t))
: o(t) :
S Wl | 3 (14 2 o (% 65 0) |-
Tend J 0

Proof. Recall that {1, (t)},>1 is the trigonometrical basis on Ly (X ) and ¢ (+) is defined in
(A.21). Write 1) (t) = by, (£1)1hy, (£2) - - - 1y, (t4). Note that

a 2
P
3 (1 I H2> léwl2,(F 0= 3 (HW%) (/defwﬁ) .

VeNd TeNd

By Theorem A.2.2 and Corollary A.2.1in Lin (1998), if a > 1/2m, then for any f, g € ®H,,

a 2
1 Po
%( " uwu%) (/X f W)
a 2
< 1 P
~ L%( * H¢7|r%2> (/X / W) }

a 2
1 P
2 ( o) (Lo
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Thus,

||¢ﬁ”%2 0

¢ 2
_ Pv 8f(t) ag(t)
= T eNd <1 + ||¢T}H%2> (/X{i at]. 8tj ¢ﬁ(t)>
d a )
7 (1 +11 vim) ( . f(t)¢7(t)>
“ 2
Py dy(t)
d atX )
1+]] uﬁm] ( .’ f(t)wﬁ(t)) }
¢ 2
Py dg(t)
“ 2
Py dy(t)

This completes the proof. O

v\ 0f(t) dg(t) ’
py) (H ) lowlt, (25 1))

N
<

VeNd

IN

)

=I5 a1m)

Lemma A.17 (Inverse transformation). Assume that design points t)s have known distribution
11Y)s which are supported on X{. Then, there exists a linear transformation to data (t\7),y (1))
such that transformed design points x\)s are independently uniformly distributed on X and the

transformed responses ZU)s are the jth first-order partial derivative data of some function.

Proof. As remarked after (2.12), the design under our consideration has the following struc-
ture: different types design points can be grouped to some sets, where within the sets
different types design points are drawn identically and across the sets the design points are
drawn independently. We give the proof for two cases as follows for illustration.

First, we consider that function observations and partial derivatives data share a common

O =t vl <i<n0<j<k<p Writet@ = (¢ 10y ¢ 12 We

% 7

design, ie., t



allow covariates of tU/) can be correlated, that is the density of t\7) is decomposed as:

A9 (ty,. .. tg) = dIP (t)dll | (tg_1|ta) - - dT (11 [tg, ta v, .., ta).

Now let
(J) H(])( (J)) 33521 _ H(J (Y @) |t(J))"“’
2 =P D) 1D ).
Then, x\) = 2\ ),x(j ), . (J )) is uniformly distributed on X¢. Define that
1522 y 1
h(zy1,z2,...,xq)
— FUTIINY (@) |2g, - o), (TS} (@ala, - - ws), - ATV} ().
Thus,
ah(x)_zj:a F(t) Oty Z@f ot Of 1
Orj &= Oy, Ox; = 0h Ox Tar Al (t]ta, ... tj41)

With the design x/) defined, we transform the responses Y U)s to Z(/)s by letting Z(©)

and forany j =1,...,p,

70) J}Ey(k) ot (ol o) + e
= . (7) (1), () Gy
Write . ) 2
J— J 2
) ot NG : 9
F=2 ot | e el )|
&% o )

162

— v

Then, it is clear that ZU) = 9h/0x;(x\)) + €4), where the errors ¢U)s are independent

centered noises with variance 5—]2-5.

Second, we consider that not all types of function observations and partial derivatives

data share a common design, i.e.,, 30 < j # k£ < pand 1 < ¢ < n such that t 7é t

We require the c(j)ovariates of each t() are independent, that is the density of t() can be
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decomposed as:

A (1, tg) = dI (42)d11y (t2) - - dI1 (2)

Now let
xgy) _ ng)(tg])), :cé]) _ Héj)(tgj)), o x((ij) _ H&”(tff))-
Then x\) = (azgj ), mgj ), :L'Elj )) is uniformly distributed on X{. Define the function

h(z1, ... xq) = FETTD Y (@), {9} (@), .. TV} ().

Thus, we have
Oh(x) _Of(t) Otj(z;) Oof(t) 1

al'j 8tj 8$j 8tj ngj)(tj) .

Correspondingly, the responses Y'V) is transformed to ZU), 0 < j < p, by letting Z(0) =
Y(© and z0) = yU)/ dH§.j )(tg-j )) for 1 < j < d, and write the transformed variance &]2- =

o2/l (19))]2. 0

Lemma A.18. Suppose that s > 1,3 > 0and 8 # 1, and r > 1. Then
B

/ a) - al2Plog2)* (2 + -+ 22) " Vday - - - dapdz
Tl xr2<Z,x>1,22>1

= 2Pt (logE)*, asE — oo

Proof. Forany 7 > 1,wehave {1 < 2 < EZr "1 <ap <7,k=1,...,r} C{z1--2, -2 <

Ez>lxp>1,k=1,...,r}. Thus,if £ — o,

/ xf-'-xfzﬁ(logz)s(x%+-'-+xz)_1da:1-~dxrdz
Ty Tr2<E,xp>1,2>1

Z/ / / Zﬂ(logz)sx{DLQ---xf_del-~'d:L’rdZ
1 1 1

= Zh+1—r(B+1) (log = — rlog 7')57'7"(571).

Let7 — 1, wehave [ . = -, (logz)*(af+---+ ) 'dey - - daydz 2 ZPH (log B)*.
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On the other hand, define u = 1 - - - ,. - z and change the variable z to u. We have that

as = — 0o,

/ ..
Ty X 2<Z,x>1,2>1

u/:cr (Tr@r_1-22)
/ / / / u?(logu —logx, — - -~ — log 1)*

2 2 2y—1 -1 -1 _—1
. (xl +otxr_ g+ l‘r) x] o x, T, dry - dre_1dredu

2 pru pu/ze w/(TrTyr_1--22)
5/ / / / uﬁ(logu—logxr—---—log:cl)s
1 J1

1—1 2/r r_ll 2/T —1 Q/le'l < odx,_1dz,rdu

5/ uP (logu)*du = 2P (log 2)*,
1

Plog2)*(x? + -+ 22) Yday - - - dapdz

where the second step is by Lemma A.15. This completes the proof. O

Lemma A.19. Suppose that 5 > 0and 0 < o < 2. Then, as = — oo,

T
/ T o06s + a5+ +22)'das - - da,
w1 zr SExp21 g

=Pl iy >y
log(E), ifr=2,=a/2 -1, gZh+1-a/2 ifr=2,0>a/2-1,

Lifr=1,8<a-1; logE)ifr=18=a-1;

Zhetlifr =1,>a— 1.

Proof. By the symmetry of covariates,

r
/ [Tl + a8+ +af) s - - - da,
Ty <Z,xp>1 k=1

r

- —1
= [z +28+ - +22) tday - day
@1 SE@y 2w 2 20r 21 g

=¢£.
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First we prove when r > 3, as = — oo, we have

£ < ghtl-a/r, (A.55)
= 1/(k+1)
For this, definethe set X = {0<k<r—2: <m) < ZTp_p_1,.1If Kisnot
empty, we denote the smallest element in by £*. Then 0 < k* < r—2. Forany (z1,...,2,) €
{(x1,. . @)y, <Ejmn > @ > 2@ > 1w, <@ < o=}, we have
(
1<z <2p_p—1 for0 <k <k* -1,
_ 1/(k*+1)
1< 2o < (#) for k = k*,
TR (A.56)
= 1/(k+1)
ﬂ?r_kZ(m) fork*—l—lSkST—Q,
x> BT fork=r—1.
Thus, as Z — oo,
€< /
1T <E, 11222222 2>1
{(m)gﬂ/(rq) - (xr,k*,l)ﬁfa/ﬁ”*l)} 20 .
. {(xr_k“rl)ﬁfa/(rfl) L (xr)ﬁfa/(rfl)} dx
A /331"'1‘T§Ea1‘12$22"'21‘r21
B—a/(r=1) . . 1)B—a/(r=1)

. (m’f‘—k‘*)[ﬂ+1_a/(r_1)]k*+ﬂd$7-_k* dxr_k*_l .. dxl

~
—~

/901'~~rr§5,$12$22“'2mr21

{($1)—1—a/[(r—1)(k*+1)] o

;U,,_k*_l)—1—a/[(r—1)(k*+1)1}

cEPHL—akt (=D R D] gy

=B+1-a/r
— )

where the first step uses x,_;+ > 1 and Lemma A.15, the second step uses x,_; < x,_j_; for
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all £ < k* — 11in (A.56), the third step uses the upper bound on z,_- in (A.56), the fourth
step uses the lowers bounds on z,_, for all k* + 1 < k < r — 2in (A.56). If K is empty, then

for any (z1,...,2y) € {(x1,...,2p) 21+ 2p < Bz > 29 > - > > Lz, < zpg <

[1]

/(x1 -+ xy_1)}, it satisfies
1 S Tk S L1 for any2 S k S T, and 1 S 1 S El/r‘

Thus, as Z — oo,

El/r Tpr—2 Tr—1
S
1

H o (28 + 2y + -+ 28 +a) Ndaedre_y - day
(A.58)
El/'r
)l
1
) Boafr xr_fl/r /Ty pda,_q - day < 2P
Combining (A.57) and (A.58) completes the proof for (A.55).
On the other hand, when r > 3 and as Z — oo,
EI/T Tr—2 Tr—1
AT
1
H z) (x A + 22) N dapdr, - - day
(A.59)

El/'r

AV
—

H Ty - a;l Tz, dr,_q - -day < Zhtl-a/r
k=1

Therefore, combining (A.55) and (A.59) completes the proof of the lemma for » > 3.
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Then we consider for r = 2. For 0 < a < 2,

N 2 pE/zy
E< 2/ / x’ffaxgdxgdxl + 2/ / Zﬁfial‘gd‘iﬂgdfﬁl
1 1 VaJi1

log(£) when2+2—-a=0
= as = — oo. (A.60)

ZAtl-e/2 ywhen28+2—a >0

On the other hand, we have

VE i
E> / / :cfa:g(x‘f + 25) " dwoday
1 1
VE a1
22_1/ / xf_ngdxgd:rl
1 1

log(2) when2+2—-a=0
= as = — oo.

=" when28+4+2—a>0

(A.61)

Combining (A.60) and (A.61) completes the proof of the lemma for r = 2.
Finally, we consider for » = 1. Note that fIE xf xy%dry < 1when0 < 3 < a—1,and
fIE a:fxfadxl = log(Z) when f =« — 1, and ff xfmfadazl = =Zf~>*l when 8 > a — 1. This

complete the proof. O

Lemma A.20. Suppose that f < —1 and o > 0. Then, as = — oo,

.
/ Haz’,f(xff‘+x§‘+...+x$)*1dm...d$r - =f+1l-a/r
1z 22,2 >1 k=1

Proof. The proof is similar to the proof for Lemma A.19. We omit the details here. O

Lemma A.21. Suppose that m > 1. Then, as E — oo,

/ (224 224+ 22 a2day - - day = T/ D),
$EM71)/mx2~~$r§E7$k21

Proof. When r = 1, the lemma can be verified by direct calculations. In what follows,
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assume r > 2. First, we show that the left-hand side of the formula above is larger than

the right-hand side up to some constant. It suffices to consider a subset of (21, z2, ..., ;)

which satisfy xgm_l)/m > q9 > - >x, > 1. Letu; = acgm_l)/m, and u; = wyzo - - x; for

2 < j < r. By changing variables (z1, o, ..., z;) to (ui, us, ..., u,), the left-hand side in the
y ging

lemma satisfies

/ (22 423+ +a2)2day - - day
a:gmfl)/mxz T, <Z,xp>1
> / (ra?)1a?dxy - - - d,

(m— 1)/mx2 e <Exp>1

u2
- 1 1) -
! x ul/(m )ul1 cu b duy - dup—qduy
ulr y/r ul/?

- Hm/(m 1)

Second, we show that right-hand side of the formula above is larger than the left-hand side

up to some constant. Note that (21 + 23 + - - - + 22)~'2? < 1, so the left-hand side satisfies

/ (2 + 22+ + 22 alday - - - da,
x%m_l)/mxz- <2,z >1

< / 1dzy - - - dz,
(=)™ e, <E >1

_ 1/(m—1) — _
1/ / / ul/(m )ull-‘~urjldu1'--dur_ldur
(r— 1)/7 ul 2
2

- _m/(m 1)

This completes the proof. O
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Appendix B

Appendix For: High-Dimensional
Smoothing Splines with Application
to Alzheimer’s Disease Prediction
Using Longitudinal and
Heterogeneous Magnetic Resonance

Imaging

B.1 ADNI Database Description

The Alzheimer’s Disease Neuroimaging Initiative (ADNI) was launched in 2003 by the
National Institute on Aging (NIA), the National Institute of Biomedical Imaging and Bio-
engineering (NIBIB), the Food and Drug Administration (FDA), private pharmaceutical
companies, and non-profit organization, as a $60 million, five year public-private partner-

ship.
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The Principal Investigator of ADNI is Michael W. Weiner, MD, VA Medical Center and
University of California — San Francisco. ADNI is the result of efforts of many coinvestigators
from a broad range of academic institutions and private corporations. ADNI recruited from
over 50 sites across the U.S. and Canada. The initial phase of ADNI recruited 800 adults,
aged 55 to 90 and having a study partner able to provide an independent evaluation of
functioning, to participate in the research. Among them, there are approximately 200 healthy
control older individuals to be followed for 3 years, 400 people with MCI to be followed for 3
years, and 200 people with early AD to be followed for 2 years. See www.adni-info.org
for up-to-date information.

The primary goal of ADNI has been to test whether serial Magnetic Resonance Imaging
(MRI), Positron Emission Tomography (PET), other biological markers, and clinical and
neuropsychological assessment can be combined to measure the progression of MCI and
early AD. Criteria for the different diagnostic groups are summarized in Table B.1. Cog-
nitively healthy control (HC) subjects must have no significant cognitive impairment or
impaired activities of daily living. Clinical diagnosed Alzheimer’s disease patients (AD)
must have had mild AD and had to meet the National Institute of Neurological and Com-
municative Disorders and Stroke—Alzheimer’s Disease and Related Disorders Association
(NINCDS/ADRDA) criteria for probable AD in McKhann et al. (1984). The mild cognitive
impairment subjects (MCI) should meet defined criteria for MCI but do not meet the criteria
in McKhann et al. (1984) and the MCI subjects should have largely intact general cognition
as well as functional performance. Study subjects should have given written informed
consent at the time of enrollment for imaging and genetic sample collection and completed

questionnaires approved by each participating sites Institutional Review Board (IRB).

B.2 Preprocessing of the Brain MRI Used Here

The structural MRI used in this study are cortical gray matter volumes processed us-

ing FreeSurfer software version 4.4 longitudinal image processing framework (https:


www.adni-info.org
https://surfer.nmr.mgh.harvard.edu/
https://surfer.nmr.mgh.harvard.edu/
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Table B.1: ADNI recruitment criteria of CN, MCI and AD subjects. AD: Alzheimer’s disease;
CDR: Clinical Dementia Rating; HC: Healthy controls; MCI: Mild cognitive impairment;
MMSE: Mini-Mental State Examination; Edu : years of education.

HC MCI AD
Memory complaints Absent Present Present
CDR 0 0.5 0.5-1.0

Delayed recall Logical 16 Edu:>9 16 Edu:<8 16 Edu:< 8
Memory II subscale of 8-15Edu:>5 8-15 Edu:<4 8-15 Edu:< 4
WMSR 0-7Edu:>3 0-7Edu:<?2 0-7Edwu:<?2

//surfer.nmr.mgh.harvard.edu/) (“ucsffsl” file). This dataset has been used in, for
example, Mah et al. (2015); Toledo et al. (2014); Tosun et al. (2011). Specifically, subjects
with a 1.5-T MRI were included in the dataset where the scans were preprocessed by certain
correction methods including gradwarp, B1 calibration, N3 correction, and skull-stripping
(see, e.g., Jack Jr et al. (2008) for detail), and the FreeSurfer 4.4 implements the symmetric
registration Reuter et al. (2010) and unbiased robust template estimation Reuter et al. (2012).
Only MRIs which passed the quality control for all the areas were included in our study.
There are total 393 ROIs of brain MRI created by FreeSurfer 4.4 and they consist of volumes
of brain regions obtained after cortical parcellation and white matter parcellation, surface
area of the brain regions and cortical thickness of the brain regions. However, some ROIs
are missing more than 90% across all samples due to the preprocessing. In Section 3.3 of the

paper, we use 324 ROIs with at most 20% missing values across the preprocessed samples.

B.3 Proof of Theorem 3.1

Denote by A(b, 51(-) ..., Bp(-)) the functional to be minimized in (3.3). It is clear that
A(b,B1() ..., Bp()) is convex and continuous in 3;(-)s. Denote by J(51(:)...,5,(:)) =
A >0 1 11813, and without loss of generality, we assume A = 1. Denoteby cx = max; KY2(ty,, i)

and ¢, = max;;, |r(t;y)|. By Cauchy-Schwarz inequality, for any i = 1,...,n, v =


https://surfer.nmr.mgh.harvard.edu/
https://surfer.nmr.mgh.harvard.edu/

172

17 y Mg,
p p
|Z/Bj(tw xl] (17 ‘ = ‘ Z LL’” (twa ’)>7—[K|
= = , (B.1)
<1 BiOzis i)l K (i, tin) < excll D Bi(zigtan)llase < cxead (b, Bp).
j=1 J=1

Denote p = max,-,l,{y?,, + |yiv| + 1}. Consider the set

Q={B1(),..,Bp(-) € Hic, b € R : J(Bi(:),- -+, Bp()) < p, 0] < pY/% + (cxea + 1)p}.

Since € is closed, convex, and bounded set, there exists a minimizer for (3.3) in 2. Denote
the minimizer by £y, 31(-), .. ., Bp(-). Then, A(Bo, B1(-),- -, Bp(-)) < A(0,0,...,0) < p. On
the other hand, for any 5i(-),. .., 3,(:) € H satisfying J(B1(-),...,Bp(-)) > p. Itis clear

that A(b,B1(:) ..., Bp(:)) = J(Bi(:),...,Bp()) > p. For any Bi(:),...,Bp(-) € Hk with
J(B1(),- -, Bp(1)) < pand |b| > p'/? + (cxcr + 1)p, (B.1) implies that for any i = 1,...,n,

‘b—i_Zﬁj v xz] zu) yw’ > ,01/2 + (CKC.’L’ + 1)/0— CKCxp — P = /01/2-
7=1

Hence, A(b, B1(:),...,Bp(-)) > p. Therefore, for any b, 51(-),...,Bp(-) € 2, we have that

A(b7 ﬂl(')v s 7ﬁp()) > A(BO; Bl(.>7 s 7517(.))’ where BO? Bl(')7 s 7/317(.) is the minimizer of
(3.3). This completes the proof.

B.4 Algorithm

This algorithm is based on Theorem 3.2 whose proof is given later in Appendix B.5. Consider
for any fixed 6;,...,0, > 0. If §; = 0 for some j, then 3; = 0 in the optimization (3.4).

Without less of generality, let 6y, ...,6, > 0 and (3.4) is equivalent to the smoothing spline



type problem: find b € R, 8;(-), ...

N ZZ Yip — b — Zﬁj tw Tij tw

i=1 v=1

By the representer lemma wah, 5 (-),. ..

n  m;

=2 Kt

=1 v=1
(i1,42) by

Define a m;, x m;, matrix X,

(i17i2) _
2

Tiy j (biymg VK (Gig1s tiym,, )

Ty (tig1) K (tig1, tiy1)
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, Bp(+) € H to minimize

p
W2+ (7085 DB 51 (B2)
Jj=1

, Bp(+) have a closed form expression:

Tiyj (i 1) K (tigmsy - tir1)

Tiyj (tiyma VK (Gigmay > tivm, )

andletX;bea N x N (N = 3" | m;) matrix where the (i1, i2)th m;, x m;, matrix is E§i1,i2)‘

Define kernel matrix ¥ by

2_<21 b))

Let the unknown coefficient vector ¢/ be

and
o= () @y

Write the response vector y as

y:<y11

Yimy

Zp > c RNXN-p.
' T

Ynl - Ynm,
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Let 15 be the column vector consisting of N 1’s. Then (B.2) becomes
1 P
& WS- bIn) " (y — Sc—bly) + 2 (r00; {7} T8,
j:

which has the unique solution given as follows:

b=[18Anxn — 2NN 1 (Ivwy — 22718 Ty,

) (B.3)
e=2"1nT(y —1n0),
where ¥ = X% + Ndiag{(ro6; )21, .. ., (108, 1), }.
Note that when 61, .. ., 8, are fixed, (3.4) is equivalent to find b € R, c € RAP to minimize
1 P . P D
& —bly — > 0;3) (g = by =D 0;55¢) + > (o) {85 (B.4)
§=0 j=0 j=0

The minimizer of (B.4) is
b=b and & :0;1@, 7=0,1,...,p,

where b and ¢ are given by (B.3).
On the other hand, consider when c is fixed, then the minimization of (3.4) is equivalent

to

m1n||y Ze 3 — by +N7029 {5, +NﬁZe],
j=0 j=0

S.t. 9] Zo,jzoala"‘7p7

which can be written as

mlnHy 29 Yid —blNHQ—i—NTOZG {8,
= = (B.5)

p
s£.0;>0,j=01,...,p;) 0; <M,
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for some M > 0.

Therefore, we propose the algorithm of iterating (B.4) and (B.5) for giving the minimizer
of (3.4). We observe in simulations that the objective function in optimization (3.4) decreases
quickly in the first iteration and after the first iteration the objective function is close to the
objective function at convergence. This motivates us to consider the following one-step

update algorithm:
1. Initialization: fix §; = 1for j = 0,1,...,p.

2. Solve for c and b in (B.4) and tune 7y according to the generalized cross-validation

(GCV). Fix 7 at the chosen value in all later steps.
3. For ¢ and b obtained in step 2, solve for 6 in (B.5) with a fixed M.
4. With 6 obtained in step 3, solve for c and b in (B.4).

We choose the best M in Step 3 according to the fivefold cross-validation. In the simulations
we find that when 7y is fixed according to step 2, the optimal M seems to be close to the

number of important components. This gives a range to determine the tuning for M.

B.5 Proof of Theorem 3.2

Recall that A(b, 51(-), - . ., Bp(-)) denotes the functional in (3.3). Let B(01,...,6p:b, 51(:), ..., Bp(+))

be the functional in (3.4). Observe that

_ 1/2 1/2
7085 181112, + 7185 = 200”271 11853 = N21Bj s, W85 > 0,

and the equality in the above formula holds if and only if 0; = 701 / 271_ 1/2 18|12 - Therefore,

B(01,- -, 0p;0,610); 5 Bp(-)) = A(b; Bi(-), -, Bp(+)), VO; =0,

and the equality holdsif and only if 0; = T& / er 1/2 |82, forall j = 1,...,p. This completes

the proof.
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Appendix C

Appendix For: Selection and
Estimation Optimality in High
Dimensions with the TWIN Penalty

This material is organized as follows. Section C.1 contains additional minimax optimality
results under orthogonal designs. Section C.2 contains proofs for the main results of the
paper. Section C.3 gives key lemmas for the proof of main results. Section C.4 presents two
coordinate-wise algorithms for TWIN and Section C.5 presents i) simulation results illus-
trating the effectiveness of the universal tuning parameter values, ii) additional simulation
results for a higher dimension and higher number of active variables, iii) further simulation
results investigating the impact of 7 on TWIN-a and TWIN-b, and iv) prediction simulation

results left out of the main text due to space constraints.
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C.1 Additional Theoretical Results

C.1.1 Orthogonal Designs

For orthogonal designs, multiplying both sides of (4.1) by X' results in the Gaussian sequence
model

y=B+z 2z~ N(0,0%I). (C.1)

Note that the above model and (4.1) are statistically equivalent. Sparse mean vector estima-
tion under the above Gaussian sequence model has been widely-studied in the literature;
see, for example, Bickel (1981); Donoho and Johnstone (1994); Foster and George (1994).
However, to our knowledge, only an implicit lower bound of asymptotic risk under linear
sparsity, where k/p — € € (0,1) as p — o0, has been established (Johnstone, 2017). The
following result gives an explicit lower bound under this linear sparsity, where the proof is

given later in Section C.2.2.

Theorem C.1. Suppose that k/p — € € (0,1) as p — oo. Let (3 be from the model (C.1). Then

cog sup E||B - B> > 207(1 — ¢)*klog(1/e),
IBllo<k

where the infimum is taken over all measurable estimators.

We make the following two remarks for Theorem C.1. First, there is a small difference
between the lower bound 252k (1 — €)? log(1/¢) given in Theorem C.1 for orthogonal designs
and the lower bound 202k log(1/¢) given in Theorem 4.11 for random Gaussian designs.
This difference vanishes when ¢ is small (close to 0). The difference between two lower
bounds shows that it is fundamentally more difficult to estimate unknown coefficients
under Gaussian random designs, which is partially due to the sample correlation among
the columns of design matrix.

Second, the following implicit lower bound is given in the Theorem 8.20 of Johnstone
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(2017):

coz sup E||B - BI|* = (1+0(1))o*pBo(e),
1Bllo<k

where fy(-) is a univariate Bayes minimax risk for all priors satisfying the linear sparsity
k/p — € € (0,1). The Proposition 8.18 of Johnstone (2017) shows that y(e) > e for all

0 < e < 1. Together, they imply

o5 sup E[B—B|*> (1+0(1)0’k. (C.2)
18llo<k

Comparing the lower bound in Theorem C.1 with the lower bound in (C.2), it is clear that
20%k(1 — €)%log(1/€) > 0%k when € < 0.33. Since k/p < 0.33 is a reasonable assumption in
many applications, Theorem C.1 provides a sharper lower bound than (C.2).

Now we give the asymptotic risk for TWIN estimators under orthogonal designs and

the linear sparsity.

Theorem C.2. Suppose that p — oo with k/p — € for some constant € > 0. Let 8 be the TWIN-
a or TWIN-b estimator in (4.2) and 3 be from the model (C.1). Let minier{|t| + P ([t])} =

o(1 —€)\/2log(1/€). Then,

sup EJ|B — B]* = [1 + c(e)] 20°(1 — €)’k log(1/e),
IBllo<k

with c(e) = 2

Vrlog(1/e)et=1=9%(1—¢)’

The proof of Theorem C.2 is given in Section C.2.2. We make the following remarks
regarding the above theorems. First, comparing Theorem C.2 with the lower bound result
of Theorem C.1, it is clear that TWIN estimators are minimax rate optimal. Second, the
constant c(e) decreases as € decreases, and c(¢) approaches to zero when e is close to zero.
For example, ¢(e) = 0.58 when ¢ = 0.01, and ¢(¢) = 1.28 when ¢ = 0.1. Third, if e = 0 (i.e.,

k/p — 0 as p — 00), the lower bound of asymptotic risk is known; see, for example, Donoho
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and Johnstone (1994); Johnstone (2017), which is

o5 sup E[B— B = (1 + o(1))20°klog(p/k). (C.3)
IBllo<k

We note that (C.3) is different from the lower bound in Theorem C.1. The reason is that
k/p are in different sparsity regimes. The following theorem shows that TWIN estimators

achieve the asymptotic minimax risk when k/p — 0 as p — oo.

Theorem C.3. Suppose that k/p — 0as p — oo. Let (3 be from the model (C.1). Then TWIN with
minger{[t| + P3 . ([t])} = 0+/2log(p/k) achieves the minimax optimal risk

sup E|B — B = (1 + o(1)) 20°k log(p/k).
18lo<k

The proof of Theorem C.3 is given in Section C.2.2

C.2 Proofs of Main Results

C.2.1 Proofs for Section 4.3

In this section, we give proofs for Section 4.3 in the following order: Proposition 4.4, Theorem

4.7, Corollary 4.8, Theorem 4.5, Corollary 4.6, Theorem 4.9, and Corollary 4.10.

C.2.1.0.1 Proof of Proposition 4.4 We are testing p hypotheses H; : 3; = 0,i =1,...,p
Suppose that the first p — k£ hypotheses are null, i.e., 5; = 0 for i < p — k. We reject H; if
and only if Bi # 0. Let V be the number of false rejections and R be the number of total

rejections. Hence,

Z 1{H is rejected }1{R r} (C4)

P
1

FDR =E -E

[va] Zr P

r=1
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Note that when H; is a null hypothesis,
{X'z: Hjisrejectedand R =1} = {X'z syl > Iguﬂgﬂt\ + P _(t)and R=r — 1} ,
E b

where R is the number of total rejections when applying TWIN with same parameters to
the following data

X7 — (4 ! ! /
X'z=(x12,...,%;_12,T; 1Z,...,%,Z).

Let miner{[t| + Py . ([t))} = o®~1(1 — a/2p) for any a € [0, 1], then

P (H; rejectedand R=7) =P (|m;z > Itmﬂg{|t| + P _(t)land R=r — 1>
E b

- ! - / R=r—
= (Jafx! > min{i + P ()} ) F (R =r - 1)

:%P<}§:r—1>.

where the second equality is from the independence of «/z and X'z. Plugging this equality

into equation (C.4) gives

R S N SR
FDR = . ZTP(R_ 1) < <1 p).

r=1

Given miner{|t| + P5_(|t])} = 0®1(1 — a/2p) for any a € [0,1], it is easy to see that

FWER = o, which completes the proof.

C.2.1.0.2 Proof of Theorem 4.7 Denote by 7, = 7/\. If 7, > (1 — 6 /2 — )72, then

Lemma C.4 implies that

Amin (X' X)) — 77 !> 0 with probability at least 1 — e ?/2, (C.5)
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Let A be fixed and \g = P , (0+). Define h(t) = 7, 142/2 + P+ (|t]) — Xo|t|- Note that both
TWIN-a and TWIN-b satisfy

000<t <t { Py 1 (t2) — Py - (t1)}/(t2 — t1) = =75 ",

then h(t) is a continuously differentiable convex function. Note that the penalized loss in

(4.2) can be written as
1
L0 = {3l - X0l — L jolP | + Z{Ao\b |+ (1),

where on the right-hand side, the first part is strictly convex due to (C.5), and the second
part is also strictly convex. Thus, L(b; A, ) is strictly convex in b € RP. On the other hand,
observe that if b = 0, L(b; A, 7) = ||y||2/(2n) is bounded, thus y — 3 maps bounded sets
of y € R" to bounded sets of ﬁ in RP. Since L(b; A\, 7) is continuous and convex in b and
is continuous in y, the global minimizer of L(b; A, 7) is unique and continuous in y. Thus,
(4.12) is the KKT condition and its solution B\ is unique.

Let fﬁ% be the oracle least squares estimator on the true support A°:

35 = argmin|ly — X 40b]?. (C.6)

beRk

We define two sets 2; and 25 as follows, where A\; < \; are two positive parameters:

Q(\) = {]%x |2 (y — Xa0B53)| < Al} :

%2(0) = { mig sgn ()35 > 12a .

For any j € A°, it is clear that z’(y — XAO@%) =0. If \@LS| > A2, then by definition
of TWIN-b, P)’\T(|3]LS|) = 0. Thus, the vector which is equal to ,@}4% for the components
corresponding to A° and 0 otherwise is the unique solution of the KKT condition (4.12) and

sgn( ALS) = sgn(Ba-) for all \; < A < A9 in the intersection of 21 and Q5.
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Observe that y — X 40 ,8 is equal to the projection of z onto the orthogonal complement
of X 40. Conditional on z and X 40, X 1’47, (y — X400 Ao) is distributed as i.i.d. centered

Gaussian random variables with variance ||y — X 40 B\I;‘% |2 /n. Hence, we can write

i ly = X85

X' (y — Xa08%) NG

(Ch cee 7<p—k)/7

where the (; terms arei.i.d. N(0, 1) independent of ||y — XAOB}‘SO ||. Observe that y — X 40 ES
is equal to the projection of z onto the orthogonal complement of X 40, and the orthogonal
complement of X 4o of dimension n — k has uniform orientation. Thus by Lemma C.5, we

know that for an arbitrary small constant ¥ > 0,
P {lly — X B3| > (14 0)ovn — k} < e (n=k)a?/2 (C.7)
Observe that

p{ max (7> (2+49) log(p - k)}

1<j<p—k
Zlgjgpfk EeSi/+9) Vrd(p — k) vV

S T e R S D) legpk) = c(1+D)les—k)  (p— k)7’

(C.8)

Ee™axi<j<p—k ¢F/(249)

where the first step is by the Markov’s inequality. By (C.7) and (C.8), we have that

ly — X085 < (1+9)ov/n — k, | Jnax I3 < (2+ 49)log(p — k)

hold simultaneously with probability at least 1 — e~?*("=%)7*/2 _ /79 /(p — k)”. Thus, if

A1 > (14 39)oy/2logpy /1 — g

(C.9)
— (14 39)0\/2log(p — k)4 /1 — g +o(1), withe <,
we have
1—P{Q(\)} < e P (R)e?/2 Y o (C.10)

(p—k)
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By Lemma C.4, we know the minimum singular value of X 4. satisfies
Omin(Xa0) > 1—+/k/n—vY with probability at least 1 — e 2, (C.11)

Denote by || A|/max the maximum absolute value of entries in any matrix A. From (C.11),

—n9? /2

with probability at least 1 — e , we have

(X0 X o) ™ lmax < [[(X g0 Xa0) 7|2

mln(XA" (1 - \/6/76_ 19)_2 <0

(C.12)

Let M(e,0) := (1 — y/€¢/6 — ¥)~2. Conditioning on X 4o,
(XX p0) ' X oz =0-(&],...,&) ~0-N(0,(X 1o X 40)71),

where the terms 53 are independent of z. Since V1 < j < k, Ee‘5§|2/ 2+ M(e0) < Vmd, we

have by Markov’s inequality,

{112?2(19(5]) (24 49)M(e,0) log k}

Femaxi<j<k (€ )2 /(2+9) M(e,5) Zl<j<kE6I£;|2/(2+19)M(5,6) Vi

= o(1+0)logk RExy <5 0
which together with (C.12) implies that
(X 40 X p0) ' X /o2 ]| oo = 0 max €] < o/ (2+49)log k(1 — \/€/d — )~ (C.13)

1<5<k

with probability at least 1 — e "%/2 _ /1 / k?. Recall that B\ff, = Ba + (XX A0) X o2,
and if

18] > A2 + 0/ (2+49) log k(1 — \/e/5 —9) ™, Vje€ A°,

we have

min sgn(3))57° > min 6] — | (X X o) Xpozlloo > 722 (C.14)
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with probability at least 1 — e™*/2 _ /7 /k?. The result follows by combining (C.5), (C.10)
and (C.14).

C.2.1.0.3 Proof of Corollary 4.8 This corollary can be directly justified from the Theorem
4.7.

C.2.1.04 Proof of Theorem 4.5 Denote by ,@ 40 the solution to the reduced penalization

problem with the oracle support:

beRk j=1

k
. )1
B0 = arg min {2y — XA°b||2 + ZP)"T(bj)} . (C.15)

As discussed in the proof of Theorem 4.7, if 7y, = 7/X > (1 — 6~1/2 — )2, then (4.12) is the

KKT condition and the TWIN estimator is unique with probability at least 1 — e m9%/2,

By Borell’s inequality, we know that with probability at least 1 — e /2,

n
1 X 50 2]|0o < max |21 g 22 < o(1+9)y/2logp. (C.16)
1<i<n =1

Observe that
X' X a0(Bao — Bao) = Xjo X po(Xjo X 10) (X po(y — X aoBae) — X/po2).

Conditional on z, the terms in X',z are distributed as i.i.d. centered Gaussian random

variables with variance || z||?/n. Write

X'z 2 ”\;g(gl,...,gk)’,

where (; arei.i.d. N(0,1) independent of ||z||. By Lemma C.5 we have,

P{”ZH > U\/ﬁ(l—i—ﬁ)} < 6—192ng2/2 and P{' /C12_|_..._|_C13 > \/%(1_1_19)} < e—k;ﬁQ/Q‘
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Thus with probability at least 1 — e=?*77°/2 — ¢=k0°/2,
| X oz|| < oVE( +9)% (C.17)

From the proof of Theorem 4.7, we know that if

18] > A+ 0/(2+49) log k(1 — \/e/d —9), Vje A°
and
P18 = 0(x), ¥j € A2, (C18)
then with probability at least 1 — e /2 _ \/rd/k?,

~

min sgn(f8;)8; = min 185 = (X 40 X 40) ™' Xjo 2]l 0o — | P3 - (1B; )] > 7. (C.19)

On the other hand, if (C.19) is true, then by the definition of TWIN-a and the uniqueness of

the estimator, we conclude that (C.18) holds. Combining (C.17) and (C.18), then
1X e (y = Xa0Bac) = Xgoz|| < IPA - (1Bac )| + 1 X 4o 2]l < V- 0(N) + (1 +9)°0Vk
with probability at least 1 — e=?°19°/2 — ¢=k0%/2 _ o=n9*/2 _ /7§ /k:0 By Lemma C 4,

1 X a0 (X o X 40) M| <

1
1—/e/6 -0

holds with probability at least 1 — e~™?”/2, Therefore, we have

| X o X a0 (Bae — Bao)lloo

= | X 1 X a0 (X o X 10) " HX o (y — Xn0Bao) — Xjo2)|| o
(C.20)
1X a0 (X 30 X a0) ™ (X po (y — X 40Ba0) — X'po2)||

< [2log(p— k)
n

< [0=0)VaTe—1] " o+ 9)” + o(N)] v/ 2Togp.
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with probability at least 1 — e~ "7"0*/2 — ¢=k9%/2 _ 9=19°/2 _ /7 /| Combining (C.16)
and (C.20), with probability at least 1 — e notV/2 _ o—k?/2 _ go—md?/2 m?/kﬂ,

1 X 50 (y — X 408.40)]l
< | X5 X a0 (Bao — Bao) oo + 1 X 5020 (C.21)
< {10 = 9)v/57e =117 o1+ 9)2 + o(N)] + o(1 +9) } /2Iogp.

Hence, by letting A > {[(1 — ¥)\/6/e — 1]71(1 + 9) + 1}(1 + 9)o\/2]log p, we complete the

proof.

C.2.1.0.5 Proof of Corollary 4.6 Note that \/§/¢ — 1 > /3 for ¢ < 1/4. The rest of the

proof follows directly from Theorem 4.5.

C.2.1.0.6 Proof of Theorem 4.9 For m > 1, we define a semi-norm for any v € R" as

[(Pa — Pao)v||
Jm

C(v;m,AO)EmaX{ :AOQAQ{I,...,p},\A\—m—i—k},

where P, is the orthogonal projection from R" to the span of {x; : j € A} and recall that
{x;} are columns of the design matrix X. Let {\(*) : 2 € [0, 00)} be a continuous path with
A0 = 400 and limy_,o0 A®) = 0 and B*) be the TWIN estimator corresponding to A = @),
Let 21 = 00,50{\® < max{(1 + 39)V1 — ed1o/2Tog p, 2[1 + 9 + /(e/d + 1)/2|¢(y; (k —
n)/2,A°)}} and ¥ > 0. Note that Py  satisfies A\(1 —t/(maA))4 < [P; (¢)| < A, where recall
that 7\ = 7/A.

By Lemma 1 and Remark 5 in Zhang (2010), together with Lemma C.4, we have that

with probability at least 1 — e m9%/2)

#{j ¢ A B £0) < Kok for0 <z <a,
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where K, is a constant satisfying
K, <[14+9+VA+K)eo P[1—9— /0 + K)eo— 12— 1/2. (C.22)
We further require that K* satisfies
(K + 1)k < (k+n)/2. (C.23)
A sufficient condition for the existence of K, satisfying (C.22) and (C.23) is by letting
T+9+ V1 +K)ed P [1—9— /(1 +K)ed~ 172 —1/2 < {(k+n)/2}/k — 1.
In order that the above inequality holds, it suffices to require
€/6 < 0.12.

We let

nz(1-0- VD) .

then from the proof of Theorem 4.7, we know (C.23) ensures the uniqueness of the TWIN
estimator. On the other hand, ((y; (n —k)/2, A°) = ((z; (n—k)/2, A°) as shown in the proof
of Theorem 6 in Zhang (2010). By Lemma 2 in Zhang (2010), we have that

_ ) _ 6/2
P{C(z,(n—k)/ZA)ga\/2logp9}21—m 0 € (0,1],

where py is defined as the solution of

21og fg — 1 — log(2log fig) = ﬁ {log ( (np__k’;’ ) 2) +log (;) } . (C.24)
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Therefore, we can let

A> max{(l +30)V1 — e6—1o\/2logp, 2[1 + 0 + /()6 + 1)/2]0\/210gﬁ9} ,
1B;] > YA + 01/ (2 4 49) log k(1 — /26712 — 9)~1.

From the proof of Theorem 4.7, it is known that the unique TWIN estimator ,@ = }%, the

oracle LSE defined in (C.6). When n is large, we have

p{A# A%} <B{B#p orsgn(B) #sgn() |

< e—ﬂz(n—k)02/2 + 26—71192/2 + m(p - k,)—ﬁ + \/7?19]{—19
N 0
(2logpg —142/(n — k) \/(n —k)n/2

Now let 6 = 1; it is known from (C.24) that when n is large,
_ 1 1
logpr = 5 [(1—¢)log(l—€)— (6 —€)log(d —e) — (1 —0)log(1—19)] + 5T o(1)
=&+ 5 +o))

where ¢ = [(1 — €)log(l —€) — (0 — €)log(d — €) — (1 — 9) log(1 — §)] /6.

C.2.1.0.7 Proof of Corollary 4.10 The corollary follows by directly verifying the condi-
tions of Theorem 4.9. In particular, note that ¢ = [(1 —¢) log(1 —€) — (§ —€) log(d —€) — (1 —
§) log(1—4)]/d increases as e decreases. Hence ¢ < log § '+ (671 +1)log(1—6)~! = &, which

is a constant. Then as p — oo, 0v/2logp > 4028 + 1 > 2[1 + 9 + /(€/5 + 1) /2]ov/2¢ + 1.

C.2.2 Proofs for Section C.1

Now we give proofs for estimation properties of TWIN under the orthogonal designs in
Section C.1. The proofs for results are organized in the following order: Theorem C.1,

Theorem C.2, and Theorem C.3.
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C.2.2.0.1 Proof of Theorem C.1 From the scale invariance, we only need to prove for

o = 1. By the max-min inequality (see, e.g., Johnstone (2017)), we have for any 9 > 0,

ooz sup EnlB—B[°> sup oozEnlB - 87 (C.25)
1Bllo<k ITT]jo<k

Here, II denotes any distribution on R? such that any realization 3 obeys ||3||o < k. Without
loss of generality, assume that p/k = 1/¢ is an integer since otherwise we can replace p
with p’ = k|p/k|, where |p/k| denotes the integer part of p/k, and let II be supported on

{1,...,p'}. We decompose {1,...,p} into k blocks as follows

(1,...,1/e}, {1e+1,...,2/ed, ... {(k—1)/e+1,....k/e},

and choose a particular prior II as to uniformly random select a coordinate in each block

and set its amplitude to 1/21og(1/¢). Then the total loss can be decomposed as 18— B2 =

L1+ ---+ Ly, where L; is the loss from coordinates on the jth block {(j —1)/e+1,...,j/€}.
We first prove forany j =1,...,k,

005E[L;] > 2(1 - ¢)* log(1/e). (C.26)

Without loss of generality, let j = 1 and I be the index in {1, ...,1/¢} whose amplitude is

set to y/2log(1/¢) by II. Observe that

1/e 1/e
E[L1] = ZE[@' — Bi]* = Z [(1 — €)Eg,—0[B7] + eEﬁi:m[ﬁi — B
=1

i=1
z 2 _ 2 _ 2

2By _ faogaglBr =PI =By pregrrg B = 1ly) — 115,

where the last step uses the fact E[3;|y] = \/2log(1/€)P(I = i]y). Now we only need to

study P(I = 1|y). Recall thatif I = 1, then y; = y/2log(1/e) + 21, y; = z; for2 <i < 1/e,
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and

e\/myl e\/mzl+21og(1/e)
Ve oV2lo(/u 5 o /2loa(1/0

1/e
= |1+ {(1/6 o 1)—l€—log(1/e) Zew/Qlog(l/e)zi}{(l/e - 1>6—log(l/e)—\/2log(1/e)z1}
=2

Pp{l = 1ly} =

By Jensen’s inequality and the independence among the z; terms, we have

EPr{l = 1|y}]
1/e

> [1 + E{(l/e - 1)—16—10g(1/e) Z e\/210g(1/e)zi}{(1/6 - 1)6_ log(1/€)—+/2log(1/€)z1 }]—1 =,
1=2

and similarly, E[Pp{I = 1|y}]? > 2. Then, (C.26) follows and by the independence of
L17 sy Lk/

sup oozEn A — B 2 2(1 — 2k log(1/e).
(ITTllo<k

We complete the proof by (C.29).

C.2.2.0.2 Proof of Theorem C.2 In this proof, we set o = 1 and assume without loss of

generality that §; > 0. Let the risk function be r(X, 7; 3;) = IE[EJ — B and r(\,7;8) =

1;:1 r(A, T3 55) = EHB — B|% Let k := k(\, 7) = minger{[t| + Py, ([t])}. Foragivenz € R,
the TWIN estimator /3 (z) is the solution of

B(x) = — P (8 :

Bx) = sgn(a) (le| - K (1B@)D) ,

Denote ¢(-) as the standard normal density function. By breaking the range of integration

into regions (—oo, —k), [—K, k], (k, 00), we have

—K

i) = [ o+ BB - 8] oo - )z
o0 (C.27)

) K 00 , N 2
48 [ s—ppint [ o= PLB@D) - 8] ol - 5
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First, we consider 3; = 0. Note that A = O(k) and we can rewrite (C.27) as

im0 =2 [ o= PL(B@D)] oa)da
<1 [T aola)dn 4 [ BB @DPows
<4 /Oo 22 p(x)dr + 4N? /oo o(z)dx

=4k¢(k) ask — oo.

where the last step is due to [ ¢(z)dz < k™ (k).

Then, we consider 0 < 3; < k where (C.27) can be bounded by

) Bj+r Kk—Pj . 2
i) <8 [ st 1- [ [or PG+ 5] dle)da
Bj—r —K—P;
<1+6; (z)dz < 1+ K>
Bj—k

For the last case, we consider 3; > k. Set « = ; — A > 0 and define g(a) = (x +

@)? [ ¢(x)dx. We have

g (a) = (A + a)é(a)h(a), where h(a) =2 (/00 ¢(w)dac/<z§(a)> - K—a,

and h(0) = v2m — A\. When A > /27, then h(0) < 0. By direct calculation and the fact that
[2 ¢(x)de < ¢(a)/, we know that h is decreasing and hence h(a) < 0 on [0, 00). Thus,
g(a) < g(0) = k?/2. Now, (C.27) can be bounded by

Bit+r 0 —~ 2
i) <8 [ st r- [ [or PGt 5] dle)ds
Bi—k —Kk—P3;
<1+6; (z)dz < 1+ K%/2.

Bj—kK
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Therefore, (A, 7; 3;) <1+ r? for any f; # 0 and we can bound the risk as follows

T()\,T; /3) < (p - k) : 7"()\77'; O) +k- Supr()‘aT;/Bj)
Bi (C.28)

< Apro(k) + k(k* +1).
Let k = (1 — €)1/21log(1/e). Then ¢(r) = ¢(0)e /2 = ¢(0)e(1=* Consequently,

sup (A, 7;8) < 4p(1 —€)v/2log(1/e) - gi)(())e(l_e)2 + k[2(1 — €)?log(1/€) + 1]

IBllo<k

— — € 2 0 € 2
= (1 —€)"2klog(1/e¢) <1+ Jrlog(1/eel-1—o(1 —e)> '

This completes the proof.

C.2.2.0.3 Proof of Theorem C.3 The proof here is the same as the proof for Theorem C.2
except that we should let minyeg{[t| + Py ,([t[)} = o/2log(p/k) in the risk upper bound
(C.28).

C.2.3 Proofs for Section 4.4

In this section, we present proofs for the estimation properties of TWIN under the random
Gaussian designs discussed in Section 4.4. The proofs for results are organized in the

following order: Theorem 4.11, Theorem 4.12, and Theorem 4.14.

C.2.3.0.1 Proof of Theorem 4.11 From the scale invariance, we only need to prove for

o = 1. By the max-min inequality , we have for any ¢ > 0,

. 18- 811 e L1887
e usn‘tzkp{mga/a ’ “9} % o "B {zmga/) o ”9}' .

Here, IT denotes the prior on R? such that any realization 3 obeys ||3|0 < k, and Pr{-}

denotes that 3 follows the prior II. As in the proof of Theorem C.1, we assume that p/k is
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an integer and then decompose {1,...,p} into k blocks:

(1,...,1/e}, {1/e+1,...,2/e}, ..., {(k=1)/e+1,... k/e}.

Let L; be the loss from coordinates on the jth block {(j —1)/e+1,...,j/e} forj =1,... k.
Define the prior II such that we select a coordinate in each block at uniformly random and

set the selected coordinate’s amplitude to

= +/2log(1/e) — log \/2log(1/e). (C.30)

For any 9 > 0, there exists ¢ such that for any 0 < € < ¢y,
2(1 — ) log(1/e) < (1 —9/2)t2.

From (C.29), it suffices to derive the following result in order to complete the proof for

Theorem 4.11:

sup cozPn {Hg B2/ (kt?) > 1 — 19/2} (C.31)
o<k

We first prove that for any v > 0,

sup oogPr {L1/t7 > 1—9/2} = 1. (C.32)
0<e<1

Let I be the indexin {1, ..., 1/¢} whose amplitude is set to t, by II. Note that L = ./ 52+

t2 — 2t.3;, then
_ Zl/e 52 +19t2
At,

Li<(1-9/2) — (C.33)

Denote D as the set of indices i € {1,...,1/e} such that 3; > (237 52 + 9¢2)/(4t,). Let

Bmin be the minimum value of these BZ and then

F 251/ B2 4 g2 _ 2ADIB, + 08 24/2|D|B2, - V¢2

4t, = 4t, = 4t, ’
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which gives |D| < 2971, Observe that we can rewrite the linear equation as follows:
y=XpB+2z=XxWpW 4+ x-Wg-0) 4 »

where X (1) and B(!) are the first 1/¢ columns of X and S, respectively. Then
X~ WB™W 42~ N(O, (£2(k = 1)/n+ 1)),

and X~ (W@~ 1 2 is independent of X (V) and BV, Since t2(k — 1)/n = t2¢/5 + op(t2), we
can write

y=XWaW 4 (t.\/e/6+1)-Z, whereZ ~ N(0,1).
By conditioning on X and y, then

>iep exp{(texiy — t2||zi]|*/2) /(tey/e/0 + 1)°

P {Li/t? <1-9/2} =Pu{l € D} =
nily/ 2} =FuileD) SO exp{(tewly — 2] |? /2/teF+1

which implies that Pr; (L1 /t2 < (1 — ¥/2)) is maximized if D is the set of indices i corre-
sponding to the largest values of (t.xly — t2||x;]|?/2)/(te\/€/5 + 1)?. Hence,

P {L1/t? <1—9/2} <P {z)y —t||lz/]|?>/2 is at least the [20~ '|th largest} .  (C.34)

We now study that right-hand side of (C.34). Without loss of generality, let I = 1. Observe
that fori # 1,

(@hy — tellill?/2) — (z1y — tellz1]*/2)

= [€i((teV/e/S +1) - 2+ temr) — te|@il|*/2] = [(te/€/3 + 1)) Z + tel|za > /2].

Denote C; == )z and ||z ||> = C1/+/n, then

(ter/€/6 + D)z + te||x1]|2/2 = (ten/e/d + 1) - CL + (1 + Ca//n)te /2. (C.35)
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Note that

x((ten/€/0+1) - Z + tewy) — t||z1]|?/2

=d H(tex/ 6/(5 + 1) . g-i- t€w1||.73i71 - tel’?,1/2 - t€|]a:i,_1H2/2,

(C.36)

where x; _ is x; without the entry x; 1. Now we study the terms on the right-hand side of
(C.36) separately. First, since || x; —1]|* = 27, + - -+ 7, —p 1, we know that with probability

approaching one,

#{2§i§1/e:||:13i7_1]gl}_1‘<cl € (C.37)

1/e—1 2|~ 2\ 1—¢€
where c; is some positive constant. Using the normal approximation, we know that, for
example, if ¢; = 3, then (C.37) holds with probability equals to 99.7%

Second, observe that

P{ e xilzﬂog(l/e)}gé_;[l—2{1—¢( 210g(1/€))}]1/6

1<i<1/e n

1 1 ¢(y/2log(1/e)) 1
<l (Vo)) = SRRl ~ Vevame

which implies

max z?; < 2log(1/e) holds with probability > 1 — [2y/7log(1/€)] . (C.38)
1<i<l/e n
Third, it is clear that

[(tev/€/0 +1) - 2+t || = [[(Ee/€/0 + 1) - Z]| — te[| 2
> (ten/€/0+1) - /n —t. holds with probability one.

(C.39)

Combining (C.37), (C.38), and (C.39), with probability at least 1 — [21/7 log(1/€)] ", in order

to prove the supreme of the right-hand side of (C.34) over 0 < ¢ < 1 is zero, it suffices to
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show that supgc,<; P{Q < 297!} =0, where

B C fe—1 a/TJe—1
Q:#{2SZS 5+ 5 :

Vi > [te + “Ogrfl/e) + (te/e/0+1)C1 + Cj%]/ [(te\/e/TH 1) - te/\/ﬁ] }

Asn — oo,

telog(1/e) Cat.
[te+n+(tem+1)cl+ \;ﬁ}/ [(te\/6/75+ 1) —te/\/ﬁ}
— (Ve/s+t7H 0y,

where C = /2 is defined in (C.35). Let §; = /nz;1 ~ N(0,1). Then forany i > 1,

, —1y—1 _1_ te/V2
P{§z>(Je/7+te> +Cl}f1 ¢<t6¢675+1>

o eV/e/o+1 1 /2 ’
= te/V2 R tery/e/d +1

for some constant ¢, and we have

o fefs> s )]
= sup {[1 -0 (\/m)] '6_1} = +o00.

0<e<1

(C.40)
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Observe that

0<e<1 2 2 19
2_P£2>\/7+Cl 1/673 c1\/1/57—1) )

\/P£z>\ﬁ+01 1—P(& > \/6/e+C1)] - (X524 \/2/67—1)

> sup @ (\/[p(§2 > M+C1)-(1/€2_3+61\/1/6—_1)

> 1 — 00p<e<1® (

2

) w )
VB > VT + v - (st 1 AT

=1

where the last step is by (C.40). Hence, supy<.<; P{Q < 207'} = 0 and by (C.34), we
complete the proof for (C.32).

Now we complete the proof for (C.31) by observing that

Pr {118 - BI2/(kt2) > 1 - 9/2} > 1— [P {L1/2 <1-v/2}]"
>1—k([1-Py{Li/tZ >1-9/2}] (C41)

= kP {Li/t2 >1-19/2} — (k- 1),

and ||II||p < k is equivalent to 0 < e < 1. Then, we obtain (C.31) by applying (C.32) to (C.41).

This completes the proof.

C.2.3.0.2 Proof of Theorem 4.12 Define

beRk j=1

Bao = argmm{,@Ao +XAoz—bH2+ZPAT (16 )}

For any j € A°, EADJ =B+ Xjz — P)l\jT(|ng7j|)Sgn(BJAo’j) and

Bae; = Bl = | Xjz = Py 1 (18a0 j)sgn(Bac j)| < |Xjz| + [P - (|Bac5])].
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Let 7, = 7/\ > (1 — §~Y/2 — )72, As shown in the proof of Theorem 4.5, the TWIN-a
estimator is unique with probability at least 1 — o922, By (C.21), since A = {[(1 —¥)4/d/e—
1711 +9) + 1}(1 + 9)o/2log p, we have

18 — Bl = [|Bac — Baell,

and

PP (180D < [(V6/e = 1) +1]o/2logp} — 1.

From the proof of Theorem 4.5, we know | X z| = op{[(\/0/€ — 1)1 +1]o\/2log p} and then

1Bac — Bao|?
P { [(m )T 1 12207k log p < 1} — 1. (C.42)

Now we show that

1840 — Baol?
B3 ) 12
(17 /72

<1lp;—1 (C.43)
202k logp

By definition of B 40 and B 10, they minimize the following L;(b) and Lo(b) with b € R¥,

respectively,

1
La(b) = | X a0 (Bac — b)||? + 2’ X 40 (Bao — +ZP,\T 1b;1),
(C.44)
1
Lo(b) == §HﬁAo—b|]2+zXAo Bao — b) ZPM 1b;1).

By Lemma C.4, we know that all the eigenvalues of X'j, X 40 liein (1 — /€/d,1 + +/€/9)
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with overwhelming probability. Thus,

Ve/d

Lo(Bao) — THﬂAO — Bao|> < L1(Bao) < La(Bao) +

Vel

— O_~02
5 1840 — Baoll”,

~ e/ ~ ~ ~ \/€/0 ~
Ly(Bae) — ;/HﬁAo — Bae||* < L1(Bao) < Lo(Bao) + ;/HﬁAo — Bae|*.

Thus,

~ o — 3 ° 2 ~ ~
Ly(Bao) + \/E/THﬁAQ Bl > L1(Bae) > L1(Bao)

~ C.45
50y VLB~ Bl .
- |

> Lo(Bae

Note that 7, > (1 —6~/2 —9)=2 > 1, then L is strongly convex and

(1 -1 )B4 — 3Ao|l2_

Loy(Bao) > La(Bao) + 5

Plugging the above formula into the right-hand side of (C.45) gives

(L= DIBae = Bacll® _ V/e/0l1Bas = Bael® _ V/e/b]1Bas — Bael?
2 2 - 2 '

Since \/€/0|B0 — Baeo||2/2 < \/€/5||Bao — Baco||2 + \/€/8||Bac — Baol|?, we have

3/
—T =20

Together with (C.42), then (C.43) follows. Now combining (C.42) with (C.43), we complete

1Bae — Bao|®.

1840 — Bao* < .

the proof for this theorem.

C.2.3.0.3 Proof of Corollary 4.13 Since \/6/e—1 > Viéfore<1 /4and now A = Ay univ =

(1+0-Y2)0\/2Tog p, we have IP’{|P)’\7T(|EAU7]~\)| < (1+67Y2)0y/2Togp} — 1. Following the

proof of Theorem 4.12, we obtain that with probability approaching one,

1Bae — Baol> < (14 67%)%20%k log p,
3(1+01/2)?

202k log p.
(1 - )‘aﬂmiVT;&niv)m —2

1Ba0 — Bao||* <
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Then,

18— BI* = [|Bac — Bao|®

2
= 2 +1p (1+671%)%20%k 10
B [(1 Aa,univT;&niV)(;l/QE*l/Q — 2]1/2 &P
2
\/g —1/2\2¢9 2
- {[(1'98—5—1/2)6—1/2—2]1/2 +1p (1+072)%20%k logp,

which completes the proof.

C.2.3.04 Proofof Theorem4.14 We follow the proof of Theorem4.12. By (C.9), P{|P; (| B a041)] <
o\/1 —¢/5\/2Togp} — 1. Recall that L1 (b) and Ly (b) are defined in (C.44). Note that Ls(-)

is strongly convex on a open connected neighborhood containing Ba- and B0 where

P, () = 0. This implies

| 1B = Bl

La(Bae) > La(Bao) .

Plugging the above formula into the right-hand side of (C.45) gives

1Bac = Bacll?> _ \/e/31Bac = Baol® _ //5|Bac — Bacll?
2 2 - 2 '

Thus,
1— 2\/6/75H16A0 /BAOH :

The rest of proof follows the idea in the proof of Theorem 4.12.

1840 — Bae|* <

C.2.3.0.5 Proofof Corollary4.15 Since A = Ay univ = 0'v/2log p, we have P{| P} (\BAOJ N <
ov/2logp} — 1. Following the proof of Theorem 4.12, we obtain that with probability ap-

proaching to one,

1Bae — Bac||* < 20%klogp, [|Bas — Bac|* < 20°k log p.

3
Jile—2
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Then,
2

3
V3 +1| 202%klogp,

(6-1/2¢-1/2 — 2)1/2

18— B> = [|Bac — Bao? <

which completes the proof.

C.3 Key Lemmas

Lemma C.4. Forany A C {1,...,p} with |A| < n, the largest and smallest eigenvalues of X'y X 4
satisfy for any ¥ > 0,

Amax(X4X4) < 1+ V]A]/n4+9)2, Anin(X41X4) > (1 — /]A|/n — 9)?

with probability at least 1 — ="/,

Proof. Classical theory on Wishart matrices gives that the smallest singular value of X 4 is
larger than 1 — /[A]/n — ¥ with probability at least 1 — e~"?”/2 and the largest singular
value of X 4 is smaller than 1 + /| A|/n + ¥ with probability at least 1 — e~ 9%/2 ; see, for

example, Vershynin (2012). We complete the proof by noticing that n/p — 4. O

For ease of presentation of our proofs, we re-state in Lemmas C.5 and C.6 two lemmas

presented in the Supplement to Su et al. (2017). We use these lemmas throughout our proofs.

Lemma C.5. For any positive integer d and ¥ > 0, we have
P(y/x3 > Vd+09) < e P2
Lemma C.6. For any positive integer d and any ¥ > 0, we have

P (x3 < 9d) < (e9)¥?.
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C.4 Coordinate Descent Algorithms for TWIN

In order to develop algorithms for computation of penalized regression problems with
TWIN penalties, we focus on minimization of the following univariate penalized regression
problem:

T() = 5(z = D) + P (), (C46)

where z = 2’y. In the typical coordinate descent fashion, we propose to loop through
each of the variables and minimize with respect to its corresponding coefficient and hence
the emphasis on (C.46). A coordinate descent algorithm for the TWIN class of penalties is
described in Algorithm 2. Algorithm 2 follows Algorithm 1 of Mazumder et al. (2011) for
nonconvex penalties with a few modifications. It is known that a cyclic coordinate descent
algorithm for penalties with discontinuous thresholding operations may not be convergent
(Mazumder et al., 2011; Patrascu and Necoara, 2015). However, in practice we find with a
few modifications, coordinate descent can be quite effective. In particular, similar to ideas
in Patrascu and Necoara (2015) we randomize the coordinate updates instead of cycling
through in a deterministic ordering of variables. Secondly, we do not take full steps in
the direction of the univariate minimizers of (C.46). Instead, we only take partial steps,
as guided by the parameter « in Algorithm 2. We find that choosing oo = 1/2 works well
in practice. This encourages less “greedy” updates and thus the iterates are less likely to
get stuck in poor local minima. Studying the theoretical properties of this approach is an
interesting direction of future work. We also note that since the TWIN penalty is non-convex,
two different random seeds could potentially yield different local solutions. As such, one
potential optimization strategy is to run Algorithm 2 several times and choose the solution
with the best loss.

Algorithm 2 works well when the sample size is not too small, however, we have found
that with very small sample sizes TWIN, and in particular TWIN-b, can be unstable when 7
and X are such that TWIN is discontinuous. To mitigate instability in these scenarios, we

developed a coordinate descent-based hybrid local linear approximation (LLA) algorithm
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based on ideas from the local linear approximation algorithm of Zou and Li (2008). The
basic idea is to construct a local linear approximation to the penalty function for small to

medium sized coefficients:

Py~ (|bj]) if b; > 7 and P_(|b;]) >0
P)\,T(‘bj’) ~

Pr+(1851) + P - (18;1)(1bj — [B;]]) otherwise, for b; =~ f;.

At iteration £ we then use this approximation to replace minimization of C.46 with mini-

mization of

(2 — ;)% + Py, (|b;]) if b; > 7 and P!_([b;]) > 0
J(bj) = ’ e AT (C.47)

(z —bj)* + P§7T(|E§k71)\)]bj| otherwise.

l
D=

N[

The resulting algorithm, which we call the MCLLA algorithm for mixed coordinate local

linear approximation, is described in Algorithm 3.

C.5 Additional Simulation Results

C.5.1 Simulation Illustrating Universal Tuning Parameters

In this section we conduct a simulation to evaluate the finite sample validity of the universal
tuning parameters A\, univ, A\puniv, and Tuniy from Corollaries 4.6 and 4.8 from the main
text. We simulate data under model (4.1) and generate X from a multivariate Gaussian
distribution with identity covariance matrix. The nonzero terms in 3 are generated from
independent uniform random variables on [—2, —1] U [1, 2]. The tuning parameters for both
TWIN-a and TWIN-b are chosen as the universal values from Corollaries 4.6 and 4.8 from
the main text. We vary the sample size n, the number of variables p, the number of active
variables £, and the standard deviation o of the error term. For implementation purposes, we
take d to be n/p instead of the limit of n/p. In this simulation we use the true data-generating

noise level o, however it can be straightforwardly estimated using the approach presented in
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Algorithm 2 Coordinate descent for (4.2) with TWIN penalties

1. Input a grid of decreasing A values {\o, ..., Ar—1} and a grid of decreasing 7 values
{10,70/2,70/2%,...,70/27 1}

2. For each combination (1q/2¢, \¢) € {70,70/2,70/22,...,70/27 7'} x {Xo, ..., AL_1}, re-
peat the following procedure:

(i) At iteration k loop through the following univariate updates for each j €
Pk(lv <o D )

g](-k)’T S (Z(yz — )i, )\é>

i=1

B aBPT 4 (1 - a) [ - 1EVT =0, B0 —0)FtY] (ca)
where @i =D i 2B Y, SH(B,\) = argming J(), where J () is defined in
(C46), o € (0,1], and Px(1,...,p) are permutations of the variable indexes, until
the update vectors ,E-f = (51, e ,B'p) converge to 3*. The term 1 — I(Bj(.k_l%T =

0, §§k)’T = 0) is to allow estimates to be exactly 0 if two successive thresholding
iterates are 0. The permutations Pj(1,...,p) may be identity mappings, i.e.
Pr(1,...,p) = (1,...,p), and thus result in a repeated ordered cycling through
the variables, but we find that uniformly at random permutations are more
effective.

(i) Set B, « 3"

Section 5 of Zhang (2010). This simulation is low-dimensional, however in high-dimensional
scenarios, the degrees of freedom must be estimated. The approach of Theorems 7 and 8 of
Zhang (2010) can be extended to TWIN for such a purpose.

The simulation is replicated 500 times. For each simulation we record the resulting
FDR and TDR values. The average FDR and TDR values for simulations with n = 1000
are presented in Table C.1 and for n = 2000 in Table C.2. In almost all settings the FDR is
nearly zero and the TDR is quite high, even under the more difficult scenarios with large k&
and large o. The results improve across all settings as the sample size increases. From the
results, it appears that the universal tuning parameter values are conservative in terms of

the FDR, rarely yielding any false discoveries.
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Algorithm 3 Mixed coordinate local linear approximation descent for (4.2) with TWIN
penalties

1. Input a grid of decreasing A values {\o, ..., Ar—1} and a grid of decreasing 7 values
{7'0, 70/2, 7'0/22, R ,TQ/QT_I}.

2. For each combination (79/2%, \¢) € {70,70/2,70/2%,...,70/27 71} x {Xo,..., Ap_1}, re-
peat the following procedure:

(i) At iteration k loop through the following univariate updates for each j €
Pr(1,...,p)

gj(k)’T — Snn <Z(yi — )i, Ae)
=1
3}“ “ 043](-k)’T +(1 - [(1 - I(gj(-k_lm = 07§§k)’T = 0))5](-k_1)

where QZ =D mj xik,@/gf*l), Sro (B,\) = argming J(B), where J(3) is defined
in (C.47), a € (0,1], and Pk(1,...,p) are permutations of the variable indexes,
until the update vectors 3 = (51, ..., 3,) converge to 3*.

(i) Set B, < B*

C.5.2 Additional Simulation Settings

In this section we provide additional simulation results extending the simulations from
Section 5.3 of the main text. We keep the simulation settings the same as in the main text
with a few changes. We increase the dimension to p = 2000 and use sample sizes of 250
and 500. We generate data under Models 1 and 2 and under two similar models with an
increased number of active variables (k = 100). In this simulation we generate the covariates
with a block diagonal covariance matrix where each block is size 1000 and is constructed
in the same way as the full covariance matrix %, i.e. with element in the ith row and jth
column equal to pli_j |, In addition to Models 1 and 2 from Section 5 of the main text, we
also simulate data under the following two models, Models 5 and 6, which both have 100

active variables:

Model 5 A randomly chosen 100 elements of 3 are generated as independent uniform

random variables on [—2,0.5] U [0.5, 2] and the rest are 0.
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TWIN-a TWIN-b

FDR TDR FDR TDR
n P k o Mean SD Mean SD Mean SD Mean SD
1000 100 10 1 0.00000 0.00000 0.95700 0.06972 0.00000 0.00000 0.95740 0.06939
3 0.00000 0.00000 0.93380 0.07855 0.00000 0.00000 0.93380 0.07855
5 0.00000 0.00000 0.91700 0.08358 0.00000 0.00000 0.91720 0.08365
50 1 0.00000 0.00000 0.88224 0.04798 0.00000 0.00000 0.88260 0.04782
3 0.00000 0.00000 0.87516 0.05047 0.00000 0.00000 0.87552 0.05026
5 0.00023 0.00225 0.85768 0.05181 0.00023 0.00225 0.85812 0.05144
100 1 0.00000 0.00000 0.81698 0.04142 0.00000 0.00000 0.81750 0.04130
3 0.00000 0.00000 0.80868 0.04139 0.00000 0.00000 0.80910 0.04149
5 0.00000 0.00000 0.80046 0.04237 0.00000 0.00000 0.80080 0.04217
500 10 1 0.00000 0.00000 0.95340 0.07056 0.00000 0.00000 0.95360 0.07055
3 0.00000 0.00000 0.94180 0.07045 0.00000 0.00000 0.94180 0.07045
5 0.00000 0.00000 0.92480 0.08318 0.00000 0.00000 0.92480 0.08318
50 1 0.00018 0.00205 0.88124 0.05069 0.00018 0.00205 0.88128 0.05069
3 0.00044 0.00310 0.87604 0.05143 0.00044 0.00310 0.87604 0.05143
5 0.00244 0.00723 0.86428 0.05627 0.00244 0.00723 0.86432 0.05633
100 1 0.00720 0.00929 0.81198 0.04427 0.00720 0.00929 0.81200 0.04423
3 0.00998 0.01103 0.81218 0.04226 0.01000 0.01105 0.81222 0.04230
5 0.01958 0.01593 0.79904 0.04292 0.01958 0.01593 0.79908 0.04296

Table C.1: FDR and TDR averaged over 500 simulation replications with sample sizes
n = 1000 and tuning parameters set as their universal values. The values in the “SD”
columns are standard deviations, not standard errors.

Model 6 A randomly chosen 100 elements of 3 are (—0.975)7 ! for j = 1,...,100 and the

rest are 0.

The results from these simulations are consistent with the simulation results from the

main text and thus we do not discuss them in-depth.

C.5.3 Extensive Evaluation of the TWIN’s 7 Tuning Parameter

In this simulation we present expanded results comparing TWIN with different values
for the 7 tuning parameter. In particular, we present simulation studies under all of the
simulation settings described in Section 5 of the main text. The FDR-TPR results for TWIN-a
are presented in Figures C.9, C.10, C.11, and C.12 and the RMSE-model size results for
TWIN-a are presented in Figures C.13, C.14, C.15, and C.16. Results for TWIN-b mirror
results for TWIN-a and are thus not included, but can be made available by contacting the

authors. The FDR-TPR results for TWIN-b are presented in Figures C.17, C.18, C.19, and
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TWIN-a TWIN-b

FDR TDR FDR TDR
n P k o Mean SD Mean SD Mean SD Mean SD
2000 100 10 1 0.00000 0.00000 0.96900 0.05608 0.00000 0.00000 0.97040 0.05376
3 0.00000 0.00000 0.95620 0.06626 0.00000 0.00000 0.95700 0.06557
5 0.00000 0.00000 0.94360 0.06978 0.00000 0.00000 0.94480 0.06930
50 1 0.00000 0.00000 0.92192 0.03920 0.00000 0.00000 0.92252 0.03904
3 0.00000 0.00000 0.91928 0.04208 0.00000 0.00000 0.91976 0.04215
5 0.00000 0.00000 0.90976 0.04200 0.00000 0.00000 0.91024 0.04187
100 1 0.00000 0.00000 0.88312 0.03750 0.00000 0.00000 0.88374 0.03740
3 0.00000 0.00000 0.87766 0.03623 0.00000 0.00000 0.87814 0.03618
5 0.00000 0.00000 0.87062 0.03471 0.00000 0.00000 0.87120 0.03464
500 10 1 0.00000 0.00000 0.97300 0.05382 0.00000 0.00000 0.97300 0.05382
3 0.00000 0.00000 0.96040 0.05830 0.00000 0.00000 0.96040 0.05830
5 0.00000 0.00000 0.94940 0.06594 0.00000 0.00000 0.94940 0.06594
50 1 0.00000 0.00000 0.92344 0.04067 0.00000 0.00000 0.92348 0.04067
3 0.00000 0.00000 0.91752 0.03801 0.00000 0.00000 0.91752 0.03801
5 0.00000 0.00000 0.90772 0.04513 0.00000 0.00000 0.90788 0.04499
100 1 0.00006 0.00083 0.87956 0.03699 0.00006 0.00083 0.87964 0.03701
3 0.00007 0.00088 0.88002 0.03524 0.00007 0.00088 0.88016 0.03521
5 0.00032 0.00224 0.87226 0.03451 0.00032 0.00224 0.87242 0.03445

Table C.2: FDR and TDR averaged over 500 simulation replications with sample sizes
n = 2000 and tuning parameters set as their universal values. The values in the “SD”
columns are standard deviations, not standard errors.

C.20. For the sake of space, results for prediction performance for TWIN-b are left out, but

can be provided by contacting the authors.

C.54 Remaining Prediction Results from Main Text

In this section we include in Figure C.21 the prediction results under Models 3 and 4 that

were excluded from the main text.
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Figure C.1: The results above are for a simulation with data generated under Model 1 with
p = 2000.
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Figure C.6: The results above are for a simulation with data generated under Model 2 with
p = 2000.
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Figure C.7: The results above are for a simulation with data generated under Model 5 with
p = 2000.
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Figure C.8: The results above are for a simulation with data generated under Model 6 with
p = 2000.
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Figure C.9: The results above are for a simulation for TWIN-a with data generated under
Model 1.
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Figure C.10: The results above are for a simulation for TWIN-a with data generated under
Model 2 with p = 1000.
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Figure C.11: The results above are for a simulation for TWIN-a with data generated under
Model 3 with p = 1000.
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Figure C.12: The results above are for a simulation for TWIN-a with data generated under
Model 4 with p = 1000.
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Figure C.13: The results above are for a simulation for TWIN-a with data generated under
Model 1 with p = 1000.
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Figure C.14: The results above are for a simulation for TWIN-a with data generated under
Model 2 with p = 1000.
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Figure C.15: The results above are for a simulation for TWIN-a with data generated under
Model 3 with p = 1000.
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Figure C.16: The results above are for a simulation for TWIN-a with data generated under
Model 4 with p = 1000.
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Figure C.17: The results above are for a simulation for TWIN-b with data generated under
Model 1.
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Figure C.18: The results above are for a simulation for TWIN-b with data generated under
Model 2 with p = 1000.
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Figure C.19: The results above are for a simulation for TWIN-b with data generated under
Model 3 with p = 1000.
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Figure C.20: The results above are for a simulation for TWIN-b with data generated under
Model 4 with p = 1000.
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Figure C.21: The results above are for a simulation with data generated under Model 3 (top
panel) and Model 4 (bottom panel) with p = 1000.
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Appendix D

Appendix For: Towards Theoretical
Understanding of Large Batch
Training in Stochastic Gradient

Descent

D.1 Proof of (5.2)

For the first part, without less of generality, we consider w is in any bounded domain of R.

Then
VL(W) = L R[Ly(w)] = lim & {E[L(w + )] ~ ElLy(w)]}
~ Jim E { Ln(w + h}z = Ln(w) } = lim E{VL,(w + (1))}

where the last step is by the mean value theorem with some 0 < 7(h) < h. Due to continuity

of VL,,, we can use the dominated convergence theorem and have

lim E{VL,(w +7(h)} =E {fllig% VLy(w+ T(h))} =E{VL,(w)}.
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This completes the proof of the first part. By assuming the iid of the data, we have Var[g(¥)] =

M~1o?(w). This completes the proof of the second part.

D.2 Proof of Lemma 5.1

We start to consider when (w) = (3 is a constant and follow the strategy in Kolpas et al.
(2007) to derive the Fokker-Planck equation. First, consider W (¢) = W (¢) € R. Note that for
SGD the corresponding W (t) is a Markov process, then the Chapman-Kolmogorov equation

gives

+oo
p (W (t3)|W(t1)) =/ p (W (t3)[W(t2) = w)p (W(t2) = w|W(t)) dw.

— 00

Consider the integral

+oo
I= / h(w)0p(w, t|W)dw,

—0o0

where h(w) is a smooth function with compact support. Observe that

+o00 too B
[ ot wne = g [ hy (Pt A Zp 09,
At—0 J_ At

—00 [e.e]

Letting Z be an intermediate point. Applying the Chapman-Kolmogorov identity on the

right hand side yields

lim </+°O h(w) /+Oop(w,At]Z)p(Z,t]W)dZdw - /W h(w)p(w,tyvv)dw> .

At—0 At —00 —o0 —00

By changing the limits of integration in the first term and letting w approach Z in the second

term, we obtain

(] ) [ ptw A2) 0w - M2)dudz).

—00 —0o0
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Expand h(w) as a Taylor series about Z, we can write the above integral as

lim /%o z t|W)/+OO (w.802)3 " 10 (2) = D" gupaz
AtS0 A o P oo P — n! was

Now we define the function

11 [*o
DM (7)) = A / plw, At|Z)(w — Z)"dw.
° —00

We can write the integral I as

+oo +o0 00
/ h(w)@tp(w,t]W)dw:/ p(Z, W) > DM (Z2)h ™ (2)dz.

—00 —00 n—1

Integrating by parts n times gives

Ip(w,t) [ (Z)p(Z, t]W)| .

oz

Let DU (w) = —L(w), D@ (w) = —~(t)3/[2M (t)] and D™ (w) = 0 for all n. > 3, the above

equation yields

atp(wv t) =

0 0
o V@l 0]+ 50 | ZE w0

which is the Fokker-Planck equation in one variable. For the multidimensional case W =

Wi, Wa,...,W,) € RP, the above procedure can be easily generalized to get
P P y & &

" e

(D.1)

om(w,) =Y 8‘; VL) + 3
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Since W(0) = wy, p(w,0) = 6(wp). This completes the derivation of the Fokker-Planck

equation for constant 3(w) = 3. For deriving (5.5), we can apply (D.1) and notice that

AOBw) T [A)Bw)
V[ DM (1) p} ‘V[ 2M (1)

This completes the proof.

D.3 Discussion on the Main Assumptions (A.1) — (A.3).

We verify (A.1) and (A.2) for the L, loss and the mean cross entropy loss. Denote by
{(xn,yn),1 < n < N} the set of training data. Without loss of generality, consider
Var[y, |x,] = 1.
First, we consider the Ls loss: L(w) = (w — w) "E[x,x,) ]|(w — w°) + 1. By assumption
that o2 (w) is positive definite, we have
lim  L(w)> lim A {E[x.x, ]}Hw—w"?+1

[wl|—=+o00 wll=oo

(D.2)
> lim Awin{Ebax] w22 — [wO]2/2] + 1 = +oc,

wll=too

where A\yin{-} denotes the minimal eigenvalue. Note that

/ L) dyy = / ¢~ (w—wO) TEx,x | (w—w0)-1

< / ¢~ Amin (EBux T HIWIZ/2- w0 2/20-1 4 o
This proves (A.1). To prove (A.2), we note that
IVL(w)[?/2 = 2(w — w°) {E[xnx,, ]} (W — w?),

and

V- VL(w) = Tr{E[x,x, ]},
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and similarly to (D.2) we can prove

lim {||VL(w)|]?)/2 -V VL(w)} = +o0,

[wl—=-+oc

and

lim {V-VL(w)/||[VL(w)|*} = 0.

[[wl|—=+o0

The assumption (A.3) can be verified straightforwardly as (A.2).
Second, we consider the mean cross entropy loss regularized with the /5 penalty for
logistic regression. Without loss of generality, we only consider the binary classification:

L(w) =E[-y,logy, — (1 — yn)log(1l — ¥,)] + A[|[w||? with ¥, = 1/(1 + e""*»). Note that

lim L(w) > A|wl|? = +o0, /eL<W>dw < /eAHWHQdW < +o0.

[w([—=+oc

This proves (A.1). To prove (A.2), note that VL(w) = E[—x,y, + x,/(1 + e V*")] + 2w

—W-Xn

and —V - VL(W) = g5 wmz [2P(yn = 1) — 1]Tr(x,x,) ). Since A||w||> — oo, we have that
IVL(w)||?/2 -V -VL(w) = coand V- VL(w)/||VL(w)|> = 0 as ||w]|| — oo. Similarly, the

assumption (A.3) can be verified as (A.2). This completes the proof.

D.4 Proof of Lemma 5.3

Let n(t) = 2M(t)/[y(t)B]. By setting d;p = 0, it can be verified that pe(w) = xe Teel(W)
satisfies
o

V- (VL(w)p+ "0

Vp) = 0.

Since (w) = 3 and the assumption (A.1) ensures that e~7=~(W) is well-defined, p., (W) is a

stationary solution.
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D.5 Proof of Theorem 5.4

Parallel to the notation of p., (W) = ke el W) we let
p(w,t) = n(t)e_”(t)L(w),

where n(t) = %ﬁ(z) and k(t) is a time-dependent normalization factor such that [ p(w, t)dw =

g) ) . (D.3)

Let p be p(t, w) = poo(W)d(t,w), where 6(t,w) = 50 o L(w) (1o =n(1) | Denote by h the scaled

1. Observe that (5.5) can be written as

1
Op =~V - (ﬁV
U

g
R

distance from p to poo:

VP
then h satisfies the following equation,
1 1 h
Oth = Vw - [ﬁvw <+ )}
o0 0 o0
NG VD (D4)

1 N < h h
N/Poo [ VP VP
where §(t) = 7(t) — 70. Multiplying h to the both sides of (D.4) and integrating it over z,

after integration by parts, one has,

5

1 ) S/ h 2
20, |h))? == | ——=Vw - (oo VL) dw +— Vw  (pooVwL) dw
50 1] 0l e (p ) ; ( )

[3l=
1 11

el Gl

dw .
IIT

Note that
Vw - (poova) = Po (vw “VwlL — N HVWLHQ) )
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so by Assumption A3, one has
Vw * (P VwL)| < pif max{1, 7 } M,

which implies

r< B (g [ aw).

For term [, first Assumption A3 is equivalent to

Vw VwL

lim — > W= _ . (D.5)
Iwll =00 2100 ||V L]

Furthermore, Assumption A2 and (D.5) implies that lim |y IVwL|* = +00, so there

exists a constant R, such that
Vi Vil = 2 [V L|* < oo, 110 [VawL|* 2 1sc, for V[ > R.
Therefore one has,
Vw - Vwl — 110 |[VwL|[* <0, forV|w| > R.
By the continuity of the loss function, for ||w| < R, there exists a constant C5, such that
Vw - VwL — oo ||VwL|?| < Cy, forV|w]| < R.
Combining the above two inequality gives the bound for term 117,
111 < 2 .
Thus combine the estimates for the term I and 11, one has

I+IT<Cy[|h)f® +Cy, (D.6)
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where C1 = § max{1, noo}max{fp dw,l—l—%}M.
For term /11, under Assumption A2, one has the following Poincaré inequality (see, e.g.,

Pavliotis (2014)) on podw,

Mo (G

In addition, the fact that [ h,/poc dw = 0 gives

2
Poo dw > C / < hw/poodw> Poo AW.
F \/poo

III > Cp|h|?. (D.7)

The reason why [ hy/psc dw = 0 comes from the conservation of mass. That is, if one

integrates (D.3) over w and uses integration by parts,
O (/p(w,t) dw) =0,
which implies [ h\/poc dwW = [ pdw — [ po dw = 0. So combining (D.6) and (D.7) gives,

015
fawm*r Sl < = (I 1) (D§)

Since 7(t) — 1 > 0 as t — oo, so there exists 1" large enough, such that for V¢ > T,

2 e C
5=M@%ﬂhJﬁmm{g,&£}- (D)
Plugging 6 < 3¢, into (D.8), one has
2
781: 1Al + & A < 277’ forvt > T. (D.10)

Futhermore, (D.9) also implies 27,/3 < 1(t) < 475 /3, which indicates that

2Cp _ Cp Cp _ Cp
377 B 27700 377 o 27700'
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Therefore, (D.10) becomes

C
f@HhHA+ Hh” 451’ forvt > T.

Integrate the above equation from 7" to ¢ > 7', one has,

HW)HQE<Hh<T)H2+S:(t— >)—ff: [ s as.

By Gronwall’s Inequality, one ends up with,

WMW§<?ﬂ—n+m(ﬂ> — B (t-T)

oo

Remark D.1. There are some work in the literature about the convergence of the Fokker-Planck
equation solution. However, most of these results focus on the convex L(w). See, e.g., Arnold et al.

(2001); Pavliotis (2014). These results are different from the case under our consideration.

D.6 Mathematical Quantification of the Constant 7" in Theorem

5.4

We note that 7" should be large enough such that forall ¢t > T,

< e ——
In(t) — Mool mm{ 3730, } where C 5 max{l,noo}max{/ dw,1 + —= 5

Here C3 > 0 is the bound for ‘VW - VwLl — oo HVWL||2‘ in bounded domain {||w| < R},

such that

) 0, forV|w| >R,
Vw * VwL — 1 [|[VwL]|

Cy, forV|w| < R.

This quantification of T is based on the proof in Section D.5.
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D.7 Proof of Theorem 5.5

Let

Pe(W) = P([[Wy(00) — W] <€)

be the probability of W (c0) staying in the e-neighborhood of global minimum w, and the

probability density function of W (c0) is poo, then

Pe(w) =/ ke Mo W) gy
[[w—w||“<e2

_ / o100 L) (w0 AL () (w—0) o { (W=
[[w—w||“<e2

Since w is a local minimum of L(w), so AL(W) is positive definite, then there exists an
orthogonal matrix O and diagonal matrix A, such that AL = O’AO. For simplicity, we

assume AL = A = diag(A1, -+, Ag).

d
lim P, (W) = lim /ie_"wL(w)/ e PN W) dyy | o€
e—0 e—0 HW||2<E2 ]:1
= lim |ke Mo L(W) H /E e —dew Moo’
e—0 A /7700 € 7700
[ —Noo L(W)
[ <m>@<em>>]
€e—r
7700

where the first equality comes from change of variable w —w — w, and the second one comes
from 7o, Ajw; — w;. Here ¢(-) in the last equality is the cumulative density function for
standard normal distribution. Using the approximation of the cumulative density function

in Polya (1945), one can simplify the above equation by

— 2100 L(W) d 1 —€2noo X /T

Ke —e i 2
. - . Moo €
11H(1)P€(W) = llr% |: nd/2 | | ] e

0o j=1
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This completes the proof.

D.8 Numerical Illustrations of Theorem 5.5

To illustrate Theorem 5.5, we explore three different examples showing how the probability

changes with respect to M /v, AL(W), and the variance 0?(W) = 3(W):

e Example 1: Consider the risk function L(w) has three different global minima w;,
i = 1,2, 3, with different Hessians 4.5, 12.5, and 28.125, respectively. We are interested
in the probability of the mini-batch SGD limj,_,~, Wy, staying in the e-neighborhood of
global minima with respect to the ratio M /~, where M is the batch size and 7 is the

learning rate. The results are shown in Figure D.1.

e Example 2: Consider the variance of SGD has four different levels: 5,10, 50, 100. We
are interested in the probability of the mini-batch SGD limy,_,~, Wy, staying in the e-
neighborhood of a same global minimum of L(w) with respect to the ratio M /~. The

results are shown in Figure D.2.

e Example 3: Consider two-dimensional cases. We are interested in the risk func-
tion L(w) has two different global minima and furthermore, L(w) has two different
global minima. For two minima case, we consider L(w) has two different Hessians
(2.42,0.022) and (2.22,0.222). For three minima case, we consider L(w) has three
different Hessians (15, 20), (14.22,42.66), and (102.13,25.53).

Results. The results of Example 1 are given in Figure D.1. We draw the following conclu-

sions.

e First, if the batch size M and learning rate v are the same, then W (o0) is more likely

to stay near the flat minimum whose Hessian is smaller.
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Figure D.1: Illustration of Example 1 with € = 0.1. The left panel shows the probability of
W (o0) staying in the e-neighborhood of different global minima. The right panel compares
the differences of probabilities that W (oo) staying in the e-neighborhood of different global
minima.
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Figure D.2: Illustration of Example 1 with € = 0.1. The left panel shows the probability
of W (o) staying in the e-neighborhood under different SGD variances o?(W). The right
panel compares the differences of probabilities that W (co) staying in the e-neighborhood of
different o (w).
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Figure D.3: Illustration of Example 3 with € = 0.1. The left panel shows the probability
of the limiting mini-batch SGD limy,_, ., W}, staying in the e-neighborhood of two different
global minima. The right panel shows the probability of three different global minima.

e Second, as the ratio M /v increases, the probability of W (oo) converging to a flatter

minimum will increase faster than that of a sharper minimum.

e Third, if the ratio of Hessians (the Hessian at a sharp minima divides the Hessian at a
flat minima) increases, the difference of probabilities would increase as illustrated in
the right panel of Figure D.1. Moreover, if we increase the ratio M/ /~, the difference of

probabilities becomes more distinct.
The results of Example 2 are given in Figure D.2. We draw the following conclusion.

e If the variance o(W) increases, the effect of the ratio M/~ for the probability that
converging to the global minimum will decrease. That implies as o (W) increases, the

probability of SGD converging to a flat minimum will increase slower.
The results of Example 3 are given in Figure D.3. We draw the following conclusion.

e For a same ratio M /v, if the product of the eigenvalues of the Hessian increases, then
W (00) will be more likely to stay near the minimum. For a same sharpness of the
minimum, if one increase the batch size or decrease the learning rate, W(oo) will be

more likely to stay near the minimum.
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e We conclude that the product of eigenvalues of the Hessian matrix will affect the
probability of W (co) staying in the e-neighborhood of the minimum, which is different
from the sum of eigenvalues, the smallest eigenvalue, or the largest eigenvalue for

multi-dimensional cases.
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Appendix E

Appendix For: Another Look at
Statistical Calibration: A
Non-Asymptotic Theory and

Prediction-Oriented Optimality

This section consists of three parts. In Section E.1, we give proofs for main results of Section

6.3. In Section E.2, we prove results of Section 6.4. In Section E.3, we present a key lemma.

E.1 Proofs for Section 6.3

E.1.1 Upper Bound Result: Theorem 6.1

We define a new norm || - || in H by

lgll* = llgllZ,q + lgl7, Vg€ H

Note that || - || is a norm because that || - ||? defined above is a quadratic form and it equals

to zero if and only if g = 0. Since the density function of II is bounded away from zero
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and infinity, there exists some constant ¢ > 0 such that || gH%Q(H) < c|lgll3,- Thus, ||g||* <
(¢+1)]lgl3,- This together with the fact [|g|3, < ||¢g||* imply that || - || and | - |3 are equivalent.
In particular, ||g|| < oo if and only if ||g||y < oco. Let (-, -) be the inner product associated
with || - ||, which can be constructed as follows:

I

1
(91,92) = 7(llgr + g2lI* = llgn — 9|, Vg1,92 € H.

Then (g1, g2) = (91, 92) £, ) + (91, 92)- Denote by R(-, ) the reproducing kernel associated

with (H, ] - ||). By Mercer’s theorem, we have the following eigenvalue decomposition:

Rz, ') =Y 1+ A1) "gu(z)e(a)).

v>1

Let g, = (9, ¢v) 1,y for any g € H. Then

o0 oo o0
ol = > A+ XN N9llim =D g llali =D _ A"
v=1 v=1 v=1

Now, we define a norm || - ||, for any 0 < a < 1 by

o0

lgllz => (1 +X,%)g2.
v=1
It is clear that ||g|lo = \/§||g||L2(H) and ||g]l1 = ||g||- Let (-, -)4 be the inner product associated
with || - || for any 0 < a < 1 (Cox, 1984).

Write
1
(o) = 5~ SV~ g(Xo)”
i=1
and I\ (g) = ln(g) + %)\HgH%{ Then, Zn)\ = argmingey I\ (g). Denote by I (g9) = E[l,(g)],

then l(g9) = (o? + || — gH%Q(H)). Write

_ , 1
Coox = argmin [ (g), where loox(9) = loo(g) + *)\”9”’2;-0
geEH 2
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We now can decompose the estimation error of En » as follows:
Zn)\ - C = (En)\ - C_oo)\) + (500)\ - ()

Here, the two terms on the right-hand side are referred to as the stochastic error and the

deterministic error, respectively. We study these two terms separately in the following.

Step 1: Deterministic error Denote by ¢, = ((, ¢.) - Then ¢(-) = Y202, Géu(-). Ttis

clear that
_— > G
Coor _;1+A.A;1¢””'

Denote {, = (,/(1+ A - A !). The following lemma gives a non-asymptotic result for the

deterministic error.

Lemma E.1. Foranyn > 1,

3(1+ )92 (1 — )= PAO=O2| (|, f0<a<1,

HCH'H? ifa: 1.

HEOO)\ - C”a <

Proof. Forany 0 < a < 1, we have

o0

H&oo)\ - CHZ = Z(l + )‘;a)(é/ - CU)Q

v=1

L+ S
<)\2su ( v v A 1,2
- uzli)(lJr)\-)\Jl)?Z v

1+ 90 0
:)\2 2 S ( v v )
el oot

v=1

Observe that

1+a(1_,\1—a .
Qg (et SR o<acn,
sup —————

2 TR A a2 S
v>1 (T+A-A07) 2>0 (1+Az7h) )\—2’ ifa=1.
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This completes the proof. ]

Step 2: Stochastic error For any g, g1, g2 € H, we have the first- and second-order Fréchet

derivatives as follows:

Din(g)gr =~ S ¥~ g(Xlgr (X0),  Dleclo)gr = (¢ — 9,02) ooy
=1

D?l,(9)g192 = Zgl ), D?loo(9)9192 = (91, 92) Lo (1)-

Here, the Fréchet derivatives are defined in ||-||-norm. Since D215 ({)¢u ¢y = (D?loor({)bu, P} =

(1+X- A 10, and [¢u ]| = (1 + A, 1)12, we have
[D?1:60(0)] " b = (1+ A A )7 L+ A )y (E.1)
Define that

5T d:ef C_oo/\ - [D2loo)\(§oo)\)] ! Dln/\(goo)\)a

then we can decompose the stochastic error as follows:
G = Goor = (€' = Coor) + (Gua = C1). (E2)

We study the two terms on the right-hand side of (E.2) separately. For simplicity of the
notations, we abbreviate the subscripts of Zn y and (. in the rest of this section.

Forany 0 < a < 1and A > 0, we define A(a, \) by satisfying

Afa, A) = XN QL AT (1 + A4 2 (E.3)
v=1

Under Assumption 2, there exists a A(a,A) < oo. The following lemma gives a non-

asymptotic bound for (" — ¢) in (E.2).
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Lemma E.2. Forany 0 < a < 1andn > 1, we have that with probability at least 1 — 3 exp(—a?),
L 2
€T = €112 < {aAlicln + cgor (1 +v2a) } Afa, An= A (/2.
Here, cy is define in Assumption 2, A(a, \) is defined in (E.3), and A is a constant to be given in

(E.29).

Proof. Observe that

Dlnx(¢) = Dina(¢) — Dlsoa(¢) = Din(¢) — Dlss(C)-

Thus,

sup | Dlya(C) ¢y |
v>1

< sup L {(¢ = QX (Xi) = E[(C = O)(X)du(X)]} (E.4)
v21 | ™D
+sup = > eidu(Xi)|.
vzl |

We consider the two terms on the right-hand side of (E.4) seperately. For the first term,
since Lemma E.1 implies ||¢ — || < ||¢||3, we can apply Lemma E.4 in Section E.3 by letting

g = (¢ — (and t = aA| (|| Then, with probability at least 1 — 2 exp(—a?),

sup
v>1

LS [ = X000 ~ BA(C - C_)(X)QSV(X)}]‘ < 2Alln
=1

Then we consider the second term in (E.4). Let Sy, = [¢,(Xi)¢(X;)]1<ij<n and & =
(¢1,...,€n) . The uniform version of the Hanson-Wright inequality for suprema of quadratic

forms (Talagrand, 1996) gives

P (sup 0—2?7'2%? > sup {tr(E%) + 24 /tr(Ei Ja + 2||E¢V||042}>
v>1 v>1 v

< exp(—a?).



Observe that tr(24,) = Y_i_; ¢7(X;) < ncj and

1B, Il < \/tr(X3) = J > GRX)GAX;) < nc,

ij=1
we have probability at least 1 — exp(—a?) such that

< copo(1+ ﬂa).

Therefore, (E.4) implies that with probability at least 1 — 3 exp(—a?),

sup | Dina(O)eu| < aA[¢[lan ™2 + cso (1 + V2a)n 12,

v>1

By the definition of (T and (E.1), with probability at least 1 — 3 exp(—a?),

ICT = €112 = 11D 1oor ()]~ DLun ()12
Z L+ 2, (14 X A1) 2Dl (C) )

oo

g{wpDumo@4}23u+AJW1+A»nw2

v=1
[ AlI¢ll3 + oo (1 + V20))* &
< - >

_ [0 ANl + cor(1 + V2a)P?

- n

v=1

A(CI/, )\))\—(a-i-d/Zm)’

This completes the proof for Lemma E.2.

For any 0 < b < 1, we define ¢, as

:eilJrA
=1

T+ X1+ 12172

248

(E.6)

Then, ¢, < oo by Assumption 2. Now we give a non-asymptotic bound for (¢ —Ct)in (E.2).
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Lemma E.3. Forany p > 0and o > 0, if there exists some b € (d/2m, 1] such that

2
n= i\~ (b+d/2m) P : E.7
A0, N (202e, + A + ego (1 + VIR E7)

then with probability at least 1 — 5 exp(—a?),

2a20éch(a, A)p?
(1—p)?

nil)\*(‘”dmm), Vo<a<l.

IC =712 <

Here, cy is define in Assumption 2, A(a, \) is defined in (E.3), ¢y is defined in (E.6), and A is a

constant to be given in (E.29).

Proof. By the definition of ¢, we have that
Dina(C) = D?oex(€)(C — ¢
Since 1, is quadratic,
Dipa(€) = Dlaa(€) + D1 (€)(C — ) = 0.

Thus,

D210 )(O)(¢ — (M) = D21 (O)(C — ¢) — D*1,(0)(C - ©),

and this implies

) = D1 (O)(C = 0.

-

- Q:T - [DzlooA(g)]il(DQZOO(

)
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Recall that ¢ = 5%, (¢, Let { = 3°°° | , ¢, By the Cauchy-Schwarz inequality,

Ic = ¢TI2 = i(l FADA AN
v=1 . 5
X |:Z ( Z¢j <¢]7¢V>L2 )]
7j=1
i L+ A,9)(1+ X212 [i(@ Cj)2(1+Aj”)]
=1 j=1

x(fi( [ EZ@ — (5, Du) o r>.

J=1

Since |¢;(X;)du(X5)| < cé and ¢;(-)¢,(-) is measurable, by applying the McDiarmid’s

inequality, we have that with probability at least 1 — 2 exp(—a?),

20&2 4

2
Sup[ Z¢] <¢j>¢zx>L2 ] < d)- (ES)

v>1 n

Combining (E.3), (E.6), and (E.8), for any d/2m < b < 1, we have probability at least
1 — 2exp(—a?),

A~(akd/2m) e 2, (E9)

2.4
[ el
n

Take a = b, then with probability at least 1 — 2 exp(—a?),

2a2céA(b, A)cp -

n

IC-CME <

If (E.7) holds, then || — [l < pl|¢ = Clly and [ = Clly > 11— Clls = 1€ = Clly > (1= p) I = -
By Lemma E.2, with probability at least 1 — 5 exp(—a?),

[aAll¢|l + coo (1 + V2a)]*A(b) N\~ (bd/2m) _ P’
(1—4)*n (1-p)*

IC = ClI; <

where the second inequality is from (E.7). We complete the proof by plugging the above

inequality to (E.9). O
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Step 3: Putting it together We consider for a = 0. Let

4 -
M df2

which satisfies the definition (E.3) and does not depend on A. Let

4m
m 1+v2a) | | 7
A =n"zia { 2,/A(0, \) aA—i—M
1€l
Cim (E.10)
__2m_ m & ocs(1++v2a) | | >
=n 2mid ¢ 4 Cim oA+ —"——— :
{ Vim—a? T

Here, A is a constant not depending on n, o, ||¢|%. Then for any b € (d/2m,1) and p

satisfying

_ 2mb+d

m(1—b) 2m(1-—b)

_ o 2m—+d
p> e BACET (1405 ) T (It o)
<l

the X defined in (E.10) satisfies the condition (E.7) in Lemma E.3. Thus, Lemma E.3 implies

> xt _ 4m—d _ 4m-d o _%
I = iz < amranimea(licl + o) ( 1+ 770 ) (E.11)

for some constant ¢ not depending on n, o, m, d, ||(||%. Combining Lemma E.1, E.2 and E.3,

with probability at least 1 — 8 exp(—a?),

1€ = ¢llzam < Cs

2m—d 2m—d o —zi‘id
1+ q2?mtdn 4m+2d <1 + >
<12

o s \~Tm
~o2mtdn” 2mtd (||C|ly + o) 1+m ?

for some constant C, not depending on n, o, m,d, |||, and X given by (E.10). In particular,
let & = ap = 3.36, and we have 1 — 8 exp(—ad) = 99.99%, and which completes the proof of
Theorem 6.1.
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E.1.2 Lower Bound Result: Theorem 6.2

Let N be a natural number to be defined later and b = {b, : v = 1,..., N} € {0,1}" be a
length-N binary sequence. Recall that \,s and ¢, (-)s are the eigenvalues and eigenfunctions
of K(-,-), respectively, and they satisfy Assumption 2. We define a set of functions ((-)
indexed by b:

N 1
G() = CTN?% Z bu}‘E+N¢u+N(‘)7

v=1

where the constant ¢’ is defined as a positive root of the following equation of 2

2m—d _ __2d
z— |:1+a§m+dnm (1 + g) 2m+d:|
z
- o (E.12)
: (2 + 2a§m+d> (z+0) (1 + f) mrd .
z

A positive root exists since left-hand side of equation is smaller than 0 when z > 0 and
z — 0 and greater than 0 when z — 400, and it is continuous in z. By definition, (;(-) is a

finite linear combination of kernel eigenfunctions. Moreover,

N
IG5 = (N> 5 < (ef)?, (E.13)
v=1
which is finite.
By the Varshamov-Gilbert bound, there exists a collection of binary sequences {b"), ... b(M)}

{0,1}V such that M > N/ with the pairwise Hamming distance satisfying

HOO ) > Y
=g

, Vi<i<g< M.



253

From Assumption 2, we have that for any b, 5@ ¢ {0, 1}¥,

On the other hand by Assumption 2, we have that for any b € {p(1) ... p(M)},

N
2m 2
160 17, m) < Ca(eh)PNTINTTE Y [b(l—ﬂ
v=1

< O\ (2N~

Following a standard argument, the lower bound of estimating the true function ¢(-) can
be reduced to the error probability in a multi-way hypothesis test (Chapter 2 of Tsybakov
(2009)). Let © be a random variable uniformly distributed on the discrete set {1,..., M}
and let the true function ¢ = (). Let O be an estimator of © based on the data {(X;,Y5) :
i =1,...,n} that are generated by (6.1). Following Chapter 2 of Tsybakov (2009),

e s PG~ iy > 7 min G0 — Gl
OOCTL Cg,}_)[ n L2(H) - 4 b(l);ﬁb(‘n b(l) b(q) LQ(H)

> 00

3 E.14
(:)e{l,...,M}]P){G # O} ( )

= ooéE{l,...,M}EX17~--7XnP {é ;é C—)’Xl) L) Xn} )

where the infimum is taken over all estimators En that are measurable functions of the data

{(X;,Y;) :i=1,...,n}. By Fano’s lemma (Chapter 2 of Tsybakov (2009)),

C1xx, (Y, Y5 O) + log 2

E.1
log M (E.15)

IP’{(:);&@|X1,...,X”} >1

where 1x,  x,(Y1,...,Y,) is the mutual information between {Y1,...,Y,} and © with

{X1,..., X} being held fixed. Let (-|-) be the Kullback-Leibler distance and P be the
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conditional distribution of Y;s given { X1, ..., X, }. Thus,

EXL...,X-,L [1X1,...,Xn (}/17 R Y’Vl? 6)]

M —1
< <2> Y Ex,.x.K (Pcb(l)]PCb(q))
b(l);ﬁb
n(M\
§2<2) Z ]EXL aXn[ O_QZ Cb Cb<q)( ))]
b £p(2)
n /M\
= M( 9 > > 16w = Gwllim
b(D £b(a)
n
< — _
20 b(l>7éb( ) X, 16w Cb“”HLz
2n )
<
= o2 b(l)e{b(l) b(M)} 1Coo 117 m)
2n om
S ﬁC)\<CT)2N d

Combining (E.14) and (E.15) yields that

~ 2m 2m
ooz supIP{HCn - CH%Z(H) > 2*5770,\(5[)2]\777}
" (en

1
>1-——_[E1 Yi,....Y,:0) +log2
lgM[ X1, X, (Y1, ) +log 2]
o1 160y (ct)?n ~ 8log2
= NI+ 2 N

Define N = ¢*nd/ (2m+d) where

d
2d 2m—d m d d
def =g _5d _
C* 0 " 2m+d (2 2 2m+d> C* 2m c§m2 2m 1

By the definition of cf, and by the fact that the right-hand side of (E.12) is monotone increasing
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in z > 0, and by the inequality (E.13), when o is held fixed,

2m—d 2m—d o 7% 2
1+a2m+dn Im+2d <1+>
1€l

ooz sup P |G, — ¢|I
G, S { 17,

2d
m _Am T 2m+d
<Mfﬁwm?”wmﬂ+®2@+’a)
1T

2m—d 2
160, [1+ 5 (14 280) 7 1+
8log 2
>1- — - -
227(1 2m+d 142m 2m 2 c*n2m+d
<2+2a ) (1—1-” T ) (¢*) a0

The right-hand side of above inequality is monotone decreasing in ¢ and n. Hence, there
exists some constants 0 < g, n9 < oo such that for any o > oy and n > ny, the right-hand

side of above inequality is positive. This completes the proof.

E.1.3 The Optimal Calibration Result: Proposition 6.3

In order to derive an equivalent form for goPt-Pred that holds uniformly for ¢ € H, it is
necessary to use the minimax optimal risk for estimating o(-, ) for all 6(-, ) € H. This is
because 6(-,0) = ¢(-) — n(-,0), and 6(-,0) € H holds for any # € © by Assumption 1, and
computer models 7(-, #) are given functions. By replacing ((-) with (-, §) in Theorems 6.1

and 6.2, we have V0 € H,

o, Sp 15u(+6) = 0. Ol

2d 12
2m—d 2m—d o T 2m+d
= C, |1+ a2 n " imisa <1 + ) (E.16)
16, 0) [l

__2d
2m-+d

2m—d

_2m 4
a§m+dn 2m+d (Hé(a 9)”7‘[ + 0-)2 (1 + ”5(9)”’}-[>
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By the definition of §°PtPred in (6.4),

0P — g min { oz 10(-,6) 5, (- 0)ay} . VC € A
0cO
— argmin {Oog sup 5(-, 0) - 5n<-,e>|rL2<n>}

0O " SeH

= argmin {[[0(-, 0) [} = argmin {[|C(-) = n(-,0)[l%} ,
0c® 0c®

where the third step is by the fact that parameters n, o, m,d are fixed in the setting of
computer model calibrations and the right-hand side of (E.16) is monotonically increasing
as the RKHS norm ||6(+, 0)||3 increases. The last step above is by the definition of §(-, 9).
E.1.4 The Optimal Prediction Result: Corollaries 6.4 and 6.5

By the same arguments as the proof of Theorem 6.1 and replace ¢(-) with 6(-, 8), we have

that for any # € ©, n > 1, with probability at least 99.99%,

PN 2
min 160 (+,0) = 6 7,

2m—d 2m—d o _27721d+d ?
1 2m-+d ~ Zm+2d 1 -
o B (14 g

< Ck

4am

2d
Tmtd,, — g2 ? v o
) m . 1 NS5(- O\,
a2 ([16(-,0) |10 + o) < " !MW@HH) |

where the C > 0 is the same as in Theorem 6.1 and it does not depend on n, 7, ||J(-, 8)||-

The optimal X in the above inequality is

m _d_
A= n_272n+d {4 /Jﬁc}z\m

where A is defined in the proof of Theorem 6.1 and it does not depend on quantities

4m

2m—+d

OZA + O—C(z)(l + \/t_ﬁa)d )
1C() = m(-, GOPEPred) [l

n,a,||¢ — n(-,0°PtPred)| ;.. By Proposition 6.3, we prove the Corollary 6.4.

Now we show Corollary 6.5. Similar to Theorem 6.2 and replacing ¢(-) with 6(-, 8), we
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have that for any ¢ € ©,

ocor sup P gn 5 0)—6(-,0)?
5., 200, P{I8C,0) = 3O,

2m—d

_ 2dd 2
cm—a m— 2m
1 _I_agmw‘»dn*ﬁ <1 _I_ U) *
16C, )l

> Cx
>C (.0

£, oo+ (162 ) T s
ot e 1800 |

By Proposition 6.3, we complete the proof.

E.1.5 Improvement of Prediction by Computer Models: Theorem 6.6

By comparing the finite-sample minimax risks of ¢** Pred and Zn A(+), if (6.9) holds,
y paring p nA

. opt-pred , . \y12 . DN A2
gl;g?elgllcm () C()IILQ(H><I§>1{]1§2713IICM() CON Ly

(6]

where Cngt'pred(-) and En A(+) are defined by (6.8) and (6.5), respectively. This completes the

proof.

E.2 Proofs for Section 6.4

E.2.1 Consistency Result: Proposition 6.7

Recall the model discrepancy is defined by d(-,60) = ((-) — n(-,0) for any § € ©. We have
data given by {(X;,Y; — n(X;,0)) : i =1,...,n}. The GCV estimate, denoted by \g(#), is
consistent for minimizing the predictive mean squared errors (MSE) (Li, 1986, Wahba, 1990).
Note that A\g(#) depends on # with the given data. Following the same argument in Section
E.1.1, the optimal \°P! for minimizing the predictive MSE of 6(-, #) is given by (E.10) with
¢(-) replaced by 4(-,6). That is, as n — oo,

4m

ocy(1+ \@a)] }W '

4 m
m Cd/4

dm —d > ad+

2m
Ag(0) —p APt =" 2mrd { 2
(0) = 15060




258

Here, the constants C), a, A, ¢4 are specified in Section E.1.1. It is obvious that A°Ptin the
above equation is monotone decreasing as ||J(-, #)||% increases.
Now consider the objective function in (6.16) when X is selected by GCV. Denote the

. def . .
vector of random noises 2 = (1,0, 5n)T. Then, if 6 is at convergence,

Y — (X, 0) (S + nmra(OD (Y —5(X,0))
— 2T+ cOD) 2 +6(X,0)T (S + nrs(O)D)16(X, 0) (E.17)

22T (S + nrc(O)D)16(X, 6).

Let the eigenvector eigenvalue decomposition of 3 be UDU ', where U is orthogonal and
D is diagonal with the vth element \,,, > 0. By Assumption 2, it is known that \,,, <
nv=2m/4 when n is large (Koltchinskii and Giné, 2000). Here, we write for two positive
sequences a,, and b, a, < b, if a, /b, is bounded away from zero and infinity. Denote
that UTé(?, 0) = (O1n, .-+ 0nn) " and UTE = (e1ny ..., €nn) | ~ N(0,0%I). We study three
terms on the right-hand side of (E.17) separately.

The first term can be written as

ZT(E+nrg(O)D)IE ZA +MG

which is a sum of weighted chi-square random variables. By standard concentration in-

equalities (Boucheron et al., 2013), for any v € (0, 1),

Zm ZMMAG @)

2

Z yn+n)\c 0) QVE(M)Q
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holds with probability at least 1 — exp(—7%n/4) — exp(—2y>n(2m=4/(2m+d)) Note that

Ly
2 Nn +1rG(0) A vl ()

o (" 1

2y—1
= — = o)\~ (0
n Jr=1 x—2m/d 4 )\G(ﬁ) 77 ( )’

and similarly,

2
= o? ot 1 2 ~1y-2(p
; Aon +nXg(0) ] T ﬁz <V—2m/d+/\G(0)> = o'n c (9),

Since A\g(#) =< n—2m/(m+d) we have that

(Z Avn + n)\G ) {Z Avn + n)\G }

Thus when 7 is large, by letting y = n~(2m~=d)/(6m+3d),

n 2
T 1= _ 4
ZTE+nAcOD) T =) o) (E.18)
holds with probability approaching one.
The second term on the right-hand side of (E.17) satisfies
5(X,0)T(S + nra(OD'5(X, 0)
(E.19)

:;M Z Oun <H5 0)13

where the last step can be proved as follows. Let h € H minimize ||h[|3, subject to h(X;) =

5(X:,6). Then h(-) = S, P K(-, ;) and ¢ = £-16(X, ). Then

i=16G

T n
18C, )1, = IAC)IE = () Se =D 020 /A
v=1
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Thus, comparing (E.19) with (E.18), when n is large,
5(2, G)T(E + nAG(Q)I)—l(g(}’ ) =o {?T(Z n nAg(Q)I)_l?} ‘

The third term on the right-hand side of (E.17), by the Cauchy-Schwarz inequality,
satisfies

2T(S + naa(OD)16(X,0) = o {?T(z + nAG(e)I)—l?} . (E.20)

Combining (E.18), (E.19) and (E.20), we know that the left-hand side of (E.17) indeed

satisfies, when n is large,

(Y —n(X,0) 7 (S + (0D 1Y — n(X,0))

0_2
— 2T+ ()1 = Zm’

which is decreasing as A\ (6) increases. Recall that A\g(¢) is monotone decreasingas ||4(-, 0)||y =

IC(-) — n(-, 0)|| increases. Therefore, minimizing over 6 € © for
Y = n(X,0)7 (S + nrc(0D (Y - n(X,0))

leads to the minimizer 657 7" that also minimizes I<(-) = n(-, 8)||. By Proposition 6.3, we

complete the proof.

E.2.2 Comparison with Frequentist Calibrations: Remark 6.8

For the calibration part, Proposition 6.7 establishes OoPePred _yp goptpred and Tuo and Wu
(2015) has shown that 952 —p 672, On the other hand, it is known that éﬂn2 converges to the
minimizer of Kullback-Leibler distance between ((-) and 7(-, ) (see, e.g., White (1982)), that
is, 02 — 4. 6L2 which also implies that @n? —p 02,

Then we consider the prediction part. Both the predictors, 7(-, 552) in Tuo and Wu (2015)

and n(-,012) + S,(+, 62) in Wong et al. (2017), are based on calibrations around #22. Note
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that as A — oo, the regularized estimator defined in (6.7) satisfies gn AG OLQ) — 0 where

0 = 02 (see, e.g., Wahba (1990)). Then

(- 0%2) = COIEyany > min (-, 0%2) + 6 (- 0%2) = COIIT, - (E.21)

That is, the predictor with discrepancy estimator in Wong et al. (2017) would achieve smaller
predictive MSE than the predictor without discrepancy estimator in Tuo and Wu (2015).
Similar to Corollary 6.4 and 6.5, we can show that the right-hand side of (E.21) achieves the
minimax optimal risk with § = #*2 and

. L < L 2
min [|n(-, 6"2) + dna(-,07) = CC)Z, )

2d 12
2m—d om—d o T 2m+d 4m
1 a 2m+d n*m 1 a 2m-+d
E A N o] |

:O* (.,HLZ

2d
—_2m 2 u o
.m 2m+d (||5('79L2)”7‘l+0) <1+M>

holds with probability at least 99.99%, where the constants C,, ag are defined in Theorem
6.1. Comparing this result with the minimax optimal risk when § = §°PtPred a5 shown
in Section 6.3.2, we have that the predictors based on §°P*Pd achieve a smaller minimax

predictive mean squared error compared to predictors based on 62, since
18,652 > [18(-, 6P 30 = min [|5(:, 0) |34
This completes the proof.

E.2.3 Posterior Mean of Calibration Parameters

In this section, we give details on the classical result that under Gaussian process priors, the

Bayesian posterior mean of ¢ and §(-) agrees with (6.12) given a special choice of .
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We consider the following Gaussian process priors:

(E.22)
n(x,0) =Y 0ih;(x), 0 ~ N(0,al), 5(x) ~ GP{0, BK (-, )},

where hj(x)s are deterministic functions, GP stands for Gaussian stochastic process, and
a, 3 are positive hyperparameters. The kernel K (-, -) is associated with the RKHS (#, || - [|)-
Although the GP assumption in (E.22) implies that 6(-) ¢ H with probability one (see,
Driscoll (1973)), the well-known duality between RKHS and Hilbert space spanned by a
family of Gaussian variables (see, e.g., Wahba (1990)) ensures that Bayesian estimates under
GP priors are RKHS regularized estimates.

The proof here is adapted from Wahba (1990). Let 7" be the n x n matrix with ijth entry
hj(X;). Under the priors in (E.22), we have that

E[C(2)|Y] = (ha(2),.. ., hyr())E0] Y] + E[b(x)| V). (E.23)
On the other hand,

EYY | =aTT' + 8% + 0?1,
h1($,0) K(Xl,a:)
EC@)Y]=aT | i |+8

har(z,0) K(X,,z)

This yields the posterior mean given by

E[¢(x)[Y]
— (B Y {EYY Y

(E.24)
— (hi(2), ..., hat(2)) BT (aﬁflTTT Y4 o2ﬁ’1I)

s
s

(K(X1, @), K (Xn, 7)) (aB*ITTT +Y 4 02,6’*11)
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Note that
0T % fim o T (B TTT + 5+ 0287 11)7!
a— 00
(T (S + 027 ) T T (S + 027,
and

5T % 1im (a7 'TTT + %+ o271

a—0o0

=+ D) HI-T(TT (2427 )T ITT (2 4+ 0237 LY.

From Chapter 1 of Wahba (1990), (6%, 61) is the solution to the smoothing splines,

2
T sz
+nﬁay}-

Note that the above objective function is same as (6.12) by letting A = o2 /n3.

2
p

Y — Y 0;hi(X;) - 6(X;
arg min g;]j() (X2)

~ 1
ot o1 = ind =
(07,461 aurgmln{niz1

Compare (E.23) with (E.24), we conclude that under the prior (E.22) with improper
a — oo, the posterior mean of § and 4(-) agrees with the minimizer of objective function

(6.12) if A = 02/nB.

E.3 Key Lemma

Lemma E.4. Recall that R(-,-) is the reproducing kernel associated with (H,|| - ||). Suppose that
CrR = SUp,cq \/ R(z, ) is finite. Then for any t > 0 and v > 1, we have

1 n
P su — X))o, (X;) — Elg(X)b, (X >
g:lglljgl)gm‘\/ﬁ;{g( )ou(Xi) [9(X)pu (X))} >t

12
< 2exp (—> .
A2||C113,
Here, A is a constant given in (E.29) and it does not depend on n, o, ||C||.

Proof. For any g1, g2 satisfying ||g1|| < ||C]|%, l|lg2]] < [|¢||l2, we have that for any v > 1,

191 (Xi)dw (Xi) — 92(Xi) b (Xi)| < max 191(x) — ga()]cy,
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where ¢y is defined in Assumption 2. Let
Zul0.0) = = Z [9(X)0(X3) ~ E{g(X)3,(X)}.
Since II(€2) = 1, by the Azuma-Hoeffding inequality, we have for any ¢ > 0,
P(1Zn(g1, v) = Zn(g2, 1) 2 1)

( .2 ) (E.25)
< 2exp .

_8c§) maxzeq |g1(x) — ga2(x)]?

In the following, we apply the maximal inequalities for empirical process (Kosorok (2008)).

Recall that the Orlics norm || Z|| 4, for any random variable Z is

1Z]lyy 2 00em0 {Baia(1Z]/c) < 1},

where 5 (z) def exp(z?) — 1. By (E.25) and Lemma 8.1 in Kosorok (2008), we obtain that

11Z0(g1, d0) = Zn(g2, D)y, < V24collgr — g2l L) (E.26)

Let 7 = \/@ and ¢ (z) = v¥2(72). Then, ¢ (-) is convex, nondecreasing with ¢(0) = 0 and
¥(1) < 1. Moreover, since Y,y > 1, P (2D 41— 7Y > (VI 41— 1Y) > 2 — 7Y,
we have ¢ ()9 (y) < ¢(zy). From the proof of Lemma 8.2 in Kosorok (2008), for any random
variables 71, ..., Zy,

2
<S4y (k) max (| Zilly,- (E.27)

max Z; <
1<i<k o T 1<i<k

We define a ball By¢|,, (|| - [|) = {g € H : [|g]| < [|C[|»}. It is known the covering number of
Bi¢ii,, (Il - Il) denoted by

N A& Bl (- D5 1 sy > forany & >0,
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has the following bound (Edmunds and Triebel, 1996):

m d/m
log N { %, By, (- D |- 2 ()} < o K : (E.28)

Here, co is independent of ||(||# and x. Note for any g € By, (|| - ||) and = € €, [g(z)| =

[(9(); Rz, )| < llgll\/R(z,x). Hence, [|g]l1, ) = maxzealg(z)| < [[Cllx - cr. By the
general maximal inequality (see, Theorem 8.4 in Kosorok (2008)), (E.26), (E.27) and (E.28),

we obtain that

sup 1 Zn (91, 0v) = Zn(g2,00)l|| < AllCln,

91:92€B) ¢, (D1 =921 o () SNClI3 e

P2
where
A = A(cy, cr,d,m)
B 32\/6%06”/51 "
 Viogls o

40\/66¢CR —d/m —d/m
+ 10g1.5\/10g[1 + exp(21=4/meoc, ™).

By letting go = 0 in (E.29) and the Lemma 8.1 in Kosorok (2008), we complete the proof.

/d
CR
\/log[l + exp(x~4/™)]dz (E.29)

O]
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