
Energy-efficient Communication Architectures for beyond
von-Neumann AI Accelerators: Design and Analysis

by

Sumit K. Mandal

A dissertation submitted in partial fulfillment of
the requirements for the degree of

Doctor of Philosophy

(Department of Electrical and Computer Engineering)

at the

UNIVERSITY OF WISCONSIN–MADISON

2022

Date of final oral examination: 04/22/2022

The dissertation is approved by the following members of the Final Oral Committee:
Umit Y. Ogras, Associate Professor, Electrical and Computer Engineering,
University of Wisconsin-Madison
Mikko H. Lipasti, Professor, Electrical and Computer Engineering, Univer-
sity of Wisconsin-Madison
Karu Sankaralingam, Professor, Computer Sciences Engineering, Univer-
sity of Wisconsin-Madison
Chaitali Chakrabarti, Professor, Electrical Engineering, Arizona State Uni-
versity

© Copyright by Sumit K. Mandal 2022
All Rights Reserved

i

Dedicated to my parents Abha Mondal and Sasthi Pada Mandal.

ii

acknowledgments

This dissertation is the result of efforts over the last five years of my grad-
uate study and over 20 years of education. The last five years have been
one of the most productive phase of my life and it would not have been
possible without the support of faculty, colleagues, friends, and family.
First and foremost, I would like to thank my advisor, Prof. Umit Y. Ogras,
for the guidance, patience, and advice he has offered me over the years
of my graduate study. His insightful recommendations on writing, time
management, communication, and networking helped me grow as a re-
searcher and person. I am also grateful for his help and support in my
academic job search. His thoughtful comments and advice on the inter-
view process helped me greatly in securing an academic position. Prof.
Ogras did everything to ensure his students’ success, which is something
I will strive to achieve in my career.

I would like to thank Prof. Chaitali Chakrabarti, Prof. Mikko H. Lipasti
and Prof. Karthikeyan Sankaralingam for being part of my Ph.D. defense
committee. Their insightful comments helped me in improving this disser-
tation. I am also thankful to Prof. Partha Pratim Pande, Prof. Janardhan
Rao Doppa, Prof. Prabhat Mishra, Prof. Yu Cao, Prof. Jae-sun Seo, and
Prof. Sudip Pasricha for their inputs and guidance in my research over
the past few years. I am also thankful to Dr. Michael Kishinevsky and Dr.
Raid Ayoub for their continued mentorship.

I am grateful for the interesting discussions, words of encouragement,
and lighter moments with friends and colleagues: Ujjwal, Ganapati, Samet,
Manoj, Darshan, Ranadeep, Anish, Yigit, Sizhe, Alper, Toygun, Shruti, Jie,
Harsh and Gokul. I also like to thank my other friends for their continuous
encouragement and support: Priyabrata, Siddhartha, Gaurav, Subarna,
Sudhir and Sanvi. I enjoyed the numerous trips that I took with them.

Finally, I would like to thank my parents, Abha Mondal and Sasthi

iii

Pada Mandal, for their constant love, support, and encouragement over
the years. It is their love and encouragement that motivated me to pursue
graduate studies and contribute to research. I also thank my cousins and
friends back in India, with whom I have numerous happy moments.

iv

contents

List of Tables vi

List of Figuresviii

Abstractxvii

1 Introduction 1

2 Literature Review 7
2.1 Energy-efficient Communication Architectures for General Pur-

pose Processors 7
2.2 Communication-centric AI Accelerator Design 15
2.3 Analytical Performance Modeling of Networks-on-Chip 20

3 Communication-Aware Hardware Accelerators for Deep Neural
Networks (DNNs) 25
3.1 Background and Motivation 25
3.2 Area-aware NoC Optimization 33
3.3 Latency-aware NoC optimization 36
3.4 Experimental Evaluation 54

4 Communication-Aware Hardware Accelerators for Graph Con-
volutional Networks (GCNs) 68
4.1 Background and Motivation 68
4.2 The Proposed COIN Architecture 75
4.3 Experimental Evaluation 83

5 Performance Analysis of Priority-Aware NoCs101
5.1 Background and Motivation101
5.2 Proposed Network Transformations105

v

5.3 Generalization for Arbitrary Number of Queues112
5.4 Experimental Evaluations115

6 Performance Analysis of NoCs with Bursty Traffic126
6.1 Background and Motivation126
6.2 Proposed Approach to Handle Bursty Traffic128
6.3 Experimental Results with Bursty Traffic134

7 Performance Analysis of NoCs with Deflection Routing139
7.1 Background and Motivation139
7.2 Proposed Superposition-based Approach144
7.3 Experimental Results with Deflection Routing154

8 Performance Analysis of NoCs with Weighted Round Robin Ar-
bitration161
8.1 Background and Motivation161
8.2 Proposed Methodology and Approach167
8.3 Experimental Results180

9 Conclusion of the Thesis and Future Work188

Bibliography190

vi

list of tables

2.1 Comparison of prior research and our novel contribution. . . . 24

3.1 Summary of the notations used in this work. 39
3.2 Schedules for Nk = Nk+1 . 45
3.3 Schedules for Nk < Nk+1 . 48
3.4 Schedules for Nk > Nk+1 . 49

4.1 Properties for different GCN datasets 83
4.2 Summary of circuit level and NoC parameters 83
4.3 Comparison of Percentage Contribution of Communication

Energy (%). 90
4.4 Comparison with Nvidia Quadro RTX-8000 GPU. 93
4.5 Configuration of the edge devices considered 93
4.6 Comparison of energy (mJ) between COIN and state-of-the-art

GCN accelerator [64]. 97
4.7 Comparison of EDP (mJ-ms) between COIN and state-of-the-

art GCN accelerator [64]. 98

5.1 Accuracy for cache-coherency traffic flow 122
5.2 Configuration settings in the gem5 simulation 123

6.1 Summary of the notations used in this work. 129
6.2 Comparisons against existing alternatives (Reference [102] and

Reference [136]). H denotes errors over 100%. 136
6.3 Modeling Error (%) with Real Applications 138

7.1 Summary of the notations used in this work. 145

vii

7.2 Validation of the proposed analytical model for 6×6 mesh and
6×1 ring
with bursty traffic arrival, and comparisons against prior work [102,
136]. ‘E’ signifies error >100%. 155

8.1 Comparison of prior research and our novel contribution. . . . 165
8.2 List of the important parameters used in this work. 169
8.3 Summary of results for synthetic applications with 100% hit. 183
8.4 Summary of results for synthetic applications with 100% miss. 183
8.5 Analysis on execution time of the proposed model. 186

viii

list of figures

1.1 Percentage contribution of different components of the IMC
hardware to total latency. 40%-90% of the total latency is spent
on on-chip communication when bus-based H-Tree intercon-
nect is used. 2

1.2 Experiments of different applications show that 40%-70% of
the total simulation time is spent on the network. 3

1.3 The high priority queue (Qhigh) stores two different traffic
classes which are already in the NoC, while the low priority
queue (Qlow) stores the newly injected flits from the local node.
As flits from class–2 are routed to the local node, low-priority
flits compete with only class–1 flits in Qhigh. 4

2.1 Percentage of the total power consumed by NoC over the past
two decades. 8

3.1 Multi-tiled IMC architecture with bus-based H-Tree intercon-
nect [41]. 26

3.2 Percentage contribution of different components of the IMC
hardware to total latency. 40%-90% of the total latency is spent
on on-chip communication when bus-based H-Tree intercon-
nect is used. 27

3.3 IMC architecture with an arbitrary DNN mapped onto different
tiles with, (a) the mesh-NoC and (b) the proposed latency-
optimized NoC. 31

3.4 NoC optimization effectively reduces the power consumption
because of its non-linear dependence on the mesh size. We
obtain NoC power through BookSim [90] simulations. 34

ix

3.5 (a) Communication between layers in a DNN and (b) The
schedules for obtaining minimum communication latency be-
tween layers. Without loss of generality, it is assumed that the
computation time in the tile is 0 cycles. 36

3.6 The number of packets between two routers with (a) one router
per tile, and (b) the proposed technique. All the numbers are
normalized with a factor of 4 × 105 (the highest number of
packets per router between two layers with one router per
tile, which occurs between 4th and 5th layer of SqueezeNet).
The number of packets between routers decreases significantly
with the proposed approach for all DNNs except DenseNet
(100,24) and ResNet-50. However, the number of routers used
for DenseNet with our proposed technique (300) is less than
the number of routers required (1088) if one router is allocated
per tile. Our technique achieves around 72% reduction in the
NoC area. Similar improvement is seen for ResNet-50 as well. 37

3.7 (a) NoC architecture which achieves the minimum possible
latency when two consecutive layers each have three routers,
(b) Schedule to achieve the minimum possible latency. 43

3.8 NoC architecture which achieves the minimum possible latency
when two consecutive layers consist of N routers each. 44

3.9 NoC architecture to achieve minimum latency for Case 2. (a)
shows the case when there is one more router in (k+ 1)th layer
than kth layer. (b) shows the general case. The dotted box shows
the optimal architecture (already proved) and the circles filled
with dark color represent the newly added router. 46

x

3.10 NoC architecture to achieve minimum latency for Case 3. (a)
shows the case when there is one more router in (k+ 1)th layer
than kth layer, (b) shows the general case. The dotted box shows
the optimal architecture (already proved) and the circles filled
with dark color represent the newly added router. 47

3.11 Operation of the proposed NoC for a section of DenseNet
(100,24) [82]. (a) A representative section of DenseNet (100,24).
(b)–(d) show the communication between the layers of DenseNet
(100,24). 47

3.12 NoC architecture which achieves minimum possible latency
when (a) Nk < Nk+1 and (b) Nk > Nk+1. 48

3.13 Router architecture of the proposed NoC 53
3.14 Layer-wise improvement for NiN in (a) PE utilization for each

layer with SRAM-based heterogeneous tile architecture. The
tile structure for each layer (ck, pk) is shown on top of each bar
and (b) communication latency for each layer with proposed
NoC optimization. 56

3.15 Improvement in (a) communication energy of the proposed
energy-aware NoC optimization with respect to the baseline
(SRAM) and (b) energy-area product of the generated SRAM-
based architecture with respect to the baseline (SRAM). 57

3.16 Performance of the baseline SRAM-based IMC architecture for
different DNNs with different crossbar size. We observe that
a crossbar size of 128×128 or 256×256 performs better (with
mesh-NoC) than other crossbar sizes. 58

3.17 Improvement in communication latency for each layer of VGG-19. 59
3.18 Improvement in communication latency for each layer of ResNet-

50. 59

xi

3.19 Improvement in communication latency for different DNNs
(with crossbar size of 256×256) and weights and activation
precision with respect to mesh-NoC for cmesh [183] and the
proposed approach. 60

3.20 Improvement in communication latency with proposed NoC
with respect to mesh for crossbar size of 128×128. 61

3.21 Comparison of interconnect power consumption with different
techniques. 61

3.22 Interconnect EDAP comparison for different DNNs. 62
3.23 Overall improvement in (a) total inference latency and (b) total

EDAP of a SRAM-based IMC architecture with the proposed
latency-optimized interconnect with respect to the baseline. . 64

3.24 Results of leave-one-out experiments with reconfigurable NoC
for edge computing- and cloud computing-based DNNs. . . . 66

4.1 Communication energy with a baseline IMC-based GCN ac-
celerator. In the baseline architecture, the number of compute
elements is equal to the number of GCN nodes and compute
elements are interconnected by a 2D mesh NoC through a dedi-
cated router. The x-axis is sorted by increasing number of GCN
nodes. 70

4.2 (a) An example input graph, (b) Graph Convolutional Network
model. 74

4.3 Overview of the COIN architecture for GCN acceleration. Each
compute element (CE) consists of an array of processing ele-
ments (PEs) or RRAM-based IMC crossbar arrays connected
by an NoC-mesh. A subset of the PEs performs the aggregation
operation while the remaining performs the feature extraction.
Aggregation PEs store the adjacency matrix while the feature
extraction PEs store the layer weights. 75

xii

4.4 A canonical graph example for intra-CE and inter-CE commu-
nication. 76

4.5 Layer-wise execution dataflow of the proposed COIN architec-
ture. (a) shows feature extraction operation of layer-i in a CE,
(b) shows aggregation operation of layer-i in a CE, (c) shows
the communication between CEs. 81

4.6 Comparison of Energy Consumption (in log scale) of IMC
Elements between SRAM and RRAM-based designs. 84

4.7 Accuracy with different quantization bits for weights and acti-
vations for different datasets. 86

4.8 Different components of COIN and corresponding area. 87
4.9 Comparison of communication energy consumption with dif-

ferent NoC sizes for (a) Cora, (b) Citeseer, (c) Pubmed, (d)
Extended Cora and (e) Nell. 87

4.10 Comparison of total energy (in log scale) with respect to a
baseline architecture. In the baseline architecture, the number
of compute elements is equal to the number of GCN nodes
and compute elements are interconnected by a 2D mesh NoC
through a dedicated router. 89

4.11 Comparison of communication energy (in log scale) between
baseline and proposed COIN architecture. 91

4.12 Comparison of inter-CE communication energy between the
proposed architecture with c-mesh NoC and proposed COIN
architecture with mesh NoC. 91

4.13 Comparison of EDP (in log scale) for on-chip communication
between baseline and proposed COIN architecture. 92

4.14 Comparison of EDP for inter-CE communication across base-
line, proposed architecture with c-mesh NoC, and proposed
COIN architecture. COIN achieves least EDP across all datasets. 92

xiii

4.15 Comparison of energy (in log scale) between COIN and edge
devices. COIN consumes less energy than both Nvidia Jetson
edge devices. 93

4.16 Comparison of latency (in log scale) between COIN and edge
devices. COIN incurs less latency than both Nvidia Jetson edge
devices. 94

4.17 Comparison of EDP (in log scale) between COIN and edge
devices. We present the performance of COIN with both SRAM
and RRAM-based IMC elements. COIN with both kinds of
devices outperforms both Xavier NX and AGX Xavier Nvidia
Jetson devices across all datasets. 95

4.18 Comparison of energy consumption (in log scale) between 2D
version of ReGraphX [10] and COIN. The breakdown between
communication and computation energy is shown for both the
architectures. 97

5.1 Overview of the proposed methodology. 102
5.2 (a) A system with two queues. Flits in Qhigh have higher

priority than flits in Qlow. (b) A system with N queues, where
Qi has higher priority than Qj for i < j 103

5.3 Split at high priority: Structural Transformation. 106
5.4 Comparison of simulation with the basic priority-based queu-

ing model and proposed analytical model. 107
5.5 Decomposition technique: In phase 1, different traffic flows

merge into a single flow with an inter-arrival time CA; in phase
2, flits flow into the queue and leave the queue with an inter-
departure time CD; in phase 3, flits split into different flows
with individual inter-departure time. 108

xiv

5.6 Split at low priority: Service Rate Transformation. µ∗ denotes
transformed service rate. The waiting time of class-1 flits de-
pends on the residual time of the class-3 flits, as shown in
Equation 5.5. 109

5.7 Comparison of simulation with the basic priority-based queu-
ing model and proposed analytical model. 110

5.8 Applying the proposed methodology on a representative seg-
ment of a priority-based network. ST and RT denote Struc-
tural and Service Rate Transformation, respectively. Red-dotted
squares show the transformed part from the previous step. Fig-
ure (a) shows the original queuing system. After applying ST
on Q1, we obtain the system shown in Figure (b). The system
in Figure (c) is obtained by applying RT on Q2. ST is applied
again on Q2 to obtain the system shown in Figure (d). Finally,
RT is applied on Q3 to obtain the fully decomposed queuing
system shown in Figure (e). 114

5.9 The fraction of simulation time spent by different functions
while running Streamcluster in gem5. NoC-related functions
take 60% of simulation time. 117

5.10 Evaluation of the proposed model on a ring with eight nodes. 118
5.11 Evaluation of the proposed model

on a 6×6 mesh. 119
5.12 Evaluation of the proposed model

on an 8×8 mesh. 120
5.13 Effect of coefficient of variation of inter-arrival time on average

latency for a 6×6 mesh. 120
5.14 Evaluation of the proposed model on one variant of the Xeon

server architecture. 121
5.15 Per-class latency comparison for the server example. 122
5.16 Model comparison for different applications from PARSEC suite.124

xv

5.17 Evaluation of the proposed model under a finer level of time
granularity (100K cycles) for Streamcluster application. 125

6.1 GGeo traffic model . 128
6.2 Decomposition of a basic priority queuing 131
6.3 Decomposition of flow contention at low priority 133
6.4 Decomposition of flow contention at high priority 134
6.5 Comparison of a proposed analytical model with cycle-accurate

simulation for 8×8 and 6×6 mesh for (a) pb = 0.2 and (b)
pb = 0.6. SOTA1 and SOTA2 refer to the analytical modeling
techniques proposed in [102] and [136] respectively. 137

7.1 Cycle-accurate simulations on a 6×6 NoC show that the average
latency increases significantly with larger deflection probability
(pd) at the sink. 140

7.2 A representative 4×4 mesh with deflection routing. 142
7.3 (a) Queuing system of a single class with deflection routing

(b) Approximate queuing system to compute CA
di

. 144
7.4 (a) Queuing system with N classes with deflection routing, (b)

Decomposition into N subsystems to calculate GGeo parame-
ters of deflected traffic per class, (c) Applying superposition
to obtain the GGeo parameters of overall deflected traffic. M
denotes the merging process. 149

7.5 Comparison of average latency between simulation and analyt-
ical model for the canonical example shown in Figure 7.4 with
pd = 0.3 and N = 5. 151

7.6 Estimation accuracy of average number of packets deflected for
each row and column in a 6×6 mesh with pd=0.3. 155

xvi

7.7 Comparison of average latency between simulation, the an-
alytical model proposed in this work, and analytical models
proposed in [102, 136] for a 6×6 mesh with deflection proba-
bility (a) 0.1 and (b) 0.3. 156

7.8 Average latency comparison between simulation, the analytical
model proposed in this work, and analytical models proposed
in [102, 136] for a 6×6 mesh with (a) pd = 0.1 and (b) pd = 0.3. 157

7.9 Execution time of the proposed analytical model (in seconds)
for different mesh sizes. 160

8.1 Illustration of weighted round-robin arbitration. ‘A’ is served
first, ‘I’ last. In this example it is assumed that no new packets
arrived until all prior packets (A-I) have been served. 166

8.2 The original WRR arbiter with its traffic parameters (on the
left) and a transformed WRR (on the right) that comprises
fully decomposed queue nodes using our effective service time
transformations. 168

8.3 Illustration of extending the proposed analysis to multiple
stages. Only two consecutive stages are shown for clarity. The
departure statistics at a given stage become the arrival statistics
of the subsequent stage. The blue line denotes that the class
which wins the arbitration goes to the next stage. 176

8.4 Verification of the analytical model for basic round-robin with
(a) 8×1 and (b) 8×8 NoC. 181

8.5 Verification of the analytical model for weighted round-robin
with 8× 8 NoC. [x y] denotes that the WRR weights associated
with channels connected to the internal routers is x and traffic
channels of external input to the NoC is y. 183

8.6 Verification of analytical model for bursty traffic with (a)pburst =

0.1 and pburst = 0.3. 184
8.7 Verification against real applications. 186

xvii

abstract

Hardware accelerators for deep neural networks (DNNs) exhibit high
volume of on-chip communication due to deep and dense connections.
State-of-the-art interconnect methodologies for in-memory computing
deploy a bus-based network or mesh-based Network-on-Chip (NoC). Our
experiments show that up to 90% of the total inference latency of a DNN
hardware is spent on on-chip communication when the bus-based network
is used. To reduce the communication latency, we propose a methodol-
ogy to generate an NoC architecture along with a scheduling technique
customized for different DNNs. We prove mathematically that the gener-
ated NoC architecture and corresponding schedules achieve the minimum
possible communication latency for a given DNN. Experimental evalua-
tions on a wide range of DNNs show that the proposed NoC architecture
enables 20%-80% reduction in communication latency with respect to
state-of-the-art interconnect solutions.

Graph convolutional networks (GCNs) have shown remarkable learn-
ing capabilities when processing data in the form of graph which is found
inherently in many application areas. To take advantage of the relations
captured by the underlying graphs, GCNs distribute the outputs of neural
networks embedded in each vertex over multiple iterations. Consequently,
they incur a significant amount of computation and irregular commu-
nication overheads, which call for GCN-specific hardware accelerators.
We propose a communication-aware in-memory computing architecture
(COIN) for GCN hardware acceleration. Besides accelerating the compu-
tation using custom compute elements (CE) and in-memory computing,
COIN aims at minimizing the intra- and inter-CE communication in GCN
operations to optimize the performance and energy efficiency. Experimen-
tal evaluations with various datasets show up to 174× improvement in
energy-delay product with respect to Nvidia Quadro RTX 8000 and edge

xviii

GPUs for the same data precision.
Networks-on-chip (NoCs) have become the standard for interconnect

solutions in DNN accelerators as well as industrial designs ranging from
client CPUs to many-core chip-multiprocessors. Since NoCs play a vital
role in system performance and power consumption, pre-silicon evaluation
environments include cycle-accurate NoC simulators. Long simulations
increase the execution time of evaluation frameworks, which are already
notoriously slow, and prohibit design-space exploration. Existing ana-
lytical NoC models, which assume fair arbitration, cannot replace these
simulations since industrial NoCs typically employ priority schedulers
and multiple priority classes. To address this limitation, we propose a
systematic approach to construct priority-aware analytical performance
models using micro-architecture specifications and input traffic. Our ap-
proach decomposes the given NoC into individual queues with modified
service time to enable accurate and scalable latency computations. Specifi-
cally, we introduce novel transformations along with an algorithm that
iteratively applies these transformations to decompose the queuing system.
Experimental evaluations using real architectures and applications show
high accuracy of 97% and up to 2.5× speedup in full-system simulation.

1

1 introduction

In recent years, deep neural networks (DNNs) and graph convolutional
networks (GCNs) have shown tremendous success in recognition and de-
tection tasks such as image processing, health monitoring, and language
processing [116, 145]. Higher accuracy in DNNs is achieved by using
larger and more complex models. However, such models require a large
number of weights, and consequently, traditional DNN hardware acceler-
ators require a large number of memory accesses to fetch the weights from
off-chip memory, leading to a large number of off-chip memory accesses
lead to higher latency and energy consumption.

In-Memory Computing (IMC) techniques reduce memory access re-
lated latency and energy consumption through the integration of computa-
tion with memory accesses. A prime example is the crossbar-based IMC ar-
chitecture which provides a significant throughput boost for DNN accelera-
tion. At the same time, crossbar-based in-memory computing dramatically
increases the volume of on-chip communication, when all weights and acti-
vations are stored on-chip. Emerging DNNs with higher accuracy, such as
those derived through Neural Architecture Search (NAS) [212, 224, 225],
further exacerbate the problem of on-chip communication due to larger
model size and more complex connections. Therefore, designing an ef-
ficient on-chip communication architecture is crucial for the in-memory
acceleration of DNNs.

State-of-the-art IMC architectures usually deploy a bus-based H-Tree
interconnect [147, 188]. Figure 3.2 shows that up to 90% of the total in-
ference latency of a DNN hardware is spent on on-chip communication
when the H-Tree interconnect is used. In order to reduce on-chip commu-
nication latency, NoC-based interconnects are employed for conventional
SoCs [88] and DNN accelerators [44, 183]. Eyeriss-V2 [44] proposes to
use three different NoCs for weights, activations, and partial sums. Such

2

Figure 1.1: Percentage contribution of different components of the IMC
hardware to total latency. 40%-90% of the total latency is spent on on-chip
communication when bus-based H-Tree interconnect is used.

an architectural choice allows for higher performance at the cost of both
area and energy consumption. ISAAC [183] employs a concentrated-mesh
(cmesh) NoC at the tile-level of the IMC accelerator.

In this work, we minimize the communication energy across a large
number of tiles using an NoC architecture with optimized tile-to-router
mapping and scheduling. We also propose an optimization technique to
determine the optimal number of NoC routers required for each layer of the
DNN. Next, we propose a methodology to generate a latency-optimized
NoC architecture along with a scheduling technique customized for dif-
ferent DNNs. We prove, through induction, that the proposed NoC ar-
chitecture achieves minimum possible communication latency using the
minimum number of links between the routers. These two techniques
together generate a custom NoC for IMC acceleration of a given DNN.
We show that the proposed custom IMC architecture achieves 20%-80%
improvement in overall communication latency and 5%-25% reduction in
end-to-end inference latency with respect to state-of-the-art NoC based
IMC architectures [183].

3

BasicMath
Dijkstra FFT

Qsort

Blkschls

Canneal

Swaptions

Bodytrack

Fldanimate

Strm
clstr

0

20

40

60

80

PARSEC

Pe
rc

en
ta

ge
 o

f T
ot

al
 T

im
e

Sp
en

t o
n

N
et

w
or

k(
%

)

MiBench

Figure 1.2: Experiments of different applications show that 40%-70% of
the total simulation time is spent on the network.

Furthermore, we also proposed IMC-based communication-aware
hardware accelerator for graph convolutional networks (GCNs). We per-
form rigorous experimental evaluation across popular graph datasets for
GCN and comparison with respect to state-of-the-art GPUs and accelera-
tor. The evaluation shows that our proposed GCN accelerator achieves up
to 105× lower energy consumption with respect to state-of-the-art GCN
accelerator.

Since the on-chip interconnect is a critical component of AI accelera-
tors as well as multicore architectures, pre-silicon evaluation platforms
contain cycle-accurate NoC simulators [6, 90]. NoC simulations take up a
significant portion of the total simulation time, which is already limiting
the scope of pre-silicon evaluation (e.g., simulating even a few seconds of
applications can take days). For example, Figure 1.2 shows that 40%-70%
of total simulation time is spent on the network itself when performing
full-system simulation using gem5 [24]. Hence, accelerating NoC sim-
ulations without sacrificing accuracy can significantly improve both the
quality and scope of pre-silicon evaluations.

Several performance analysis approaches have been proposed to enable
faster NoC design space exploration [158, 210, 174]. Prior techniques

4

have assumed a round-robin arbitration policy in the routers since the
majority of router architectures proposed to date have used round-robin
for fairness. In doing so, they miss two critical aspects of the industrial
priority-based NoCs [88, 178, 97]. First, routers give priority to the flits
in the network to achieve predictable latency within the interconnect.
flits to the local node in Figure 1.3 are already in the NoC, while flits
from class-3 to the neighboring router must wait in the input buffer to be
admitted. Consequently, flits in the NoC (class-1 and class-2) experience
deterministic service time at the expense of increased waiting time for
new flits. Second, flits from different priority classes can be stored in the
same queue. For instance, new read/write requests from the core to tag
directories use the same physical and virtual channels as the requests
forwarded from the directories to the memory controllers. Moreover, only
a fraction of the flits in either the high or low priority queue can compete
with the flits in the other queue. For example, suppose the class-2 flits in

Figure 1.3: The high priority queue (Qhigh) stores two different traffic
classes which are already in the NoC, while the low priority queue (Qlow)
stores the newly injected flits from the local node. As flits from class–2 are
routed to the local node, low-priority flits compete with only class–1 flits
in Qhigh.

5

Figure 1.3 are delivered to the local node. Then, class-3 flits must compete
with only class-1 flits in the high-priority queue. Analytical models that
ignore this traffic split significantly overestimate the latency, as shown
in Section 5.2. In contrast, analytical models that ignore priority would
significantly underestimate the latency. Thus, prior approaches that do
not model priority [158, 210, 174] and simple performance models for the
priority queues [102, 91] are inapplicable to priority-based industrial NoCs.

We propose NoC performance analysis technique that considers traffic
classes with different priorities. This problem is theoretically challenging
due to the non-trivial interactions between classes and shared resources.
For example, queues can be shared by flits with different priorities, as
shown in Figure 1.3. Similarly, routers may merge different classes coming
through separate ports, or act as switches that can disjoin flits coming from
different physical channels. To address these challenges, we propose a
two-step approach that consists of an analysis technique followed by an
iterative algorithm. The first step establishes that priority-based NoCs
can be decomposed into separate queues using traffic splits of two types.
Since existing performance analysis techniques cannot model these struc-
tures with traffic splits, we develop analytical models for these canonical
queuing structures. The second step involves a novel iterative algorithm
that composes an end-to-end latency model for the queuing network of a
given NoC topology and input traffic pattern. The proposed approach is
evaluated thoroughly using both 2D mesh and ring architectures used in
industrial NoCs. It achieves 97% accuracy with respect to cycle-accurate
simulations for realistic architectures and applications.

In summary, this dissertation makes the following contributions:

• A comprehensive literature survey on energy-efficient communi-
cation architectures for general purpose processor as well as AI
accelerator [137],

• Communication-aware hardware accelerator for DNN [111, 141],

6

• Fast and accurate performance analysis for NoCs with priority arbi-
tration [136, 135, 139],

• Fast and accurate performance analysis technique for NoCs with
weighted round robin arbitration [144].

The rest of the thesis is organized as follows. The thesis consists
of communication-aware hardware accelerator for DNNs (Chapter 3)
and GCNs (Chapter 4). It also spans performance analysis techniques
for priority-aware NoCs (Chapter 5 – Chapter 7) as well as NoCs with
weighted round robin arbitration under bursty traffic and deflection rout-
ing (Chapter 8). Finally, Chapter 9 concludes the thesis.

7

2 literature review

2.1 Energy-efficient Communication
Architectures for General Purpose
Processors

Diminishing instruction-level parallelism (ILP) and power wall led to the
introduction of multicore NoC architectures more than a decade ago and
fueled their growth to date [48, 87]. In turn, the growing number of cores
has continuously increased the importance of efficient data movement
between cores and memory. One can view the communication cost as a
“necessary overhead” incurred to move data both within a chip or across
multiple chips. Thus, we can evaluate the efficiency of communication
architectures as a function of their performance, measured in terms of
latency and throughput, versus their cost, measured by their contribution
to power and energy consumption. Besides facilitating the design process
through reuse and regularity, networks-on-chip architectures have proven
their effectiveness with respect to this efficiency metric and become the
mainstream communication fabric choice for multicore architectures [187,
168].

The transition from single core to multicore architectures played a piv-
otal role in satisfying the continuous demand for higher processing power.
However, homogeneous multicore architectures have also reached their
limits to exploit thread- and data-level parallelism. General-purpose cores
facilitate programmability, but their flexibility comes at the expense of en-
ergy efficiency, which is orders of magnitude lower than special-purpose
processors, such as video processors and hardware accelerators. There-
fore, the heterogeneity of cores increases together with their number to
drive the processing power and energy efficiency necessitating several

8

S a l i h u n d a m
e t . a l

F a l l i n
e t . a l

A d h i -
n a r a y a n a n

e t . a l

S o d a n i e t . a l
2 0 0 2 2 0 0 3 2 0 0 7 2 0 0 9 2 0 1 1 2 0 1 2 2 0 1 60

1 0

2 0

3 0

4 0

5 0
Pe

rce
nta

ge
 of

 So
C p

ow
er

co
ns

um
ed

 by
 No

C (
%) T a y l o r e t . a l

M u k h e r j e e
e t . a l

K i m
e t . a l

H o s k o t e e t . a l

G h o s h
e t . a l

H u a n g
e t . a l

L i
e t . a l

Figure 2.1: Percentage of the total power consumed by NoC over the past
two decades.

power management techniques [55, 21, 73, 138, 109, 137, 143, 22]. In turn,
the growing heterogeneity continues to increase the requirements on the
communication architectures. On the one hand, communication latency
should be in the same order as, or ideally lower than, the processing times
of special-purpose processors, which could be in the order of nanoseconds.
On the other hand, the power consumption overhead should scale down
to match those of the special-purpose processors. Otherwise, the commu-
nication cost can undermine the benefits of heterogeneous architectures.
Hence, the NoCs continue to play a pivotal role in developing processing
systems with higher performance and energy efficiency.

NoC architectures are designed to meet the performance requirements,
such as latency, throughput, and quality-of-service (QoS), while mini-
mizing their area, power, and energy overhead. NoCs achieve a higher
energy-efficiency than bus and point-to-point communication architec-

9

tures [121]. The exact contribution of the NoC architecture to the total
power consumption is a function of many design parameters, such as
the number and types of processing cores, communication bandwidth,
and technology. While there is no public data for commercial designs,
published academic work shows that NoC power consumption amounts
to 18%–36% of the total chip power, as shown in Figure 2.1. Ghosh et.
al [67], Huang et. al [83] and Li et. al [125] report absolute values, while
Taylor et. al [194], Kim et. al [103], Mukherjee et. al [153], Hoskote et.
al [79], Salihundam et. al [181], Fallin et. al [60], Sodani et. al [187]
and Adhinaryanan et. al [5] report the percentage power consumption,
which can be useful references for future work. While many other surveys
discuss the energy-efficient design of and entire SoC [197, 166], in this
chapter we discuss numerous prior work on NoC design.

NoC Router Design

Router design has a crucial impact on power consumption and perfor-
mance since they are the fundamental building blocks of NoCs. On the
one hand, fast and simple router architectures are preferred to achieve low
latency (in terms of clock cycles) and small area overhead. On the other
hand, deeper pipelines and more buffering space are needed for higher
clock frequencies and throughput [49, 57]. Similarly, simpler crossbar and
arbitration, such as round-robin, reduce the area-power overhead, but they
can also severely limit the performance. As a result, the optimal router
design must provide an intricate balance between power, performance,
energy, and area.

Many techniques have been proposed to improve the router energy-
efficiency since the introduction of NoCs [4, 148]. For example, Wang et
al. explore the bottlenecks that contribute to power dissipation in inter-
connection networks [203]. The analysis prompts the authors to devise
power-efficient microarchitecture techniques such as a cut-through cross-

10

bar, a segmented crossbar, and a write-through buffer. These techniques
achieve an NoC power reduction of up to 44.9% and 37.9% with no per-
formance overheads for both synthetic and real application traces, respec-
tively. One of the early key design insights is exploiting application- or
domain-specific information to customize the router architecture [81]. Hu
et al. use this idea to allocate a given amount of buffer area non-uniformly
across the NoC to maximize the performance [81]. Similarly, router ar-
chitecture with shared buffers can improve both the area utilization and
throughput in [177]. Decreasing the router pipeline delay has been an
important design consideration. The basic idea is to bypass certain router
pipeline stages or the whole router whenever possible, i.e., when there is no
contention and packets already waiting in the queue [162, 108]. Towards
achieving a single-cycle router latency, Kumar et al. [117] present a non-
speculative single-cycle NoC router pipeline targeting 3.6 GHz frequency.
A customized mesh NoC that exploits application-specific behavior to in-
troduce single-cycle links between a source and destination is introduced
in [39]. These clockless repeater links traverse upto 8mm in a single cycle
at a clock frequency of 2 GHz in a 45nm process node. The application-
specific link configuration introduces complexities in reconfiguring the
routers when applications are frequently preempted during execution by
the system scheduler. A 2-dimensional mesh NoC coprocessor is designed
for data movement in an Epiphany 64-core superscalar processor archi-
tecture [200]. Each router uses three communication channels for read
requests, on-chip writes, and off-chip write transactions to improve the
NoC throughput. Recently, Arm has introduced a scalable low-latency,
one cycle per-hop, high-bandwidth network-on-chip architecture that sup-
ports coherency [168]. The NoC can scale from 1×2 mesh to 8×8 mesh to
support edge devices and high-performance computing systems.

11

NoC Architecture and Packet Routing

The interconnection of the routers defines the NoC architecture. Most
of the early work and industrial solutions employ a 2D mesh topology
due to its regularity [151, 168, 187]. A regular layout simplifies the floor-
plan and wiring, while providing predictable delays between the routers.
Consequently, regular NoC topologies facilitate energy-efficient design
as well as simplified testing and validation [87, 148]. However, both the
average and worst-case latency scale poorly with the network size. Since
the NoC plays a crucial role in determining the latency, energy and power,
numerous studies evaluate other topologies with smaller diameter, such
as hypercube, folded-torus, and fat tree [4, 57]. For example, an extensive
power-performance evaluation of mesh and torus topologies on power
and performance is presented in [151]. NoC topology can be optimized
for a given application domain by either synthesizing a custom topol-
ogy [161, 170] or altering a regular topology, such as a 2D mesh [162].
Kilo-NoC, a heterogeneous NoC architecture in which only a select number
of routers support QoS requirements is presented in [72]. The heterogene-
ity in router architecture enables 45% and 29% savings in area and power
when compared to a homogeneous NoC that supports QoS in all routers.

Switching, or flow control, techniques determine how the packets are
transmitted from their sources to destinations [49, 57, 87]. Due to the
large buffer requirements of the packet and virtual cut-through switching
techniques, wormhole routing has been a popular choice for NoCs [148].
Virtual-channels have commonly been added to address head-of-line block-
ing and handling multiple traffic classes while avoiding deadlocks. Circuit
switching have also been employed to take advantage of high-volume data
transfer over persistent connections [130]. While the early work focused
on buffered NoCs, bufferless solutions are later employed to minimize the
buffer requirements, hence the NoC area and static power [52, 150]. Buffer-
less NoCs do not store the packets in the intermediate routers. Routers try

12

to forward the packets towards their destinations and then deflect them if
their preferred direction is not available [87]. Studies show that bufferless
NoC can perform better at low traffic loads, but they suffer from traffic
congestion as the traffic load increases [150]. The advantages of buffered
and bufferless techniques are combined in [60] to achieve as much as 16%
higher energy-efficiency than the state-of-the-art buffered routers. Intel
Xeon-Phi processors [187] use priority-aware bufferless NoCs, which can
provide predictable latency within the network [135]. The NoC uses fewer
buffers, which in turn helps to reduce energy consumption.

Routing strategies play a crucial role in determining the area, perfor-
mance, power and energy of an NoC [49, 57]. For a given NoC topology
and switching technique, routing algorithms determine the path taken by
each packet while traveling to their destination. The choice of the routing
algorithm is important since the length of the path and traffic congestion
have a significant impact on both power and performance, while their
complexity impacts the area [148]. Specifically, routing techniques influ-
ence: (1) end-to-end latency, (2) selection of routing paths, (3) livelock
and deadlock avoidance, (4) fault-tolerance and (5) starvation avoidance.
Routing techniques are broadly classified into deterministic and adaptive
routing techniques. Deterministic algorithms require fewer resources and
are simpler than their adaptive counterpart. Therefore, dimension-ordered
routing, such as XY routing, and other deterministic algorithms are used
more commonly in industrial and academic designs [17, 187]. At the same
time, run-time adaptation to the workload can provide significant bene-
fits [80]. Since the traditional routing techniques are covered in detail in
the literature, we refer the reader to existing surveys and books on this
topic for a complete taxonomy and review [4, 49, 57, 163, 89].

13

3D NoC Architectures

As the number of transistors on a single chip increases, three-dimensional
integrated circuits (3D ICs) provide more floorplanning flexibility than
traditional planar designs [62]. 3D ICs also provide more packaging
density since they are not limited to two dimensions [51]. Moreover, 3D
ICs can reduce power consumption since they use shorter wire lengths
than planar ICs [176]. Since they have emerged as a new technology
paradigm due to these advantages, 3D NoCs are employed to interconnect
the cores in 3D IC.

Feero et al. [62] present a detailed performance evaluation of 3D NoCs
and compare them to traditional 2D NoCs. This work considers 3D mesh,
3D stacked mesh, ciliated 3D mesh, 3D butterfly tree (BFT), and 3D fat-tree
topologies. The experimental evaluations show that 3D mesh, ciliated 3D
mesh, and stacked mesh consume 42%, 47%, 33% less energy per packet
than 2D mesh, respectively, Authors also show that both 3D fat-tree and
3D BFT consume 49% less energy per packet than their 2D counterpart.
Similar to the dimension ordered routing techniques in 2D NoCs, an X–
Y–Z static routing can be applied to 3D NoC. For example, Ahmed et
al. [7] present a 3D NoC (OASIS-NoC) with wormhole switching and
3-stage router pipeline: routing calculation, switch allocation, and switch
traversal. Evaluations using synthetic traffic show that a 2×2×4 3D OASIS-
NoC reduces 22% delay on average compared to a 4×4 2D OASIS-NOC.
Since a fixed design may not be suitable for different applications, authors
in [154] propose a synthesis approach to construct a power-efficient 3D
NoC for a given application. Experiments on real applications show that
the NoC topologies synthesized by the proposed methodology reduce
power by 38% on average. Similarly, a floorplan-aware application-specific
3D NoC synthesis algorithm is proposed in [223]. The authors construct
an irregular 3D NoC architecture that meets specific objectives for a given
application in this work. The proposed algorithm’s input is a directed

14

graph, where each node represents a core, and the edges represent the
traffic flow between the cores. A multi-commodity flow (MCF) problem
is formulated to optimize multiple objectives. The objectives include net-
work power, average network latency and number of through silicon vias
(TSV). Authors incorporate simulated allocation (SAL) to solve the MCF
problem. The proposed methodology enables 22% power saving with
respect to [154] for a set of synthetic benchmarks [214]. A summary of
different 3D NoC technologies, their advantages, and drawbacks can be
found in [176].

Several research teams have recently applied machine-learning tech-
niques to design 3D NoCs [50, 95, 156]. For example, Das et al. [50] present
a monolithic 3D-enabled energy-efficient NoC. Smaller dimensions of
monolithic inter-tier vias provide the scope of high-density integration
with reduced wire length compared to TSVs. Experimental evaluations
show that the proposed methodology enables 32% lower energy-delay-
product (EDP) than mesh-based interconnect and 28% lower EDP than
TSV-based interconnect. TSV-based 3D NoCs are prone to failure. There-
fore, a Near Field Inductive Coupling (NFIC)-based 3D NoC is proposed
in [69]. In this work, convex optimization is used to co-optimize latency,
power and area of the 3D NoC. Experimental evaluation on real bench-
marks shows that the proposed NFIC-based 3D NoC is 34.5% more energy-
efficient than TSV-based 3D NoC.

Joardar et al. [95] propose a 3D-NoC for heterogeneous many-core
systems. The authors employ a machine learning-based multi-objective
optimization (MOO) to construct 3D-NoC, which jointly optimizes latency,
throughput, temperature, and energy. The proposed algorithm determines
the optimal placement of the CPUs, GPUs, LLCs, and planar links. The
authors show that the proposed technique enables 9.6% better EDP than a
thermally-optimized 3D NoC design.

15

2.2 Communication-centric AI Accelerator
Design

In-memory computing technique has a great potential to deliver energy-
efficient AI accelerators. Most of the AI applications consist of layer-by-
layer operation, i.e., the output to the kth layer is the input of the (k+1)th

layer. In IMC-based accelerators, the data movement (i.e., communication)
between the DNN layers are enabled by on-chip interconnects. Since
the number of parameters of the neural networks has grown over past
ten years as shown in [140], the on-chip communication volume also
increases. Increasing communication volume, in turn, increases energy
consumption due to communication which can mask the energy benefit
of IMC technology itself. Therefore, an energy-efficient communication
strategy is required for AI accelerator to compliment the energy benefits
of IMC technology. Indeed, a single technique may not be suitable for all
kinds of AI algorithms as discussed in [112].

There exist several NoC architectures for DNN accelerators. A recent
study aims to maximize local data reuse and reduce data access from
DRAM [43]. To this end, a row-stationary data flow is proposed, where
filter weights and input feature maps (ifmap) are reused to minimize
movement of ifmaps and filter weights. The architecture has later been
extended to incorporate compact and sparse neural networkss in [44]. In
the extended version [44], a hierarchical mesh NoC is incorporated in
the architecture. It consists of 16 PE clusters and 16 global buffer clusters
distributed in an 8×2 array. Each PE cluster consists of 12 PEs arranged in
a 3×4 array. However, both architectures consider a system with off-chip
memory where frequent data transfer from off-chip to on-chip is required.
Therefore, the NoC optimizations incorporated in these architectures are
not applicable for IMC-based accelerators. ISAAC is the one of the first
IMC-based DNN accelerators proposed in the literature [183]. It uses

16

an NoC with concentrated mesh (c-mesh) topology. However, only one
NoC router is connected to each IMC tile and no special interconnect
optimization is considered in this architecture. Since larger DNNs (e.g.,
DenseNet with 100 layers) may contain 100s of IMC tiles, this architecture
may require 100s of NoC routers, which may not be practical at all.

The growing number of NoC routers increase area as well as on-chip
interconnect power consumption. To that end, we propose an optimization
technique to determine number of NoC routers for a given DNN [111].
We first construct an objective function for communication energy, which
considers the number of activations between two consecutive layers for
each layer as input. Then the objective function is minimized to obtain
the number of routers needed for all layers of the DNN. A scheduling
technique is also proposed in this work to minimize the congestion in
the on-chip network. The optimized number of routers along with the
scheduling technique provides up to 78% improvement in energy-delay
product with respect to another DNN accelerator [183]. Although this
work minimizes congestion in the on-chip network with a scheduling tech-
nique, it does not guarantee minimum latency for a given DNN. We also
propose an NoC architecture which guarantees minimum possible com-
munication latency for a given DNN [141]. However, the proposed NoC
architecture is customized for a single DNN. Therefore, a reconfigurable
NoC is also proposed in [111], where a certain number of routers (deter-
mined with handful DNNs known at the design time) are allocated for
each DNN layer. At runtime, if a new (not considered in the design time)
DNN appears, then first the number of routers required for each DNN
layer is computed first. If the number of routers required for a particular
layer is more than the number of available routers on-chip, then the DNN
layer will occupy the maximum number of routers available for that layer.
The reconfigruable NoC shows 60%–80% improvement in communication
latency over state-of-the-art 2D-mesh NoC.

17

The area of monolithic hardware accelerators increases with increasing
number of parameters of AI algorithms. Higher silicon area of a single
monolithic system reduces the yield, which in turn increases fabrication
cost [114]. Chiplet-based system solves the issue of higher fabrication cost
by integrating multiple small chips (known as chiplets) on a single die.
Since the area of each chiplet in the system is considerably lower than a
monolithic chip (for the same AI algorithm), the yield of the chiplet-based
system increases which reduces the fabrication cost. The communica-
tion between chiplets are performed through network-on-package (NoP).
There are several works in the literature which propose NoP for chiplet-
based system considering different performance objectives (e.g., latency,
energy) [20, 201, 184, 114].

Kite is a family of NoP proposed in [20] which is mainly targeted for
general purpose processors. In this work, three topologies are proposed –
Kite-Small, Kite-Medium and Kite-Large. First, an objective function is
constructed with combination of the average delay between source and
destination, diameter and bisection bandwidth of the NoP. Experimental
evaluations on synthetic traffic show that the proposed Kite topologies
reduce latency by 7% and improve the peak throughput by 17% with
respect to other well-known interconnect topologies. A chiplet-based
system with 96-core processor, INTACT, is proposed in [201]. The chiplets
are connected through a generic chiplet-interposer interfaces (called as
3D-plugs in the paper). 3D-plugs consist of micro-bump arrays. However,
both Kite and INTACT are not specific to AI workloads.

Shao et al. designed and fabricated a 36-chiplet system called SIMBA for
deep learning inference [184]. The chiplets in the system are connected
through a mesh NoP. Ground-referenced signalling (GRS) is used for
intra-package communication. The NoP follows a hybrid wormhole/cut-
through flow control. The NoP bandwidth is 100 GBps/chiplet and the
latency for one hop is 20 ns. Extensive evaluation on the fabricated chip

18

shows up tp 16% speed up compared to baseline layer mapping for ResNet-
50. A simulator for chiplet-based system, SIAM, is proposed in [114],
targeting AI workloads. In this simulator, a mesh topology is considered
for NoP. It is shown that up to 85% of the total system area is contributed
by NoP. In this work, multiple studies were performed by varying NoP
parameters. For example, it is shown that increasing NoP channel width
increases energy-delay product of the NoP for ResNet-110. This phe-
nomenon is demonstrated for systems with 25 and 36 chiplets. However,
none of the prior works considered any workload-aware optimization for
the NoP. Therefore, there is ample opportunity of future research which
considers NoP optimization for AI accelerators.

With increasing complexity of AI algorithms, the computing resource
needed to execute the algorithms also increases. Therefore, complex AI
algorithms require a large number of processing elements on-chip. For ex-
ample, DenseNet-110 with 28.1M parameters requires 2,184 ReRAM tiles
on a single system [114]. Increasing the number of on-chip tiles results
in long-range inter-tile communication. Too many long-range communi-
cations hurt energy-efficiency of the system. Therefore, monolithic 3D
(M3D)-based AI accelerators have emerged to facilitate energy-efficient
communication between multiple processing elements. In M3D-based
accelerators, multiple processing elements are placed in each plane. The
processors across different planes are connected using through silicon vias
(TSV).

REGENT is such an approach which integrates ReRAM-based IMC
tiles as well as GPU cores on a M3D IC [96]. The processors in the IC are
connected through a 3D-NoC. REGENT is optimized to perform energy-
efficient CNN training. Specifically, a bin-package based framework is
adopted to map CNN layers on processing cores as well as physically place
the cores in such a way that the overall system meets certain performance
objectives. However, REGENT does not consider hardware implementa-

19

tion of normalization layers. To address this drawback, authors in [94]
propose a 3D-NoC enabled IMC-based system considering normalization
layers. Apart from considering hardware implementation of normaliza-
tion layers, a performance-thermal aware mapping of CNN layers is also
proposed in this work. The mapping helps to reduce thermal noise which
can degrades the quality of CNN training. As a result, the proposed
architecture is able to perform CNN training which achieves accuracy
similar to GPU. The accelerator proposed in the aforementioned work is
further extended in [93] by considering fewer normalization layers for
CNNs. In this work, the authors show that considering few normalization
layers actually improves CNN classification accuracy, since normalization
helps to reduce bias occurring from a weight with high absolute value.
Then Bayesian optimization is utilized to construct a M3D system. The
communication between multiple processing elements is facilitated by
a mesh-NoC with XYZ routing. The accelerator proposed in this work
reduces the latency by 15× compared to conventional GPU-based system.
However, all these work only consider CNN training on IMC-based M3D
system.

Recently, several other work proposed IMC-based M3D systems which
are capable of training graph analytics [37] and graph neural networks
(GNN) [142, 10, 12, 11]. ReGraphX is a 3D-NoC enabled heterogeneous
IMC-based system which performs energy-efficient GNN training [10].
In this system, there are two types of processing elements: V-PEs, which
perform vertex computations and E-PEs, which perform edge compu-
tation pertaining to a GNN. V-PEs consist of 128×128 crossbar arrays
whereas E-PEs consist of 8×8 crossbar arrays. Experimental evaluations
show that ReGraphX reduces energy consumption by 11× with respect
to conventional GPUs. Authors in [12] show performance and accuracy
trade-offs in 3D-NoC enabled IMC-based GNN accelerator. In this work,
a stochastic rounding technique is proposed to reduce the precision of

20

ReRAM crossbar arrays. The reduced precision helps to improve energy-
efficiency of the accelerator. A DropLayer-aware M3D-based manycore
ReRAM architecture for training GNNs, DARe, is proposed in [11]. The
droplayer-based technique reduces on-chip communication volume in
the system, which in turn, prevents communication hotspot. Reduced
communication hotspot improves the energy-efficiency of the overall sys-
tem. The proposed architecture demonstrates 1.9× reduction in execution
time with respect to ReGraphX [10]. Thus M3D-based systems with 3D
NoC provide energy-efficient platform for CNN as well GNN training.
Apart from DNN and graph applications, IMC-based accelerators are also
proposed for recurrent neural networks (RNN) inference [36, 35], sorting
application [127], video summarization [34].

2.3 Analytical Performance Modeling of
Networks-on-Chip

Performance analysis techniques are useful for exploring design space [165]
and speeding up simulations [158, 102, 210]. Indeed, there is continuous
interest in applying novel techniques such as machine learning [174] and
network calculus [173] to NoC performance analysis. However, these
studies do not consider multiple traffic classes with different priorities.
Since state-of-the-art industrial NoC designs [56, 88] use priority-based
arbitration with multi-class traffic, it is important to develop performance
analysis for this type of architectures.

Kashif et al. have recently presented priority-aware router architec-
tures [99]. However, this work presents analytical models only for worst-
case latency. In practice, analyzing the average latency is important since
using worst-case latency estimation in full-system would lead to inaccurate
conclusions. A recent technique proposed an analytical latency model for
priority-based NoC [102]. This technique, however, assumes that each

21

queue in the network contains a single class of flits. This assumption is
not practical since most of the industrial NoCs share queues between mul-
tiple traffic classes. Analytical model for industrial NoCs, which estimates
average end-to-end latency is proposed in [136]. However, these models
assume that the input traffic follows geometric distribution, which is not
applicable for workloads with bursty traffic.

Deflection routing was first introduced in the domain of optical NoC
as hot-potato routing [29]. Later, it was adapted for the NoCs used in
high-performance SoCs to minimize buffer requirements and increase
energy efficiency [152, 59, 60]. This routing mechanism always assigns
the packets to a free output port of a router, even if the assignment does
not result in minimum latency. This way, the buffer size requirement in
the routers is minimized. Authors in [132] perform a thorough study
on the effectiveness of deflection routing for different NoC topology and
routing algorithm. Deflection routing is also used in industrial priority-
aware NoC [88]. Since arbitrary deflections can cause livelocks and unpre-
dictable latency, industrial priority-aware NoCs deflect the packets only
at the destination nodes when the ingress buffer is full. Furthermore, the
deflected packets always remain within the same row or column, and they
are guaranteed to be sunk after a fixed number of deflections.

An analytical bound on maximum delay in networks with deflection
routing is presented in [31]. However, evaluating maximum delay is not
useful since it leads to significant overestimation. Another analytical model
for NoCs with deflection routing is proposed in [66]. The authors first
compute the blocking probability at each port of a router using an M/G/1
queuing model. Then, they compute the contention matrix at each router
port. The average waiting time of packets at each port is computed using
the contention matrix. However, this analysis ignores different priority
classes and applies to only continuous-time queuing systems.

Several techniques present performance analysis of priority-based

22

queuing networks outside the NoC domain [19, 28, 85]. Nevertheless,
these techniques do not consider multiple traffic classes in the same queue.
The work presented in [13] considers multiple traffic classes, but it assumes
that high priority packets preempt the lower priority packets. However,
this is not a valid assumption in the NoC context. A technique that can
handle two traffic classes, Empty Buffer Approximation (EBA), has been
proposed in [18] for a priority-based queuing system. This approach was
later extended to multi-class systems [91]. However, EBA ignores the
residual time caused by low priority flits on high priority traffic. Hence, it
is impractical to use EBA for priority-aware industrial NoCs.

The aforementioned prior studies assume a continuous-time queu-
ing network model, while the events in synchronous NoCs take place in
discrete clock cycles. A discrete-time priority-based queuing system is an-
alyzed in [202]. This technique forms a Markov chain for a given queuing
system, then analyzes this model in z-domain through probability generat-
ing functions (PGF). PGFs deal with joint probability distributions where
the number of random variables is equal to the number of traffic classes
in the queuing system. This approach is not scalable for systems with
large number of traffic classes because the corresponding analysis becomes
intractable. For example, an industrial 8×8 NoC would have 64 sources
and 64 destinations which will result in 4096 (64×64) variables with PGF.
Furthermore, our approach outperforms this technique, as demonstrated
in Chapter 5.

In contrast to prior approaches, we propose a scalable and accurate
closed form solution for a priority-based queuing network with deflec-
tion routing executing multi-class bursty traffic. The proposed technique
constructs end-to-end latency models using two canonical structures iden-
tified for priority-based NoCs. Unlike prior approaches, our technique
scales to any number of traffic classes. To the best of our knowledge, this is
the first analytical model for priority-based NoCs that considers both (1)

23

shared queues among multiple priority classes and (2) traffic arbitration
dependencies across the queues.

Multiple prior studies have proposed NoC performance analysis tech-
niques with basic round-robin arbitration. [158, 63, 174]. Authors in [158]
first construct a contention matrix between multiple flows in the NoC.
Then, the average waiting time of the packets corresponding to each flow
is computed. Support vector regression-based analytical model for NoCs
is proposed in [174]. The analytical model proposed in [63] estimates
the mean service time of the flows with RR arbitration. The estimated
mean service time is used to find the average waiting time of the flows.
However, none of these techniques are applicable in the presence of both
bursty traffic and WRR arbitration.

Analytical modeling of round-robin arbitration has also been studied
outside NoC domain [30, 71, 205]. The techniques presented in [30, 71]
incorporate a polling model to approximate the effective service time
of a queue in the presence of RR arbitration. However, none of these
approaches are applicable when the input distribution to the queue is not
geometric. A Markov chain-based analytical model is proposed in [205] to
account for bursty input traffic. However, the technique is not scalable for
a network of queues. Moreover, none of these techniques are applicable
for discrete-time queuing systems. Since each transaction in NoC happens
at discrete clock cycles, the analytical models need to incorporate discrete-
time queuing systems. The major drawbacks of the prior approaches are
summarized in Table 8.1.

The basic round-robin arbitration cannot provide fairness when re-
questers have widely varying data rate requirements and priorities. There-
fore, weighted round-robin arbitration, i.e., WRR, has been used in on-chip
communication architectures [172, 76]. Qian et al. compute delay bounds
for different channels with different weights to assign appropriate weight
to each input channel of the NoC [172]. They show that WRR delivers

24

Table 2.1: Comparison of prior research and our novel contribution.
Research Approach WRR Bursty

Traffic Scalable Discrete
Time

Boxma et al. [30] Polling model No No Yes No
Wim et al. [71] Extended

polling model No No Yes No
Wang et al. [205] Markov chain No Yes No No
Fischer et al. [63] Heuristic No No Yes No
Vanlerbergee
et al. [199]

Moment
generating function No No No Yes

This work Queue
decomposition Yes Yes Yes Yes

better quality of service than NoCs with strict priority-based arbitration.
Authors in [76] propose a WRR-based scheduling policy. The proposed
technique assigns larger bandwidth to input channels with higher weights.
It achieves higher throughput compared to round-robin arbitration. Al-
though WRR has shown promise, no analytical modeling approach exists for NoCs
with WRR to date.

This work presents the first performance analysis technique for NoCs
with WRR arbitration. It fills an essential gap since WRR can address the
shortcomings of priority-based bufferless NoC architectures and the basic
round-robin arbitration. Furthermore, the proposed technique supports
bursty traffic observed in real applications, which is typically ignored due
to its complexity. Hence, it is a vital step towards comprehending the
theoretical underpinnings of NoCs with WRR arbitration and enabling
their deployment in industrial designs.

25

3 communication-aware hardware accelerators
for deep neural networks (dnns)

3.1 Background and Motivation
In recent years, deep neural networks (DNNs) have shown tremendous
success in recognition and detection tasks such as image processing, health
monitoring, and language processing [116, 145]. Higher accuracy in DNNs
is achieved by using larger and more complex models. However, such
models require a large number of weights, and consequently, traditional
DNN hardware accelerators require a large number of memory accesses
to fetch the weights from off-chip memory, leading to a large number of
off-chip memory accesses lead to higher latency and energy consumption.
On average, a single off-chip memory access consumes 1,000× the energy
of a single computation [78]. Therefore, there is a strong need to minimize
the latency and energy consumption due to the off-chip memory accesses
in DNN accelerators.

In-Memory Computing (IMC) techniques reduce memory access re-
lated latency and energy consumption through the integration of com-
putation with memory accesses. A prime example is the crossbar-based
IMC architecture which provides a significant throughput boost for DNN
acceleration. Prior works have shown that both SRAM- and ReRAM-based
crossbar architectures effectively improve performance and energy effi-
ciency [183, 216, 188, 196]. Such advantages stem from the efficiency of
matrix multiplication implementation in crossbar architectures. At the
same time, crossbar-based in-memory computing dramatically increases
the volume of on-chip communication, when all weights and activations
are stored on-chip. Emerging DNNs with higher accuracy, such as those
derived through Neural Architecture Search (NAS) [212, 224, 225, 126],
further exacerbate the problem of on-chip communication due to larger

26

Figure 3.1: Multi-tiled IMC architecture with bus-based H-Tree intercon-
nect [41].
model size and more complex connections. Therefore, designing an ef-
ficient on-chip communication architecture is crucial for the in-memory
acceleration of DNNs.

State-of-the-art IMC architectures usually deploy a bus-based H-Tree
interconnect [147, 188]. Figure 3.1 shows such a multi-tiled IMC archi-
tecture with bus-based H-Tree interconnect [41]. In this figure, the tiles
in different layers shown in different colors, are connected through a
bus-based H-Tree interconnect. We evaluate a range of DNNs for such
an architecture using the NeuroSim [41] benchmarking tool. Figure 3.2
shows that up to 90% of the total inference latency of a DNN hardware is
spent on on-chip communication when the H-Tree interconnect is used.

In order to reduce on-chip communication latency, NoC-based inter-
connects are employed for conventional SoCs [88, 140] and DNN acceler-
ators [44, 183]. Eyeriss-V2 [44] proposes to use three different NoCs for
weights, activations, and partial sums. Such an architectural choice allows
for higher performance at the cost of both area and energy consumption.
ISAAC [183] employs a concentrated-mesh (cmesh) NoC at the tile-level
of the IMC accelerator. These empirical approaches demonstrate the ne-
cessity of NoC for in-memory computing of DNNs. However, a regular
NoC does not guarantee minimum possible communication latency for

27

Figure 3.2: Percentage contribution of different components of the IMC
hardware to total latency. 40%-90% of the total latency is spent on on-chip
communication when bus-based H-Tree interconnect is used.

DNN architectures. The performance of the NoC depends on both the
NoC structure and the underlying workload.

In this chapter, we minimize the communication energy across a large
number of tiles using an NoC architecture with optimized tile-to-router
mapping and scheduling. We also propose an optimization technique to
determine the optimal number of NoC routers required for each layer of the
DNN. Next, we propose a methodology to generate a latency-optimized
NoC architecture along with a scheduling technique customized for dif-
ferent DNNs. We prove, through induction, that the proposed NoC ar-
chitecture achieves minimum possible communication latency using the
minimum number of links between the routers. These two techniques
together generate a custom NoC for IMC acceleration of a given DNN.
We show that the proposed custom IMC architecture achieves 20%-80%
improvement in overall communication latency and 5%-25% reduction in
end-to-end inference latency with respect to state-of-the-art NoC based
IMC architectures [183].

Constructing a custom NoC for each DNN is not a practical choice

28

as fabricating custom hardware is expensive. The optimum DNN con-
figuration changes due to on-line adaptation of algorithmic pruning ra-
tio [219] and accuracy vs speed/power trade-off [215]. Consequently,
communication patterns between different layers also change with the
DNN configuration. Hence, the NoC needs to be configured to maintain
optimality. Moreover, new DNNs are being designed at a fast rate due
to the large research volume in this domain. Therefore, an exhaustive
design-time exploration that considers all possible DNNs is not feasible.
As a result, the NoC designed considering only the known DNNs will not
be optimal for new DNNs. Hence, it must be configured at run-time to
maintain the optimality. To this end, we propose a reconfigurable solu-
tion for two categories of DNNs namely, edge We categorize the DNNs
based on its application. For example, authors in [40] show the extensive
usage of LeNet, SqueezeNet, VGG in various edge devices, and [61] use
ResNet-152 DNN for cloud-based applications such as video analytics.
However, there exist multiple factors which differentiate these DNNs,
namely, number of layers, number of parameters, connection density, etc.
In this work we consider LeNet, NiN, SqueezeNet, VGG-16, and VGG-19 as
edge-computing based DNNs and ResNet-50, ResNet-152, and DenseNet
(100,24) as cloud computing-based DNNs. We construct separate NoC ar-
chitectures for these two categories offline. When a new DNN that was not
known at design-time is to be executed, the NoC architecture is reconfig-
ured to accommodate the DNN. Through leave-one-out experiments, we
show that the proposed reconfigurable NoC has less than 5% performance
degradation on average with respect to the customized solution. Overall,
the proposed methodology generates both custom and reconfigurable
NoC-based IMC hardware architectures that provide better performance
than state-of-the-art IMC hardware for DNNs.

The major contributions in this chapter are as follows:

• A methodology to construct an NoC architecture along with a schedul-

29

ing technique that provides minimum communication latency for a
given DNN. We prove by induction that the proposed NoC achieves
minimum communication latency.

• Reconfigurable NoC architecture for edge computing-based and
cloud computing-based DNNs.

• Experimental evaluation of the proposed NoC-based IMC architec-
ture showing up to 80% reduction in communication latency with
respect to state-of-the-art interconnect solution for IMC hardware of
DNNs.

IMC-based hardware architectures have emerged as a promising al-
ternative to conventional von-Neumann architectures. Prior works have
proposed IMC hardware based on both SRAM and nanoscale non-volatile
memory (e.g. resistive RAM or ReRAM) [183, 188, 147, 100, 216]. Au-
thors in [183] proposed a ReRAM-based IMC architecture for DNN in-
ference. The architecture utilizes a crossbar of size 128×128 to perform
the Multiply-and-Accumulate (MAC) operations. They employ a paral-
lel read-out method to accelerate the MAC computations in the analog
domain. In addition, a Digital-to-Analog Converter (DAC) and an Analog-
to-Digital Converter (ADC) is employed to switch between digital and
analog domains. In contrast, [188] utilized spike-based computation to
perform MAC operations in the time domain. Such an architecture does
not need DAC and ADC units. An atomic computation-based ReRAM
IMC architecture for both training and inference of DNNs is proposed
in [175]. Authors in [147] proposed a systolic array-based ReRAM IMC de-
sign for DNN inference. Other works proposed in the past have explored
SRAM-based IMC [216, 100].

All of the prior works focus on accelerating the computation while
giving less importance to inter-layer data movement. Crossbar-based IMC
hardware designs for DNNs significantly increase the volume of on-chip

30

communications, making the role of on-chip interconnect crucial. Differ-
ent on-chip interconnect solutions have been used for IMC-based DNN
accelerators in the literature. Bus-based H-Tree interconnect is proposed
in [41, 169]. However, bus-based interconnect contributes up to 90% of the
total inference latency, as shown in Figure 3.2. Hence, a bus-based intercon-
nect does not provide a scalable solution for DNN accelerators. Shafiee et
al. employs a concentrated mesh (cmesh)-based NoC to connect multiple
tiles on-chip [183]. An IMC-based DNN accelerator for high-precision
training is proposed in [86]. Ni et al. proposed a distributed in-memory
computing architecture with a binary RRAM-based crossbar [157]. How-
ever, all these techniques assume a fixed interconnect architecture for
different DNNs, i.e. these techniques do not cater to the communication
needs of different DNNs.

The DNN accelerators presented in MAERI [119] and Eyeriss-v2 [44]
use a flexible interconnect for DNN accelerators. In MAERI [119], a fat-
tree-based programmable interconnect is used to support various sparse
and non-sparse DNN dataflows. The work in [44] proposes a hierarchical
mesh-NoC for DNNs with different operating modes to support different
levels of data reuse in different dataflow patterns. However, these works do
not consider the non-uniform weight distribution of different DNNs [133],
DNN graph structure, and the computation-to-communication imbalance
of the DNNs. A communication-centric IMC architecture is proposed
in [111]. In this work, an optimization-based technique is incorporated to
construct the schedules of a given DNN on mesh interconnect. Nonethe-
less, this architecture does not guarantee minimum possible communica-
tion latency for different DNNs.

In contrast to prior works, we propose an NoC architecture along with a
scheduling technique that achieves the minimum possible communication
latency for a given DNN. Specifically, our proposed approach takes differ-
ent DNN parameters such as graph structure and weights distribution as

31

Figure 3.3: IMC architecture with an arbitrary DNN mapped onto different
tiles with, (a) the mesh-NoC and (b) the proposed latency-optimized NoC.

input and constructs an NoC architecture with schedules ensuring mini-
mum possible communication latency. This NoC is customized to a given
DNN and does not inherit any of state-of-the-art topology (e.g. tree, mesh,
torus, etc.). Furthermore, we propose a reconfigurable NoC architecture
for two representative class of DNNs, namely, edge computing-based and
cloud computing-based DNNs. The reconfigurable architecture assumes
that the IMC resources (IMC tiles and associated peripheral circuits) are
available on-chip. Then, based on the DNN, the NoC architecture is recon-
figured to obtain the lowest possible communication latency.

32

Background of In-Memory Computing

Conventional architectures separate the data access from memory and
the computation in the computing unit. In contrast, IMC seamlessly in-
tegrates computation and memory access in a single unit such as the
crossbar [183, 188, 196, 216]. It has emerged as a promising method to
address the memory access bottleneck. Both SRAM and NVM-based
(e.g. ReRAM) IMC hardware architectures provide a dense and paral-
lel structure to achieve high performance and energy efficiency. This
localizes computation and data memory in a more compact design and
enhances parallelism with multiple-row access, resulting in improved
performance [183, 188].

The IMC architecture consists of Processing Elements (PE) or crossbar
arrays built with IMC cells which hold the weights of the DNN. The size
of the PE can vary from 64×64 to 512×512. Along with the computing
unit, peripheral circuits such as ADC, Sample and Hold circuit (S&H) and
accumulator circuits are used to obtain each DNN layer’s computation
result. The Word-Line (WL) is activated by the input activation which
allows for the MAC operation to be performed along the Bit-Line (BL) via
analog voltage/current accumulation. The analog MAC result is converted
to digital values using an ADC, and subsequently accumulated using a
shifter and adder circuit.

Overview of the Proposed IMC Architecture with
Latency-optimized NoC

Figure 3.3 shows a representative IMC hardware architecture for DNN
inference acceleration [41]. The proposed IMC system utilizes a hierarchi-
cal architecture where each tile has computing elements (CEs) and each
CE employs processing elements (PEs). We assume all the weights and
activations are stored on-chip. Each tile consists of four CEs, input-output

33

(IO) buffers, accumulator circuits, and a ReLU activation circuit. An H-
Tree-based interconnect is used to connect the different hardware units
in the tile. In addition, there is a global pooling and accumulator unit to
perform pooling and inter-tile accumulation, respectively.

Each CE in a tile consists of four PEs that communicate through a
bus-based interconnect. The PEs represent the crossbar structure (SRAM
or ReRAM) which performs the computation. Each CE further consists of
a read-out circuit that converts the MAC results from analog to the digital
domain. The read-out circuit consists of a sample and hold circuit, flash
ADCs, and a shift and add circuit. The choice of ADC stems from the
precision of the partial sums required for the best accuracy and the physical
footprint and performance of the ADC. A multiplexer circuit is employed to
share the read-out circuit among different columns of the IMC crossbar. We
multiplex 8 columns for each read-out circuit in a time-multiplexed manner
to reduce both area and energy for the peripheral circuitry. Finally, the
architecture does not utilize a DAC; it assumes sequential input signaling,
i.e., an n-bit input signal is fed over n clock cycles in a bit-serial manner.

Figure 3.3(a) shows the IMC architecture with a regular mesh NoC
at the tile level. The regular mesh NoC has one router-per-tile and em-
ploys the standard X-Y routing algorithm. Figure 3.3(b) shows the IMC
architecture with the proposed latency-optimized NoC. The proposed
latency-optimized NoC architecture utilizes the optimal number of routers
and links to perform on-chip communication. Such an architecture re-
sults in reduced energy and latency. The remaining details of the work is
described in Appendix A of the thesis and in the reference [111, 141].

3.2 Area-aware NoC Optimization
Energy-Aware Optimization for NoC: As a result of the proposed area-
aware optimization, the total number of tiles in an IMC architecture can

34

be very high. For example, DenseNet (100,24) requires 1,088 tiles [41].
For such an architecture, one-to-one mapping of a router to tile [118] will
require a large number of NoC routers and consume high power, as shown
in Figure 3.4. Therefore, in our framework we introduce an energy-aware
optimization for the NoC.
Mapping Tiles to Routers: We first construct an objective function that rep-
resents the NoC energy consumption. Let nk be the number of routers
required for the kth layer of the DNN. The number of activations communi-
cated between nk and nk+1 routers is Ik. Hence, the number of activations
between each source-destination pair is given by Ik/(nk × nk+1). The total
amount of communication volume can be found by adding this across all
K layers and routers:

E(n̄) =
(K−1∑

k=1

Ik

nknk+1

)(K∑
k=1

nk

)
(3.1)

E(n̄) is proportional to the total communication energy of the DNN assum-
ing that all transactions have a uniform size. We minimize this objective

Figure 3.4: NoC optimization effectively reduces the power consumption
because of its non-linear dependence on the mesh size. We obtain NoC
power through BookSim [90] simulations.

35

function with an upper bound on the total number of routers, N as:

minimize
n̄

E(n̄)

subject to nk ⩾ 1; k = 1, . . . ,K,
K∑

k=1
nk < N.

(3.2)

where the first constraint ensures that each layer of the DNN is associated
with at least one router. N is a user-defined constraint (input to the op-
timization framework) that represents the maximum number of routers
in the IMC architecture. At the end of this optimization, we obtain the
number of routers needed for each layer (nk) of the DNN.
Packet Scheduling in NoC: If the activations of a layer are injected into the
NoC in the order of computation, there is a high possibility of congestion re-
sulting in high communication latency in the NoC. Therefore, we propose
a scheduling technique for the NoC to schedule the activations between
two layers of the DNN. The scheduling technique is applied on top of the
optimal tile-to-router mapping for the NoC. This scheduling technique
provides a starting time for activations from each source to destination
pair in the NoC. Without loss of generality, we assume that all activations
for a particular source-destination pair can be injected back-to-back.

Using the NoC topology and the routing algorithm, we first find the
source-destination pairs which contend for the same link in the NoC. We
model each source-destination pair (sd) as an individual task. The start
time of the task corresponding to the pair sd is denoted by tsd and the
duration of the task equals to the number of packets for that pair (nsd).
Next, we put constraints on the start time of each task so that there is no
contention between two transactions for the same link. The set of all tasks is
denoted by T and the set of all non-overlapping tasks is denoted by C. (3.3)
shows the formulation of the non-overlap constraint, where the start time

36

of two tasks is separated by the duration. Furthermore, the start time of all
tasks are integers and greater than zero. We add one terminal task with
the constraint that the start time of the terminal task (tterminal) is greater
than the start time of any of the source-destination pairs. We minimize
tterminal to obtain the optimal schedule for all source-destination pairs.

minimize tterminal

subject to tmn > tpq + npq ∨ tpq > tmn + npq,
∀tmn, tpq ∈ C,
txy ⩾ 0,∀ txy ∈ T

tterminal > txy + nxy,∀ txy ∈ T.

(3.3)

3.3 Latency-aware NoC optimization

Determining Minimum Communication Latency

We aim to construct an NoC architecture, customized for different DNNs,

Figure 3.5: (a) Communication between layers in a DNN and (b) The
schedules for obtaining minimum communication latency between layers.
Without loss of generality, it is assumed that the computation time in the
tile is 0 cycles.

37

Figure 3.6: The number of packets between two routers with (a) one
router per tile, and (b) the proposed technique. All the numbers are
normalized with a factor of 4 × 105 (the highest number of packets per
router between two layers with one router per tile, which occurs between
4th and 5th layer of SqueezeNet). The number of packets between routers
decreases significantly with the proposed approach for all DNNs except
DenseNet (100,24) and ResNet-50. However, the number of routers used
for DenseNet with our proposed technique (300) is less than the number
of routers required (1088) if one router is allocated per tile. Our technique
achieves around 72% reduction in the NoC area. Similar improvement is
seen for ResNet-50 as well.

which achieves minimum possible communication latency. To this end,
we first show how the minimum possible communication latency between
two consecutive layers of a given DNN for one round of communication
is achieved. In one round of communication, each source router of a layer
sends one packet to each destination router in the next layer. Since each
router sends/receives maximum one packet per cycle, the minimum possi-
ble communication latency to finish all the transactions is max(Nk, Nk+1),
where Nk is the number of routers in kth layer.

Figure 3.5(a) represents an IMC hardware of a neural network with
one hidden layer, where each square represents a tile. There are three
tiles in the input layer (Layer 1), two tiles in the hidden layer (Layer 2),
and three tiles in the output layer (Layer 3). We assume that there is an
NoC router associated with each tile, and all routers have one input and
one output port. We also assume layer-by-layer operation for the DNN,

38

i.e. after all packets reach layer 2 from layer 1, then the communication
between layer 2 and layer 3 will start. If each router of a layer is connected
to every other router of the next layer (as shown in Figure 3.5(a)), then
the minimum possible communication latency is achieved. We utilize
below key insights to construct the schedules for obtaining minimum
communication latency.
Key insight 1: A single router can not send/receive more than one packet
in a cycle. However, multiple routers can send/receive packets in parallel.
Key insight 2: Since a router can send/receive only one packet in a cycle,
the congestion is minimum i.e., no more than a transaction is scheduled
through a particular link.

Figure 3.5(b) shows the schedules for each round of communication
between two layers to achieve the minimum possible communication
latency. With these schedules, there is no congestion in the NoC, since no
link is scheduled to carry more than one packet in a particular cycle. With
this NoC topology, the number of links required (to achieve minimum
possible communication latency) between the kth layer and (k+ 1)th layer
is Nk ×Nk+1. Thus the number of links is O(N2), where N is the number
of routers in a layer. The total number of links can be very large for DNNs
with a large number of routers per layer. For example, with this NoC
topology, more than 1.5 × 104 links are required for DenseNet (100,24).
Since the number of links increases the NoC area, this NoC topology is
impractical to implement. To overcome this challenge, we first propose a
technique to determine the optimal number of routers required for each
layer of a DNN. In addition, we propose an NoC architecture that achieves
the minimum possible communication latency between two consecutive
layers of DNNs with minimum number of links.

39

Table 3.1: Summary of the notations used in this work.

Ak Number of output activations in the kth layer
Nk Number of routers in the kth layer
Rk,n nth router in the kth layer
Rk1,n1 − Rk2,n2 The packet between Rk1,n1 and Rk2,n2
Lk1,n1 − Lk2,n2 The link between Rk1,n1 and Rk2,n2

Determining the Optimal Number of Routers

The optimal number of routers in each layer of a DNN is a function of
the number of packets that are sent from one layer to the next. Since a
higher number of packets between two source-destination router pairs
increase communication latency (due to higher congestion), determining
the optimal number of routers for each DNN layer is crucial. We per-
form an analysis which shows that the inefficient distribution of routers
can cause higher communication latency. In Figure 3.6(a), we show the
number of packets between two routers for each layer of different DNNs
when one router is allocated per tile. The number of packets is normalized
with respect to the highest number of packets (4 × 105), which occurs
between two routers in the 4th and 5th layers of SqueezeNet. High number
of packets between two routers increases congestion in the NoC, resulting
in high communication latency.

Therefore, we propose a technique to determine the optimal number
of routers required for each layer of the DNN. The objective function is
shown in Equation (3.4). It is a function of the number of routers in each
layer which is denoted by N̄, where N̄ = {N1,N2, . . . ,NK}. The number
of activations between the kth and the (k + 1)th layer is denoted by Ak.
Therefore, if we divide Ak by the product of Nk and Nk+1, we obtain the

40

number of activations between a pair of routers.

L(N̄) =

K−1∑
k=1

(⌈ Ak

NkNk+1

Q

W

⌉)
max(Nk,Nk+1) (3.4)

minimize
N̄

L(N̄)

subject to Nk > 0;k = 1, . . . ,K,
K∑

k=1
Nk < N.

(3.5)

Furthermore, after multiplying the expression by the bit precision (Q)
and dividing it by the NoC-bus width (W), we obtain the number of
packets between a pair of routers (Ak

NkNk+1
Q
W

). To convert the value to
integer we take the ceiling of the expression. The minimum possible
latency to finish each round of communication is max(Nk, Nk+1) cycles
as shown in Section 3.3, and the number of rounds equals the number
of packets between a pair of routers. Therefore, multiplying these two
terms we obtain the total communication latency of the DNN with the
proposed NoC architecture (Equation (3.4)). At this point, the number of
routers for each layer is unknown. Therefore, we minimize the objective
function by setting all elements of N̄ positive and a user-defined upper
bound on the total number of routers (N) for the DNN, as shown in
Equation (4.4). We solve the optimization problem using the gradient-
based interior point algorithm. A sub-gradient based methodology is
incorporated in the region where the function is not differentiable. In this
work, we assume that packet transmissions happen only in two consecutive
layers. Therefore ensuring local minimum (minimum number of links
between two consecutive layers) is sufficient to ensure global minimum
latency with a minimum number of links.

Next, we show how the minimum communication latency for the con-
figuration shown in Figure 3.5(a) is achieved. For each round of commu-

41

nication, one packet is communicated between a pair of routers in two
consecutive layers. Therefore,

⌈
Ak

NkNk+1
Q
W

⌉
= 1 in Equation 3.4. For the

configuration shown in Figure 3.5(a), N1 = 3,N2 = 2,N3 = 3. Putting
this in Equation 3.4 we obtain, L(N̄) = max(3, 2) + max(2, 3) = 3 + 3 = 6.
Therefore, minimum communication latency for this configuration is 6
cycles, which supports the schedules shown in Figure 3.5(b).

Figure 3.6(b) shows the number of normalized packets between two
routers for different DNNs with our proposed tile-to-router mapping
methodology. We observe that with the proposed mapping methodology,
the number of packets between two routers for different layers of different
DNNs is always less than 0.25. We observe an increase in the number of
packets between two routers in the case of DenseNet and ResNet-50 due
to a decrease in the number of routers with our proposed methodology.
The number of routers used for DenseNet with our proposed technique
(300) is less than the number of routers required (1088) if one router is
allocated per tile. This provides 72% reduction in the NoC area. Similar
improvement is seen for ResNet-50 as well.

Constructing the Custom NoC

In this sub-section, we construct our proposed latency-optimized NoC
architecture. The optimal number of routers required for each layer of a
given DNN is computed using the methodology described in Section 3.3.
We analyze a given DNN layer-by-layer to obtain the latency-optimized
NoC architecture and the corresponding schedules. We show, by induction,
that the proposed NoC architecture along with the schedules achieves the
minimum communication latency using the minimum number of links
for one round of communication. Without loss of generality, let us assume
Nk and Nk+1 are the number of routers in two consecutive layers. We
consider three cases: 1) Nk = Nk+1, 2) Nk < Nk+1 and 3) Nk > Nk+1.
The minimum possible latency for one round of communication between

42

the two layers is max(Nk, Nk+1). For each of these cases, we develop the
latency-optimized NoC architecture and the corresponding schedules. We
also prove that the constructed NoC architecture achieves the minimum
possible latency for all cases.
Case 1 (Nk = Nk+1): We first consider a case where two consecutive layers
of a DNN have three routers each, i.e. Nk = Nk+1 = 3. Since each router
of (k+ 1)th layer can receive at most one packet per cycle, the minimum
number of cycles required to receive packets from all routers in kth layer is
Nk = max(Nk,Nk+1). Therefore, the minimum possible latency for one
round of communication between each of the three source routers to each
of the three destination routers is three cycles. Figure 3.7(a) shows our
proposed NoC architecture and Figure 3.7(b) shows the corresponding
schedule to finish all transactions in three cycles. We assume that the
communication starts at cycle-1. In one round, each router in kth layer
sends the same packet (output activation) to all routers in (k+ 1)th layer.
We also assume that when a packet reaches a router, the associated tile
computes on the packets, and the transaction is considered to be completed.
In the next cycle, the router can send the received packet to other routers
if necessary. We denote the packet to be transmitted from ith router of kth

layer to jth router of (k + 1)th layer as Rk,i − Rk+1,j as shown in Table 3.1.
At cycle-1, all routers in kth layer send the packet to a router in (k + 1)th

layer through the horizontal links as shown in Figure 3.7(a). First three
rows in Figure 3.7(b) show the transaction in cycle-1. In the next cycle,
each router in (k+ 1)th layer transmits the packet received in cycle-1 both
through upward and downward vertical link if the links exist. In the
subsequent cycles, each router in (k+ 1)th layer sends the packet received
from north to south, and the packet received from south to north through
the downward and upward vertical link, respectively. All transactions are
finished in three cycles. Since no link is scheduled to transmit more than
one packet at a particular cycle, there is no contention in the NoC. We note

43

Figure 3.7: (a) NoC architecture which achieves the minimum possible
latency when two consecutive layers each have three routers, (b) Schedule
to achieve the minimum possible latency.

that if any of the links shown in Figure 3.7(a) is removed, then some of
the transactions will not be possible. Therefore, the NoC architecture in
Figure 3.7(a) achieves the minimum possible latency using the minimum
number of links.

Next, we prove (by induction) that, if the NoC architecture with Nk =

Nk+1 = N − 1 achieves minimum latency, then the architecture with
Nk = Nk+1 = N also achieves minimum latency. Figure 3.8 shows the
architecture with Nk = Nk+1 = N. The dotted box shows the architecture
which is assumed to achieve minimum possible latency, i.e. all transactions
will finish at (N−1) cycles. The dark blue circles indicate the newly added
routers (Nth) in each layer. By adding the new routers and corresponding
links, new transactions are introduced. Our goal is to schedule the new
transactions in a way that there is no contention with any transaction
scheduled with the architecture having (N− 1) routers in each layer. This
can be achieved by scheduling the new transaction in the links in the

44

Figure 3.8: NoC architecture which achieves the minimum possible latency
when two consecutive layers consist of N routers each.

manner shown below.

• Horizontal Link: (Lk,N − L(k+1),N) carries the packet Rk,N −R(k+1),N
in cycle-1.

• Upward vertical link: New transactions occur for the packet sent by
the router N of the (k+ 1)th layer. The link (L(k+1),N − L(k+1),(N−1))
carries this packet at cycle-2. All other upward vertical links carry
this packet after the last transaction through the links with the archi-
tecture consisting of N− 1 routers in each layer. The packet reaches
the 1st router of the (k+ 1)th layer at cycle-N.

• Downward vertical link: New transactions occur only through the
link (L(k+1),(N−1) − L(k+1),N). Since this is a newly added link, the
transaction does not contend with any other link. Through this link,
the transaction which occurs last is Rk,1 − R(k+1),N at cycle-N.

Therefore, all transactions for the architecture with N routers finish at
cycle-N, which is the minimum possible latency with N routers in each
layer. Table 3.2 shows the schedules for this case.

45

Table 3.2: Schedules for Nk = Nk+1

Link Type Cycle Link Transaction Range
Horizontal 1 Lk,n−

L(k+1),n

Rk,n−
R(k+1),n

n = 1 . . .N
Upward
Vertical m L(k+1),n−

L(k1),(n−1)

Rk,(n+m−2)−
R(k+1),(n−1)

n = 2 . . .N
Downward
Vertical m L(k+1),n−

L(k+1),(n+1)

Rk,(n−m+2)−
R(k+1),(n+1)

n = 1 . . . (N− 1)

Case 2 (Nk < Nk+1, Nk = N): Next, we consider the case where Nk <

Nk+1. Without loss of generality, we assume that Nk = N. The latency-
optimized NoC architecture for this case is shown in Figure 3.12(a).

Table 3.3 shows the schedules for this case. The transactions in the
horizontal link and upward vertical link are same as the Case 1, since
there is no change in the configuration of these links. The downward
vertical links in the (k+ 1)th layer carries a packet in each cycle till all the
transactions are finished.
Proof for Case 2 (Nk < Nk+1, Nk = N): First, we consider the configu-
ration with Nk+1 = N + 1 as shown in Figure 3.9(a). Since each router
of kth layer can send at most one packet per cycle, the minimum num-
ber of cycles required to send packets to all routers in the (k+ 1)th layer
is Nk+1 = max(Nk,Nk+1). The NoC configuration shown in the dot-
ted box is optimal as it has an equal number of routers in both layers.
By adding the router R(k+1),(N+1), we add the downward vertical link
L(k+1),N−L(k+1),(N+1). The new transactions due to the newly added router
will only happen through this link. Specifically, the router R(k+1),(N+1) will
receive one packet at each cycle starting from cycle-2 only from the router
R(k+1),N. The last transaction through this link is R(k+1),1 − R(k+1),(N+1)
and that will happen in cycle-(N+1). Therefore, the NoC configuration
shown in Figure 3.9(a) completes all transactions in minimum possible
cycles and therefore it is optimal.

46

Figure 3.9: NoC architecture to achieve minimum latency for Case 2. (a)
shows the case when there is one more router in (k+1)th layer than kth layer.
(b) shows the general case. The dotted box shows the optimal architecture
(already proved) and the circles filled with dark color represent the newly
added router.

Next, we assume that the architecture with Nk+1 = N + j is optimal
as shown in the dotted box in Figure 3.9(b). We will prove by induction
that if the architecture with Nk+1 = N + j is optimal, then the architec-
ture with Nk+1 = N + j + 1 is also optimal which proves the general
case. By introducing the router R(k+1),(N+j+1), the downward vertical link
L(k+1),(N+j) − L(k+1),(N+j+1) is introduced. The new transactions due to
the newly added router will only happen through this link. Specifically,
the router R(k+1),(N+j+1) will receive one packet at each cycle starting from
cycle-2 only from the router R(k+1),(N+j). The last transaction through
this link is R(k+1),1 −R(k+1),(N+j+1) and that will happen in cycle-(N+j+1).
Therefore, the NoC configuration shown in Figure 3.9(b) completes all
transactions in minimum possible cycles and therefore it is optimal.
Case 3 (Nk > Nk+1,Nk+1 = N): Next, we consider the case where Nk <

Nk+1. Without loss of generality, we assume that Nk+1 = N. The latency-
optimized NoC architecture for this case is shown in Figure 3.12(b). Ta-

47

Figure 3.10: NoC architecture to achieve minimum latency for Case 3. (a)
shows the case when there is one more router in (k+1)th layer than kth layer,
(b) shows the general case. The dotted box shows the optimal architecture
(already proved) and the circles filled with dark color represent the newly
added router.

Figure 3.11: Operation of the proposed NoC for a section of DenseNet
(100,24) [82]. (a) A representative section of DenseNet (100,24). (b)–(d)
show the communication between the layers of DenseNet (100,24).

ble 3.4 shows the schedules for this case. The transactions in the hori-
zontal links Lk,n − L(k+1),n to Lk,(N−1) − L(k+1),(N−1) happens in cycle-1.
Apart from carrying a packet in cycle-1, the link Lk,N − L(k+1),N also car-
ries packets from routers Rk,(N+j) to R(k+1),N in subsequent cycles, where
j = 1 . . . (Nk −N).

In Appendix C, we show the operation of the proposed NoC architec-

48

Figure 3.12: NoC architecture which achieves minimum possible latency
when (a) Nk < Nk+1 and (b) Nk > Nk+1.

Table 3.3: Schedules for Nk < Nk+1

Link Type Cycle Link Transaction Range
Horizontal 1 Lk,n−

L(k+1),n

Rk,n−
R(k+1),n

n = 1 . . .Nk

Upward
Vertical m L(k+1),n−

L(k+1),(n−1)

Rk,(n+m−2)−
R(k+1),(n−1)

n = 2 . . .Nk

Downward
Vertical m L(k+1),n−

L(k+1),(n+1)

Rk,(n−m+2)−
R(k+1),(n+1)

n = 1 . . .Nk+1 − 1

ture for densely connected DNNs such as DenseNet [82].
Proof for Case 3 (Nk > Nk+1,Nk+1 = N): First, we consider the configu-
ration with Nk+1 = N+ 1 as shown in Figure 3.10(a). Since each router
of (k+ 1)th layer can receive at most one packet per cycle, the minimum
number of cycles required to receive packets from all routers in kth layer is
Nk = max(Nk,Nk+1). The NoC configuration shown in the dotted box is
optimal as it has an equal number of routers in both layers. By adding the
router Rk,(N+1), we add the upward vertical link Lk,N − Lk,(N+1). Specifi-
cally, the router Rk,(N+1) will send one packet at cycle-1 to the router Rk,N.
This packet will be sent to R(k+1),N through the link Lk,N−L(k+1),N at cycle-

49

2. We note that this link is free at cycle-2 with the configuration shown
in the dotted box. Subsequently, this packet will reach the router R(k+1),1
at cycle-(N+1) which is the last transaction with this NoC configuration.
Therefore, the NoC configuration shown in Figure 3.10(a) completes all
transactions in minimum possible cycles and therefore it is optimal.

Next, we assume that the architecture with Nk = N+ j is optimal as
shown in the dotted box in Figure 3.10(b). We will prove by induction that
if the architecture with Nk = N+ j is optimal then the architecture with
Nk = N+j+1 is also optimal which proves the general case. By introducing
the router Rk+,(N+j+1), the upward vertical link Lk,(N+j) − Lk,(N+j+1) is
introduced. Specifically, the router Rk,(N+j+1) will send one packet at
cycle-1 to the router Rk,(N+j). This packet will reach the router Rk,N at
cycle-(j+1). In cycle-j it will be sent to the router R(k+1),N and in the
subsequent cycle the packet will traverse through the upward vertical link
till it reaches the router R(k+1),1. The last transaction that will happen in
cycle-(N+j+1). Therefore, the NoC configuration shown in Figure 3.10(b)
completes all transactions in minimum possible cycles and therefore it is
optimal.
Execution of the proposed network on dense neural network: Figure 3.11

Table 3.4: Schedules for Nk > Nk+1

Link Type Cycle Link Transaction Range
Horizontal 1 Lk,n−

L(k+1),n

Rk,n−
R(k+1),n

n = 1 . . .Nk+1

Horizontal m Lk,Nk+1−

L(k+1),Nk+1

Rk,(Nk+1+m−1)−
R(k+1),Nk+1

-
Upward
Vertical m Lk,Nk+1+n−

Lk,Nk+1+n−1
Rk,(Nk+1+n+m−1)−
R(k+1),Nk+1

n = 1 . . .
(Nk −Nk+1)

Upward
Vertical m L(k+1),n−

L(k1),(n−1)

Rk,(n+m−2)−
R(k+1),(n−1)

n = 2 . . .Nk+1

Downward
Vertical m L(k+1),n−

L(k+1),(n+1)

Rk,(n−m+2)−
R(k+1),(n+1)

n = 1 . . .
(Nk+1 − 1)

50

shows the operation of the proposed NoC on DenseNet [82]. We consider
the 13th–16th layer of DenseNet which is a representative section of this
DNN. In DenseNet, all neurons in a particular layer are connected with
all other neurons in the subsequent layers as shown in Figure 3.11(a).
The number of routers allocated with our proposed methodology for the
13th, 14th, 15th and 16th layers are 3,3,4,4 respectively which is shown in
Figure 3.11(b). Different packets generated in different layers are shown
in different markers in Figure 3.11(b)–3.11(e). We denote the number
of packets to be communicated for each source to destination pair from
kth layer to (k + 1)th layer as Pk. We assume that at cycle-C the packets
(shown in) in the 13th layer is ready to be communicated to the 14th layer.
Specifically, at each round of communication, each router in 13th layer will
send one packet (marked with) to each router in 14th layer. According to
our proposed approach, each round of communication between 13th and
14th layer will take 3 cycles (max(N13,N14) = max(3, 3) = 3). Therefore,
one round of communication will be finished at cycle-(C+3P13). After
that, the computations are performed in the 14th layer. Without loss of
generality, we assume that computations are performed in the same cycle
the packets (activations) reach the layer. After computations, new packets
are generated which are to be communicated to the next layer. The new
packets are denoted by the marker . Each type of the packets marked with

and are to be communicated to 15th layer. Each round of communication
takes 4 cycles (max(N14,N15) = max(3, 4) = 4). Therefore, all the packets
reach 15th layer at cycle-(C+3P13+4P14). After that, the computations are
performed in the 15th layer and the new packets (shown in) are generated.
Similarly, the packets will reach the 16th layer at cycle-(C+3P13+4P14+4P15)
and upon computation, new packets will be generated (shown in pentagon
filled in black). Thus the proposed NoC architecture works seamlessly for
densely connected networks.

51

Algorithm 1: Proposed Algorithm to Reconfigure the NoC at
Runtime
1 Input: Number of layers of the DNN (K), number of input activations for each layer

(Ak), precision bit (Q), NoC bus width (W), Number of routers available on-chip for
each layer (Nmax

k)
2 Output: Number of routers required for each layer (Nk) and the optimal schedule

(schedout)
3 Initialization: schedout ← []
4 Obtain Nk following Equation 3.4 and Equation 4.4
5 for k = 1: K do
6 Nk = min(Nk,Nmax

k)
7 end
8 for k = 1: K-1 do

/* Number of packets */
9

10 Pk =
⌈

Ak
NkNk+1

Q
W

⌉
/* Constructing the schedules */

11
12 for p = 1 : Pk do
13 if Nk == Nk+1 then
14 schedp = schedule constructed by following Table 3.2
15 schedout ← [schedout; schedp]
16 end
17 if Nk < Nk+1 then
18 schedp = schedule constructed by following Table 3.3
19 schedout ← [schedout; schedp]
20 end
21 if Nk > Nk+1 then
22 schedp = schedule constructed by following Table 3.4
23 schedout ← [schedout; schedp]
24 end
25 end
26 end

Constructing a Reconfigurable NoC

So far, we have discussed our proposed methodology to construct a latency-
optimized NoC customized for a given DNN. However, an NoC architec-
ture customized for a specific DNN is not practical due to the lack of
reconfigurability. Since DNNs are ever-evolving, we can never guarantee
that the set of DNNs considered at design time is exhaustive. Therefore, at
run-time the NoC might need to execute a DNN which was not considered
at design time. To overcome this challenge, we propose a technique to
construct two reconfigurable NoCs for two categories of DNNs, namely,

52

edge-based and cloud-based DNNs. There are two steps involved in con-
structing the reconfigurable architecture. First, we set the number of layers
to be supported by the NoC architecture. Second, we set the number of
routers per layer for the NoC architecture.
Setting number of layers: For each category, we set the number of layers
to be the maximum number of layers among all DNNs available at design
time in that particular category. Specifically, if D(i) is the number of
layers of a DNN i and the number of DNNs considered in that category
is I, then the number of layers the NoC architecture can accommodate is
D = max(D(1),D(2), . . . ,D(I)). For the DNNs we consider in the edge
computing category, SqueezeNet has the maximum number of layers
(D = 26). Similarly, DNNs we consider in the cloud computing category,
ResNet-152 has the maximum number of layers (D = 152).
Setting number of routers per layer: Next, we compute the number of
routers to be allocated for each layer. To this end, for each DNN of that
category, we evaluate the optimal number of routers required for each
layer following the methodology described in Section 3.3. Then, for that
particular layer, we allocate the maximum number of routers obtained
across all DNNs of the category. If N(i)

k is the number of routers required
for the kth layer of a DNN i, then the number of routers allocated in the
NoC architecture for kth layer is Nmax

k = max (N
(1)
k ,N(2)

k , . . .N(I)
k), where

k = 1, 2, . . .D and N
(i)
k = 0 if D(i) < k.

At runtime, we reconfigure the NoC to determine how many routers
need to be used and determine the schedules of the packets between each
pair of layers of the new DNN. Algorithm 1 shows the proposed algorithm
which is executed on-chip to reconfigure the proposed NoC architecture.
The algorithm takes different DNN parameters (number of layers, number
of input activations, precision bit), NoC bus width, and number of routers
available on-chip for each layer as input. The number of routers required
for each layer and the optimal schedules are obtained as outputs.

53

The number of routers required for each layer (Nk) of DNN is deter-
mined by following the procedure described in Section 3.3 (shown in line
4 of Algorithm 1). If the required number of routers (Nk) are not available
on-chip, then the maximum available routers (Nmax

k) are utilized for that
particular layer of the DNN (shown in line 5–7 of Algorithm 1). After that,
we compute the schedules between two consecutive layers of the DNNs.
First, we compute the number of packets between each source to each
destination (line 9) and construct the schedules for the packets. In order
to construct the schedules, we consider the three cases earlier. Depending
on the case, the schedules are constructed following Table 3.2 or Table 3.3
or Table 3.4. Second, the constructed schedule is then appended to the
list of optimal layer-wise schedules (schedopt) (shown in line 10–20 of
Algorithm 1). The same procedure is repeated for all layers to obtain the
complete schedule of the reconfigurable NoC.

Router Architecture of the Proposed NoC

Figure 3.13 shows the router architecture of the proposed NoC. The router
has three input ports: one input port (IP) connects with a router in the
previous layer and the other two input ports are connected with routers of

Figure 3.13: Router architecture of the proposed NoC

54

the same layer. We assume that all the packets to be sent in the next layer
are stored in a buffer inside the compute elements in the previous layer.
The input port IN gets the input from the router situated to the north and
the input port IS gets the input from the router situated to the south. The
router has two output ports: ON sends the output to the router situated
to the north and OS sends the output to the router situated to the south.
Inside the router, there are two multiplexers: MA and MB. MA selects
between the inputs coming from IP and IS and sends it to ON. MB selects
between the inputs coming from IP and IN and sends it to OS. As discussed
earlier in the section, at cycle-2 of each round of the communication, the
input from the previous layer is sent to both the routers situated to the
north and south. In all other cycles, the input from the south is sent to
the north and vice-versa. Therefore, MA and MB are controlled by the
cycle-index (C) in each round of communication as shown in Figure 3.13.
The router is interfaced with the tiles in the current layer. Upon receiving
a packet, the router sends it to the corresponding computing tile. The
tile computes on the packet and sends it back to the router, which then
forwards it to the next router.

3.4 Experimental Evaluation

Experimental setup

We evaluate our proposed latency-optimized NoC for IMC architecture
for a wide range of DNNs. We consider LeNet [120] on MNIST dataset,
NiN [129], ResNet-152 [75], VGG-16, VGG-19 [186], and DenseNet(100,24) [82]
on CIFAR-100 dataset [115], and SqueezeNet [84] and ResNet-50 [75] on
ImageNet dataset [54]. The DNNs we consider have parameters that range
from 0.28M for LeNet to 45M for VGG-19 and the number of layers ranges
from 5 for LeNet to 152 for ResNet-152. Moreover, the DNNs we chose
have different connection patterns; linear (LeNet, NiN, SqueezeNet, VGG),

55

residual (ResNet) and dense (DenseNet). These DNNs are a combination
of fully connected (FC) and convolutional (Conv) layers. Therefore, our
proposed methodology is applicable to fully connected layers as well as
convolutional layers of a DNN.
Benchmarking Simulator: We developed an in-house simulator to eval-
uate the IMC architecture with the proposed latency-optimized NoC for
different DNNs. The circuit part and interconnect part of the simulator are
calibrated with NeuroSim [41] and BookSim [90], respectively. The inputs
of the simulator include the DNN structure, technology node, NoC bus-
width, type of IMC technology (ReRAM, SRAM, etc.), the number of bits
per IMC cell, and frequency of operation. The circuit simulator performs
the mapping of the entire DNN to a multi-tiled IMC architecture [183]
and reports performance metrics, such as area, energy, and latency of
the computing logic. The interconnect performance is evaluated using
the interconnect simulator. The circuit simulator provides the number
of tiles per layer, activations, and number of layers as output. These are
used to construct the latency-optimized NoC, which are then fed to the
interconnect simulator to compute the area, energy, and latency for the
interconnect. The overall performance of the architecture is calculated by
combining the circuit-level and interconnect-level performance. The de-
tails of the simulator is described in [110]. Later, the simulator is extended
for chiplet-based systems [114, 113].

Energy-Aware NoC Optimization

The proposed methodology includes an energy-aware tile-to-router map-
ping and scheduling technique for the NoC. The upper bound on the
number of routers is set as three times the number of DNN layers to bal-
ance energy and performance. Figure 3.14(b) shows the improvement
in latency for each layer of NiN due to the proposed NoC optimization.
The proposed NoC mapping reduces the communication latency between

56

Figure 3.14: Layer-wise improvement for NiN in (a) PE utilization for each
layer with SRAM-based heterogeneous tile architecture. The tile structure
for each layer (ck, pk) is shown on top of each bar and (b) communication
latency for each layer with proposed NoC optimization.

layers 1 and 2 from 51ms to 47ms. As we integrate the NoC mapping with
the scheduling technique, latency reduces further to 22ms. The first three
layers of NiN contain more than 50% of the total number of activations.
Therefore, the proposed NoC mapping reserves more routers for the first
three layers, resulting in a significant reduction in latency for those layers.
Additionally, the total number of routers is reduced which reduces the
NoC area. A direct consequence of both latency and area reduction is
lower communication energy, as shown in Figure 3.15(a) with an average
reduction of 74%. The energy reduction is the highest for the case of VGG
networks – 97%/98% for VGG-16/VGG-19. For ResNet-152, energy reduc-
tion is the lowest (15%), since the tiles are well distributed across layers
for the baseline architecture, leaving less room for improvement.

57

Figure 3.15: Improvement in (a) communication energy of the proposed
energy-aware NoC optimization with respect to the baseline (SRAM) and
(b) energy-area product of the generated SRAM-based architecture with
respect to the baseline (SRAM).

Baseline Architecture: We utilize a crossbar-based multi-tiled IMC archi-
tecture to evaluate our proposed approach. Analog MAC computation is
performed along the bitline, the analog voltage/current is digitized with
a 4-bit flash ADC, a sample and hold circuit, and a shift and add circuit
(read-out circuit) at the column periphery. 8 columns are multiplexed
together to one read-out circuit to reduce chip area. Sequential input
signalling is employed to do away with the DAC. Each tile consists of 4
compute elements (CEs) and each CE consists of 4 processing elements
(PEs) or crossbar arrays [41]. We consider 32nm technology node [183],
1GHz frequency of operation, and a parallel read-out for the crossbar [188].
A mesh-based NoC with bus width of 32 bits and one router-per-tile is
considered for the interconnect for the baseline architecture.

58

Le
Net NiN

Squ
ee

zeN
et

ResN
et-

15
2

ResN
et-

50

VGG-16

VGG-19

Den
seN

et

(10
0,2

4)

106

107

108

109

1010

1011

(d)(c)

(b)

 64x64 128x128 256x256 512x512

En
er

gy
 (p

J)

(a)
Le

Net NiN

Squ
ee

zeN
et

ResN
et-

15
2

ResN
et-

50

VGG-16

VGG-19

Den
seN

et

(10
0,2

4)

104

105

106

107

108

De
la

y
(n

s)

Le
Net NiN

Squ
ee

zeN
et

ResN
et-

15
2

ResN
et-

50

VGG-16

VGG-19

Den
seN

et

(10
0,2

4)

0

200

400

600

800

1000

Ar
ea

 (m
m

2)

Le
Net NiN

Squ
ee

zeN
et

ResN
et-

15
2

ResN
et-

50

VGG-16

VGG-19

Den
seN

et

(10
0,2

4)

1011

1013

1015

1017

1019

1021

ED
AP

 (m
m

2 .p
J.

ns
)

Figure 3.16: Performance of the baseline SRAM-based IMC architecture
for different DNNs with different crossbar size. We observe that a crossbar
size of 128×128 or 256×256 performs better (with mesh-NoC) than other
crossbar sizes.

Optimal Size of Crossbar Array

In this section, we show the area, energy, and latency comparison of
different DNNs with the baseline IMC architecture having different sized
crossbars. The performance of IMC architecture for different DNNs vary
with number of layers, connection density (number of connections per
neuron) and number of parameters of the DNN. We consider SRAM-
based bitcell/array design [41]. Figure 3.16 shows the comparison of
energy, delay, area, and energy-delay-area product (EDAP) of crossbar
size varying from 64×64 to 512×512. In each of the subfigures, the DNNs
are presented in increasing order of area (LeNet has the lowest area and
is at the left end while DenseNet(100,24) has the highest area and is at

59

Figure 3.17: Improvement in communication latency for each layer of
VGG-19.

Figure 3.18: Improvement in communication latency for each layer of
ResNet-50.

the right end). Figure 3.16(a) shows the energy consumption for different
DNNs with different crossbar sizes. We observe that a crossbar size of
256×256 has the lowest energy consumption for 5 out of the 8 DNNs we
evaluated. The IMC architecture with a crossbar size of 64×64 has poor
performance in terms of energy consumption, inference latency, and area as
shown in Figure 3.16(a), 3.16(b), and 3.16(c) respectively. Figure 3.16(d)
shows the energy-delay-area product (EDAP) of different DNNs with
different crossbar sizes. We observe that the architecture with a crossbar
size of 128×128 and 256×256 has better performance in terms of EDAP for
almost all DNNs. We observe a similar trend for IMC architecture with
ReRAM-based crossbar arrays. Since larger crossbar size results in the

60

Figure 3.19: Improvement in communication latency for different DNNs
(with crossbar size of 256×256) and weights and activation precision with
respect to mesh-NoC for cmesh [183] and the proposed approach.

chip being more compact, moving forward, we choose a crossbar size of
256×256 for all experiments. We also show some representative results
with a crossbar size of 128×128.

Layer-wise Comparison of Communication Latency

In this section, we show the improvement in communication latency with
the proposed latency-optimized NoC (with an IMC architecture of 8-bit
precision) for different layers of VGG-19 and ResNet-50. Figure 3.17 com-
pares the communication latency of VGG-19 between the IMC architectures
with the proposed NoC and the baseline mesh-NoC. We observe that the
improvement in communication latency for the first 4 layers of VGG-19 is
significant. Improvement in communication latency is highest between
the first two layers of VGG-19, which is 86%.

We also observe significant improvement in communication latency
for different layers of ResNet-50. Figure 3.18 shows the improvement for
a few representative layers of ResNet-50 (we limit it for better visibility).
The maximum improvement is seen between layer 42 and layer 43, which
is 96%. The improvement in communication latency for each layer con-
tributes to the improvement in total communication latency as shown

61

Figure 3.20: Improvement in communication latency with proposed NoC
with respect to mesh for crossbar size of 128×128.

Figure 3.21: Comparison of interconnect power consumption with different
techniques.

in the next section. Such high improvement stems from the proposed
latency-optimized NoC and the efficient distribution of routers among
layers as discussed in Section 3.3.

Overall Improvement in Communication Performance

Next, we evaluate the proposed latency-optimized NoC-based IMC archi-
tecture for different DNNs. We compare the total communication latency

62

Figure 3.22: Interconnect EDAP comparison for different DNNs.

of the proposed NoC with the cmesh interconnect proposed in [183].
Figure 3.19 shows the comparison of communication latency for three dif-
ferent data precisions (weights and activations): 4-bit, 8-bit, and 16-bit. In
this case, we consider an IMC architecture with a crossbar size of 256×256.
The communication latency values are normalized with respect to the com-
munication latency values obtained with the baseline NoC. We observe
that the communication latency for the cmesh interconnect is similar to
that of the baseline NoC for LeNet, NiN, DenseNet (100,24), and ResNet-
152. The cmesh-based IMC architecture performs significantly better for
VGG-16, VGG-19, and ResNet-50. Specifically, for ResNet-50, on average,
the cmesh interconnect achieves 57% improvement in communication
latency with respect to the baseline mesh-NoC.

Our proposed latency-optimized NoC reduces the communication
latency significantly both with respect to baseline NoC and cmesh-based
NoC as shown in Figure 3.19. With respect to cmesh-based NoC, there is
a 20%-80% improvement for different DNNs with different bit precisions.
Highest improvement with respect to the baseline NoC is observed for
ResNet-50 with a 4-bit data precision. On average, the proposed latency
optimized NoC improves the communication latency by 62% with respect
to mesh-NoC, and 57% with respect to cmesh interconnect. Since our

63

proposed NoC architecture achieves minimum latency, there is a significant
improvement in communication latency with respect to state-of-the-art
works.

In Figure 3.20, we show the improvement in communication latency
with the proposed NoC with respect to mesh-NoC for an IMC architecture
with a crossbar size of 128×128 and 8-bit precision. We observe that
the improvement in communication latency follows a similar trend as the
crossbar size of 256×256. Therefore, the improvement due to the proposed
latency-optimized NoC is independent of crossbar size.

Figure 3.21 presents the comparison of interconnect power consump-
tion for an IMC architecture with 8-bit precision for both weights and
activations. Our proposed latency-optimized NoC achieves up to 4.6×
improvement in interconnect power consumption with respect to baseline
mesh-NoC. The power consumption with the proposed interconnect for
ResNet-152 is higher than the baseline mesh-NoC due to the use of higher
number of routers. However, this results in 3.32× improvement in inter-
connect latency with the proposed interconnect. We achieve 2.26×–47×
improvement in power consumption as compared to the cmesh intercon-
nect. The improvement is highest for DenseNet and least for SqueezeNet.

To further understand the efficacy of the proposed NoC, we compare
the energy-delay-area product (EDAP) with respect to the baseline mesh-
NoC and cmesh interconnect for different DNNs. Figure 3.22 shows the
comparison for an IMC architecture with 8-bit precision for both weights
and activations. Our proposed latency-optimized NoC achieves up to
328× improvement in the EDAP of the interconnect with respect to base-
line mesh-NoC. We achieve EDAP improvement for the interconnect in
the range of 12×–6600× as compared to the cmesh interconnect. The
improvement is highest for VGG-19 and least for NiN. Since cmesh inter-
connect uses additional number of routers and links to reduce latency, it
results in higher area and energy. Therefore, the performance of cmesh

64

Figure 3.23: Overall improvement in (a) total inference latency and (b)
total EDAP of a SRAM-based IMC architecture with the proposed latency-
optimized interconnect with respect to the baseline.

interconnect is worse than mesh-NoC in terms of EDAP. The proposed
latency-optimized NoC provides a large improvement in communication
latency which results in reduced energy with reduced or comparable area.
Therefore, our proposed latency-optimized NoC architecture performs
significantly better in terms of area, energy and latency than both cmesh
interconnect and the baseline NoC.

Overall Improvement

In this section, we discuss the overall improvement in inference perfor-
mance for an SRAM-based IMC architecture with our proposed latency-
optimized NoC architecture. Figure 3.23(a) shows the improvement in

65

total inference latency with respect to the baseline architecture with mesh-
NoC. The improvement is in the range of 5%-25% for different DNNs. We
observe higher improvement for SqueezeNet and ResNet-152. These two
DNNs have a higher number of activations between layers compared to
other DNNs. Higher number of activation leads to higher communica-
tion volume, which in turn results in more congestion for mesh-NoC. In
contrast, our proposed latency-optimized NoC schedules the packets in
such a way that there is no congestion in the NoC leading to significant
improvement over mesh-NoC. The efficiency of IMC architecture with
mesh-NoC over [188, 175] is shown in [111]. Moreover, we observe that
our proposed NoC architecture results in 13%-85% improvement in infer-
ence latency with respect to the IMC architecture with bus-based H-Tree
interconnect [188, 147].

Figure 3.23(b) shows the improvement in total system EDAP for an
SRAM-based IMC architecture with proposed latency-optimized NoC for
all DNNs. Since improvement in inference latency is higher compared to
the improvement in energy and area, we observe that the improvement in
EDAP follows a similar trend as that of inference latency. On average, the
proposed latency optimized NoC delivers 9.8% improvement in overall
EDAP with respect to baseline architecture with mesh-NoC. Since intercon-
nect plays an important role in overall performance of an IMC architecture,
the proposed NoC architecture contributes to a considerable improvement
in overall inference performance for different DNNs.

Results with the Reconfigurable NoC

In this section, we show the results of our proposed reconfigurable NoC.
We identify two broad class of DNNs, namely, edge-based and cloud-
based DNNs. We categorize the DNNs based on its application on edge-
computing or cloud-computing based devices. We consider LeNet, Squeeze
Net, NiN, VGG-16 and VGG-19 in the category of edge-based DNNs and

66

Figure 3.24: Results of leave-one-out experiments with reconfigurable
NoC for edge computing- and cloud computing-based DNNs.

ResNet-50, ResNet-152 and DenseNet (100, 24) in the category of cloud-
based DNNs. We assume that the circuit part of the IMC architecture is
reconfigurable and supports the specific class of DNNs under consider-
ation. We perform leave-one-out experiment to evaluate our proposed
reconfigurable NoC. For example, while performing experiment for VGG-
19 (edge computing-based DNN), we assume that information of VGG-19
is not available at design time.

The number of layers for a reconfigurable NoC for edge-computing is
set at 26. For each layer, we set the number of routers as the maximum
number of routers required for all DNNs for that particular layer. For
example, for 1st layer, the optimal number of routers required for LeNet,
NiN, SqueezeNet, and VGG-16 are 4, 2, 5, and 4, respectively. Therefore,
we allocate 5 routers for 1st layer.

At runtime, on encountering the new DNN (VGG-19), we execute
Algorithm 1 to generate the NoC schedules and execute VGG-19 with
available resources on-chip. For fairness, we perform the same experiment
with multiple DNNs as shown in Figure 3.24. We observe that there is <5%
degradation in communication latency for VGG-19 and ResNet-50, while
other DNNs have the same performance as that of the custom NoC. Since

67

the optimal number of routers required for a few layers of the DNN may
not be present on-chip, there might be a degradation in communication
latency with respect to custom NoC. For example, for the experiment with
VGG-19, 5 routers are allocated for the 1st layer. However, the custom NoC
optimized for VGG-19 requires 6 routers. Since it can use up to 5 routers
for the first layer, the communication latency of VGG-19 with reconfig-
urable NoC is more than the custom NoC. Still, for VGG-19 and ResNet-50,
the proposed reconfigurable NoC performs significantly better than the
baseline mesh-NoC as shown in Figure 3.24. We also observe that the
runtime overhead of the proposed algorithm ranges from 0.049s (LeNet)
to 49.93s (DenseNet). However, the overhead is negligible considering
that the reconfiguration is a one-time effort for each DNN. Therefore, the
proposed algorithm reconfigures the available NoC resources depending
on the DNN being executed and provides significant benefit with respect
to the baseline mesh-NoC.

68

4 communication-aware hardware accelerators
for graph convolutional networks (gcns)

4.1 Background and Motivation
Graph convolutional networks (GCNs) have shown tremendous success
for various applications, including node classification, social recommen-
dations, and link predictions [58, 217, 47]. Their powerful learning capa-
bilities on graphs have attracted attention to additional research areas like
image processing and job scheduling [204, 146]. Consequently, leading
technology companies, including Google and Facebook, have developed
libraries and computing systems for GCNs [123, 1], stimulating further
research on joint hardware and algorithm optimization.

GCNs operate on graphs by preserving their interconnections. They
have irregular data patterns since the relation between the nodes, i.e., the
edge connections, do not necessarily follow a specific pattern. In strong
contrast, classical convolutional neural networks (CNNs) are optimized
for regular data patterns, which prevents them from capturing the con-
nectivity information in the graph. GCNs use a neighbor aggregation
scheme that computes each node’s features using a recursive aggregation
and transformation operation. The aggregation process depends on the
graph structure, while the transformation process uses a technique simi-
lar to CNN computations. These processes repeat until embeddings for
each node are generated at the end. As the data is sparse, irregular, and
high dimensional, general-purpose platforms like CPU and GPU require
energy-intensive memory accesses even if they use complex caching and
prefetching techniques [46]. Hence, the state-of-the-art GCN models are
large and complex [68, 74, 105]. Multiple software-based techniques have
been proposed to reduce the computation by utilizing the sparsity of the
graph [195, 131]. However, GCN execution still suffers from high latency

69

and energy consumption.
The prevalence and computational complexity of GCNs call for high-

performance and energy-efficient hardware accelerators. In contrast to soft-
ware implementations, hardware accelerators perform GCN computations
with significantly lower latency and higher energy efficiency [213, 64, 10].
Due to this potential, a couple of recent studies proposed GCN accelera-
tors [213, 128]. These techniques implement systolic array-based architec-
tures to perform the computations. Since this approach requires a large
number of weights, the resulting GCN hardware accelerators need a sub-
stantial number of memory accesses to fetch the weights from off-chip
memory. In turn, frequent off-chip memory accesses lead to higher latency
and energy consumption as off-chip memory access consumes on average
1,000×more energy than computation [78]. Therefore, there is a critical
need to minimize the latency and energy consumption due to the off-chip
memory accesses in GCN accelerators.

In-memory computing (IMC) decreases memory access-related la-
tency and energy consumption by integrating computation with memory
accesse [188]. A notable example is the crossbar-based IMC architecture,
which provides a significant throughput boost for hardware acceleration
by storing the weights on the chip. However, crossbar-based in-memory
computing dramatically increases the volume of on-chip communication
when all weights and activations are stored on-chip. In turn, the on-chip
communication energy also increases exorbitantly. We implemented an
IMC-based GCN accelerator baseline for popular benchmarks to quantify
this effect. Each node in the GCN is implemented using a compute element
(CE) (array of IMC crossbars) that performs the required operations. The
CEs that make up the design are interconnected by a 2D mesh network-
on-chip (NoC) through dedicated routers. GCNs consist of thousands of
nodes. The connections between the nodes enable message passing. The
message passing between the nodes result in high communication volume

70

Figure 4.1: Communication energy with a baseline IMC-based GCN accel-
erator. In the baseline architecture, the number of compute elements is
equal to the number of GCN nodes and compute elements are intercon-
nected by a 2D mesh NoC through a dedicated router. The x-axis is sorted
by increasing number of GCN nodes.

for GCN accelerators. For example, the Nell dataset with 65755 nodes
results in up to 2.7 TB of data communicated between nodes. The high
volume of communication data increases communication energy consump-
tion. Figure 4.1 shows that the communication energy increases with the
number of GCN nodes. Furthermore, larger GCNs require more compute
elements and routers, leading to increased chip area. Therefore, designing
an efficient on-chip communication architecture is crucial for the in-memory
acceleration of GCNs.

This work proposes a communication-aware in-memory computing
architecture (COIN) for GCN hardware acceleration. The COIN architec-
ture distributes the GCN computations into multiple compute elements
called CEs. Each CE utilizes RRAM-based crossbars for computation, sig-
nificantly reducing frequent off-chip memory accesses. Furthermore, it
considers the intra- and inter-CE communications to design an optimized

71

on-chip interconnection network. Specifically, we construct an objective
function that represents the energy consumption of communication. We
show that the objective function is convex. Then, we minimize the ob-
jective function to obtain the number of CEs. Note that the proposed
methodology is also applicable to SRAM-based IMC.

The major contributions of this work are as follows:

• A novel RRAM-based IMC architecture, COIN, for GCN acceleration
that utilizes a communication-aware IMC architecture and a novel
dataflow,

• An methodology to determine the optimal number of compute ele-
ments (CEs) in COIN that ensures a balance between intra-CE and
inter-CE data communication for GCN acceleration,

• Experimental evaluation across popular graph datasets for GCN and
comparison with respect to state-of-the-art GPUs and accelerator.
COIN achieves up to 105× lower energy consumption with respect
to state-of-the-art GCN accelerator.

Graph processing accelerators have recently attracted attention due to
their significant impact potential. GraphR [189] graph processing accel-
erator uses two components: memory and graph engine, both based on
resistive random access memory. It performs the graph computations in
matrix format without optimizing sparsity. The technique shows around
16× speedup compared to CPU baseline systems. A more recent graph
processing accelerator, GraphS [8], uses spin-orbit torque magnetic ran-
dom access memory (SOT-MRAM) for parallel computations to accelerate
graph processing applications. It achieves around 5× speedup compared
to processing depending on DRAM acceleration. GCNs involve convolu-
tion operations in addition to graph processing. Therefore, accelerators that
target only graph processing are not suitable for GCNs.

72

A few recent studies propose GCN hardware accelerator architec-
tures [213, 64]. For example, HyGCN [213] uses a hybrid system to in-
corporate convolution operation and tackle the irregularity of the GCN
structures. It first divides the computations into two as aggregation and
combination to exploit different levels of parallelism. Then, a task sched-
uler is used to exploit edge-level parallelism by sending edge processing
loads onto single instruction multiple data cores. The combination phase
performs the transformation process by utilizing a systolic-array structure.
Main memory accesses take up a significant portion of the total execution
time, although the HyGCN employs multiple optimizations to reduce
DRAM accesses. Similarly, the GRIP [104] architecture also divides the
GCN computations into aggregation and combination engines. It em-
ploys a parallel prefetch-and-reduce engine to handle irregular data for
aggregation. Another recent technique, EnGN [128], uses a ring-edge-
reduce-based approach for data transfer. This approach sends the output
data to the subsequent processing unit in a physical ring system for the ag-
gregation phase. However, most of the execution time comes from DRAM
accesses as EnGN utilizes the main memory to load the weights to process.
Similarly, Rubik [42] uses graph reordering, mapping-aware data reuse to
achieve a better graph-level data locality. It uses a customized cache design
for graph-level data reuse [3]. Another recent proposal, AWB-GCN, stores
the adjacency matrix and the weights on off-chip memory [64]. The sparse
matrix multiplication kernel periodically accesses the off-chip memory
and performs the computation. It requires up to 503 GBps off-chip mem-
ory bandwidth to fully utilize the hardware. A critical drawback of prior
HW accelerators is large number of off-chip memory accesses, which increase the
latency and energy consumption.

IMC-based hardware accelerators reduce off-chip memory accesses
by performing computation inside the memory element. Thus, RRAM
and SRAM-based IMC accelerators have been proposed for DNNs in the

73

literature [175, 188]. However, IMC increases on-chip data volume, which
increases latency and energy due to on-chip communication [141, 112,
114, 111]. The high density and complexity of GCNs make the on-chip
communication for IMC-based accelerators even more critical. Authors
in [207, 38] proposed an IMC-based accelerator for GCN. However, these
technique does not address the issue of the on-chip communication per-
formance of GCN accelerators. Recently, a RRAM-based 3D NoC-enabled
accelerator for GNN training ReGraphX is proposed [10]. The authors
show that the proposed architecture is more energy-efficient than conven-
tional GPUs. More detailed survey of communication-aware IMC-based
accelerators can be found in [140, 92].

To address the limitations of prior approaches, we propose a commu-
nication aware in-memory computing-based accelerator for GCNs. We
first identify that the large data volume in GCN results in high latency and
high energy consumption due to on-chip communication. Therefore, we
co-optimize the communication energy and latency. We determine the op-
timal IMC architecture for GCN acceleration, COIN through this optimiza-
tion. The communication-aware interconnect, and IMC-based computing
elements significantly improve overall latency and energy for GCN acceler-
ation. To the best of our knowledge, This is the first communication-aware
in-memory computing-based GCN accelerator.

Background on Graph Convolutional Networks

An increasing amount of data is now represented in the form of graphs.
Deep learning is effective at capturing the patterns in the Euclidean space,
but the inherent irregularity of graphs makes them unsuitable for classical
deep learning techniques. This limitation has led to advancements in
GCNs, whose structure and operations are illustrated in Figure 4.2. GCNs
maintain the graph information and can be considered as a generalized
version of regular convolutional networks.

74

Figure 4.2: (a) An example input graph, (b) Graph Convolutional Network
model.

GCN computations are divided into two stages. First, each node ag-
gregates the feature information from all neighbors (node 2, 4, 6, 7, 8 in
Figure 4.2(a)) with its own data (node 3) during the aggregation stage.
For example, the Z matrix in Figure 4.2(b) represents the aggregated
node features from node 3 and its neighbors shown in Figure 4.2(a). As
the aggregation is done by summation or averaging, the output of the
aggregation stage preserves the feature dimensions, M× 1, where M is
the number of input features. The aggregation stage can also consider a
weighted average of neighbors’ features using their node degrees [105].
For example, the GCN can put more weights on the neighbor nodes with
lower degrees to reduce the impact of high-degree nodes.

The second stage of GCN is the feature extraction stage. It is similar to
regular convolutional neural network computations. The result of the
aggregation stage (Z in Figure 4.2(b)) is fed into a multi-layer perceptron
(MLP) based model. After that, an activation function like ReLU is applied.
Finally, the O matrix (1× P, where P represents the number of outputs in
Figure 4.2(b)), is produced as the output of the feature extraction stage.
These two stages repeat iteratively, where the number of layers determines
the farthest distance a node feature can travel. For example, for a GCN
with a single layer, each node gets information from only its neighbors. A
typical GCN uses 2–3 layers [105].

75

Feature

Extraction

Aggregation

(a) (b) (c)

CE CE

CE CE CE

CE CE CE

CE
R

R

R

R

R

R

R

R

R

BL BL BL BL
WL

WL

WL

SHIFT & ADD

ADC

P
E

 B
U

F
F

E
R

D
E

C
O

D
E

R
 &

 D
R

IV
E

R

MUX

BL BL BL BL
WL

WL

WL

SHIFT & ADD

ADC

P
E

 B
U

F
F

E
R

D
E

C
O

D
E

R
 &

 D
R

IV
E

R

MUX

CE Buffer

Activation Unit

T T T TT T T T

T T T TT T T T

N
o

C
 R

o
u

te
r

T T T TT T T T

T T T TT T T T

R R R RR R R R

R R R RR R R R

R R R RR R R R

R R R RR R R R

PE PE PE PEPE PE PE PE

PE PE PE PEPE PE PE PE

PE PE PE PEPE PE PE PE

PE PE PE PEPE PE PE PE

(d)

G
lo

b
a

l
B

u
ff

e
r

Figure 4.3: Overview of the COIN architecture for GCN acceleration. Each
compute element (CE) consists of an array of processing elements (PEs) or
RRAM-based IMC crossbar arrays connected by an NoC-mesh. A subset of
the PEs performs the aggregation operation while the remaining performs
the feature extraction. Aggregation PEs store the adjacency matrix while
the feature extraction PEs store the layer weights.

IMC-based graph convolutional networks can suffer from significant
on-chip communication overhead, especially when they have large graph
sizes. For example, the NELL dataset [33] has 65,755 nodes, resulting in
an adjacency matrix of size 65,755×65,755. The large adjacency matrix
and corresponding computations incur a significant on-chip communi-
cation overhead. Hence, there is an urgent need for an optimized IMC
architecture that exploits the parallelism within the GCN operations while
considering the on-chip communication overhead.

4.2 The Proposed COIN Architecture

Finding the Number of Compute Elements (CEs)

IMC-based architecture reduces off-chip memory accesses at the expense
of increased on-chip communication volume, leading to higher commu-
nication energy consumption and latency. As illustrated in Figure 4.1,
on-chip communication itself consumes 320J of energy for the Nell dataset

76

with a baseline architecture. Both the baseline and proposed COIN ar-
chitecture perform the GCN computations in dedicated IMC compute
elements. Furthermore, in the baseline design each IMC element is con-
nected with a dedicated router in a 2D mesh NoC. As a result, energy
consumption and communication latency of the baseline design can be
prohibitive for GCNs that process large datasets, such as the Nell dataset
with 65755 nodes. Therefore, there is a need to optimize the number of
CEs to minimize the on-chip communication volume, thus the energy
consumption and latency.

This section presents an optimization technique to determine the opti-
mal number of CEs by considering both intra- and inter-CE communication
volume. First, we show a canonical example illustrating intra- and inter-CE
communication volume. Then, we construct an objective function that
captures total communication energy (both intra- and inter-CE) for a GCN.
Finally, we employ the interior point algorithm to minimize the objective
function obtaining the optimal number of CEs.

Figure 4.4: A canonical graph example for intra-CE and inter-CE commu-
nication.

77

An illustrative canonical example

We take a canonical example to illustrate the communication between
two CEs (inter-CE) as well inside a CE (intra-CE). Figure 4.4(a) shows a
graph with 8 nodes. Each node has a convolutional network with L hidden
layers embedded to it. The output of the convolutional network after each
layer at each node is communicated to the nodes located at the neighbor.
Therefore, the communication between neighbors generates a communi-
cation volume. The bidirectional communication volume between node-i
to node-j is represented as vij.

Let us assume, there are two CEs (CE-1 and CE-2) in the hardware.
Let us also assume that node 1, 2, 3, and 4 are mapped to CE-1 and node
5, 6, 7, and 8 are mapped to CE-2 as shown in Figure 4.4(b). For the sake
of simplicity, we consider vij are all equal (vij = v, ∀i, j). The connec-
tions inside each CE are shown in blue solid lines. Since there are total 4
connections inside CE-1, we obtain 8v as the intra-CE communication vol-
ume for CE-1. Similarly, 2 connections inside CE-2 makes communication
volume as 4v . The graph in Figure 4.4(b) has four connections between
CE-1 and CE-2: 2–5, 3–6, 3–7, 3–8 shown in dashed black lines. Therefore,
the total communication volume is 8v between CE-1 and CE-2 (intra-CE
communication).

Constructing the objective function

Suppose the target GCN has N nodes each implementing a convolutional
network with L layers, where L,N ∈ Z+. We denote the number of input
activation bits of layer l as a(l) for 1 ⩽ l ⩽ L. We note that, the com-
munication volume between nodes (vij) appears due to the activation
bits. The number of output activation bits of layer l can be expressed as
a(l+ 1) ∈ Z+ since it equals to the number of input activation bits of the
succeeding layer. Finally, let the number of CEs be denoted by the variable

78

k ∈ Z+. Therefore, number of nodes mapped onto each CE is N
k

. The
objective function has two components which are described next.

Intra-CE Communication Energy: The first part of the objective function
accounts for the intra-CE communication energy. The number of CEs
dictates the communication volume inside each CE. Remember that the
number of input activation bits to each node for lth layer is a(l). Since we
consider sparse connections between nodes, we denote the probability of
having a connection between two nodes in CE-m as p(1)

m . Since there are N
k

number of nodes mapped to each CE, there are total ∑k
m=1(

N
k
)(N

k
− 1)p(1)

m

transactions between all nodes inside a CE. Hence, the total number of
output activation bits within the CE after the lth layer of operation is∑k

m=1(
N
k
)(N

k
−1)p(1)

m a(l+1). We add the whole expression for L−1 layers
to take account of the output activations for each layer. Finally, assuming
energy per bit is proportional to square root of number of nodes per CE,
we obtain the total intra-CE communication energy as follows:

Eintra−CE(k) =

k∑
m=1

N

k

(N
k

− 1
)
p(1)
m

L−1∑
l=1

a(l+ 1)k
(N
k

) 1
2 (4.1)

Inter-CE Communication Energy: The second part of the objective func-
tion accounts for the inter-CE communication energy. The number of
CEs in the system is a key contributor to inter-CE communication volume.
As a reminder, each CE implements the functionality of N

k
nodes of the

target GCN. We denote the probability of having a connection between
two nodes mapped in CE-i and CE-j as p

(2)
ij . Since each node generates

a(l+ 1) output activation bits after processing the lth layer between CE-i
and CE-j, the number of output activation bits generated is N

k
N
k
a(l+1)p(2)

ij .
We note that, all CEs generate output activation bits to (k− 1) other CEs.
Therefore, the total inter-CE communication volume is obtained by adding
the summations to take account of all CE pairs. Finally, assuming that

79

the energy per bit for inter-CE communication is proportional to square
root of number of CEs (k 1

2) [90], we obtain the total inter-CE energy by
multiplying the whole expression by k

1
2 as follows:

Einter−CE(k) =

k∑
i=1

k∑
j=1
j̸=i

(N
k

)(N
k

)
p
(2)
ij

(
L−1∑
l=1

a(l+ 1)
)
k

1
2 (4.2)

Finally, we obtain the total communication energy by adding intra-CE
(Equation 4.1) and inter-CE (Equation 4.2) communication energy as
shown in Equation 4.3.

E(k) = Eintra−CE(k) + Einter−CE(k) (4.3)

Solving the objective function

Our goal is to minimize the objective function E(k) with constraints in
Equation 4.4. As a reminder, each CE is connected to a NoC router. Hence,
the number of NoC routers is equal to the number of CEs. The constraint
in Equation 4.4 states that the number of routers in the NoC (k) is positive
and is linear on k. In Appendix A, we show that E(k) is convex. Since E(k)

is a convex function with linear constraint, we can apply any standard
algorithm to solve a convex optimization problem. In this work, we use
the interior point algorithm [98] to solve Equation 4.3 with constraints in
Equation 4.4. We use this algorithm since it provides a solution in poly-
nomial time. Specifically, it takes only 10ms to obtain a global minimum.
Based on the result, we consider a 4×4 mesh NoC to connect CEs i.e. total number
of CEs in COIN is 16. With 16 CEs, COIN consists of 30 MB of memory
on-chip.

80

minimize
k

E(k)

subject to k > 0.
(4.4)

Proposed Mapping and Dataflow

Mapping of GCN to the RRAM-based IMC crossbar arrays

This section describes the mapping of the adjacency matrix and layer
weight matrix onto the RRAM-based IMC crossbar arrays. Since adjacency
matrix remains the same for all the layers, we map the adjacency matrix
onto the RRAM-based IMC crossbars inside a CE and reuse for all layers.
Specifically, if a GCN consists of N nodes and the architecture has k CEs,
then the size of the adjacency matrix to be mapped in each CE is N×N

k
. We

note that the weight matrices are specific to each layer and are smaller in
size. Therefore, the total number of IMC crossbar arrays required to map
the weight matrices is smaller than the number of IMC crossbar arrays
required to map the adjacency matrix. We further note that the mapping
of both (adjacency and weight) matrices is performed as is without any
matrix transformations.

Dataflow of the COIN architecture

We propose a layer-wise operation for the inference with COIN, as illus-
trated in Figure 4.5. In the beginning, the adjacency matrix and the weights
are loaded into the corresponding IMC crossbars from the off-chip mem-
ory. Then, the proposed layer-wise computations within each layer are
performed parallely (simultaneously within each CE), while across layers
are executed serially. We denote the input features to layer-i as Xi and
weights of layer-i as Wi. The feature extraction unit (IMC crossbar arrays)
performs the matrix multiplication between the feature matrix (Xi) and
the weight matrix (Wi) to generate the intermediate output Zi as shown

81

Data

Transfer

On-Chip Data Transfer

CE CE

CE CE CE

CE CE CE

CE

G
lo

b
a
l
B

u
ff

e
r R

R

R

R

R

R

R

R

R

CE CE

CE CE CE

CE CE CE

CE

G
lo

b
a
l
B

u
ff

e
r R

R

R

R

R

R

R

R

R

Feature Extraction (Zi = Xi * Wi) Aggregation (Oi = A * Zi)

Activation

Function

(a) (b)

(c)

In Use

Unused

CE Buffer

Activation Unit

T T T TT T T T

T T T TT T T T

N
o

C
 R

o
u

te
r

T T T TT T T T

T T T TT T T T

R R R RR R R R

R R R RR R R R

R R R RR R R R

R R R RR R R R

CE Buffer

Activation Unit

T T T T

T T T T

N
o

C
 R

o
u

te
r

T T T T

T T T T

R R R R

R R R R

R R R R

R R R R

CE Buffer

Activation Unit

T T T TT T T T

T T T TT T T T

N
o

C
 R

o
u

te
r

T T T TT T T T

T T T TT T T T

R R R RR R R R

R R R RR R R R

R R R RR R R R

R R R RR R R R

CE Buffer

Activation Unit

T T T T

T T T T

N
o

C
 R

o
u

te
r

T T T T

T T T T

R R R R

R R R R

R R R R

R R R R

Figure 4.5: Layer-wise execution dataflow of the proposed COIN architec-
ture. (a) shows feature extraction operation of layer-i in a CE, (b) shows
aggregation operation of layer-i in a CE, (c) shows the communication
between CEs.

in Figure 4.5(a). The weights are stored in the RRAM IMC crossbars in a
column-wise manner. The transposed form of the input feature matrixXi is
then provided to the crossbar array as the input vector across the wordlines.
Each input gets multiplied with the corresponding weight value stored in
the RRAM to generate the output. The computed result then accumulates
along the bitline (BL) in the current domain. Next, the analog current is
then converted to digital using an analog-to-digital converter (ADC). The

82

proposed COIN architecture does not utilize a digital-to-analog converter,
while it utilizes bit-serial computing for multi-bit inputs (shift and add
circuit performs the accumulation based on the positional value of the
input).

After that, the aggregation operation is performed. The adjacency
matrix is stored in the RRAM IMC crossbar arrays to form the aggregation
unit, similar to weights within the feature extraction operation. The input
of the aggregation unit is the transposed form of the intermediate output
(Zi) from the feature extraction operation. The aggregation unit performs
the matrix multiplication between the intermediate output Zi and the
adjacency matrix (A) to obtain Oi = A.Zi as shown in Figure 4.5(b). The
computation within the aggregation unit (IMC crossbar arrays) is similar
to that in the feature extraction step. The ‘shift and add’ unit inside PE
performs the addition on the aggregated output. Next, the ReLU operation
is performed on Oi to obtain the output from layer i across all CEs. Finally,
the output from layer i is communicated to all CEs via the NoC to perform
the computation for layer i+ 1 of the GCN, as shown in Figure 4.5(c).

Illustration on number of multiplication operations

The proposed dataflow helps to reduce the number of multiplication op-
erations and hence the communication between feature extraction and
aggregation unit within a CE. For example, let us consider the Nell dataset
and the operation of its first layer. The size of the adjacency matrix A

is 65755×65755, the size of the feature map is X1 65755×5414, and the
size of the weight matrix is W1 5414×16. If the aggregation operation is
performed first and then feature extraction, the total number multiplica-
tion operations are: 65755×65755×5414 (aggregation) + 65755×5414×16
(feature extraction) = 2.3×1013. At the same time, if feature extraction
is performed first and then aggregation (proposed approach), the total
number of multiplications performed is given by 65755×5414×16 (feature

83

Table 4.1: Properties for different GCN datasets
Cora Citeseer Pubmed Ext.

Cora Nell

Dataset
Type

Citation
Network

Citation
Network

Citation
Network

Citation
Network

Knowled.
Graph

Nodes 2708 3327 19717 19793 65755
Edges 10556 9228 88651 130622 266144

Features 1433 3703 500 8710 5414
Output

Labels 7 6 3 70 210
Layers 2 2 2 2 2

extraction) + 65755×65755×16 (aggregation) = 7.4×1010. Therefore, there
is a 311× reduction in the number of multiplication operations for Nell
with our proposed dataflow for COIN. The reduction comes from the
fewer multiplication operations in the aggregation stage.

4.3 Experimental Evaluation
This section present the area, latency, and energy consumption evaluations
of the proposed COIN architecture. This work assumes 32 nm process
technology and 1 GHz operating frequency.

Table 4.2: Summary of circuit level and NoC parameters
Circuit NoC

PE array size 128× 128 Bus width 32
Cell levels 2 bit/cell Routing algorithm X–Y
Flash ADC resolution 4 bits Number of router ports 5
Technology used RRAM Topology Mesh

84

Figure 4.6: Comparison of Energy Consumption (in log scale) of IMC
Elements between SRAM and RRAM-based designs.

Experimental Setup

Datasets: We evaluate the COIN architecture using widely used graph
datasets: Cora [149], Citeseer [68], Pubmed [105], Nell [33] and Extended
Cora [27]. Nell represents a knowledge graph dataset used to learn to
read the web, and other datasets are scientific publication citation datasets
for classification. Table 4.1 shows the details of these datasets.
Simulation framework: We customized an open-source simulator [110]
to incorporate GCN attributes and support the COIN architecture. The
inputs to the simulator include the GCN parameters, such as the number
of nodes, the graph structure of each node, and input/output features for
each layer. In addition, the simulator uses user inputs such as technology
node, RRAM-based IMC crossbar size, frequency of operation, NoC size,
NoC frequency, and the number of bits per RRAM cell, among others. The
performance of the computing elements is measured by customizing Neu-
roSim [41]. The lower-level components (e.g., buffers, ADC, multiplexers)
are simulated using the Predictive Technology Model (PTM) [221], and
verified against circuit simulation (e.g., SPICE), reaching more than 90%
accuracy. The communication performance is measured through a widely

85

used cycle-accurate NoC simulator, BookSim [90]. To this end, we devel-
oped a customized version of BookSim to evaluate the NoC performance
that supports trace-based cycle-accurate simulation. Since different GCNs
exhibit different graph structures, we first generate traces for a given GCN.
The traces consist of the source router, destination router, and generation
timestamps of each packet. Since each layer (also known as the iteration) of
the GCN is executed sequentially, we generate a separate trace file for each
layer. Then, we feed the traces to BookSim to evaluate the communication
performance. Finally, the performance of computation and communica-
tion components are combined to obtain the total performance. Table 4.2
summarizes the parameters used in COIN. The simulation framework is
publicly available in [180].
Comparison between SRAM and RRAM-based design: Figure 4.6 shows
the comparison of energy consumption of IMC elements between SRAM
and RRAM-based design across GCNs for different datasets. We note that
the energy consumption by communication remains the same irrespective
of the type of IMC elements used, since the volume of inter-CE and intra-
CE communication do not change with different types of IMC elements.
We observe that SRAM-based IMC elements consistently consume more
energy than RRAM-based IMC elements. On-average SRAM-based IMC
elements consume 2.1×more energy than RRAM-based IMC elements.
Since RRAM-based devices use analog computation, they are more energy-
efficient than SRAM-based devices. We note that the energy consumption
by communication remains the same irrespective of the type of IMC ele-
ments used, since the volume of inter-CE and intra-CE communication do
not change with different types of IMC element. Therefore, we consider
RRAM-based IMC elements for our architecture.

86

Figure 4.7: Accuracy with different quantization bits for weights and
activations for different datasets.

Experiments with Different Quantization Bits

This section evaluates the accuracy of the GCN for different datasets with
a varying number of quantization bits for weights and activations. We
used the GCN structure described by the authors in [105]. Deep Graph
Library (DGL) [206] with PyTorch backend and Nvidia Tesla V100 GPU
are during experiments. The accuracy for the Nell dataset increases from
55.9% to 65.4% when the number of quantization bits is increased from 2
to 32, as shown in Figure 4.7. For Extended Cora, the accuracy varies from
41% to 47.3%. For all other datasets, the difference between the minimum
and maximum accuracy is less than 3%. In the rest of the evaluations, we
consider 4-bit quantization for weights and activations since it provides
comparable accuracy with 32-bit precision.

Chip Area Evaluation

The total area of COIN is 17.43 mm2 with 16 CEs with 30 tiles per CE.
Figure 4.8 shows the area of different components of COIN responsible
for computation and communication. The components for in-memory

87

Figure 4.8: Different components of COIN and corresponding area.

Figure 4.9: Comparison of communication energy consumption with dif-
ferent NoC sizes for (a) Cora, (b) Citeseer, (c) Pubmed, (d) Extended
Cora and (e) Nell.

computing include ADC to convert analog multiplication results to digital
values, accumulators to perform addition operations (in Tile level), buffers
to store intermediate values, and peripheral circuits. We observe that the
accumulator occupies 27% of the total area. The NoC for inter-CE and intra-
CE communication occupy 0.16% and 0.11% of the total area respectively.

We also note that GCN for large datasets such as Nell or extended Cora
require multiple instances of the COIN chip. More precisely, Cora and
Citeseer require 1 chip, Pubmed requires 3 chips, extended Cora requires
20 chips, and Nell requires 45 chips. This design choice is widely adopted

88

for CNN accelerators (e.g. the work proposed in [183] uses up to 48 chips
for a single CNN where area of each chip is 86 mm2.)

Experiments with Different Mesh Sizes

In this section, we compare the communication energy consumption be-
tween different NoC sizes for GCNs with different dataset. Figure 4.9
shows the comparison. The NoC size is varied from 3×3 to 10×10. In
each case, the number of CEs is equal to the number of NoC routers.
We observe that 4×4 NoC (i.e. the design with 16 CEs) consumes least
communication energy for most of the dataset. For example, the least
communication energy consumption for Cora dataset is 2.7 µJ with 4×4
NoC. The communication energy consumption for the same dataset with
10×10 NoC is 5.6 µJ. Therefore, the results with different mesh sizes show
that 4×4 results in the least communication energy consumption for most
of the dataset which is aligned with our theoretical results.

Improvement with respect to Baseline

This section compares the performance of our proposed architecture
against a baseline design. We note that a baseline design is used to show
the efficacy of the proposed architecture due to the lack of prior work using IMC
architectures for GCN acceleration. In the baseline design, computation of
each GCN node is performed using an RRAM-based IMC crossbar array,
and every node is connected through a router to an NoC. In the baseline
architecture, for Cora dataset with 2708 nodes, the computations of all
2708 nodes are performed by individual IMC crossbar arrays, i.e., there are
2708 CEs. Each CE is connected through a router of the NoC. Figure 4.10
compares the total energy consumption of the baseline design and the
proposed COIN architecture for different datasets. We observe significant
improvement in energy consumption with COIN for all datasets. The

89

Figure 4.10: Comparison of total energy (in log scale) with respect to a
baseline architecture. In the baseline architecture, the number of compute
elements is equal to the number of GCN nodes and compute elements are
interconnected by a 2D mesh NoC through a dedicated router.

largest improvement (1100×) is obtained for the Citeseer dataset. The
GCN for the Nell dataset has the largest energy consumption (with both
architectures), since Nell dataset consists of the highest number of nodes.
In this case, the baseline design consumes more than 300J energy. How-
ever, the proposed COIN architecture reduces the energy consumption to
577 mJ.

We also show the percentage of the total communication energy con-
sumption for both baseline and the proposed architecture in Table 4.3.
The communication energy contributes to a significant portion of the total
energy with the baseline design. For example, the communication energy
makes up 96% and 99% of the total energy for Pubmed and Nell datasets,
respectively. With the COIN architecture, the communication energy is
7×10−3% and 6×10−4% of the total energy for Pubmed and Nell datasets.
Since Pubmed, Extended Cora, and Nell dataset exhibit higher sparsity
than Cora and Citeseer dataset [64], communication energy also con-
tributes lesser (for Pubmed, Extended Cora, and Nell) to the total energy

90

Table 4.3: Comparison of Percentage Contribution of Communication
Energy (%).

Datasets Cora Citeseer Pubmed Extended
Cora Nell

Baseline 43 44 96 58 99
COIN (Proposed) 4.7 5.3 0.007 0.003 0.0006

with our proposed architecture. The vast improvement in communication
energy comes from the proposed optimization.

Improvement in Communication Performance

This section evaluates the improvement in communication performance
with COIN for different datasets. We consider the same baseline architec-
ture as Section 4.3. Figure 4.11 shows the comparison of communication
energy between the baseline architecture and COIN. Since COIN optimizes
communication, there is a substantial improvement in communication
energy compared to the baseline architecture. For example, only communi-
cation itself consumes 9.2 J of energy to perform one inference in Pubmed
with baseline architecture. In contrast, COIN architecture consumes only
0.02 mJ communication energy (5 orders of magnitude improvement).
The improvement is the highest for the Nell dataset as expected (6 order
of magnitude) since it has the highest number of nodes, hence the largest
communication volume. We also show the comparison of communication
energy against c-mesh NoC since it has been used for accelerators targeted
to CNNs [183]. The comparison is shown in Figure 4.12. In this case, we
assume that c-mesh has 16 routers, i.e., the same number of routers as
COIN. C-mesh uses additional links and routers, which reduces latency
compared to 2D mesh. However, c-mesh has higher energy consumption
than COIN since it uses more resources. The largest communication en-
ergy saving is observed for the Nell dataset (1.3×) as shown in Figure 4.12.

91

Figure 4.11: Comparison of communication energy (in log scale) between
baseline and proposed COIN architecture.

Figure 4.12: Comparison of inter-CE communication energy between the
proposed architecture with c-mesh NoC and proposed COIN architecture
with mesh NoC.

Overall, COIN significantly reduces energy consumption compared to
both the baseline architecture and c-mesh NoC.

Figure 4.13 shows the comparison of energy-delay (EDP) product be-
tween the baseline and the proposed COIN architecture. Since COIN
shows significant improvement in communication energy and latency

92

Figure 4.13: Comparison of EDP (in log scale) for on-chip communication
between baseline and proposed COIN architecture.

Figure 4.14: Comparison of EDP for inter-CE communication across base-
line, proposed architecture with c-mesh NoC, and proposed COIN archi-
tecture. COIN achieves least EDP across all datasets.

compared to the baseline design, we also observe considerable EDP sav-
ings. For example, the Citeseer dataset shows seven orders of magnitude
improvement in communication EDP compared to the baseline design.
Similar to the results for energy, we also observe improvement in com-

93

Table 4.4: Comparison with Nvidia Quadro RTX-8000 GPU.
Cora Citeseer Pubmed Ext. Cora Nell

RTX COINImpr.
(×) RTX COINImpr.

(×) RTX COINImpr.
(×) RTX COINImpr.

(×) RTX COINImpr.
(×)

Energy (mJ) 62.2 0.05 1244 90.50 0.10 905 89.1 38.13 2.4 1787.3257.4 6.9 1504 577.1 2.6
Latency (ms)1.22 0.6 2 1.22 1.10 1.1 1.22 0.57 2.1 7.45 9.96 0.8 14.94 1.04 14.4
EDP (mJ.ms) 75.780.03 2526 110.680.11 1006 108.6521.56 5.1 13309 2564 5.2 22423601.4 37.3

Table 4.5: Configuration of the edge devices considered
CPU
Cores

Max CPU
Freq. (GHz) TOPs # GPU Tensor

Cores
Max GPU

Freq. (GHz)
Xavier NX 6 1.4 21 48 1.1
AGX Xavier 8 2.26 32 64 1.37

Figure 4.15: Comparison of energy (in log scale) between COIN and edge
devices. COIN consumes less energy than both Nvidia Jetson edge devices.

munication EDP with respect to c-mesh as shown in Figure 4.14. The
improvement compared to c-mesh is the highest for the Pubmed dataset
(30%). In summary, our proposed optimization in NoC enables notable
improvement in communication energy and EDP compared to the baseline
and a design with c-mesh NoC.

94

Comparison with GPU and Edge Devices

We perform a detailed comparison of the proposed COIN architecture
compared to state-of-the-art GPU – Nvidia Quadro RTX-8000 [2]. The
trained GCN model for each dataset is considered, and inference is per-
formed on the RTX-8000 GPU. We perform 2,000 inferences for the trained
model and sample the GPU power using Nvidia’s system management
interface (SMI) program. The power measurements are performed in
intervals of one second. Furthermore, we take the average of the measured
power values to generate the average power for the 2,000 GCN inferences.
The inference latency is then evaluated for the GCN using python’s time
function. Finally, the inference energy is evaluated by multiplying the
average power and the inference latency. We note that the same data
precision of 4-bits is used for the GPU performance evaluation.

Table 4.4 compares the energy consumption, latency and EDP between
COIN and RTX-8000. COIN shows significant improvement both in energy
consumption and EDP for all datasets compared to the GPU implementa-
tion. For example, COIN shows 2.4× lower energy than RTX-8000 for the

Figure 4.16: Comparison of latency (in log scale) between COIN and edge
devices. COIN incurs less latency than both Nvidia Jetson edge devices.

95

Figure 4.17: Comparison of EDP (in log scale) between COIN and edge
devices. We present the performance of COIN with both SRAM and
RRAM-based IMC elements. COIN with both kinds of devices outper-
forms both Xavier NX and AGX Xavier Nvidia Jetson devices across all
datasets.

Pubmed dataset. The most significant improvement in energy is observed
for Cora (1244×). Except the GCN for Extended Cora dataset, COIN
shows improvement in latency over RTX-8000 GPU. We also observe no-
table improvement in EDP with COIN compared to RTX-8000, as shown in
Table 4.4. For Cora, COIN achieves 2526× improvement compared to the
GPU. Therefore, the proposed architecture COIN with an optimized NoC
leads to significantly lower energy and EDP than state-of-the-art GPU.

We also compare the performance of our design against two edge de-
vices - 1) NVIDIA Jetson Xavier NX and 2) NVIDIA Jetson AGX Xavier.
Such a comparison justifies the use of the COIN architecture for edge
GCN inference at edge. Table 4.5 shows the configurations of these two
devices. We execute the GCN structures of corresponding datasets on the
edge devices and record the power value at each epoch of the inference
from the power sensor. The total execution time is also recorded while

96

executing the GCN. Figure 4.15 shows energy consumption of Xavier NX,
AGX Xavier, and COIN. We observe significant improvement in energy
consumption for all datasets. The improvement is highest for Citeseer
dataset. Specifically, for this dataset, COIN’s energy consumption is 1448×
and 331× lower than Xavier NX and AGX Xavier, respectively. Figure 4.16
compares latency between Xavier NX, AGX Xavier and COIN across differ-
ent datasets. COIN consistently incurs less latency than both edge devices.
The highest improvement in latency is observed for Nell dataset. COIN
incurs 232× and 200× less latency than Xavier NX and AGX Xavier re-
spectively. We also compare EDP between COIN and two edge devices. A
similar improvement in EDP is observed with COIN. Figure 4.17 shows
the comparison for EDP between COIN and edge devices. The EDP of
COIN is shown considering both SRAM and RRAM-based IMC elements.
On average, COIN achieves 70.7× and 50× improvement in EDP with
respect to Xavier NX and AGX Xavier respectively with SRAM-based IMC
elements. COIN with RRAM-based IMC elements shows 73.6× and 52.1×
improvement in EDP with respect to Xavier NX and AGX Xavier respec-
tively. The largest EDP improvement is observed for the Cora dataset
with RRAM-based IMC elements. In this case, COIN achieves 4 orders of
magnitude lower EDP than Xavier NX and 3 orders of magnitude lower
EDP than AGX Xavier. Therefore, irrespective of the type of IMC elements
used, our proposed COIN architecture achieves significantly lower energy
and EDP than state-of-the-art GPU and two edge devices for a wide range
of popular GCN datasets.

Comparison with State-of-the-art GCN Accelerator

This section compares the performance of our proposed COIN architec-
ture with a state-of-the-art GCN accelerator, ReGraphX [10] and AWB-
GCN [64].
Comparison with ReGraphX [10]: The architecture proposed in Re-

97

Table 4.6: Comparison of energy (mJ) between COIN and state-of-the-art
GCN accelerator [64].

Cora Citeseer Pubmed Nell
AWB-GCN [64] 2.28 3.69 31.5 439
AWB-GCN (scaled to 32nm) 5.27 8.54 73.0 1020
COIN (ours) 0.05 0.10 38.13 577.1
Improvement (×) 105 85.4 1.91 1.77

GraphX is composed of multiple processing elements (PEs; similar to
computing elements in COIN). Some of the PEs (V-PEs) store the weights
and are responsible for the feature extraction operation at GCN nodes (or
vertices). The other PEs (E-PEs) store the adjacency matrix of the GCN
and enable ‘message passing’ through the edges of the GCN. Similarly, in
ReGraphX-2D, we allocated a set of CEs for feature extraction (V-CEs) and
rest to store the adjacency matrix and enable message passing (E-CEs). To

Figure 4.18: Comparison of energy consumption (in log scale) between
2D version of ReGraphX [10] and COIN. The breakdown between com-
munication and computation energy is shown for both the architectures.

98

Table 4.7: Comparison of EDP (mJ-ms) between COIN and state-of-the-art
GCN accelerator [64].

Cora Citeseer Pubmed Nell
AWB-GCN [64] 0.04 0.11 7.26 1425
AWB-GCN (scaled to 32nm) 0.12 0.33 22.2 4358
COIN (ours) 0.03 0.11 21.58 601
Improvement (×) 4.68 3.09 1.03 7.25

have a fair comparison we consider a total of 16 CEs (same as COIN). 4
out of 16 CEs are V-CEs and 12 are E-CEs. The CEs are connected through
network-on-chip routers. All CEs consist of 128×128 RRAM crossbar ar-
rays as discussed in [12]. We consider 128×128 RRAM crossbar for COIN
too. For a fair comparison we evaluate the performance of ReGraphX-2D
through the same simulation environment as COIN.

Figure 4.18 shows the comparison of energy consumption between
ReGraphX-2D and COIN. Specifically, we show both computation and
communication components of both ReGraphX-2D and COIN. We observe
that COIN consumes less energy than the ReGraphX-2D for GCN of all
datasets we consider. On average, COIN consumes 8.7× less total energy
than ReGraphX-2D. We also observe that communication energy con-
sumed by COIN is consistently less than the ReGraphX-2D. For example,
the GCN for CORA dataset consumes 2.7 µJ and 3.9 µJ of communication
energy with COIN and ReGraphX-2D respectively. On average, COIN con-
sumes 1.5× less communication energy than ReGraphX-2D across different
datasets. In our proposed COIN architecture, the hierarchical commu-
nication network (inter-CE and intra-CE communication) enables more
parallel communication than ReGraphX-2D. Similar to communication
energy, COIN consumes less energy for computation as well compared to
ReGraphX-2D. On average, the computation energy consumed by COIN is
9× less than ReGraphX-2D. In COIN, the adjacency matrix is distributed to
more number of CEs compared to ReGraphx-2D. Therefore, the memory

99

utilization of COIN is higher than ReGraphx-2D. Hence, ReGraphX-2D
requires more in-memory computing (IMC) tiles than COIN which results
in higher computation energy consumption with ReGraphX-2D.
Comparison with AWB-GCN [64]: We note that we use 32 nm technology
to evaluate COIN. However, AWB-GCN uses Intel D5005 equipped with
Statix 10 SX FPGA. This FPGA incorporates 14 nm technology. Therefore,
we estimate the performance of AWB-GCN with 32 nm technology using
the technique described in [190, 182]. AWB-GCN stores the adjacency
matrix and the weights in off-chip memory. The sparse matrix multiplica-
tion kernel periodically accesses the off-chip memory and performs the
computation. Specifically, the AWB-GCN accelerator requires up to 503
Gbps off-chip memory bandwidth to fully utilize the hardware. Since
AWB-GCN uses off-chip memory, it suffers from high energy consump-
tion. In contrast, we use in-memory computing (IMC) to construct COIN
without requiring frequent off-chip memory access. Moreover, we incorpo-
rate an optimization technique to reduce on-chip communication energy.
The comparison in energy consumption between AWB-GCN and COIN
for different GCN datasets is shown in Table 4.6. We present both the
energy consumption reported in [64] and the energy consumption when
the technology node is scaled to 32nm in the table. The energy with the
Extended Cora dataset is not reported in AWB-GCN. Therefore, we cannot
compare the results for Extended Cora. The improvement is shown with
respect to the energy consumption of AWB-GCN when scaled to 32nm.
We observe that COIN provides significant improvement in energy for all
the datasets we consider. The most significant improvement is seen for
the Cora dataset (105×). On average, COIN shows a 13.2× improvement
in energy consumption over AWB-GCN.

Furthermore, the comparison in EDP between AWB-GCN and COIN
for different GCN datasets is shown in Table 4.7. Similar to Table 4.6, we
present both the EDP reported in [64] and the EDP when the technology

100

node is scaled to 32nm in the table. COIN shows improvement in EDP
for all the datasets we consider. The most significant improvement is seen
for the Nell dataset (7.25×). The vast improvement in energy consump-
tion as well as EDP comes from IMC-based hardware and our proposed
communication-aware technique to construct the GCN accelerator.

101

5 performance analysis of priority-aware nocs

5.1 Background and Motivation
Industrial many-core processors incorporate priority arbitration for the
routers in NoC [88]. Moreover, these designs execute bursty traffic since
real applications exhibit burstiness [25]. Accurate NoC performance mod-
els are required to perform design space exploration and accelerate full-
system simulations [102, 174]. Most existing analysis techniques assume
fair arbitration in routers, which does not hold for NoCs with priority
arbitration used in manycore processors, such as high-end servers [193]
and high performance computing (HPC) [88]. A recent technique targets
priority-aware NoCs [136], but it assumes that the input traffic follows
geometric distribution. While this assumption simplifies analytical mod-
els, it fails to capture the bursty behavior of real applications [25]. Indeed,
our evaluations show that the geometric distribution assumption leads
up to 60% error in latency estimation unless the bursty nature of appli-
cations is explicitly modeled. Therefore, there is a strong need for NoC
performance analysis techniques that consider both priority arbitration
and bursty traffic.

This work proposes a novel performance modeling technique for priority-
aware NoCs that takes bursty traffic into account. It first models the input
traffic as a generalized geometric (GGeo) discrete-time distribution that
includes a parameter for burstiness.

We achieve high scalability by employing the principle of maximum en-
tropy (ME) to transform the given queuing network into a near equivalent
set of individual queue nodes of multiple-classes with revised characteris-
tics (e.g., modifying service process). Furthermore, our solution involves
transformations to handle priority arbitration of the routers across a net-
work of queues. Finally, we construct analytical models of the transformed

102

Figure 5.1: Overview of the proposed methodology.

queue nodes to obtain end-to-end latency.
The proposed performance analysis technique is evaluated with SYSmark®

2014 SE [15], applications from SPEC CPU® 2006 [77] and SPEC CPU®

2017 [32] benchmark suites, as well as synthetic traffic. The proposed
technique has less than 10% modeling error with respect to an industrial
cycle-accurate NoC simulator.

The major contributions of this work are as follows:

• Accurate and scalable high-level performance modeling of priority-
based NoCs considering burstiness,

• Dynamic approximation of realistic bursty traffic via GGeo distribu-
tion,

• Thorough evaluations on industrial priority-based NoCs with syn-
thetic traffic and real applications.

103

Proposed Performance Analysis Flow

The primary target of the proposed model is to accelerate virtual plat-
forms [16] and full-system simulations [24, 167, 134] by replacing time
consuming NoC simulations with accurate lightweight analytical models.
At the beginning of the simulation, the proposed technique parses the
priority-based NoC topology to construct the analytical models, as shown
in Figure 5.1. The host, such as a virtual platform, maintains a record of
traffic load and the destination address for each node. It also periodically
(each 10K-100K cycles) sends the traffic injections of requesting nodes,
such as cores, to the proposed technique. Then, the proposed technique
applies the analytical models (steps 2 and 3 in Figure 5.1) to compute
the end-to-end latency. Whenever there is a new request from an end
node, the host system estimates the latency using the proposed model as
a function of the source-destination pair. That is, our model replaces the
cycle-by-cycle simulation of flits in NoCs.

Figure 5.2: (a) A system with two queues. Flits in Qhigh have higher
priority than flits in Qlow. (b) A system with N queues, where Qi has
higher priority than Qj for i < j

104

Basic Priority-Based Queuing Models

We assume a discrete time system in which micro-architectural events,
such as writing to a buffer, arbitration and switch traversal happen in the
integral number of clock cycles. Therefore, we develop queuing models
based on arrival process that follows geometric distribution, in contrast
to continuous time models that are based on Poisson (M for Markovian)
arrival assumption. More specifically, we adopt the Geo/G/1 model, in
which the inter-arrival time of the incoming flits to the queue follows
geometric distribution (denoted by Geo), service time of the queue follows
a general discrete-time distribution (denoted by G), and the queue has
one server (the ‘1’ in the Geo/G/1 notation). The proposed technique
estimates the end-to-end latency for realistic applications accurately, as we
demonstrate in Section 5.4. However, the accuracy is expected to drop if
the NoC operates close to its maximum load since the Geometric (similar
to Poisson) packet inter-arrival time assumption becomes invalid [158].

Performance analysis techniques in the literature [19, 91, 102] discuss
basic priority-based networks in which each priority class has a dedicated
queue, as illustrated in Figure 5.2(a). In this architecture, the flits in Qhigh

have higher priority than the flits in Qlow. That is, flits in Qlow will be
served only when Qhigh is empty and the server is ready to serve new flits.
Another example with N priority classes is shown in Figure 5.2(b). The
flits in Qi have higher priority than flits in Qj if i < j. The average waiting
time for each priority class Wi for 1 ⩽ i ⩽ N is known for continuous
time M/G/1 queues [19]. In the M/G/1 queuing system, flits arrive in the
queue following Poisson distribution (M) and the service time of the queue
follows general distribution (G). In this work, we first derive waiting time
expressions for discrete time Geo/G/1 queues. Then, we employ these
models to derive end-to-end NoC latency models.

The average waiting time of flits in a queue can be divided into two
parts: (1) waiting time due to the flits already buffered in the queue, and

105

(2) waiting time due to the flits which are in the middle of their service,
i.e., the residual time. The following lemma expresses the waiting time as
a function of input traffic and NoC parameters.
Lemma 1: Consider a queuing network with N priority classes as shown
in Figure 5.2(b). Suppose that we are given the injection rates λi, service
rates µi, residual time Ri, and server utilizations ρi for 1 ⩽ i ⩽ N, where
N ⩾ 2 Then, the waiting time of class-i flits Wi is given as:

Wi =


∑N

k=1 Rk

1−ρ1
, for i = 1∑N

k=1 Rk+
∑i−1

k=1

(
ρk+ρkWk

)
1−∑i

k=1 ρk
, for i > 1

(5.1)

The remaining details of the work is described in Appendix C of the
thesis and in the reference [136].

5.2 Proposed Network Transformations
This section describes two canonical queuing structures observed in priority-
based NoCs. We first describe these structures and explain why prior
analysis techniques fail to analyze them. Then, we present two novel
transformations and accurate analysis techniques.

Transformation 1: Split at High Priority Queue

Conceptual Illustration: Consider the structure shown in Figure 5.3(a).
As illustrated earlier, flits from traffic class-1 and 2 are already in the
network, while flits from traffic class-3 are waiting in Qlow to be admit-
ted. Since routers give priority to the flits in the network in industrial
NoCs, class-1 flits have higher priority than those in Qlow. To facilitate
the description of the proposed models, we represent this system by the
structure shown in Figure 5.3(b). In this figure, µi represents the service

106

rate of class-i for i = 1, 2, 3. If we use Equation 5.1 to obtain an analytical
model for the waiting time of traffic class-3, the resulting waiting time will
be highly pessimistic, as shown in Figure 5.4. The basic priority-based
queuing model overestimates the latency, since it assumes each class in
the network occupy separate queues. Hence, all flits in Q1 have higher
priority than those in Q2.
Proposed Transformation: The basic priority equations cannot be ap-
plied to this system since flit distribution of class-1 as seen by class-3 flits
will change depending on the presence of class-2 traffic. To address this
challenge, we propose a novel structural transformation, Figure 5.3(b) to
Figure 5.3(c). Comparison of the structures before and after the transfor-
mation reveals:

• The top portion (Q1 with its server) is identical to the original structure,
since µ1 and µ2 remain the same due to higher priority of class-1 over
class-3.

• The bottom portion (Q1‘ and Q2) forms a basic priority queue structure,
as highlighted by the red dotted box.

The basic priority queue structure is useful since we have already derived
its waiting time model in Equation 5.1. However, the arrival process at Q1‘
must be derived to apply this equation and ensure the equivalence of the
structures before and after the transformation.

Figure 5.3: Split at high priority: Structural Transformation.

107

0 0.05 0.1 0.15 0.2 0.25

Injection Rate (flits/cycle)

0

10

20

30

40

W
a
it

in
g

 T
im

e
 (

c
y
c
le

s
)

fo
r

C
la

s
s
-3

 F
li
ts

Simulation

Analytical (basic priority equation)

Analytical (proposed)

Figure 5.4: Comparison of simulation with the basic priority-based queu-
ing model and proposed analytical model.

We derive the second order moment of inter-departure time of class-
1 using the decomposition technique presented in [28]. These inter-
departure distributions are functions of inter-arrival distributions of all
traffic classes flowing in the same queue and service rate of the classes, as
illustrated in Figure 5.5. This technique first calculates the effective coeffi-
cient of variation at the input (C2

A) as the weighted sum of the coefficient
of variation of individual classes (C2

Ai
in Figure 5.5-Phase 1). Then, it finds

the effective coefficient of variation for the inter-departure time (C2
D) using

C2
A and the coefficient of variation for the service time (C2

B). In the final
phase, the coefficient of variation for inter-departure time of individual
classes is found, as illustrated in Figure 5.5(Phase 3). By calculating the
first two moments of the inter-arrival statistics of Q1‘ as λ1 and C2

D1 , we
ensure that the transformed structure in Figure 5.3(c) approximates the
original system. This decomposition enables us to find the residual time
for class-1 RQ1‘

1 as:

RQ1‘
1 =

1
2
ρ1
µ1

(
C2

D1 + C2
B

2

)
−

ρ1µ1
2 (5.2)

108

Figure 5.5: Decomposition technique: In phase 1, different traffic flows
merge into a single flow with an inter-arrival time CA; in phase 2, flits
flow into the queue and leave the queue with an inter-departure time CD;
in phase 3, flits split into different flows with individual inter-departure
time.

Proposed Analytical Model: The bottom part of the transformed system
in Figure 5.3(c) is the basic priority queue (marked with the dotted red
box). Therefore, the higher priority part of Equation 5.1 can be used to
express the waiting time of class-1 flits as:

WQ1‘
1 =

RQ1‘
1 + R3
1 − ρ1

(5.3)

where the residual time of class-1 flits RQ1‘
1 is found using Equation 5.2.

Subsequently, this result is substituted in the lower priority portion of
Equation 5.1 to find the waiting time for class-3 flits:

W3 =
RQ1‘

1 + R3 + ρ1 + ρ1W
Q1‘
1

1 − ρ1 − ρ3
(5.4)

We also note the waiting time of class-2 flits, W2, is not affected by this
transformation. Hence, we can express it as W2 =

R2
1−ρ2

, using Equation 5.1
for the degenerate case of N = 1.

Figure 5.4 shows that the waiting time calculated by the proposed
analytical model for flits of traffic class-3 is quite accurate with respect

109

to the waiting time obtained from the simulation. The average error in
waiting time of traffic class-3 is 2% for the system shown in Figure 5.3(a),
with a deterministic service time of two cycles.

Transformation 2: Split at Low Priority Queue

Conceptual Illustration: Consider the queuing system shown in Fig-
ure 5.6(a). In this system, class-1 flits (λ1) are waiting in Qhigh, while
class-2 flits (λ2) and class-3 flits (λ3) are waiting in Qlow. Class-1 and
class-3 flits share the same channel and compete for the same output,
while class-2 flits are sent to a separate output. Class-1 flits always win the
arbitration since they have higher priority. Similar to the previous trans-
formation, the queuing model in Figure 5.6(b) is used as an intermediate
representation to facilitate the discussion. In this system, Qhigh and Qlow

are represented as Q1 and Q2 respectively.
If we ignore the impact of class-1 traffic while modeling the waiting

time for class-3, the resulting analytical models will be highly optimistic,
as shown in Figure 5.7. Accounting for the impact of class-1 traffic on
class-2 is challenging, since only fraction of the flits in Q2 that compete
with class-1 are blocked. In other words, class-2 flits which go to the local
node are not directly blocked by class-1 flits. Hence, there is a need for a
new transformation that can address the split at the low-priority queue.

Figure 5.6: Split at low priority: Service Rate Transformation. µ∗ denotes
transformed service rate. The waiting time of class-1 flits depends on the
residual time of the class-3 flits, as shown in Equation 5.5.

110

0.05 0.1 0.15 0.2

Injection Rate (flits/cycle)

0

5

10

15

W
a
it

in
g

 T
im

e
 (

c
y
c
le

s
)

fo
r

C
la

s
s
-3

 F
li
ts

Simulation

Analytical (basic priority equation)

Analytical (proposed)

Figure 5.7: Comparison of simulation with the basic priority-based queu-
ing model and proposed analytical model.

Proposed Transformation: The high-priority flow (class-1) is not affected
by class-2 traffic since they do not share the same server. Therefore, the
waiting time of class-1 flits can be readily obtained using Equation 5.1 as:

W1 =
R1 + R3
1 − ρ1

(5.5)

Hence, we represent Q1 as a stand-alone queue, as shown in Figure 5.6(c).
However, the opposite is not true; class-1 flits affect both class-2 (indirectly)
and class-3 (directly). Therefore, we represent them using a new queue
with modified service rate statistics. To ensure that Figure 5.6(c) closely
approximates the original system, we characterize the effect on the service
rate of class-3 using a novel analytical model.
Proposed Analytical Model: Both the service time and residual time
of class-3 change due to the interaction with class-1. To quantify these
changes, we set λ2 = 0 such that the effect of class-2 is isolated. In this
case, the waiting time of class-3 flits can be found using Equation 5.1 as:

W3
∣∣∣
λ2=0

=
R1 + R3 + ρ1 + ρ1W1

1 − ρ1 − ρ3
(5.6)

We can find W3 also by using the modified service time (T∗
3) and residual

111

time R∗
3 of class-3. The probability that a class-3 flit cannot be served due

to class-1 is equal to server utilization ρ1. Moreover, there will be extra
utilization due to the residual effect of class-3 on class-1, i.e., λ1R3 flits in
Q1. Hence, the probability that a class-3 flit is delayed due to class-1 flits
is:

p = ρ1 + λ1R3 (5.7)

Each time class-3 flit is blocked by the class-1 flits, the extra delay will
be T1, i.e., class-1 service time. Since each flit can be blocked multiple
consecutive times, the additional busy period of serving class-3 (∆T3) is
expressed as:

∆T3 = T1p(1 − p) + 2T1p
2(1 − p) + + nT1p

n(1 − p) + · · ·

= T1
p

1 − p

(5.8)

Consequently, the modified service time (T∗
3) and utilization (ρ∗

3) of class-3
can be expressed as:

T∗
3 = T3 + ∆T3

ρ∗
3 = λ3T

∗
3 (5.9)

Suppose that the modified residual time of class-3 is denoted by R∗
3 .

We can plug R∗
3 , the modified utilization ρ∗

3 from Equation 5.9, and the
additional busy period ∆T3 from Equation 5.8 into Geo/G/1 model to
express the waiting time W3 as:

W3 =
R∗

3
1 − ρ∗

3
+ ∆T3 (5.10)

When λ2 is set to zero, this expression should give the class-3 waiting
time W3

∣∣∣
λ2=0

found in Equation 5.6. Hence, we can find the following

112

expression for R∗
3 by combining Equation 5.6 and Equation 5.10:

R∗
3 = (1 − ρ∗

3)(W3
∣∣∣
λ2=0

− ∆T3) (5.11)

Since the modified service time and residual times are computed, we can
apply the Geo/G/1 queuing model one more time to find the waiting time
of class-2 and class-3 flits as:

W2 =
R∗

3 + R2
1 − ρ∗

3 − ρ2

W3 =
R∗

3 + R2
1 − ρ∗

3 − ρ2
+ ∆T3 (5.12)

Figure 5.7 shows that the class-3 waiting time calculated using the pro-
posed analytical modeling technique is very close to simulation results.
The modeling error is within 4% using a deterministic service time of 2
cycles.

5.3 Generalization for Arbitrary Number of
Queues

In this section, we show how the proposed transformations are used to gen-
erate analytical models for priority-based NoCs with arbitrary topologies
and input traffic. Algorithm 1 describes the model generation technique,
which is a part of the proposed methodology to be used in a virtual plat-
form. This algorithm takes injection rates for all traffic classes, the NoC
topology, and the routing of individual traffic classes. Then, it uses the
transformations described in Section 5.2 iteratively to construct analytical
performance models for each traffic class.

First, Algorithm 1 extracts all traffic classes originating from a partic-
ular queue, as shown in line 6. Next, the waiting time for each of these

113

Algorithm 2: End-to-end queuing time calculation for different
traffic classes
1 Input: Injection rates for all traffic classes, NoC topology and

Traffic routing pattern
2 Output: Queuing time for all traffic classes
3 for n = 1: no. of queues do
4 For queuing time expression of the current queue:
5 Initialize: num1 ←0, den1 ←1
6 Get all classes in current queue
7 for i = 1: no. of classes do
8 Get all higher priority classes than current class
9 For reference queuing time (Wref) of current class:

10 Initialize: num2 ←Ri, den2 ←(1- ρi)
11 for j = 1:no. of higher priority classes do
12 Calculate coefficient of variation (CD) for current high

priority class
13 Calculate queuing time expression (Wij) and residual

time expression (Rij) using CD using Eq. 5.2, Eq. 5.3,
and Eq. 5.4

14 num2 ←num2 + Rij + ρij +Wijρij

15 den2 ←den2 − ρij

16 end
17 Wref =

num2
den2

(Eq. 5.6)
18 Modify service rate (T∗

i) of ithclass
19 Calculate residual time (R∗

i) using T∗
i and Wref using

Eq. 5.11
20 num1 ←num1 + R∗

i

21 den1 ←den1 - ρ∗
i

22 end
23 Queuing time of class-i in nth queue = num1

den1
+ ∆Ti

24 end

classes is computed separately, as each has a different dependency on
other classes due to priority arbitration. At line 8, all classes that have
higher priority than the current class are obtained. In lines 11–16, the

114

Figure 5.8: Applying the proposed methodology on a representative seg-
ment of a priority-based network. ST and RT denote Structural and Service
Rate Transformation, respectively. Red-dotted squares show the trans-
formed part from the previous step. Figure (a) shows the original queuing
system. After applying ST on Q1, we obtain the system shown in Figure
(b). The system in Figure (c) is obtained by applying RT on Q2. ST is
applied again on Q2 to obtain the system shown in Figure (d). Finally, RT
is applied on Q3 to obtain the fully decomposed queuing system shown in
Figure (e).

structural transformation as described in Section 5.2 is applied. For that,
the coefficient of variation of inter-departure time (CD) for each of the
higher priority classes is computed. Through structural transformation,
reference waiting time (Wref) for the current class is obtained, as depicted
in line 17 of the algorithm. At line 18, we compute the modified service
time (T∗

i) of the current class following the method described in Section 5.2.
Using T∗

i and Wref, the residual time (R∗
i in line 19) is computed. Using

residual time expressions for all classes in a queue, we obtain waiting time
expressions for each class separately, as shown in line 23 of the algorithm.

Figure 5.8 illustrates the proposed approach on a representative exam-
ple of a priority-based network to decompose the system. Figure 5.8(a)

115

shows the original queuing network. This network consists of three queues:
Q1, Q2, and Q3. Q1 stores flits from class-1 and class-2 flows, while Q2
buffers class-3 and class-4 flits. Flits of class-2 have higher priority than
both class-3 and class-4, as denoted by the first port of the switch that con-
nects these flows. Finally, class-5 flits are stored in Q3. We note that class-5
flits have lower priority than that of class-3, while they are independent of
class-2 and class-4 flits. To solve this queuing system, we first apply the
structural transformation on class-1 and class-2 of Q1 by bypassing class-2
flits to Q1‘ as shown in Figure 5.8(b). Next, the service rate transformation
on class-3 and class-4 is applied to obtain modified service time (µ∗). This
transformation allows us to form the network by decomposing Q1 and Q2,
as depicted in Figure 5.8(c). After that, structural transformation is ap-
plied on class-3 as flits of class-3 have higher priority than those of class-5.
Finally, service rate transformation is performed on class-5 to achieve a
fully decomposed system, which is shown in Figure 5.8(e).
Automation of Model Generation Technique: We developed a framework
to automatically generate the analytical performance model for NoCs with
arbitrary size 2D Mesh and ring topologies. The proposed framework
operates in two steps. In the first step, we extract all architecture-related
information of the NoC. This includes information about the traffic classes
in each queue and priority relations between classes. In the second step,
the automation framework uses this architecture information to generate
analytical models.

5.4 Experimental Evaluations

Experimental Setup

We applied the proposed analytical models to a widely used priority-based
industrial NoC design [88]. We implemented the proposed analytical
models in C and observed that on average it takes 0.66µs to calculate

116

latency value per source-to-destination pair. At each router of the NoC,
there are queues in which tokens wait to be routed. This NoC design
incorporates deterministic service time across all queues. We compared
average latency values in the steady state found in this approach against
an industrial cycle-accurate simulator written in SystemC [160, 159]. We
ran each simulation for 10 million cycles to obtain steady state latency
values, with a warm-up period of 5000 cycles. Average latency values
are obtained by averaging latencies of all flits injected after the warm-up
period. Injection rates are swept from λ1 to λmax. Beyond λmax, server
utilization becomes greater than one, which is not practical. We show the
average latency of flits as a function of the flit injection rate for different
NoC topologies. We also present experimental results considering the
cache coherency protocol with different hit rates, network topologies,
and floorplans. With a decreasing hit rate, traffic towards the memory
controller increases, leading to more congestion in the network.

Full-System Simulations on gem5

Applications are profiled in the full-system simulator gem5 [24] using
Linux ‘perf’ tools [53]. The ‘perf’ tool captures the time taken by each
function call and their children in the gem5 source. It represents the
statistics through a function call graph. From this call graph, we obtain
the time taken by the functions related to Garnet2.0, which is the on-chip
interconnect for gem5. Figure 5.9 shows components of Garnet2.0, which
takes up a significant portion of the total simulation time while running
Streamcluster application on gem5. These components are router, network-
link, and functional write. The ‘other components’ shown in Figure 5.9
consists of the functions not related to network simulation. We observe
that the functional write takes 50%, and the whole network takes around
60% of the total simulation time in this case.
Simulation Time: To evaluate the decrease in simulation time with the

117

Figure 5.9: The fraction of simulation time spent by different functions
while running Streamcluster in gem5. NoC-related functions take 60% of
simulation time.

proposed approach, we first run the Streamcluster application with a 16-
core CPU on gem5 in full system mode using Garnet2.0, a cycle-accurate
network simulator. Then, we repeat the same simulation by replacing the
cycle-accurate simulation with the proposed analytical model. The total
simulation time is reduced from 12,466 seconds to 4986 seconds when we
replace the cycle-accurate NoC simulations with the proposed analytical
models. Hence, we achieve a 2.5× speedup in cycle-accurate full-system
simulation with the proposed NoC performance analysis technique.

Validation on Ring Architectures

This section evaluates the proposed analytical models on priority-based
ring architecture that consists of eight nodes. In this experiment, all nodes
inject flits with an equal injection rate. Flits injected from a node go to other
nodes with equal probability. We obtain the latency between each source-
destination pair using the proposed analytical models. The simulation
and analysis results are compared in Figure 5.10. The proposed analysis
technique has only 2% error on average. The accuracy is higher at lower

118

injection rates and degrades gradually with increasing injection rates, as
expected. However, the error at the highest injection rate is only 5.2%.

1 max

Injection Rate (flits/cycle)

0.2

0.4

0.6

0.8

A
v

e
ra

g
e

 L
a

te
n

c
y

 (
n

o
rm

a
li

z
e

d
)

 Simulation

Analytical (proposed)

Figure 5.10: Evaluation of the proposed model on a ring with eight nodes.

Validation on Mesh Architectures

This section evaluates the proposed analytical model for 6×6 and 8×8
priority-based mesh NoCs with Y-X routing. As described in [88], a mesh
is a combination of horizontal and vertical half rings. The analytical model
generation technique for priority-based NoC architecture is applied to
horizontal and vertical rings individually. Then, these latencies, as well
as the time it takes to switch from one to the other are used to obtain the
latency for each source-destination pair. We first consider uniform random
all-to-all traffic, as in Section 5.4. The comparison with the cycle-accurate
simulator shows that the proposed analytical models are on average 97%
and 96% accurate for 6×6 and 8×8 mesh, as shown in Figure 5.11 and
Figure 5.12, respectively. At the highest injection rate, the analytical models
show 11% error for both cases.
Comparison to Prior Techniques: We compare the proposed analytical
models to the existing priority-aware analytical models in literature [202].
Since these techniques do not consider multiple priority traffic classes in
the network, they fail to accurately estimate the end-to-end latency. For

119

example, Figure 5.11 and Figure 5.12 show that they overestimate NoC
latency at high injection rates for 6×6 and 8×8 mesh networks, respectively.
In contrast, since it captures the interactions between different classes,
the proposed technique is able to estimate latencies accurately. Finally,
we analyze the impact of using each transformation individually. If we
apply only the Structural Transformation (ST), then the latency is severely
underestimated at higher injection rates, since contentions are not captured
accurately. In contrast, applying only Service Rate Transformation (RT)
results in overestimating the latency at higher injection rates as the model
becomes pessimistic.

1 maxInjection Rate (flits/cycle)

0

0.2

0.4

0.6

0.8

1

A
v
e
ra

g
e
 L

a
te

n
c
y

(n
o

rm
a
li
z
e
d

)

Simulation

State-of-the-art

ST only

RT only

Analytical (proposed)

Figure 5.11: Evaluation of the proposed model
on a 6×6 mesh.

Impact of coefficient of variation: One of the important parameters in our
analytical model is the coefficient of variation of inter-arrival time. When
the inter-arrival time between the incoming flits follows geometric distri-
bution, increasing coefficient of variation implies larger inter-arrival time.
Hence, the average flit latency is expected to decrease with an increasing
coefficient of variation. Indeed, the simulation and analysis results demon-
strate this behavior for a 6×6 mesh in Figure 5.13. We observe that the
proposed technique accurately estimates the average latency in compari-
son to cycle-accurate simulation. On average, the analytical models are

120

1 maxInjection Rate (flits/cycle)

0

0.5

1

A
v

e
ra

g
e

 L
a

te
n

c
y

 (
n

o
rm

a
li

z
e

d
)

Simulation

State-of-the-art

ST only

RT only

Analytical (proposed)

Figure 5.12: Evaluation of the proposed model
on an 8×8 mesh.

97% accurate with respect to latency obtained from the simulation in this
case.

Figure 5.13: Effect of coefficient of variation of inter-arrival time on average
latency for a 6×6 mesh.

Evaluation with Intel® Xeon® Scalable Server Processor Architecture:
This section evaluates the proposed analytical model with the floorplan

of a variant of the Intel® Xeon® Scalable Server Processor Architecture [56]
architecture. This version of the Xeon server has 26 cores, 26 banks of
the last level cache (LLC), and 2 memory controllers. The cores and LLC
are distributed on a 6×6 mesh NoC. The comparison of simulation and

121

1 maxInjection Rate (flits/cycle)

0

0.5

1

A
v

e
ra

g
e

 L
a

te
n

c
y

(n
o

rm
a

li
z
e

d
)

Simulation

State-of-the-art

ST only

RT only

Analytical (proposed)

Figure 5.14: Evaluation of the proposed model on one variant of the Xeon
server architecture.

proposed analytical models with this floorplan is shown in Figure 5.14.
On average, the accuracy is 98% when all cores send flits to all caches
with equal injection rates. Similar to the evaluations on 6×6 mesh and
8×8 mesh, the state-of-the-art NoC performance analysis technique [202]
highly overestimates the average latency for this server architecture, as
shown in Figure 5.14. Applying only ST underestimates the average
latency and applying only RT overestimates the average latency.

The NoC latency is a function of the traffic class, since higher priority
classes experience less contention. To demonstrate the latency for dif-
ferent classes, we present the NoC latencies for 9 representative traffic
classes of the server architecture described above. Figure 5.15 shows the
latency of each class of the server architecture described above normalized
with respect to the average latency obtained from the simulation. Higher
priority classes experience lower latency, as expected. The proposed per-
formance analysis technique achieves 91% accuracy on average for the
classes which have the lowest priority in the NoC. For the classes having
medium priority and highest priority, the accuracy is 99% on average.
Therefore, the proposed technique is reliable for all classes with different
levels of priority.

122

0
1
2
3
4
5

Highest PriorityMedium Priority

 Simulation Analytical (proposed)

N
or

m
al

iz
ed

 L
at

en
cy

Lowest Priority

Figure 5.15: Per-class latency comparison for the server example.

Table 5.1: Accuracy for cache-coherency traffic flow
LLC

Hit Rate (%)
Accuracy for

Address Network (%)
Accuracy for

Data Network (%)
100 98.8 93.9
50 97.7 98.1
0 97.7 98.0

Finally, we evaluate the proposed technique with different LLC hit
rates. Table 5.1 shows that the proposed approach achieves over 97%
accuracy in estimating the average latency of the address network for all
hit rates. Similarly, the latencies in the data network are estimated with
98% or greater accuracy for 0% and 50% hit rates. The accuracy drops to
93.9% for 100% hit rates, since this scenario leads to the highest level of
congestion due to all-to-all traffic behavior.

Evaluation with Real Applications

In this section, evaluations of the proposed technique with real applica-
tions are shown. We use gem5 [24] to extract traces of applications in
Full-System (FS) mode. Garnet2.0 [6] is used as the network simulator
in gem5 with the Ruby memory system. Table 5.2 shows the various
configuration settings we used for FS simulation in gem5.

We collect traces of six 16-threaded applications from PARSEC [23]

123

benchmark suites: Blackscholes, Canneal, Swaptions, Bodytrack, Fluidan-
imate, and Streamcluster. We selected applications that show relatively
higher network utilization as discussed in [209]. The accuracy obtained
for these applications is an important indicator of the practicality of the
proposed technique since real applications do not necessarily comply with
a known inter-arrival time distribution [26], such as the geometric distri-
bution used in this work. The traces are parsed and simulated through
our custom in-house simulator with priority-based router model. For each
application, a window of one million cycles with the highest injection rate
is chosen for simulation. From the traces of these applications, we get the
average injection rate of each source and destination pair. These injection
rates are fed to our analytical models to obtain average latency.

Figure 5.16 shows the comparison of the average latency between the
proposed analytical model and the simulation. The x-axes represent mean
absolute percentage error (MAPE) between the average simulation latency
(Lsim) and average latency obtained from analytical models (Lanalytical).

Table 5.2: Configuration settings in the gem5 simulation

Processor
Number of Cores 16
Frequency of Cores 2 GHz
Instruction Set x86

Interconnect
Network

Topology 4x4 Mesh
Routing Algorithm X-Y deterministic

Memory
System

L1 Cache
16KB of instruction
and data cache
for each core

Memory Size 3 GB
Kernel Type Linux

Version 3.4.112

124

Figure 5.16: Model comparison for different applications from PARSEC
suite.

MAPE is defined by the following equation:

MAPE = 100
(
|Lsim − Lanalytical|

Lsim

)
(5.13)

The y-axes in the plots represent the percentage of source to destination
pairs having the corresponding MAPE. From this figure, we observe that
the latency obtained from the proposed analytical model is always within
10% of the latency reported by the cycle-accurate simulations. In particular,
only 1% source-destination pair has MAPE of 10% for the Canneal appli-
cation. On average, the analytical models have 3% error in comparison to
latency obtained from the simulation for real applications. These results
demonstrate that our technique achieves high accuracy for applications
which may have arbitrary inter-arrival time distributions.

We further divide the window of one million cycles into 10 smaller

125

window 1

window 2

window 3

window 4

window 5

window 6

window 7

window 8

window 9

window 10
0.0

0.8

0.9

1.0
 Simulation Analytical (proposed)

N
or

m
al

iz
ed

 L
at

en
cy

Figure 5.17: Evaluation of the proposed model under a finer level of time
granularity (100K cycles) for Streamcluster application.

windows containing 100,000 cycles each. Average latency comparison for
Streamcluster application in these smaller windows is shown in Figure 5.17.
The largest MAPE between latency obtained from the simulation and
analytical model is observed for window 10, which is 7%. On average, the
proposed analytical models are 98% accurate for these 10 windows. This
confirms the reliability of the proposed analytical models at an even more
granular level for the application. Finally, we note that the experiments
with synthetic traffic shown earlier exercise higher injection rates than
these applications. Hence, the proposed technique performs well both
under real application traces and heavy traffic scenarios.

Prior work showed that the deviation from Poisson distribution be-
comes larger as the network load approaches saturation [158]. Similar to
this result, we also observe that the Geometric distribution assumption is a
good approximation until the NoC operates near saturation point. There-
fore, we obtain high accuracy for real application workloads. Since this
accuracy can degrade with increasing traffic load, we plan to generalize
the proposed models by relaxing the assumption of Geometric distribution
in our future work.

126

6 performance analysis of nocs with bursty
traffic

6.1 Background and Motivation
Industrial many-core processors incorporate priority arbitration for the
routers in NoC [88]. Moreover, these designs execute bursty traffic since
real applications exhibit burstiness [25]. Accurate NoC performance mod-
els are required to perform design space exploration and accelerate full-
system simulations [102, 174]. Most existing analysis techniques assume
fair arbitration in routers, which does not hold for NoCs with priority
arbitration used in manycore processors, such as high-end servers [193]
and high performance computing (HPC) [88]. A recent technique targets
priority-aware NoCs [136], but it assumes that the input traffic follows
geometric distribution. While this assumption simplifies analytical mod-
els, it fails to capture the bursty behavior of real applications [25]. Indeed,
our evaluations show that the geometric distribution assumption leads
up to 60% error in latency estimation unless the bursty nature of appli-
cations is explicitly modeled. Therefore, there is a strong need for NoC
performance analysis techniques that consider both priority arbitration
and bursty traffic.

This work proposes a novel performance modeling technique for priority-
aware NoCs that takes bursty traffic into account. It first models the input
traffic as a generalized geometric (GGeo) discrete-time distribution that
includes a parameter for burstiness.

We achieve high scalability by employing the principle of maximum en-
tropy (ME) to transform the given queuing network into a near equivalent
set of individual queue nodes of multiple-classes with revised characteris-
tics (e.g., modifying service process). Furthermore, our solution involves
transformations to handle priority arbitration of the routers across a net-

127

work of queues. Finally, we construct analytical models of the transformed
queue nodes to obtain end-to-end latency.

The proposed performance analysis technique is evaluated with SYSmark®

2014 SE [15], applications from SPEC CPU® 2006 [77] and SPEC CPU®

2017 [32] benchmark suites, as well as synthetic traffic. The proposed
technique has less than 10% modeling error with respect to an industrial
cycle-accurate NoC simulator.

The major contributions of this work are as follows:

• Accurate and scalable high-level performance modeling of priority-
based NoCs considering burstiness,

• Dynamic approximation of realistic bursty traffic via GGeo distribu-
tion,

• Thorough evaluations on industrial priority-based NoCs with syn-
thetic traffic and real applications.

Background of Generalized Geometric Distribution

The goal of this work is to construct accurate performance models for
industrial NoCs under priority-arbitration and bursty traffic. We mainly
target manycore processors used in servers, HPC, and high-end client
CPUs [88, 193]. The proposed technique takes burstiness and injection
rate of the traffic as input and then provides end-to-end latency of each
traffic class.
Input traffic model assumptions: Applications usually produce bursty
NoC traffic with varying inter-arrival times [25, 174]. We approximate the
input traffic using the GGeo discrete-time distribution model, which takes
both burstiness and discrete-time feature of NoCs into account [107, 174].
GGeo model includes Geometric and null (no delay) branches, as shown
in Figure 6.1. Selection between branches conforms to the Bernoulli trial,

128

Figure 6.1: GGeo traffic model

where the null (upper) and Geo (lower) branches are selected with prob-
ability pb and 1 − pb, respectively. The Geo branch leads to geometrically
distributed inter-arrival time, while the null branch issues additional flit
in the current time slot leading to a burst. Both the number of flits in a
time slot and the inter-arrival rate depend on pb [107]. Hence, we use pb

as a parameter of burstiness. GGeo distribution has two important proper-
ties [107]. First, it is pseudo-memoryless, i.e. the remaining inter-arrival
time is geometrically distributed. Second, it can be described by its first
two moments (λ, Ca), where C2

a = 2/(1 − pb) − λ− 1. We exploit these
properties to construct analytical models. The remaining details of the
work is described in Appendix B of the thesis and in the reference [135].

6.2 Proposed Approach to Handle Bursty Traffic
In industrial NoCs, flits already in the network have higher priority than
new injections to achieve predictable latency [88]. This leads to nontrivial
timing dependencies between the multi-class flits in the network. Hence,
we propose a systematic approach for accurate and scalable performance
analysis. We note that the proposed technique can be extended to NoCs
with fair arbitration if we assume that all classes have the same priority.
However, we do not focus on non-priority NoCs since this domain has
been studied in the past [163].

129

Maximum entropy for queuing networks

We apply the principle of ME to queuing systems to find the probability
distribution of desired metrics (e.g., queue occupancy) [107]. According
to this principle, the selected distribution should be the least biased among
all feasible distributions satisfying the prior information in the form of
mean values. The optimal distribution is found by maximizing the cor-
responding entropy function: we formulate a nonlinear programming
problem and solve it analytically via the Lagrange method of undeter-
mined multipliers as discussed next.

Decomposition of basic priority queuing
In a non-preemptive priority queuing system, the router does not preempt
a higher priority flit while processing a lower priority flit. An example
system with two queues and a shared server is shown in Figure 6.2(a).
There are two flows arriving at a priority-based arbiter and a shared server.
The shaded circle corresponds to high priority input (class 1) to the arbiter.
We denote this structure as basic priority queuing. Our goal is to decompose

Table 6.1: Summary of the notations used in this work.
λ, λm Mean arrival rate of total traffic and class m
pb Probability of burstiness
Tm, T̂m Original and modified mean service time of class m flits
R,Rmk Total residual time and residual time of class m while class k is served
ρm Mean server utilization of class m flits (=λmTm)
Ca, Cam

Coeff. of variation of interarrival time of total traffic and class m flits
Csm , Ĉsm Coeff. of variation of original and modified service time of class m flits
Cd, Cdm

Coeff. of variation of interdeparture time of total traffic and class m flits
Wm Mean waiting time of class m flits
nm,nm Mean and current occupancy of class m flits in a queue-node
βm Mean number of bursty arrivals of class m
nmk Mean queue-node occupancy of class m with serving class k
n State vector, n = (n1,n2, ...,nM) of priority queue-nodes
p(n) Probability that a queue-node is in state n
pm(0) Marginal probability of zero flits of class m in a queue-node.
αm(n) αm(n) = 1 if class m in service and 0 otherwise
M Number of classes that share same server

130

this system into individual queue-nodes with modified servers, as shown
in Figure 6.2(b). The combination of a queue and its corresponding server
is referred to as a queue-node. The effective expected service time of class
2 flits, T̂2, is larger than the original mean service time T2, since class 2
flits wait for the higher priority (class 1) flits in the original system. We
calculate the effective service time in the transformed network using Little’s
Law as:

T̂m =
1 − pm(0)

λm

(6.1)

where pm(0) is the marginal probability of having no flits of class m in the
queue-node, as listed in Table 6.1.
Computing pm(0) using ME: We find pm(0) using the ME principle by
maximizing the entropy function H(p(n)) given in (6.2) subject to the
constraints listed in (6.3):

maximize
p

H(p(n)) = −
∑

n
p(n) log(p(n)) (6.2)

subject to
∞∑

n=0

p(n) = 1,
∞∑

n=0except
nm=1

αm(n)p(n) = ρm, m = 1, . . . ,M (6.3)

∞∑
n=0except

nm=nk=1

nmαk(n)p(n) = n̄mk,m,k = 1, ..,M

The notation ∞ means a state vector n with all elements set to ∞, and
(n = 0 except nm = 1) refers to a vector n with the mth element set to 1
and other elements set to 0. The constraints in (6.3) comprise three types:
normalization, mean server utilization and mean occupancy. We intro-
duced an extended set of mean occupancy constraints compared to [107]

131

1

2

S

Ŝ1

Ŝ2

(𝑇 2, 𝐶 𝑠2)

(𝑇 1, 𝐶 𝑠1)

(𝑇1 , 𝐶𝑠1)
(𝑇2 , 𝐶𝑠2)

(a) (b)

𝑞2

𝑞1
(𝜆1 , 𝐶𝑎1)

(𝜆2 , 𝐶𝑎2)

(𝜆1 , 𝐶𝑎1)

(𝜆2 , 𝐶𝑎2)

𝑞1

𝑞2

Figure 6.2: Decomposition of a basic priority queuing

to provide further information about the underlying system. When a flit
of a certain class arrives at the system, it may find the server busy with its
own class or other classes since the server is a shared resource, as shown
in Figure 6.2(a). Therefore, the mean occupancy of each class can be parti-
tioned according to the contribution of each class occupying the server. We
exploit this inherent partitioning to generate M additional occupancy con-
straints. The occupancy related constraints depend on three components,
βm, Rmk and Wm (defined in Table 6.1) derived in [107, 136].

We solve the nonlinear programming problem in (6.2, 6.3) to find p(n)
which we use to determine the probability of having zero flits of class m,
pm(0). The convergence of this solution is guaranteed when the queuing
system is in a stable region. We derived the general expression for M

queues in a priority structure with a single class per queue as:

pm(0) = 1 − ρm −

M∑
k=1,k̸=m

ρk

nmk

ρk + nmk

(6.4)

Plugging the expression of pm(0) from (6.4) into (6.1), we obtain the first
moment of the service process.
Computing second moment of the service time: Since we also need the
second moment to characterize the GGeo traffic, we calculate the modified

132

squared coefficient of variation of the service time for class m (Ĉ2
sm

). We
utilize the queuing occupancy formulation of GGeo/G/1 [107] and the
modified server utilization ρ̂m = λmT̂m to obtain the following expression
for Ĉ2

sm
:

Ĉ2
sm

=
(1 − ρ̂m)(2nm − ρ̂m) − ρ̂mC2

am

ρ̂2
m

(6.5)

Decomposition of priority queuing with partial contention

Priority-aware NoCs involve complex queuing structures that cannot be
modeled accurately using only the models for basic priority queuing.
The complexity is primarily attributed to the partial priority contention
across queues. We identified two basic structures with partial priority
dependency that constitute the building blocks of practical priority-aware
NoCs.

The first basic structure is shown in Figure 6.3(a) where high priority
class 1 is in contention with a portion of the traffic in q2 (class 2) through
server SA. Class 2 and 3 flits have the same priority and share q2 before
entering the traffic splitter that assigns class 2 and 3 flits to server SA and
SB respectively, following a notation similar to the one adopted in [70]. We
denote this structure as contention at low priority. To decompose q1 and q2,
we need to calculate the first two moments of the modified service process
of class 1 and 2. The decomposed structure is shown in Figure 6.3(b). First,
we set λ3 to zero which leads to a basic priority structure. Then, we apply
the decomposition method discussed in Section 6.2 to obtain (T̂1, Ĉs1) and
(T̂2, Ĉs2). We derived mean queuing time (Wm) of individual classes of
q2 in the decomposed form as:

Wm =
R+

∑M
k=1 ρ̂kT̂kβk

1 −
∑M

k=1 ρ̂k

+ T̂m(βm + 1) − Tm (6.6)

where R =
∑M

k=1
1
2 ρ̂k(T̂k − 1 + T̂kĈ

2
sk
) and βm = 1

2(C
2
Am

+ λm − 1).

133

1

2

SA

ŜA

Ŝc

(𝑇 2, 𝐶 𝑠2)

(𝑇 1, 𝐶 𝑠1)

(𝑇1 , 𝐶𝑠1)

(𝑇2 , 𝐶𝑠2)

(a) (b)

𝑞2

𝑞1
(𝜆1 , 𝐶𝑎1)

(𝜆2 , 𝐶𝑎2)

(𝜆1 , 𝐶𝑎1)

(𝜆2 , 𝐶𝑎2)

𝑞1

𝑞2
SB

(𝑇3 , 𝐶𝑠3)
(𝜆3 , 𝐶𝑎3) 𝜆3 (𝜆3 , 𝐶𝑎3)

𝜆2

(𝑇3 , 𝐶𝑠3)

Figure 6.3: Decomposition of flow contention at low priority

The other basic structure, contention at high priority, is shown in Fig-
ure 6.4(a). In this scenario, only a fraction of the classes in q1 (class 2) has
higher priority than class 3 since class 1 in q1 is served by SA. Determining
T̂3 is challenging due to class 1 that influences the inter-departure time
of class 2. To incorporate this effect, we calculate the squared coefficient
of variation of inter-departure time, C2

d2 , of class 2 using the split process
formulation of GGeo streams given in [107]. We introduce a virtual queue,
qv and feed it with the flits of class 2. Therefore, qv and q2 form a basic
priority structure, as shown in Figure 6.4(b). Subsequently, we apply the
decomposition method described in Section 6.2 to calculate (T̂3, Ĉs3) as
well as (T̂2, Ĉs2). The decomposed structure is shown in Figure 6.4(c).

Iterative decomposition algorithm

Algorithm 3 shows a step-by-step procedure to obtain the analytical model
using our approach described in Section 6.2. The inputs to the algorithm
are NoC topology, routing algorithm and server process. The analytical
models presented for the canonical queuing system are independent of
the NoC topology. Therefore, the analytical models are valid for any NoC,
including irregular topologies. First, we identify priority dependencies
between different classes in the network. Next, we apply decomposition for

134

1

2

SA

(𝑇1 , 𝐶𝑠1)

(𝑇2 , 𝐶𝑠2)

(a) (b)

𝑞2

𝑞1
(𝜆1 , 𝐶𝑎1)

(𝜆2 , 𝐶𝑎2)

(𝜆1 , 𝐶𝑎1)

(𝜆2 , 𝐶𝑎2)

𝑞1

𝑞2

SB

(𝑇3 , 𝐶𝑠3)
(𝜆3 , 𝐶𝑎3)

𝜆1

(𝜆3 , 𝐶𝑎3)

𝜆2

𝒒𝒗

SA

SB
(𝑇1 , 𝐶𝑠1)

(𝑇2 , 𝐶𝑠2)

2

1

SB

(𝑇2 , 𝐶𝑠2)

(𝑇3 , 𝐶𝑠3)

(𝜆2 , 𝐶𝑑2)

𝜆1

𝜆2

ŜB

Ŝc

(𝑇 2, 𝐶 𝑠2)

(𝑇 3, 𝐶 𝑠3)

(c)

𝑞1

𝑞2

(𝜆3 , 𝐶𝑎3)

(𝜆1 , 𝐶𝑎1)

(𝜆2 , 𝐶𝑎2)
(𝑇1 , 𝐶𝑠1)

Figure 6.4: Decomposition of flow contention at high priority

contention at high and low priority, as shown in line 7 – 8 of Algorithm 3.
Subsequently, we calculate the modified service process (T̂ , Ĉ2

s) using (6.1,
6.4) and (6.5). Then, we compute the waiting time per class following (6.6).
Finally, we obtain the average waiting time in each queue (Wq), as shown
in line 12.

6.3 Experimental Results with Bursty Traffic
The proposed technique is implemented in C++ to facilitate integration
with system-level simulators. Analysis takes 2.7 ms for a 6×6 NoC and
the worst-case complexity is O(n3), where n is the number of nodes. In all
experiments, 200K cycles of warm-up period is considered. The accuracy of
the models is evaluated against an industrial cycle-accurate simulator [159]
under both real applications and synthetic traffic that models uniformly

135

distributed core to last-level cache traffic with 100% hit rate.

Evaluation on Architectures with Ring NoCs

This section analyzes the accuracy of the proposed analytical models
using uniform traffic on a priority-based 6×1 and 8×1 ring NoCs, similar
to those used in high-end client CPUs with integrated GPU and memory
controller. Table 6.2 shows that the average errors between our technique
and simulation are 6%, 4% and 6% for burst probability of 0.2, 0.4 and 0.6,
respectively. These errors hardly reach 14% even at the highest injection,
which is hard to model. Table 6.2 also shows that priority-based analytical
models which do not consider burstiness [136] significantly underestimate
the latency by 33% on average (highlighted with the shaded row). In
contrast, the work without the proposed decomposition technique [102]
leads to over 100% overestimation even at low traffic loads (highlighted
with text in italics). In this case, GGeo models can not handle partial

Algorithm 3: Iterative Decomposition Algorithm
1 Input: NoC topology, routing algorithm, server process, (λ) and

(pb) for each class as parameters
2 Output: Average waiting time for each queue (Wq)
3 N = number of queues in the network
4 Sq = set of classes in queue q

5 for q = 1:N do
6 for m = 1:|Sq| do
7 Apply decomp. for contention at high priority (if found)
8 Apply decomp. for contention at low priority (if found)
9 Compute T̂ , Ĉ2

s using (6.1, 6.4) and (6.5)
10 Compute queuing time (Wq,m) using (6.6)
11 end

12 Wq =
∑|Sq|

i=1 λq,mWq,m∑|Sq|

i=1 λq,m

13 end

136

Table 6.2: Comparisons against existing alternatives (Reference [102] and
Reference [136]). H denotes errors over 100%.

Topology 6×1 Ring 8×1 Ring 4×4 Mesh 6×6 Mesh
pb 0.2 0.4 0.6 0.2 0.4 0.6 0.2 0.4 0.6 0.2 0.4 0.6
λ 0.1 0.4 0.6 0.1 0.4 0.6 0.1 0.4 0.6 0.1 0.3 0.5 0.1 0.3 0.5 0.1 0.3 0.5 0.2 0.5 0.8 0.2 0.5 0.8 0.2 0.5 0.8 0.1 0.4 0.6 0.1 0.4 0.6 0.1 0.3 0.6

Er
r(

%
) Prop. 0.2 5.6 12 0.8 0.6 12 0.2 4.3 14 0.5 3.7 7.3 0.9 5.1 12 0.5 3.1 12 2.3 5.0 11 2.9 7.5 13 2.0 9.1 12 4.7 0.6 11 4.3 8.2 10 6.1 7.9 12

Ref[102] 17 H H 30 H H 54 H H 66 H H H H H H H H 30 H H 10 H H 12 H H 28 H H 54 H H 78 H H
Ref[136] 8.5 12 18 20 30 55 36 47 79 7.5 8.8 11 18 24 39 33 42 85 10 21 40 21 38 82 37 56 88 7.2 13 45 14 34 64 28 48 76

contention, since it assumes all packets in the high-priority queue have
higher priority than each packet in the low priority queue. These results
demonstrate that the proposed priority-aware NoC performance models
have significantly higher accuracy than the existing alternatives.

Evaluation on Architectures with Mesh NoCs
Table 6.2 compares the analytical model and simulation results for a
priority-based 4×4 and 6×6 mesh NoC, similar to those used in high-
end servers [88]. Our technique incurs on average 6%, 7% and 10% error
for burst probability of 0.2, 0.4 and 0.6, respectively. Priority-based ana-
lytical models which neglect burstiness [136] underestimate the latency
by 60% on average similar to the results on the ring architectures. Like-
wise, GGeo models without the proposed decomposition technique lead
to overestimation. We also provide detailed comparison of proposed an-
alytical models on 6×6 and 8×8 NoC for burst probability of 0.2 and 0.6
in Figure 6.5(a) and Figure 6.5(b), respectively. The proposed models
significantly outperform the other alternatives and lead to less than 10%
error on average.

Evaluation with Real Applications
This section validates the proposed analytical models using SYSmark®

2014 SE [15], and applications from SPEC CPU® 2006 [77] and SPEC
CPU® 2017 [32] benchmark suites. These applications are chosen since
they show different levels of burstiness. First, we run these applications

137

Figure 6.5: Comparison of a proposed analytical model with cycle-accurate
simulation for 8×8 and 6×6 mesh for (a) pb = 0.2 and (b) pb = 0.6. SOTA1
and SOTA2 refer to the analytical modeling techniques proposed in [102]
and [136] respectively.

on gem5 [24] and collect traces with timestamps for each packet injection.
Then, we use the traces to compute the injection rate (λ) and pb.
Computing pb: For each source, we feed traffic arrivals with timestamps
over a 200K clock cycle window into a virtual queue with the same service
rate as the NoC to determine the queue occupancy. At the end of the
window, we compute the average occupancy. Then, we employ the model
described in [107] to find the occupancy and then pb of each class.

The proposed analytical models are used to estimate the latency using

138

Table 6.3: Modeling Error (%) with Real Applications
xalan-
cbmk mcf gcc bwaves Gems

FDTD
omnet-
pp

perl-
bench

SYSmark
14se

Prop 2.17 4.97 0.92 0.15 0.38 5.10 3.63 0.73
Ref [102] 14.62 11.99 7.69 12.29 5.18 13.64 11.46 7.256×6

Mesh Ref [136] 17.36 23.29 7.71 22.02 6.99 14.11 12.95 11.13
Prop 3.59 4.08 3.81 4.87 0.44 7.48 3.67 1.10

Ref [102] 10.33 12.73 12.07 22.90 19.17 9.93 5.99 19.048×8
Mesh Ref [136] 12.15 29.99 10.00 19.65 5.44 10.78 14.74 7.94

the injection rate and burst parameters, as well as the NoC architecture
and routing algorithm. The applications show burstiness in the range of
0.2 – 0.5. As shown in Table 6.3, the proposed technique has on average
2% and 4% error compared to cycle-accurate simulations for 6×6 mesh
and 8×8 mesh, respectively. In contrast, the analytical models presented
in [102] and [136] incur significant modeling error.

139

7 performance analysis of nocs with deflection
routing

7.1 Background and Motivation
Pre-silicon design-space exploration and system-level simulations consti-
tute a crucial component of the industrial design cycle [164, 65]. They are
used to confirm that new generation designs meet power-performance
targets before labor- and time-intensive RTL implementation starts [24].
Furthermore, virtual platforms combine power-performance simulators
and functional models to enable firmware and software development
while hardware design is in progress [124]. These pre-silicon evalua-
tion environments incorporate cycle-accurate NoC simulators due to the
criticality of shared communication and memory resources in overall
performance [6, 90]. However, slow cycle-accurate simulators have be-
come the major bottleneck of pre-silicon evaluation. Similarly, exhaustive
design-space exploration is not feasible due to the long simulation times.
Therefore, there is a strong need for fast, yet accurate, analytical models
to replace cycle-accurate simulations to increase the speed and scope of
pre-silicon evaluations [218].

Analytical NoC performance models are used primarily for fast design
space exploration since they provide significant speed-up compared to
detailed simulators [158, 102, 99, 174]. However, most existing analytical
models fail to capture two important aspects of industrial NoCs [88]. First,
they do not model routers that employ priority arbitration. Second, exist-
ing analytical models assume that the destination nodes always sink the
incoming packets. In reality, network interfaces between the routers and
cores have finite (and typically limited) ingress buffers. Hence, packets
bounce (i.e., they are deflected) at the destination nodes when the ingress
queue is full. Recently proposed performance models target priority-aware

140

0 . 0 0
0 . 0 5

0 . 1 0
0 . 1 5

0 . 2 0
0 . 2 5 0 . 1 0 . 2 0 . 3 0 . 4 0 . 5

1 0

2 0

3 0

6 5
7 0

D e f l e c t i o n

P r o b a b i l i t y

Av
era

ge
 La

ten
cy

(cy

cle
s)

I n j e c t i o n R a t e (p a c k e t s / c y c l e / s o u r c e)
Figure 7.1: Cycle-accurate simulations on a 6×6 NoC show that the average
latency increases significantly with larger deflection probability (pd) at
the sink.

NoCs [136, 135]. However, these ignore deflection due to finite buffers
and uses the packet injection rate as the primary input. This is a significant
limitation since the deflection probability (pd) increases both the hop
count and traffic congestion. Indeed, Figure 7.1 shows that the average
NoC latency increases significantly with the probability of deflection. For
example, the average latency varies from 6–70 cycles for an injection rate
of 0.25 packets/cycle/source when pd varies from 0.1–0.5. Therefore, per-
formance models for priority-aware NoCs have to account for deflection
probability at the destinations.

This work proposes an accurate analytical model for priority-aware NoCs
with deflection routing under bursty traffic. In addition to increasing the hop
count, deflection routing also aggravates traffic congestion due to extra
packets traveling in the network. Since the deflected packets also have a
complex effect on the egress queues of the traffic sources, analytical mod-
eling of priority-aware NoCs with deflection routing is challenging. To

141

address this problem, we first need to approximate the probability distri-
bution of inter-arrival time of deflected packets. Specifically, we compute
the first two moments of inter-arrival time of deflected packets since we
consider bursty traffic. To this end, the proposed approach starts with
a canonical queuing system with deflection routing. We first model the
distribution of deflected traffic and the average queuing delay for this
system. However, this methodology is not scalable when the network
has multiple queues with complex interactions between them. Therefore,
we also propose a superposition-based technique to obtain the waiting
time of the packets in arbitrarily sized industrial NoCs. This technique
decomposes the queuing system into multiple subsystems. The structure
of these subsystems is similar to the canonical queuing system. After
deriving the analytical expressions for the parameters of the distribution
model of deflected packets of individual subsystems, we superimpose
the result to solve the original system with multiple queues. Thorough
experimental evaluations with industrial NoCs and their cycle-accurate
simulation models show that the proposed technique significantly outper-
forms prior approaches [102, 136]. In particular, the proposed technique
achieves less than 8% modeling error when tested with real applications
from different benchmark suites. The major contributions of this chapter are
as follows:

• An accurate performance model for priority-aware NoCs with de-
flection routing under bursty traffic,

• An algorithm to obtain end-to-end latency using the proposed per-
formance model,

• Detailed experimental evaluation with industrial priority-aware NoC
under varying degrees of deflection.

142

Background on Deflection Routing

Assumptions and Notations

Architecture: This work considers priority-aware NoCs used in high-
end servers and many core architectures [88]. Each column of the NoC
architecture, shown in Figure 7.2, is also used in client systems such as Intel
i7 processors [179]. Hence, the proposed analysis technique is broadly
applicable to a wide range of industrial NoCs.

In priority-aware NoCs, the packets already in the network have higher
priority than the packets waiting in the egress queues of the sources.
Assume that Node 2 in Figure 7.2 sends a packet to Node 12 following
Y-X routing (highlighted by red arrows). Suppose that a packet in the
egress queue of Node 6 collides with this packet. The packet from Node 2
to Node 12 will take precedence since the packets already in the NoC have
higher priority. Hence, packets experience a queuing delay at the egress
queues but have predictable latency until they reach the destination or
turning point (Node 10 in Figure 7.2). Then, it competes with the packets
already in the corresponding row. That is, the path from the source (Node

Router links

Path of deflected
packets

Path of packet
w/o deflection

Sink / Junction
Routers

1 3 4

5 6 7 8

9 11

13 14 15 16

2

10 12

Figure 7.2: A representative 4×4 mesh with deflection routing.

143

2) to the destination (Node 12) can be considered as two segments, which
consist of a queuing delay followed by a predictable latency.

Deflection in priority-aware NoCs happens when the ingress queue at
the turning point (Node 10) or final destination (Node 12) become full.
This can happen if the receiving node, such as a cache controller, cannot
process the packets fast enough. The probability of observing a full queue
increases with smaller queues (needed to save area) and heavy traffic
load from the cores. If the packet is deflected at the destination node, it
circulates within the same row, as shown in Figure 7.2. Consequently, a
combination of regular and deflected traffic can load the corresponding
row and pressure the ingress queue at the turning point (Node 10). This,
in turn, can lead to deflection on the column and propagates the congestion
towards the source. Finally, if a packet is deflected more than a specific
number of times, it reserves a slot in the ingress queue. This bounds the
maximum number of deflections and avoids livelock.
Traffic: Industrial priority-aware NoCs can experience bursty traffic, which
is characteristic of real applications [25, 174]. This work considers gen-
eralized geometric (GGeo) distribution for the input traffic, which takes
burstiness into account [107]. GGeo traffic is characterized by an average
injection rate (λ) and the coefficient of variation of inter-arrival time (CA).
We define a traffic class as the traffic of each source-destination pair. The
average injection rate and coefficient of variation of inter-arrival time of
class-i are denoted by λi and as CA

i respectively, as shown in Table 7.1. Fi-
nally, the mean service time and coefficient of variation of inter-departure
time of class-i are denoted as Ti and CS

i .

Overview of the Proposed Approach

Our goal is to construct an accurate analytical model to compute the
end-to-end latency for priority-aware NoCs with deflection routing. The
proposed approach can be used to accelerate full system simulations and

144

also to perform design space exploration. We assume that the parameters
of the GGeo distribution of the input traffic to the NoC (λ,CA) are known
from the knowledge of the application. The proposed model uses the
deflection probability (pd) as the second major input, in contrast to existing
techniques that ignore deflection. Its range is found from architecture
simulations as a function of the NoC architecture (topology, number of
processors, and buffer sizes). Its analytical modeling is left for future work.
The proposed analytical model utilizes the distribution of the input traffic
to the NoC (λ,CA) and the deflection probability (pd) to compute the
average end-to-end latency as a sum of four components: (1) Queuing
delay at the source, (2) the latency from the source router to the junction
router, (3) queuing delay at the junction router, and (4) the latency from
the junction router to the destination. Note that all these components
account for deflection, and it is challenging to compute them, especially
under high traffic load. The remaining details of the work is described in
Appendix D of the thesis and in the reference [139].

7.2 Proposed Superposition-based Approach
This section presents the proposed performance analysis technique for
estimating the end-to-end latency for priority-aware NoCs with deflection

Sink
destination

Deflected
traffic

1

Ring buffers (𝑸𝒅)

Sink signal
(𝒑𝒅𝒊)

𝝀𝒊 , 𝑪𝒊𝑨

𝝀𝒅𝒊

2

(a)

S

Egress queue
(𝑸𝒊)

Priority
arbiter

1

2

Port with a
lower index has
a higher priority

𝑸𝒊

𝑸𝒅
		𝑺#𝒅𝒊𝝀𝒅𝒊 , 𝑪𝒅

𝑨
𝒊	

𝝀𝒊 , 𝑪𝒊𝑨
		𝑺#𝒊
(𝑻(𝒊 , 𝑪(𝒊𝑺)

𝑪𝒅𝒊
𝑫

𝑪𝒊𝑫
𝑪𝒊𝑴

(𝑻(𝒅𝒊 , 𝑪(𝒅
𝑺
𝒊)

𝟏− 𝒑𝒅𝒊
(To sink)

(b)

𝒑𝒅𝒊
(To 𝑸𝒅)

Figure 7.3: (a) Queuing system of a single class with deflection routing
(b) Approximate queuing system to compute CA

di
.

145

Table 7.1: Summary of the notations used in this work.
λi Arrival rate of class-i
pdj

Deflection probability at sink-j
Ti, T̂i Original and modified mean service time of class-i
ρi Mean server utilization of class-i (=λiTi)
CA

i

Coefficient of variation
of inter-arrival time of class-i

CS
i , ĈS

i

Coefficient of variation of original
and modified service time of class-i

CD
i

Coefficient of variation
of inter-departure time of class-i

CM
i

Coefficient of variation of inter-departure time
of merged traffic of class-i

Wi Mean waiting time of class-i

routing. We first construct a model for a canonical system with a single
traffic class, where the deflected traffic distribution is approximated using
a GGeo distribution. Subsequently, we introduce a scalable approach
for a network with multiple traffic classes. In this approach, we first
develop a solution for the canonical system. Then, employ the principle of
superposition to extend the analytical model to larger and realistic NoCs
with multiple traffic classes. Finally, we propose an algorithm that uses
our analytical models to compute the average end-to-end latency for a
priority-aware NoC with deflection routing.

An Illustration with a Single Traffic Class

Figure 7.3(a) shows an example of a single class input traffic and egress
queue that inject traffic to a network with deflection routing. The input
packets are buffered in the egress queue Qi (analogous to the packets
stored in the egress queue of Node 2 in Figure 7.2). We denote the traffic
of Qi as class-i, which is modeled using GGeo distribution with two
parameters (λi,CA

i). The packets in Qi are dispatched to a priority arbiter

146

and assigned a low priority, marked with 2 . In contrast, the packets
already in the network have a high priority, which are routed to the port
marked with 1 . The packet traverses a certain number of hops (similar
to the latency from the source router to the junction router in Figure 7.2)
and reaches the destination. Since the number of hops is constant for a
particular traffic class, we omit these details in Figure 7.3(a) for simplicity.
If the ingress queue at the destination is full (with probability pdi

), the
packet is deflected back into the network. Otherwise, it is consumed at the
destination (with probability 1 − pdi

). Deflected packets travel through
the NoC (within the column or row as illustrated in Figure 7.2) and pass
through the source router, but this time with higher priority. The profile
of the deflected packets in the network is modeled by a buffer (Qd) in
Figure 7.3(a), since they remain in order and have a fixed latency from
the destination to the original source. This process continues until the
destination can consume the deflected packets.

Our goal is to compute the average waiting time Wi in the source queue,
i.e., components 1 and 3 of the end-to-end latency.. To obtain Wi, we first
need to derive the analytical expression for the rate of deflected packets
of class-i (λdi

) and the coefficient of variation of inter-arrival time of the
deflected packets (CA

di
) as follows.

Rate of deflected packets (λdi
): λdi

is obtained by calculating the average
number of times a packet is deflected (Ndi

) until it is consumed at the
destination as:

Ndi
= pdi

(1 − pdi
) + 2p2

di
(1 − pdi

) + . . . + npn
di
(1 − pdi

) + . . .

=

∞∑
n=1

npn
di
(1 − pdi

) =
pdi

1 − pdi

(7.1)

147

Therefore, λdi
can be expressed as:

λdi
= λiNdi

= λi

pdi

1 − pdi

(7.2)

Coefficient of variation of inter-arrival time of deflected packets (CA
di

):
To compute CA

di
, the priority related interaction between the deflected

traffic of Qd and new injections in Qi must be captured. This computation
is more involved due to the priority arbitration between the packets in Qd

and Qi that involve a circular dependency. We tackle this problem by trans-
forming the system in Figure 7.3(a) into an approximate representation
shown in Figure 7.3(b) to simplify the computations. The idea here is to
transform the priority queuing with a shared resource into separate queue
nodes (queue + server) with a modified server process. This transforma-
tion enables the decomposition of Qd and Qi and their shared server into
individual queue nodes with servers Ŝd and Ŝi respectively. The departure
traffic from these two nodes merge at the destination, consumed with a
probability 1 − pdi

and deflected otherwise.
The input traffic to the egress queue, as well as the deflected traffic,

may exhibit bursty behavior. Indeed, the deflected traffic distribution can
be bursty because of the server-process effect and the priority interactions
between the input traffic and the deflected traffic, even when the input
traffic is not bursty. Therefore, we approximate the distribution of the
deflected traffic via GGeo distribution. To compute the parameters of the
GGeo traffic, we need to apply the principle of maximum entropy (ME)
as shown in [107]. To obtain the modified service process of class-i, we
first calculate the probability of no packets in Qi and in its corresponding
server (i.e., pQi

(0)) using ME as,

pQi
(0) = 1 − ρi − ρdi

ni

ni + ρi + ρdi

(7.3)

where ρi and ρdi
denote the utilization of the respective servers, and ni is

148

the occupancy of class-i in Qi. Next, we apply Little’s law to compute the
first order moment of modified service time (T̂i) as:

T̂i =
1 − pQi

(0)
λi

(7.4)

Subsequently, we obtain the effective coefficient of variation ĈS
i as:

(ĈS
i)

2 =
(1 − ρ̂i)(2ni + ρ̂i) − ρ̂i(C

A
i)

2

ρ̂2
i

(7.5)

where ρ̂i = λiT̂i. We follow similar steps (Equation 7.3 – Equation 7.5)
for the deflected traffic to obtain T̂di

and ĈS
di

. With the modified service
process, the coefficients of variation of inter-departure time of the pack-
ets in Qd (CD

di
) and Qi (CD

i) are computed using the process merging
method [171]. Then, we find the coefficient of variation (CM

i) of the
merged traffic from queues Qd and Qi as:

(CM
i)2 =

1
λdi

+ λi

(λdi
(CD

di
)2 + λi(C

D
i)

2) (7.6)

We note that CM
i is a function of the coefficient of variation of the inter-

arrival time of deflected traffic CA
di

. Since part of this merged traffic is
consumed at the sink, we apply the traffic splitting method from [171] to
approximate CA

di
as:

(CA
di
)2 = 1 + pdi

((CM
i)2 − 1) (7.7)

Finally, we extend the priority-aware formulations in continuous time
domain [28] to discrete time domain to obtain the average waiting time of

149

(a) (b)

𝑸𝒅
1

𝝀𝒅, 𝑪𝒅𝑨 	

S
𝟏− 𝒑𝒅

𝒑𝒅

𝑸𝑵

𝝀𝑵 , 𝑪𝑵𝑨

𝑸𝟏

𝝀𝟏 , 𝑪𝟏𝑨
2

(𝑻𝒅, 𝑪𝒅𝑺)
…

(𝑻𝑵 , 𝑪𝑵𝑺)

𝑸𝟐

𝝀𝟐 , 𝑪𝟐𝑨
3

N+1

(c)

𝝀𝒅 =#𝝀𝒅𝒊

𝑵

𝒊$𝟏

,	

𝑪𝒅𝑨 ≈𝓜	(𝑪𝒅𝟏
𝑨 ,… , 𝑪𝒅𝑵

𝑨)

1
𝑸𝒅

𝝀𝒅, 𝑪𝒅𝑨 𝑸𝟏

𝝀𝟏 , 𝑪𝟏𝑨 S𝑸𝟐

𝝀𝟐 , 𝑪𝟐𝑨

𝑸𝑵

𝝀𝑵 , 𝑪𝑵𝑨

2

3

N+1

𝟏 − 𝒑𝒅

𝑪𝟏𝑴

Subsystem-1

𝟏 − 𝒑𝒅
𝑸𝟏

𝑸𝒅
		𝑺#𝒅𝟏

𝝀𝒅𝟏 , 𝑪𝒅𝟏
𝑨

𝝀𝟏 , 𝑪𝟏𝑨

𝑪𝒅𝟏
𝑫

𝑪𝟏𝑫

(𝑻-𝟏 , 𝑪-𝟏𝑺)

(𝑻-𝒅𝟏 , 𝑪-𝒅𝟏
𝑺)

		𝑺#𝟏

𝑪𝑵𝑴 𝟏 − 𝒑𝒅
𝑸𝑵

𝑸𝒅
		𝑺#𝒅𝑵

𝝀𝒅𝑵 , 𝑪𝒅𝑵
𝑨

𝝀𝑵 , 𝑪𝑵𝑨
		𝑺#𝑵

𝑪𝒅𝑵
𝑫

𝑪𝑵𝑫

(𝑻-𝑵 , 𝑪-𝑵𝑺)

(𝑻-𝒅𝑵 , 𝑪-𝒅𝑵
𝑺)

Subsystem-N

𝒑𝒅

𝒑𝒅

(𝑻𝒅, 𝑪𝒅𝑺)
…

(𝑻𝑵 , 𝑪𝑵𝑺)

Figure 7.4: (a) Queuing system with N classes with deflection routing,
(b) Decomposition into N subsystems to calculate GGeo parameters of
deflected traffic per class, (c) Applying superposition to obtain the GGeo
parameters of overall deflected traffic. M denotes the merging process.

the packets in Qdi
and Qi:

Wdi
=

ρdi
(Tdi

− 1) + ρi(Ti − 1) + Tdi
((CA

di
)2 + λdi

− 1)
2(1 − ρdi

)
(7.8)

Wi =
ρdi

(Tdi
+ 1) + 2ρdi

Wdi
+ ρi(Ti − 1) + Ti((C

A
i)

2 + λi − 1)
2(1 − ρi − ρdi

)
(7.9)

Queuing System with Multiple Traffic Classes

The analytical model for the system with a single class presented in Sec-
tion 7.2 becomes intractable with a higher number of traffic classes. This
section introduces a scalable approach based on the superposition princi-
ple that builds upon our canonical system used in Section 7.2.

Figure 7.4(a) shows an example with priority arbitration and N egress
queues, one for each traffic class. We note that this queuing system is a
simplified representation of a real system. The packets routed to port i have
higher priority than those routed to port j for i < j. The deflected traffic

150

in the network is buffered in Qd, which has the highest priority in the
queuing system. The primary goal is to model the queuing time of the
packets of each traffic class. Modeling the coefficient of variations of the
deflected traffic becomes harder since deflected packets interact with all
traffic classes rather than a single class. These interactions complicate the
analytical expressions significantly.

Priority arbitration enables us to sort the queues in the order at which
the packets are served. The queue of the deflected packets has the highest
priority, while the rest are ordered with respect to their indices. Due to this
inherent order between the priority classes, their impact on the deflected
traffic distribution can be approximated as being independent of each
other. This property enables us to decompose the queuing system into
multiple subsystems and model each subsystem separately, as illustrated
in Figure 7.4(b). Then, we apply the principle of superposition to obtain
the parameters of the GGeo distribution of the deflected traffic. Note
that each of these subsystems is identical to the canonical system analyzed in
Section 7.2. Hence, we first compute λdi

and CA
di

of each subsystem-i
following the procedure described in Section 7.2. Subsequently, we apply
the superposition principle to λdi

and CA
di

for i = 1 . . .N to obtain the
GGeo distribution parameters of the deflected traffic (λd,CA

d).
In general, we obtain the GGeo distribution parameters of the deflected

traffic corresponding to class-i by setting all traffic classes to zero expect
class-i, (λj = 0, j = 1 . . .N, j ̸= i). The values of λdi

and CA
di

can be
expressed as:

λdi
= λd

∣∣∣
λj=0,j̸=i;λi>0

and CA
di

= CA
d

∣∣∣
λj=0,j̸=i;λi>0

(7.10)

Subsequently, we apply the principle of superposition to obtain the distri-
bution parameters of Qd as shown in Figure 7.4(c). First, we compute λd

151

by adding all λdi
as:

λd =

N∑
i=1

λdi
(7.11)

The value of CA
d is approximated by applying the superposition-based

traffic merging process [171] for each CA
di

, as shown below:

(CA
d)

2 =
N∑
i=1

λdi

λd

(CA
di
)2 (7.12)

Next, we use these distribution parameters (λd,CA
d) of the deflected

packets to calculate the waiting time of the traffic classes in the system.
The formulation of the priority-aware queuing system is applied to obtain
the waiting time of each traffic class-i (Wi) [19]:

Figure 7.5: Comparison of average latency between simulation and analyt-
ical model for the canonical example shown in Figure 7.4 with pd = 0.3
and N = 5.

152

Wi =
ρd(Td + 1) + 2ρiWd

2(1 − ρd −
∑i

n=1 ρn)
+

∑i−1
n=1(ρn(Tn + 1) + 2ρiWn)

2(1 − ρd −
∑i

n=1 ρn)
+

ρi(Ti − 1) + Ti((C
A
i)

2 + λi − 1)
2(1 − ρd −

∑i
n=1 ρn)

(7.13)

The first term in Equation 7.13 denotes the effect of deflected traffic on
class-i; the second term denotes the effect of higher priority classes (class-j,
j < i) on class-i; and the last term denotes the effect of class-i itself. For
more complex scenarios that include traffic splits, we apply an iterative
decomposition algorithm [135] to obtain the queuing time of different
classes.

Figure 7.5 shows the average latency comparison between the proposed
analytical model and simulation for the system in Figure 7.4. In this setup,
we assume the number of classes is 5 (N = 5), pd = 0.3, and input traffic
distribution is geometric. The results show that the analytical model
performs well against the simulation, with only 4% error on average. In
contrast, the analytical model from [102] highly overestimates the latency
as it does not consider multiple traffic classes. The performance model of
the priority-aware NoC in [136] accounts for multiple traffic classes, but it
does not model deflection. Hence, it severely underestimates the average
latency.

Summary & End-to-End Latency Estimation

Summary of the analytical modeling: We presented a scalable approach
for the analytical model generation of end-to-end latency that handles
multiple traffic classes of priority-aware NoCs with deflection routing. It
applies the principle of superposition on subsystems where each subsys-
tem is a canonical queuing system of a single traffic class to significantly
simplify the approximation of the GGeo parameters of deflected traffic
and in turn, the latency calculations.

153

Algorithm 4: End-to-end latency computation
1 Input: NoC topology, routing algorithm, service process, input

distribution for each class, (λ, CA), deflection probability (pd) for
each sink

2 Output: Average end-to-end latency (Lavg)
3 S = set of all classes in the network
4 N = number of queues in the network
5 Sn = set of classes in queue n

/* Distribution of deflected traffic */
6 for i = 1: |S| do
7 Compute λdi and CA

di
using Equation 7.10

8 Compute λd and CA
d using Equation 7.11 and Equation 7.12

9 end
10 Compute Wd using λd and CA

d

/* Average waiting time of each class */
11 for n = 1:N do
12 for s = 1:|Sn| do
13 Compute Wns using Equation 7.13 (if |Sn| = 1)
14 Compute Wns following the decomposition method in

[135] (if |Sn| > 1)
15 end
16 end
17 Lavg =

∑N
n=1

∑Sn
s=1(Wns+Lns)λns∑N
n=1

∑Sn
s=1 λns

(For mesh this term includes the latency
both on the rows and the columns.)

End-to-End latency computation: Algorithm 4 describes the end-to-end
latency computation with our proposed analytical model. The input pa-
rameters of the algorithm are the NoC topology, routing algorithm, service
process of each server, input traffic distribution for each class, and deflec-
tion probability per sink. It outputs the average end-to-end latency (Lavg).
First, the queuing system is decomposed into multiple subsystems as
shown in Figure 7.4(b) and λdi

and CA
di

for each subsystem-i are com-
puted. Subsequently, the proposed superposition methodology is applied
to compute λd and CA

d , shown in lines 6–9 of the algorithm. Then, λd and

154

CA
d are used to compute the average waiting time of the deflected packets

(Wd). Then, the average waiting time for class-s in Qn (Wns) is computed
as shown in lines 13–14. The service time combined with static latency
from source to destination (Lns) is added to Wns to obtain the end-to-end
latency. Finally, the average end-to-end latency (Lavg) is computed by
taking a weighted average of the latency of each class, as shown in line 16
of the algorithm.

7.3 Experimental Results with Deflection
Routing

This section validates the proposed analytical model against an industrial
cycle-accurate NoC simulator under a wide range of traffic scenarios. The
experiment scenarios include real applications and synthetic traffic that
allow evaluations with varying injection rates and deflection probabilities.
The evaluations include a 6×6 mesh NoC and a 6×1 ring as representative
examples of high-end server CPUs [88] and high-end client CPUs [179],
respectively. In both cases, the traffic sources emulate high-end CPU cores
with a 100% hit rate on the shared last level cache (LLC) to load the NoCs.
The target platforms are more powerful than experimental [198] and
special-purpose [208] platforms with simple cores, although the mesh
size is smaller. To further demonstrate the scalability of the proposed
approach, we also present results with mesh sizes up to 16×16. All cycle-
accurate simulations run for 200K cycles, with a warm-up period of 20K
cycles, to allow the NoC to reach the steady-state.

Estimation of Deflected Traffic

One of the key components of the proposed analytical model is estimat-
ing the average number of deflected packets. This section evaluates the

155

accuracy of this estimation compared to simulation with a 6×6 mesh. To
perform evaluations under heavy load, we set the deflection probability at
each junction and sink to pd = 0.3 and injection rates at each source to 0.33
packets/cycle/source, which are relatively large values seen in actual sys-
tems. We first run cycle-accurate simulations to obtain the average number
of deflected packets at each row and column of the mesh. Then, the ana-
lytical model estimates the same quantities for the 6×6 mesh. Figure 7.6
shows the estimation accuracy for all rows and columns. The average esti-
mation accuracy across all rows and columns is 96% and the worst-case
accuracy is 92%. Overall, this evaluation shows that the proposed model
accurately estimates the average number of deflected packets.

R o w - 1
R o w - 2

R o w - 3
R o w - 4

R o w - 5
R o w - 6

C o l - 1 C o l - 2 C o l - 3 C o l - 4 C o l - 5 C o l - 6
0

2 0
4 0
6 0
8 0

1 0 0

Es
tim

ati
on

 Ac
cu

rac
y o

f
De

fle
cte

d P
ac

ke
ts

(%
)

Figure 7.6: Estimation accuracy of average number of packets deflected
for each row and column in a 6×6 mesh with pd=0.3.

Table 7.2: Validation of the proposed analytical model for 6×6 mesh and 6×1 ring
with bursty traffic arrival, and comparisons against prior work [102, 136]. ‘E’ signifies
error >100%.

Topo. 6×6 Mesh 6×1 Ring
pd 0.1 0.2 0.3 0.1 0.2 0.3
pbr 0.2 0.6 0.2 0.6 0.2 0.6 0.2 0.6 0.2 0.6 0.2 0.6
λ 0.1 0.3 0.4 0.1 0.3 0.4 0.1 0.3 0.4 0.1 0.3 0.4 0.1 0.2 0.3 0.1 0.2 0.3 0.1 0.3 0.4 0.1 0.3 0.4 0.1 0.3 0.4 0.1 0.3 0.4 0.1 0.2 0.3 0.1 0.2 0.3

Er
r.(

%
) Prop. 7.3 9.6 8.1 14 13 14 8.9 8.0 7.7 13 12 12 9.6 9.2 6.5 11 12 13 1.0 4.1 5.8 4.6 5.2 5.5 0.7 2.3 4.2 6.3 7.3 8.6 0.7 0.9 3.3 6.3 8.5 8.6

Ref[102] 2.6 E E 26 E E 22 E E 39 E E 35 18 E 57 E E 7.0 E E 34 E E 23 E E 45 E E 42 E E 54 E E
Ref[136] 12 15 23 3.1 18 23 28 41 65 19 33 49 42 45 55 39 35 31 15.3 18 22 18 24 33 30 38 67 31 44 54 41 50 73 42 50 58

156

Figure 7.7: Comparison of average latency between simulation, the an-
alytical model proposed in this work, and analytical models proposed
in [102, 136] for a 6×6 mesh with deflection probability (a) 0.1 and (b)
0.3.

Evaluations with Geometric Traffic Input

This section evaluates the accuracy of our latency estimation technique
when the sources inject packets following a geometric traffic distribution.
We note that our technique can also handle bursty traffic, which is sig-
nificantly harder. However, we start with this assumption to make a fair
comparison to two state-of-the-art techniques from the literature [102, 136].
The model presented in [102] does not incorporate multiple traffic classes
and deflection routing. On the other hand, the model presented in [136]
considers multiple traffic classes but does not consider bursty traffic and
deflection routing.

The evaluations are performed first on the server-like 6×6 mesh for
deflection probabilities pd = 0.1 and pd = 0.3 while sweeping the packet
injection rates. Figure 7.7(a) and Figure 7.7(b) show that the proposed
technique follows the simulation results closely for all injections. More
specifically, the proposed analytical model has only 7% and 6% percentage
error on average for deflection probabilities of 0.1 and 0.3, respectively.
In sharp contrast, the analytical model proposed in [102] significantly
overestimates the latency starting with moderate injection rates, since it
does not consider multiple traffic classes. Its performance degrades even

157

Figure 7.8: Average latency comparison between simulation, the analytical
model proposed in this work, and analytical models proposed in [102, 136]
for a 6×6 mesh with (a) pd = 0.1 and (b) pd = 0.3.

further with larger deflection probability, as depicted in Figure 7.7(b). We
note that it also slightly underestimates the latency at low injection rates
since it ignores deflection. Unlike this approach, the technique presented
in [136] considers multiple traffic classes in the same queue, but it ignores
deflected packets. Consequently, it severely underestimates the latency
impact of deflection, as shown in Figure 7.7.

We repeated the same evaluation on a 6×1 priority-aware ring NoC
which follows a high-end industrial quad-core CPU with an integrated
GPU and memory-controller [88]. The average error between the proposed
analytical model and simulations are 7% and 4% for deflection probabili-
ties of 0.1 and 0.3, respectively. In contrast, the model presented in [102]
underestimates the latency at low injection rates and significantly overes-
timates it under high traffic load similar to the 6×6 results in Figure 7.7.
Similarly, the analytical model presented in [136] severely underestimates
the average latency. It leads to an average 43% error with respect to simu-
lation. The plots of these results are not included for space considerations
since they closely follow the results in Figure 7.7.

158

Latency Estimation with Bursty Traffic Input

Since real applications exhibit burstiness, it is crucial to perform accurate
analytical modeling under bursty traffic. Therefore, this section presents
the comparison of our proposed analytical model with respect to sim-
ulation under bursty traffic. For an extensive and thorough validation,
we sweep the packet injection rate (λ), probability of burstiness (pbr),
and deflection probability (pd). The injection rates cover a wide range
to capture various traffic congestion scenarios in the network. Likewise,
we report evaluation results for two different burstiness (pbr = {0.2,0.6}),
and three different deflection probabilities (pd = {0.1,0.2,0.3}). The coeffi-
cient of variation for the input traffic (CA), the final input to the model,
is then computed as a function of pbr and λ [106]. We simulate the 6×6
mesh and 6×1 ring NoCs using their cycle-accurate models for all input
parameter values mentioned above. Then, we estimate the average packet
latencies using the proposed technique, as well as the most relevant prior
work [102, 136].

The estimation error of all three performance analysis techniques is
reported in Table 7.2 for all input parameters. The mean and median esti-
mation errors of our proposed technique are 9.3% and 9.5%, respectively.
Furthermore, we do not observe more than 14% error even with relatively
higher traffic load, probability of deflection, and burstiness than seen in
real applications (presented in the following section). In strong contrast,
the analytical models proposed in [102] severely overestimate the latency
similar to the results presented in Section 7.3. The estimation error is more
than 100% for most cases since the impact of multiple traffic classes and
deflected packet become more significant under these challenging scenar-
ios. Similarly, the model proposed in [136] underestimates the latency
because it does not model bursty traffic.

The right-hand side of Table 7.2 summarizes the estimation errors
obtained on the 6×1 ring NoC that follows high-end client systems. In

159

most cases, the error with the proposed analytical model is within 10% of
simulation, and the error is as low as 1%. With pd = 0.1, pbr = 0.6 and
λ = 0.4, the error is 14%, which is acceptable, considering that the network
is severely congested. In contrast, the analytical models proposed in [102]
overestimate the latency, whereas the models in [136] underestimate the
latency which conforms the results with geometric traffic, as in the 6×6
mesh results.

Experiments with Real Applications

In addition to the synthetic traffic, the proposed analytical model is eval-
uated with applications from SPEC CPU®2006 [77], SPEC CPU®2017
benchmark suites [32], and the SYSmark®2014 application [15]. Specifi-
cally, the evaluation includes SYSmark14, gcc, bwaves, mcf, GemsFDTD,
OMNeT++, Xalan, and perlbench applications. The chosen applications
represent a variety of injection rates for each source in the NoC and dif-
ferent levels of burstiness. Each application is profiled offline to find the
input traffic parameters. Of note, the probability of burstiness for these
applications ranges from pb = 0.25 to pb = 0.55, which is aligned with the
evaluations in Section 7.3.

The benchmark applications are executed on both 6×6 mesh and 6×1
ring architectures. The comparison of average latency between simulation
and proposed analytical model for the 6×6 mesh is shown in Figure 7.8.
The proposed model follows the simulation results very closely for de-
flection probability pd = 0.1 and pd = 0.3, as shown in Figure 7.8(a) and
Figure 7.8(b), respectively. These plots show the average packet latencies
normalized to the smallest latency from the 6×1 ring simulations due
to the confidentiality of the results. On average, the proposed analytical
model achieves less than 5% modeling error. In contrast, the analytical
models which do not consider deflection routing [102, 136] underestimate
the latency, since the injection rates of these applications are in the range

160

4 x 4 6 x 6 8 x 8 1 0 x 1 0 1 2 x 1 2 1 4 x 1 4 1 6 x 1 61 0 - 3

1 0 - 2

1 0 - 1

1 0 0

M e s h S i z e

Ex
ec

uti
on

 Ti
me

 of
An

aly
tic

al
Mo

de
l (s

)

Figure 7.9: Execution time of the proposed analytical model (in seconds)
for different mesh sizes.

of 0.02–0.1 flits/cycle/source (low injection region).
We observe similar results for the 6×1 ring NoC. The average estimation

error of our proposed technique is less than 8% for all applications. In
contrast, the prior techniques underestimate the latency by more than 2×
since they ignore deflected packets, and the average traffic loads are small.
In conclusion, the proposed technique outperforms state-of-the-art for
real applications and a wide range of synthetic traffic inputs.

Scalability Analysis

Finally, we evaluate the scalability of the proposed technique for larger
NoCs. We note that accuracy results for larger NoCs are not available
since they do not have detailed cycle-accurate simulation models. We
implemented the analytical model in C. Figure 7.9 shows that the analysis
completes in the order of seconds for up to 16×16 mesh. In comparison,
cycle-accurate simulations take hours with this size, even considering
linear scaling. When we scale the mesh size aggressively to 16×16, the
analysis completes in about 5 seconds, which is orders of magnitude faster
than cycle-accurate simulations of NoCs of this size.

161

8 performance analysis of nocs with weighted
round robin arbitration

8.1 Background and Motivation
Networks-on-chip continue playing a central role as many-core proces-
sors start dominating the server [9, 56], deep learning [192, 141, 155] and
medical industry [222]. As the commercial solutions scale up, the latency,
area, and power consumption overheads of NoCs become increasingly
crucial. Designers need analytical power-performance models to guide
complex design decisions during the architecture development and im-
plementation phases. After that, the same models are required by virtual
platforms, commonly used to develop and evaluate the software ecosystem
and applications [45]. Hence, there is a strong demand for high-fidelity
analytical techniques that accurately model fundamental aspects of indus-
trial designs across all segments ranging from systems-on-chip to client
and server systems.

NoCs can be broadly classified in terms of buffer usage as buffered and
bufferless architectures [152, 52, 148, 49]. Most early solutions adapted
buffered techniques, such as wormhole and virtual-channel switching,
where the packets (or their flits) are stored in intermediate routers. Area,
latency, and energy consumption of buffers have later led to bufferless
architectures, where the intermediate routers forward the incoming flits
if they can and deflect otherwise. Bufferless NoCs save significant buffer
area and enable ultra-fast, as low as single-cycle routing decisions [152, 52].
Therefore, many industrial NoCs used in server and client architectures
employ bufferless solutions to minimize the communication latency be-
tween the cores, last-level caches (LLC), and main memory [187, 56].
These solutions give priority to the packets already in the network to
enable predictable and fast communication while stalling the newly gen-

162

erated packets from the processing and storage nodes. However, buffer
area savings and low communication latency come at the cost of the early
onset of congestion. Indeed, the packets wait longer at the end nodes,
and the throughput saturates faster when the NoC load increases. More-
over, all routers in the NoCs remain powered on, increasing the NoC
power consumption. Therefore, there is a strong need to address these
shortcomings.

Buffered NoCs with virtual channel routers have been used more com-
monly in academic work and most recent industry standards [163, 168].
Shared buffering resources, such as input and output channels, require
arbitrating among different requesters. For example, suppose that packets
in different input channels request the same output channel. An arbiter
needs to resolve the conflicts and grant access to one of the requesters to
meet performance target. The architectures proposed to date predomi-
nantly employ basic round-robin (RR) arbiter to provide fairness to all
requesters [185, 122, 211]. Although the decisions are locally fair, the
number of arbitrations a packet goes through grows with its path length.
Hence, RR arbitration is globally unfair. More importantly, basic RR cannot
provide preference to a particular input, which is typically desired since
not all requests are equal. For example, data and acknowledgment pack-
ets can have higher priority than new requests to complete outstanding
transactions, especially when the network is congested.

WRR arbitration provides flexibility in allocating bandwidth propor-
tionally to the importance of the traffic classes, unlike basic round-robin
and priority-based arbitration. Each requester has an assigned weight,
which is a measure of its importance. A larger weight indicates that the
requester is given more preference in arbitration. Due to its generality,
WRR arbitration has been employed in several NoC proposals in the liter-
ature [172, 76, 220]. Indeed, WRR arbitration enables higher throughput
than RR arbitration [76]. Despite its potential, WRR arbitration has not been

163

analyzed theoretically, especially for large-scale NoCs. A large body of literature
has proposed performance analysis techniques for buffered and bufferless
NoCs since analytical models play a crucial role in fast design space explo-
ration and pre-silicon evaluation [205, 174, 101, 135, 139, 14]. In contrast,
no analytical modeling technique has been proposed to date for NoCs
with WRR arbitration. A formal analysis is required to understand the
behavior of NoCs with WRR arbitration. At the same time, executable
performance models are needed to guide many-core processor design and
enable virtual platforms for pre-silicon evaluation.

This work presents a fast, accurate, and scalable performance analysis
technique for NoCs with WRR arbitration. To the best of our knowledge,
it is the first performance analysis technique for NoCs with weighted
round-robin arbitration. Furthermore, the proposed technique supports
bursty core traffic observed in real applications, which is typically ignored
due to its complexity. It first estimates the effective service time of the
packets in the queue due to WRR arbitration. Then, it utilizes the effective
service time to obtain the average waiting time of the packets. We also
propose a decomposition technique to extend the analytical model for any
size of NoC. Extensive experimental evaluations show that the proposed
analytical model has less than 5% with real applications and 10% error
with synthetic traffic having different burstiness levels congesting the NoC.

The major contributions of the work are listed below:

• A novel performance analysis technique for NoCs that employ WRR
arbitration,

• A decomposition technique to obtain a scalable analytical model for
NoC of any size.

• Experimental evaluations with multiple NoC configurations with
different traffic scenarios showing less than 5% error for real appli-
cations.

164

Novel Contributions

Analytical models are required to estimate the NoC performance for fast
design space exploration and pre-silicon evaluation. Multiple prior studies
have proposed NoC performance analysis techniques with basic round-
robin arbitration. [158, 63, 174]. Authors in [158] first construct a con-
tention matrix between multiple flows in the NoC. Then, the average wait-
ing time of the packets corresponding to each flow is computed. Support
vector regression-based analytical model for NoCs is proposed in [174].
The analytical model proposed in [63] estimates the mean service time of
the flows with RR arbitration. The estimated mean service time is used
to find the average waiting time of the flows. However, none of these
techniques are applicable in the presence of both bursty traffic and WRR
arbitration.

Analytical modeling of round-robin arbitration has also been studied
outside NoC domain [30, 71, 205]. The techniques presented in [30, 71]
incorporate a polling model to approximate the effective service time
of a queue in the presence of RR arbitration. However, none of these
approaches are applicable when the input distribution to the queue is not
geometric. A Markov chain-based analytical model is proposed in [205] to
account for bursty input traffic. However, the technique is not scalable for
a network of queues. Moreover, none of these techniques are applicable
for discrete-time queuing systems. Since each transaction in NoC happens
at discrete clock cycles, the analytical models need to incorporate discrete-
time queuing systems. The major drawbacks of the prior approaches are
summarized in Table 8.1.

The basic round-robin arbitration cannot provide fairness when re-
questers have widely varying data rate requirements and priorities. There-
fore, weighted round-robin arbitration, i.e., WRR, has been used in on-chip
communication architectures [172, 76]. Qian et al. compute delay bounds
for different channels with different weights to assign appropriate weight

165

Table 8.1: Comparison of prior research and our novel contribution.
Research Approach WRR Bursty

Traffic Scalable Discrete
Time

Boxma et al. [30] Polling model No No Yes No
Wim et al. [71] Extended

polling model No No Yes No
Wang et al. [205] Markov chain No Yes No No
Fischer et al. [63] Heuristic No No Yes No
Vanlerbergee
et al. [199]

Moment
generating function No No No Yes

This work Queue
decomposition Yes Yes Yes Yes

to each input channel of the NoC [172]. They show that WRR delivers
better quality of service than NoCs with strict priority-based arbitration.
Authors in [76] propose a WRR-based scheduling policy. The proposed
technique assigns larger bandwidth to input channels with higher weights.
It achieves higher throughput compared to round-robin arbitration. Al-
though WRR has shown promise, no analytical modeling approach exists for NoCs
with WRR to date.

This work presents the first performance analysis technique for NoCs
with WRR arbitration. It fills an essential gap since WRR can address the
shortcomings of priority-based bufferless NoC architectures and the basic
round-robin arbitration. Furthermore, the proposed technique supports
bursty traffic observed in real applications, which is typically ignored due
to its complexity. Hence, it is a vital step towards comprehending the
theoretical underpinnings of NoCs with WRR arbitration and enabling
their deployment in industrial designs.

166

Background and Overview

Weighted Round-Robin Arbitration

This work uses weighted round-robin arbitration in the NoC routers. The
basic operating principle of WRR arbitration is illustrated in Figure 8.1 for
three traffic classes. Packets from each class are first written to a dedicated
input queue (also known as a channel). Suppose there are N input queues
Q1,Q2, . . . ,QN. WRR technique assigns Qi a positive integer weight de-
noted as ωi ∈ Z+ for 1 ⩽ i ⩽ N. The WRR arbiter serves up to ωi

consecutive packets from Qi before moving to the next queue. If Qi has
less than ωi packets, then WRR serves Qi until it becomes empty. Then,
the WRR arbiter serves the subsequent queues following the same princi-
ple. After a cycle is completed, the weights are reset to their initial values,
as illustrated in Figure 8.1, and the same arbitration cycle is repeated. In
NoCs with WRR arbitration, whenever two or more requesters compete
for the same resource, they are arbitrated following WRR. WRR arbitration
can be used both for arbitrating different virtual channels and different
ports in the network.

Figure 8.1: Illustration of weighted round-robin arbitration. ‘A’ is served
first, ‘I’ last. In this example it is assumed that no new packets arrived
until all prior packets (A-I) have been served.

167

Usage of the Proposed Performance Analysis Technique

WRR arbitration is promising for NoCs since it can tailor the communi-
cation bandwidth to different traffic classes. Furthermore, it provides
end-to-end latency-fairness to different source-destination pairs, unlike
basic round-robin and priority arbitration techniques. However, these
capabilities come at the expense of a vast design parameter space. An
n×m mesh with P-port routers has n×m× P tunable weights, e.g., an
8×8 2D mesh with 5-port routers would have 320 WRR weights. Due to
this ample design space, the current practice is limited to assigning two
weights to each router (e.g., one weight to local ports and another weight
to packets already in the NoC).

The benefits of the proposed theoretical analysis are two-fold. First, it
can enable accurate pre-silicon evaluations and design space exploration
without time-consuming cycle-accurate simulations. Second, it can be used
to find the combination of weights that optimizes the performance, i.e., to
solve the optimization problem in the vast design space described in the
previous paragraph. This work focuses on constructing the proposed analysis
technique and its evaluation against cycle-accurate simulation for two reasons.
First, the theoretical analysis is complex, and its evaluation deserves a
dedicated treatment on its own. Moreover, its application for solving
optimization problems requires demonstration of its fidelity first. Multi-
objective optimization of the WRR weights using the proposed model is
one of our future research directions. The remaining details of the work is
described in Appendix E of the thesis and in the reference [144].

8.2 Proposed Methodology and Approach
Figure 8.2 shows a weighted round-robin arbiter with N queues. The pack-
ets that belong to traffic class-i are stored in queue Qi. The corresponding
average arrival rate of class-i packets is denoted by λi, as summarized in

168

Table 8.2. The burstiness of traffic class-i can be captured by their squared
coefficient of variation of inter-arrival time, denoted by CAi [107, 172].
Finally, the weight assigned to class-i is denoted as ωi ∈ Z+ for 1 ⩽ i ⩽ N,
as illustrated in Figure 8.2.

To provide a step-by-step derivation, Section 8.2 starts with a particular
case of the proposed technique tailored to the basic round-robin arbitration,
i.e., all weights are set to one. Then, we extend the formulation to weighted
round-robin arbitration.

Analytical Model for Basic Round-Robin Arbitration

In the basic round-robin arbitration, all weights are equal to one, i.e.,
ωi = 1, 1 ⩽ i ⩽ N. Each traffic class experiences an additional delay until
the arbiter serves the head packets in the other queues. The proposed
technique has two steps:

1. The first step is to compute the first two moments of the effective service
time for each class-i (T̂i, ĈSi) of the fully decomposed queue nodes
illustrated in Figure 8.2.

2. In the second step, we use the transformed effective service times (T̂i,
ĈSi, 1 ⩽ i ⩽ N) to find the total waiting time (including the queuing

Figure 8.2: The original WRR arbiter with its traffic parameters (on the left)
and a transformed WRR (on the right) that comprises fully decomposed
queue nodes using our effective service time transformations.

169

Table 8.2: List of the important parameters used in this work.
N Number of traffic classes to an arbiter
λi Injection rate of class-i
ωi Weight assigned to class-i
T Original mean service time of all traffic classes
T̂i Mean value of effective service time of class-i
ρi, ρ̂i (ρi = λiTi) and (ρ̂i = λiT̂i) server utilizations of class-i
CAi Squared coeff. of variation of inter-arrival time of class-i
CS Squared coeff. of variation of orig. service time (all classes)
ĈSi Squared coeff. of variation of eff. service time of class-i
CA Sq. coeff. of variation of inter-arrival time (merged traffic)
CD Squared coeff. of variation of inter-departure time
ni Mean queue occupancy of class-i

p(ni > k|T̂j)
Probability that queue occupancy of class-i > k

given a mean effective service time of class-j = T̂j

Wi Average waiting time of class-i
R̂i Mean effective residual service time of class-i

delay) of each traffic class.

For the clarity of notation and illustration, the derivation below assumes
the original two moments of service time (T ,CS) are the same across all
traffic classes.

Mean effective service time of RR (T̂i)

The effective service time accounts for the delay experienced by the packets
at the head of each queue. This delay includes its own service time and the
service time of the packet at the head of other queues since the round-robin
arbiter serves them one by one. When all queues have packets, class-i
packets will be served every N×T cycles, i.e., they will wait for (N−1)×T

cycles after being served before winning the arbitration again. In general,
a traffic class will only contribute to the extra service time if it has a packet

170

waiting for service. Thus, assuming packet arrival of different classes are
independent, we can express the mean effective service time as:

T̂i = T +

N∑
j=1,j̸=i

p(ni > 0|T̂i)p(nj > 0|T̂i)T

= T + Tp(ni > 0|T̂i)
N∑

j=1,j̸=i

p(nj > 0|T̂i), 1 ⩽ i ⩽ N (8.1)

where p(nj > 0|T̂i) denotes the probability that the occupancy of class-
j is greater than zero given a mean effective service period of class-i is
T̂i, for 1 ⩽ i, j ⩽ N. We approximate p(nj > 0|T̂i) using Little’s law
as λjT̂i following the busy-cycle approach [30]. Little’s law gives the
expected number of class-j packets that arrive during the period of T̂i,
which approximates the probability that the occupancy of class-j packets
is greater than zero during this period. To ensure that the probability
term does not exceed one, we approximate p(nj > 0|T̂i) as min(1, λjT̂i).
Therefore, Equation 8.1 can be rewritten as:

T̂i = T + Tmin(1, λiT̂i)

N∑
j=1
j̸=i

min(1, λjT̂i), 1 ⩽ i ⩽ N (8.2)

We solve Equation 8.2 through a simple iterative approach described in
Algorithm 5. First, Equation 8.2 is solved by removing the nonlinearity
introduced by the min operation (lines 4 and 5). We consider the smaller
solution out of the two solutions, since we observed through experiments
that the smaller solution is more accurate. The solution is used as the
initial estimate of the iterative approach. Then, this estimate is plugged
into Equation 8.2 within an iteration loop to obtain a better estimate (line
7). The iterations continue until the change in the effective service time
is within a user-provided Tolerance value, set to 0.01 in this work. Algo-
rithm 5 typically takes less than ten iterations due to the quadratic nature

171

Algorithm 5: Basic round-robin arbitration: Effective service time
(T̂i) computation.
1 Input: Injection rate of each class (λ), service time (T), number of classes

(N), Convergence Tolerance

2 Output: Effective service time of each class (T̂)
3 for i = 1:N do
4 Find smaller root of the quadratic equation derived from

Equation 8.2:
5 T + Tλi(T̂i)

2 ∑N
j=1,j̸=i λj − T̂i = 0

6 δ = Tolerance,k = 1
7 while δ ⩾ Tolerance do
8 T̂k+1

i ← T + Tmin(1, λiT̂k
i)

∑N
j=1
j̸=i

min(1, λjT̂k
i)

9 δ = T̂k+1
i − T̂k

i

10 k← k+ 1
11 end
12 end

of Equation 8.2, which takes only a few microseconds to compute. After
the iterations are completed, Algorithm 5 returns the effective service time
T̂i.

Coefficient of variation of effective service time for RR (ĈSi)

This section derives ĈSi by leveraging the conservation of work principle
and property of equal residual service time of individual classes [30]. We
leverage these properties to compute the mean effective residual service
time of class-i (R̂i). Then, R̂i is used to calculate ĈSi using the relation
found in [107]:

ĈSi =
1
ρ̂i

(2R̂i

T̂i
+ 1 − CAi − ρ̂i

)
(8.3)

where ρ̂i = λiT̂i is the effective server utilization. In addition, we show
that leveraging the conservation of work principle gives our model the
capability of handling bursty traffic.

We exploit the conservation of work principle, stating that the same

172

amount of packets are served regardless of how the bandwidth is divided
between the traffic flows assuming all packets have same moments of ser-
vice time. Due to this fundamental principle, the total queue occupancy
nsum is invariant under the arbitration policy. Furthermore, this sum can
be computed with near-perfect accuracy using maximum entropy-based
analytical queuing model of multi-class given in [107]. One strong aspect
of this model is that it can take bursty traffic that conforms to General
Geometric distribution (GGeo). By leveraging this model, we can embed
the capability of handling bursty traffic into our analytical model. The
total queue occupancy (nsum) can be calculated as:

nsum =
1
2

N∑
i=1

(
ρi(CAi − 1) +

N∑
k=1

λi

λk

ρ2
k(CAk + CS)

1 −
∑N

k=1 ρk

)
(8.4)

using the parameters summarized in Table 8.2. We do not delve into the
derivation of this equation for clarity since it is not our major focus. The
detailed derivation can be found in the seminal work by Kouvatsos et
al. [107].

Next, we derive nsum using the first two moments of transformed
effective service time. The occupancy of each queue Qi can be expressed
using Little’s law as: ni = λiWi, where Wi is the average waiting time of
class-i. Therefore, we obtain:

nsum =

N∑
i=1

λiWi (8.5)

The average waiting time Wi consists of two components. The first one
is the waiting time in the queue till the packet reaches the head of the
queue (Ŵi), i.e. until all other class-i packets leave the server completely.
The second component accounts for the waiting time at the head of the
queue when the server is busy serving other classes (class-j, j ̸= i). This

173

component is the additional time captured by the effective service time
T̂i, i.e., the difference between the effective and original service times:
∆Ti = T̂i − T . Furthermore, the waiting Ŵi is expressed as a function of
the residual time [19]. Hence,

Wi =
R̂i

1 − λiT̂i
+ ∆Ti, for 1 ⩽ i ⩽ N (8.6)

We leverage the property that all individual mean effective residual service
time of classes are equal [30]; hence we write (R = R̂i, 1 ⩽ i ⩽ N).
Thus, we can rewrite the total occupancy by plugging Equation 8.6 into
Equation 8.5 and then solve for the residual time R:

nsum =

N∑
i=1

λi

(R

1 − λiT̂i
+ ∆Ti

)
=⇒ R =

(
nsum −

N∑
i=1

λi∆Ti

)(N∑
i=1

λi

1 − λiT̂i

)−1
(8.7)

Then, we can compute the coefficient of variation ĈSi by substituting the
residual time R from Equation 8.7 in Equation 8.3.

Average waiting time of RR (Wi)

Finally, we compute the mean waiting time of individual classes by plug-
ging T̂i and ĈSi found for RR arbitration into Equation 8.3 and Equation 8.6
as:

Wi =
0.5T̂i(ρ̂i − 1 + CAi + ρ̂iĈSi)

1 − λiT̂i
+ ∆Ti, 1 ⩽ i ⩽ N (8.8)

Analytical Model for Weighted Round-Robin Arbitration

This section extends the analytical model constructed in Section 8.2 to
WRR using the same steps. It first describes the derivation of the first two

174

moments of effective service time. Then, it will use these moments to find
the average waiting time.

Mean effective service time of WRR (T̂i)

In WRR, the weight of each class can be larger than or equal to one, i.e.,
ωi ⩾ 1, 1 ⩽ i ⩽ N. To illustrate the generalization, we start with a system
of two queues, where ω1 > 1 and ω2 = 1. Then, we generalize it to N

queues with arbitrary weights.
Mean effective service time of class-1 with ω1 > 1 and ω2 = 1: Since

ω1 > 1, a batch of up to ω1 number of class-1 packets are served without
interruption. Let T̂b

i be the total service time of ω1 class-1 packets. When
there is a class-2 packet in Q2, the next batch of ω1 class-1 packet will wait.
Therefore, we can express T̂b

1 as:

T̂b
1 = ω1T + p(n1 > 0|T̂b

1)p(n2 > 0|T̂b
1)T (8.9)

Note that this equation generalizes Equation 8.1 to arbitrary ω1 for two
queues. Using Little’s law and the methodology described in Section 8.2,
we approximate T̂b

1 as:

T̂b
1 = ω1T +

T

ω1
min(1, λ1T̂

b
1)min(1, λ2T̂

b
1) (8.10)

Mean effective service time of class-2 with ω1 > 1 and ω2 = 1: The batch
size of class-2 packet is one in this case since ω2 = 1. They need to wait in
the queue for a maximum of ω1 class-1 packets. Therefore, T̂2 is expressed
as:

T̂2 = T +

ω1−1∑
i=0

p(n1 > i|T̂2)p(n2 > 0|T̂2)T (8.11)

We can approximate p(n1 > i|T̂2) as 1
i+1p(n1 > 0|T̂2) to obtain:

175

T̂2 = T +

ω1−1∑
i=0

1
i+ 1p(n1 > 0|T̂2)p(n2 > 0|T̂2)T

= T + Tmin
(

1,
ω1−1∑
i=0

1
i+ 1λ1T̂2

)
min(1, λ2T̂2) (8.12)

To get to the final form of Equation 8.12 above, we approximate the condi-
tional probabilities based on [30].
Generalization to N queues and arbitrary weights: In general, there are N

classes with weights ωi, 1 ⩽ i ⩽ N. Consider the class-i packets with the
total service time T̂b

i for a batch of ωi packets. The first part of the effective
service time will be due to the packets of same class. This effect is captured in
our two-queue illustration for class-1 packets in Equation 8.9. The second
part of the effective service time will be due to the packets of other classes.
This effect is captured in our two-queue illustration for class-2 packets
in Equation 8.11. By combining them, we can express the generalized
effective service time as:

T̂b
i = ωiT + p(ni > 0|T̂b

i)

N∑
j=1,j̸=i

(ωj−1∑
k=0

p(nj > k|T̂b
i)
)
T (8.13)

Note that this equation reduces to Equation 8.9 for i = 1,N = 2,ω2 = 1,
and to Equation 8.11 for i = 2,N = 2,ω2 = 1.

Finally, we can obtain the generalized effective service times by replac-
ing p(ni > 0) with min(1, λiT̂

b
i) as follows:

T̂b
i = ωiT +

1
ωi

min(1, λiT̂
b
i)

N∑
j=1
j̸=i

min
(

1,
ωj−1∑
k=0

1
k+ 1λjT̂

b
i

)

T̂i =
T̂b
i

ωi

(8.14)

Due to the non-linearity introduced by the min operation, we compute T̂i

using the iterative Algorithm 6 just like the basic round-robin case. The

176

Algorithm 6: Obtaining effective service time (T̂i) of weighted
round-robin
1 Input: Injection rate of each class (λ), WRR weights (ωi), service time

(T), number of classes (N)
2 Output: Effective service time of each class (T̂)
3 for i = 1:N do
4 Find smaller root of the quadratic equation derived from

Equation 8.14 for T̂b
i :

5 (T̂b
i)

2 1
ωi

λi
∑N

j=1
j̸=i

∑ωj−1
k=0

1
k+1λj − T̂b

i +ωiT = 0
6 δ = Tolerance,k = 1
7 while δ ⩾ Tolerance do
8 Z =

∑N
j=1
j̸=i

min
(

1,∑ωj−1
k=0

1
k+1λjT̂

b,k
i

)
9 T̂b,k+1

i ← ωiT + 1
ωi

min(1, λiT̂b,k
i)Z

10 δ = T̂b,k+1
i − T̂b,k

i

11 k← k+ 1
12 end
13 T̂i =

T̂b
i

ωi

14 end

quadratic nature of Equation 8.14 enables a fast convergence within 10
iterations under 5µs.

Figure 8.3: Illustration of extending the proposed analysis to multiple
stages. Only two consecutive stages are shown for clarity. The departure
statistics at a given stage become the arrival statistics of the subsequent
stage. The blue line denotes that the class which wins the arbitration goes
to the next stage.

177

Coefficient of variation of effective service time of WRR (ĈSi) 1

In the basic round-robin case, the residual service time Ri accounts for
the second-order moment of the service time, i.e., CSi. However, effective
mean residual service time of different classes are not necessarily equal
to each other for arbitrary weights, which is the case in WRR arbitration.
The mean effective residual service time of class-i packets is expressed as:

R̂i = 0.5T̂i(ρ̂i − 1 + CAi + ρ̂iĈSi) (8.15)

where T̂i is found from Algorithm 6 based on Equation 8.14. Note that the
residual service time depends on the first two moments of service time,
which are the average service time T̂i and the coefficient of variation ĈSi,
respectively. To approximate ĈSi for WRR, we leverage its monotonically
decreasing behavior as a function of the corresponding weight. This behav-
ior is expected since a larger weight corresponds to fewer arbitration stages,
decreasing the effective service time variation. This observation indicates
that the coefficient of variation for round-robin arbitration is an upper
bound of coefficient of variation for weighted round-robin arbitration. This
upper bound, ĈSi(RR) for class-i, is computed using Equation 8.3. Given
this, we first apply linear approximation to calculate the ĈSi under WRR
as α ĈSi(RR)

ω2
i

, note we use the squared value of ωi since ĈSi is the square of
coefficient of variation as defined in Table 8.2. We add the parameter α to
tighten the approximation. Next, we recall Equation 8.4 and replace CSk

by α
ĈSk(RR)

ω2
k

to obtain:

nsum=
1
2

N∑
i=1

(
ρ̂i(CAi − 1) +

N∑
k=1

(
λi

λk

)ρ̂2
k(CAk+α

ĈSk(RR)

ω2
k

)

1 −
∑N

k=1 ρ̂k

)
(8.16)

1We use the same notation for RR and WRR arbitration since WRR results are gener-
alizations of basic RR expressions.

178

The left hand side of the Equation 8.16 (nsum) is obtained by applying
Equation 8.4. Therefore, α is the only unknown in Equation 8.16. Once
we obtain α (by solving Equation 8.16), we compute ĈSi under WRR as
α ĈSi(RR)

ω2
i

. This expression captures traffic burstiness addressing one of the
significant drawbacks of the prior work.

Average waiting time of WRR (Wi)

So far, we obtained first two moments of effective service time, i.e., T̂i
(Equation 8.14) and ĈSi. We obtain the average waiting time under WRR
arbitration by plugging them to Equation 8.17:

Wi =
0.5T̂i(ρ̂i − 1 + CAi + ρ̂iĈSi)

1 − λiT̂i
+ ∆Ti (8.17)

Estimation of end-to-end latency
The previous section described the canonical model for WRR arbitration,
where all traffic classes go through a single arbiter. The packets in NoCs
go through a sequence of WRR arbiters while traveling from their sources
towards destinations. For example, an 8×8 2D mesh has 64 routers with at
least one arbiter per output queue in each of them. Figure 8.3(a) illustrates
an example with two stages, where the flow that wins the first stage is
routed to the second one. The major challenge in modeling multiple stages
is obtaining the inter-departure distribution, which becomes the arrival
flow at the subsequent stages. For instance, the coefficient of variation of
arrival flow 2 in the second stage is equal to the coefficient of variation
of the departing flow from stage-1 (CD) in Figure 8.3(a). We first find
the squared co-efficient of variation of inter-departure time for each traffic
class (CDi):

CDi=ρ2
i(ĈSi + 1)+(1 − ρi)CAi+ρi(1 − 2ρi),∀1 ⩽ i ⩽ N (8.18)

179

Algorithm 7: Estimation of end-to-end latency
1 Input: NoC size (n×m), injection rates and co-efficient of variation of

inter-arrival times for all classes (λ,CA), Service time (T), WRR weights
2 Output: Average NoC (L̄) and source–dest. latencies (Lsd)
3 Number of routers Np ← n×m, λsum ← 0,Lsum ← 0
4 for s = 1:Np do
5 for d = 1:Np do
6 Wsd = compute_waiting_time(s,d)
7 Lsd = Wsd + free_packet_delay(s,d)
8 Lsum ← Lsum + Lsd, λsum ← λsum + λsd
9 end

10 end
11 L̄ = Lsum

λsum

12 function compute_waiting_time(s,d)
13 S← The number of stages for the flow with source s and destination

d, Wsd ← 0
14 for j = 1:S do
15 Wj = Waiting time at stage j using Equation 8.17
16 Wsd ←Wsd +Wj

17 CD = Coefficient of variation using Equation 8.19
18 Use CD as the CA in the next stage
19 end
20 return Wsd

21 end

Next, we apply the decomposition technique [171] to obtain the departure
distribution at each stage (CD).

CD =

∑N
i=1 λiCDi∑N

i=1 λi

(8.19)

The departure distribution (CD) is the arrival distribution to the next
stage (CA2). For a given source-destination pair, these calculations are
performed at each arbitration stage on the path of the packets.

Algorithm 7 presents a step-by-step procedure to obtain end-to-end
latency of a given NoC with WRR arbitration and deterministic routing.

180

The input to the algorithm is the NoC size, injection rate, and coefficient
of variation of inter-arrival time of all classes, service time of the queues,
and weights assigned to each arbiter. The output of the algorithm is the
latency of each source-destination pair (Lsd) as well as the average latency
L̄.

Algorithm 7 first computes the waiting time of each source-destination
pair (Wsd). The function compute_waiting_time in lines 12–22 de-
scribes the procedure for this computation. The procedure starts with
finding the number of stages (S) for the flow from source s to destination
d. At each stage, it computes the average waiting time using Equation 8.17
(line 16). Next, it adds the waiting time at the current state to the cumula-
tive waiting time found so far (line 17). Then, it computes the coefficient
of variation of inter-departure time (CD) using Equation 8.18 and CD is
used as the coefficient of variation of inter-arrival time in the next stage
(lines 18–19). Finally, the procedure returns the total waiting time from
source s to destination d (Wsd) (line 21). After retrieving the total waiting
times, Algorithm 7 adds the free packet delay (tsd), i.e., the latency due
to the links and router micro-architecture, which can be found using the
number of hops and the router pipeline depth [162, 49]. Then, end-to-end
latencies and flow rates are accumulated (line 8). Finally, the average
latency of the network is obtained by computing the weighted average of
the latency of all source-destination pairs (line 11). We note that different
WRR arbiters in the network can be assigned different arbitration weights.

8.3 Experimental Results

Experimental Setup
This section presents a thorough evaluation of the proposed analytical
modeling approach under various traffic scenarios and NoC configurations.
We employ geometric and bursty traffic distributions in addition to real

181

Figure 8.4: Verification of the analytical model for basic round-robin with
(a) 8×1 and (b) 8×8 NoC.

application traces feeding 1×8, 6×6, and 8×8 NoCs (note that the typical
size of state-of-the-art industrial NoCs is 6×6 [187, 56]). The synthetic
traffic simulations use 100% last-level cache (LLC) hit and 100% LLC miss
scenarios, commonly used corner cases. Furthermore, applications from
SPEC CPU 2017 [32] and PARSEC [23] benchmark suits demonstrate the
effectiveness of the proposed technique in a broader range of scenarios.
The latency results of our analytical models are compared against an
in-house cycle-accurate simulator, which is calibrated with an industrial
simulator [159]. All simulations run for 200K cycles to reach a steady state
and have 20K cycles of warm-up. The source code of the simulator and
the analytical model are publicly released at [191].

182

Results with Basic Round-Robin Arbitration
We first evaluate the proposed analytical model under basic round-robin
arbitration. Figure 8.4 depicts representative average end-to-end latency
comparisons between analytical model and the cycle-accurate simulations
for 8×1 ring and 8×8 mesh NoC. The average injection rates for both NoC
configurations are varied until the NoC becomes highly congested, follow-
ing geometric distribution. On average, the proposed technique incurs
only 5% error for 8×1 ring and 7% error for 8×8 mesh. We also compare
the proposed analytical model with a polling-based model for round-robin
arbitration [71]. The polling-based model grossly overestimates the la-
tency both for 8×1 and 8×8 NoC. A comprehensive summary for other
NoC sizes and traffic patterns is presented in Section 8.3. These results
demonstrate that the proposed approach is accurate for difference NoC,
traffic, and WRR parameters.

Results with Weighted Round-Robin Arbitration
The most important aspect of the proposed technique is considering WRR
arbitration. Figure 8.5 shows the average end-to-end latency comparison
of our analytical model against cycle-accurate simulations with an 8×8
mesh for three different weight configurations. The proposed analytical
model incurs on average 8% error when the WRR weights associated with
the traffic channels of external input to the NoC and channels connected
to internal routers are 1 and 2, respectively. The average error slightly
increases to 9% when the arbitration weights of the packets in the NoC
increase to 3. This configuration decreases the network congestion by
providing higher priority to the packets already in the NoC. Hence, the av-
erage waiting time decreases. Since there are no other analysis approaches
for WRR, this section does not provide comparisons to state-of-the-art.

183

Figure 8.5: Verification of the analytical model for weighted round-robin
with 8 × 8 NoC. [x y] denotes that the WRR weights associated with
channels connected to the internal routers is x and traffic channels of
external input to the NoC is y.

Results with Bursty Traffic and Real Applications

This section evaluates the proposed model in the presence of bursty traffic.
We define probability of burstiness as pburst of the general geometric
distribution [107]. Increasing pburst denotes increasing burstiness in the

Table 8.3: Summary of results for synthetic applications with 100% hit.

Topo.
ωring = 1,ωsrc = 1 ωring = 3,ωsrc = 1

pburst = 0 pburst = 0.3 pburst = 0 pburst = 0.3
λ = 0.1λ = 0.3λ = 0.1λ = 0.3λ = 0.1λ = 0.3λ = 0.1λ = 0.3

8×1 1.4% 11% 3.6% 7.8% 1.5% 13% 9% 11%
6×6 5.5% 7.2% 7.4% 11% 5.2% 11% 5.9% 12%
8×8 2.6% 7.8% 5.2% 10% 3.5% 11% 4.8% 7.2%

Table 8.4: Summary of results for synthetic applications with 100% miss.

Topo.
ωring = 1,ωsrc = 1 ωring = 3,ωsrc = 1

pburst = 0 pburst = 0.3 pburst = 0 pburst = 0.3
λ = 0.1λ = 0.2λ = 0.1λ = 0.2λ = 0.1λ = 0.2λ = 0.1λ = 0.2

8×1 4.3% 4.6% 5.3% 5.7% 4.4% 4.6% 4.5% 4.8%
6×6 5.0% 5.4% 5.5% 6.0% 5.0% 5.4% 5.0% 5.8%
8×8 7.1% 8.0% 7.4% 7.6% 7.4% 13% 8.1% 9.0%

184

Figure 8.6: Verification of analytical model for bursty traffic with (a)
pburst = 0.1 and pburst = 0.3.

traffic. We note that no other prior work considered weighted round-robin
arbitration together with bursty traffic. Figure 8.6 compares the end-to-
end average latency results against cycle-accurate simulations for 6×6 and
8×8 mesh when the arbitration weights associated with the packets in
the NoC and external packets arrivals are 3 and 1, respectively. When the
burst probability is pburst = 0.1 (Figure 8.6(a)), the average modeling
errors for 6×6 and 8×8 mesh are 7% and 4%, respectively. When the burst
probability increases to 0.3 (Figure 8.6(b)), the average errors become 6%
and 5%, respectively.

Finally, we evaluate the proposed analysis technique while running
applications from the SPEC CPU2017 [32] and PARSEC benchmark [23].

185

The applications from SPEC CPU2017 benchmarks show burstiness in the
range of pburst = 0.1 − 0.6. The applications from PARSEC benchmark
are 16-threaded and do not show any burstiness. Figure 8.7 compares the
analysis results against cycle-accurate simulations on an 8×8 NoC. The
WRR weights of packets already in the NoC are set to 3, while new packets
from cores have a lower priority set with a weight of 1. We observe that
our proposed analysis technique consistently achieves a modeling error
of less than 5% for these applications. These results demonstrate that the
proposed analysis technique can accurately model the end-to-end NoC
latency under WRR arbitration and bursty traffic.

Summary of the Evaluation Results
This section summarizes the accuracy of our performance analysis tech-
nique systematically for different NoC sizes, WRR weights, and traffic
burstiness. To capture the most commonly observed corner cases, we
provide results for two extreme cases – 100% LLC hit and 100% LLC miss
traffic. In both cases, cores send packets to each LLC at an equal rate.

Table 8.3 summarizes the comparisons between analysis and simula-
tions for 100% LLC hit. When pburst = 0 and the traffic load is moderate
(λ = 0.1), the modeling error ranges from 1.4% to 5.5% considering both
RR and WRR arbitration. Even when the traffic load increases congesting
the NoC (λ = 0.3), the modeling error remains below 11% for all config-
urations. A higher level of burstiness to pburst = 0.3 increases the NoC
load. Consequently, the error range increases 3.6%–9.0% for the moder-
ate traffic load (λ = 0.1). Increasing the load further congests the NoC
(λ = 0.3) pushing the worst-case error only to 13%, which is acceptable
since practical systems hardly operate this load due to congestion control
mechanisms.

Finally, Table 8.4 summarizes the modeling error of the proposed tech-
nique for 100% LLC miss. In this case, the missed core requests are for-

186

Figure 8.7: Verification against real applications.

Table 8.5: Analysis on execution time of the proposed model.
NoC size 4× 4 6× 6 8× 8 16× 16 32× 32
Exe. time (ms) 0.56 1.41 2.25 13.52 45.07

warded to memory controllers (one in 8×1 NoC and two in 6×6 and 8×8
NoCs). Hence, the memory controllers become hotspots. Despite the high
degree of skewness, the error for moderate NoC loads ranges from 4.3% to
8.1% for all burstiness levels, WRR weight configurations, and NoC sizes.
Even when the NoC is pushed to congestion, the modeling error remains
under 9.0% for all configurations, except for 8× 8 NoC with WRR weights
3 and 1. The error in this specific case is 13%; the error for 8× 1 and 6× 6
NoCs are 4.6% and 5.4%, respectively.

Execution Time of the Proposed Analysis Technique
We implemented the proposed technique in C++ to obtain end-to-end
latency. The computational complexity of the proposed model is O(n2 ×
m2×p), for n×m NoC (n ⩾ m) and WRR arbiters with maximum p ports.

187

The execution time as a function of NoC sizes with 3 output ports per
router are summarized in Table 8.5. We observe that even for 32× 32 NoC,
the analytical model takes only 45.07 ms to execute, while the simulation
time of the 8× 8 NoC is in the order of minutes. These results show that
the proposed analysis technique is lightweight and provides four orders
of magnitude speed-up compared to cycle-accurate simulations.

188

9 conclusion of the thesis and future work

In this thesis, we present a latency-optimized reconfigurable NoC for
in-memory acceleration of DNNs. State-of-the-art interconnect method-
ologies include bus-based H-Tree interconnect and mesh-NoC. We show
that bus-based H-Tree interconnect contributes significantly to the total in-
ference latency of DNN hardware and are not a viable option. Mesh-NoC
based IMC architectures are better than bus-based H-tree but they too do
not consider the non-uniform weight distribution of different DNNs, DNN
graph structure, and the computation-to-communication imbalance of the
DNNs.None of the architectures holistically investigated minimization
of communication latency. In contrast, our proposed latency-optimized
NoC guarantees minimum possible communication latency between two
consecutive layers of a given DNN. Experimental evaluations on a wide
range of DNNs confirm that the proposed NoC architecture enables 60%-
80% reduction in communication latency with respect to state-of-the-art
interconnect solutions.

Then we present a communication-aware in-memory computing ar-
chitecture for GCNs. Besides accelerating the computation using custom
compute elements (CE) and in-memory computing, the proposed GCN
accelerator aims at minimizing the intra- and inter-CE communication
in GCN operations to optimize the performance and energy efficiency.
Experimental evaluations with widely used datasets show up to 105×
improvement in energy consumption compared to state-of-the-art GCN
accelerator.

We also propose an approach to build analytical models for priority-
based NoCs with multi-class flits under bursty traffic and deflection rout-
ing. As we emphasized, no prior work has presented analytical models
that consider priority arbitration and multi-class flits in a single queue
simultaneously. Such a priority-based queuing network is decomposed

189

into independent queues using novel transformations proposed in this
work. We evaluate the efficiency of the proposed approach by computing
end-to-end latency of flits in a realistic industrial platform and using real
application benchmarks. Our extensive evaluations show that the pro-
posed technique achieves a high accuracy of 97% accuracy compared to
cycle-accurate simulations for different network sizes and traffic flows.

190

bibliography

[1] Graph nets library. https://deepmind.com/research/
open-source/graph-nets-library.

[2] Nvidia quadro rtx 8000. https://www.
nvidia.com/content/dam/en-zz/Solutions/
design-visualization/quadro-product-literature/
NVIDIA-Quadro-RTX-8000-PCIe-Server-Card-PB-FINAL-1219.
pdf.

[3] S. Abadal, A. Jain, R. Guirado, J. López-Alonso, and E. Alarcón.
Computing Graph Neural Networks: A Survey from Algorithms to
Accelerators. arXiv preprint arXiv:2010.00130, 2020.

[4] A. Abbas et al. A Survey on Energy-Efficient Methodologies and Ar-
chitectures of Network-on-chip. Computers & Electrical Engineering,
40(8):333–347, 2014.

[5] V. Adhinarayanan, I. Paul, J. L. Greathouse, W. Huang, A. Pattnaik,
and W.-c. Feng. Measuring and Modeling on-Chip Interconnect
Power on Real Hardware. In IEEE International Symposium on Work-
load Characterization, pages 1–11.

[6] N. Agarwal et al. GARNET: A Detailed on-chip Network Model In-
side a Full-system Simulator. In 2009 IEEE intl. symp. on performance
analysis of systems and software, pages 33–42.

[7] A. B. Ahmed, A. B. Abdallah, and K. Kuroda. Architecture and
Design of Efficient 3D Network-on-chip (3D NoC) for Custom Mul-
ticore SoC. In Intl. Conf. on Broadband, Wireless Computing, Commu-
nication and Applications, pages 67–73, 2010.

[8] S. Angizi, J. Sun, W. Zhang, and D. Fan. GraphS: A graph Processing
Accelerator Leveraging SOT-MRAM. In 2019 Design, Automation &
Test in Europe Conference & Exhibition (DATE), pages 378–383, 2019.

https://deepmind.com/research/open-source/graph-nets-library
https://deepmind.com/research/open-source/graph-nets-library
https://www.nvidia.com/content/dam/en-zz/Solutions/design-visualization/quadro-product-literature/NVIDIA-Quadro-RTX-8000-PCIe-Server-Card-PB-FINAL-1219.pdf
https://www.nvidia.com/content/dam/en-zz/Solutions/design-visualization/quadro-product-literature/NVIDIA-Quadro-RTX-8000-PCIe-Server-Card-PB-FINAL-1219.pdf
https://www.nvidia.com/content/dam/en-zz/Solutions/design-visualization/quadro-product-literature/NVIDIA-Quadro-RTX-8000-PCIe-Server-Card-PB-FINAL-1219.pdf
https://www.nvidia.com/content/dam/en-zz/Solutions/design-visualization/quadro-product-literature/NVIDIA-Quadro-RTX-8000-PCIe-Server-Card-PB-FINAL-1219.pdf
https://www.nvidia.com/content/dam/en-zz/Solutions/design-visualization/quadro-product-literature/NVIDIA-Quadro-RTX-8000-PCIe-Server-Card-PB-FINAL-1219.pdf

191

[9] M. Arafa and thers. Cascade Lake: Next Generation Intel Xeon
Scalable Processor. IEEE Micro, 39(2):29–36, 2019.

[10] A. I. Arka, J. R. Doppa, P. P. Pande, B. K. Joardar, and K. Chakrabarty.
ReGraphX: NoC-enabled 3D Heterogeneous ReRAM Architecture
for Training Graph Neural Networks. In 2021 Design, Automation
& Test in Europe Conference & Exhibition (DATE), pages 1667–1672.
IEEE, 2021.

[11] A. I. Arka, B. K. Joardar, J. R. Doppa, P. P. Pande, and K. Chakrabarty.
DARe: DropLayer-Aware Manycore ReRAM architecture for Train-
ing Graph Neural Networks. In 2021 IEEE/ACM International Con-
ference On Computer Aided Design (ICCAD), pages 1–9, 2021.

[12] A. I. Arka, B. K. Joardar, J. R. Doppa, P. P. Pande, and K. Chakrabarty.
Performance and Accuracy Tradeoffs for Training Graph Neural
Networks on ReRAM-Based Architectures. IEEE Transactions on
Very Large Scale Integration (VLSI) Systems, 29(10):1743–1756, 2021.

[13] I. Awan and R. Fretwell. Analysis of Discrete-Time Queues with
Space and Service Priorities for Arbitrary Arrival Processes. In
Parallel and Distributed Systems. Proc. 11th Intl Conf. on, volume 2,
pages 115–119, 2005.

[14] R. Ayoub, M. Kishinevsky, S. K. Mandal, and U. Y. Ogras. Analytical
Modeling of NoCs for Fast Simulation and Design Exploration. In
Proceedings of the Workshop on System-Level Interconnect: Problems and
Pathfinding Workshop, pages 1–1, 2020.

[15] B. A. P. C. (BAPCo). Benchmark, sysmark2014. http://bapco.com/
products/sysmark-2014, accessed 27 May 2020.

[16] A. Bartolini et al. A Virtual Platform Environment For Exploring
Power, Thermal And Reliability Management Control Strategies In
High-Performance Multicores. In Proc. of the Great lakes Symp. on
VLSI, pages 311–316, 2010.

[17] S. Bell et al. Tile64-processor: A 64-core SoC with Mesh Interconnect.
In Intl. Solid-State Circuits Conf.-Digest of Technical Papers, pages 88–
598, 2008.

http://bapco.com/products/sysmark-2014
http://bapco.com/products/sysmark-2014

192

[18] A. W. Berger and W. Whitt. Workload Bounds in Fluid Models with
Priorities. Performance evaluation, 41(4):249–267, 2000.

[19] D. P. Bertsekas, R. G. Gallager, and P. Humblet. Data Networks,
volume 2. Prentice-Hall International New Jersey, 1992.

[20] S. Bharadwaj, J. Yin, B. Beckmann, and T. Krishna. Kite: A Family
of Heterogeneous Interposer Topologies Enabled via Accurate In-
terconnect Modeling. In 2020 57th ACM/IEEE Design Automation
Conference (DAC), pages 1–6. IEEE, 2020.

[21] G. Bhat, S. K. Mandal, U. Gupta, and U. Y. Ogras. Online Learning
for Adaptive Optimization of Heterogeneous SoCs. In Proceedings
of the International Conference on Computer-Aided Design, pages 1–6,
2018.

[22] G. Bhat, S. K. Mandal, S. T. Manchukonda, S. V. Vadlamudi, A. Agar-
wal, J. Wang, and U. Y. Ogras. Per-Core Power Modeling for Het-
erogenous SoCs. Electronics, 10(19):2428, 2021.

[23] C. Bienia, S. Kumar, J. P. Singh, and K. Li. The PARSEC Benchmark
Suite: Characterization and Architectural Implications. In Proc. of
the Intl. Conf. on Parallel Arch. and Compilation Tech., pages 72–81,
2008.

[24] N. Binkert et al. The Gem5 Simulator. SIGARCH Comp. Arch. News,
May. 2011.

[25] P. Bogdan and R. Marculescu. Workload Characterization and Its
Impact on Multicore Platform Design. In Proc. of the Intl. Conf. on
Hardware/Software Codesign and System Synthesis, pages 231–240,
2010.

[26] P. Bogdan and R. Marculescu. Non-stationary Traffic Analysis
and its Implications on Multicore Platform Design. IEEE Trans. on
Computer-Aided Design of Integrated Circuits and Systems, 30(4):508–
519, 2011.

[27] A. Bojchevski and S. Günnemann. Deep gaussian embedding of
graphs: Unsupervised inductive learning via ranking. arXiv preprint
arXiv:1707.03815, 2017.

193

[28] G. Bolch, S. Greiner, H. De Meer, and K. S. Trivedi. Queueing Net-
works and Markov Chains: Modeling and Performance Evaluation with
Computer Science Applications. John Wiley & Sons, 2006.

[29] A. Borodin, Y. Rabani, and B. Schieber. Deterministic Many-to-Many
Hot Potato Routing. IEEE Transactions on Parallel and Distributed
Systems, 8(6):587–596, 1997.

[30] O. J. Boxma and B. W. Meister. Waiting-time Approximations in
Multi-queue Systems with Cyclic Service. Performance Evaluation,
7(1):59–70, 1987.

[31] J. T. Brassil and R. L. Cruz. Bounds on Maximum Delay in Networks
with Deflection Routing. IEEE Transactions on Parallel and Distributed
Systems, 6(7):724–732, 1995.

[32] J. Bucek, K.-D. Lange, and J. v. Kistowski. SPEC CPU2017:
Next-Generation Compute Benchmark. In Companion of the 2018
ACM/SPEC International Conference on Performance Engineering,
pages 41–42, 2018.

[33] A. Carlson, J. Betteridge, B. Kisiel, B. Settles, E. Hruschka, and
T. Mitchell. Toward an architecture for never-ending language learn-
ing. In Proceedings of the AAAI Conference on Artificial Intelligence,
volume 24, 2010.

[34] N. Challapalle, M. Chandran, S. Rampalli, and V. Narayanan. X-
VS: Crossbar-Based Processing-in-Memory Architecture for Video
Summarization. In 2020 IEEE Computer Society Annual Symposium
on VLSI (ISVLSI), pages 592–597, 2020.

[35] N. Challapalle, S. Rampalli, M. Chandran, G. Kalsi, S. Subramoney,
J. Sampson, and V. Narayanan. Psb-rnn: A Processing-in-Memory
Systolic Array Architecture using Block Circulant Matrices for Re-
current Neural Networks. In 2020 Design, Automation & Test in
Europe Conference & Exhibition (DATE), pages 180–185. IEEE, 2020.

[36] N. Challapalle, S. Rampalli, N. Jao, A. Ramanathan, J. Sampson,
and V. Narayanan. FARM: A Flexible Accelerator for Recurrent and
Memory Augmented Neural Networks. Journal of Signal Processing
Systems, 92(11):1247–1261, 2020.

194

[37] N. Challapalle, S. Rampalli, L. Song, N. Chandramoorthy, K. Swami-
nathan, J. Sampson, Y. Chen, and V. Narayanan. Gaas-x: Graph
Analytics Accelerator Supporting Sparse Data Representation using
Crossbar Architectures. In 2020 ACM/IEEE 47th Annual Interna-
tional Symposium on Computer Architecture (ISCA), pages 433–445,
2020.

[38] N. Challapalle, K. Swaminathan, N. Chandramoorthy, and
V. Narayanan. Crossbar based Processing in Memory Acceler-
ator Architecture for Graph Convolutional Networks. In 2021
IEEE/ACM International Conference On Computer Aided Design (IC-
CAD), pages 1–9, 2021.

[39] C.-H. O. Chen et al. SMART: a single-cycle reconfigurable NoC for
SoC applications. In Proc. of the Conf. on Design, Autom. and Test in
Europe, pages 338–343, 2013.

[40] J. Chen and X. Ran. Deep Learning with Edge Computing: A
Review. Proceedings of the IEEE, 107(8):1655–1674, 2019.

[41] P.-Y. Chen, X. Peng, and S. Yu. NeuroSim: A Circuit-level Macro
Model for Benchmarking Neuro-Inspired Architectures in Online
Learning. IEEE Transactions on Computer-Aided Design of Integrated
Circuits and Systems, 37(12):3067–3080, 2018.

[42] X. Chen et al. Rubik: A hierarchical architecture for efficient graph
learning. arXiv preprint arXiv:2009.12495, 2020.

[43] Y.-H. Chen, T. Krishna, J. S. Emer, and V. Sze. Eyeriss: An Energy-
efficient Reconfigurable Accelerator for Deep Convolutional Neural
Networks. IEEE JSSC, 52(1):127–138, 2016.

[44] Y.-H. Chen, T.-J. Yang, J. Emer, and V. Sze. Eyeriss v2: A Flexible
Accelerator for Emerging Deep Neural Networks on Mobile Devices.
IEEE Journal on Emerging and Selected Topics in Circuits and Systems,
9(2):292–308, 2019.

[45] M.-C. Chiang, T.-C. Yeh, and G.-F. Tseng. A QEMU and SystemC-
based Cycle-accurate ISS for Performance Estimation on SoC De-
velopment. IEEE Transactions on Computer-Aided Design of Integrated
Circuits and Systems, 30(4):593–606, 2011.

195

[46] I.-H. Chung, C. Kim, H.-F. Wen, and G. Cong. Application data
prefetching on the ibm blue gene/q supercomputer. In SC’12: Pro-
ceedings of the International Conference on High Performance Computing,
Networking, Storage and Analysis, pages 1–8. IEEE, 2012.

[47] H. Dai, Z. Kozareva, B. Dai, A. Smola, and L. Song. Learning steady-
states of iterative algorithms over graphs. In International conference
on machine learning, pages 1106–1114. PMLR, 2018.

[48] W. J. Dally and B. Towles. Route Packets, not Wires: On-chip Inter-
connection Networks. In Proc. of the Design Automation Conf., pages
684–689, 2001.

[49] W. J. Dally and B. P. Towles. Principles and practices of interconnection
networks. Elsevier, 2004.

[50] S. Das, J. R. Doppa, P. P. Pande, and K. Chakrabarty. Monolithic 3D-
enabled High Performance and Energy Efficient Network-on-chip.
In Proc. of Intl. Conf. on Computer Design, pages 233–240, 2017.

[51] W. R. Davis, J. Wilson, S. Mick, J. Xu, H. Hua, C. Mineo, A. M. Sule,
M. Steer, and P. D. Franzon. Demystifying 3D ICs: The Pros and
Cons of Going Vertical. IEEE Design & Test of Computers, 22(6):498–
510, 2005.

[52] B. K. Daya, L.-s. Peh, and A. P. Chandrakasan. Quest For High-
Performance Bufferless Nocs With Single-Cycle Express Paths And
Self-Learning Throttling. In Proc. of Design Automation Conf., pages
1–6, 2016.

[53] A. C. de Melo. The New Linux Perf Tools. In Linux Kongress, vol-
ume 18, 2010.

[54] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei. Imagenet:
A Large-scale Hierarchical Image Database. In 2009 IEEE conference
on computer vision and pattern recognition, pages 248–255, 2009.

[55] B. Donyanavard, T. Mück, S. Sarma, and N. Dutt. SPARTA: Runtime
Task Allocation for Energy Efficient Heterogeneous Many-cores. In
Proc. of the Intl. Conf. on Hardware/Software Codesign and Sys. Syn.,
page 27, 2016.

196

[56] J. Doweck et al. Inside 6th-generation Intel Core: New Microarchi-
tecture Code-named Skylake. IEEE Micro, (2):52–62, 2017.

[57] J. Duato, S. Yalamanchili, and L. Ni. Interconnection Networks: An
Engineering Approach, M. Kaufmann Pub. Inc., USA, 2002.

[58] D. Duvenaud et al. Convolutional networks on graphs for learning
molecular fingerprints. arXiv preprint arXiv:1509.09292, 2015.

[59] C. Fallin, C. Craik, and O. Mutlu. CHIPPER: A Low-Complexity
Bufferless Deflection Router. In 2011 IEEE 17th International Sym-
posium on High Performance Computer Architecture, pages 144–155,
2011.

[60] C. Fallin, G. Nazario, X. Yu, K. Chang, R. Ausavarungnirun, and
O. Mutlu. MinBD: Minimally-buffered Deflection Routing for
Energy-efficient Interconnect. In 2012 IEEE/ACM Sixth International
Symposium on Networks-on-Chip, pages 1–10, 2012.

[61] Z. Fang, D. Hong, and R. K. Gupta. Serving Deep Neural Networks
at the Cloud Edge for Vision Applications on Mobile Platforms. In
Proceedings of the 10th ACM Multimedia Systems Conference, pages
36–47, 2019.

[62] B. S. Feero and P. P. Pande. Networks-on-chip in a Three-
Dimensional Environment: A Performance Evaluation. IEEE Trans-
actions on Computers, 58(1):32–45, 2008.

[63] E. Fischer and G. P. Fettweis. An accurate and scalable analytic
model for round-robin arbitration in network-on-chip. In Networks
on Chip (NoCS), IEEE/ACM Intl. Symp. on, pages 1–8, 2013.

[64] T. Geng et al. AWB-GCN: A Graph Convolutional Network Accel-
erator with Runtime Workload Rebalancing. In 2020 53rd Annual
IEEE/ACM International Symposium on Microarchitecture (MICRO),
pages 922–936.

[65] A. Ghosh and T. Givargis. Analytical Design Space Exploration of
Caches for Embedded Systems. In 2003 Design, Automation and Test
in Europe Conference and Exhibition, pages 650–655, 2003.

197

[66] P. Ghosh, A. Ravi, and A. Sen. An Analytical Framework with
Bounded Deflection Adaptive Routing for Networks-on-Chip. In
2010 IEEE Computer Society Annual Symposium on VLSI, pages 363–
368, 2010.

[67] P. Ghosh, A. Sen, and A. Hall. Energy Efficient Application Mapping
to NoC Processing Elements Operating at Multiple Voltage Levels.
In Intl. Symp. on Networks-on-Chip, pages 80–85, 2009.

[68] C. L. Giles, K. D. Bollacker, and S. Lawrence. Citeseer: An automatic
citation indexing system. In Proceedings of the third ACM conference
on Digital libraries, pages 89–98, 1998.

[69] S. Gopal, S. Das, D. Heo, and P. P. Pande. Energy and Area Efficient
Near Field Inductive Coupling: A Case Study on 3D NoC. In Proc.
of IEEE/ACM International Symposium on Networks-on-Chip, pages
1–8, 2017.

[70] A. Gotmanov et al. Verifying Deadlock-Freedom of Communication
Fabrics. In Intl. Workshop on Verification, Model Checking, and Abstract
Interpretation, pages 214–231. Springer, 2011.

[71] W. P. Groenendijk and H. Levy. Performance Analysis of Transaction
Driven Computer Systems via Queueing Analysis of Polling Models.
IEEE Computer Architecture Letters, 41(04):455–466, 1992.

[72] B. Grot, J. Hestness, S. W. Keckler, and O. Mutlu. Kilo-NOC: A
Heterogeneous Network-on-Chip Architecture for Scalability and
Service Guarantees. In International Symposium on Computer Archi-
tecture, pages 401–412, 2011.

[73] U. Gupta, S. K. Mandal, M. Mao, C. Chakrabarti, and U. Y. Ogras.
A deep q-learning approach for dynamic management of heteroge-
neous processors. IEEE Computer Architecture Letters, 18(1):14–17,
2019.

[74] W. L. Hamilton, R. Ying, and J. Leskovec. Inductive representation
learning on large graphs. arXiv preprint arXiv:1706.02216, 2017.

[75] K. He, X. Zhang, S. Ren, and J. Sun. Deep Residual Learning for
Image Recognition. In Proceedings of the IEEE conference on computer
vision and pattern recognition, pages 770–778, 2016.

198

[76] J. Heißwolf, R. König, and J. Becker. A Scalable NoC Router Design
Providing QoS Support using Weighted Round Robin Scheduling.
In 2012 IEEE 10th International Symposium on Parallel and Distributed
Processing with Applications, pages 625–632, 2012.

[77] J. L. Henning. SPEC CPU2006 Benchmark Descriptions. ACM
SIGARCH Computer Architecture News, 34(4):1–17, 2006.

[78] M. Horowitz. Computing’s Energy Problem (and What We Can
Do About It). In IEEE ISSCC, pages 10–14, 2014.

[79] Y. Hoskote, S. Vangal, A. Singh, N. Borkar, and S. Borkar. A 5-GHz
Mesh Interconnect for a Teraflops Processor. IEEE Micro, 27(5):51–
61, 2007.

[80] J. Hu and R. Marculescu. DyAD: Smart Routing for Networks-on-
chip. In Proc. of Design Automation Conf., pages 260–263, 2004.

[81] J. Hu, U. Y. Ogras, and R. Marculescu. System-level Buffer Allo-
cation for Application-Specific Networks-On-Chip Router Design.
IEEE Transactions on Computer-Aided Design of Integrated Circuits and
Systems, 25(12):2919–2933, 2006.

[82] G. Huang, Z. Liu, L. Van Der Maaten, and K. Q. Weinberger. Densely
Connected Convolutional Networks. In Proceedings of the IEEE con-
ference on computer vision and pattern recognition, pages 4700–4708,
2017.

[83] J. Huang, C. Buckl, A. Raabe, and A. Knoll. Energy-aware Task
Allocation for Network-On-Chip based Heterogeneous Multipro-
cessor Systems. In Intl. Euromicro Conf. on Parallel, Distributed and
Network-Based Processing, pages 447–454, 2011.

[84] F. N. Iandola, S. Han, M. W. Moskewicz, K. Ashraf, W. J. Dally,
and K. Keutzer. SqueezeNet: AlexNet-Level Accuracy with
50x Fewer Parameters and< 0.5 MB Model Size. arXiv preprint
arXiv:1602.07360, 2016.

[85] S. Ikehara and M. Miyazaki. Approximate Analysis of Queueing
Networks with Nonpreemptive Priority Scheduling. In Proc. 11th
Int. Teletraffic Congr.

199

[86] M. Imani, S. Gupta, Y. Kim, and T. Rosing. Floatpim: In-memory
Acceleration of Deep Neural Network Training with High Preci-
sion. In Proceedings of the 46th International Symposium on Computer
Architecture, pages 802–815, 2019.

[87] A. Jantsch and H. Tenhunen. Networks on Chip, volume 396. Springer,
2003.

[88] J. Jeffers, J. Reinders, and A. Sodani. Intel Xeon Phi Processor High Per-
formance Programming: Knights Landing Edition. Morgan Kaufmann,
2016.

[89] N. E. Jerger, T. Krishna, and L.-S. Peh. On-chip Networks. Synthesis
Lectures on Computer Architecture, 12(3):1–210, 2017.

[90] N. Jiang et al. A Detailed and Flexible Cycle-accurate Network-on-
chip Simulator. In 2013 IEEE Intl. Symp. on Performance Analysis of
Systems and Software (ISPASS), pages 86–96.

[91] X. Jin and G. Min. Modelling and Analysis of Priority Queueing
Systems with Multi-class Self-similar Network Traffic: a Novel and
Efficient Queue-decomposition Approach. IEEE Trans. on Communi-
cations, 57(5), 2009.

[92] B. K. Joardar, A. I. Arka, J. R. Doppa, P. P. Pande, H. Li, and
K. Chakrabarty. Heterogeneous Manycore Architectures Enabled
by Processing-in-Memory for Deep Learning: From CNNs to
GNNs:(ICCAD Special Session Paper). In 2021 IEEE/ACM Inter-
national Conference On Computer Aided Design (ICCAD), pages 1–7.
IEEE, 2021.

[93] B. K. Joardar, A. Deshwal, J. R. Doppa, P. P. Pande, and
K. Chakrabarty. High-throughput Training of Deep CNNs on
ReRAM-based Heterogeneous Architectures via Optimized Nor-
malization Layers. IEEE Transactions on Computer-Aided Design of
Integrated Circuits and Systems, 2021.

[94] B. K. Joardar, J. R. Doppa, P. P. Pande, H. Li, and K. Chakrabarty.
AccuReD: High Accuracy Training of CNNs on ReRAM/GPU Het-
erogeneous 3-D Architecture. IEEE Transactions on Computer-Aided
Design of Integrated Circuits and Systems, 40(5):971–984, 2020.

200

[95] B. K. Joardar, R. G. Kim, J. R. Doppa, P. P. Pande, D. Marculescu,
and R. Marculescu. Learning-based Application-agnostic 3D NoC
Design for Heterogeneous Manycore Systems. IEEE Transactions on
Computers, 68(6):852–866, 2018.

[96] B. K. Joardar, B. Li, J. R. Doppa, H. Li, P. P. Pande, and K. Chakrabarty.
REGENT: A Heterogeneous ReRAM/GPU-based Architecture En-
abled by NoC for Training CNNs. In 2019 Design, Automation &
Test in Europe Conference & Exhibition (DATE), pages 522–527. IEEE,
2019.

[97] J. A. Kahle et al. Introduction to the Cell multiprocessor. IBM
journal of Research and Development, 49(4.5):589–604, 2005.

[98] N. Karmarkar. A New Polynomial-time Algorithm for Linear Pro-
gramming. In Proceedings of the sixteenth annual ACM symposium on
Theory of computing, pages 302–311, 1984.

[99] H. Kashif and H. Patel. Bounding Buffer Space Requirements for
Real-time Priority-aware Networks. In Asia and South Pacific Design
Autom. Conf., pages 113–118, 2014.

[100] W.-S. Khwa, J.-J. Chen, J.-F. Li, X. Si, E.-Y. Yang, X. Sun, R. Liu,
P.-Y. Chen, Q. Li, S. Yu, et al. A 65nm 4Kb Algorithm-dependent
Computing-In-Memory SRAM Unit-macro with 2.3 ns and 55.8 TOP-
S/W Fully Parallel Product-sum Operation for Binary DNN Edge
Processors. In 2018 IEEE International Solid-State Circuits Conference-
(ISSCC), pages 496–498.

[101] A. E. Kiasari, Z. Lu, and A. Jantsch. An Analytical Latency Model for
Networks-on-Chip. IEEE Transactions on Very Large Scale Integration
(VLSI) Systems, 21(1):113–123, 2012.

[102] A. E. Kiasari, Z. Lu, and A. Jantsch. An Analytical Latency Model
for Networks-on-Chip. IEEE Trans. on Very Large Scale Integration
(VLSI) Systems, 21(1):113–123, 2013.

[103] J. S. Kim, M. B. Taylor, J. Miller, and D. Wentzlaff. Energy Charac-
terization of a Tiled Architecture Processor with On-chip Networks.
In Proc. of Intl. Symp. On Low Power Electronics And Design, pages
424–427, 2003.

201

[104] K. Kiningham, C. Re, and P. Levis. Grip: A graph neural network
acceleratorarchitecture. arXiv preprint arXiv:2007.13828, 2020.

[105] T. N. Kipf and M. Welling. Semi-supervised classification with
graph convolutional networks. arXiv preprint arXiv:1609.02907,
2016.

[106] D. Kouvatsos and P. Luker. On the analysis of queueing network
models: Maximum entropy and simulation. In UKSC 84, pages
488–496. 1984.

[107] D. D. Kouvatsos. Entropy Maximisation and Queuing Network
Models. Annals of Operations Research, 48(1):63–126, 1994.

[108] T. Krishna, A. Kumar, P. Chiang, M. Erez, and L.-S. Peh. NoC with
Near-ideal Express Virtual Channels using Global-Line Communi-
cation. In IEEE Symp. on High Performance Interconnects, pages 11–20,
2008.

[109] A. Krishnakumar, S. E. Arda, A. A. Goksoy, S. K. Mandal, U. Y.
Ogras, A. L. Sartor, and R. Marculescu. Runtime Task Scheduling
Using Imitation Learning for Heterogeneous Many-Core Systems.
IEEE Transactions on Computer-Aided Design of Integrated Circuits and
Systems, 39(11):4064–4077, 2020.

[110] G. Krishnan, S. K. Mandai, C. Chakrabarti, J.-s. Seo, U. Y. Ogras, and
Y. Cao. Interconnect-centric benchmarking of in-memory accelera-
tion for dnns. In 2021 China Semiconductor Technology International
Conference (CSTIC), pages 1–4. IEEE, 2021.

[111] G. Krishnan, S. K. Mandal, C. Chakrabarti, J.-s. Seo, U. Y. Ogras,
and Y. Cao. Interconnect-Aware Area and Energy Optimization for
In-Memory Acceleration of DNNs. IEEE Design & Test, 2020.

[112] G. Krishnan, S. K. Mandal, C. Chakrabarti, J.-S. Seo, U. Y. Ogras, and
Y. Cao. Impact of On-chip Interconnect on In-memory Acceleration
of Deep Neural Networks. ACM Journal on Emerging Technologies in
Computing Systems (JETC), 18(2):1–22, 2021.

202

[113] G. Krishnan, S. K. Mandal, C. Chakrabarti, J.-S. Seo, U. Y. Ogras,
and Y. Cao. System-Level Benchmarking of Chiplet-based IMC
Architectures for Deep Neural Network Acceleration. In 2021 IEEE
14th International Conference on ASIC (ASICON), pages 1–4, 2021.

[114] G. Krishnan, S. K. Mandal, M. Pannala, C. Chakrabarti, J.-S. Seo, U. Y.
Ogras, and Y. Cao. SIAM: Chiplet-based Scalable In-Memory Ac-
celeration with Mesh for Deep Neural Networks. ACM Transactions
on Embedded Computing Systems (TECS), 20(5s):1–24, 2021.

[115] A. Krizhevsky, G. Hinton, et al. Learning multiple layers of features
from tiny images. Technical report, Citeseer, 2009.

[116] A. Krizhevsky, I. Sutskever, and G. E. Hinton. Imagenet Classifi-
cation with Deep Convolutional Neural Networks. In Advances in
neural information processing systems, pages 1097–1105, 2012.

[117] A. Kumary, P. Kunduz, A. P. Singhx, L.-S. Pehy, and N. K. Jhay. A
4.6Tbits/s 3.6GHz Single-cycle NoC Router with a Novel Switch
Allocator in 65nm CMOS. In Intl. Conf. on Computer Design, pages
63–70, 2007.

[118] H. Kwon, A. Samajdar, and T. Krishna. Rethinking Nocs for Spatial
Neural Network Accelerators. In 2017 Eleventh IEEE/ACM Intl.
Symp. on NOCS, pages 1–8, 2017.

[119] H. Kwon, A. Samajdar, and T. Krishna. Maeri: Enabling Flexible
Dataflow Mapping over DNN Accelerators via Reconfigurable In-
terconnects. In ACM SIGPLAN Notices, volume 53, pages 461–475,
2018.

[120] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner. Gradient-based
Learning Applied to Document Recognition. Proceedings of the IEEE,
86(11):2278–2324, 1998.

[121] H. G. Lee, N. Chang, U. Y. Ogras, and R. Marculescu. On-chip Com-
munication Architecture Exploration: A Quantitative Evaluation
of Point-To-Point, Bus, and Network-On-Chip Approaches. ACM
Transactions on Design Automation of Electronic Systems, 12(3):1–20,
2008.

203

[122] Y.-L. Lee, J. M. Jou, and Y.-Y. Chen. A High-speed and Decentralized
Arbiter Design for NoC. In 2009 IEEE/ACS International Conference
on Computer Systems and Applications, pages 350–353, 2009.

[123] A. Lerer et al. Pytorch-biggraph: A large-scale graph embedding
system. arXiv preprint arXiv:1903.12287, 2019.

[124] R. Leupers et al. Virtual Manycore platforms: Moving towards 100+
processor cores. In Proc. of DATE, pages 1–6, 2011.

[125] D. Li and J. Wu. Energy-efficient Contention-aware Application
Mapping and Scheduling on NoC-based MPSoCs. Journal of Parallel
and Distributed Computing, 96:1–11, 2016.

[126] G. Li, S. K. Mandal, U. Y. Ogras, and R. Marculescu. FLASH: Fast
Neural Architecture Search with Hardware Optimization. ACM
Transactions on Embedded Computing Systems (TECS), 20(5s):1–26,
2021.

[127] Z. Li, N. Challapalle, A. K. Ramanathan, and V. Narayanan. IMC-
Sort: In-Memory Parallel Sorting Architecture using Hybrid Mem-
ory Cube. In Proceedings of the 2020 on Great Lakes Symposium on
VLSI, pages 45–50, 2020.

[128] S. Liang et al. Engn: A high-throughput and energy-efficient ac-
celerator for large graph neural networks. IEEE Transactions on
Computers, 2020.

[129] M. Lin, Q. Chen, and S. Yan. Network in Network. arXiv preprint
arXiv:1312.4400, 2013.

[130] S. Liu, A. Jantsch, and Z. Lu. Analysis and Evaluation of Design
Trade-Offs Between Circuit Switched NoC and Packet Switched
NoC. In Euromicro Conf. on Digital System Design, pages 21–28, 2013.

[131] W. Liu and B. Vinter. A Framework for General Sparse Matrix–
Matrix Multiplication on GPUs and Heterogeneous Processors. Jour-
nal of Parallel and Distributed Computing, 85:47–61, 2015.

[132] Z. Lu, M. Zhong, and A. Jantsch. Evaluation of On-chip Networks
using Deflection Routing. In Proceedings of the 16th ACM Great Lakes
Symposium on VLSI, pages 296–301, 2006.

204

[133] Y. Ma, Y. Cao, S. Vrudhula, and J.-s. Seo. Optimizing the Convolu-
tion Operation to Accelerate Deep Neural Networks on FPGA. IEEE
Transactions on Very Large Scale Integration (VLSI) Systems, 26(7):1354–
1367, 2018.

[134] P. S. Magnusson et al. Simics: A Full System Simulation Platform.
Computer, 35(2):50–58.

[135] S. K. Mandal, R. Ayoub, M. Kishinevsky, M. M. Islam, and U. Y.
Ogras. Analytical Performance Modeling of NoCs under Priority
Arbitration and Bursty Traffic. IEEE Embedded Systems Letters, 2020.

[136] S. K. Mandal, R. Ayoub, M. Kishinevsky, and U. Y. Ogras. Analytical
performance models for nocs with multiple priority traffic classes.
ACM Transactions on Embedded Computing Systems (TECS), 18(5s):1–
21, 2019.

[137] S. K. Mandal, G. Bhat, J. R. Doppa, P. P. Pande, and U. Y. Ogras. An
energy-aware online learning framework for resource management
in heterogeneous platforms. ACM Transactions on Design Automation
of Electronic Systems, 25(3):1–26, 2020.

[138] S. K. Mandal et al. Dynamic Resource Management of Heteroge-
neous Mobile Platforms via Imitation Learning. IEEE Trans. on Very
Large Scale Integration (VLSI) Systems, 2019.

[139] S. K. Mandal, A. Krishnakumar, R. Ayoub, M. Kishinevsky, and
U. Y. Ogras. Performance analysis of priority-aware nocs with de-
flection routing under traffic congestion. In Proceedings of the 39th
International Conference on Computer-Aided Design, pages 1–9, 2020.

[140] S. K. Mandal, A. Krishnakumar, and U. Y. Ogras. Energy-efficient
networks-on-chip architectures: Design and run-time optimization.
Network-on-Chip Security and Privacy, page 55, 2021.

[141] S. K. Mandal, G. Krishnan, C. Chakrabarti, J.-S. Seo, Y. Cao, and
U. Y. Ogras. A latency-optimized reconfigurable noc for in-memory
acceleration of dnns. IEEE Journal on Emerging and Selected Topics in
Circuits and Systems, 10(3):362–375, 2020.

205

[142] S. K. Mandal, G. Krishnan, A. A. Goksoy, G. R. Nair, Y. Cao, and U. Y.
Ogras. COIN: Communication-Aware In-Memory Acceleration
for Graph Convolutional Networks. IEEE Journal on Emerging and
Selected Topics in Circuits and Systems, 2022.

[143] S. K. Mandal, U. Y. Ogras, J. R. Doppa, R. Z. Ayoub, M. Kishinevsky,
and P. P. Pande. Online Adaptive Learning for Runtime Resource
Management of Heterogeneous SoCs. In 2020 57th ACM/IEEE
Design Automation Conference (DAC), pages 1–6, 2020.

[144] S. K. Mandal, J. Tong, R. Ayoub, M. Kishinevsky, A. Abousamra,
and U. Y. Ogras. Theoretical Analysis and Evaluation of NoCs with
Weighted Round-Robin Arbitration. In 2021 IEEE/ACM Interna-
tional Conference On Computer Aided Design (ICCAD), pages 1–9,
2021.

[145] C. D. Manning, C. D. Manning, and H. Schütze. Foundations of
Statistical Natural Language Processing. MIT press, 1999.

[146] H. Mao et al. Learning scheduling algorithms for data processing
clusters. In Proceedings of the ACM Special Interest Group on Data
Communication, pages 270–288. 2019.

[147] M. Mao, X. Peng, R. Liu, J. Li, S. Yu, and C. Chakrabarti. MAX2: An
ReRAM-based Neural Network Accelerator that Maximizes Data
Reuse and Area Utilization. IEEE Journal on Emerging and Selected
Topics in Circuits and Systems, 2019.

[148] R. Marculescu et al. Outstanding Research Problems In Noc Design:
System, Microarchitecture, And Circuit Perspectives. IEEE Trans.
on Computer-Aided Design of Integrated Circuits and Syst., 28(1):3–21,
2008.

[149] A. K. McCallum, K. Nigam, J. Rennie, and K. Seymore. Automating
the construction of internet portals with machine learning. Informa-
tion Retrieval, 3(2):127–163, 2000.

[150] G. Michelogiannakis, D. Sanchez, W. J. Dally, and C. Kozyrakis.
Evaluating Bufferless Flow Control for On-Chip Networks. In Intl.
Symp. on Networks-on-Chip, pages 9–16, 2010.

206

[151] M. Mirza-Aghatabar, S. Koohi, S. Hessabi, and M. Pedram. An
Empirical Investigation of Mesh and Torus NoC Topologies under
Different Routing Algorithms and Traffic Models. In Euromicro Conf.
on Digital System Design Architectures, Methods and Tools, pages 19–26,
2007.

[152] T. Moscibroda and O. Mutlu. A Case for Bufferless Routing in
On-chip Networks. In Proceedings of the 36th Annual International
Symposium on Computer Architecture, pages 196–207, 2009.

[153] S. S. Mukherjee, P. Bannon, S. Lang, A. Spink, and D. Webb. The
Alpha 21364 Network Architecture. IEEE Micro, 22(1):26–35, 2002.

[154] S. Murali, C. Seiculescu, L. Benini, and G. De Micheli. Synthesis of
Networks on Chips For 3D Systems on Chips. In Proc. of Asia and
South Pacific Design Automation Conf., pages 242–247, 2009.

[155] S. M. Nabavinejad et al. An overview of Efficient Interconnection
Networks for Deep Neural Network Accelerators. IEEE Journal on
Emerging and Selected Topics in Circuits and Systems, 10(3):268–282,
2020.

[156] V. Narayanan, N. Challapalle, I. Okafor, S. Srinivasa, and N. Jao.
Monolithic 3D Enabled Processing-in-SRAM Memory. In 2020
China Semiconductor Technology International Conference (CSTIC),
pages 1–2. IEEE, 2020.

[157] L. Ni, H. Huang, Z. Liu, R. V. Joshi, and H. Yu. Distributed In-
Memory Computing on Binary RRAM Crossbar. ACM Journal on
Emerging Technologies in Computing Systems (JETC), 13(3):1–18, 2017.

[158] U. Y. Ogras, P. Bogdan, and R. Marculescu. An Analytical Ap-
proach for Network-on-Chip Performance Analysis. IEEE Trans. on
Computer-Aided Design of Integrated Circuits and Systems, 29(12):2001–
2013, 2010.

[159] U. Y. Ogras, Y. Emre, J. Xu, T. Kam, and M. Kishinevsky. Energy-
Guided Exploration of On-Chip Network Design for Exa-Scale Com-
puting. In Proc. of Intl. Workshop on System Level Interconnect Predic-
tion, pages 24–31, 2012.

207

[160] U. Y. Ogras, M. Kishinevsky, and S. Chatterjee. xPLORE: Commu-
nication Fabric Design and Optimization Framework. Developed at
Strategic CAD Labs, Intel Corp.

[161] U. Y. Ogras and R. Marculescu. Energy-and Performance-driven
NoC Communication Architecture Synthesis using a Decomposition
Approach. In Proc. of Design, Automation and Test in Europe, pages
352–357, 2005.

[162] U. Y. Ogras and R. Marculescu. “It’s a Small World After All": Noc
Performance Optimization via Long-Range Link Insertion. IEEE
Trans. on Very Large Scale Integration Systems, 14(7):693–706, 2006.

[163] U. Y. Ogras and R. Marculescu. Modeling, Analysis and Optimization of
Network-on-Chip Communication Architectures, volume 184. Springer
Science & Business Media, 2013.

[164] M. Palesi and T. Givargis. Multi-objective Design Space Exploration
Using Genetic Algorithms. In Proc. of the Intl. Symp. on Hardware/-
Software Codesign, pages 67–72, 2002.

[165] P. P. Pande, C. Grecu, M. Jones, A. Ivanov, and R. Saleh. Performance
Evaluation and Design Trade-offs for Network-on-Chip Interconnect
Architectures. IEEE transactions on Computers, 54(8):1025–1040,
2005.

[166] S. Pasricha, R. Ayoub, M. Kishinevsky, S. K. Mandal, and U. Y. Ogras.
A Survey on Eenergy Management for Mobile and IoT Devices. IEEE
Design & Test, 2020.

[167] A. Patel et al. MARSS: a Full System Simulator for Multicore x86
CPUs. In Design Autom. Conf., pages 1050–1055, 2011.

[168] A. Pellegrini et al. The Arm Neoverse N1 Platform: Building Blocks
for the Next-gen Cloud-to-Edge Infrastructure SoC. IEEE Micro,
40(2):53–62, 2020.

[169] X. Peng, R. Liu, and S. Yu. Optimizing Weight Mapping and
Data Flow for Convolutional Neural Networks on RRAM based
Processing-In-Memory Architecture. In IEEE International Sympo-
sium on Circuits and Systems (ISCAS), pages 1–5, 2019.

208

[170] A. Pinto, L. P. Carloni, and A. L. Sangiovanni-Vincentelli. Efficient
Synthesis of Networks on Chip. In Proc of Intl. Conf. on Computer
Design, pages 146–150, 2003.

[171] G. Pujolle and W. Ai. A Solution for Multiserver and Multiclass
Open Queueing Networks. INFOR: Information Systems and Opera-
tional Research, 24(3):221–230, 1986.

[172] Y. Qian, Z. Lu, and Q. Dou. Qos Scheduling for NoCs: Strict Priority
Queueing versus Weighted Round Robin. In 2010 IEEE International
Conference on Computer Design, pages 52–59, 2010.

[173] Y. Qian, Z. Lu, and W. Dou. Analysis of Worst-case Delay Bounds
for Best-effort Communication in Wormhole Networks on Chip. In
2009 3rd ACM/IEEE Interl. Symp. on Networks-on-Chip, pages 44–53.

[174] Z.-L. Qian et al. A Support Vector Regression (SVR)-based Latency
Model for Network-on-Chip (NoC) Architectures. IEEE Trans. on
Computer-Aided Design of Integrated Circuits and Systems, 35(3):471–
484, 2015.

[175] X. Qiao, X. Cao, H. Yang, L. Song, and H. Li. Atomlayer: A Universal
ReRAM-based CNN Accelerator with Atomic Layer Computation.
In Proceedings of the 55th Annual Design Automation Conference, pages
1–6.

[176] A.-M. Rahmani, K. Latif, P. Liljeberg, J. Plosila, and H. Tenhunen.
Research and Practices on 3D Networks-on-Chip Architectures. In
NORCHIP, pages 1–6, 2010.

[177] R. S. Ramanujam, V. Soteriou, B. Lin, and L.-S. Peh. Design of a High-
throughput Distributed Shared-buffer NoC Router. In ACM/IEEE
Intl. Symp. on Networks-on-Chip, pages 69–78, 2010.

[178] A. Rico et al. ARM HPC Ecosystem and the Reemergence of Vectors.
In Proc. of the Computing Frontiers Conf., pages 329–334. ACM, 2017.

[179] E. Rotem and S. P. Engineer. Intel Architecture, Code Name Skylake
Deep Dive: A New Architecture to Manage Power Performance and
Energy Efficiency. In Intel Developer Forum, 2015.

209

[180] S. K. Mandal et al. Communication-Aware In-Memory Accel-
eration for Graph Convolutional Networks: An Open Source
Release. https://github.com/sumitkmandal/GCN_accelerator_
in-memory, 2021. Accessed 10 April 2022.

[181] P. Salihundam, S. Jain, T. Jacob, S. Kumar, V. Erraguntla, Y. Hoskote,
S. Vangal, G. Ruhl, and N. Borkar. A 2 Tb/s 6×4 Mesh Network for
a Single-Chip Cloud Computer With DVFS in 45 nm CMOS. IEEE
Journal of Solid-State Circuits, 46(4):757–766, 2011.

[182] S. Sarangi and B. Baas. DeepScaleTool: A Tool for the Accurate
Estimation of Technology Scaling in the Deep-Submicron Era. In
2021 IEEE International Symposium on Circuits and Systems (ISCAS),
pages 1–5, 2021.

[183] A. Shafiee, A. Nag, N. Muralimanohar, R. Balasubramonian, J. P.
Strachan, M. Hu, R. S. Williams, and V. Srikumar. ISAAC: A Convo-
lutional Neural Network Accelerator with in-situ Analog Arithmetic
in Crossbars. In Proceedings of the 43rd International Symposium on
Computer Architecture, pages 14–26, 2016.

[184] Y. S. Shao, J. Clemons, R. Venkatesan, B. Zimmer, M. Fojtik, N. Jiang,
B. Keller, A. Klinefelter, N. Pinckney, P. Raina, et al. Simba: Scaling
Deep-learning Inference with Multi-chip-module-based Architec-
ture. In Proceedings of the 52nd Annual IEEE/ACM International
Symposium on Microarchitecture, pages 14–27, 2019.

[185] E. S. Shin, V. J. Mooney III, and G. F. Riley. Round-robin Arbiter
Design and Generation. In Proceedings of the 15th international sym-
posium on System Synthesis, pages 243–248, 2002.

[186] K. Simonyan and A. Zisserman. Very Deep Convolutional Networks
for Large-Scale Image Recognition. arXiv preprint arXiv:1409.1556,
2014.

[187] A. Sodani et al. Knights Landing: Second-generation Intel Xeon Phi
Product. Ieee micro, 36(2):34–46, 2016.

https://github.com/sumitkmandal/GCN_accelerator_in-memory
https://github.com/sumitkmandal/GCN_accelerator_in-memory

210

[188] L. Song, X. Qian, H. Li, and Y. Chen. Pipelayer: A Pipelined ReRAM-
based Accelerator for Deep Learning. In 2017 IEEE International
Symposium on High Performance Computer Architecture (HPCA), pages
541–552. IEEE, 2017.

[189] L. Song, Y. Zhuo, X. Qian, H. Li, and Y. Chen. GraphR: Acceler-
ating Graph Processing using ReRAM. In 2018 IEEE International
Symposium on HPCA, pages 531–543.

[190] A. Stillmaker and B. Baas. Scaling Equations for the Accurate Predic-
tion of CMOS Device Performance from 180 nm to 7 nm. Integration,
58:74–81, 2017.

[191] Sumit K. Mandal et al. Theoretical Analysis and Evaluation of
NoCs with Weighted Round-Robin Arbitration: An Open Source Re-
lease. https://github.com/sumitkmandal/WRR_NoC_analytical_
model, 2021. Accessed 12 August 2021.

[192] H. Sun et al. Reliability-Aware Training and Performance Modeling
for Processing-In-Memory Systems. In 26th Asia and South Pacific De-
sign Automation Conference (ASP-DAC), pages 847–852. IEEE, 2021.

[193] S. M. Tam et al. SkyLake-SP: A 14nm 28-Core Xeon® Processor. In
2018 IEEE ISSCC, pages 34–36, 2018.

[194] M. B. Taylor et al. The Raw Microprocessor: A Computational
Fabric for Software Circuits and General-Purpose Programs. IEEE
Micro, 22(2):25–35, 2002.

[195] C. Tian, L. Ma, Z. Yang, and Y. Dai. PCGCN: Partition-Centric
Processing for Accelerating Graph Convolutional Network. In
2020 IEEE International Parallel and Distributed Processing Symposium
(IPDPS), pages 936–945, 2020.

[196] H. Valavi, P. J. Ramadge, E. Nestler, and N. Verma. A 64-tile 2.4-
Mb In-Memory-Computing CNN Accelerator Employing Charge-
domain Compute. IEEE Journal of Solid-State Circuits, 54(6):1789–
1799, 2019.

[197] N. Vallina-Rodriguez and J. Crowcroft. Energy Management Tech-
niques in Modern Mobile Handsets. IEEE Comm. Surveys & Tutorials,
(99):1–20, 2012.

https://github.com/sumitkmandal/WRR_NoC_analytical_model
https://github.com/sumitkmandal/WRR_NoC_analytical_model

211

[198] S. R. Vangal et al. An 80-tile sub-100-w teraflops processor in 65-nm
cmos. IEEE Journal of Solid-State Circuits, 43(1):29–41, 2008.

[199] J. Vanlerberghe. Analysis and Optimization of Discrete-time Generalized
Processor Sharing Queues. PhD thesis, Ghent University, 2018.

[200] A. Varghese, B. Edwards, G. Mitra, and A. P. Rendell. Programming
the adapteva epiphany 64-core network-on-chip coprocessor. The
Intl. Journal of High Performance Computing Applications, 31(4):285–
302, 2017.

[201] P. Vivet, E. Guthmuller, Y. Thonnart, G. Pillonnet, C. Fuguet, I. Miro-
Panades, G. Moritz, J. Durupt, C. Bernard, D. Varreau, et al. IntAct:
A 96-core Processor with Six Chiplets 3D-stacked on an Active
Interposer with Distributed Interconnects and Integrated Power
Management. IEEE Journal of Solid-State Circuits, 56(1):79–97, 2020.

[202] J. Walraevens. Discrete-time Queueing Models with Priorities. PhD
thesis, Ghent University, 2004.

[203] H. Wang, L.-S. Peh, and S. Malik. Power-driven Design of Router
Microarchitectures in On-chip Networks. In Proc. of Intl. Symp. on
Microarchitecture, pages 105–116, 2003.

[204] L. Wang, Y. Huang, Y. Hou, S. Zhang, and J. Shan. Graph attention
convolution for point cloud semantic segmentation. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern Recognition,
pages 10296–10305, 2019.

[205] L. Wang, G. Min, D. D. Kouvatsos, and X. Jin. Analytical Modeling
of an Integrated Priority and WFQ Scheduling Scheme in Multi-
service Networks. Computer Communications, 33:S93–S101, 2010.

[206] M. Wang et al. Deep graph library: Towards efficient and scalable
deep learning on graphs. 2019.

[207] Z. Wang et al. GNN-PIM: A Processing-in-Memory Architecture
for Graph Neural Networks. In Conference on Advanced Computer
Architecture, pages 73–86. Springer, 2020.

[208] D. Wentzlaff et al. On-chip Interconnection Architecture of the Tile
Processor. IEEE micro, 27(5):15–31, 2007.

212

[209] P. Wettin et al. Performance Evaluation of Wireless NoCs in Presence
of Irregular Network Routing Strategies. In Proc. of the conf. on DATE,
page 272, 2014.

[210] Y. Wu et al. Analytical Modelling of Networks in Multicomputer
Systems under Bursty and Batch Arrival Traffic. The Journ. of Super-
computing, 51(2):115–130, 2010.

[211] G. Xiaopeng, Z. Zhe, and L. Xiang. Round Robin Arbiters for Vir-
tual Channel Router. In The Proceedings of the Multiconference on"
Computational Engineering in Systems Applications", volume 2, pages
1610–1614, 2006.

[212] S. Xie, A. Kirillov, R. Girshick, and K. He. Exploring Randomly
Wired Neural Networks for Image Recognition. In Proceedings of the
IEEE International Conference on Computer Vision, pages 1284–1293,
2019.

[213] M. Yan et al. Hygcn: A gcn accelerator with hybrid architecture.
In 2020 IEEE International Symposium on High Performance Computer
Architecture (HPCA), pages 15–29. IEEE, 2020.

[214] S. Yan and B. Lin. Design of Application-Specific 3D Networks-on-
chip Architectures. In 3D Integration for NoC-based SoC Architectures,
pages 167–191. 2011.

[215] L. Yang, Z. He, Y. Cao, and D. Fan. Non-uniform DNN Structured
Subnets Sampling for Dynamic Inference. In 2020 57th ACM/IEEE
Design Automation Conference (DAC), pages 1–6. IEEE, 2020.

[216] S. Yin, Z. Jiang, M. Kim, T. Gupta, M. Seok, and J.-s. Seo. Vesti:
Energy-Efficient In-Memory Computing Accelerator for Deep Neu-
ral Networks. IEEE Transactions on Very Large Scale Integration (VLSI)
Systems, 28(1):48–61, 2019.

[217] R. Ying et al. Hierarchical graph representation learning with dif-
ferentiable pooling. arXiv preprint arXiv:1806.08804, 2018.

[218] S. Yoo, G. Nicolescu, L. Gauthier, and A. A. Jerraya. Automatic
Generation of Fast Timed Simulation Models for Operating Systems
in SoC Design. In Proceedings 2002 Design, Automation and Test in
Europe Conference and Exhibition, pages 620–627, 2002.

213

[219] J. Yu, L. Yang, N. Xu, J. Yang, and T. Huang. Slimmable Neural
Networks. In International Conference on Learning Representations,
2018.

[220] C. A. Zeferino and A. A. Susin. SoCIN: A Parametric and Scal-
able Network-on-Chip. In 16th Symposium on Integrated Circuits and
Systems Design, 2003. SBCCI 2003. Proceedings., pages 169–174, 2003.

[221] W. Zhao and Y. Cao. New Generation of Predictive Technology
Model for Sub-45 nm Early Design Exploration. IEEE Transactions
on Electron Devices, 53(11):2816–2823, 2006.

[222] J. Zhou, S. K. Mandal, B. L. West, S. Wei, U. Y. Ogras, O. D. Kripf-
gans, J. B. Fowlkes, T. F. Wenisch, and C. Chakrabarti. Front–End
Architecture Design for Low-Complexity 3-D Ultrasound Imaging
Based on Synthetic Aperture Sequential Beamforming. IEEE Trans-
actions on Very Large Scale Integration (VLSI) Systems, 29(2):333–346,
2020.

[223] P. Zhou, P.-H. Yuh, and S. S. Sapatnekar. Application-specific 3D
Network-on-Chip Design using Simulated Allocation. In Proc. of
Asia and South Pacific Design Automation Conf., pages 517–522, 2010.

[224] B. Zoph and Q. V. Le. Neural Architecture Search with Reinforce-
ment Learning. arXiv preprint arXiv:1611.01578, 2016.

[225] B. Zoph, V. Vasudevan, J. Shlens, and Q. V. Le. Learning Transferable
Architectures for Scalable Image Recognition. In Proceedings of the
IEEE conference on computer vision and pattern recognition, pages 8697–
8710, 2018.

	List of Tables
	List of Figures
	Abstract
	Introduction
	Literature Review
	Energy-efficient Communication Architectures for General Purpose Processors
	Communication-centric AI Accelerator Design
	Analytical Performance Modeling of Networks-on-Chip

	Communication-Aware Hardware Accelerators for Deep Neural Networks (DNNs)
	Background and Motivation
	Area-aware NoC Optimization
	Latency-aware NoC optimization
	Experimental Evaluation

	Communication-Aware Hardware Accelerators for Graph Convolutional Networks (GCNs)
	Background and Motivation
	The Proposed COIN Architecture
	Experimental Evaluation

	Performance Analysis of Priority-Aware NoCs
	Background and Motivation
	Proposed Network Transformations
	Generalization for Arbitrary Number of Queues
	Experimental Evaluations

	Performance Analysis of NoCs with Bursty Traffic
	Background and Motivation
	Proposed Approach to Handle Bursty Traffic
	Experimental Results with Bursty Traffic

	Performance Analysis of NoCs with Deflection Routing
	Background and Motivation
	Proposed Superposition-based Approach
	Experimental Results with Deflection Routing

	Performance Analysis of NoCs with Weighted Round Robin Arbitration
	Background and Motivation
	Proposed Methodology and Approach
	Experimental Results

	Conclusion of the Thesis and Future Work
	Bibliography

