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Vanessa López-Barquero

Under the supervision of Doctor Paolo Desiati and Professor Francis Halzen

At the University of Wisconsin-Madison

Abstract

Cosmic rays are detected on Earth with an energy-dependent anisotropy in their arrival

direction. Recent experimental results of this arrival distribution of high-energy cosmic

rays (CRs) have motivated studies aimed at improving our understanding of the cosmic ray

transport and their propagating media. This arrival distribution involves a convolution of

the distribution of sources and the e�ects of the magnetic field properties through which

particles propagate. Nonetheless, no comprehensive explanation has been put forth to date.

Understanding what causes this cosmic-ray anisotropy and how we can use it to learn about

the characteristics of the media they traverse are the central questions of this thesis.

More specifically, this dissertation will explore the e�ects of magnetic fields and various

magnetic structures on the anisotropy of arriving CRs from TeV to PeV scales. These

contributions can impact the largest angular scale to the medium- and small-scale angular

structures. This investigation centers around the e�ects of three physical processes: one on

the chaotic behavior in coherent magnetic structures, another one on magnetic turbulence,

and a third on heliospheric e�ects

First, we detail the e�ects of chaos and trapping in coherent structures on the CR

propagation. We apply a new method to characterize chaotic trajectories in bound systems.

This method is based on the Finite-Time Lyapunov Exponent (FTLE), which determines the

degree of chaos in the particles’ trajectories. Furthermore, we model a coherent magnetic

structure with time-perturbations that can be used to describe distinct magnetic systems

and processes. Our results show that the FTLE, i.e., the level of chaos, is related to the CRs
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escape time from the system by a power-law relation. Additionally, this power law persists

even if perturbations act on the system, pointing to the idea that this specific power law could

be an essential parameter of the system. We also find that CRs can be divided into di�erent

categories according to their chaotic behavior. Moreover, these categories are distributed in

specific regions in the arrival distribution maps. This means that various regions on the map

could develop di�erently from one to another in time. Therefore, this result can provide the

basis for time-variability in the CR arrival direction maps.

We also discuss how turbulence in the interstellar medium can modify CR trajectories. To

investigate this idea, we perform numerical integration of particle trajectories in compressible

magnetohydrodynamic turbulence to study how the CRs arrival direction distribution is

perturbed when streamed along the local turbulent magnetic field. We found that this

inhomogeneous and turbulent interstellar magnetic field can imprint its structure on the CR

maps.

Another aspect explored is the heliospheric influence on particles with rigidities in

the range of 1-10 TV. We test if anisotropies may arise from the interaction with the

heliosphere. We employed a magnetic field model of the heliosphere for this goal and

performed forward-propagating numerical calculations of particle trajectories. Our results

show that the heliosphere can strongly redistribute the particles’ directions, making it an

indispensable component for the anisotropy.

Finally, through these magnetic structures and mechanisms, we can learn about how CRs

propagate and their arrival distribution. However, these particles can also act as probes for

the properties of the di�erent media they traverse and their places of origin. Therefore, the

study of cosmic rays opens multiple doors for a better understanding of the universe.
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A mi familia.
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“I would venture to guess that Anon, who wrote so many poems without signing them, was

often a woman.”

— Virginia Woolf, A Room of One’s Own
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Definitions and Abbreviations

CRA Cosmic-Ray Anisotropy - measured anisotropy in the arrival direction

distribution of cosmic rays at Earth.

ISM Interstellar Medium

MHD Magnetohydrodynamics - a fluid model description of plasma dynamics.
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Chapter 1

Introduction

What are cosmic rays? What is the cosmic ray
anisotropy?

Cosmic rays are particles that are accelerated to the highest energies found in the Universe.

The study of cosmic rays is fundamental to understanding various environments at a wide

range of scales. These scales could range from the heliosphere’s size to the interstellar medium

and even Mpc dimensions in clusters of galaxies. Cosmic rays are also involved in crucial

processes, such as the death of stars, energy injection into the Galaxy, or turbulence.

The most critical characteristic of cosmic rays that we will be exploiting in this work is

that they are charged particles1. Consequently, they interact with magnetic fields. Here, we

will explore how magnetic fields in the Galaxy and basic magnetic processes can alter how

cosmic rays arrive at the Earth.

Cosmic rays with energies between TeV and PeV have their origin in the Galaxy. Therefore,

we can use them as a vessel for collecting information about these sources. Furthermore,

we can gain vital knowledge about the environment they traverse before being detected on

Earth. This latter idea is what sparked the motivation for this thesis. We will explore the

di�erent components that can a�ect cosmic rays and how they can help us understand CR
1It is important to note that there are multiple definitions of what cosmic rays are. We will use in

this thesis the more restricted definition of them as "charged particles" instead of the broader one of solely
"relativistic particles."
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propagation. Specifically, we will ground these e�orts in building a comprehensive picture of

the cosmic ray anisotropy observed on Earth.

Galactic cosmic rays display an anisotropy in their arrival direction. This anisotropy

has a relative intensity on the order of 10≠3. It also has a rich angular structure, with

high multipole moments bearing power. On this basis, we can make a distinction between

large-scale and small-scale anisotropy. Another essential characteristic is that this arrival

distribution is energy dependent. Later, we will see that these components will be crucial

when finding answers to why this anisotropy exists.

In the quest for a complete understanding of CRs, we consider questions on their energy

spectrum, composition, propagation, and-the essential aspect for this thesis-their arrival-

direction distribution. These di�erent aspects are all interconnected. Therefore, we need

to link all the pieces of this non-linear puzzle to have a comprehensive perspective on the

problem at hand.

This thesis details the contributions that magnetic fields and various magnetic structures

can have on CR propagation and the repercussions on their subsequent detection. Specifically,

we will study the e�ects of turbulent magnetic fields in the interstellar medium, the heliospheric

system, particle trapping, and chaos. The most important results of this thesis are: (1)

magnetic fields are crucial to the study of CR anisotropy, (2) the heliosphere can modify

the overall CR distribution for particles between 1 TV and 10 TV, (3) turbulent magnetic

fields in the ISM can imprint their structure in the CR arrival direction maps, (4) the chaotic

behavior of trapped cosmic rays can cause significant variation in the CR arrival maps.

1.1 Overview of the Work Presented in this Thesis

Chapter 2 will go through the basic concepts related to cosmic rays. We will talk about the

di�erent mysteries surrounding CRs, such as their composition, origin, and propagation. We

will also discuss the observed CR anisotropy. Chapter 3 will be devoted to the study of the

chaotic behavior of trapped cosmic rays. In Chapter 4, we will discuss how the heliosphere
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plays a role in the cosmic ray anisotropy. Chapter 5 will detail the influence of the local

interstellar medium. Finally, in Chapter 6, we will present our conclusions, outlook, and

future work. Chapter 7 is dedicated to a summary of this dissertation tailored to the general

public. Its aim is to explain the research in this thesis to a non-specialist audience.
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Chapter 2

Background

What are the mysteries behind cosmic rays? How do cosmic rays
propagate throughout the Galaxy?

This chapter introduces the basic concepts that we will use throughout the subsequent

chapters. The main objective is to establish the di�erent observable quantities and mechanisms

that will be explored later. First we introduce the history and the main questions surrounding

cosmic rays.

2.1 Cosmic Rays and Their Fundamental Questions

Between the years 1911 and 1912, Victor Hess conducted a series of experiments in balloon

flights (see Figure 7.1). Initially, he climbed to 1000 meters and measured the radiation

using an electroscope. Hess noticed no relevant changes in the levels there compared to the

ground level. Later, in 1912, he rose to altitudes of 5000 meters. He did those ascents at

night and also during an almost total solar eclipse to avoid having his results a�ected by the

Sun. He noticed, at first, that the ionization decreased as the altitude increased, but then,

the ionization started increasing. Therefore, he concluded that the radiation must be coming

from a source other than the Earth–a cosmic origin. This simple yet significant observation
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would become the beginning of the study of cosmic rays. 1

Figure 2.1: Left: Canonical photo of Victor Hess’ balloon flight. Right: Electrometer used
by Hess (Smithsonian National Air and Science Museum). Photos taken from: A. De Angelis
and C. Arcaro b. Schultz, 2018 [4].

2.1.1 Definition, Composition, and Spectrum

Cosmic rays are mainly protons, helium, heavy nuclei, and electrons accelerated to high

energies. At the high end, they have been measured at more than 1020 eV. Initially, it was

thought that cosmic rays were a form of electromagnetic radiation; that is why their name is

a misnomer. Nonetheless, their exact composition varies depending on energy, as we can see

in Fig. 2.2 [5]. In this work, we will focus on the particles with energies between TeV and

PeV. We can see that protons are the principal component in that range, but then helium

and heavier elements, such as carbon and oxygen, obtain prevalence in the flux at higher

energies.2

An overview of the energy spectrum is given in Fig. 2.3. This spectrum is almost a

perfect power law that spans more than twelve orders of magnitude. The overall index for the

power law is approximately 2.8. There is basic terminology that is used to describe certain
1Victor Hess published his results in the Physikalische Zeitschrift [1, 2, 3]. Translation to English and

historical commentary by A. De Angelis and C. Arcaro b. Schultz [4].
2In Chapter 4, this distribution will become central to our discussion of the observed anisotropy in the

arrival distribution of cosmic rays at rigidities between 1 TV and 10 TV.
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Figure 2.2: Overview of the cosmic ray composition according to their energy (Gaisser et
al. [5]). It plots flux (defined as the flux of particles reaching the Earth per unit time, surface
and solid angle) against primary energy. Note that protons are dominant at lower energies,
although, at higher energies, a shift to heavier elements is observed.

features of the spectrum. The areas where the slope changes slightly are referred to as the

knee and the ankle. The knee occupies a span around 1015 eV and the ankle around 1018

eV. Where the knee is located, there is a steepening of the slope. This feature is most likely

because supernovae are limited in the acceleration of particles at those energies and chemical

composition cuto�s [6]3. On the other hand, in the ankle, we can observe a small flattening

of the spectrum, which points to a possible transition to extragalactic sources.

Cosmic rays can be classified based on their origin: solar, galactic, or extragalactic. The

transition between galactic and extragalactic CRs is expected to be in the interval between

1017 and 1019 eV. We will be working with galactic CRs in the upcoming chapters. At the
3This is a simplified explanation to a possibly very complex phenomena. There could be a rare type of

source that accelerates particles and another reason for the existence of the knee can arise.
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Figure 2.3: Overview of the cosmic ray spectrum. (J. Beatty & S. Westerho� (2009) [12]).
Note that the knee is located at PeV energies and the ankle at 1018 eV.

moment, an exact place of origin for these CRs has not been pinpointed; however, there

are staple candidates that are able to accelerate particles to these energies in the Galaxy.

Supernova remnants are without doubt the perfect site for CR acceleration [6]4. This evidence

is circumstantial but has been confirmed by di�erent independent methods [8, 9, 10, 11].

—
4Supernovae as sources of cosmic rays were first discussed by Baade and Zwicky in 1934. [7]
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2.2 Propagation of Cosmic Rays

Cosmic rays are extraterrestrial charged particles. This aspect opens the door to focusing

our attention on their propagation and, in particular, the dynamics and electromagnetic

interactions that they experience in the process. One of the challenges concerning this problem

and its captivating argument is that, since cosmic rays interact with di�erent media in the

galaxy, a multidisciplinary approach should be taken to provide a satisfactory description.

One major topic that we will consider in this thesis is how magnetic fields in the local

interstellar medium a�ect the propagation of cosmic rays. For that reason, two key concepts

to explore are turbulence and chaos.

Turbulence is everywhere in the Galaxy, and it permeates multiple scales and processes.

Among these processes are the creation of structures in the ISM and CR acceleration and

transport. Therefore, we need to understand how it works and the exact repercussions that it

could have in a system. Unfortunately5, "turbulence" is still an open question. The majority

of astrophysical plasmas are highly ionized and possess high Reynolds numbers6, which

indicates that nonlinear mechanisms are responsible for the dynamics of the flow. Given

these conditions, turbulence arises. The influence of turbulence on CR propagation is through

the stochastic nature of magnetic field lines. In this case, the spatial distribution of CRs is

a�ected by the turbulent magnetic fields within the mean free path.

2.3 Cosmic Ray Anisotropy

As we mentioned in the previous chapter, when Galactic cosmic rays arrive at Earth, they do

so in an anisotropic manner. This anisotropy has an amplitude on the order of 10≠3. An

exact explanation for this anisotropy still eludes us. However, it is expected that the origin

is due to a synthesis of factors such as the distribution and nature of sources, properties of
5Or perhaps, fortunately, since it is an intriguing problem.
6The Reynolds number is defined as Re = V L/‹, where V is the speed of the flow, L the characteristic

length, and ‹ the viscosity.
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the magnetic fields, and overall cosmic-ray propagation. Nonetheless, from this anisotropy,

we can distill crucial information about the propagation of CRs in nearby magnetic fields.

Figure 2.4 shows an all-sky map of the anisotropy at median energy of 10 TeV from the

HAWC and IceCube observatories7. In this figure, the relative intensity of cosmic rays is

plotted as a function of the arrival direction on Earth. The red color indicates that the

relative intensity is higher than the all-sky mean intensity. On the other hand, the blue color

denotes a lower relative intensity. This figure has the large-scale distribution in the top panel

and small scales in the bottom panel. The residual map in panel B represents a subtraction

of the dipole, quadrupole, and octupole from panel A, and therefore shows the structure

that is obscured in the overall map. The angular power spectrum in Figure 2.5 is a spherical

harmonic decomposition of the all-sky map. It shows how much power each harmonic l has.

Consequently, this angular power spectrum constitutes a tool for calculating the importance

of structures at various angular scales.

Another relevant characteristic of these observations is that the CR arrival distribution

varies depending on the particles’ energy. We can see this feature in Fig. 2.6. The anisotropy

distribution changes drastically in its morphology at 13 TeV compared to 1.4 PeV. This

property is a clear indication that di�erent mechanisms and structures are at play when

dealing with cosmic rays arriving at Earth. For instance, it could transition from the e�ects of

specific magnetic structures to other ones within the last mean free path or even a dominant

local sources.

In the following chapters, we will explore di�erent explanations for this anisotropy, which

will shine a light on specific mechanisms behind the behavior of CRs with energies between 1

TeV and 30 PeV. More generally, we will also examine magnetic processes that apply from

microscales to intercluster dimensions.

7The HAWC observatory is located in the Northern Hemisphere at a latitude of 19¶N. The IceCube
observatory is in the Southern Hemisphere at a latitude of 90¶S.
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Figure 2.4: All-Sky anisotropy of cosmic rays at 10 TeV. (Abeysekara et al.(2019) [13]).
Mollweide projection sky maps of relative intensity of cosmic rays at 10 TeV median energy.
Panel A: Large-scale map. Panel B: Small-scale map after subtracting the fitted multipole
from the spherical harmonic expansion with l 6 3 from the large-scale map. Data by the
High-Altitude Water Cherenkov and IceCube observatories in the Northern and Southern
Hemispheres
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Figure 2.5: Angular power spectrum of the cosmic ray anisotropy at 10 TeV. (Abeysekara et
al.(2019) [13]). The black dots represent the HAWC and IceCube data combined. The blue
squares: IceCube. Red triangles: HAWC. The gray band shows the 90% confidence level
around the level of statistical fluctuations for isotropic maps.
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Figure 2.6: Maps of relative intensity in equatorial coordinates for di�erent energy bins
(Aartsen et al.(2016) [14]). IceCube data. Panel A: Median energy 13 TeV. Panel B: 130 TeV.
Panel C: 1.4 PeV.
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Chapter 3

Chaotic Behavior of Trapped Cosmic

Rays

How does the chaotic behavior of trapped cosmic rays a�ect the CR
anisotropy?

Recent experimental results on the arrival direction distribution of high-energy cosmic rays

have motivated studies aimed at improving our understanding of the environment through

which they propagate. The observed anisotropy of these cosmic rays is intrinsically coupled

with their origin, as their source distribution may provide the initial density gradient. However,

the interstellar magnetic fields are responsible for the actual arrival distribution shape. In any

coherent magnetic structure, such as the heliosphere or the Local Bubble, magnetic mirroring

may cause trapping of particles, which may lead to their chaotic behavior. Mirroring can

occur in magnetohydrodynamic turbulence as well, where subsequent trapping and release

within local magnetic cells a�ect particles’ large-scale di�usion properties. Even in an ideal

magnetic system and in the absence of chaotic magnetic field lines, a break of an adiabatic

invariant leads to chaos. This chapter will explore a method that we develop to characterize

cosmic rays’ chaotic behavior in magnetic systems based on the Finite-Time Lyapunov

Exponents, used to quantify the degree of chaos. We study particle trajectory behavior in an

ideal axial-symmetric magnetic bottle to highlight the basic properties of mirroring e�ects.
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In order to study the dependency of external influences on chaotic behavior, we introduce

time-dependent magnetic perturbations. We found that the Finite-Time Lyapunov exponent

is correlated to the particles’ escape time from the system. This relation is given by a power

law that persists even if additional perturbations act on it. This specific power law could

prove to be an intrinsic characteristic of the system. The maps of arrival distribution in

these systems display areas where the chaotic characteristics vary significantly. This work

lays down the framework that will be used to study the e�ects of magnetic mirroring of TeV

cosmic rays within the heliosphere and the role that time variability induced by solar cycles

may have on the anisotropy observed on Earth.

3.1 Introduction

The origin of the cosmic ray anisotropy observed over a wide range of energies [1, 2] is still

largely unknown. However, it is likely caused by a combination of factors. These factors

include the spatial distribution of sources of cosmic rays in the Galaxy and the complex

geometry and properties of the magnetic fields through which particles propagate. The

processes shaping the distribution of cosmic rays are interconnected. Therefore, it is not

trivial to unfold them [21].

It has been speculated that the observed cosmic ray anisotropy in the 1-10 TV rigidity

range may be explained in the context of homogeneous and uniform di�usion in the interstellar

medium (ISM) [32, 21, 67, 66, 77, 72]. Nearby and recent sources are more likely to shape the

cosmic rays’ arrival direction distribution on Earth. On the other hand, the nonuniform pitch-

angle distribution of the cosmic rays [31, 60] in magnetohydrodynamic (MHD) turbulence [39]

and the heterogeneous nature of the ISM a�ect the di�usion significantly in time and space.

Therefore, the standard di�usion scenario cannot explain the complex angular structure of

the observed anisotropy. Besides, nondi�usive stochastic scattering processes within the

mean free path are likely to play an important role [39, 10, 11, 85]. The presence of coherent

magnetic structures, such as superbubbles, magnetized clouds, or the heliosphere, can also
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cause a significant redistribution of the particle arrival directions.

From a dimensional standpoint, cosmic rays with rigidity of ≥10 TV have a gyroradius of

about RL ≥500–800 AU in a 3–5 µG magnetic field, which is comparable to the transverse

size of the heliosphere [94]. In fact, while low-rigidity cosmic rays are influenced by the inner

heliospheric structure, 10 TV scale particles are shaped by the boundary region with the

ISM [28, 75, 82, 59].

Therefore, it is evident that to determine the cosmic rays’ distribution in the interstellar

medium, it is necessary to account for the heliospheric influence [82, 20, 21]. Currently, we

seem to know more about the inner heliosphere, while little is understood about the interface

between the solar wind and the local ISM. Various questions arise: how wide and long is the

heliosphere? Are the flanks characterized by magnetic instabilities? Does turbulence play

a relevant role? Therefore, a careful analysis of experimental observations, along with the

most up-to-date heliosphere models, may help account for the heliospheric e�ects on arriving

cosmic rays. The recent full-sky combined observation of the 10-TeV cosmic ray anisotropy

by the HAWC gamma-ray and the IceCube neutrino observatories [1] provides the first view

of TeV cosmic ray anisotropy with minimal experimental bias [20].

In López-Barquero et al. (2017) [59], protons, helium, and iron nuclei trajectories between

1 TV and 10 TV were numerically integrated in a heliospheric magnetic field model by [94].

There is no turbulence or stochastic magnetic field in the model. However, despite that,

the initial uniform arrival direction distribution from the local interstellar magnetic field is

broken down into medium and small angular scales by the e�ects of the heliospheric magnetic

bubble. The corresponding angular power spectrum is not di�erent from that generated

by scattering processes o� compressible MHD turbulence [85]. It turns out that cosmic ray

particles with rigidities of 1–10 TV may be temporarily trapped in the magnetic mirror

formed by the interstellar magnetic fieldlines draping around the heliosphere flanks.

Magnetic mirrors are present in a vast variety of astrophysical environments over a wide

range of scales. Besides the heliosphere, coherent magnetic structures such as planetary

magnetospheres, the Local Bubble, superbubbles, and likely galactic halos have a strong
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influence in trapping and redistributing cosmic rays. Spatial magnetic field intermittency,

which plays a role in the formation of coherent structures [32, 31] and is involved in the

transport and acceleration of charged particles, is consequently an important candidate

to study when dealing with magnetic-bottle structures. Cosmic ray trapping in localized

magnetic cells, or mirrors, may significantly contribute to the energy dependency of the

di�usion coe�cient. In particular, compressible modes in MHD turbulence generate the

conditions for trapping cosmic ray particles, which leads to smaller and weaker energy

dependency of di�usion parallel to the magnetic fieldlines [22].

To study the fundamental processes occurring when particles are trapped in a magnetic

mirror, we employ an idealized toy magnetic field system represented by an axially symmetric

magnetic bottle (see Section 3.2). Although this is an idealized system, it is known to cause

complex particle trajectory topologies, and it serves the purpose of studying their properties.

Particles may be permanently trapped within the magnetic bottle as long as their gyration

frequency around magnetic field lines is su�ciently higher than the bouncing frequency

between the mirror points. In such conditions, the magnetic field acting on particles does not

significantly change within each gyration period. In other words, the motion is “adiabatic." As

soon as magnetic variations over each gyro-period start to become significant, the adiabatic

limit breaks down and the particles’ motion becomes increasingly complex. Trajectories may

develop chaotic behavior, meaning that their deterministic geometry strongly depends on the

initial conditions. All trajectories are deterministic and can be exactly determined as long

as all aspects of the magnetic system as well as the particles’ coordinates are known with

infinite accuracy. Even the slightest amount of inaccuracy makes any trajectory prediction

impossible. Chaotic trajectories with similar initial conditions diverge from each other to

very di�erent trajectories. The rate of divergence depends on the actual initial conditions

and the magnetic system, which determines the dynamic conditions to which trajectories are

subjected. The degree to which similar trajectories diverge from each other can be assessed

using the Lyapunov exponents. The variability of such exponents in the particles’ phase space

highlights the global properties of how a chaotic system is structured, and it may provide
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Figure 3.1: The magnetic bottle field geometry used as toy model to study the behavior of
particles trapped by the interstellar magnetic field draping around the heliosphere. On the
left, the static magnetic field and on the right, with the additional perturbation imitating
the e�ects of solar cycles on the heliospheric magnetic field along its tail.

hints toward understanding how cosmic ray particles’ arrival direction distribution on Earth

is influenced by the heliosphere.

In Section 3.2, we present the physical contexts where the studies of particles in a magnetic

bottle are laid down. Section 3.3 describes how particle trajectories are numerically calculated.

Section 3.4 introduces the aspects about chaos theory that are relevant for this work, with

Section 3.4.1 describing the Lyapunov exponents as an estimate of the degree of chaos in a

system. Results are presented in Section 3.6 and discussed in Section 3.7. The outlook is

given in Section 3.8, and conclusions in Section 3.9.

3.2 The Magnetic Bottle Field

An axial-symmetric magnetic bottle is used as a toy model to study how cosmic rays are

trapped and under which conditions their trajectories’ chaotic behavior arises and develops.

This artificial magnetic field is generated by two circular coils with electric currents running

in the same direction. Although the purpose of using this toy model goes beyond the

investigation of TeV cosmic rays in the heliosphere, we tailor the study on this system and
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Table 3.1: Parameters for the Magnetic Bottle

Radius (R) 700 AU
Current (I) 4 ◊ 1010 A
Distance (D) 2000 AU

Figure 3.2: On the left, the field profile along the axis of the magnetic bottle with the weak
and strong perturbations at their maximum amplitude. On the right, the 3D view of a
snapshot of the magnetic perturbation.

assume that its spatial scale is comparable with the approximate size of the heliosphere. In

this regard, we pick the distance between the coils as 2000 AU, which is the scale at which the

local interstellar magnetic field lines drape around the heliosphere [94]. The coils’ radius and

currents are selected so that the magnetic field is approximately 3 µG at the center of each

coil (corresponding to the mirror points of the magnetic bottle) and the lowest possible at

the center between the two coils. Such a condition is satisfied with the geometric parameters

listed in Table 3.1. With these parameters, the magnetic field is about 2.7 µG at the center

of the coils and about 1 µG at the point between the coils. A cross section representation of

the resulting field is shown on the left in Figure 3.1, where the magnetic field intensity is

shown in color scale and the magnetic field line shows the shape of the magnetic bottle.

With the heliospheric system as inspiration, we introduce time modulations that mimic

the e�ects of magnetic field reversals induced by the 11-year solar cycles. To do so in

our toy model, we add a time-dependent component propagating transversely through the

magnetic bottle (along the x-axis) with periodic modulations along the y-axis and a Gaussian
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Table 3.2: Parameters for the Time-Perturbation

Weak Weak +
E

Strong

�B

B
(µG) 0.1 0.1 0.5

vp (AU/yr) 2 2 20

dependency along the magnetic bottle axis (the z-axis) so that the largest perturbation is

located at the center of the magnetic system. Such magnetic perturbation, shown on the

right of Figure 3.1, is represented by the function

By = �B

B
sin(kpx ≠ Êpt) e

≠ 1
2

1
z

‡p
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, (3.1)

where kp = 2fi

Lp
and Ê = 2fivp

Lp
with Lp = 200 AU the spatial scale of the magnetic polarity

regions, ‡ = 200 AU the width of the Gaussian modulation of the perturbation (see Figure 3.2).

The relative amplitude �B

B
and velocity vp depend on the strength and type of magnetic

perturbation, as shown in Table 3.2. The weak perturbation approximately represents the

variability of solar wind properties along the heliosphere beyond the termination shock

(see [24]). The parameters for the strong perturbation are chosen to amplify the e�ects of

magnetic field time-modulations on the properties of particle trajectories.

When a magnetic field changes in time, an induced electric field E = ≠v ◊ B is produced.

However, in plasmas, the induced electric fields are typically very small because the high

conductivity makes it possible for electric charges to rearrange and screen electric fields over

distances larger than the Debye length. The Debye length is the distance over which the

screening caused by the collective charge rearrangement is e�ective, and shielding can occur

only if the Debye length is much larger than the average distance of particles in the plasma.

The heliospheric plasma has a wide variability of its properties, and it is di�cult to pinpoint

specific numbers that represent the global heliospheric behavior. In this work, we assume the

extreme scenario where electric fields induced by the weak magnetic perturbations are not

screened. With the parameters described in Table 3.2, the magnitude of the force produced

by the electric field compared to the one from the magnetic field is approximately three
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orders of magnitude smaller. Consequently, no significant e�ects from the electric field’s

presence are expected. The possibility for the occurrence of electric fields and its e�ects on

the observed anisotropy is also studied in [26].

3.3 Calculating particle trajectories

Particle trajectories are calculated by numerically integrating the equation of motion

Y
__]

__[

dp
dt

= q
1
E + v◊B

c

2

dx
dt

= v
, (3.2)

describing the force exerted by an electric field E and magnetic field B on a particle with

velocity v and momentum p. Like in Desiati & Zweibel (2014) [29], a dimensionless version

of Eq. (3.2) is used in this work, where we introduce a magnetic field scale B0,

Y
__]

__[

dp̂
ds

= Ê + p̂
“

◊ B̂

dx̂
ds

= p̂
“

.
, (3.3)

where B̂ © B/B0 and Ê © E/cB0 are the normalized magnetic and electric fields, respec-

tively, and Ê0 © eB0/mp is the proton gyro-frequency scale, which defines the dimensionless

time t̂ © Ê0t. The gyroradius scale r0 © c/Ê0 defines the dimensionless spatial coordinates

x̂ © x/r0, while the dimensionless momentum is defined as p̂ © p/mc. The particle velocity

v is related to p̂ by v = p̂/“ and its Lorentz factor “ =
Ô

1 + p̂2. In these units, the dimen-

sionless particle gyroradius is r̂g = p̂‹, and the dimensionless gyro-frequency is Ê̂g = 1/“.

Normalized variables are written with hats.

The Eqs. (3.3) are numerically solved using the fourth order Runge-Kutta integration

method, with an adaptive time step size algorithm that keeps relative truncation errors

within a tolerance level of ‘ = 10≠10 (see Desiati & Zweibel 2014 [29] for more discussion on

numerical accuracy). The maximum integration time used in this work was set to t̂max = 108
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in code units (corresponding to about 1010 seconds, or 330 years). Under these conditions, the

accuracy of the numerical integration is su�cient and does not a�ect the results. The magnetic

field configurations described in Section 3.2 are used to calculate antiproton trajectories

propagating back in time from their final location, at coordinates (x̂0, ŷ0, ẑ0) = (100, 100, 500)

in code units, away from the symmetry point of the magnetic system geometry. Integration

stops either when integration time reaches the maximum value of t̂max = 108 or when the

trajectories cross a sphere centered on (x̂, ŷ, ẑ) = (0, 0, 0) with radius rmax = 12500 in code

units, corresponding to 2500 AU. Four sets of trajectories were calculated: one with the static

magnetic bottle configuration shown on the left of Figure 3.1, one with the addition of the

weak magnetic perturbation of Eq. 3.1, one with the strong magnetic perturbation, and the

last using the weak magnetic field perturbation and the induced electric field E = ≠vp ◊ B.

For each set, a total of 768 antiproton trajectories were integrated, with momentum vector

direction corresponding to each pixel in a HealPix grid [43] with nside = 8.

To study the onset of chaotic behavior, i.e., how trajectories with infinitesimally close

initial conditions diverge from each other, we produce, for each of the 768 reference trajectories

of the four sets, ten additional sets of trajectories with the same initial momentum and with

initial position randomly distributed around (x̂0, ŷ0, ẑ0) = (100, 100, 500) on a sphere of

radius r̂0 = 0.01.

3.4 Chaotic Trajectories

All physical systems that are conservative can be described as Hamiltonian systems, where

the total energy and phase-space volume are conserved. One of the properties of Hamiltonian

systems is that their state is governed by deterministic laws that can be highly sensitive

to initial conditions, which is what defines chaotic systems. Even the smallest di�erences

in the initial conditions, whether they originate from measurement uncertainties or from

rounding errors of numerical calculations, may lead to vastly di�erent trajectories. The

limited knowledge of the properties of a physical system, in addition to experimental or
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numerical resolution and accuracy, makes long-term prediction of its state evolution generally

impossible, despite their deterministic nature. In a chaotic system, for an arbitrarily small

solid angle in the sky, the origin of the particles coming from it can be highly uncertain and

unpredictable. In the classical approximation, chaos can explain the origin and mechanisms

of apparently stochastic processes, and this deterministic randomness can occur even in a

very limited number of degrees of freedom.

A known chaotic system is the axis-symmetric magnetic bottle [38, 39]. Particles trapped

in a magnetic bottle are characterized by their gyration frequency around the magnetic

fieldlines and their bouncing frequency between the mirror points. As long as gyration

frequency is su�ciently higher than bouncing frequency, the magnetic force on the particles

changes very slowly within each gyration. In this condition, the magnetic moment µ = 1
2

p
2
‹

B

is an approximate constant of motion. In the limit of perfect conservation of the magnetic

moment (also known as first adiabatic invariant), particles are indefinitely trapped inside the

magnetic bottle and bounce back and forth between the mirror points. In reality, since the the

adiabatic invariant is never exact in a realistic magnetic field system, after a su�cient time,

particles eventually escape from the system. When the gyration and bouncing frequencies,

which slowly drift from their initial values, assume comparable values, the changes in the

magnetic field during one gyration may no longer be negligible and the adiabatic condition

may be violated. Particles with very close but separate trajectories in phase-space experience

di�erent magnetic forces that eventually pull them apart. Under certain conditions, the rate

of separations of similar trajectories can be significant so that they continue to develop with

very di�erent topologies before escaping the system. When this happens, trajectories manifest

a typical chaotic behavior, which determines how long it takes before particles escape.

3.4.1 Lyapunov Exponents

One way to characterize chaotic trajectories is through the Lyapunov exponents (LE) [33, 34,

35, 36]. As particles with an initial separation propagate, they will start to get farther apart,
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closer together, or remain at a constant separation; therefore, the LE will quantify the rate

of divergence or convergence of the trajectories. If ”Z0 is the initial separation and ”Z(t) is

the separation at time t, these two quantities can be related by the expression

|”Z(t)| ¥ e⁄t |”Z0| , (3.4)

where ⁄ is the Lyapunov exponent. Accordingly, a negative LE indicates convergence and a

positive one, divergent trajectories and possibly chaos.

The number of Lyapunov exponents in the spectrum will depend on the dimensionality

of the phase space. The largest exponent is referred to as the maximal Lyapunov exponent

(MLE). This exponent will eventually dominate over the others due to exponential growth.

Typically, the MLE is used to describe the trajectories since it is relatively simple to calculate

from a time series and information can be obtained readily from it. The MLE can be

expressed as

⁄ = lim
tæŒ

lim
”Z0æ0

1
t

ln |”Z(t)|
|”Z0|

, (3.5)

where e�ectively the initial separation is made as small as possible and an asymptotic behavior

is sought taking the limit of t to infinity.

However, problems arise when we look for such asymptotic behavior, since a trajectory

may never achieve it, e.g., if the particle moves from one environment to another in a short

time or it gets a�ected by di�erent first-order mechanisms on its way. One way to alleviate

this problem is to use the finite-time Lyapunov exponent (FTLE). Through the FTLE, a

finite-time interval can be used to calculate the divergence in the trajectories without the

necessity of an infinite limit.

The FTLE expression is given by

⁄(t, �t) = 1
�t

ln
C

d(t + �t)
d(t)

D

, (3.6)
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where �t is the time interval for the calculation. The value for �t is chosen depending on

the intrinsic characteristics of the system and the particles traveling through it. Therefore, it

is flexible and can be adapted to di�erent scenarios.

In this work, we are dealing with a bounded system; therefore, it is imperative to use a

quantity that will quantify chaos under such conditions. Since an asymptotic behavior is not

achieved for particles that remain in the system for a period of time before escaping, the

FTLE can adjust and describe their behavior while bounded in the system, given that an

appropriate �t is chosen.

3.5 Methodology

We introduce our reference particles starting at the point (xo,yo,zo)=(100, 100, 500) and with

initial momentum in the direction of the 768 pixels in the map, which correspond to each

pixel in the HealPix grid [43] with nside = 8. For each reference particle, we have a set of 10

particles that are injected randomly on a sphere of radius r̂0 = 0.01. The final time for the

family of particles per reference particle is defined as the shortest final time for a specific

particle. At each time step, the distance in phase space is calculated between each particle

and the reference, given by the expression

d2
j
(t) =

3ÿ

i=1
(xref

i
≠ xi)2 + (pref

i
≠ pi)2. (3.7)

With all the distances calculated, we proceed to the calculation of the finite-time Lyapunov

exponent, given by the expression

⁄j = 1
�T

ln
C

d(tj + �T )
d(tj)

D

. (3.8)

The value for �T should be chosen depending on the characteristics of the system; for

example, in this case, the bouncing time between mirrors gives us a point of reference for the

value of �T . Also, �T should capture the specific features of the divergence, as shown in
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Figure 3.3: Trajectories in the unperturbed system. Top Left: Transient particle with a final
time of 33000. Top Right: Intermediate particle with a final time of 75402. Bottom Left:
Irregular particle in the power-law behavior section with a final time of 295366. Bottom
Right: Trapped particle with the maximum integration time.

panels (a) and (d) in Figure 3.4. Here, the average value taken for �T is 38100 in normalized

units.

Once the FTLE has been calculated for each pair of particles at each time step tj, we

proceed to calculate the average for the family of particles at each time step. Therefore, we

obtain a ⁄̄ for each time step:

⁄̄F

j
= 1

n

nÿ

i=1
⁄ij, (3.9)

with n as the number of particles in the family for each reference particles; in our case, n=10.
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Then, a histogram is generated with all the obtained values of ⁄. Panels (c) and (f) in

Figure 3.4 show in light blue an example of an obtained distribution. Given that a value

of ⁄F T LE equal to zero means no divergence and that a positive value indicates divergence,

we then proceed to fit two Gaussians for each distribution. As we can see from our two

examples, there is a peak of the distribution around zero and another peak at a higher value.

Therefore, we fit these two scenarios with the peaks of our two Gaussians. Since the second

peak represents the actual divergence of the trajectories, we take this value to represent the

value assigned to ⁄F T LE for each specific family of particles.

3.6 Results

This section shows the results obtained with the numerical calculation and methodology

described in Sections 3.3 and 3.5, respectively. Based on those, it is found that there is a

correlation between the finite-time Lyapunov exponent (FTLE), i.e., the chaotic behavior

of the set of particles, and the escape time from the system (see Fig. 3.5). This correlation

follows a specific power law that persists even if perturbations are introduced in the system

(see Figs. 3.6 and 3.7). If the FTLEs and escape times are plotted in arrival distribution

maps, we observe that regions with di�erent chaotic behavior emerge as well as gradients

that appear between them (see Fig. 3.9).

3.6.1 Classification of Particles

Given our analysis for each set of particles, we can classify them based on the behavior of

the finite-time Lyapunov exponent and its relation to the escape time, i.e., the time that the

set of particles spent in the system.

In these systems, we can identify five di�erent regimes based on the particles’ behavior.

The particles with the shortest final times are transient (see Fig. 3.3). These are particles

that have a final time lower than 50000 (in code/normalized units) and their initial position is

around the equator in the maps in Figure 3.9. They do not spend much time in the magnetic
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Figure 3.4: Comparison between the behavior of two particles with di�erent escape times.
Top panels: These correspond to a particle with an escape time tesc = 97251. Bottom Panels:
Particle with an escape time tesc = 5.7◊105. (a) and (d) Distance in phase space vs. time. (b)
and (e) Distance in phase space at time t+�t over the distance at time t as a function of time
t. (c) and (f) Histogram of the finite-time Lyapunov exponent ⁄F T LE and the corresponding
fits denoted with black, red, and blue lines; see 3.5 for details on the Gaussian fits. Note
that for the shorter trajectories (a), they stay with almost no separation for a short time and
then diverge rapidly and leave the system right away. On the contrary, longer trajectories
(d) take longer to start diverging and when they do, the process takes a longer time with
intermediate periods of slower divergence before they are able to escape.
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system and these trajectories pass through regions with no strong variations of magnetic

field intensity that could compromise their adiabaticity. Since they escape the system very

quickly, they do not have time to develop any chaos while in the system.

Particles with final times between 50000 to 105 are in an intermediate state (see Fig. 3.3).

Particles in this intermediate state diverge so quickly that the system can not contain them,

and therefore they can not reach a steady state for their chaotic behavior. The particles tend

to have the highest values of ⁄F T LE, especially in the perturbed cases.

The great majority of particles have final times between 105 and 108 (see the histogram in

Figure 3.8). These trajectories are chaotic and consequently sensitive to the initial conditions.

Their behavior follows a power law that correlates the escape time and the Lyapunov exponent.

The particles that fit this power law behavior can be subdivided in two categories

depending on their chaotic attributes, irregular and regular. Irregular particles have final

times between 105 and 105.5. The divergence of these particles is sudden, and they do not

experience a steady state as the regular particles do (see panel (a) in Figure 3.4).

Regular particles, with final times between 105.5 and 108, start to diverge at a slower

pace compared to the irregular particles. Later, after a period of divergence, they achieve

a steady state. They spend most of the time in this steady state, and then they leave the

system (panel (d) in Figure 3.4). These trajectories are long trajectories at the margin of the

stability region in phase space.

The final category is trapped particles. These particles are only present in the unperturbed

system. Their final time is our maximum value of 108. These trajectories occupy the

stability region, which is the region in phase space where trajectories remain trapped

within the integration time (here 108). These trajectories, despite being very long, are not

sensitive to initial conditions, and they are stable. They will be permanently trapped in the

magnetic mirror if there is no time-dependent perturbation. With time-dependent magnetic

perturbations, these trajectories lose their adiabatic properties and escape after a relatively

long bounded period. This change depends on the strength of the perturbation, as we will

see in the next subsection.
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3.6.2 Finite-Time Lyapunov Exponents vs. Escape Times

In Figure 3.5, the data for each set of particles is divided into eleven bins, according to their

escape times tesc. Then, an average for each bin is calculated and denoted by a red point in

the figure. Subsequently, the red points are connected by a red line to show the trend for the

profile. This profiling is also done for Figures 3.6 and 3.7 for the perturbed cases.

Given this profile, it is found in Figure 3.5 that the distribution exhibits a power-law

behavior after reaching the maximum values for ⁄F T LE at 10≠4.0. The power law extends

from tesc ≥ 105 to the maximum escape times for the system. The fit for the profile is given

by the expression

⁄F T LE = — t≠1.04±0.03
esc

. (3.10)

This fit has an R2 value of 0.995 and a scaling value — = 101.24±0.15.

One important feature to notice is that this slope is the same that the perturbed cases in

Figures 3.6 and 3.7 exhibit. In Fig. 3.6, we can see that the data for the weak perturbation and

the strong perturbation all show the same power-law behavior with a slope of approximately

minus unity. This feature is even more clear in Figure 3.7. The particles denoted in blue

have the same initial conditions as the others but are subjected to di�erent perturbations.

Even though these perturbations a�ect the final escape time that they have, their behavior

is still along the same power law.

In Fig. 3.6, the di�erent sets of particles are subjected to various magnetic field con-

figurations, as described in Section 3.2. For each set of particles, the initial conditions

for the reference trajectories are kept the same, so that any di�erences will arise from the

various perturbations introduced in the system. From this figure, we can see that if these

perturbations are present in the system, the distribution of particles in the di�erent categories

of the FTLE changes. However, the same power-law behavior remains. The most evident

features that changed in this perturbed case are that there are no longer particles in the

trapped category, and particles are rearranged along the power law depending on how strong
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Figure 3.5: Unperturbed system: The finite-time Lyapunov exponent, ⁄F T LE, vs. the escape
time from the system, tesc, for the unpertubed system. The blue points denote the specific
values for each set of particles, which correspond to di�erent initial conditions. The profile
is denoted by the red points and the red line connecting them. The vertical red error bars
correspond to one standard deviation. Note that from tesc ≥ 105 to the maximum escape
time, the distribution follows a power-law–like behavior. The fit for the power law of the
profile is given by the Eq. 3.10, which shows a power of -1.04.

the perturbation they experience is. For example, if a weak perturbation is introduced, we

can still see that there are particles in the regular region. However, if a strong perturbation is

present, particles tend to leave the system at a faster pace; therefore, the regular and trapped

categories will be depleted of particles.

This migration of particles from one category to another one is shown in Figure 3.7.

Here particles originally in the regular category of the unperturbed system (denoted in blue

in the figure) were subjected to the various perturbations. The reference particles’ initial

momentum and position are kept the same. It is shown here that these sets of particles

escape the system more quickly, moving to the irregular and intermediate categories when

a weak perturbation is present. In the presence of the strong perturbation, almost all of

them move to the intermediate category. Additionally, even though the particles change their
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Figure 3.6: Comparison of perturbed systems. The finite-time Lyapunov exponent, ⁄F T LE,
vs. the escape time from the system, tesc, for four di�erent cases. The blue points represent
the unperturbed system shown in Figure 3.5. The black points correspond to the profile of
the weak-perturbation system, the green ones show the weak perturbation plus electric field,
and the red ones the strong-perturbation system. Section 3.2 shows the description for each
magnetic field configuration. Note that once perturbations are introduced in the system, the
overall distribution of particles in the di�erent categories changes; nonetheless, the power-law
behavior and slope remain the same.

categories and move to shorter escape times, they do so in a manner that still complies with

the power-law behavior.

The histogram depicted in Figure 3.8 shows the distribution of particles for the final

escape times in the unperturbed system. This histogram can be interpreted as a probability

distribution plot for escape times, where the most likely scenario is around tesc = 105. This

most probable case is consistent with the migration plot in Figure 3.7. In that figure, when

perturbations are introduced, the particles tend to move to shorter times and accumulate

around the tesc = 105 range for the most extreme case. Therefore, a histogram such as the

one in Figure 8 could be used as a predictor for the expected behavior of a set of particles

when the system is perturbed. For example, a particle that has a long escape time will have

a tendency to move to a more likely scenario when the perturbation is introduced.
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Figure 3.7: Migration. The finite-time Lyapunov exponent, ⁄F T LE, vs. the escape time from
the system, tesc, for the same set of reference trajectories. The original set of particles in
the unperturbed system is shown in blue. The black points show the same set of reference
trajectories but subjected to a weak perturbation. The green points correspond to these
particles in a weak perturbation plus electric field system, and the red points represent the
particles a�ected by the strong perturbation. Note that even though the reference trajectories
have the same initial conditions, these particles originally in the regular category in the
perturbed system can reduce their escape times by a factor of two if a�ected by a strong
perturbation. But in doing so, they still show the same power-law behavior.

3.6.3 Maps

Following the calculation of the finite-time Lyapunov exponents and escape times for the

sets of trajectories, we proceed to plot them in an arrival distribution map (see Fig. 3.9).

The location of each pixel corresponds to the arrival direction of a reference particle and

the value assigned to each pixel indicates the FTLE (Fig. 3.9 top panel) or the escape time

(Fig. 3.9 bottom panel). Therefore, the maps correspond to a visual representation of the

di�erent chaotic behaviors and how they are distributed. In these arrival distribution maps,

we can identify that there are regions of stability where the particles are trapped within the

maximum integration time (denoted in deep red in the top panel of Fig. 3.9). Originating

from those regions, gradients from longer to shorter escape times appear. Since tesc is related
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Figure 3.8: Histogram for final escape times. Number of sets of particles vs. the escape time
from the system, tesc, in the unpertubed system. Note that if we interpret this plot as a
probability distribution, particles are more likely to have escape times around tesc = 105,
which is consistent with the migration depicted in Figure 3.7.

to the FTLE, the chaotic behavior of particles follows this trend as well; see Fig. 3.9 bottom

panel.

Particles in the power law are located outside that stability region and populate the

rest of the areas of the map (except for the region around the equator). Regular particles

with very long trajectories are located at the margin of the stability region, with moderate

Lyapunov exponents and manifesting a metastable behavior. Then, we can see a transition

to the higher Lyapunov exponent for particles with shorter times (intermediate and irregular

particles), which are more spatially distributed in the map.

The particles in the equator remain for a particularly short time in the system and

therefore do not contribute to the Lyapunov maps. Their exponent is taken to be zero under

these conditions.

For the case of the maps with perturbations present (see columns 2 and 3 in Fig. 3.9), we

see significant changes that start to appear as the perturbation goes from weak to strong.
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Figure 3.9: Maps. The top panel corresponds to the escape times for the unperturbed, weakly
perturbed, and strongly perturbed systems, respectively. The bottom panel corresponds to
the finite-time Lyapunov exponent, ⁄F T LE, for those systems. These maps correspond to a
visual representation of the di�erent chaotic behaviors and how they are distributed spatially.

The most obvious change is that there is not a stability region in these cases, but still the

transitions from lower FTLE to higher values are present. For the weak perturbation, there

is still a variety of behaviors and values for the FTLE, yet, for the strong perturbation, we

see that it is more restrictive on the values that the exponents can take, and it is basically

populated by one type of particles, as we have seen in the ⁄F T LE, vs. the escape time tesc

plots. The FTLE values for these particles are uniformly distributed in the map as well.

3.7 Discussion

A new method to calculate the chaotic behavior of particles’ trajectories in bound systems

has been developed. This method is based on the calculation of the finite-time Lyapunov

exponent, a quantity that is adaptable to bounded conditions; see Section 3.4. The FTLE is
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used to characterize the particles’ behavior while bounded in the system but also to capture

changes in behavior and transitional states. For example, particles inside a coherent magnetic

structure can experience an exponential divergence, then move to a steady bounded state,

and later escape. After this escape, they can propagate in a larger field and then encounter

another structure where they could get bounded again. Consequently, instead of tracking

just one regime, as would be the case for calculating a specific di�usive state, the FTLE

can adapt to the changing conditions. Therefore, using it in conjunction with a well-defined

di�usive state can yield a more comprehensive understanding of the CR propagation.

To describe the particles’ behavior in bound systems, we constructed a toy model as

our propagating medium. It consists of a magnetic bottle with time-perturbations added

(see Section 3.2 for details). The specific parameters used in this work are based on the

heliospheric magnetic configuration; nonetheless, it can be adjusted to fit di�erent structures,

as will be discussed in Section 3.8. This model captures the heliospheric large-scale magnetic

features. One of these features is the magnetic mirroring e�ect between its flanks due to the

draping of the interstellar magnetic field. The other e�ect is due to the solar cycles and its

magnetic field variation in polarity.

As particles propagate in this system, they display chaotic behavior, as shown in Section

3.6. We found that the degree of chaos of the trajectories is correlated to the particles’ escape

time from the system. This relation is given by a power law, and depending on that, di�erent

behavioral regimes exist.

Particles can undergo four phases within the escape time that determine their behavioral

category. However, a particle does not necessarily experience all of these phases. The initial

phase is when divergence has not happened yet. Overall shorter trajectories experience almost

no separation for just a brief interval compared to longer trajectories, for which this period

is considerably more prolonged, as seen in Figure 3.4. The next phase is the divergence

stage, where longer trajectories diverge at a slower rate, hence their low FTLE values. A

penultimate phase, observed in long trajectories, corresponds to an extended slow-divergence

period and an approximately constant separation behavior. The particles remain bounded in
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the system for a long time. The final phase is the escape, where particles leave the confined

system.

Di�erent CR behavioral categories can be identified in these bound systems, as discussed

in Section 3.6. These regimes depend on multiple elements, such as the trajectories’ specific

characteristics, the phases particles experienced, and their corresponding chaotic behavior.

The first of these categories is for particles that leave the system in a short time, and

therefore, they cannot develop any chaos. These transient particles have very smooth

trajectories and do not experience significant variations in the magnetic field. In a realistic

environment, these particles will most likely trace out the magnetic field outside the bound

system. For example, particles that enter the heliosphere through the nose spend a very short

time in the heliosphere before being detected at Earth. Therefore, they could experience the

least deviations and be more closely connected to their original direction in the interstellar

medium.

The second type of particles are in an intermediate state. These particles did not achieve

their maximum chaotic potential since they escape the system before doing so. Their

divergent behavior is very explosive and occurs in a short period. They encounter regions

where the magnetic fields vary vastly, and in consequence, their escape times are shortened.

Consequently, these particles are not likely to be able to trace out the magnetic field outside

the magnetic structure. Their behavior is in between the transient and the power-law regime

in the system.

The next category, and where the vast majority of our particles reside, is the power-law

regime. When we explore the relation between the FTLEs and the escape times, a power law

emerges; see Fig. 3.5. In this power law, the Lyapunov exponent follows the inverse of the

escape time; see Eq. 3.10. As we have seen in Figure 3.4, particles that diverge too quickly

are unable to maintain that rapid divergence for an extended period, due to the finite size of

the system, and escape rapidly. On the other hand, a slower divergence gives particles plenty

of time to spend bounded in the system before leaving it. Therefore, shorter trajectories have

higher FTLEs, and longer trajectories display less chaotic behavior.
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Di�erent factors contribute to the power-law relation of the FTLE vs. escape time. These

elements are based on the connection between the magnetic field geometry and the test

particle’s energy.

One of the elements that conditions the particles’ behavior in the system is the ratio

Êbounce/Êg, where Êbounce is the bouncing frequency between the mirrors, and Êg is the

gyro-frequency. This ratio’s value is smaller for trapped trajectories than those from other

categories of particles, and it does not vary much in general. This ratio has a more significant

variation and a higher value for the more chaotic particles.

There are also limitations set on the maximum FTLE given by the configuration of the

system. In Figure 3.5, it is shown that the highest values for the FTLE have magnitudes of

10≠4 and are found in the vicinities of tesc = 105. The maximum value achievable for the

FTLE for which the particles can still be bounded is 4.90 ◊ 10≠4. It is a constraint given by

the system’s physical dimensions. Its value is determined by the maximum separation that

particles can achieve while still trapped and the time that it takes to achieve it, as denoted

in Eq. 3.6. For instance, a particle with a ⁄F T LE = 10≠3 would not be able to stay in the

bounded system since its divergence is so extreme.

Therefore, for a real finite system, one could know its chaotic potential just by the

system’s overall dimensions compared to the characteristics of the impinging particles. This

indication could be beneficial if there is a collection of similar coherent structures. Each

of them can contribute to the general behavior, and we could predict their e�ects in the

overall propagation. For example, we would expect these conditions in certain interstellar

medium regions, so that we could see how the di�usion of CRs is a�ected by the presence of

a collection of coherent magnetic structures.

Another element present in the FTLE vs. escape time plots is an inflection point in

the profile. For the unperturbed system, an inflection point is found in the profile (Fig.

3.5) where the maximum values for the FTLE occur (tesc = 105). This inflection point at

the profile’s maximum values is expected since the intermediate particles displayed a very

explosive divergence and are not stable enough to remain in the system. The particles at the
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inflection position are the most chaotic that were able to thoroughly diverge in the system.

From that point on, particles will start to diverge at a slower pace. However, the exact

location of the inflection is dependent on the perturbations that act on the system. For the

perturbed cases, this inflection point is located at a shorter escape time and a slightly higher

value of the ⁄F T LE, as shown in Figure 3.6. Since the perturbations are a source of chaos in

the trajectories, this decrease in escape time and increase in the FTLE values of the inflection

point is expected. Nonetheless, this shift in the inflection point location is restricted since its

maximum value is already determined by the system’s dimensions, as mentioned before.

An important attribute that this system presents is that if the system is perturbed, the

particle’s behavior still falls along the same power law. As shown in Figure 3.6 and more

clearly in Figure 3.7, once a perturbation a�ects a set of particles, the particles’ behavior

becomes more chaotic, but it follows the same power law as in the unperturbed case. Multiple

factors can contribute to this phenomenon, from the perturbation’s spatial dimensions to the

overall magnitude of the perturbations’ magnetic field compared to those from the magnetic

bottle.

One of the aspects that could contribute to the permanence of the particles in the power

law is that the time-perturbation is not very extended spatially compared to the bottle’s

dimensions. The particles are essentially still on the same system configuration, and the

perturbation will solely drive them to another possible path of the same system. Accordingly,

they will follow the same power law. Moreover, as we have seen in Figure 3.8, the region

around tesc = 105 is the most likely scenario; consequently, as the system is perturbed, it will

be driven to this most probable case.

Another contributing factor is that the perturbation is not strong enough to change the

whole behavior. Therefore, the first order in terms of the system is the magnetic bottle.

Suppose the magnitude of perturbation was higher, or perhaps its extension was ampler. In

that case, the bottle’s magnetic field will be secondary, and the overall behavior, including

the slope in FTLE vs. escape time, will change. This point is also related to the fact that the

perturbation that the particles experience does not vary that much as the particles’ trajectory
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progresses. For example, for the strong perturbation and a particle with a final time of 105,

the perturbation only moves 6.6 AU before the particle escapes the system.

Nonetheless, even if the perturbation does not deviate the particles from this power law,

the cumulative e�ect of the magnetic bottle plus the perturbation does create severe chaotic

changes. This idea points to the fact that even small changes can have significant e�ects.

Given the invariance under these perturbations that the Lyapunov-exponent–escape-time

relation displays, this exact power law could prove to be an intrinsic property of the system.

Similar power laws could be found for di�erent configurations. Nonetheless, this will require

investigating a variety of systems.

Another aspect to consider is how chaos and magnetically connected areas in the system

can a�ect the observations. There are two di�erent perspectives from which we can look at

this problem. One is from the particles that are impinging the magnetic structure from the

outside. The other is from the point of view of the solid angle at which the particles are

detected.

From the observational point of view, the limitation resides in that we do not have the

exact initial and final coordinates of the particles’ trajectory. Furthermore, in these physical

systems, magnetic fields could have already changed slightly by the time two consecutive

trajectories pass by with the same initial position. Therefore, those trajectories will deviate

from each other, and that entry point will likely correspond to two di�erent arrival directions.

When assessing the e�ects on the arrival direction’s anisotropy, we have to consider the

di�erent roles that each category of particles can have in the arrival distribution maps. For

example, if the magnetic structure’s e�ect is strong, then the original distribution can be

completely scrambled. For a more moderate perturbation, as the one analyzed here or in

the case of the heliosphere, the e�ect is significant, yet some of the original distribution

could remain. Therefore, we could expect two situations: the map’s overall distribution or

parts of it are shifted slightly, or regions of the maps are changed while others are practically

una�ected.

Therefore, if there is time-variability in the maps, the particles that will mainly drive this
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variation and that will be the most a�ected are the chaotic ones (those in the intermediate

and power-law categories). The transient particles may not be a�ected or moved as a whole,

i.e., its variation will be a slow drift. Consequently, transient trajectories could provide a

direct mapping between initial and final phase space configuration. Chaotic trajectories, on

the other hand, could provide only an average mapping.

3.8 Outlook

As cosmic rays propagate, they encounter magnetic structures that could trap them tem-

porarily and induce chaotic behavior on their trajectories. The model that we develop in this

study can be used to represent a variety of magnetic structures and magnetic processes where

cosmic rays can get momentarily trapped. In addition, the method we construct here to

characterize chaotic behavior based on the FTLE can be applied to these cosmic-ray trapping

scenarios. However, it can also be used when particles move rapidly from one environment to

another, and their trajectories experience a change of first-order e�ects on them.

The rate at which CRs have such bounding interactions depends on several factors. One

of the determinant elements is the particle’s energy or, more specifically, the particle’s rigidity,

R = E/Ze. Depending on the particle’s rigidity and its corresponding gyroradius in a specific

magnetic field, it can experience strong e�ects from magnetic structures of a similar scale.

If the gyroradius is smaller than the coherent structure, it will be a�ected by the magnetic

field’s large-scale geometry. If it is larger than the magnetic perturbation, accumulating

e�ects will be felt.

The trapping of cosmic rays with their consequent chaotic e�ects can happen at various

scales, from particles in the interstellar medium to the intercluster media. Also, di�erent

types of processes can be behind it. Therefore, from their place of origin to their detection

at Earth, a particle can be a�ected by multiple coherent magnetic structures. Nonetheless,

we can expect the number of interactions to vary for a distribution of particles at di�erent

rigidities or injected in di�erent places in the galaxy.
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For instance, we can visualize two distinct extreme scenarios for two particles at di�erent

rigidities. For a PeV proton injected into the galaxy, the motion could be dominated by the

trapping of a few specific magnetic structures at the time of the detection. However, we could

consider, for example, 1-TeV protons, for which the situation may look completely di�erent.

These cosmic rays with lower energy could have the chance to encounter more structures that

can a�ect them. We could also conceive that di�erences will arise if particles are injected in

a relatively quiet place in the galaxy instead of a very turbulent and energetic site. These

scenarios can profoundly a�ect the arrival distribution at Earth, since our surroundings could

select particles with specific rigidities.

We can expect these interactions to arise from the cosmic rays’ interplay with very

well-defined structures such as the heliosphere or as a result of more basic phenomena, e.g.,

structures that appear due to spatial intermittency.

The magnetic configuration that we use as inspiration for our toy model system is the

heliosphere. Here we have a significant source of mirroring e�ects between the flanks of the

heliosphere. Moreover, there are a variety of perturbation sources. One of them is the one

that comes as a result of the solar cycles that we described in this study. The particles’

chaotic behavior could change depending on the phase in the solar cycle in which the system

is. The perturbation phase may distribute chaotic and non-chaotic CRs di�erently as a

function of the phase of magnetic perturbation. This e�ect is because the surrounding space

has di�erent magnetic field polarities. Therefore, a time-variability could come from the

existence of a perturbation, but the definite characteristics of it can have a significant impact,

in this case, the polarity.

Other perturbation sources are the instabilities at the interface between the ISM and the

heliosphere, turbulence, and the motion that the heliospheric flanks have relative to the inner

heliosphere. In [37], this latter motion is described as having a speed of 10-100 AU per year,

which could be a consistent source of variability and directionality in the maps.

Similarly, we could expect mirroring e�ects or trapping in more extensive structures, such

as the Local Interstellar Cloud (LIC) or the Local Bubble (or Local Cavity) (see [27, 23] for
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details). The LIC has an extension of 30 light-years and the Local Bubble of 300 light-years.

So their influence can span over particles with rigidities in the 1017 V region.

As mentioned before, spatial intermittency plays an essential role when dealing with the

creation of coherent structures in a particular medium [32]. These structures a�ect the CR

propagation and a possible di�usive state. These e�ects can be involved in various scenarios

at di�erent scales, such as the ISM or solar processes.

3.9 Conclusions

In this work, we have explored the possibility that chaotic behavior can originate from the

interaction between cosmic rays and a toy magnetic model that consists of a magnetic bottle

with time-perturbations and the potential consequences that it can have on the cosmic ray

arrival distribution.

The conclusions are summarized as follows:

• Our results show that the Finite-Time Lyapunov Exponent, a quantity that indicates

the chaotic behavior of a trajectory, is related to the escape time of the system. A

specific power-law gives this relation that even persists if perturbations act on the

system. This specific power law could prove to be an intrinsic characteristic of the

system.

• The maps of arrival distribution in these systems display areas where the chaotic

characteristics vary significantly.

• Time variability could prove to be an essential aspect of the observed anisotropy. Since

these magnetic structures are located so close to the Earth; therefore, there is no time

for them to be homogenized.
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Chapter 4

Heliospheric E�ects on the

Cosmic-Ray Anisotropy

Does anisotropy arise from the CR interactions with the heliosphere?

In this chapter we performed numerical calculations to test the idea that the anisotropies

of TeV cosmic rays may arise from their interactions with the heliosphere. For this purpose,

we used a magnetic field model of the heliosphere and performed direct numerical calculations

of particle trajectories. Unlike earlier work testing the idea, we did not employ time-reversible

techniques that are based on Liouville’s theorem. We showed numerically that for scattering

by the heliosphere the conditions of Liouville’s theorem are not satisfied and the adiabatic

approximation and time-reversibility of the particle trajectories are not valid. Our results

indicate sensitivity to the magnetic structure of the heliospheric magnetic field, and we expect

that this will be useful for probing this structure in future research.

A version of this chapter has previously appeared in The Astrophysical Journal. López-

Barquero, V., Xu, S., Desiati, P., et al. 2017, ApJ, 842, 54.
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4.1 Introduction

Cosmic rays (henceforth, CRs) with energy below 1018 eV have a gyroradius smaller than

the galactic disk thickness of about 300 pc, with energy-dependent confinement within the

Milky Way. The topics related to the origin, propagation and acceleration of CRs are still

debated in spite of the long history of relevant studies (see the excellent textbook by [84]

and references therein). However, it is generally accepted that most of the galactic CRs are

being accelerated by supernova shocks. Some percentage of the CRs can be accelerated by

magnetic reconnection [59]1. Spatially, supernovae are correlated to star-forming regions, so

the distribution of CRs is a�ected by that of their sources, but it is modified by propagation

through the galactic magnetic field. Frequently the magnetic field in the Galaxy is described

as composed of a global regular component [see, e.g., 48, 49], large-scale coherent (on the order

of 10-100 pc) structures, and the ubiquitous turbulent component (with wide spatial-scale

inertial range with amplitude following a Kolmogorov power spectrum). This is, however,

an approximation, with the availability of the modern theory of magneto-hydrodynamic

(MHD) turbulence (see [30] for a review) predicting a more sophisticated picture, with

compressible and incompressible modes having their own cascades [41], henceforth GS95

[58, 25, 36, 65]. For sub-Alfvenic turbulence, which is typical within quiescent regions of the

interstellar medium (ISM), the transition from weak turbulence to strong Alfvenic turbulence

takes place [55, 53]. The latter has the Kolmogorov-type spectrum ≥ k≠5/3. However, this

spectrum is strongly anisotropic and therefore the scattering by Alfvenic turbulence injected

at large scale is marginal [34, 119], with fast modes identified by [119] as the major scattering

component induced by the galactic turbulent cascade.

An additional scattering emerges from CR instabilities. Streaming instability has been

long considered an important component of CR propagation physics (see [32] for a review).

Particle streaming was employed in models such as the leaky box model of propagation to
1Magnetic reconnection becomes fast, i.e., independent of resistivity, in turbulent media [55, 65, 66] (see

also review by [81] and references therein). A similar acceleration mechanism that appeals to tearing is
discussed in a later publication by [41].
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explain the high isotropy of observed CRs. In that model, it was assumed that the streaming

instability was suppressed in the partially ionized galactic disk and acts to scatter and return

CRs as they enter the partially ionized galactic halo. The streaming of particles outside

the disk was able to naturally explain the observed dipole anisotropies of the observed CR

distribution. This model was later challenged in [45], who performed calculations of the

streaming instability damping by the ISM turbulence and concluded that the streaming is

not expected to take place for the levels of turbulent damping that they adopted. More

recently, this conclusion was questioned in [75] where it was shown that for typical halo

conditions scattering instability takes place in the galactic halo. Additional instabilities of

CRs (see [76, 80]) can act as additional sources of CR isotropization. In this paper, we

assume that the influence of scattering induced by the TeV CR instabilities in the vicinity of

the heliosphere is negligible.

The limitation of the traditional models of CR propagation is not only due to scattering

physics. In fact, at scales less than the turbulent injection scale, the particles following

magnetic field lines experience super-di�usion with respect to the direction of the mean

field [80]. Such e�ects can be strongly distorted if the synthetic data cubes are used. Therefore,

in what follows, we use only the data cubes obtained by direct MHD numerical simulations.

This paper continues our numerical studies of the origin of CR anisotropies observed

at Earth. The first paper, [85] (hereafter referred to as LX16), dealt with the e�ects of

interstellar turbulence on the CR propagation and it did not take into account the strong

perturbations induced by the heliosphere. In this paper, on the contrary, we focus our

attention on the e�ects arising from the CR interactions with the heliosphere. The idea

that the heliosphere can produce strong scattering on CRs, which could be important for

explaining the observed high-energy CR anisotropies, was first suggested in [28] (hereafter

referred to as DL13). This idea was later tested numerically in [75] and [82]. The di�erence

between our paper and the earlier studies is that we do not assume that Liouville’s theorem

and the backtracking of particles is valid. In fact, in this paper, we show that the conditions

of Liouville’s theorem are not satisfied due to the scattering at the heliospheric boundary.
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Therefore, we adopt a much more time consuming Monte-Carlo approach with the forward

tracking of particles.

The paper is organized as follows. In Section 4.2, the problem of observed anisotropy of

CRs is formulated along with ways to address it, while in Section 4.3.1 the long tail heliospheric

model used in this study is described. Section 4.3 describes the particle integration method

used and which CR particles are used in the study. In Section 4.4, we discuss the validity of

applying Liouville’s theorem in the context of this work. Results are presented in Section 4.5

and discussed in Section 4.6. Concluding remarks follow in Section 4.7.

4.2 The Problem of Anisotropies and Corresponding

Approaches

Particle energy roughly determines which spatial scale is the most dominant in shaping the

characteristics of their distribution. Galactic CRs in the energy range below about 50 GeV

are strongly a�ected by modulations of the inner heliospheric magnetic field, in correlation

with solar cycles (see, e.g., [33, 98, 64, 34]). Above 50 GeV, the modulation in the CR energy

spectrum is negligible; however, the e�ects of long-term solar cycles on particle distribution is

still observed up to an energy of few hundred GeV [62, 64]. The gyroradius of 10- to 100-GeV

CR particles in the interplanetary magnetic field of < 1 µG is typically smaller than the size

of the termination shock [about 80–90 AU, see 95]. This makes it possible for those particles

to be spatially redistributed according to the modulating solar wind-induced perturbations

on the magnetic field.

At TeV energies, a scale transition occurs. The typical particle gyroradius is larger than

the size of the termination shock, therefore the influence of inner heliospheric magnetic fields

on the CR distribution is negligible. In fact, solar cycle modulations are subdominant in this

energy range. However, TeV galactic CRs coming from the ISM, where the local interstellar

magnetic field (LIMF) is ≥3 µG, and propagating into the heliosphere have gyroradius on
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the order of 100 AU, which is smaller than the estimated transverse size of the heliosphere

of about 600 AU and shorter than the estimated length of the heliospheric tail of a few

thousands AU [65, 95, 97]. From this scaling relationship, TeV CRs are expected to be

influenced by the heliospheric magnetic field (see [28], hereafter referred to as DL13). At

an energy scale of tens of TeV, the gyroradius of the lightest CR particles starts to exceed

the heliosphere’s transverse size, thus decreasing its influence; nonetheless, these particles

will still experience the influence of the perturbation created by the heliosphere on the local

interstellar medium (LISM) and the e�ects of the heliotail’s length on their propagation. At

higher energies, the arrival directions of the CRs are influenced by their propagation through

the interstellar magnetic field (see LX16) and by the distribution of their sources in the

Galaxy.

It is, therefore, expected that CRs with energy below several tens of TeV are influenced

by the heliosphere to some extent. The actual degree of such an e�ect depends on the

properties of the heliosphere, such as its size and the magnetic structure, the presence of

magnetic perturbations or instabilities at the boundary with the ISM (e.g., at the flanks of

the heliosphere), the large-scale perturbation of the LISM due to the heliosphere, and the

mass composition (or better the rigidity2) of the CR particles. If the heliosphere has the

e�ect to redistribute the TeV CR arrival direction distribution, compared to that shaped by

interstellar propagation, all those details need to be properly understood and integrated into

a comprehensive numerical particle trajectory integration.

From an observational point of view, a statistically significant anisotropy has been observed

by a variety of experiments, sensitive to di�erent energy ranges (from tens of GeV to a few

PeV), located on or below the Earth’s surface in the Northern Hemisphere [63, 45, 12, 13, 44,

7, 9, 81, 62, 14, 26, 73, 17] and in the Southern Hemisphere [3, 4, 5, 1, 2].

The global anisotropy appears to change with energy in a nontrivial way. From about
2Rigidity of a charged particle is a measure of its momentum, and it refers to the fact that a higher

momentum particle has a higher resistance to deflection by a magnetic field. It is defined as R = rL B c = E/Ze,
with rL the particle gyroradius and B the magnetic field [see 117]. A 1-TeV proton and a 26-TeV iron nucleus
have rigidity of 1 TV.
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100 GeV to tens of TeV, it has an approximately consistent structure at the largest scale,

although its measured amplitude increases with energy. Above a few tens of TeV, the

observed progressive change in the anisotropy topology may indicate a transition between

two processes shaping the particles’ arrival distribution at Earth, for instance, the transition

from heliospheric-dominated to ISM-dominated influence, which culminates around 100 TeV

(as observed in [2] and discussed in DL13).

However, the change in topology of the CR anisotropy as a function of energy can have

di�erent origins as well. In the scenario of particles in homogeneous and isotropic di�usion,

the CR density gradient, and therefore the induced spatial anisotropy, has a dipolar shape.

The direction of the dipole is expected to point towards the strongest source of the observed

CRs, and its amplitude to depend on the di�usion coe�cient. At di�erent energies, the

strongest contribution to the observations can shift from one source to another, thus changing

the orientation of the dipole [32, 21, 67, 66, 77, 72, 12]. The di�culty with this scenario

is that particle di�usion in the ISM is expected to be anisotropic, i.e., fast along and slow

across the magnetic field lines. A misalignment between the CR density gradient and the

regular galactic magnetic field prevents pointing to any specific source, and it would suppress

the anisotropy amplitude depending on the misalignment angle [31, 47, 75, 60]. Since the

ratio of perpendicular to parallel di�usion is likely to depend on energy (depending on the

magnetic field geometric configuration), the change in orientation of the anisotropy is also

linked to the properties of the interstellar magnetic field itself.

The observed anisotropy cannot be described with a simple dipole component. The

actual distribution is a combination of several angular scales [15, 6, 4, 16, 8, 2] that can be

studied by decomposing it into individual spherical harmonic contributions. This makes it

possible to determine the angular power spectrum of the observed arrival distribution. As

reported by experimental observations, most of the power is concentrated in the large-scale

anisotropy structure, which includes dipole, quadrupole, and octupole. Such contributions

are likely a�ected by the limited field of view of the experiments and also by biases that

limit the observation at large scale (see, e.g., [11]). About 1% of the power is distributed
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across small-scale structures in the arrival direction distribution (where there is no bias due

to the field of view). Small angular scale anisotropy features correspond to regions where CR

flux has large gradients in a relatively localized area in the field of view of the observations

(on the order of 10¶). Such regions can be stochastically produced by scattering processes

of CRs in the ISM magnetic turbulence within the particle mean free path, as discussed

in [39, 10, 11] and our companion paper LX16. Such scattering processes have the e�ect of

decomposing a large-scale particle density gradient into small-scale components. This process

constitutes an important contribution to the power spectrum, and it is certainly compatible

with observations. However, it is possible to argue that some observed localized regions of

TeV CR excess appear to be correlated with features associated with the heliosphere. For

instance, one of the localized excess regions observed in the northern equatorial sky appears

to be correlated with the direction of the heliospheric tail (see, e.g., [15, 6, 16, 8]). CRs

observed within this localized region have an energy spectrum that is harder than that in the

surrounding areas. It was proposed that reacceleration of CRs by magnetic reconnections

in the heliospheric tail may be a possible explanation [54, 27]. Other localized regions are

spatially correlated with the large angular gradient edge of relative intensity across the whole

sky, with a possible link to heliospheric origin (as discussed in DL13).

Instabilities that develop dynamically at the boundary between the heliosphere and the

ISM (see Section 4.3.1), such as Rayleigh–Taylor and Kelvin–Helmholtz instabilities, can have

an e�ect on the cosmic ray arrival at Earth [83, 125, 126, 46, 65, 26, 127, 112, 95]. Specifically,

if they have spatial scales on the order of 10-100 AU, they can induce scattering processes

on multi-TeV-scale CRs that cross the heliosphere. Therefore, potentially, if an stability

a�ects the configuration of the heliopause that can have an impact on the CR distribution.

However, currently the information on the exact characteristics of the heliopause is limited,

thus more direct measurements are needed to assess the definite nature of these instabilities.

The possibility that strong resonant scattering processes cause a redistribution of the CR

arrival direction distribution was already discussed in DL13. As mentioned, other authors

have studied the e�ects of the heliosphere [75, 82] or, in general, of astrospheres [110] on the
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distribution of TeV CRs. Additionally, magnetic field reconnection plays an important role

in the heliopause. For instance, turbulent magnetic reconnection ([55], see also [81] and ref.

therein) can induce the first order acceleration of energetic particles [59, 72, 41], which was

shown to be relevant to the heliospheric settings [78, 42].

The heliospheric model used in the present work makes use of ideal MHD treatment

of ions and of a kinetic multi-fluid description of neutral interstellar atoms penetrating

into the heliosphere ([94]). This model incorporates the heliospheric tail up to a distance

of approximately 4000 AU, which does not cover the maximum possible extension (see

Section 4.3.1). In this study, the possibility that resonant scattering processes may have a

strong e�ect on redistributing TeV CR arrival direction distribution is critically discussed. The

relevant points of the present study are to dispute whether Liouville’s theorem can actually be

used as a tool to determine the particle trajectories a�ected by the heliospheric magnetic field

and whether the heliosphere itself imprints a strong e�ect on the cosmic particles crossing

it. If magnetic fields change significantly within gyroradius spatial scale, the geometry of

particle trajectories may be highly sensitive to the actual initial conditions; i.e., they may

have a chaotic nature. In such a case, application of Liouville’s theorem is not warranted

and particle distribution may follow a di�erent scaling. In general, application of Liouville’s

theorem must to be investigated case by case. In what follows, we use direct numerical

simulations of CR propagation using the numerical results of heliospheric simulations and

without any use of Liouville’s theorem.

4.3 Cosmic-ray Propagation in the Heliosphere

In this section, the description of the heliospheric magnetic field model used in the present

study is laid out, then the strategy and method used to numerically integrate the particle

trajectories through the heliosphere is described.
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4.3.1 Heliosphere Magnetic Field Model

The heliosphere is formed when the solar wind (SW) collides with the local interstellar

medium (LISM). In an ideal magnetohydrodynamic formulation of the problem, the SW–

LISM interaction necessarily creates a tangential discontinuity that separates the plasmas

originating at these two sources. This discontinuity is called the heliopause (HP). The HP

extends thousands of astronomical units (AU) from the Sun. As any tangential discontinuity,

the HP is subject to hydrodynamic instabilities, e.g., the Kelvin–Helmholtz (KH) instability

[see, e.g., 22, 33, 106, 105]. Moreover, the HP nose is subject to Rayleigh–Taylor (RT)

instability. The role of gravity in this case is played by the momentum-exchange terms in

the MHD equations describing the plasma flow in the presence of charge exchange [83, 126].

Linear analysis [18] of the RT instability performed in an idealized formulation showed that

perturbations grow unconditionally while they are small. Nonlinear, numerical investigations

of the RT instability have been performed by Florinski et al. [46] and Borovikov et al. [26] in an

axially-symmetric case, and by Borovikov & Pogorelov [27] in a realistically three-dimensional

formulation. It was demonstrated in the latter paper that the heliospheric magnetic field

(HMF) can damp the RT instability. However, the HMF becomes rather small occasionally

in the course of solar cycle, so the instability results in a substantial mixing of LISM and SW

plasma at the nose of the heliopause. Interestingly, Borovikov & Pogorelov [27] shows that RT

instability may reveal itself also at the HP flanks, but it is caused by charge exchange with

secondary neutral atoms born inside the heliosphere. As a result, the HP surface bounding

the heliotail is subject to the mixture of KH and RT instabilities.

Since the KH instability is of a convective type, with the perturbation amplitude growing

as a function of distance along the HP, plasma mixing as well as di�usion processes would

eventually destroy the HP. However, it appears that charge exchange is a dominant process

that results in continuous elimination of the hotter SW ions with cooler ions possessing

properties of the LISM H atoms. As shown by Izmodenov & Alexashov [63] in an axially-

symmetric case and Pogorelov et al. [96] in 3D, this makes the SW flow superfast magnetosonic
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(its Mach number calculated using the fast magnetosonic speed is greater than 1) at about

4,000 AU. In the investigation presented in this paper, we use one of the heliotail models

described in Pogorelov et al. [96]. This model is based on a self-consistent solution of the ideal

MHD equations, with appropriate source terms due to charge exchange between ions and

neutrals, to describe the flow of plasma and the Boltzmann equation to describe the transport

of neutral atoms. To avoid issues related to the heliospheric current sheet, this model assumes

a unipolar distribution of the HMF inside the heliosphere. It shows initial collimation of the

SW plasma inside the Parker spiral field lines bent tailward by the flow, as predicted by Yu

[122]. The spiral field being kink-instable [104, 96], the reason for such collimation disappears

at about 800 AU from the Sun. In contrast with Yu [122] and multi-fluid simulations of

Opher et al. [92], no separation of the HP into two lobes occurs in Pogorelov et al. [96].

This is because multi-fluid models substantially depress charge exchange across the lobe

separation region. Such entirely hydrodynamic artifacts are impossible if atoms are treated

kinetically. We assume the following properties of the LISM: temperature TŒ = 6300 K,

velocity VŒ = 23.2 km/s, proton density nŒ = 0.082 cm≠3, H atom density nHŒ = 0.172

cm≠3, and magnetic field strength BŒ = 3 µG. The LISM flow comes from the direction

(⁄, —) = (79¶, ≠5¶), while the BŒ vector arises from (⁄, —) = (225¶, 44¶) in the ecliptic

coordinate system [128]. The SW is assumed to be spherically symmetric with the following

properties at 1 AU: plasma density nSW = 7.4 cm≠3, temperature TSW = 51100 K, radial

velocity VSW = 450 km s, and radial magnetic field component BR = 37.5 µG. The HMF is

assumed to be Parker’s at 1 AU.

4.3.2 Particle Trajectory Integration

Similar to the work in LX16, this study is performed by integrating particle trajectories in the

magnetic field described in Section 4.3.1, using the set of 6-dimensional ordinary di�erential
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Figure 4.1: Meridional projection of the heliospheric magnetic field model described in
Section 4.3.1. At the top, the figure shows high-resolution visual details of the magnetic
fields (color code in units of µG) with the axes in units of AU. At the bottom, the figure
shows the magnetic field lines (coarse color code in units of µG) with the axes in units of
AU. The simulation box is 320 ◊ 280 ◊ 280 grid points, corresponding to 6400 AU ◊ 5600
AU ◊ 5600 AU (20 AU/grid point).

equations

dp̨

dt
= q

1
ų ◊ B̨

2
(4.1)
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dr̨

dt
= ų, (4.2)

describing the Lorentz force with ų the particle velocity, r̨ its position vector and p̨ the

momentum. For B̨, we use one steady-state realization of the heliospheric magnetic field

described in section 4.3.1. As in LX16, the equations are integrated using the Bulirsch-Stoer

integration method [68] with adaptive time step. At each integration step, the magnetic field

is interpolated using a 3D cubic spline, and integration is stopped when particles cross the

border of the simulation box. The choice of one specific realization of the magnetic field is

justified by the fact that particle velocity is much larger than the plasma Alfvén velocity;

thus, induced electric fields can be neglected.

Figure 4.1 shows the meridional projection of the heliospheric model snapshot (described

in section 4.3.1) used in this study. At the top, the figure shows high-resolution visual details

of the magnetic fields (color code in units of µG) with the axes in units of AU. At the

bottom, the figure shows the magnetic field lines (coarse color code in units of µG). The

initial simulation box is 320 ◊ 280 ◊ 280 simulation grid points (the longer dimension to

allow the inclusion of the heliospheric tail) where each grid point corresponds to 20 AU.

This is equivalent to 6400 AU ◊ 5600 AU ◊ 5600 AU. The model has a varying resolution,

depending on the region within the heliosphere, with the highest resolution in the region

around the Sun, where it is 1 AU (0.05 simulation grid points). The model includes magnetic

instabilities, on spatial scales on the order of 10-100 AU, that grow on the flanks at the

boundary with the ISM, and a tail with length of approximately 4000 AU. In the model,

the uniform interstellar magnetic field outside of the heliospheric boundary has intensity of

about 3 µG. For the study presented in this work, the original simulation box is extended in

such a way that a sphere centered at Earth and with radius 6000 AU (300 simulation grid

points) is inside it. In the extension of the simulation box, a uniform magnetic field with

intensity 3 µG and with the same direction as in the simulation is assumed.

In order to calculate the distribution of CRs at Earth after their propagation across
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the interstellar and heliospheric magnetic field, there are two possible methods that can be

followed. One is to integrate a large number of particle trajectories (typically isotropically

distributed) initiated on Earth and back-propagate (or back-track) them to outer space. The

other method is to integrate particle trajectories initiated at a large distance from Earth

and forward-propagate (or forward-track them, meaning directly propagate them according

to the arrow of time) towards Earth. The back-propagation technique is based on the

validity of Liouville’s theorem, which states that particle density in phase space is conserved

along the particle trajectories if conditions such as no collisional scattering or no resonant

collisionless scattering are satisfied (see section 4.4). If the theorem conditions are valid, then

particle trajectories can be time reversed. This method is very e�cient, because it entails

the integration of particle trajectories from the target back into outer space. Nevertheless,

there is no particle loss, and only portions of space that are directly magnetically connected

to the target location have non-zero particle density population. Therefore, it is necessary

to impose an initial anisotropy as a directional dependent weight in order to calculate the

particle distribution at the target position. Such a weight function breaks the isotropy

initially constructed and provides the anisotropy distribution transmitted back to the target

position from the magnetically connected remote regions of space. By construction, this

technique does not take into account the generation of anisotropy from particle escape during

their propagation.

In the presence of turbulence or instabilities, magnetic fields can vary in spatial scales

that are shorter than the particle gyroradius. This breaks adiabaticity and e�ectively induces

collisional processes that may invalidate the application of Liouville’s theorem. The validity

of Liouville’s theorem is extensively discussed in LX16. In Section 4.4 of this paper, it is

argued that the theorem does not have the grounds to be applicable for this particular

study of heliospheric e�ects, and therefore it cannot be utilized. In this case, therefore, the

forward-propagation method is used. Such a technique is implicitly ine�cient because only

a small fraction of the injected particles will make it to or near the target. As discussed

in [70] as well, this method naturally accounts for the role that CR escape has in shaping the
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anisotropy. There is no need to assume a global anisotropy at large distance (injected, for

instance, by CRs di�usively propagated away from a source) to obtain anisotropy at Earth,

since particles naturally stream along interstellar magnetic field lines and undergo scattering

processes in magnetic turbulence or instabilities.

In this study, it is argued that scattering at the boundary between the heliosphere and

the ISM breaks the particle trajectory reversibility in that those particles that escape without

reaching Earth cannot be represented in a back-propagation calculation method. Yet, those

trajectory configurations occur and contribute to the overall shape of CR arrival direction

distribution. In addition, the distribution of CRs at Earth is reshaped by the heliospheric

instabilities in a stochastic manner and the exact individual features produced by this

phenomenon may not be predicted; therefore, a statistical approach is used, for instance by

calculating the angular power spectrum of the arrival distribution.

The ine�ciency intrinsic to the forward-propagating methods is compensated by starting

particle trajectory integration only from those areas in space where they have a significantly

higher chance to reach the neighborhood of Earth, and by assuming a “larger size" of Earth

to record the trajectories that arrive at the final target. Although this last assumption may

lead to approximate results, it is su�cient to unveil the role that the heliosphere has on

the propagation of TeV CRs independent of the propagation history in the ISM. The actual

prediction of the anisotropy details most probably results from fine-tuning of several e�ects,

and it is not addressed in this work.

4.3.3 Cosmic-Ray Composition

An important aspect of this study is taking into account that CRs are not dominated by

protons only, which is particularly true at energies in excess of 1 TeV. As shown in [38] and

references therein, the abundance of helium nuclei is already comparable to that of protons

at the TeV energy range, and it starts to dominate at 10 TeV. Heavier particles become

increasingly more important at higher energies as well. Figure 4.2 shows that the maximum
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Figure 4.2: Cosmic-ray maximum gyroradius (or Larmor radius) rL in a 3 µG magnetic field
as a function of particle energy averaged over the observed mass composition (from [38])
(black line). This is compared to that of protons (red line), of helium (in blue), and of
iron nuclei (in purple). Note that due to the mass composition of cosmic rays the average
gyroradius is smaller than that for pure protons. This di�erence becomes important for
energies in excess of about 1 TeV.

CR particle gyroradius rL, averaged over the CR composition, is smaller than that of only

protons the higher the contribution from heavier nuclei. Therefore, the relevant quantity

is not the CR particle energy but their rigidity R = rL B c. Particles with same rigidity

have the same gyroradius rL in a given magnetic field B. Or, equivalently, an iron nucleus

of energy E has a gyroradius that is 26 times smaller than that of a proton with the same

energy and in the same magnetic field B. In the energy range of 1-10 TeV, galactic CRs are

approximately composed of a mix of protons, helium, and heavier atomic nuclei [38]. CR

composition is an important ingredient in the understanding of anisotropy, especially since

heavier particles, i.e., with small rigidity, may have a non-negligible contribution even at

relatively high particle energy.



63

log10(rL) [AU]

1
10
10 2
10 3
10 4

0 1 2 3 4
1

10
10 2
10 3
10 4

0 1 2 3 4

1
10
10 2
10 3
10 4

0 1 2 3 4
1

10
10 2
10 3
10 4

0 1 2 3 4

log(rL) (AU)

1
10
10 2
10 3
10 4

0 1 2 3 4

protons protons

helium

iron

helium

1 TV 10 TV

co
un

ts

log10(rL) [AU]

log10(rL) [AU] log10(rL) [AU]

log10(rL) [AU]

Figure 4.3: Distributions of instantaneous gyroradii rL (in units of AU) of the particles from
sets of Table 4.1 calculated along their trajectories. Note the wide range of variabilities of
rL due to the changes in magnetic field and pitch angle as particles propagate through the
heliosphere.

4.3.4 Particle Data Sets

In this study, trajectories for three types of particles are integrated, as shown in Table 4.1:

protons, helium, and iron nuclei. Since the energy range of interest is approximately 1-10

TeV, two rigidity ranges are used here: 1 TV (for all three particle types) and 10 TV (for

protons and helium nuclei). For each set, 1◊106 particle trajectories are integrated with

initial position on a sphere (labeled as injection sphere) of radius 6000 AU (300 simulation

grid points) centered on Earth and with uniform direction distribution towards the inner

volume of the sphere. The initial positions correspond to regions where particles streaming
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Table 4.1: Physics parameters of simulation sets

Set Particle Ep ÈrLÍ Injected Recorded
particles particles

1 Protons 1 TeV 70.23 ± 14.63 AU 1 ◊ 106 8758
2 Helium 4 TeV 121.7 ± 54.5 AU 1 ◊ 106 10416
3 Iron 30 TeV 72.89 ± 31.50 AU 1 ◊ 106 6065
4 Protons 10 TeV 764.3 ± 252.2 AU 1 ◊ 106 9789
5 Helium 40 TeV 1235. ± 383. AU 1 ◊ 106 8655

5 ◊ 106 43683

along the LIMF have a higher chance to reach the Earth’s neighborhood. To account for

scattering processes, the injection regions, on the interstellar wind upstream and downstream

directions of the LIMF, were initially identified by back-propagating particle trajectories from

Earth across the heliospheric magnetic field (as shown in Figure 4.4). Once these main zones

were identified, their extension was then expanded to account for the chance that particles

initiated further away may reach Earth and yet maintain a manageable e�ciency level. The

regions where forward-propagated particle trajectories start are identified with a 30¶◊30¶

zone on the interstellar wind upstream side of the heliosphere (i.e., on the lower right side

of Figure 4.4) and with a 60¶◊60¶ zone on the interstellar wind downstream side of the

heliosphere (i.e., on the upper left side of Figure 4.4). For each set in Table 4.1, out of 1◊106

particles initiated in both regions, approximately 1◊104 reach the vicinity of Earth (i.e.,

cross a sphere centered on Earth, labeled as target sphere, of radius 200 AU (10 simulation

grid points)).

The integrated trajectories from the sets of Table 4.1 are cumulated in the two rigidity range

groups according to the relative mass composition from [38]: the 1 TV and the 10 TV rigidity

scales. Table 4.1 shows the mean instantaneous gyroradius of the numerically integrated

trajectories in the heliospheric magnetic field, and the corresponding RMS (numerical values

taken from the distributions in Figure 4.3). The low-rigidity particle group corresponds to

ÈrLÍ ≥ 70-100 AU (i.e., smaller than the size of the heliosphere). For a large fraction of

particles, rL is the same order of magnitude as the magnetic instabilities on the heliospheric

boundary. Note the wide distributions of rL in Figure 4.3 are due to the changes in magnetic
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field and pitch angle as particles propagate through the heliosphere. The high-rigidity group

corresponds to ÈrLÍ ≥ 700-1000 AU (i.e., just larger than the heliosphere transverse size

but smaller than the predicted heliospheric tail length). As discussed in DL13, the rigidity

scale of 10 TV is when the heliospheric e�ect on the particle distribution starts to become

subdominant, compared to that from the ISM. This rigidity scale corresponds to CR particles

in the range of 10-300 TeV, depending on the mass.

4.4 The Validity of Liouville’s theorem

As discussed in Section 4.3.2, there are two possible ways to obtain the anisotropy at Earth.

One involves the application of Liouville’s theorem to link the distribution of the particles

at some distance in the ISM to the arrival distribution at Earth. The other is to directly

propagate the particles from outer space and record the particles’ positions at Earth.

In LX16, the theoretical framework for the application of Liouville’s theorem in the study

of CR arrival direction was provided. The theorem states that the particle density in the

neighborhood of a given system in phase space is constant if restrictions are imposed on the

system [42]. We obtained the equation:

ˆfl

ˆt
+ v̨ · Ǫ̀(fl) + F̨ · Ǫ̀p(fl) = dfl

dt
= 0, (4.3)

which is precisely the expression for Liouville’s theorem [42, 23], where Ǫ̀p is the del operator

in momentum space, fl the distribution function, and F̨ the applied external force.

The most relevant conditions for its application, as shown in LX16, are that the number

of particles is conserved and that the forces acting on the particles are p-divergence free. This

last restriction tells us that the forces have to be conservative and di�erentiable. Collision

processes evidently violate this condition. In addition, Liouville’s theorem can be considered

in the context of conservation of information. Each time that a collision event occurs, it

violates the connectedness, and information is lost. Therefore, particle trajectories cannot be
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Figure 4.4: Integrated trajectories of protons with energy of 1 TeV, starting from Earth
with initial uniform direction distribution, calculated with the heliospheric magnetic field
of Figure 4.1. The figure illustrates the complex structure of over 100 trajectories passing
through the heliosphere and ultimately streaming along the uniform interstellar magnetic
field. The regions where the trajectories cross the injection sphere of radius 6000 AU are
used to identify where to forward-propagate cosmic-ray particles (see text). Note that on the
interstellar-wind downstream direction (i.e., in the upper left corner of the figure), particles
are more spread out in space as an e�ect of the elongated heliospheric tail, compared to those
in the upstream direction (i.e., in the lower right corner of the figure).

time reversed.

The derivation provided in LX16 for Eq. 4.3 is for a pure magnetic force, but in fact, when

calculating particles’ trajectories in a magnetic field subject to perturbations and instabilities,

a variety of factors come into play. The most significant e�ect is when particles encounter a

region where the magnetic field varies abruptly, i.e., the scale of variation of the magnetic
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field is shorter than the gyroradius of the particle. In this scenario, the trajectory does not

have time to adjust smoothly to this change, and the scattering process can be e�ectively

considered a collision. For such cases, the right-hand side of Eq. 4.3 can be modified by

the addition of a term,
Ë

ˆfl

ˆt

È

c
, which takes into account collisions of various origins that are

di�erentiated by their exact functional form, given the fact that they will cause a nonzero

time rate of change in the distribution function [18]. Under these conditions, Liouville’s

theorem can’t be applied.

To test the abruptness in particle trajectories, it is possible to calculate how the density

in phase space is modified by scattering processes, i.e., how adiabatic the change is. In the

presence of collisions, the magnetic moment of the gyrating particles changes. Therefore,

to check for the adiabaticity of the trajectories, we can calculate the magnetic moment for

each particle at each time step and find out if, statistically, it truly behaves as an adiabatic

invariant. The relativistic magnetic moment (also called first adiabatic invariant) is given by:

µ = p‹
2

2m|B̨|
, (4.4)

where p‹ is the momentum perpendicular to the magnetic field B̨ and m the particle

mass. This quantity, relating magnetic field and perpendicular momentum of the particle,

is conserved if the field gradients are small within distances comparable to the particle

gyroradius. Note that no assumption about the conservation of magnetic moment is used in

the numerical integration calculation.

To perform a statistical test on the first adiabatic invariant, we integrated trajectories from

two di�erent data sets, each with 1 ◊ 104 particles, initiated at Earth and back-propagated

to outer space. One set corresponding to 1 TeV and the other one to 10 TeV protons.

Using these specific sets, the magnetic moment in Eq. 4.4 was calculated at each integration

time step and plotted in a histogram. The mean value µ̄ of the magnetic moment of the

particle ensemble from each data set and the corresponding standard deviation ‡µ were

calculated. Figure 4.5 shows the ratio ‡µ/µ̄ for the two sets. A distribution with ‡µ/µ̄ = 0
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�µ/µ̄

R=   TV
R=    TV

Figure 4.5: Histogram of standard deviation of magnetic moment ‡µ over mean magnetic
moment µ̄ for the two rigidity data sets of Table 4.1. The red histogram corresponds to the
R = 1 TV (p, He, Fe) mixed composition set, and the green histogram to the R = 10 TV
(p, He) mixed composition. The magnetic moment is calculated for each particle at all time
steps. The mean value and the standard deviation are for the total trajectory.

indicates that the conservation of the magnetic moment is perfect. In this case, particles can

mirror back and forth between magnetic bottles, which maintain magnetic moment conserved.

However, a distribution peaked at a value much larger than one means that the particles

su�er strong variations in their trajectories and collision-like interactions happened. It is

not simple mirroring for most particles, but e�ectively resonant scattering processes at the

heliospheric boundary where particles propagate across magnetic field lines (see, e.g., [29])

with a stochastically redistributed pitch angle. The distributions obtained for these two sets

show peaks at around 5 and 7, with strong skewness to the right, or towards higher values of

‡µ/µ̄. This indicates that the magnetic moment fluctuated strongly, that severe changes have

occurred, and collision-like interactions happened to the particles under consideration. A

stronger deviation in the conservation of magnetic moment is observed with the low-rigidity

set than with the high-rigidity set, because of the stronger scattering e�ects at lower rigidity.

Note that in LX16 the same trajectory integration code was used to calculate particle
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trajectories in compressible MHD turbulence, in the rigidity range between 750 TV and 30

PV. In that case, it was found that the ensemble average was È‡µ/µ̄Í . 1, i.e., significantly

smaller than in the present case. The accuracy of the numerical trajectory integration

is at the same level as that in LX16. The adaptive time step algorithms constrain both

spatial and momentum coordinates to the same relative error level, thus limiting accuracy in

spatial coordinates to a level that is π rL, even after several tens of thousands of gyrations.

Therefore, the strong nonconservation of the ensemble-average magnetic moment is not caused

by lack of numerical accuracy but rather by the characteristics of the magnetic field used in

this study. The scattering processes with the heliospheric magnetic instabilities determine

the global statistical properties of the particles. The value of È‡µ/µ̄Í in Figure 4.5 is smaller

in the higher rigidity set because scattering is less e�ective in redistributing particles with a

gyroradius significantly larger than the spatial size of the instabilities.

To conclude, interactions with the heliospheric magnetic field model used in this study

result in dramatic changes in the distribution of particle trajectories. The original directional

information carried by the particles is lost in these collision-like events. Trajectories diverge

due to the magnetic field lines geometry in the regions of magnetic instabilities at the

boundary between the heliosphere and the ISM. Thus, based on the above considerations, it

is not possible to assume that Liouville’s theorem is applicable in this case.

For that reason, in this work, the forward propagation method is used. With this method,

anisotropy arises naturally from particle propagation and the interaction with the heliosphere.

One important factor to take into account is that since there is a violation of the conditions of

Liouville’s theorem, we cannot make causal links to or rely in any way on the reversibility of

the trajectories; consequently, this constrains the possibility of connecting a specific position

in the ISM and the arrival direction at Earth. Therefore, it is only possible to determine to

what degree the incoming distribution from outer space is distorted due to the features of

the heliosphere but not possible to draw direct correlations between the incoming specific

directions and the ones observed at Earth. In our case, we will show how the heliosphere

acts on and distorts this distribution and how anisotropies arise.
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4.5 Results

This section shows the results obtained with the numerical calculation data sets described in

Section 4.3.2.

4.5.1 Sky Maps of Arrival Direction Distribution

The numerically integrated trajectories of the sets in Table 4.1 were combined according to

the mixed CR composition from [38] (i.e., approximately 40% protons, 40% helium nuclei, and

20% iron nuclei at low rigidity and 50% protons and 50% helium nuclei at high rigidity) and

used to study the e�ects that scattering processes on the heliospheric magnetic field have on

the particle arrival direction distributions. As mentioned in Section 4.4, unlike the procedure

followed in LX16, in this study particles were injected in two regions on the injection sphere

at 6000 AU distance from Earth aligned along the LIMF and forward-propagated. At each

point within those two regions, the particle directions were chosen from a uniform distribution

towards the inner sphere. As shown in Table 4.1, a large fraction of the injected particles

does not reach the target sphere, in proximity of Earth, because of scattering processes in the

magnetic instability regions, thus contributing to the anisotropic distribution independently

of the initial CR density gradient.

The particles hitting the target sphere were recorded and are represented in the sky

maps of Figures 4.6 (for particles injected in the region downstream of the ISM flow, and in

proximity of the heliospheric tail) and 4.7 (for particles injected in the region upstream of

the ISM flow). In the figures, the direction of the heliotail is indicated with a yellow star. At

the top of the figures, the initial positions on the injection sphere of those trajectories that

reach the target sphere are shown. The yellow dashed boxes indicate the region of initial

positions of all generated particles. The limited size of those regions show that those particles

streaming along the LIMF within a relatively narrow magnetic field-line tube have the highest

chance of reaching the target sphere. Note that, within those localized regions, all particles

have a wide range of uniformly distributed pitch angles (or directions), which determines the
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size of the corresponding gyroradius rL ¥ (220/Z) (E/TeV )
Ô

1 ≠ µ2 (µG/B) AU, with µ the

cosine of the pitch angle. The instantaneous gyroradius along the particle trajectories are

shown Figure 4.3 and the corresponding mean and RMS values in Table 4.1. At the center of

the figures, the arrival directions of the 1-TV rigidity scale particles at the target sphere are

shown. The sky maps show that, although particles arrive at the heliosphere streaming along

the LIMF from one specific direction, they are significantly redistributed. Approximately

50% of the particles streaming from the downstream direction (and thus approaching the

heliosphere in proximity of its elongated tail) undergo multiple scattering processes and

appear as if they approach Earth from the upstream region (center of Figure 4.6). While,

approximately 20-30% of the particles streaming from the upstream direction (and thus

approaching the heliosphere in the proximity of its nose) appear to approach Earth from

the downstream region (center of Figure 4.7). Resonant scattering along the heliotail has a

more pronounced focusing e�ect towards the inner heliosphere. The wider injection region

downstream (top of Figure 4.6) compared to that upstream (top of Figure 4.7) shows that

the heliotail is able to trap particles more e�ciently from larger distances downstream and

collect them near Earth.

The arrival directions of the 10-TV rigidity scale particles on the target sphere are shown

at the bottom of the figures. The e�ects of scattering on magnetic perturbations are still

visible; however, the particle distribution is not as smooth, but it develops localized regions

associated with the magnetic field geometric structure. Even at this high rigidity, it is possible

to notice that multiple scattering e�ects of the heliotail are stronger for particles streaming

downstream than for those upstream. At higher rigidity, with the decreasing influence of

scattering, particle distribution is expected to converge to that at the injection sphere.

A side e�ect of the relatively large radius of the target sphere (200 AU, i.e., 2-3 times

the gyroradius at 1-TV rigidity scale) is that, although the trajectories show the e�ect of

multiple scattering processes across the heliospheric boundary (see Figure 4.4), they are not

propagated too deep into the vicinity of Earth. As a consequence, although particles propagate

across magnetic field lines with stochastically distributed pitch angle, the connection to the
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large-scale magnetic field direction is still relatively strong because of the general structure

of the heliosphere. This generates very low particle populations along directions that are

approximately perpendicular to the LIMF (visible as a dark band at the center and the

bottom of Figures 4.6 and 4.7).

The figures show a specific snapshot. However, particles reaching Earth are from all masses

and energies, and ground-based experiments have relatively poor mass and energy resolutions.

Each infinitesimal rigidity interval produces a characteristic fingerprint pattern similar to

those in the figures, deeply dependent on the properties of the heliospheric magnetic field.

Observations reveal the overlapping of those characteristic distributions, and, in fact, there

is experimental evidence that coexisting anisotropy features originate from di�erent energy

ranges (see, e.g., [16, 2]). Even though in this study we provide a window on the possible

e�ects of CR composition, a detailed prediction of the observation requires fine-tuning of

several e�ects, which is not within the scope of this work.

4.5.2 Angular Power Spectrum

As discussed in the previous section, the topology of the sky maps in Figures 4.6 and 4.7 is

associated with the specific rigidity scales used for the particular particle sets of Table 4.1.

Because of the stochastic nature of scattering processes, statistically uncorrelated data sets

would produce similar but not identical sky maps. Even with a seemingly di�erent topology,

however, such sky maps would have the same angular power spectrum, since this contains

global statistical properties of the ensemble of particles, independent of the spatial location

of the anisotropic features. The angular power spectrum, therefore, is a physically relevant

quantity to study.

Figure 4.8 shows the angular power spectrum for the particle sets of Table 4.1. On

the left, the results for the 1-TV rigidity sets and on the right for the 10-TV rigidity sets.

For each particle set, the trajectories propagating from both injection regions are used (see

Section 4.3.4). As expected, the shape of the angular power spectrum depends on particle
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rigidity. As in LX16, the figures shows the angular power spectrum from the IceCube

observatory [71, 2], the power spectrum from [10], and that corresponding to an isotropic

arrival direction distribution of the same number of particles. In the figures, the power

spectra are normalized to each other at the dipole component (i.e., ¸ = 1).

CR particles in the 1-TV rigidity scale, as discussed in Section 4.5.1, are those most

a�ected by multiple scattering induced by magnetic instabilities at the heliospheric boundaries.

Their arrival direction distribution appears to develop angular structures on the order of

20¶ (¸ ¥ 10-15, where it reaches the statistical limit) as shown on the left of Figure 4.8. In

the 10-TV rigidity scale, on the other hand, the small-scale filaments visible in Figures 4.6

and 4.7 contribute to the higher power for large values of ¸ on the right of Figure 4.8. As

already mentioned, the sets used in this study represent two particular particle rigidity

snapshots of the wide CR energy spectrum. Figure 4.8 highlights that a complex angular

power spectrum arises even when particles propagate across relatively small-scale magnetic

structures on a short distance scale. This overlaps with the e�ects of large-scale turbulence

in the ISM over long distance scales (as discussed in LX16). While the ISM contribution

is stochastically distributed, the heliospheric e�ects, although produced by scattering on

magnetic instabilities, are expected to have directional correlations with the heliosphere. The

experimental separation of the two contributions is the key to exploring the properties of the

heliospheric magnetic field with TeV CRs.

4.6 Discussion

We have shown the dramatic e�ects that the heliosphere imprints on the CR arrival distribution

at Earth. Our results show that the interactions of CRs with the heliosphere are relevant,

and for the 1-10 TV range, cosmic-ray arrival cannot be studied without taking these e�ects

into account.

The feature that distinguishes this work from previous studies is the forward-propagation

technique used. We have shown that Liouville’s theorem cannot be applied in this case because
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resonant scattering on magnetic perturbations on the heliospheric magnetic field generates

stochastic pitch angle distributions, and it e�ectively breaks adiabaticity (Section 4.4);

therefore a back-propagation approach is not applicable. Another important idea behind

the forward propagation is the concept of particle escape. As pointed out in Section 4.3.2

and in [70], particle escape due to transport in complex magnetic fields contributes to the

resulting arrival direction distribution. Those particles that escape without ever reaching a

given target location build up an uneven arrival direction distribution. In a back-propagation

approach, there is no particle escape by construction. In this case, a weight function is used

to inject an initial anisotropy for the reversed trajectories. The final anisotropy results from

the spatial redistribution of a constant particle density.

The results of the present study are di�erent from those in [75], where the importance

of a relative large-scale excess of CR (due to a nearby supernova) was highlighted, without

accounting for the e�ects of scattering on the heliospheric magnetic field. In our study, we use

a self-consistent solution to the ideal MHD equations to obtain a model of the heliosphere. In

that way, we can assess the direct heliospheric e�ects on the CR arrival distribution. And our

approach is fundamentally di�erent from the study in [82] and [75], where a back-propagation

approach was used. In the case of [82], a model of the heliosphere was used, although di�erent

from the one used in the present study in that magnetic instabilities were not as prominent.

Even though our forward propagation approach is computationally expensive, it is the only

acceptable technique since the conditions of Liouville’s theorem are not satisfied given the

e�ective collision interactions with the instabilities in the heliosphere (Section 4.4).

Transport across the galactic magnetic field may be described with homogeneous anisotropic

di�usion scenarios, where particles propagate faster along the magnetic field lines. If di�usion

describes large-scale CR propagation in the ISM, the arrival direction distribution is expected

to have a dipolar shape oriented along the LIMF. Even in the presence of multiple angular

scale structures from nondi�usive propagation e�ects (see Section 4.1), it is usually assumed

that the dipole component still has a direct connection to the underlying large-scale di�usion.

Observations show that the dipole component appears to be aligned with the LIMF [12] after
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accounting for the experimental biasing projection of angular features on the equatorial plane

and the limited field of view of all ground-based experiments [11]. The actual direction of

the dipole component can be considered accidental and perhaps associated to a relatively

recent and nearby source of CRs contributing to the excess on one side of the LIMF lines

rather than the other (see, e.g., [75] and [12]).

In reality, the structured interstellar magnetic field, with its di�erent overlapping con-

tributions at di�erent spatial scales, easily generates deviations from the simple di�usion

scenario. Particles with a given rigidity are likely to be more strongly a�ected by magnetic

fields with gyro-scale spatial structures. This can cause dramatic changes in the transport

properties (see for instance [29] and references therein). At a given rigidity scale, CR particle

distributions are shaped, over their entire propagation history, by the accumulating e�ects of

magnetic perturbations at scales π rL, by the magnetic field geometric structure at scales

∫ rL, and by the strong resonant e�ects on geometric features at scale ¥ rL. The LIMF is

found to be coherent within approximately 60 parsec [35]. This means that CRs approach

the heliosphere from the ISM spiraling around the LIMF lines with pitch angle distribution

reflecting their propagation history. At 1-TV rigidity scale, it is, therefore, expected that

the heliosphere, with its approximately gyro-scale magnetic instabilities, has the power to

redistribute CRs.

The strong heliospheric influence on the arrival direction distribution of CR particles is

shown in Figures 4.6 and 4.7, where a large fraction of the particles passing through the

heliosphere is redistributed in pitch angle by multiple scattering in the magnetic instabilities.

While the global anisotropy may still be ordered by the LIMF, the medium- and small-scale

features depend on the peculiar properties of the heliospheric magnetic field. In the 1-TV

rigidity scale, where resonant scattering processes are more dominant, particles are severely

redistributed, and this results in a relatively smoother distribution. On the contrary, in the

10-TV rigidity scale, scattering processes are still significant, but the large scale average

magnetic field induces the formation of medium- and small-scale structures.

In other words, the heliosphere acts as a di�usor where particles with gyroradius rL ¥
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Linstabilities ¥ 10 ≠ 100 AU are more stochastically influenced via resonant multiple scattering

than those with rL & Lheliosphere ¥ 600 AU. A consequence of violation of magnetic moment

conservation (see Figure 4.5) is that an initially uniform pitch angle distribution becomes

more structured with most of the energy stored in the large angular scales. The lower the

e�ect of stochastic redistribution from scattering, the higher the contribution from small

angular scale structures, as shown in Figure 4.8. It is likely that the largest angular scale,

such as dipole and quadrupole, are a�ected by these scattering processes as well. However,

in this work, such an e�ect is not explicitly assessed, since particles need to be propagated

much closer to Earth.

Statistically uncorrelated data sets can produce sky maps that have similar features;

nonetheless, they will not be identical since these scattering processes are stochastic by

nature. These sky maps may look di�erent but they share the same angular power spectrum,

since it encloses the global statistical properties of the ensemble, and not the specific spatial

locations of the maps’ features. Consequently, the physically relevant quantity is the angular

power spectrum.

The energy transfer between angular scales is di�erent from that studied in LX16, where

the e�ect of turbulence on a back-propagated particle distribution was considered. In that case,

the particle gyroradius rL was always smaller than the largest scale of magnetic turbulence.

Therefore, as long as rL < Linjection, particles are always in resonance with a given turbulence

scale, the largest scale conveying more power than smaller scales. The energy of an initially

dipolar pitch angle distribution is more rapidly transferred into smaller angular scales at

higher energy, because resonant scattering occurs on higher power turbulence scales. In both

studies, LX16 and this work, it is found that magnetic scattering generates flatter power

angular spectra at higher rigidity scales. In general, if scattering is su�ciently strong, it is

possible to form small-scale features within a relatively short distance scale as well. In the

heliospheric model used in the present study, the size and location of the magnetic instabilities

mostly influence 1 TV-scale particles, especially those propagating from downstream of the

interstellar wind, i.e., in closer proximity to the elongated tail. It is important to note that
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other heliospheric properties, not accounted for in the model used here, may significantly

increase the scattering rate at a specific rigidity range. The 11-year solar magnetic field

inversion cycle generates pockets of magnetic polarity dragged outward and along the heliotail

by solar wind [65]. The size of those regions is approximately 200-300 AU, as discussed in

DL13, which resonate with particles with a rigidity of a few TV. Since the geometry of such

polarity regions is di�erent than that of magnetic instabilities, the e�ect can account for

di�erent distributions. This e�ect was not considered in the present study and will be the

subject of a followup project.

One carefully studied possibility is that the nonconservation of the magnetic moment

discussed in Section 4.4 may result from poor accuracy of the trajectory interaction code used.

The numerical algorithm used to integrate particle trajectories in this study is the same used

in LX16, in the study of MHD turbulence e�ect of the particle distribution. As extensively

discussed in LX16, the Bulirsch-Stoer numerical integration method used is considered one

of the best known algorithms satisfying both high accuracy and e�ciency [68] and widely

applied in the literature [40, 78]. Although this integration method is not symplectic, i.e.

it does not have a bound on the global error (see [108]) which can then be accumulated at

each integration step [86], it was found, in this study, that the accuracy is still very high (as

discussed in the appendix of LX16). The accuracy of the numerical integration is controlled

by monitoring the local truncation error estimated at each time step. If the relative error is

larger than the relative tolerance level of 10≠6, the step size is adaptively reduced in order to

limit the error accumulation in both momentum and spatial coordinates, across the maximum

integration time used in this study (between 10,000 and 100,000 gyrations). The accuracy

in momentum coordinates was tested, and the resulting energy conservation was found to

be constrained well within 10≠5 (see LX16). Due to the adaptive step size, the accuracy

in spatial coordinates is π rL, thus limiting numerical di�usion to an undetectable level.

In LX16, the violation of magnetic moment was not statistically relevant (and therefore

the back-propagation method was utilized), while in the current heliospheric study it is

dramatically significant. The di�erence between the two cases is in the magnetic field used.
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The numerical accuracy of the trajectory integration method is the same.

The magnetic field interpolation via 3D cubic spline functions does not appear to reduce

numerical accuracy. In general, it is known that a straightforward interpolation of magnetic

fields may be not divergence-free, while the calculation of vector potential via Fourier

transforms and its interpolation does produce well behaved magnetic fields. The two di�erent

interpolation strategies may influence the particle integrated trajectories, and in particular

the first adiabatic invariant [86]. However, in the present problem, although the heliospheric

magnetic field has instabilities, there are no cusps that may produce significant discontinuities

in the interpolated fieldlines. In addition, the cubic spline interpolation used in this work

requires continuity of the second derivative in the entire domain. Therefore, it is not expected

that a divergence-free interpolation strategy would significantly change the results.

As described in LX16, it is possible to exclude with confidence that the particle trajectory

integration method used in this study can induce chaotic behavior as a result of poor accuracy.

Therefore it is the opinion of the authors that the e�ective collisional behavior found in this

case is due to the properties of the heliospheric magnetic field used.

To conclude, the study presented in this work explores the e�ects of the heliosphere on

multi-TeV CR arrival direction distribution. The results illustrate the importance of particle

rigidity, E/Ze, in making it possible that the heliospheric influence stretches across a relatively

wide CR particle energy range. For the particular model of the heliosphere by [95] (described

in Section 4.3.1), resonant scattering processes are strong enough to break adiabaticity and

generate stochastic pitch angle distributions. As a consequence, Liouville’s theorem could

not be applied and a computationally expensive forward propagation technique was used.

The escape of particles due to magnetic bottle mirroring and multiple resonant scattering

generates a rigidity-dependent complex arrival distribution of CR particles that comprises a

wide power spectrum in angular structures. In order to reproduce the observations, proper

consideration must be given to a wider range in rigidity accounting for the actual spectrum

and composition of the CRs, especially taking into account that the precise features are

not exactly reproducible given the stochastic process at the heliospheric boundary, and an
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angular power spectrum approach should be taken in order to study the CR-arrival anisotropy.

Assuming that the dipole component of the observed CR anisotropy is the imprint of di�usion

in the ISM, the study of the complex angular structure can provide important hints as to the

turbulent properties of the ISM (especially at energies > 100 TeV, as shown in LX16) and to

the properties of the heliosphere (in the TeV energy range).

4.7 Summary

The main results can be summarized as follows:

• As CRs are strongly a�ected by magnetic structures on the order of their gyroradius,

multi-TeV particles are subject to significant heliospheric scattering. This redistributes

CRs and a�ects their arrival direction distribution. Our work shows that this scattering

can have a significant e�ect.

• Our simulations show significant resonant scattering of the CRs by the heliosphere.

Therefore, the conditions of Liouville’s theorem are not satisfied and the backward-

propagation technique cannot be used to study CR anisotropies arising from the

interaction of heliospheric magnetic fields with CRs.

• Our study of the e�ect of the heliosphere on CR anisotropy, which we performed using

the forward-propagation techniques, demonstrates the following features:

– Results for protons: The heliosphere has a strong e�ect in redistributing CRs at the

1 TV rigidity scale. Multiple scattering with stochastic pitch angle redistribution

is relevant, and anisotropy arises even without assuming any weight in the initial

arrival distribution of CR particles. The scattering e�ect is weaker at the 10 TV

rigidity scale but is still important in producing small- to medium-angular scale

features that contribute to the overall arrival direction distribution.
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– Results for heavy nuclei: At 10 TeV, the flux of helium nuclei starts to become

dominant, while heavy nuclei contribute to about a third of the total flux [38].

We found that high-energy heavy nuclei have an important role in shaping the

observed anisotropy at very small angular scales (i.e., multipole moments ¸ =

7-25). This also means that the heliospheric influence a�ects observed anisotropies

over a wide energy range.

• Our study calls for both more extensive observations of CR anisotropies and more

detailed numerical testing using high-resolution models of the heliosphere. Future

research should also take into account the significant time variations of the heliospheric

magnetic field related to both the 11-year cycle and dynamical instabilities on the

longer time scales.
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Figure 4.6: Top: Map in equatorial coordinates of the positions of injected particles (from
the 60¶◊60¶ region of the heliosphere upstream of the ISM flow). Only the initial positions
of those particles that are actually recorded are shown here. Center: Map in equatorial
coordinates of the arrival direction distribution of the recorded mixed composition particles
at rigidity scale of 1 TV. Bottom: Map in equatorial coordinates of the arrival direction
distribution of the recorded mixed composition particles at rigidity scale of 10 TV. The
yellow star indicates the approximate position of the heliospheric tail. The dashed yellow
box corresponds approximately with the region of initial position of all the particles.
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Figure 4.7: Top: Map in equatorial coordinates of the positions of injected particles (from the
30¶◊30¶ zone of the heliosphere downstream of interstellar side, in proximity of the heliotail).
Only the initial positions of those particles that are actually recorded are shown here. Center:
Map in equatorial coordinates of the arrival direction distribution of the recorded mixed
composition particles at rigidity scale of 1 TV. Bottom: Map in equatorial coordinates of the
arrival direction distribution of the recorded mixed composition particles at rigidity scale
of 10 TV. The yellow star indicates the approximate position of the heliospheric tail. The
dashed yellow box corresponds approximately with the region of initial position of all the
particles.
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Figure 4.8: Angular power spectrum of the arrival direction distribution on the target sphere
of the 1-TV rigidity particle sets (on the left) and of the 10-TV rigidity particle sets (on
the right). Protons (blue lines), helium nuclei (red lines), and iron nuclei (green line) are
separately shown. The gray bands show the 1‡ and 2‡ bands for a large set of isotropic sky
maps. The black circles are the results from the IceCube Observatory at a median energy of
20 TeV [71, 2]. The dashed purple line is the power spectrum from [10]. The angular power
spectrum results are normalized to the IceCube experimental results at the dipole component
(¸ = 1). Note that the angular power spectra are calculated with all particles initiated from
both regions on the injection sphere.
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Chapter 5

Cosmic Ray Anisotropy from Local

Turbulent Magnetic Fields

Does anisotropy arise from the CR propagation in the turbulent
interstellar magnetic fields?

Cosmic ray anisotropy has been observed in a wide energy range and at di�erent angular

scales by a variety of experiments over the past decade. However, no comprehensive or

satisfactory explanation has been put forth to date. The arrival distribution of cosmic rays

at Earth is the convolution of the distribution of their sources and of the e�ects of geometry

and properties of the magnetic field through which particles propagate. It is generally

believed that the anisotropy topology at the largest angular scale is adiabatically shaped

by di�usion in the structured interstellar magnetic field. On the contrary, the medium- and

small-scale angular structure could be an e�ect of nondi�usive propagation of cosmic rays in

perturbed magnetic fields. In particular, a possible explanation of the observed small-scale

anisotropy observed at TeV energy scale, may come from the e�ect of particle scattering in

turbulent magnetized plasmas. We perform numerical integration of test particle trajectories

in low-— compressible magnetohydrodynamic turbulence to study how the cosmic rays arrival

direction distribution is perturbed when they stream along the local turbulent magnetic

field. We utilize Liouville’s theorem for obtaining the anisotropy at Earth and provide the
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theoretical framework for the application of the theorem in the specific case of cosmic ray

arrival distribution. In this work, we discuss the e�ects on the anisotropy arising from

propagation in this inhomogeneous and turbulent interstellar magnetic field.

A version of this chapter has previously appeared in The Astrophysical Journal. López-

Barquero, V., Farber, R., Xu, S., et al. 2016, ApJ, 830, 19.

5.1 Introduction

Cosmic rays are found to possess a small but measurable anisotropy in their arrival direction

distribution at Earth. The origin of the observed anisotropy is not yet understood. However,

it is reasonable to assume that it is a combination of e�ects correlated to the distribution of

the galactic sources of cosmic rays, the geometry and turbulence properties of the galactic

magnetic field, and the propagation in interstellar magnetized plasmas. These are likely to

be responsible for the complex shape of the energy spectrum as well [38]. Since we don’t

know the locations of cosmic ray sources and we lack details of the interstellar magnetic field,

understanding these observations of anisotropy is not an easy task.

Above the energy range where cosmic rays are directly a�ected by inner heliospheric

processes (see, e.g., [33, 64, 34]), a statistically significant anisotropy has been observed by a

variety of experiments, sensitive to di�erent energy ranges (from tens of GeV to a few PeV),

located on or below the Earth’s surface in the Northern Hemisphere [63, 45, 12, 13, 44, 7, 9,

81, 62, 14, 26, 73, 17] and in the Southern Hemisphere [3, 4, 5, 1].

The global anisotropy changes with energy in a non-trivial fashion. From about 100 GeV

to tens of TeV, it has been observed to have an approximately consistent structure at the

largest scale, although its amplitude appears to increase with energy. Above a few tens of

TeV, the observed progressive change in the anisotropy topology may indicate a transition

between two processes shaping the particles’ arrival distribution at Earth. The observation

could be qualitatively explained on the basis of di�usive propagation of cosmic rays in the

Milky Way from stochastically distributed sources, responsible for generating a gradient in
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cosmic ray density.

Numerical studies of particle propagation in a scenario of homogeneous and isotropic

di�usion in the Galaxy predicts that the cosmic ray density gradient, and the consequent

induced anisotropy, has a dipole shape with direction toward the source of the particle and

with amplitude that directly depends on the di�usion coe�cient. In particular, for a given

realization of galactic source spatial distribution, the dipole anisotropy would point toward

the source with the largest contribution [32, 21, 67, 66, 77, 72], which may change with energy,

in agreement with observations. On the other hand, the systematic overestimation of the

anisotropy amplitude may be partially compensated by the fact that di�usion is expected to

be anisotropic (see, e.g., [31]), thus modifying the expected cosmic ray density gradient shape

as a function of the source direction with respect to the regular galactic magnetic field [47].

The misalignment between the cosmic ray density gradient and the regular galactic magnetic

field would prevent pointing to any specific source, and it would suppress the anisotropy

amplitude to a value closer to what has been observed [60].

Another scenario is that it is the transition from heliospheric- to interstellar-dominated

contributions, starting at a 10 TeV energy scale and culminating around 100-200 TeV, at

the origin of the shift in anisotropy. In [28], this scenario was proposed noting that 10 TeV

protons have an average gyroradius, in a µG scale magnetic field, on the order of the thickness

of the heliosphere (see, e.g., [65]). In addition, the dynamical instabilities of the heliospheric

magnetized plasma at smaller scales may generate strong scattering that redistributes the

arrival direction of TeV cosmic rays. This heliospheric scenario is studied and presented in

our companion paper [59]. Such strong scattering may be able to produce large localized

particle gradients, experimentally interpreted as medium- or small-scale anisotropy. In [75],

a scenario of weak influence of the heliospheric magnetic field on TeV protons was explored,

thus interpreting the observations as directly related to the ordering of the local interstellar

magnetic field (see also [82]).

The anisotropy appears to possess a complex angular structure with evidence of a harder

cosmic ray spectrum within the localized excess region in the apparent direction of the
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heliospheric tail [15, 6, 16, 8]. The decomposition of TeV cosmic ray anisotropy in the

individual spherical harmonic contributions shows that the arrival direction distribution is

dominated by large-scale structures (such as, e.g., dipole and quadrupole) with a relative

intensity on the order of 10≠3, but that medium- and small-scale angular structures are

significantly contributing with relative intensities below 10≠4.

The experimental determination of small angular scale anisotropy is generally performed

by filtering out the large-scale modulations from the observed arrival direction distribution,

thus retaining all structures with large angular gradients. Some of the small-scale anisotropy

features seem to be correlated to regions in the sky where the global anisotropy has large

variations (see [28]) or may be an e�ect of re-acceleration by magnetic reconnection processes

in the tail of the heliosphere [54, 27]. However, globally, the observed small scale anisotropy

may appear to be rather randomly structured and, therefore, possibly a natural consequence

of cosmic ray propagation in the local turbulent magnetic field in the presence of a global

anisotropy [39]. The global anisotropy, at all angular scales, arises from the same physical

processes, thus it is impossible to disentangle its origin. However, as a first approximation, it

is generally assumed that the anisotropy at the largest scale is dominated by global physical

processes (such as a density gradient from sources of cosmic rays or from convective e�ects

originated by large-scale cumulative stellar winds, and from propagation through the regular

galactic magnetic field), while the small angular scales are dominated by local processes.

A complex angular power spectrum is asymptotically generated by progressive decompo-

sition of the energy of an initial anisotropy distribution (for instance a dipole) into higher

multipoles, by the e�ect of scattering o� magnetic turbulence [10, 11]. The conservation

of phase space density, as stated by Liouville’s theorem, predicts, for an idealized situation

of a homogenous large-scale anisotropy, the total sum of the multipoles’ angular terms is

conserved. This makes it possible to generate small-scale structures, as shown in [10].

Turbulence in astrophysical plasmas have significant e�ects on particle propagation, in

that the stochastic nature of magnetic field lines is transmitted to the particles’ trajectories.

If particles are tied to magnetic field lines, the maximum perpendicular di�usion rate is set



96

by the rate of perpendicular field line wandering, scaled by particle velocity (field line random

walk). This has been extensively discussed by, e.g. [50, 51, 69, 40, 61, 74] in the context

of di�usion at distance scale larger than the turbulence injection scale. On scales smaller

than the injection scale, particles are characterized by super-di�usion in the perpendicular

direction of the mean magnetic field. This behavior is described by the so-called Richardson

di�usion, where particle separation grows as (time)3/2 [56]. In [30] it was shown that this

is directly connected to the separation of turbulent magnetic field lines, which grows as

(distance)3/2 [55]. In this case, the stochastic nature of the astrophysical magnetic fields

(such as, e.g. the interstellar magnetic field, or, at larger scales, the intercluster magnetic

field), inevitably produces chaotic particle trajectories, meaning that the geometry of particle

trajectories is highly sensitive to the actual initial conditions. Di�usion by magnetic field

line wandering is found to be a dominant contribution and stronger than the extreme case

of Bohm di�usion, where scattering frequency is one per particle gyration. The important

aspect that determines the properties of a large ensemble of particles is its statistical nature,

which in this case is influenced by the properties of the magnetic field and specifically by

the induced scattering rate. While individual trajectories may have chaotic properties and

are, therefore, practically/realistically unpredictable, the large ensemble of particles can

still be deterministically described. For these reasons, the recorded spatial distribution of

the ensemble will be statistically determined and a direct consequence of the properties of

the turbulent magnetic field. In this work, a study of particle propagation in compressible

magnetohydrodynamics (MHD) turbulence is performed in the context of its e�ects on arrival

direction distribution.

In addition, depending on the degree to which magnetic field lines diverge on scales less

than the particle gyroradius, pitch angle scattering on small-scale magnetic perturbations

a�ects particle distribution at the large spatial scale, thus increasing the di�usion coe�cient

depending on the large geometrical scale of the magnetic field turbulence (see, e.g., [29] and

references therein). The anisotropic nature of interstellar turbulence and the properties of

turbulence itself can significantly complicate the description of cosmic ray transport (see,
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e.g., [79, 80, 19]).

This paper is organized as follows. In section 5.2, we describe the turbulent magnetic

field used and the test particle trajectory integration. In section 5.3, we discuss the validity

of applying Liouville’s theorem in the context of this work by statistically assessing the level

of conservation of magnetic moment. The results of the study are presented in section 5.4

and discussed in section 5.5. Concluding remarks follow in section 5.6.

5.2 Cosmic ray Propagation in Turbulent Magnetic

Fields

Cosmic rays, which are accelerated in their sources and “injected" into the interstellar medium

(ISM), are free to propagate through the interstellar magnetic field. Globally, the galactic

magnetic field is characterized by a large-scale regular component and a small-scale random

component (see, e.g., [48, 49]). The regular component can be described as a superposition

of spiral and toroidal structures, possibly with a contribution perpendicular to the galactic

plane, and the random component represents the stochastic perturbations of the regular

field caused by the dynamics of the galaxy and its density distribution. An important

property of the interstellar magnetic field is turbulence. A variety of observations show

that the coherence scale of turbulent magnetic fields is on the order of 10 pc in spiral arm

regions (with more frequent stellar formation activity) and on the order of 100 pc in the

interarm regions [46]. The injection scale of turbulence is determined by the scale at which

the magnetic perturbation is generated (for instance, by stellar collapse or binary mergers).

Astrophysical plasmas are typically highly ionized and have high Reynolds numbers, thus

the dynamics of the flow is dominated by nonlinear convective processes at the largest scale.

In such conditions, turbulence develops and magnetized Alfvénic eddies dynamically cascade

to smaller scales and progressively elongate along the magnetic field lines, as initially proposed

by [76, 41] (see also [53] for a review). This model of incompressible MHD turbulence predicts
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a Kolmogorov-type energy power spectrum E(k‹) Ã k≠5/3
‹ in terms of the wave-vector

component perpendicular to the local direction of the magnetic field, while the parallel

component of the wave vector is kÎ = k2/3
‹ . In those pioneering papers, the theory assumes

the injection of energy at scale L and the injection velocity equal to the Alfvén velocity in the

fluid VA, i.e., the Alfvén Mach number MA © (VL/VA) = 1 (i.e., trans-Alfvénic turbulence),

where VL is the plasma velocity at injection scale L. The model was later generalized for both

sub-Alfvénic (i.e., MA < 1) and super-Alfvénic (i.e., MA > 1) cases [55, 52] (see also [57, 24]).

Typically, the ISM is characterized by MA . 1 [37].This means that magnetic field lines do

not typically fluctuate too far from the mean direction.

While the model by [41] describes incompressible MHD turbulence, modeling compressible

turbulence turned out to be more complex. In isothermal plasmas, there are three types

of MHD waves: Alfvén, slow, and fast waves. Alfvén modes are incompressible, while slow

and fast modes are compressible. The compressible modes are conjectured to resemble

incompressible behavior at high-— (i.e., high gas to magnetic pressure ratio) [58]; however,

ISM plasmas are typically characterized by low-—. [25] investigated the scaling properties

of low-— compressible sub-Alfvénic MHD turbulence and confirmed that slow compressible

modes behave as the Alfvén incompressible modes but also that the fast modes are isotropic,

since their velocity does not depend on magnetic field direction.

The spatial distribution of particles propagating in a turbulent field is a�ected by the

magnetic perturbations within the particle autocorrelation length scale (or mean free path).

To study the correlation between turbulence and cosmic ray distribution, trajectories of test

particles were integrated in an MHD turbulent magnetic field. The methodology used is

described in the next two sections.

5.2.1 Turbulent Magnetic Field

Test particle trajectories are integrated in a compressible sub-Alfvénic isothermal MHD

turbulence in low-— based on numerical calculations developed by [25]. In the model,
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turbulence is driven solenoidally in Fourier space, setting the velocity and density fields

initially to unity. The calculation is performed in a cube with side Lbox = 512 grid-points,

with inertial range from Linj = 204.8 grid-points (i.e., 0.4 ◊ Lbox) down to a “damping" scale

of Lmin = 5 grid-points.

The average magnetic field is directed along the x-axis and turbulence is characterized by

a gas-to-magnetic pressure value of — ≥ 0.2 and by Alfvénic Mach number MA = 0.773. Such

a Mach number corresponds to the fluctuations being on the order of the mean magnetic

field at the injection scale, which is in agreement with what we would have expected from

the local ISM. The external mean magnetic field is the only controlled parameter in this

MHD model.

5.2.2 Cosmic Ray Propagation

The analysis is performed by integrating proton trajectories in a static magnetic field, using

the set of 6-dimensional ordinary di�erential equations

dp̨

dt
= q

1
ų ◊ B̨

2
(5.1)

dr̨

dt
= ų, (5.2)

describing the Lorentz force and the particle velocity ų, where r̨ is the particle position vector

and p̨ the momemtum. For B̨, we use one steady state realization of the magnetic field

described in section 5.2.1. The equations are integrated using the Bulirsch-Stoer integration

method with adaptive time step. At each integration step, the magnetic field is interpolated

using a 3D cubic spline, and integration is stopped when particles cross the border of the

MHD simulation box. The accuracy of the particle trajectory integration for this study was

assessed and is discussed in Appendix A.1. The choice of one specific realization of the

magnetic field is justified by the fact that particle velocity is much larger than the plasma

Alfvén velocity, thus induced electric fields can be neglected.
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Table 5.1: Physics parameters of simulation sets

Set Ep rL Linj Lmfp Particles ÈB0Í
1 750 TeV 0.24 pc 10 pc 5.0 pc 3 ◊ 105 3 µG
2 7.5 PeV 2.4 pc 100 pc 50 pc 105 3 µG
3 30 PeV 10 pc 100 pc 60 pc 105 3 µG

The magnetic field can be interpreted as a snapshot of the local interstellar magnetic field.

Since the MHD simulation can be scaled to an arbitrary injection scale, in this study, two

physical scenarios are investigated: an injection scale of Linj = 10 pc, which is approximately

the magnitude typical of the Milky Way spiral arms, and Linj = 100 pc, which is characteristic

of the interarm regions (see section 5.2). Although the ISM surrounding the solar system

seems to have interarm properties [35, 36], both cases are taken into consideration. Assuming

a particle gyroradius of 5 grid-points (corresponding to the smallest spatial scale in the

MHD simulation), the injection scale sets the particle energy scale. In order to avoid grossly

underestimating the e�ects of magnetic perturbations smaller than the particle gyroradius,

the latter is set to 20 grid-points as well. Table 5.1 shows the three trajectory integration

data sets used in this study. They cover an energy range from 750 TeV to 30 PeV, partially

overlapping the recent cosmic ray observations reported by the IceCube Observatory [5, 1, 2].

In order to study the e�ect of interstellar magnetic turbulence on the arrival direction

distribution of cosmic rays, a large number of particles would need to be injected with

randomly uniform directions on a spheric surface centered at the Earth and with a radius

larger than the mean free path. Unfortunately, such method would be highly ine�cient

because a large fraction of the injected particles would never reach Earth. The alternative

approach is typically to use the so-called “back-propagation method," where the trajectories

of particles with opposite charge are integrated from Earth, with initial directions uniformly

distributed, backward into outer space. Since energy losses are negligible for proton particles,

their energy is conserved, and therefore their trajectories can be time-reversed, provided

there are no collisional scattering processes and no resonant scattering. Under such general

conditions, Liouville’s theorem states that particle density in phase space is conserved along
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particle trajectories. In the presence of turbulence, magnetic fields can vary faster in space

than the particle gyroradius, thus breaking adiabaticity and e�ectively inducing collisional

processes. In section 5.3, the applicability of Liouville’s theorem in the present case is

discussed.

For set 1 of Table 5.1, 3 ◊ 105 proton trajectories are integrated, while for sets 2 and 3,

the number of particles is 105. The numerical trajectory integration starts from a point at

the center of a 3◊3 MHD simulation box, with uniform direction distribution, and stops

when particles reach the edge of the integration volume. The integration box corresponds to

a distance scale of 75 pc (for set 1 in table 5.1) and of 750 pc (for sets 2 and 3 in Table 5.1).

The back-propagated trajectories calculated in this way provide the information on the

e�ects of the magnetic field on an initially uniform particle distribution emanating from one

point. In other words, they provide a map of regions that are magnetically connected to

the origin at a given distance. The calculation implicitly takes into account the dynamical

processes of a particle’s motion in a magnetic field, including drifts and pitch angle scattering.

Under the hypothesis that such trajectories are time-reversible (see section 5.3), they can be

interpreted as directly propagating from outer space back to the original point (assumed to

coincide with Earth). This means that the particle distribution far from Earth, resulting

from the back-propagation numerical calculations, corresponds to a perfectly uniform arrival

distribution at Earth.

The numerically calculated trajectories can be used, therefore, to determine the arrival

distribution at Earth as a consequence of a global anisotropy at a large distance. Such

a global anisotropy, which is the e�ect of a particle density gradient induced by sources

of cosmic rays or by convective processes, is treated as a weight on the forward-inverted

trajectories, and it e�ectively produces a nonuniform arrival direction distribution at Earth,

which is described in section 5.4.2.
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5.3 The Validity of Liouville’s theorem

Generating a large number of particle trajectories that pass through a point in space is

implicitly highly ine�cient, since most particles will bypass the target point. One possibility

is to increase the size of the target to record those particles that pass “nearby," or to appeal

to Liouville’s theorem.

Liouville’s theorem states that the density of particles in the neighborhood of a given

system in phase space is constant if restrictions are imposed on the system [42], as shown

below. To determine its validity for our specific case of cosmic ray arrival distribution, we

shall start with the continuity equation in phase space [22, 23], under the assumption that

the number of particles stays fixed:

ˆfl

ˆt
= ≠Ǫ̀ · (flv̨) ≠ Ǫ̀p · (flF̨ ) (5.3)

where Ǫ̀p is the del operator in momentum space, fl the distribution function, and F̨ the

applied external force.

Upon expansion of this expression, we arrive at:

ˆfl

ˆt
= ≠flǪ̀ · (v̨) ≠ v̨ · Ǫ̀(fl) ≠ flǪ̀p · (F̨ ) ≠ F̨ · Ǫ̀p(fl) (5.4)

The first term on the right-hand side of Eq. 5.4 vanishes, since the divergence of the

velocity in phase space is zero. The third term in the right-hand side of Eq. 5.4, with Ǫ̀p · (F̨ ),

gives us restrictions on the forces that can be applied to the particles. For this term to go to

zero, we need the forces to be conservative and di�erentiable. In particular, they must be

p-divergence free. Evidently, if collisions are present, they will not fulfill these requirements.

Now, we can analyze the case of magnetic forces and can express this term explicitly:

Ǫ̀p · (F̨ ) = qB̨ · (Ǫ̀p ◊ v̨) ≠ qv̨ · (Ǫ̀p ◊ B̨) (5.5)
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Assuming that the magnetic field is independent of the velocity of the particle, the p-curl

of B̨ goes to zero. In this case, the assumption is valid since the particles are moving so

fast that the possibility of changing the magnetic field is negligible. For the p-curl of v̨, it

just vanishes, since the velocity is the gradient of a scalar function, the relativistic energy.

Therefore, if we have only pure magnetic forces, the Ǫ̀p · (F̨ ) cancels.

We arrive at the equation:

ˆfl

ˆt
+ v̨ · Ǫ̀(fl) + F̨ · Ǫ̀p(fl) = 0 (5.6)

But this is just the expression for the total derivative of the distribution. Therefore, we

can reexpress it as:
dfl

dt
= 0 (5.7)

which is the precisely the expression for Liouville’s theorem [42, 23].

This derivation is for a pure magnetic force, but in fact when calculating the particles’

trajectories in a turbulent magnetic field, a variety of factors come into play. The most

significant e�ect is when particles encounter a region where the magnetic field varies abruptly,

i.e., the scale of variation of the magnetic field is shorter than the gyroradius of the particle.

In this scenario, the trajectory does not have time to adjust smoothly to this change, and the

interaction can be e�ectively considered a collision. For such cases, the right-hand side of Eq.

5.6 can be modified by the addition of a term,
Ë

ˆfl

ˆt

È

c
, which takes into account collisions of

various origins that are di�erentiated by their exact functional form, given the fact that they

will cause a nonzero time rate of change in the distribution function [18]. Therefore, under

these conditions, Liouville’s theorem can’t be applied. To ensure that the abruptness in the

trajectory is limited, we can calculate how adiabatic this change is. Having established this,

it will ensure that a smooth variation will not greatly modify the density in phase space.

In the presence of collisions, the magnetic moment of the gyrating particles changes.

Therefore, to check for the adiabaticity of the trajectories, we can calculate the magnetic
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Figure 5.1: Left: The mean magnetic moment µ̄ for the data set at 30 PeV (red circles) with
the corresponding moving average with subset of 30 time steps (blue line). The magnetic
moment is calculated for all the particles at each time step, and then the average for the
total set is calculated at each step. Right: Histogram of standard deviation of magnetic
moment ‡µ over mean magnetic moment µ̄ for the three data sets of Table 5.1. The red,
blue, and green lines represent 750 TeV, 7.5 PeV, and 30 PeV protons, respectively. The
magnetic moment is calculated for each particle at all time steps. The mean value and the
standard deviation are for the total trajectory. Note that the 750 TeV set has three times
the number of particles as the other sets, as described in Table 5.1.

moment for each particle at each time step and find out if it statistically behaves as an

adiabatic invariant.

The relativistic magnetic moment (also called first adiabatic invariant) is given by:

µ = p‹
2

2m|B̨|
(5.8)

where p‹ is the momentum perpendicular to the magnetic field B̨ and m the particle

mass. This quantity, relating magnetic field and perpendicular momentum of the particle,

is conserved if the field gradients are small within distances comparable to the particle

gyroradius. Using the integrated particle trajectories from the data sets of Table 5.1, the

magnetic moment Eq. 5.8 was calculated at each integration time step and histogrammed

in time step slices. In each time slice, the mean value µ̄ of the magnetic moment of the

particle ensemble from each data set and the corresponding standard deviation ‡µ were
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calculated. Figure 5.1 shows the evolution of µ̄ over the integration time of the 30 PeV set

(on the left) of Table 5.1 and the ratio ‡µ/µ̄ for the three sets (on the right) of Table 5.1. A

perfect distribution with ‡µ/µ̄ = 0, indicates that the particles most likely stay in the same

magnetic field line, which is unrealistic for a particle moving along a turbulent magnetic

field. Nonetheless, a distribution peaked at a value much larger than one will tell us that

the particles su�ered strong variations in their trajectories and collision-like interactions

happened. The distributions calculated for our three di�erent energy data sets peak at around

0.5 and do not appear to have trends or large variations during integration time (compared

to ‡µ), as shown on the left of Figure 5.1. This indicates that even though the particles have

interacted with the turbulent field, and it has changed their trajectories, the changes are

relatively smooth and with limited statistical impact on the overall particle ensemble.

Note that the width of the distributions in ‡µ/µ̄ means that at some level the magnetic

moment of the particles fluctuates during propagation. Di�erent particles follow di�erent

magnetic field lines and experience di�erent interactions. There might be also a contribution

from the limited accuracy of the numerical integration. However, as discussed and shown

in appendix A.1, in the present application, the e�ects due to accuracy limitations are not

su�ciently large to significantly violate adiabaticity. The highest level of possible inaccuracy,

where particles are stochastically re-distributed at each gyration, provides a numerical

di�usion at the level of Bohm di�usion, where particles are scattered every gyration. It has

been proven that in astrophysical turbulence Bohm di�usion is always much smaller than

di�usion induced by magnetic field line wandering [56]. So the fact that the accuracy of

the used trajectory integration method is significantly below the Bohm di�usion level (see

appendix A.1) poses no problem on the statistical results obtained in this study.

Based on the fact that the ensemble-average È‡µ/µ̄Í . 1, especially that only magnetic

forces are explicitly taken into account and that the changes in the particles’ trajectories are

relatively smooth, it is assumed that Liouville’s theorem is applicable (see further discussions

in Section 5.5). So in this study, back-propagation of the particle trajectories is justified

in this statistical sense. The situation changes if scattering rate is higher, such as in the
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Figure 5.2: Sky map of arrival direction distribution of the 7.5 PeV proton set of Table 5.1
after propagation for a distance of 40 pc. The decomposition of the initial dipole distribution
is shown. On the left is the sky map obtained after time inversion, and on the right is the
same map after subtracting the dipole component from the map on the left. A Gaussian
smoothing with ‡ = 3¶ was used.

heliospheric magnetic field case studied in [59], where resonant scattering processes produce

larger deviations from adiabaticity.

5.4 Results

This section shows the results obtained with the numerical calculation data sets described in

Section 5.2.2.

5.4.1 Mean Free Path

Using the particle trajectory data sets from Table 5.1, it is possible to evaluate general

properties that the ensemble of particles have after a su�ciently long duration of propagating

in the turbulent magnetic field. The mean free path ⁄mfp is the distance at which the

instantaneous particle directions become uncorrelated with respect to those at time t=0.

At this distance, and associated to scattering time scale, particles have lost memory of the

direction distribution at initial conditions. This is a cumulative property of all particles, and

it can be estimated by calculating the mean distance at which the direction of each particle

has an angle of 90¶ from its initial position. This definition is equivalent to evaluating the
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velocity autocorrelation function and estimating the distance at which it is su�ciently close

to zero (i.e., correlation to initial condition is lost).

The results of ⁄mfp calculations are given in Table 5.1. As expected in this regime, the

mean free path increases with energy. For the interarm region, where the injection scale is

on the order of 100 pc, ⁄mfp ≥ 60 pc for 30 PeV protons. For an energy four times smaller,

7.5 PeV, the mean free path decreases to a value of 50 pc. In the spiral arm, with injection

scale on the order 10 pc, our calculation for 750 TeV protons is 5.0 pc. Note that in the

two lowest energy data sets considered here, the particle gyroradius is on the order of the

damping scale of the turbulent field. Therefore, pitch angle scattering arising from smaller

scale magnetic perturbations is significantly reduced, and may result in the mean free path

being overestimated to some degree. In the present work, the intent is to show the e�ects of

turbulence in the particle spatial distribution in relation to the mean free path; therefore,

whether the value is strictly correct is of limited importance in this context. In future studies,

the need to use MHD simulations in a wider inertial range will be considered in more detail.

5.4.2 Sky Maps of Arrival Direction Distribution

The particle trajectories numerically integrated with Eqs. 1-2 for the sets in Table 5.1 are used

to study the properties of their arrival direction distribution that results from the scattering

o� magnetic turbulence from a particle density gradient. As described in Section 5.2.2, the

procedure used for determining the sky maps of the particles’ arrival distribution makes use

of the trajectory integration backward in time, uniformly emanating from one point assumed

to be Earth, until they exit the integration box. At a su�ciently long distance from the

origin, particle trajectories accumulate in the direction of the mean magnetic field, since the

perpendicular di�usion is smaller than that which is parallel to the magnetic field lines. A

sphere of radius R with center at the origin of the back-propagated trajectories is used to

record the position and velocity direction of each trajectory. The trajectories are inverted in

time from those locations on the sphere to the origin, by virtue of Liouville’s theorem (see
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Section 5.3 for a discussion of the validity of Liouville’s Theorem and the consequences of its

use in the context of the present study).

It is likely that there are several sources of cosmic rays in the Milky Way, perhaps from

di�erent populations injecting particles into the ISM with di�erent energy spectral shapes. It

is also possible to suppose that a single source may dominate the cosmic ray distribution at

Earth, depending on the energy range (see Section 5.1). In a scenario of isotropic di�usion,

the cosmic ray density gradient is expected to be described by a simple dipole distribution.

This is a similar distribution as would be expected if convective transport were the dominant

source of the cosmic ray density gradient, such as in the case of superbubbles [20] or the

e�ect of Loop I shell in the local ISM [75]. In the general and more likely scenario of

anisotropic di�usion, cosmic ray propagation along the magnetic field line is faster than the

perpendicular, thus producing a cosmic ray gradient ordered along the regular magnetic field

(see, e.g., [47, 60]). Although the density gradient is not expected to be a dipole but rather a

distribution that depends on the ratio of perpendicular to parallel di�usion, in this work it

is assumed a simple dipole distribution, regardless of the origin of the underlying density

gradient of the cosmic rays.

If the underlying distribution of cosmic rays is perfectly uniform, the e�ects of scattering

o� magnetic turbulence shu�es one isotropic distribution into another isotropic distribution.

However, with an existing particle density gradient, the scattering processes redistribute

particles from the region of higher density to that of lower density, and vice versa, thus

creating a complex arrival distribution that can be described with higher order multipole

terms of the spherical harmonic expansion.

In the process of inverting time on the numerically calculated trajectories, a dipole gradient

distribution, assumed to be aligned with the direction of the mean magnetic field of the MHD

snapshot, is introduced as a weight on each trajectory at the crossing point on a sphere of

radius R. The weight is calculated using the angle of the particle direction at the crossing

point from that of the density gradient. The arrival distribution of these forward-propagated

trajectories at Earth (i.e., the origin) is then determined. One key factor to remember is that
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only the small-scale angular anisotropy is studied, since this is the one that arises from the

specific interaction with the turbulent magnetic field. Therefore, the large scale component,

specifically the dipolar component of the map at Earth, is fitted and removed. Such a dipole

component can have a di�erent direction and amplitude than that injected. Figure 5.2 shows

the sky map, in equatorial coordinates, of the arrival distribution of the 7.5 PeV protons at

Earth before (on the left) and after (on the right) dipole subtraction, thus emphasizing the

small scale features. A Gaussian smoothing with ‡ = 3¶ was used. The residual map shows

medium- and small-scale angular structures arising from the breakout of the underlying

dipole anisotropy after a propagation of R = 50 pc.

The maps were created with the HealPix mapping tool [43], which divides the sphere into

pixels of equal areas. For the present work, a pixelization parameter of Nside = 16 was used,

which corresponds to 3072 pixels in total, with a mean spacing of 3.67¶. In Figure 5.2, the

excess regions, with respect to the average isotropic flux, are identified by a red color and

deficit regions by a blue one. Therefore, a pixel in which many particles pass through will be

represented in a stronger red color than one that has only a few events.

Figure 5.3, under the assumption of the Earth’s location in the interarm zone with

Linj=100 pc, shows the sky maps progression of the 30 PeV cosmic ray arrival direction

distribution with the dipole density gradient weight at di�erent propagation distances of R =

10 pc, 20 pc, 60 pc, and 90 pc. On each map, a dipole fit was performed, and the resulting

dipole component was subtracted. Such a component may be di�erent for each map, since

it depends on the actual magnetic field structure at a given distance. The sky maps show

that by increasing the propagation distance the arrival direction distribution progressively

develops smaller structures up the mean free path (60 pc in this case, see Table 5.1). At larger

distances, the arrival direction distribution reaches a statistically steady configuration (in

Figure 5.2 only the 90 pc propagation distance is shown). Only propagation processes within

the mean free path are responsible for the actual arrival direction distribution of cosmic rays

at Earth, as discussed also in [39]. Whatever happens at larger distances is reshu�ed by

the scattering processes and is only relevant in the generation of the seed particle density
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gradient at large scale.

The actual distribution of cosmic rays depends on the specific realization of the turbulent

magnetic field and on the particle energy. Figure 5.4 shows the steady-state arrival direction

distribution of 750 TeV (on the left) and 30 PeV (on the right) cosmic rays. This figure

qualitatively shows that in the higher energy case the anisotropy of the distribution shows

more small-scale angular regions than in the lower energy case. For a quantification of such a

visual property, it is necessary to calculate the angular power spectrum. The map from 7.5

PeV presents almost the same distribution as the one for 750 TeV, since the only di�erences

between them are the assumption on the injection scale and that they are independent sets

(as described in Section 5.2.2 and shown in Table 5.1). The particles at 7.5 PeV energy and

Linj = 100pc are physically equivalent to particles at 750 TeV with Linj = 10pc.

5.4.3 Angular Power Spectrum

The sky maps of arrival direction distributions described in the previous sections are not

dissimilar to experimental observations. However, it is the determination of the angular power

spectrum that makes it possible to quantify the formation of small-scale structure anisotropy

arising from scattering o� magnetic turbulence. With the power spectrum, a sky map of

arrival direction distribution is decomposed into spherical harmonics to provide information

on the angular scale contribution of the anisotropy. The spectrum quantitatively indicates

which multipole moments ¸ in the spherical harmonic expansion contribute to the observed

map. The IceCube observatory provided a power spectrum of their Southern Hemisphere

observation in the 10 TeV scale [4, 2] and the HAWC gamma-ray observatory provided one

for the Northern Hemisphere in the TeV scale [8]. The angular power spectrum is determined

using the anafast tool in the HealPix framework.

Figure 5.5 shows the angular power spectrum from the numerical trajectory integration

set of 30 PeV protons at propagation distances from the initial unperturbed dipole anisotropy

at 10 pc, 20 pc, 60 pc and 90 pc, as in Figure 5.3, but without subtracting the dipole
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component. In the figure, the result from the observations made by the IceCube observatory

is included as well. Note that the higher power values observed at low ¸, not reproduced in the

calculations, are most probably due to the partial sky view of the IceCube observatory, which

causes correlations with the largest scale spherical harmonic moments. The experimental

observation is for a median cosmic ray energy of about 20 TeV, much lower than the numerical

calculations. The numerical calculation sets are normalized to the dipole component (i.e., ¸

= 1) of experimental power spectrum for the farthest propagation distance of 90 pc only. At

shorter propagation distances, the normalization corresponds to the relative power obtained

from the calculations. This normalization is valid since we are interested in the small-scale

features, not on the assumptions on the large-scale anisotropy.

Note that the numerical calculation shows, within statistical fluctuations, that the power

of the dipole component decreases with increasing propagation distance, due to the transfer

of part of it into the higher ¸ components. At very short distances, i.e., smaller than the

mean free path, the low multipole moments are dominant. However, as the distance increases,

more power is transferred to the higher multipole moments, which is the signature of particle

interactions with the turbulent magnetic field. Once they reach the mean free path distance,

in this case 60 pc, the power spectrum converges to a steady configuration, as the sky maps

in Figure 5.3 show. In Figure 5.5, the power spectrum of an isotropic flux of the same

number of particles is included as a gray band and properly normalized 1. It is evident

that the distribution at distance ⁄mfp and beyond is not only a random distribution but

also possesses a definite structure. It is noted that the angular power spectra calculated

for propagation distance longer that 90 pc show the same relative normalization and shape

of that corresponding to the mean free path. This is compatible with the achievement of

steady state in the anisotropy structures as evident in the sky maps of Figure 5.3. The

approach of the power spectra to the band of isotropic distribution for ¸ > 30 means that,

for the numerical realization studied here, the smaller angular scales are indistinguishable
1The power spectrum of the isotropic flux is calculated by generating 10,000 realizations of uniform

particle direction distribution, matching the number of the integrated particle trajectories, and calculating
the power spectrum for each of them. The 68%, 90%, and 99% containment bands are reported in Figure 5.5
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from random fluctuations of the isotropic flux.

As observed in Figure 5.4, the angular structure generated from the e�ect of scattering

o� magnetic turbulence depends on the particle energy (750 TeV and 30 PeV shown). This

is evident also in the corresponding power angular spectra in Figure 5.6, calculated at the

propagation distance of their mean free paths. The figure also shows the experimental result

from the IceCube observatory at 20 TeV median energy, with the corresponding power of the

isotropic distribution background and with the curve expected from the hierarchical breakup

of angular components from [10], normalized to the dipole component of the IceCube result.

Note that the angular power spectrum at higher energy is flatter than that at lower energy.

This is compatible with the existence of more small-scale structures as evident in the sky

maps of Figure 5.4.

5.5 Discussion

We have shown how small-scale anisotropy arises from the interaction of particles with the

turbulent magnetic field. Specifically, we have addressed how the integration of trajectories

in an MHD turbulent magnetic field provides a realistic understanding of the small-scale

features present in the observations of cosmic ray anisotropy at Earth. The ISM is in a

plasma state, where the MHD equations serve as a model for its dynamics, therefore an MHD

turbulent magnetic field is a natural approach to study the magnetic field properties in the

ISM. Previous work [39] had considered the e�ects of magnetic turbulence on cosmic ray

distribution. In this study, the authors have considered synthetic turbulence, which, on one

hand, lacks the proper development of the gas dynamics but, on the other hand, provides

the first qualitative connection between a magnetic turbulent field and cosmic ray arrival

directions. In compressible MHD turbulence, scattering e�ciency strongly depends on the

wave type and how the particle gyroradius compares to the turbulence scales. Specifically,

fast modes are identified as the main source for cosmic ray scattering [79].

The dynamics of the di�erent turbulence modes and the relationship between particle
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energy and turbulence scale determine the actual scattering e�ciency, which is most re-

sponsible for the breakout of a global cosmic ray density gradient into small-scale angular

anisotropy. The angular power spectrum calculated for the data sets studied in this work

appears to evolve in time until particles cross the mean free path distance. In a steady state,

the shape of the angular power spectrum is a function of the magnetic field structure and of

the consequent e�ects on particle propagation.

Studying particle trajectories in MHD magnetic turbulence provides a more realistic

framework to investigate the behavior of cosmic ray propagation in the ISM, where turbulence

is expected to be anisotropic, although MHD turbulence simulations typically represent a

significantly more restrictive inertial range than the actual astrophysical plasmas.

The ISM is a complex environment and its exact representation is di�cult to achieve;

therefore, our MHD magnetic field can be considered one possible configuration of the

magnetic field in the ISM. For this reason, direct comparison should be on the angular power

spectrum itself, not on the exact topology of the small-scale features in our maps.

The framework for the application of Liouville’s theorem is provided in the context of

cosmic ray arrival distribution and applied through the back-propagation method. Although

particle trajectories appear to su�er from mild deviation from adiabaticity, Liouville’s theorem

was applied in this particular case to study the first order e�ects of magnetic turbulence

on the global topology of particle trajectories. This is because particles do not experience

severe scattering in their trajectories, as shown in the first adiabatic invariant calculations;

nonetheless, if the magnetic field were to vary dramatically with respect to the gyroradius

of the particles, it prohibit application of Liouville’s theorem. The spread in the magnetic

moment µ distribution in Figure 5.1 suggests that some trajectories may have experienced

more scattering than average in their propagation. This e�ect will manifest in the anisotropy

through higher power at high ¸, since these particles will have had greater interactions with

the turbulent field, resulting in a slightly flatter angular power spectrum. If the distribution

on the ‡µ/µ̄ plot had peaked at a higher value or a progressive trend had appeared on the

mean magnetic moment plot of the data set, this would be an indication of a clear violation
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of Liouville’s theorem. Neither of these trends have statistically or significantly occurred in

our calculations; nevertheless, we would expect them to appear in magnetic fields that have

a strong variation in scale on the order of the gyroradius of the particles. Future studies

will need to use MHD turbulence simulation with wider inertial range to include enlarge the

energy range in which magnetic turbulence a�ects cosmic ray distribution. In this way, these

studies will reveal the connection between the angular power spectrum of the cosmic ray

arrival direction distribution and the turbulence properties, naturally accounting for spurious

e�ects derived by the numerical methods used.

As mentioned in Section 5.2.2, the trajectory back-propagation method is intended to

provide a high e�ciency in the studies of particle propagation in magnetic fields. Such a

numerical method provides a mapping of the regions in space that are magnetically connected

to the arrival point, where particles are assumed to be isotropically distributed. Therefore,

appealing to the conservation of the total power across all spherical harmonic contributions,

as dictated by Liouville’s theorem, makes higher multipole moments possible. Anisotropy

was studied as a function of an initial large-scale density gradient at a large distance from

the arrival point. Such a density gradient, however, is generated by the same propagation

processes that produce all angular structures in the arrival direction distribution as well. In

fact, smaller scale structures can arise in trajectory forward-propagation integration methods,

where particle escape is naturally accounted for, even without assuming an initial global

anisotropy, as shown in [70]. On the other hand, as long as a global anisotropy is developed

at some distance larger than ⁄mfp, independently on how it is generated, the arrival direction

distribution reaches a steady state angular power spectrum, and the e�ects of seed anisotropy

and observed anisotropy can be disentangled.

For the mean free path calculation, it is shown to be dependent on energy. In this regime,

from 750 TeV to 30 PeV, the ⁄mfp increases with energy. This is in agreement with how the

more energetic particles interact with the perturbations of the magnetic field. In the case of

the 750 TeV and 7.5 PeV sets, the minimum scale in the power spectrum of turbulence is of

the size of the gyroradius of the particles, which may cause an overestimation of the ⁄mfp,
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since there is limited power in the physical perturbations that interact with the particles.

For our 30 PeV particles, we are well above this minimum scale, so the ⁄mfp is una�ected.

The anisotropy maps and their corresponding angular power spectrum can tell us about

the propagation of the particles themselves in the turbulent field. At very short distances,

the low multipole moments are completely dominant and hold most of the power, as shown

with the line of 10 pc in Figure 5.5. The reason for this is that the particles have not had

enough time to interact with the features of the magnetic field, and the distribution is still

reminiscent of the initial configuration. However, the particles continue to interact and

structures start to develop. As we can see with the line of 20 pc in Figure 5.5, the higher

multipole moments start to rise, with small-scale features becoming highly visible even in the

maps in Figure 5.4. One interesting feature is that the small-scale structures develop within

the mean free path, but once they reache this scale, the maps do not change significantly.

This observation is confirmed in the angular power spectrum. Therefore, the distribution

of power between the di�erent multipole moments reaches a steady state. Of course, the

particles keep moving and interacting after they have reached one ⁄mfp, but the anisotropy

itself does not change. From Figure 5.5 it is possible to see that this steady distribution is

not isotropic, yet it possesses a definite structure that is dependent on the nature of the

turbulent magnetic field. Consequently, the observed anisotropy is for the most part created

in the last ⁄mfp of the particle’s trajectory, and it becomes a way to indirectly probe the

local ISM.

In Figure 5.5, we can see from the comparison with the observations that the experimental

data behaves according to what we would have expected from a lower energy. In the case

of 20 TeV, the distribution of power among the higher multipole moments is lower than at

the higher energy, i.e., 30 PeV. One of the causes is that the 30 PeV particles interact with

perturbations that carry more power than the ones at a lower energy. Therefore, when an

interaction process occurs with these perturbations, the higher energy particles are a�ected

more strongly and more small-scale structure is created.

This e�ect is confirmed in Figure 5.6, where the spectrum at the ⁄mfp of energies 750
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TeV and 30 PeV is compared with the observations at the median energy of 20 TeV. The

distribution at 750 TeV is similar to the observations at 20 TeV; however, for 30 PeV, the

distribution of high multipole moments is much higher and flatter than that at lower energy.

Therefore, greater small-scale anisotropy is observed at higher energies. This is also easily

seen in the maps in Figure 5.4.

The flatter angular power spectrum obtained with 30 PeV compared to 750 TeV protons

tells us about di�erences in pitch angle scattering as a function of energy. However it is

important to note that the 750 TeV data set corresponds to a gyroradius scale close to

the dissipation region of the MHD turbulence inertial range. It is likely that scattering is

underestimated, thus preventing a full development of small-scale angular structures in the

particle anisotropy. From this point of view, it is reasonable to assume that the resemblance

of the 750 TeV proton power spectrum to experimental data should be considered coincidental

but still in agreement with the fact that lower energies should have less structure, as

mentioned above. On the other hand, the di�erence of the 30 PeV proton power spectrum

with experimental data does not necessarily mean that the fundamental processes responsible

for the small-scale anisotropy are overestimated in the present study. The results show an

energy dependence in the shape of the angular power spectrum that needs further study,

requiring MHD turbulence simulation with a significantly wider inertial range.

Figure 5.6 includes the angular power spectrum resulting from hierarchical decay of angular

scales if Liouville’s theorem is satisfied, as calculated by [10]. Here the di�erent curves have

been normalized to the dipole of the observational data, as discussed in Section 5.4.3, so that

only the small-scale structure is relevant. In [10], an existing global dipole anisotropy evolves

to create higher multipole moments. The di�erence between that result and the one shown

in the present work resides in the fact that here the shape of the distribution is determined

by the specific turbulence characteristics of the magnetic field and the gyroradius of the

particles. The 750 TeV case appears similar to [10], but since this set is at the damping

scale and scattering is likely to be underestimated, we were already expecting less structure

to be present.
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[11] studied the e�ect of relative di�usion, i.e., from correlated nearby trajectories, as the

contribution to the development of small scale anisotropy structures. In this complementary

approach, the angular power spectrum is calculated based on the e�ect that a particle density

gradient has on the trajectory topology shaped by homogeneous isotropic magnetic turbulence.

In the present work, the relationship between the shape of angular power spectrum and

the scattering processes induced by Alfvénic, slow, and fast modes in a compressible MHD

turbulence were studied. This will make it possible to identify physical properties that shape

the angular power spectrum, so that the problem can be inverted, i.e., the angular power

spectrum and di�erent cosmic ray energies and masses can be used to probe the properties

of the interstellar magnetic turbulence.

5.6 Conclusions

This work explores the possibility that the local interstellar magnetic field could shape the

arrival direction distribution of high-energy cosmic rays. An MHD turbulent magnetic field

was used as a propagating medium that resembles the ISM, and particle trajectories with

various energies were integrated in this field. To obtain the anisotropy in arrival direction

distribution at Earth, the theoretical framework for application of Liouville’s theorem was

provided, and the theorem was shown to be applicable in this specific case. Nonetheless,

there could be cases where the magnetic field varies abruptly, which would ultimately violate

the application of the theorem.

The results presented in this work show that small-scale anisotropy arises from the

interaction of cosmic rays with the local turbulent magnetic field, as confirmed in the sky

maps and angular power spectra. The angular power spectrum becomes flatter the higher

the energy; therefore, experimental data at the 10 TeV scale is expected to be steeper than

the numerical calculations presented in this paper. Cosmic rays with less rigidity are more

sensitive to the lower power small-scale magnetic perturbations. Since cosmic rays are not

composed only of protons, the contribution of heavy ions would yield a steeper angular power
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spectrum.

The inertial range of our turbulent magnetic field provides a limitation on the lowest

energy that could be studied, in this case 750 TeV. Therefore, in the future, it will be necessary

to extend this inertial range and sample even lower energies, so that direct comparisons with

the observations at 20 TeV will be possible. Still, it is expected that at these TeV energies

the e�ects of the heliosphere should be present as well, which would provide a primary topic

for future study and publication. Another factor to improve is the number of particles that

are propagated. If we were to have at least 107 events, it would be possible to obtain a

clearer view of the distribution of cosmic rays at Earth. Investigating how the properties

of our local turbulent magnetic field might influence TeV-PeV cosmic ray arrival direction

distribution will provide the basis for further exploring the observed anisotropy, and it will

open the doors for a better understanding of our local interstellar medium.
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Figure 5.3: Sky maps of arrival direction distributions of 30 PeV protons in equatorial
coordinates, with the dipole density gradient weight at di�erent distances: R = 10 pc, 20 pc,
60 pc, and 90 pc (from top to bottom). Gaussian smoothing with ‡ = 3¶ was used. On each
map, a dipole fit was performed and the resulting dipole component was subtracted.
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Figure 5.4: Sky maps of arrival direction distributions of 750 TeV protons (on the left) and
30 PeV (on the right) in equatorial coordinates and at propagation distance corresponding to
the mean free path. Gaussian smoothing with ‡ = 3¶ was used. On each map, a dipole fit
was performed and the resulting dipole component was subtracted.

Figure 5.5: Angular power spectrum of the arrival direction distribution of 30 PeV trajectories
set of Table 5.1 and Figure 5.3 with dipole weight injected at a distance of 10 pc (in cyan), 20
pc (in green), 60 pc (in blue and corresponding to the mean free path) and of 90 pc (in red).
The gray bands show the 1‡, 2‡ and 3‡ bands for a large set of isotropic sky maps. The black
circles are the results from the IceCube observatory at a median energy of 20 TeV [71]. Note
the di�erence in energy scale between the experimental data and the numerical calculations.
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Figure 5.6: Angular power spectrum of the arrival direction distribution of 750 TeV (blue
line on the left) and 30 PeV (blue line on the right) trajectories sets of Table 5.1 with dipole
weight injected at the corresponding mean free path distance. The red line is the power
spectrum from [10]. The black circles are the results from the IceCube observatory at a
median energy of 20 TeV. The gray crosses and error bars show the 1‡ band for a large set
of isotropic sky maps [71]. Note the di�erence in energy scale between the experimental data
and the numerical calculations.
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Chapter 6

Conclusions and Future Work

This thesis details the contributions of coherent structures, chaos, the heliosphere, and local

turbulent magnetic fields to the cosmic-ray anisotropy observed on Earth. Specifically, we

found that:

• Chaotic behavior can originate from the interaction between cosmic rays and coherent

structures. Our results show that the Finite-Time Lyapunov Exponent, a quantity

that indicates the chaotic behavior of a trajectory, is related to the escape time of the

system. This relation is given by a specific power law that persists even if perturbations

act on the system. This specific power law could prove to be an intrinsic characteristic

of the system. Additionally, the maps of arrival distribution in these systems display

areas where the chaotic characteristics vary significantly. This result can potentially

modify the cosmic ray arrival distribution.

• CRs are strongly a�ected by magnetic structures on the order of their gyroradius. 1-10

TV particles are subject to significant heliospheric scattering. This redistributes CRs

and a�ects their arrival direction distribution. Our work shows that this scattering

can have a significant e�ect on the observations. The study of the complex angular

structure can provide important hints about the turbulent properties of the ISM and

the heliosphere.
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• Small-scale anisotropy arises from the interaction of cosmic rays with the local turbulent

magnetic field, as confirmed in the sky maps and angular power spectra. Investigating

how the properties of our local turbulent magnetic field might influence TeV-PeV cosmic

ray arrival direction distribution will provide the basis for further exploring the observed

anisotropy, and it will open the doors for a better understanding of our local interstellar

medium.

6.1 Future Work

Our studies call for more extensive observations of CR anisotropies and more detailed

numerical testing using high-resolution models.

As a natural continuation of the current work, we are studying the chaotic behavior

of particles propagating in a heliosphere model. CRs with rigidities between 1-10 TV are

severely a�ected by the heliospheric features; thus, distinct levels of chaos are anticipated.

We are expecting to identify and classify regions of the arrival distribution maps according to

this chaotic behavior. In this work, CRs are propagated in an MHD-plasma/kinetic-neutrals

simulation model of the heliosphere. We will use the theoretical framework based on the

Finite-Time Lyapunov exponents to study the chaotic characteristics of CRs. Consequently,

we will focus on the arrival distribution maps and how the chaotic behavior is distributed to

make predictions on the actual CR anisotropy measurements. Moreover, this mapping could

potentially lead us to a description of time-variability in the CR anisotropy.

A similar approach could be made to describe other coherent structures with the model

presented here. For example, the Local Bubble, Loop I, and the Local Cloud could be

responsible for reshaping particles’ arrival directions due to their bounded structures.

Another scenario to explore is the use of this coherent structure model for understanding

intermittency in the ISM. Spatial intermittency is linked to abrupt gradients and coherent

structures in magnetic fields. Such structures can modify the transport of charged particles.

In this case, CR propagation in the interstellar medium is modified by coherent structures.
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Therefore, we can use our analytical model of a magnetic bottle with time-dependent pertur-

bations to create a configuration that will mimic the conditions in the ISM. Consequently, as

a particle propagates in this system, its di�usion will be modified every time an interaction

happens as it gets trapped on them. The main objective will be to study the properties of

CR propagation under these conditions and how their arrival directions at the Earth will be

a�ected.
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Figure 6.1: Venus de Milo with Drawers, Salvador Dalí. Fundació Gala-Salvador Dalí /
Artists Rights Society (ARS), New York, 2018
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Chapter 7

Thesis Summary for the General

Public

Imagine you could travel the Universe at the speed of light.
Imagine you were born in the middle of the death of a star.
Imagine you are the most energetic entity in the Universe.

Your imagination can bring you to envision all of these di�erent
scenarios, but if you were a cosmic ray, this is your reality.

This chapter aims to understand the fundamental ideas for the study of cosmic rays, how

they propagate in the Universe and the explanations behind the way that they arrive on

Earth. First, we will talk about the quintessential question: what are cosmic rays?

7.1 Cosmic Rays and their Fundamental Mysteries

The birth of the twentieth century saw a fantastic revolution in physics. Various surprising

results start to appear. One of them was the discovery of radioactivity. Scientists at the time

studied this phenomenon where certain substances would naturally emit small particles while

they disintegrate. But one particular observation did not match with what they knew. At

the moment, they thought that the main source of that radiation was coming solely from the

Earth. Yet, when they would make observations even at very high altitudes, the radiation

was still there.
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Inspired by these experiments, between 1911 and 1912, Victor Hess, an Austrian physicist,

conducted a series of experiments in balloon flights (see figure 7.1). He wanted to test at

what distance from the Earth’s surface the radiation would decrease, which was expected

according to the theories of the time. Initially, he climbed to an altitude of 1000 meters

and measured the radiation using an electroscope. Hess noticed no relevant changes in the

levels there compared to the ground level. Later, in 1912, he rose to altitudes of 5000 meters.

He did those ascents at night and during an almost total solar eclipse1 to avoid having his

results a�ected by the Sun. He noticed, at first, that the radiation decreased as the altitude

increased, but then, as he got even higher, the radiation started increasing. This result was

astounding and opposed expectations. Therefore, he concluded that the radiation must be

coming from a source other than the Earth. A cosmic origin. This simple yet significant

observation would become the beginning of the study of cosmic rays. 2 3

Figure 7.1: Left: Canonical photo of Victor Hess’ balloon flight. Right: Electrometer used
by Hess (Smithsonian National Air and Science Museum). Photos taken from: A. De Angelis
and C. Arcaro b. Schultz, 2018 [4].

Even though cosmic rays may sound like they are rays of light, like the familiar X-rays

or UV-rays. The name is a misnomer since, in the beginning, it was thought that they
1A solar eclipse occurs when the Moon is in between the Sun and the Earth; therefore, a shadow of the

Moon is cast over the Earth.
2Victor Hess published his results in the Physikalische Zeitschrift. Translation to English and historical

commentary by A. De Angelis and C. Arcaro b. Schultz [4].
3Hess received the Nobel Prize in Physics for this discovery in 1936. Prize motivation: "for his discovery

of cosmic radiation."
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were a type of light. But they are not. Cosmic rays (CRs) are small fragments of an

atom—subatomic particles—that travel at almost the speed of light. We can think of them

as the "cosmic messengers" of the Universe since they can transport information from one

distant place in the Universe to another. And they can even reach us here on Earth. 4

They are mainly protons, helium, heavy nuclei, and electrons accelerated to high energies.

They can have extremely high energies. For example, CRs have been detected at energies 20

million times greater than what particle colliders here on Earth can reach.

We are bombarded by millions of these particles every day at every second. Nonetheless,

there are multiple mysteries involved when we talk about CRs. For example: where do they

come from? How do they move across the Galaxy? And most importantly, for our purposes,

what e�ects influence them as they arrive on Earth?

Cosmic rays can be classified based on their origin: solar, galactic, or extra-galactic (see

figure 7.2). Solar CRs refer to particles that are accelerated in the Sun. For galactic CRs,

we are talking about particles that have their origin in our galaxy, the Milky Way. And

extra-galactic refers to CRs that are created outside our Galaxy.

Figure 7.2: Origin of Cosmic Rays. Left: The Sun photographed by the Atmospheric Imaging
Assembly (AIA 304) of NASA’s Solar Dynamics Observatory (SDO). Center: Artist’s concept
of the Milky Way. Source: NASA/JPL-Caltech/R. Hurt (SSC/Caltech). Right: The galaxy
cluster in this image is SDSS J0333+0651. Credit: ESA/Hubble and NASA

In this chapter, we will concentrate on CRs that are galactic. At the moment, an exact

place of origin for these CRs has not been pinpointed. However, one staple candidate can
4You can download an app for your phone that can detect cosmic rays. Basically, you can have a CR

detector in your hand. The app is called CRAYFIS.
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accelerate particles in the Galaxy. That perfect site for the acceleration of these particles is

when a star dies, the so-called supernova remnants. When a star dies, it creates a shock that

can accelerate CRs, similar to a surfer and a wave that accelerates them (see figure 7.3).

Figure 7.3: Supernova remnants as sites for CR acceleration.

7.2 Propagation of Cosmic Rays

Cosmic rays are extraterrestrial charged particles. Particles can be positively charged, such as

a proton, or negative as an electron. The main issue from this characteristic is that charged

particles do not follow a straight line but are a�ected by magnetic fields that deflect them.

In figure 7.4, we have an example of what a CR trajectory could look like. Suppose a particle

is injected into the Galaxy at point A and there were no magnetic fields. In that case, it

will follow the straight white trajectory to point B. However, since magnetic fields are in

their path, the trajectory will be deflected and twisted by them, such as the red trajectory in

the figure. Therefore, if we were to detect the particle at point B, we would not be able to

point directly towards the direction of origin A since that information has been distorted.
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This problem is the basis for exploring how particles arrive on Earth and what a�ects their

propagation.

Figure 7.4: Cosmic Ray Trajectory. Cosmic rays do not follow straight lines in their
trajectories because magnetic fields in the Galaxy deflect them.

One of the challenges concerning this problem and its captivating argument is that, since

cosmic rays interact with di�erent media in the galaxy, a multidisciplinary approach should

be taken to provide a satisfactory description. In the next section, we will analyze the map of

how particles arrive at the Earth. The following sections will explore the di�erent components

that can a�ect cosmic rays and help us build a comprehensive picture of the observations.

7.3 Cosmic Ray Anisotropy

When Galactic cosmic rays arrive on Earth, they do so in a non-uniform manner. Figure 7.5

shows a sky map of the arrival directions distribution of CRs. In this map, the red color
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indicates areas in the sky where more CRs pass through. On the other hand, the blue color

denotes fewer CRs from those directions. If particles came in equal numbers from all the

di�erent directions in the sky, this map would have been just one color. But as we can see, we

have a lack of uniformity–or anisotropy–in the map; this is why this phenomenon is referred

to as the Cosmic-Ray Anisotropy.

An exact explanation for this anisotropy still eludes us. However, it is expected that the

origin is due to a synthesis of factors such as the distribution and nature of their sources,

properties of the magnetic fields, and overall cosmic-ray propagation. Nonetheless, from

this anisotropy, we can distill crucial information about the environment surrounding us in

the Galaxy and how CRs move through it. In the next section, we will explore di�erent

explanations for this anisotropy.

Figure 7.5: Map of the arrival directions of Cosmic Rays. Data by the High-Altitude Water
Cherenkov and IceCube observatories in the northern and southern hemispheres

7.4 E�ects on the Cosmic Ray Anisotropy

In this section, we will explore di�erent e�ects that could cause this anisotropy. They will

shine a light on specific mechanisms behind the behavior of CRs and what we can learn
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about the environment that they travel through.

7.4.1 Turbulence in the Local Neighborhood

As we mentioned before, when particles travel in the Galaxy, they are a�ected by magnetic

fields. A critical characteristic of these magnetic fields is that they are turbulent. The space

in which they travel between the stars is called the interstellar medium. The magnetic fields

in this environment have a very complex structure because they are turbulent. Turbulence

creates chaotic eddies that tangled the magnetic field lines, much like the drawing by Leonardo

da Vinci in figure 7.6 of a water jet plunging into a pool. So, the question that arose here

was: can the interstellar medium imprint its structure onto the CR arrival maps? We found

that through the interaction of the particles with these turbulent fields, a beautiful myriad

of structures was created. This means that we can learn about our local neighborhood in the

interstellar medium by looking at the directions CRs come from. These tiny particles can

bring us information about structures that are one hundred trillion kilometers away.

Figure 7.6: Leonardo da Vinci’s sketch of a water jet plunging into a pool. showing the
resultant turbulent flow. Royal Collection at Windsor (RCIN 912660v).
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7.4.2 The Heliosphere

The other aspect that I explore in my dissertation is the e�ect of the heliosphere. The

heliosphere is a cavity formed in the interstellar medium by the particles that the Sun emits.

Consequently, the heliosphere distorts the interstellar medium’s magnetic field. For example,

suppose a particle is coming from outside the heliosphere. In that case, as it is shown in figure

7.7, it could get trapped in the heliosphere and bounce back and forth until it is detected on

Earth. This trapping and bouncing of the CR can ultimately a�ect the original direction

that the particle had outside the heliosphere. Therefore, there is a strong rearrangement of

the particles’ directions as they approach our detectors. From this result, we can conclude

that the e�ects of the heliosphere are crucial when we are explaining the arrival anisotropy

of CRs.

Additionally, we can use this e�ect to turn the problem around and ask ourselves about

the heliosphere’s shape. We can do this because CRs interact with it and sample its structure

in the process. One issue that we have is that even though we live inside the heliosphere,

we do not know its exact form or size. The only direct measurements that give us as an

indication are those made by Voyager 1 and 2. These two spacecrafts sent by NASA in

the 1970s are now the farthest away of any mission that humankind has sent, billions of

kilometers from Earth. But they were only able to sample a tiny part of the heliosphere.

This is the reason why we have to rely on these indirect cosmic ray measurements to extract

information about the heliosphere’s overall configuration until new missions shed light on it.

7.4.3 Chaos

Another element that can impact the arrival direction of CRs is chaos. The basic idea behind

chaos is that the path that particles follow is very sensitive to the initial conditions. This

means that even a tiny variation in the trajectory can have monumental e�ects later on. For

example, we can consider the CR trajectories in figure 7.8. Imagine we have two particles in

a non-chaotic environment (the left panel in the figure). Suppose they start with a small
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Figure 7.7: Particle interacting with the heliosphere.

separation S1, after some time, they will have a separation S2 that is equal or almost the

same as S1. So, as they move across the Galaxy, these two particles will remain close together.

Contrarily, what happens if these particles travel in a chaotic medium? (The right panel in

figure 7.8.) The CRs can start with the same separation S1, but they will begin to diverge as

they propagate. At some point, the particles get extremely far apart. Therefore, the final

separation S2 can be hundreds of times greater than the initial S1.

So, how does chaos play a role in the context of CRs arriving on our planet? We can

have two particles that seem to come from the same place in the sky, but because they are

chaotic, they could come from entirely di�erent places in the Galaxy.

7.5 Conclusions

Cosmic rays are charged particles that travel through the Universe at nearly the speed of

light. They serve as cosmic messengers that transport information from far away places to

the Earth. Since they are charged particles, they are a�ected by magnetic fields that distort

their trajectories. Therefore, when they arrive on Earth, they may appear to come from one

specific direction, but it does not point to their place of origin anymore. The magnetic fields
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Figure 7.8: Left: Non-chaotic cosmic-ray trajectories. Right: Chaotic CR trajectories

have deflected them so much that their paths have been scrambled. This poses a di�culty

when trying to explain their arrival directions.

Nonetheless, this complication is an advantage in disguise. Given that these particles have

traveled the Galaxy and interacted with vastly di�erent environments, they have collected

valuable information while doing so. We can decode these messages through the directions

in which the CRs are detected on Earth. For example, we can learn about the structure of

our local galactic surroundings, such as the interstellar medium. Or closer to us, like the

heliosphere.

At the beginning of this chapter, we imagine what it would be like to experience the

Universe how a cosmic ray does. Even though humankind does not yet have the technology

to travel at almost the speed of light or visit remote places in the Galaxy, it is remarkable

that we can have little messengers that can teach us about what is out there. It puts us in

perspective that a tiny planet like ours can decipher this information. Humans are curious

by nature, so hopefully, this is just the beginning of our journey in exploring the Universe.
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Appendix A

Numerical Approach and Accuracy:

Particle Integration in Chapter 5

A.1 Numerical Approach and Accuracy

Particle trajectories are calculated by integrating the 6D set of equations of motion, eqs. 1

and 5.2. As stated in section 4.3.2, the integration is performed numerically using the Bulirsch-

Stoer method, which is considered one of the best known integration algorithms satisfying

both high accuracy and e�ciency [68] and widely applied in the literature (e.g., [40] and [78]).

The Bulirsch-Stoer integration algorithm, is a known method for numerical calculation of

ordinary di�erential equation solutions, that combines the so-called Richardson extrapolation

(to improve the rate of convergence of a sequence) and the modified midpoint method (which

advances a vector of dependent variables y(x) from a point x to a point x + H by a sequence of

n substeps each of size h). The result is that Bulirsch-Stoer algorithm provides high accuracy

with relatively low computational e�ort. The accuracy of the algorithm is further controlled,

during the numerical calculation, by monitoring the local truncation error estimated at each

time step. If the relative error is larger than the relative tolerance level of 10≠6, the step

size is adaptively reduced in order to limit the error accumulation in both momentum and

spatial coordinates, across the maximum integration time used in this work (corresponding
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to no more than 10,000 gyrations). Such error accumulation needs to be monitored for each

specific problem in which the integration algorithm is used. In particular, the accuracy on

the spatial and momentum coordinates were studied.

The performance of the Bulirsch-Stoer algorithm on the accuracy of momentum coordinates

in our numerical calculation can be seen in Figure A.1, where the particle energy variation

(due to loss of accuracy) from that at t = 0 is plotted as a function of the number of

gyro-orbits �0 t (for a single particle and for the average of all particles used in our 30 PeV

sample).
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Figure A.1: Accuracy of the conservation of energy for a single particle (on the left) and for
the average particle sample (on the right) of the 30 PeV set of Table 4.1.

The maximum relative mean deviation from perfect energy conservation is found to be

about 8.5◊10≠8 for the sample used in this work (100,000 particles in the 30 PeV energy set),

although a single particle can reach a violation at the 1.6◊10≠5 level. This precision level in

the energy conservation guarantees that particle trajectories are not significantly a�ected by

numerical accuracy limitations, which are found to be marginal under the conditions of this

study.

Since the adaptive time step algorithm constrains both spatial and momentum coordinates

to the same relative error level, the accuracy in spatial coordinates is π rL, even after 10,000

gyrations. Numerical di�usion, therefore, is limited to a level much smaller than Bohm



143

di�usion, which is several orders of magnitude below di�usion induced by the stochastic

wandering of magnetic field lines at all scales [56].

The e�ect on the particle set size was assessed in [78], which used the same integration

stepping algorithms as in this work. In that paper, the perpendicular di�usion coe�cient

becomes stable when the sample size reaches about 1000 particles. The sets used in this

study contain 100,000 or more particles (see Table 4.1), thus minimizing statistical accuracy

e�ects on the global behavior of the ensemble of particles.
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