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abstract

This dissertation concerns machine learning evaluation: the process of

assessing an algorithm’s or model’s performance on a test set. Despite

being an integral part of machine learning, evaluation is often overlooked

and taken for granted. Through investigation of the privacy and properties

of thresholdless evaluation methods, this dissertation provides a better

understanding of thresholdless measures and demonstrates the dangers

of improper application of evaluation methods.

Precision-recall (PR) curves provide an assessment of a scoring model

over a range of decision thresholds. PR curves are often preferred over

the more well-known ROC curves in highly skewed tasks. We prove that

not all points in PR space are achievable. Thus, there is a region that a PR

curve cannot go through. The fact that this region changes depending on

the test set leads to several important considerations and potential pitfalls

for machine learning practitioners, which are discussed.

An additional concern when performing PR analysis is precisely how

the PR curve or the area under it is calculated. A number of methods to

calculate point estimates and confidence intervals of the area under the

PR curve exist in the literature, but there has been minimal investigation

into their performance. This dissertation includes an extensive empirical

evaluation of these existing methods. The results suggest that average pre-

cision, lower trapezoid, and interpolated median are the most robust point

estimates. For confidence intervals, the commonly used cross-validation

and bootstrap approaches do not provide the advertised coverage for small

data sets and should be used with caution. We show that easily calculable

parametric confidence intervals do provide the guaranteed coverage.

Differential privacy provides powerful guarantees that individuals in-

cur minimal additional risk by including their personal data in a database.

Existing work has focused on producing differentially private models,
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counts, and histograms. Nevertheless, even with a differentially private

model, directly reporting the model’s performance on a database has the

potential for disclosure. Thus, differentially private computation of eval-

uation metrics for machine learning is an important research area. This

dissertation presents effective mechanisms for releasing area under the

ROC curve and average precision.
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1 introduction

Evaluating learning algorithms is a critical aspect of machine learning.

The machine learning community is largely focused on prediction, so

evaluating a model on a separate test set where the correct predictions are

known is the gold standard for assessing algorithm performance. The test

sets used are as large as possible, given the available resources. Sizes range

from tens or hundreds to millions of examples. Therefore, some process

of summarizing performance on the test set is required. These summaries

to evaluate a model take many forms, from root-mean-square error for

real-valued predictions to accuracy and ROC curves for classification tasks.

We will focus on binary classification, where the task is to discriminate

between two categories. These categories or labels are often referred to

as positive and negative. If a model outputs one of the two labels as the

prediction, known as a dichotomous output or model, a simple summary

for evaluating a model’s performance is accuracy: the proportion of the

predicted labels that match the true labels. While an attractive approach

due to its simplicity, using accuracy alone suffers from several drawbacks

(Provost et al., 1998).

One of the drawbacks of accuracy is that it makes no distinction be-

tween true positives and true negatives or between false positives and false

negatives (defined in Table 2.1). While true positives and true negatives

both describe a correct prediction, obtaining the correct prediction may be

more or less important for one category compared to the other. Similarly,

the type of misclassification may be relevant. A false negative may be

much worse for a particular task than a false positive would be. Accuracy

only makes a distinction between correct and incorrect predictions and

ignores the further divisions of false positive versus false negative and true

positive versus true negative. So in tasks where the mislabeling costs (cost

of false positive compared to cost of false negative) are different, accuracy
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is not an ideal measure.

Since the distinction between false positives and false negatives can be

critical, another common way to summarize a model’s performance is by

how many false positives, false negatives, true positives, and true nega-

tives a model predicts for a test set. These counts are typically presented in

a confusion matrix (also known as a contingency table or, for binary classifi-

cation in particular, a 2× 2 table). The confusion matrix layout used in this

document is given in Table 2.2. A confusion matrix provides a compact

summary of a model’s predictions and contains sufficient information to

calculate many other evaluation measures, e.g., accuracy, precision, recall,

false positive rate (defined in Table 2.3).

A confusion matrix gives all the information required for most analyses

of dichotomous outputs. However, many models assign a probability

that each example is of a particular class (often the positive class). More

generally, a scoring model simply outputs a real number, with larger values

indicating the example is more likely to be of a particular class. If analyses

using accuracy or other measures derived from a confusion matrix are

desired, not only must such a model be learned, but a threshold for the

decision boundary must also be selected. There are numerous methods to

choose a threshold (Elkan, 2001; Hernández-Orallo et al., 2013), but here

we are primarily interested in a group of evaluation techniques that do

not require the selection of a specific threshold.

Instead, these techniques provide a summary of an algorithm’s perfor-

mance over a range of possible thresholds. We call this type of analysis

thresholdless to distinguish it from dichotomous analysis of a single confu-

sion matrix. The most well-known thresholdless method is ROC analysis

(Provost et al., 1997; Pepe, 2004; Fawcett, 2006), but there are other tech-

niques that analyze many thresholds simultaneously, e.g., precision-recall

curves (Raghavan et al., 1989; Manning and Schütze, 1999), lift curves
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(Piatetsky-Shapiro and Masand, 1999; Giudici, 2003), cost curves (Drum-

mond and Holte, 2006), Brier curves (Ferri et al., 2011). While these thresh-

oldless measures are often preferred over accuracy (Provost et al., 1998),

their use accrues additional risks that many people are not aware of, in-

cluding mistaken intuitions about results across different tasks, combining

multiple results, and high variance and bias of certain estimates.

The aforementioned metrics are always calculated by applying a model

to some test set of labeled data. It has long been known that machine

learning models can reveal information about the data used to train them.

In the extreme case, a nearest neighbor model might store the data set

itself, but more subtle disclosures occur with all types of models. Even

small changes in the training set can produce detectable changes in the

model. This fact has motivated work to preserve the privacy of the training

set by making it difficult for an adversary to discern information about

the training data. One popular framework is differential privacy (Dwork,

2006), which sets bounds on the amount of change that can occur when

any one training data set row is modified.

Several authors have modified existing machine learning algorithms

such that the models satisfy differential privacy (Chaudhuri and Mon-

teleoni, 2008; Friedman and Schuster, 2010; Zhang et al., 2012). In doing so,

the models can be released to the public, and the privacy risk to the owners

of the rows in the database is tightly bounded, even if the adversary has

auxiliary information. However, these protections only cover the training

data set, not any latter uses of the model on other data sets.

Consider a scenario in which multiple hospitals are collaborating to

predict disease onset but are prevented by policy or law from sharing their

data with one another. They may instead attempt to produce a model

using data from one institution and test the model at other sites in order

to evaluate how well the model generalizes. The institution generating the

model might use a differentially private algorithm to create the model in
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order to protect their own patients and then distribute the model to the

other hospitals. These hospitals in turn run the model on their patients and

produce an evaluation of the model’s performance, such as the area under

the ROC curve (AUCROC). The test data sets at the latter institutions are

not covered by any privacy protection that might have been used during

training. The problem remains even if the training and test data sets exist

at the same institution. While releasing an evaluation metric may seem to

be a limited potential privacy breach, it has been demonstrated that data

about patients can be reconstructed from ROC curves if the adversary has

access to a subset of the test data (Matthews and Harel, 2013).

Thus, an additional risk (though it is more general than just thresh-

oldless evaluation) is the potential leakage of private information, even

through the summarization of a thresholdless evaluation method. This

dissertation presents, discusses, and makes proposals to address these

risks of mistaken intuitions about results, high variance and bias, and

privacy for thresholdless metrics.

1.1 Thesis Statement

Evaluating models is an integral aspect of machine learning that is too

often taken for granted. Of particularly wide use in machine learning

are thresholdless methods such as ROC curves, areas under the ROC

curve (AUCROC), precision-recall (PR) curves, areas under the PR curve

(AUCPR), the closely related mean average precision (MAP), and error

bounds on all of these. This dissertation provides evidence for the follow-

ing thesis: Not all methods of generating thresholdless metrics are created equal,

and potential pitfalls and benefits accrue based on which methods are chosen.

Specific contributions that follow from the evidence provided include:

• The existence of an unachievable region in PR space that varies

with class skew, which implies that AUCPR and MAP estimates and
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comparisons of these for different methods should take into account

class skew.

• Some widely-used methods for computing confidence bounds on

AUCPR and MAP are substantially better than others in a way not

previously recognized.

• Publication of AUCROC, AUCPR, and other related metrics com-

puted on private data can violate privacy under a precise, widely-

used definition, but algorithms exist to add noise in a way that main-

tains utility of the estimates while providing guaranteed privacy

protection.

1.2 Contributions

While there have been several papers characterizing PR curves (Davis

and Goadrich, 2006; Goadrich et al., 2006; Clémençon and Vayatis, 2009),

we expand the theoretical and empirical understanding of PR space and

curves in Chapters 3 and 4. Chapter 3 concerns the unachievable region

of PR space.

• We prove theorems about the location and size of the unachievable

region.

• We propose AUCNPR - a modification of AUCPR to account for the

unachievable region.

• We discuss the impact of the unachievable region on cross-validation,

aggregation across multiple tasks, downsampling, and Fβ score.

In Chapter 4, we investigate methods of estimating AUCPR and providing

confidence intervals.
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• We perform an extensive empirical analysis of the performance of dif-

ferent point estimates and confidence interval methods for AUCPR

on simulated data.

• We find that the AUCPR estimators behave quite differently and rec-

ommend lower trapezoid, average precision, or interpolated median

as three estimators with reasonable performance.

• We find that the commonly used cross-validation and bootstrap

approaches to confidence intervals are not satisfactory on small data

sets and recommend using binomial or logit intervals instead.

In the final section, we turn to the question of protecting the privacy of

the test set in Chapter 5.

• We discuss the need for differential privacy in evaluation, not just

for training or data set release.

• We describe algorithms for differentially private AUCROC and aver-

age precision.

• We show that these algorithms provide both utility and privacy

through experiments on two real-world data sets.
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2 background

We review the foundations of evaluation of model’s with dichotomous

outputs in Section 2.1. Moving to thresholdless measures, we describe and

discuss related work on ROC analysis in Section 2.2 and the closely related

PR analysis in Section 2.3. Finally, we provide an overview of differential

privacy in Section 2.4.

2.1 Confusion Matrices and Related Metrics

This work focuses on evaluation for a binary classification task on a test set

with N total examples. We refer to the two classes of examples as positive

and negative, where the positive class often represents the item of interest.

For example, in an information retrieval task, the relevant documents

would be labeled positive and the irrelevant ones labeled negative. An

important property of a test set is the skew, denoted by π, which is the

proportion of positive examples. Following Bamber (1975), we denote

the number of positive examples by n (not to be confused with the total

number of examples N) and the number of negative examples by m. Thus,

n+m = N and π = n
N

.

If a model outputs one of two possible values, we say the model has di-

chotomous outputs. With two possible predicted values, the predicted and

actual labels can combine in four ways, shown in Table 2.1. The number of

occurrences of each type can be compactly described in a confusion matrix

(also known as a contingency table or 2×2 table), as in Table 2.2. A variety

of performance measures for dichotomous models can be calculated from

a confusion matrix. Such measures used in this document, as well as some

others included for completeness, are defined in Table 2.3.

Dichotomous outputs, for which a model must make a hard choice

between positive and negative, are the simplest type of output for a binary
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Table 2.1: The four possible results of a model with dichotomous outputs
for a binary classification task.

Predicted Actual Name Variable

Positive Positive True Positive tp
Negative Positive False Negative fn
Positive Negative False Positive fp
Negative Negative True Negative tn

Table 2.2: Confusion matrix: a concise presentation of the number of true
positives, false positives, false negatives, and true negatives of a model on
some data set. We use the row to denote the prediction and the column to
denote the actual label.

Actual

Predicted Positive Negative

Positive tp fp
Negative fn tn

Total n m

classification task. However, most models, including logistic regression,

SVMs, and Bayesian networks, internally calculate a score or probability

for each example. Then a decision threshold is used to predict positive if

the score is larger than the threshold and negative if the score is smaller.

Since the choice of decision threshold has an enormous impact on the

confusion matrix produced, in the next section we turn to ROC analysis.

ROC analysis is a thresholdless evaluation method that does not require

a threshold to be chosen and instead simultaneously evaluates a model

over all possible thresholds.
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Table 2.3: Definitions of several machine learning measures that can be
calculated from a confusion matrix.

Name Formula Description

Accuracy tp+tn

tp+tn+fp+fn
Proportion of all examples
correctly labeled

True Positive Rate
TPR
Sensitivity
Recall

r =
tp

tp+fn
Proportion of positive
examples correctly labeled
positive

False Positive Rate
FPR
1 - Specificity

fp

fp+tn
Proportion of negative
examples incorrectly labeled
positive

Specificity
1 - FPR

tn
fp+tn

Proportion of negative
examples correctly labeled
negative

Precision
Positive Predictive Value
PPV

p =
tp

tp+fp
Proportion of positively
labeled examples that are
actually positive

Negative Prediction Value
NPV

tn
tn+fn

Proportion of negatively
labeled examples that are
actually negative

F1 score 2pr
p+r

Harmonic mean of precision
and recall

Fβ score (1+β2)pr

β2p+r
Weighted combination of
precision and recall
(generalization of F1 score)



10

2.2 ROC Analysis

Receiver operating characteristic (ROC) curves were originally developed

for signal detection theory in the 1940s. Most famously, ROC curves were

used to evaluate the ability of radar receivers to detect enemy aircraft

during World War II (Lobo et al., 2008). Subsequently, ROC curves have

been used in a variety of fields, including psychophysics (Green and Swets,

1966), evaluation of medical diagnostic tests (Swets and Pickett, 1982; Pepe,

2004), and machine learning (Provost et al., 1998; Flach, 2003; Fawcett,

2006).

ROC analysis summarizes a model’s performance using the true posi-

tive rate, also known as sensitivity, and false positive rate, equivalent to 1 -

specificity (Fawcett, 2006). These two measures are frequently visualized

in ROC space. ROC space is the unit square ([0, 1]× [0, 1]) with false posi-

tive rate on the x-axis and true positive rate on the y-axis. The performance

of a model with dichotomous outputs can be visualized in ROC space as

a point, (x,y), where x is the false positive rate and y is the true positive

rate (defined in Table 2.3). Some notable points in ROC space include

(0, 0), where all examples are labeled negative; (1, 1), where all examples

are labeled positive; and the ideal point, (0, 1), where all examples are

correctly labeled. In general, a point is better the closer it is to the ideal

point at (0, 1), i.e., the higher and farther left it is.

ROC Curves

As we move from a model with dichotomous outputs to one with ordered

or real-valued outputs, we can create many different dichotomous models

by choosing different thresholds for splitting the ordered outputs into two

sets, one labeled positive and the other labeled negative. By connecting

points from adjacent thresholds with a line, we obtain the ROC curve for

the model. Note that the thresholds that label all examples positive or all
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Figure 2.1: A sample ROC curve and the random guessing curve.

examples negative are always possible, so an ROC curve should always

start at (0, 0) and end at (1, 1). See Figure 2.1 for a sample ROC curve with

annotations of the notable points in ROC space.

ROC curves have a variety of properties that make them attractive for

evaluating binary classification. A model that randomly guesses (e.g., by
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outputting a random value between 0 and 1 for each example) has an

expected ROC curve of a diagonal line with y = x. An ROC curve below

the line y = x indicates a model that is worse than random guessing. Thus,

ROC curves are typically above the diagonal, with the ideal curve going

from (0, 0) to (0, 1) to (1, 1).

ROC curves are insensitive to the prevalence of positive examples,

denoted by π = n
n+m

and often referred to as class skew in machine

learning. Changing the ratio of positive to negative examples does not

change the true or false positive rates. This can be a particularly useful

property when evaluating medical tests where the prevalence in the test

data, due to the sampling from case-control studies, may not match the

true prevalence.

Another critical property of ROC space is that it grants the ability to

linearly interpolate between two points. If two points, A and B, in ROC

space are achieved by two models, then any point on the line between A

and B can be achieved by a model that randomly chooses between the

output of A and B with the appropriate probability (Bamber, 1975). This

validates using the convex hull of an ROC curve or set of points in ROC

space as the maximum achievable ROC curve (Provost and Fawcett, 2001;

Davis and Goadrich, 2006; Fawcett and Niculescu-Mizil, 2007).

Area Under the ROC Curve

The area under the ROC curve is often used as a summary measure for

an ROC curve (Bamber, 1975; Hanley and McNeil, 1982; Pepe, 2000, 2004;

Fawcett, 2006). Area under the ROC curve is traditionally abbreviated

with AUC, but we will use AUCROC to distinguish the area under the

ROC curve from areas under other curves. AUCROC ranges from 0 for

the worst possible model to 1 for the ideal model. Random guessing has

an expected AUCROC of 0.5.

AUCROC is a well-studied quantity in statistics. It can be estimated
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using parametric assumptions on the ROC curve (Metz and Kronman, 1980;

Swets and Pickett, 1982) or nonparametrically with the Mann-Whitney

U-statistic (Hanley and McNeil, 1982). Additionally, there are hypothesis

tests for determining if two AUCROCs are significantly different using

the DeLong method (DeLong et al., 1988). Bamber (1975) demonstrates

an intriguing equivalence that underlies the relationship with the Mann-

Whitney U-statistic: AUCROC is equal to the probability that a model will

correctly order a randomly drawn positive and randomly drawn negative

example. Therefore, if the random variable X denotes the scores of positive

examples and Y denotes the scores of negative examples, then

AUCROC = P(X > Y) +
1
2
P(X = Y).

This characterization of AUCROC is binomial if there are no ties (such

as when X and Y have continuous distributions and thus P(X = Y) = 0)

and justifies the use of t-tests for comparing AUCROCs because, for large

sample sizes, AUCROC is approximately normally distributed (Bamber,

1975).

The relationship between AUCROC and the Mann-Whitney U-statistic

also provides a simple plug-in estimator for calculating AUCROC:

AUCROC =
1

nm

m∑

i=1

n∑

j=1

1[xi < yj] (2.1)

where xi for 1 6 i 6 m are the scores on the negative examples in the test

set and yj for 1 6 j 6 n are the scores on the positive examples. Note that

neither the xis nor the yjs must be ordered.



14

ROC Analysis Drawbacks

ROC analysis is ubiquitous and well-understood; however, when one class

is rare, it can be misleading. The true positive rate and false positive rate

characterize performance on actual positive and actual negative exam-

ples separately. They compare true positives to false negatives and false

positives to true negatives, but do not make other critical comparisons

such as between true positives and false positives. In many applications, a

comparison between true positives and false positives may be even more

important than the true positive rate or the false positive rate.

For example, in a medical diagnosis task such as predicting if a mam-

mogram contains a malignant tumor or not, the precision and negative

predictive value (defined in Table 2.3) may be the most relevant measures

for a patient. Given that a patient has a mammogram that is predicted

to be malignant, she is most concerned about the likelihood that it is, in

fact, malignant. This is exactly what precision captures: the probability

of an actual positive given a positive label. When positives are scarce, as

is the case in mammography because malignant tumors are fortunately

rare, good performance on true positive rate and false positive rate do not

necessarily lead to good precision. When the positive class is rare, even

with a high true positive rate and a low false positive rate, the number of

false positives can still be much larger than the number of true positives.

This leads to low precision despite good results from ROC analysis. A

confusion matrix illustrating this phenomenon is given in Table 2.4. De-

spite obtaining a false positive rate of just 0.1 and a true positive rate of

0.9, the precision is only 0.08 because positive examples are rare (π = 0.01).

Therefore, other thresholdless methods are still of interest, particularly for

evaluating tasks with low prevalence.
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Table 2.4: Confusion matrix for a highly skewed data set with π = 0.01.
Using ROC analysis, this confusion matrix looks very good, with a false
positive rate of 0.1 and a true positive rate of 0.9. However, precision is
only 0.08, so the probability that a positively labeled example is actually
positive is only 0.08.

Actual

Predicted Positive Negative

Positive 90 990
Negative 10 8910

Total 100 9900

2.3 PR Analysis

Precision-recall (PR) analysis is similar to ROC analysis, but it uses pre-

cision and recall for the axes instead of the true and false positive rates.

PR space is defined by the unit square with recall on the x-axis and preci-

sion on the y-axis. As in ROC space, a confusion matrix maps to a single

point in PR space (with some corner cases when precision is undefined). A

model with ordered outputs produces a set of points that can be connected

to create a PR curve. The proper method of connecting two points in PR

space, however, is not linear interpolation.

Linear interpolation in PR space leads to overly optimistic PR curves

(Goadrich et al., 2006; Davis and Goadrich, 2006). To obtain the correct

interpolation in PR space, Davis and Goadrich (2006) noted that points

in PR space can be mapped to ROC space. The interpolation in PR space

can therefore be done by mapping to ROC space, performing a linear

interpolation there, and then mapping back to PR space. This produces

a nonlinear interpolation in PR space. A critical aspect of the mapping

between PR space and ROC space is that the class skew must be known. For
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a particular ROC curve, the corresponding PR curve changes depending

on the class skew. This nonlinear interpolation in PR space is investigated

further in Section 4.3.

Similar to ROC space, several properties of PR space are known. The

expected random guessing PR curve is a horizontal line with y = π. The

ideal point in PR space is (1,1) and a model that always assigns a positive

label obtains the point (1,π). See Figure 2.2 for a sample PR curve with

annotations on notable points in PR space. A model that labels everything

negative is a bit problematic because precision is undefined when recall

is 0. Loosely speaking, labeling everything negative can be thought of

as the point (0,1): no recall but perfect precision. However, in practice,

the precision at low recall is highly variable. At low recall, only a few

examples are labeled positive, and the precision depends heavily on the

exact number of false positives. Small perturbations in the data set, such

as removing an example that is predicted as a false positive, can greatly

change the precision. At the extreme, if the example with the largest score

is positive, then the PR curve starts at ( 1
n

, 1). But if that example is a

negative, then the PR curve starts at ( 1
n

, 0). This variability in the PR curve

at low recall leads some users of PR analysis to focus only on high recall

(Davis et al., 2005).

Finally, as with ROC curves, the area under the PR curve (AUCPR)

is often used as a summary statistic. For example, information retrieval

(IR) systems are frequently judged by their mean average precision, which

is closely related to the mean AUCPR over the queries (Manning et al.,

2008). Similarly, AUCPR often serves as an evaluation criterion for machine

learning approaches that are typically applied to highly-skewed data, such

as statistical relational learning (Kok and Domingos, 2010; Davis et al.,

2005; Sutskever et al., 2009; Mihalkova and Mooney, 2007) and information

extraction (Ling and Weld, 2010; Goadrich et al., 2006). Some algorithms,

such as SVM-MAP (Yue et al., 2007) and SAYU (Davis et al., 2005), explicitly



17

(1,0.09) all positive

(1,1) ideal

0.00

0.25

0.50

0.75

1.00

0.00 0.25 0.50 0.75 1.00

recall

p
re

c
is

io
n

A PR Curve Random

Figure 2.2: A sample PR curve and the random guessing curve for a data
set with 10 negatives for every positive example (π = 0.09).

optimize the AUCPR of the learned model.

While sensitivity to class skew may be seen as a drawback to PR anal-

ysis, this sensitivity can highlight differences between models in highly

skewed data sets that are not as apparent in ROC analysis. A small change
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in an already low false positive rate has a minimal impact on ROC analy-

sis: the performance looks good regardless. But in a highly skewed task,

a small change in false positive rate can substantially change precision.

Figure 2.3 illustrates this using results from two algorithms on the same

test set. This test set, and the train set used to learn the models, is highly

skewed with π ≈ 0.01. In ROC space, the algorithms are nearly identical,

but the difference is more pronounced in PR space. Furthermore, a hy-

pothesis test does not find a statistically significant difference between the

AUCROCs for algorithm A and B (p = 0.30). But for AUCPR, a statisti-

cally significant difference is found with p < 0.01 (details are presented

in Table 2.5). Thus, PR analysis is often preferred to ROC analysis when

there is a large skew in the class distribution (Manning and Schütze, 1999;

Bunescu et al., 2005; Davis and Goadrich, 2006). A variety of machine

learning applications exhibit a large skew. In information retrieval, only a

few documents are relevant to a given query. In medical diagnoses, only a

small proportion of the population has a specific disease at any given time.

In relational learning, only a small fraction of the possible groundings of

a relation are true in a database. PR analysis is increasingly relevant for

machine learning as work in these highly skewed data sets continues to

grow.

2.4 Differential Privacy

Differential privacy is a framework that guarantees that the presence or

absence of an individual’s information in the database has little effect on

the output of an algorithm. Thus, an adversary can learn limited informa-

tion about any individual. More precisely, for any databases D,D ′ ∈ D,

let d(D,D ′) be the number of rows that differ between the two databases.

Differential privacy requires that the probability an algorithm outputs the

same result on any pair of neighboring databases (those with d(D,D ′) = 1)
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(b) PR curves with π ≈ 0.01

Figure 2.3: ROC curves and PR curves for two algorithms on the same test
set. The slight improvement of algorithm A over algorithm B seen in the
ROC curves is more pronounced in the PR curves. The PR curve also shows
that much room remains for improvement. These curves are drawn from
experiments on a medical data set where the task is to predict if a patient
will develop breast cancer within one year. The PR curve explicitly shows
that the threshold at which 90% of the malignant tumors are identified
(x = 0.9) provides only about 10% precision. That is, roughly 90% of the
patients receiving a malignant diagnosis will not actually develop breast
cancer in the next year!

is bounded by a constant ratio. There is not a consensus amongst the dif-

ferential privacy literature as to whether “neighboring” databases means

adding or removing a row, or just changing a row. This leads Kifer and

Machanavajjhala (2011) to distinguish between bounded differential pri-

vacy, where a neighboring database is obtained by changing the value of

exactly one row, and unbounded differential privacy, where a neighboring
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Table 2.5: AUCROC for the ROC curves in Figure 2.3(a) and AUCPR for
recall above 0.5 for the PR curves in Figure 2.3(b). The p-value is the result
of performing a two-tailed, paired t-test on the cross-validated folds to
test for statistically significant differences in AUCROC and AUCPR. Even
though the PR and ROC curves are derived from the same two algorithms
on the same test set, a statistically significant difference is detected in
AUCPR but not in AUCROC.

Algorithm AUCROC AUCPR
(r > 0.5)

A 0.948 0.123
B 0.944 0.101

p-value 0.30 < 0.01

database is obtained by adding or removing a row. In this dissertation, we

use the bounded differential privacy definition and henceforth will refer

to it simply as differential privacy, defined in Definition 2.1. Thus, D refers

to the set of all databases with the same number of rows, N.1

Definition 2.1 (ǫ-differential privacy (Dwork, 2006; Kifer and Machanava-

jjhala, 2011)). For any input database D, a randomized algorithm f : D →

Range(f) is ǫ-differentially private iff for any S ⊆ Range(f) and any database

D ′ where d(D,D ′) = 1,

Pr(f(D) ∈ S) 6 eǫ Pr(f(D ′) ∈ S) (2.2)

A commonly used relaxation of Definition 2.1 is (ǫ, δ)-differential pri-

vacy, in which an additive constant of δ is allowed in addition to the

multiplicative eǫ.
1The most precise notation would be DN, but we drop the superscript to simplify

notation since the size of the database should always be clear from the context.
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Definition 2.2 ((ǫ, δ)-differential privacy (Dwork, 2006)). For any input

database D, a randomized algorithm f : D → Range(f) is (ǫ, δ)-differentially

private iff for any S ⊆ Range(f) and any database D ′ where d(D,D ′) = 1,

Pr(f(D) ∈ S) 6 eǫ Pr(f(D ′) ∈ S) + δ (2.3)

The most common approach to ensure differential privacy is to perturb

the correct result. To determine how much perturbation is required, we

must compute the sensitivity of the function we want to privatize. Here,

sensitivity is defined as the largest difference between the output of any

pair of neighboring databases and not the performance metric tp

n
.

Definition 2.3 (Global sensitivity (Dwork, 2006)). Given a function f : D →

R, the global sensitivity of f is:

GSf = max
d(D,D ′)=1

|f(D) − f(D ′)| (2.4)

Using Laplace noise to perturb any real-valued query gives the follow-

ing differentially private method:

Theorem 2.4 (Laplace noise (Dwork, 2006)). Given a function f : D → R,

the computation

f ′(D) = f(D) + Laplace

(
GSf

ǫ

)
(2.5)

guarantees ǫ-differential privacy.

A sequence of differentially private computations also ensures differen-

tial privacy. This is called the composition property of differential privacy

as stated in Theorem 2.5.
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Theorem 2.5 (Composition (Dwork et al., 2006)). Given a sequence of com-

putations f = f1,. . .,fk, with fi guaranteeing ǫi-differential privacy, then f is

(
∑k

i=1 ǫi)-differentially private.

Sometimes we wish to apply differential privacy to domains that are

not real-valued, but rather have a number of discrete outcomes. Here, it is

unclear how to effectively perturb the output. Instead, an appropriately

weighted soft-max called the exponential mechanism can be used.

Theorem 2.6 (Exponential mechanism (McSherry and Talwar, 2007)). Given

a quality function q : (D× Z) → R that assigns a score to each outcome z ∈ Z,

an algorithm that outputs z with probability

Pr(z|D,q) ∝ exp
(
ǫq(D, z)

2∆q

)
(2.6)

is ǫ-differentially private.

McSherry and Talwar (2007) note that the exponential mechanism

is also applicable when Z is continuous. Indeed, using Laplace noise

as in Theorem 2.4 is an instance of the exponential mechanism where

q(D, r) = −|f(D) − r|.

The preceding approaches for obtaining differential privacy use the

worst-case, global sensitivity to scale the added noise. For some functions,

such as median, the global sensitivity may be large, but the difference

between outputs for most neighboring databases is quite small. This

motivates the work of Nissim et al. (2007) to explore uses of local sensitivity.

Definition 2.7 (Local sensitivity (Nissim et al., 2007)). Given a function

f : D → R, the local sensitivity of f at D is

LSf(D) = max
d(D,D ′)=1

|f(D) − f(D ′)|. (2.7)
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Local sensitivity cannot be directly used to provide differential privacy

as the change in the noise scale can actually release information, but a

smooth upper bound can be used.

Definition 2.8 (β-smooth sensitivity (Nissim et al., 2007)). For β > 0, the

β-smooth sensitivity of f is

S∗

f,β(D) = max
D ′∈D

LSf(D
′)e−βd(D,D ′) (2.8)

Using the β-smooth sensitivity and Cauchy-like or Laplace noise pro-

vides differential privacy as specified in the following theorem from Nis-

sim et al. (2007).

Theorem 2.9 (Calibrating Noise to Smooth Bounds on Sensitivity (Nissim

et al., 2007)). Let f : D → R be any real-valued function and let S : D → R be

the β-smooth sensitivity of f, then

1. If β 6
ǫ

2(γ+1) and γ > 1, the algorithm f ′(D) = f(D) +
2(γ+1)S(D)

ǫ
η,

where η is sampled from the distribution with density h(z) ∝ 1
1+|z|γ

, is

ǫ-differentially private. Note that when γ = 2, η is drawn from a standard

Cauchy distribution.

2. If β 6
ǫ

2 ln( 2
δ )

and δ ∈ (0, 1), the algorithm f ′(D) = f(D)+
2S(D)

ǫ
η, where

η ∼ Laplace(1), is (ǫ, δ)-differentially private.
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3 unachievable region in precision-recall space

and its effect on empirical evaluation

The material in this chapter was published in Boyd et al. (2012).

3.1 Introduction

With the increased usage of PR curves and AUCPR, the differences be-

tween PR analysis and ROC analysis must not be forgotten. PR curves

and AUCPR are not a simple substitute for ROC curves and AUCROC in

skewed domains. PR curves and ROC curves have different properties,

summarized in Sections 2.2 and 2.3, such as the high variability of PR

curves at low recall. Additionally, for a given ROC curve, the correspond-

ing PR curve varies with class skew. A related and previously unproven

distinction between the two types of curves is that, while any point in ROC

space is achievable, not every point in PR space is achievable. Specifically,

for a given data set, it is possible to construct a confusion matrix that

corresponds to any (false positive rate, true positive rate) pair, but it is not

possible to do this for every (recall, precision) pair.1

We show that this distinction between ROC space and PR space has

major implications for the use of PR curves and AUCPR in machine learn-

ing. The foremost is that the unachievable points define a minimum PR

curve. The area under the minimum PR curve constitutes a portion of

AUCPR that any algorithm, no matter how poor, is guaranteed to obtain

“for free.” Figure 3.1 illustrates this phenomenon. We prove that the size

of the unachievable region is only a function of class skew and has a simple,

closed form.
1To be strictly true in ROC space, fractional counts for tp, fp, fn, and tn must be

allowed. The fractional counts can be from a weighted data set or integer counts in an
expanded data set.
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The unachievable region can influence algorithm evaluation and even

behavior in many ways. Even for evaluations using F1 score, which only

consider a single point in PR space, the unachievable region has subtle

implications. When averaging AUCPR over multiple tasks (e.g., target

predicates in statistical relational learning or queries in information re-

trieval), the area under the minimum PR curve alone for a non-skewed

task may outweigh the total area for all other tasks. A similar effect can

occur when the folds used for cross-validation do not have the same skew.

Downsampling that changes the skew will also change the minimum

PR curve. In algorithms that explicitly optimize AUCPR or MAP during

training, algorithm behavior can change substantially with a change in

skew. These undesirable effects of the unachievable region can be at least

partially offset with straightforward modifications to AUCPR, which we

describe.

We explain and characterize the unachievable region in Section 3.2,

present modifications to AUCPR in Section 3.3, and discuss the impli-

cations of the unachievable region for machine learning evaluation in

Section 3.4.

3.2 Achievable and Unachievable Points in PR

Space

We first precisely define the notion of an achievable point in PR space. Then

we provide an intuitive example to illustrate the concept of an unachievable

point. Finally, in Theorems 3.3 and 3.4 we present our central theoretical

contributions that formalize the notion of the unachievable region in PR

space.



26

0.00

0.25

0.50

0.75

1.00

0.00 0.25 0.50 0.75 1.00

recall

p
re

c
is

io
n

A PR Curve Random Minimum Unachievable

Figure 3.1: Sample PR curve, random guessing curve, and minimum PR
curve with π = 0.33.

Consider a data set D with N = n + m examples, where n is the

number of positive examples and m is the number of negative examples.

This could be a weighted data set where each example has some weight

in R+, and n and m are the total weight for the positive and negative

examples, respectively. We characterize confusion matrices that could

actually arise from such a data set in the following definition.
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Definition 3.1 (Valid Confusion Matrix). A valid confusion matrix for n

positive andm negative examples is a tuple (tp, fp, fn, tn) such that tp, fp, fn, tn >

0, tp + fn = n, and fp + tn = m.

Note that the cell counts in the confusion matrix are not restricted to

be integers because we allow weighted data sets.

Achievable points in PR space then are those points that can arise from

a valid confusion matrix.

Definition 3.2 (Achievable Point). For a data set D, an achievable point in

PR space is a point (r,p) such that there exists a valid confusion matrix with

recall r and precision p. That is, where

r =
tp

tp + fn
=

tp

n
(3.1)

and

p =
tp

tp + fp
(3.2)

Unachievable Points in PR Space

One can easily show that, as in ROC space, each valid confusion matrix,

where tp > 0, defines a unique point in PR space. In PR space, both recall

and precision depend on the tp cell of the confusion matrix, in contrast

to the true positive rate and false positive rate used in ROC space. This

dependence, together with the fact that a specific data set contains a fixed

number of negative and positive examples, imposes limitations on what

precisions are possible for a particular recall. Thus, not every point in PR

space has a corresponding valid confusion matrix.

To illustrate this effect, consider a data set with n = 100 and m = 200.

Table 3.1(a) shows a valid confusion matrix with r = 0.2 and p = 0.2.

Consider holding precision constant while increasing recall. Obtaining

r = 0.4 is possible with tp = 40 and fn = 60. Notice that keeping p = 0.2
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Table 3.1: For a data set with 100 positive and 200 negative examples, (a)
shows a valid confusion matrix with r = 0.2 and p = 0.2, while (b) is an
invalid confusion matrix attempting to obtain r = 0.6 and p = 0.2.

Actual

Predicted Positive Negative

Positive 20 80
Negative 80 120

Total 100 200

(a) Valid

Actual

Predicted Positive Negative

Positive 60 240
Negative 40 -40

Total 100 200

(b) Invalid

requires increasing fp from 80 to 160. With a fixed number of negative

examples in the data set, increases in fp cannot continue indefinitely. For

this data set, r = 0.5 with p = 0.2 is possible by using all of the negatives

as false positives (so tn = 0). However, maintaining p = 0.2 for any r > 0.5

is impossible. Table 3.1(b) illustrates an attempted confusion matrix with

r = 0.6 and p = 0.2. Achieving p = 0.2 at this recall requires fp > m. This

forces tn < 0 and makes the confusion matrix invalid.

The following theorem formalizes this restriction on achievable points

in PR space.

Theorem 3.3. An achievable point in PR space with precision (p) and recall (r)

must satisfy

p >
πr

1 − π+ πr
(3.3)

where π = n
N

is the skew.

Proof. From the definition of precision,

p =
tp

tp+ fp
. (3.4)
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But since the number of false positives is limited by the number of negatives

because the confusion matrix must be valid, fp 6 (1 − π)N, so

p >
tp

tp + (1 − π)N
. (3.5)

From the definition of recall, tp = rπN, and thus

p >
rπN

rπN+ (1 − π)N
. (3.6)

We can reasonably assume the data set is non-empty (N > 0), so N cancels

out and we are left with

p >
rπ

rπ+ 1 − π
. (3.7)

Note that a point’s achievability depends solely on the skew and not

on a data set’s size. Thus, we often refer to achievability in terms of the

skew and not in reference to any particular data set.

Unachievable Region in PR Space

Theorem 3.3 gives a constraint that every achievable point in PR space

must satisfy. For a given skew, there are many points that are unachievable,

and we refer to this collection of points as the unachievable region of PR

space. In this section we study the properties of the unachievable region.

The constraint on precision and recall in Equation (3.3) makes no as-

sumptions about a model’s performance. Consider a model that produces

the worst possible ranking, where each negative example is ranked ahead

of every positive example. Building a PR curve based on this ranking

means placing one PR point at (0, 0) and a second PR point at (1,π). Davis

and Goadrich (2006) provide a method for interpolating between points in
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PR space; interpolation is nonlinear in PR space but is linear between the

corresponding points in ROC space. Interpolating between the two known

points gives intermediate points with recall of ri = i
n

and precision of

pi =
πri

(1−π)+riπ
, for 0 6 i 6 n. This is the equality case from Theorem 3.3,

so Equation (3.3) is a tight lower bound on precision. We call the curve

produced by this ranking the minimum PR curve because it lies on the

boundary between the achievable and unachievable regions of PR space;

see Figure 3.2 for examples. For a given skew, all achievable points are on

or above the minimum PR curve.

The minimum PR curve has an interesting implication for AUCPR and

average precision (AP). Any model must produce a PR curve that lies

above the minimum PR curve. Thus, the AUCPR score includes the size of

the unachievable region “for free.” In the following theorem, we provide

a closed form solution for calculating the area of the unachievable region.

Theorem 3.4. The area of the unachievable region in PR space and the minimum

AUCPR, for skew π, is

AUCPRMIN = 1 +
(1 − π) ln(1 − π)

π
(3.8)

Proof. Since Equation (3.3) gives a lower bound for the precision at a

particular recall, the unachievable area is the area below the curve f(r) =
rπ

1−π+rπ
.

AUCPRMIN =

∫ 1

0

rπ

1 − π+ rπ
dr

=
rπ+ (π− 1) ln(π(r− 1) + 1)

π

∣∣∣∣
r=1

r=0

=
1
π
(π+ (π− 1)(ln(1) − ln(1 − π)))

= 1 +
(1 − π) ln(1 − π)

π
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Figure 3.2: Minimum PR curves for several values of π.

A plot of AUCPRMIN versus the skew is shown in Figure 3.3(a).

Similar to AUCPR, Equation (3.3) also defines a minimum for AP. Av-

erage precision is the mean precision after correctly labeling each positive

example in the ranking, so the minimum takes the form of a discrete sum-

mation. Unlike AUCPR, which is calculated from interpolated curves, the
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minimum AP depends on the number of positive examples because it

controls the number of terms in the summation.

Theorem 3.5. The minimum AP, for a data set with n positive and m negative

examples, is

APMIN =
1
n

n∑

i=1

i

i+m

Proof.

APMIN =
1
n

n∑

i=1

πi
n

1 − π+ πi
n

=
1
n

n∑

i=1

ni
(n+m)n

1 + n
n+m

( i
n
− 1)

=
1
n

n∑

i=1

i
n+m
i+m
n+m

=
1
n

n∑

i=1

i

i+m

This precisely captures the natural intuition that the worst AP involves

labeling all negatives examples as positive before starting to label the

positives.

The existence of the minimum AUCPR and minimum AP can affect the

qualitative interpretation of a model’s performance. For example, chang-

ing the skew of a data set from 0.01 to 0.5 increases the minimum AUCPR

by approximately 0.3. This leads to an automatic jump of 0.3 in AUCPR

simply by changing the data set and with absolutely no change to the

learning algorithm. This type of change in skew is common in data from

case-control studies versus observational data or when downsampling the

negative examples for computational or learning reasons, as in Sutskever

et al. (2009) and Natarajan et al. (2012).
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Since the majority of the unachievable region is at higher recalls, the

effect of AUCPRMIN becomes more pronounced when restricting the area

calculation to high levels of recall. Calculating AUCPR for recalls above

a threshold is frequently done due to the high variance of precision at

low recall or because the learning problem requires high recall solutions

(e.g., medical domains such as breast cancer risk prediction). Corollary 3.6

gives the formula for computing AUCPRMIN when the area is calculated

over a restricted range of recalls. See Figure 3.3(a) for minimum AUCPR

when calculating the area over restricted recall. The increased impact

of the minimum AUCPR when focusing on high recall is apparent in

Figure 3.3(b), where AUCPRMIN is scaled to the maximum AUCPR possible

in the restricted area. AUCPRMAX is the AUCPR achieved by a perfect

ranking of the examples. AUCPRMAX = 1 when working with the entire

PR curve and AUCPRMAX = b− a when restricting recall to a 6 r 6 b.

Corollary 3.6. For calculation of AUCPR over recalls in [a,b] where 0 6 a <

b 6 1,

AUCPRMIN = b− a+
1 − π

π
ln

(
π(a− 1) + 1
π(b− 1) + 1

)

Proof. Same as the proof of Theorem 3.4 with limits of a and b in the

definite integral instead of 0 and 1.

Degenerate data sets where π = 0 and π = 1 are worth considering

briefly because they do sometimes occur and Equation (3.8) for AUCPRMIN

is undefined when π = 0 or π = 1. We propose setting AUCPRMIN = 0

when π = 0 and AUCPRMIN = 1 when π = 1 since these are the limits

of Equation (3.8) as π approaches 0 and 1, respectively. This also has a

reasonable interpretation for the area under the curve. When π = 0, there

are no positive examples, so precision is always 0. Therefore, the PR curve

must lie on the x-axis and the area under the curve is 0, regardless of

the ranking. Analogously, when π = 1 and all the examples are positive,
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precision must be 1. So the PR curve is always a line at p = 1, and AUCPR

is 1.

3.3 Modifying AUCPR based on the

Unachievable Region

The unachievable region represents a lower bound on AUCPR and it is

important to develop evaluation metrics that account for this. We believe

that any metric A ′ that replaces AUCPR should satisfy at least the two

properties. First, A ′ should relate to AUCPR. Assume AUCPR was used

to estimate the performance of classifiers C1, . . . ,Cn on a single test set. If

AUCPR(Ci, testD) > AUCPR(Cj, testD), then A ′(Ci, testD) > A ′(Cj, testD),

as test set testD’s skew affects each model equally. Note that this property

may not be appropriate or desirable when aggregating scores across mul-

tiple test sets, as is done in cross validation, because each test set may have

a different skew. Second, A ′ should have the same range for every data

set, regardless of skew. This is necessary, though not sufficient, to achieve

meaningful comparisons across data sets. AUCPR does not satisfy the

second requirement because, as shown in Theorem 3.4, its range depends

on the data set’s skew.

We propose normalizing the area under the PR curve so the worst

ranking has a score of 0 and the best ranking has a score of 1.

Definition 3.7 (AUCNPR). The normalized area under the PR curve is

AUCNPR =
AUCPR − AUCPRMIN

AUCPRMAX − AUCPRMIN

where AUCPRMAX = 1 when calculating area under the entire PR curve and

AUCPRMAX = b− a when restricting recall to a 6 r 6 b.

Regardless of skew, the best possible classifier will have an AUCNPR
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of 1 and the worst possible classifier will have an AUCNPR of 0. AUC-

NPR also preserves the ordering of algorithms on the same test set since

AUCPRMAX and AUCPRMIN are constant for the same data set. Thus, AUC-

NPR satisfies our proposed requirements for a replacement of AUCPR.

Furthermore, by accounting for the unachievable region, it makes compar-

isons between data sets with different skews more meaningful than when

using AUCPR.

AUCNPR measures the proportion of the achievable area in PR space

that a classifier attains. In this sense, AUCNPR is properly undefined when

π = 0 or π = 1 because there is no difference between the minimum and

maximum PR curves. At π = 0 or π = 1, every ranking of the examples

produces the exact same PR curve. As a convention, when a numeric

score is required, AUCNPR = 1 for π = 1 and AUCNPR = 0 for π = 0

seem reasonable. For π = 0, this is exactly what Definition 3.7 gives when

assuming AUCPRMIN = 0 if π = 0. Additionally, it makes sense for PR

analysis, which focuses on the positive examples, to give no credit in a

task that has no positive examples. For π = 1, however, Definition 3.7 is

undefined. If a numeric score is required for reporting or aggregation

purposes, setting AUCNPR to always be 1 when π = 1 is a reasonable

solution, although arguments could be made for 0 or π depending on the

application and goals of evaluation.

We chose to normalize to the minimum AUCPR because it ensures

the range of AUCNPR is always the same. One simple alternative is to

normalize to the AUCPR for random guessing, which is simply π. While it

is simpler, normalizing to π has two drawbacks. First, the range of scores

depends on the skew, and therefore is not consistent across different data

sets. Second, it can result in a negative score if an algorithm performs

worse than random guessing, which seems counter-intuitive for an area

under a curve.
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3.4 Discussion and Recommendations

We believe all practitioners using evaluation scores based on PR space

(e.g., PR curves, AUCPR, AP, F1) should be cognizant of the unachievable

region and how it affects their analyses.

Visually inspecting the PR curve or looking at an AUCPR score often

gives an intuitive sense for the quality of an algorithm or difficulty of a

task or data set. If the skew is extremely large, the effect of the very small

unachievable region on PR analysis is negligible. However, there are many

instances where the skew is closer to 0.5 and the unachievable area is

not insignificant. With π = 0.1, AUCPRMIN ≈ 0.05, and it increases as π

approaches 0.5. AUCPR is used in many applications where π > 0.1 (Hu

et al., 2009; Sonnenburg et al., 2006; Liu and Shriberg, 2007). Therefore,

a general awareness of the unachievable region and its relationship to

skew is important when casually comparing or inspecting PR curves and

AUCPR scores. A simple recommendation that will make the unachievable

region’s impact on results clear is to always show the minimum PR curve on

PR curve plots.

Next, we discuss several specific situations where the unachievable

region is highly relevant for machine learning.

Aggregation for Cross-Validation

In cross-validation, stratification is typically used to ensure all folds have

the same skew. However, particularly in relational domains, this is not

always the case. In relational domains, stratification must consider fold

membership constraints imposed by links between objects that, if violated,

would bias the results of cross-validation. For example, consider the

bioinformatics task of protein secondary structure prediction. Putting

amino acids from the same protein in different folds has two drawbacks.

First, it could bias the results as information about the same protein is
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in both the train and test sets. Second, it does not properly simulate the

ultimate goal of predicting the structure of entirely novel proteins. Links

between examples occur in most relational domains, and placing all linked

items in the same fold can lead to substantial variation in the skew of the

folds. Because the different skews yield different AUCPRMINs, care must

be taken when aggregating results to create a single summary statistic of

an algorithm’s performance.

Cross-validation assumes that each fold is sampled from the same

underlying distribution. Even if the skew varies across folds, the merged

data set is the best estimate of the underlying distribution and thus the

overall skew. Ideally, aggregate descriptions, like a PR curve or AUCPR,

should be calculated on a single, merged data set. However, merging

directly compares probability estimates for examples in different folds

and assumes that the models are calibrated. Unfortunately, this is rarely a

primary goal of machine learning and learned models tend to be poorly

calibrated (Forman and Scholz, 2010).

With uncalibrated models, the most common practice is to average the

results from each fold. For AUCPR, the mean of the AUCPR from each fold

is typically used. For a PR curve, vertical averaging of the individual PR

curves from each fold provides a summary curve. In both cases, averaging

fails to account for any differences in the unachievable region that arise

due to variations in class skew. As shown in Theorem 3.4, the range of

possible AUCPR values varies according to a fold’s skew. Similarly, when

vertically averaging PR curves, a particular recall level will have varying

ranges of potential precision values for each fold if the folds have different

skews. Even a single fold, which has much higher precision values due

to a substantially lower skew, can cause a higher vertically averaged PR

curve because of its larger unachievable region. Failing to account for

fold-by-fold variation in skew can lead to overly optimistic assessments

when using straightforward averaging.
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We recommend averaging AUCNPR instead of AUCPR when evalu-

ating area under the curve. Averaging AUCNPR, which has the same

range regardless of skew, helps reduce (but not eliminate) the skew’s effect

compared to averaging AUCPR. A technique for creating a summary PR

curve from multiple curves with different skews is not known. Summary

PR curves are discussed as future work in Section 6.1.

Aggregation among Different Tasks

Machine learning algorithms are commonly evaluated on several different

tasks. This setting differs from cross-validation because each task is not

assumed to have the same underlying distribution. While the tasks may

be unrelated (Tang et al., 2009), they often come from the same domain.

For example, the tasks could be the truth values of different predicates in

a relational domain (Kok and Domingos, 2010; Mihalkova and Mooney,

2007) or different queries in an IR setting (Manning et al., 2008). Often,

researchers report a single, aggregate score by averaging the results across

the different tasks. However, the tasks can potentially have very different

skews, and therefore different minimum AUCPRs. Therefore, averag-

ing AUCNPR scores, which (somewhat) control for skew, is preferred to

averaging AUCPR.

In statistical relational learning, researchers frequently evaluate algo-

rithms by reporting the average AUCPR over a variety of tasks in a single

data set (Mihalkova and Mooney, 2007; Kok and Domingos, 2010). As

a case study, consider the commonly used IMDB data set2 that describes

relationships among movies, actors, and directors. Here, the task is to pre-

dict the probability that each possible grounding of each predicate is true.

Across all predicates in IMDB, the skew of true groundings is relatively

low (π = 0.06), but there is significant variation in the skew of individual

predicates. For example, the gender predicate has a skew close to π = 0.5,
2Available from http://alchemy.cs.washington.edu/.

http://alchemy.cs.washington.edu/
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Table 3.2: Average AUCPR and AUCNPR scores for each predicate in the
IMDB data set. Results are for the LSM algorithm from Kok and Domin-
gos (2010). The range of scores shows the difficulty and skews of the
prediction tasks vary greatly. By accounting for the (potentially large) un-
achievable regions, AUCNPR yields a more conservative overall estimate
of performance.

Predicate AUCPR AUCNPR

actor 1.000 1.000
director 1.000 1.000
gender 0.509 0.325
genre 0.624 0.611
movie 0.267 0.141
workedUnder 1.000 1.000

Mean 0.733 0.680

whereas a predicate such as genre has a skew closer to π = 0.05. While

presenting the mean AUCPR across all predicates is a good first approach,

it leads to averaging values that do not all have the same range. The gender

predicate’s range for AUCPR is [0.31, 1.0] while the genre predicate’s range

is [0.02, 1.0]. Thus, an AUCPR of 0.4 means very different things on these

two predicates. For the gender predicate, this score is worse than random

guessing, while for the genre predicate, this is a reasonably high score. In

a sense, all AUCPR scores of 0.4 are not created equal, but averaging the

AUCPR treats them as equals.

Table 3.2 shows AUCPR and AUCNPR for each predicate on a Markov

logic network model learned by the LSM algorithm (Kok and Domingos,

2010). Notice the wide range of scores and that AUCNPR gives a more

conservative overall estimate. AUCNPR is still sensitive to skew, so an

AUCNPR of 0.4 in the aforementioned predicates still does not imply

completely comparable performances, but it is closer than AUCPR.
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Downsampling

Downsampling is common when learning on highly skewed tasks. Often

the downsampling alters the skew on the train set (e.g., subsampling

the negatives to facilitate learning, using data from case-control studies)

such that it does not reflect the true skew. PR analysis is frequently used

on the downsampled data sets (Sonnenburg et al., 2006; Natarajan et al.,

2012; Sutskever et al., 2009). The sensitivity of AUCPR and related scores

makes it important to recognize, and if possible quantify, the effect of

downsampling on evaluation metrics.

The varying size of the unachievable region provides an explanation

and quantification of some of the dependence of PR curves and AUCPR on

skew. Thus, AUCNPR, which adjusts for the unachievable region, should

be more stable than AUCPR to changes in skew. To explore this, we used

SAYU (Davis et al., 2005) to learn a model for the advisedBy task in the

UW-CSE domain for several downsampled train sets. The UW-CSE data set3

(Richardson and Domingos, 2006) contains predicates that describe an

academic department, e.g., taughtBy and advisedBy. Table 3.3 shows

the AUCPR and AUCNPR scores on a test set downsampled to the same

skew as the train set and on the original (i.e., non-downsampled) test set.

AUCNPR has less variance than does AUCPR. However, there is still a

sizable difference between the scores on the downsampled test set and

the original test set. As expected, the difference increases as the ratio

approaches 1 positive to 1 negative. At this ratio, even the AUCNPR score

on the downsampled data is more than twice the score on the original skew.

This is a massive difference and it is disconcerting that it occurs simply

by changing the data set skew. An intriguing area for future research is

to investigate scoring metrics that either are less sensitive to skew or that

permit simple and accurate transformations that facilitate comparisons

between different skews.
3Available from http://alchemy.cs.washington.edu/.

http://alchemy.cs.washington.edu/
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Table 3.3: AUCPR and AUCNPR scores for SAYU on advisedBy task in the
UW-CSE data set for different train set skews. The downsampled columns
report scores on a test set with the same downsampled skew as the train
set. The original skew columns report scores on the original test set with
a ratio of 1 positive to 24 negatives (π = 0.04).

Downsampled Original Skew

Ratio AUCPR AUCNPR AUCPR AUCNPR

1:1 0.851 0.785 0.330 0.316
1:2 0.740 0.680 0.329 0.315
1:3 0.678 0.627 0.343 0.329
1:4 0.701 0.665 0.314 0.299
1:5 0.599 0.560 0.334 0.320
1:10 0.383 0.352 0.258 0.242
1:24 0.363 0.349 0.363 0.349

Fβ Score

While PR curves allow evaluations without settling on a specific thresh-

old, some single-threshold evaluation measures are closely related to PR

analysis. If precision and recall are used in evaluating a confusion matrix,

such as with the F1 score, this corresponds to a point in PR space. Even

with a single operating point, the unachievable region still applies and the

minimum PR curve and random guessing PR curve are relevant. Thus,

the relationship between a point in PR space and the unachievable region

is informative.

The most commonly used single-threshold measure impacted by the

unachievable region is the Fβ family,

Fβ =
(1 + β2)pr

β2p+ r
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where β > 0 is a parameter to control the relative importance of recall

and precision (Manning et al., 2008; Carterette and Voorhees, 2011). Most

often, the F1 score (β = 1) is used. The F1 score is also the harmonic mean

of precision and recall. We focus our discussion on the F1 score, but similar

analysis applies to Fβ. Figure 3.4 shows the contours of the F1 score over

PR space.

The unachievable region has a subtle interaction with F1 score that

changes depending on the skew. Because F1 combines precision and recall

into a single, real-valued score, it necessarily loses information. One aspect

of this information loss is that PR points with the same F1 score can have

vastly different relationships with the unachievable region. Consider

points A and B in Figure 3.4. Both points have an F1 score of 0.4, but point

A has modest recall with good precision while point B is on the minimum

PR curve. The F1 score does not differentiate between two models with

these operating points in PR space. However, one model is even worse

than random guessing, while the other might be excellent for some tasks.

Whereas losing information is inevitable with a summary like the F1

score, the problem arises partly because the F1 score treats recall and

precision interchangeably. This is not unique to β = 1. While Fβ changes

their relative importance, the assumption remains that precision and recall,

appropriately scaled by β, are equivalent for assessing performance. Our

findings about the unachievable region show this is problematic, as recall

and precision have fundamentally different properties: every recall has

a minimum precision, there is a maximum recall for low precision, and

there are no constraints on recall otherwise.

We want to investigate how these drawbacks of F1 might be addressed.

Given the F1 score’s popularity, particularly in information retrieval, is

there a modification to the formula that would alleviate the problematic

interaction with the minimum PR curve and the unachievable region?

Or, would it be more informative to combine F1 with the distance to the
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Figure 3.4: Contours of F1 score in PR space with minimum PR curve and
unachievable region for π = 0.33. Points A and B both have an F1 score of
0.4, but B is on the minimum PR curve while A has modest recall and high
precision. Using F1 score alone, these two very different performances are
indistinguishable.

minimum PR curve?

While a modified F1 score that is sensitive to the unachievable region
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would be useful, an ideal solution may not exist. Consider three simple

requirements for a modified F1 score, f ′:

∀p s.t. 0 < p 6 1, f ′(r1,p) < f ′(r2,p) iff r1 < r2 (3.9)

∀r s.t. 0 < r 6 1, f ′(r,p1) < f ′(r,p2) iff p1 < p2 (3.10)

f ′(r,p) = 0 if p =
rπ

1 − π+ rπ
(3.11)

Equations (3.9) and (3.10) capture the expectation that an increase in preci-

sion or recall while the other is constant should always increase f ′ (p = 0

and r = 0 are excluded so that F1 satisfies these two conditions). Equa-

tion (3.11) ensures f ′ = 0 if the PR point is on the minimum PR curve and

is the additional constraint we want to impose.

However, these three properties are impossible to satisfy. Suppose we

have an f ′ that satisfies the three properties. Choose any recall 0 < r < 1

and let p = rπ
1−π+rπ

. Note that 0 < p < π because r < 1. Then,

0 = f ′(r,p) from Equation (3.11)

f ′(r,p) < f ′(r,π) from Equation (3.10)

f ′(r,π) < f ′(1,π) from Equation (3.9)

f ′(1,π) = 0 from Equation (3.11)

Putting these four equations together we have a contradiction: 0 < 0. So

there cannot be an f ′ that has all three properties.

Relaxing Equations (3.9) and (3.10) to

∀p s.t. 0 < p 6 1, f ′(r1,p) 6 f ′(r2,p) iff r1 6 r2

∀r s.t. 0 < r 6 1, f ′(r,p1) 6 f ′(r,p2) iff p1 6 p2

makes it possible to construct an f ′ that satisfies the requirements, but
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implies f ′(r,p) = 0 if p 6 π. This seems unsatisfactory because it ignores

all distinctions once the performance is worse than random guessing. If

assigning 0 whenever p 6 π is acceptable, one modified F1 score that

satisfies the relaxed requirements is

f ′(r,p) =






0 if p 6 π

2(p−π)r

p−π+(1−π)r
if p > π

which assigns 0 to any PR point worse than random guessing and uses

the harmonic mean of recall and a normalized precision (p−π
1−π

) otherwise.

Extension to a modified Fβ for unequal weighting of recall and normalized

precision is straightforward.

3.5 Chapter Summary

In this chapter, we demonstrated that a region of precision-recall space

is unachievable for any particular ratio of positive to negative examples.

With the precise characterization of this unachievable region given in

Theorems 3.3 and 3.4, we further the understanding of the effects of down-

sampling and the impact of the minimum PR curve on score aggregation,

downsampling, and F measure. These nuances of precision-recall space,

particularly the dependence between precision and recall that leads to un-

achievable points, inspire us to explore the process of creating PR curves

and calculating AUCPR in more depth in the next chapter.
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4 area under the precision-recall curve: point

estimates and confidence intervals

After identifying and discussing the unachievable region in the previous

chapter, we seek the best methods for estimating AUCPR and creating

confidence intervals in this chapter. The interdependence of precision and

recall, unlike the true and false positive rates used in ROC space, creates

the distinctive “saw-shape” typical of simple plotting of the PR curve.

However, there are several other ways of calculating AUCPR and creating

a PR curve and we describe and empirically evaluate them in this chapter.

Additionally, we look at methods of generating confidence intervals for

AUCPR.

The material in this chapter was published in Boyd et al. (2013).

4.1 Introduction

Machine learning researchers build a PR curve by plotting precision-recall

pairs, or points, that are obtained using different thresholds on a proba-

bilistic or other continuous-output classifier. This is similar to the way an

ROC curve is built by plotting true and false positive rate pairs obtained

using different thresholds. After plotting the points in PR space, we next

seek to construct a curve, compute its AUCPR, and calculate 95% (or other)

confidence intervals (CIs) around the curve or the AUCPR.

However, the best method to construct the curve and calculate area

is not readily apparent. The small data set in Table 4.1 produces the PR

points in Figure 4.1, and these points give rise to several questions. How

should multiple points with the same x-value (recall) be treated (i.e., is the

maximum, minimum, or mean representative)? Is linear interpolation in

any form appropriate? Davis and Goadrich (2006) showed that using a line

to connect the highest points at each recall is overly optimistic, but what
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about other schemes for connecting points using lines? Should a convex

hull be used, either in ROC space, as suggested by Davis and Goadrich

(2006), or in PR space?

Different answers to the these questions lead to at least four distinct

methods, with several variations, that have been used in machine learn-

ing, statistics, and related areas to compute AUCPR. Additionally, we are

interested not just in point estimates of AUCPR, but in the variance as

well, and we identify four methods that have been used to construct CIs

for AUCPR. This chapter discusses and analyzes eight estimators and

four CIs empirically. We provide evidence in favor of computing AUCPR

using the lower trapezoid, average precision, or interpolated median estimators

and using binomial or logit CIs rather than other methods, including the

more widely-used ten-fold cross-validation. The differences in results using

these approaches are most striking when data are highly skewed, which

is exactly the case when PR curves are most preferred over ROC curves.

Section 4.2 describes our notation for PR curve points and areas, Sec-

tion 4.3 describes the estimators and CIs we evaluate, and Section 4.4

presents case studies of the estimators and CIs in action.

4.2 Area Under the Precision-Recall Curve

Consider a binary classification task where models produce continuous

outputs, denoted by the random variable Z, for each example. Diverse

applications are subsumed by this setup, e.g., a medical test to identify dis-

eased and disease-free patients, a document ranker to distinguish between

relevant and non-relevant documents for a particular query, and generally

any binary classification task. The two categories are often naturally la-

beled as positive (e.g., diseased, relevant) or negative (e.g., disease-free,

non-relevant). Following the literature on ROC curves (Bamber, 1975;

Pepe, 2004), we denote the output values for the negative examples by
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Table 4.1: Data set with n = 10 and m = 20 used to generate the PR points
in Figure 4.1. Model outputs were sampled from N(0, 1) for negatives and
N(0.5, 1) for positives. Recall and precision values are for labeling that
row and above as positive.

Output True Label Recall Precision

0.95 positive 0.20 1.00
0.90 negative 0.20 0.50
0.85 negative 0.20 0.33
0.80 positive 0.40 0.50
0.75 positive 0.60 0.60
0.70 negative 0.60 0.50
0.65 negative 0.60 0.43
0.60 negative 0.60 0.38
0.55 negative 0.60 0.33
0.50 positive 0.80 0.40
0.45 negative 0.80 0.36
0.40 negative 0.80 0.33
0.35 negative 0.80 0.31
0.30 negative 0.80 0.29
0.25 negative 0.80 0.27
0.20 negative 0.80 0.25
0.15 positive 1.00 0.29
0.10 negative 1.00 0.28
0.05 negative 1.00 0.26
0.00 negative 1.00 0.25
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Figure 4.1: Empirical PR points, random and minimum PR curves, and
unachievable region for outputs and labels in Table 4.1 where π = 0.25.
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the random variable X and the output values for the positive examples

by Y (Z is a mixture of X and Y). These populations are assumed to be

independent when the class is known. Larger output values are associated

with positive examples, so for a given threshold c, an example is predicted

positive if its score is greater than c. We represent the category or class

with the indicator random variable D, where D = 1 corresponds to posi-

tive examples and D = 0 to negative examples. An important aspect of

a task or data set is the class skew π = P(D = 1). Skew is also known as

prevalence or a prior class distribution.

Several techniques exist to assess the performance of binary classifica-

tion across a range of thresholds. While ROC analysis is the most common,

we are interested in the related PR curves. A PR curve may be defined as

the set of points:

PR(·) = {(Recall(c),Prec(c)),−∞ < c < ∞}

where Recall(c) = P(Y > c) and Prec(c) = P(D = 1|Z > c). Recall is

equivalent to true positive rate or sensitivity (the y-axis in ROC curves),

while precision is the same as positive predictive value. Because larger

output values are assumed to be associated with positive examples, as c de-

creases, Recall(c) increases to 1 and Prec(c) approaches π. As c increases,

Prec(c) becomes highly variable, as discussed in Section 2.3, though we

generally think about Prec(c) reaching 1 as Recall(c) approaches 0. The

high variance of precision estimates for recall near 0 is a major difficulty

of constructing PR curves.

It is often desirable to summarize the PR curve with a single scalar

value. One summary is the area under the PR curve (AUCPR), which we

will denote by θ. Following the work of Bamber (1975) on ROC curves,

AUCPR is an average of the precision weighted by the probability of a
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given threshold.

θ =

∫∞

−∞

Prec(c)dP(Y 6 c) (4.1)

=

∫∞

−∞

P(D = 1|Z > c)dP(Y 6 c). (4.2)

By Bayes’ rule and using that Z is a mixture of X and Y,

P(D = 1|Z > c) =
πP(Y > c)

πP(Y > c) + (1 − π)P(X > c)

and we note that 0 6 θ 6 1 since Prec(c) and P(Y 6 c) are bounded on the

unit square. Therefore, θ might be viewed as a probability. If we consider

Equation (4.2) as an importance-sampled Monte Carlo integral, we may

interpret θ as the fraction of positive examples among those whose output

values exceed a randomly selected c ∼ Y threshold.

4.3 AUCPR Estimators

In this section we summarize point estimators for θ and then introduce CI

methods.

Point Estimators

Let x1, . . . , xm and y1, . . . ,yn represent observed output values from neg-

ative and positive examples, respectively. The skew π is assumed to be

given or is set to n/(n+m). An empirical estimate of the PR curve, P̂R(·),

can be derived by the empirical estimates of each coordinate:

R̂ecall(c) = n−1
n∑

i=1

I(yi > c)
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P̂rec(c) =
πR̂ecall(c)

πR̂ecall(c) + (1 − π)m−1
∑m

j=1 1[xj > c]

where 1[A] is the indicator function for event A.

We review a number of possible estimators for θ. These estimators,

either directly or indirectly, correspond to some assumption about how

to interpolate between or approximate the empirical PR points. These

interpolations and the differences between the estimators are visually

shown on a small data set in Figure 4.2.

Trapezoidal Estimators

For fixed R̂ecall(t), the empirical precision may not be constant, therefore,

P̂R(·) is often not one-to-one. Multiple precision values for a single recall

occur when y(i) < xj < y(i+1) for some i and j, where y(i) denotes the

ith order statistic (ith largest value among the yi’s). As the threshold

increases from y(i) to xj, recall remains constant while precision decreases.

Let ri = R̂ecall(y(n−i)), such that r1 6 r2 6 · · · 6 rn, and let pmax
i be the

largest sample precision value corresponding to ri. Likewise, let pmin
i

be the smallest sample precision value corresponding to ri. This leads

immediately to a few choices for estimators based on the empirical curve

using trapezoidal estimation (Abeel et al., 2009):

θ̂LT =

n−1∑

i=1

pmin
i + pmax

i+1

2
(ri+1 − ri) (4.3)

θ̂UT =

n−1∑

i=1

pmax
i + pmax

i+1

2
(ri+1 − ri) (4.4)

These correspond to a lower trapezoid approximation in Equation (4.3) and

an upper trapezoid approximation in Equation (4.4). Note that the upper

trapezoid method uses an overly optimistic linear interpolation (Davis and
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Figure 4.2: PR curves demonstrating the interpolation assumptions of the
point estimate methods on the predictions from Figure 4.1 and Table 4.1,
where π = 0.25. The unachievable region is shown in gray.
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Goadrich, 2006). We include it for comparison as it is one of the first

methods a non-expert is likely to use due to its similarity to estimating

area under the ROC curve.

Interpolation Estimators

As suggested by Davis and Goadrich (2006) and Goadrich et al. (2006),

we use PR space interpolation as the basis for several estimators. These

methods use the non-linear interpolation between known points in PR

space derived from a linear interpolation in ROC space.

Davis and Goadrich (2006) and Goadrich et al. (2006) examine the

interpolation in terms of the number of true positives and false positives

corresponding to each PR point. Here we perform the same interpolation,

but use the recall and precision of the PR points directly, which leads to the

surprising observation that the interpolation (from the same PR points)

does not depend on π.

Theorem 4.1. For two points in PR space (r1,p1) and (r2,p2) (assume WLOG

r1 < r2), the interpolation for recall r ′ with r1 6 r ′ 6 r2 is

p ′ =
r ′

ar ′ + b
(4.5)

where

a = 1 +
(1 − p2)r2

p2(r2 − r1)
−

(1 − p1)r1

p1(r2 − r1)

b =
(1 − p1)r1

p1
−

(1 − p2)r1r2

p2(r2 − r1)
+

(1 − p1)r
2
1

p1(r2 − r1)

Proof. First, we convert the points to ROC space. Let s1, s2 be the false

positive rates for the points (r1,p1) and (r2,p2), respectively. By definition

of false positive rate,

si =
(1 − pi)πri

pi(1 − π)
. (4.6)
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A linear interpolation in ROC space for r1 6 r ′ 6 r2 has a false positive

rate of

s ′ = s1 +
r ′ − r1

r2 − r1
(s2 − s1). (4.7)

Then convert back to PR space using

p ′ =
πr ′

πr ′ + (1 − π)s ′
. (4.8)

Substituting Equation (4.7) into Equation (4.8) and using Equation (4.6)

for s1 and s2, we have

p ′ = πr ′
[
πr ′ +

π(1 − p1)r1

p1
+

π(r ′ − r1)

r2 − r1

(
(1 − p2)r2

p2
−

(1 − p1)r1

p1

)]−1

= r ′
[
r ′
(

1 +
(1 − p2)r2

p2(r2 − r1)
−

(1 − p1)r1

p1(r2 − r1)

)
+

(1 − p1)r1

p1
−

(1 − p2)r1r2

p2(r2 − r1)
+

(1 − p1)r
2
1

p1(r2 − r1)

]−1

Thus, despite PR space being sensitive to π and the translation to and

from ROC space depending on π, the interpolation in PR space does not

depend on π. One explanation is that each particular PR space point

inherently contains the information about π, primarily in the precision

value, and no extra knowledge of π is required to perform the interpolation.

The area under the interpolated PR curve between these two points

has a closed form.

Theorem 4.2. The area under the interpolated PR curve from r1 to r2 defined in

Theorem 4.1 is

ar2 − b log(ar2 + b) − ar1 + b log(ar1 + b)

a2
(4.9)
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Proof. The proof is a simple application of calculus and definite integrals.

∫ r2

r1

r ′

ar ′ + b
dr ′ =

ar ′ − b log(ar ′ + b)

a2

∣∣∣∣
r ′=r2

r ′=r1

=
ar2 − b log(ar2 + b) − ar1 + b log(ar1 + b)

a2

With the definite integral to calculate the area between two PR points,

the question is which points should be used? The achievable PR curve

of Davis and Goadrich (2006) uses only those points (translated into PR

space) that are on the ROC convex hull. We also use three methods of

summarizing from multiple PR points at the same recall to a single PR

point to interpolate through. The summaries we investigate are the max,

mean, and median of all pi for a particular ri. So we have four estimators

using interpolation: convex, max, mean, and median.

Average Precision

Avoiding the empirical curve altogether, a plug-in estimate of θ, known in

information retrieval as average precision (Manning et al., 2008), is

θ̂A =
1
n

n∑

i=1

P̂rec(yi) (4.10)

which replaces the distribution function P(Y 6 c) in Equation (4.2) with

its empirical cumulative distribution function.

Binormal Estimator

Conversely, a fully parametric estimator may be constructed by assuming

that Xj ∼ N(µx,σ2
x) and Yj ∼ N(µy,σ2

y). In this binormal model (Brodersen
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et al., 2010), the MLE of θ is

θ̂B =

∫ 1

0

πt

πt+ (1 − π)Φ
(

µ̂y−µ̂x

σx
+

σ̂y

σ̂x
Φ−1(t)

) dt (4.11)

where µ̂x, σ̂x, µ̂y, σ̂y are the sample means and variances of X and Y and

Φ(t) is the standard normal cumulative distribution function.

Confidence Interval Estimation

Having discussed AUCPR estimators, we now turn our attention to com-

puting confidence intervals (CIs) for these estimators. Our goal is to

determine a simple, accurate interval estimate that is logistically easy to

implement. We will compare two computationally intensive methods

against two simple statistical intervals.

Bootstrap Procedure

A common approach uses a bootstrap procedure to estimate the variation

in the data and to either extend a symmetric, normal-based interval about

the point estimate or to take the empirical quantiles from the resampled

estimates as interval bounds (Efron, 1979). Because the relationship be-

tween the number of positive examples n and negative examples m is

crucial for estimating PR points and hence curves, we recommend using

stratified bootstrap so π is preserved in all replicates. In our simulations,

we chose to use empirical quantiles for the interval bounds and perform

1000 bootstrap replicates.

Cross-Validation Procedure

Similarly, a cross-validation approach is a wholly data-driven method for

simultaneously producing the train/test splits required for unbiased es-

timation of future performance and producing variance estimates. In
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k-fold cross-validation, the available data are partitioned into k folds. k−1

folds are used for training while the remaining fold is used for testing. By

evaluating the results of each fold separately, k estimates of performance

are obtained. A normal approximation of the interval can be constructed

using the mean and variance of the k estimates. For more details and

discussion of k-fold cross-validation, see Dietterich (1998). For our case

studies, we use the standard k = 10.

Binomial Interval

Recalling that 0 6 θ 6 1, we may interpret θ̂ as a probability associated

with some Binomial(1, θ) variable. If so, a CI for θ can be constructed

through the standard normal approximation to the binomial:

θ̂±Φ1−α/2

√
θ̂(1 − θ̂)

n

We use n for the sample size as opposed to n + m because n specifies

the (maximum) number of unique recall values in P̂R(·). The binomial

method can be applied to any θ̂ estimate once it is derived. A weakness of

this estimate is that it may produce bounds outside of [0, 1], even though

0 6 θ 6 1.

Logit Interval

To obtain an interval that is guaranteed to produce endpoints within [0, 1],

we may use the logistic transformation η̂ = log θ̂

(1−θ̂)
where τ̂ = s.e.(η̂) =

(nθ̂(1 − θ̂))−1/2 by the delta method (DeGroot and Schervish, 2001).

On the logistic scale, an interval for η is η̂ ± Φ1−a/2τ̂. This can be

converted pointwise to produce an asymmetric logit interval bounded in

(0, 1): [
eη̂−Φ(1−α/2)τ̂

1 + eη̂−Φ(1−α/2)τ̂
,

eη̂+Φ(1−α/2)τ̂

1 + eη̂+Φ(1−α/2)τ̂

]
.
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4.4 Case Studies

We use simulated data to evaluate the merits of the candidate point and

interval estimates discussed in Section 4.3 with the goal of selecting a

subset of desirable procedures.1 The ideal point estimate is unbiased,

robust to various distributional assumptions on X and Y, and has good

convergence as n+m increases. A CI should have appropriate coverage,

and smaller widths of the interval are preferred over larger widths.

We consider three scenarios for generating output values. We intend

to cover representative but not exhaustive cases whose conclusions will

be relevant more generally. The densities for these scenarios are plotted in

Figure 4.3. The true PR curves (calculated using the cumulative distribu-

tion functions of X and Y) for π = 0.1 are shown in Figure 4.4. Figure 4.4

also contains sampled empirical PR curves that result from drawing data

from X and Y. These are the curves the estimators work from, attempting

to recover the area under the true curve as accurately as possible.

For unbounded, continuous outputs, the binormal scenario assumes

that X ∼ N(0, 1) and Y ∼ N(µ, 1) where µ > 0. The distance between

the two normal distributions, µ, controls the discriminative ability of the

assumed model. For test values bounded by [0, 1], such as probabilis-

tic outputs, we replace the normal distribution with a beta distribution.

Therefore, the bibeta scenario has X ∼ Beta(a,b) and Y ∼ Beta(b,a) where

0 < a < b. The larger the ratio between a and b, the better we are able to

distinguish between positive and negative examples. Finally, we model an

extreme scenario where the support of X and Y is not the same. This offset

uniform scenario is given by X ∼ Uniform(0, 1) and Y ∼ Uniform(γ, 1 + γ)

for γ > 0. If γ = 0 there is no ability to discriminate, while γ > 1 leads to

perfect classification of positive and negative examples with a threshold of

c = 1. All results in this paper use µ = 1,a = 2,b = 5, and γ = 0.5. These
1R code for the estimators and simulations may be found at http://pages.cs.wisc.

edu/~boyd/projects/2013ecml_aucprestimation/

http://pages.cs.wisc.edu/~boyd/projects/2013ecml_aucprestimation/
http://pages.cs.wisc.edu/~boyd/projects/2013ecml_aucprestimation/
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Figure 4.3: Probability density functions for X (negative) and Y (pos-
itive) output values for binormal (X ∼ N(0, 1), Y ∼ N(1, 1)), bibeta
(X ∼ Beta(2, 5), Y ∼ Beta(5, 2)), and offset uniform (X ∼ Uniform(0, 1), Y ∼

Uniform(0.5, 1.5)) case studies.

were chosen as representative examples of the distributions that produce

reasonable PR curves.

This chapter exclusively uses simulated data drawn from specific,

known distributions because this allows calculation of the true PR curve

(shown in Figure 4.4) and the true AUCPR. Therefore, we have a target

value to compare the estimates against and we are able to evaluate the bias

of an estimator and the coverage of a CI. This analysis would be difficult

or impossible if we used a model’s predictions on real data because the

true PR curve and AUCPR are unknown.

Bias and Robustness in Point Estimates

For each scenario, we evaluate eight estimators: the nonparametric average

precision, the parametric binormal, two trapezoidal estimates, and four

interpolated estimates. Figure 4.5 shows the bias ratio versus n+m where
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Figure 4.4: True PR curves (calculated from the theoretical density func-
tions) and sampled empirical PR curves at π = 0.1. Sampled PR curves
use n+m = 500. The sampled PR curves were generated by connecting
PR points corresponding to adjacent thresholds.

π = 0.1 over 10,000 simulations, and Figure 4.6 shows the bias ratio versus

π where n+m = 1000. The bias ratio is the mean of the estimated AUCPR

divided by the true AUCPR, so an unbiased estimator has a bias ratio of

1.0. Good point estimates of AUCPR should be unbiased as n+m and π

increase. That is, an estimator should have an expected value equal to the

true AUCPR (calculated by numerically integrating Equation (4.2)).

As n +m grows large, most estimators converge to the true AUCPR

in every case. However, the binormal estimator shows the effect of model

misspecification. When the data are truly binormal, it shows excellent

performance, but when the data are bibeta or offset uniform, the binormal

estimator converges to the wrong value. Interestingly, the bias due to

misspecification that we observe for the binormal estimate is lessened as
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Figure 4.5: Ratio of estimated AUCPR to true AUCPR (bias ratio) versus
total number of examples (n+m). π = 0.1 for all cases.

the data become more balanced (π increases).

As predicted by Davis and Goadrich (2006), the upper trapezoid esti-

mator consistently overestimates the true AUCPR. Surprisingly, the only

estimator that is always higher than the upper trapezoid method is the in-

terpolated convex estimator. Even when n + m = 10, 000, the interpolated



64

binormal bibeta

offset uniform

2

4

6

0.8

1.0

1.2

0.25

0.50

0.75

1.00

0.01
(n=10)

0.1
(n=100)

0.5
(n=500)

pi

b
ia

s
 r

a
ti
o

estimator

interp conv

upper trap

interp max

avg prec

lower trap

interp mean

interp med

binormal

Figure 4.6: Ratio of estimated AUCPR to true AUCPR (bias ratio) versus π.
In all cases n+m = 1000.

convex estimator is still far from the true value. The poor performance

of the interpolated convex estimator is unusual because it uses the popular

convex hull ROC curve and then converts back to PR space. Because the

other interpolated estimators perform adequately, the problem may lie

in evaluating the convex hull in ROC space. The convex hull chooses
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those particular points that give the best performance on the test set. The

convex hull procedure is analogous to using the test set during training,

causing potential overfitting to the test set and leading to the observed

overestimation of AUCPR.

It is important to note that since π = 0.1 in Figure 4.5, data are sparse

at n+m = 100; there are only n = 10 values of Y from which to make the

estimate. In these situations, there is no clear winner across the three sce-

narios. The estimators tend to overestimate AUCPR when n is small, with

a few exceptions where AUCPR is substantially underestimated. Among

related estimators, lower trapezoid is more accurate than the upper trape-

zoid method and the mean or median interpolation estimators outperform

the convex and max interpolation estimators. Consequently, we will only

consider the average precision, interpolated median, and lower trapezoid esti-

mators because they are unbiased in the limit, less biased for small sample

sizes, and robust to model misspecification.

Confidence Interval Evaluation

We use a two-step approach to evaluate confidence intervals (CIs) based

on Chapter 7 of Shao (2003). In practice, interval estimates must come with

a confidence guarantee: if we say an interval is a (1−α)% CI, we should be

assured that it covers the true value in at least (1 − α)% of data sets (Shao,

2003; Wasserman, 2004; Lehmann and Casella, 1998). It may be surprising

to non-statisticians that an interval with slightly low coverage is ruled

inadmissible, but this invalidates the guarantee. Additionally, targeting

an exact (1 − α)% interval is often impractical for technical reasons, hence

the at least (1 − α)%. A valid interval provides at least (1 − α)% coverage,

and this is the first criterion a candidate interval must satisfy.

After identifying valid methods for CIs, the second step is determining

the narrowest (or optimal) intervals among the valid methods. The trivial

[−∞,+∞] interval is a valid 95% CI because it always has at least 95%
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coverage (indeed, it has 100% coverage), but it conveys no useful infor-

mation about the estimate. We therefore seek methods that produce the

narrowest, valid intervals.

Confidence Interval Coverage

The first step in CI evaluation is identifying valid CIs with coverage of

at least (1 − α)%. In Figure 4.7, we show results of 10,000 simulations

for the coverage of the four CI methods described in Section 4.3. These

are 95% CIs, so the target coverage of 0.95 is denoted by the thick black

line. As mentioned at the end of Section 4.4, we only consider the average

precision, interpolated median, and lower trapezoid estimators during our CI

evaluation.

A strong pattern emerges from Figure 4.7 where the bootstrap and

cross-validation intervals tend to have coverage below 0.95, though asymp-

totically approaching 0.95. Because the coverage is below 0.95, the compu-

tational intervals are technically invalid. The two formula-based intervals

are consistently above the requisite 0.95 level. Thus, the binomial and logit

methods produce valid confidence intervals.

Given the widespread use of cross-validation within machine learning,

it is troubling that the CIs produced from that method fail to maintain the

confidence guarantee. This is not an argument against cross-validation in

general, only a caution against using it for AUCPR inference. Similarly,

bootstrap is considered a rigorous (though computationally intensive) fall-

back for nonparametrically evaluating variance, yet Figure 4.7 shows it is

only successful asymptotically as data size increases, and it must be fairly

large before the bootstrap nears 95% coverage).

Confidence Interval Width

To better understand why bootstrap and cross-validation are failing, we ask:

are the intervals too narrow? Since we have simulated 10,000 data sets and
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obtained AUCPR estimates on each using the various estimators, we have

an empirical distribution from which we can calculate an ideal empirical

width for the CIs. When creating a CI, only 1 data set is available, so this

empirical width is not available, but we can use it as a baseline, optimal

width. Figure 4.8 shows the coverage versus the ratio of mean width to em-

pirically ideal width. As expected, there is a positive correlation between

coverage and the width of the intervals. Wider intervals tend to provide

higher coverage. For cross-validation, the widths tend to be slightly smaller

than the logit and binomial intervals but still larger than the empirically

ideal width. However, coverage is frequently too low, suggesting the width

of the interval is not the reason for the poor performance of cross-validation.

But interval width may be part of the issue with bootstrap. The bootstrap

widths are either right at the empirically ideal width or even smaller.

Confidence Interval Location

Another possible cause for poor coverage is that the intervals are for the

wrong target value (i.e., the intervals are biased). To investigate this possi-

bility, we analyze the mean location of the intervals. We use the original

estimate from the full data set as the location for the binomial and logit

intervals because both intervals are constructed around that estimate, the

mid-point of the interval from cross-validation, and the median of the boot-

strap replicates since we use the quantiles to calculate the interval. The

ratio of the mean location to the true value (similar to Figure 4.5) is pre-

sented in Figure 4.9. The location of the cross-validation intervals is much

farther from the true estimate than either the bootstrap or binomial loca-

tions are, with bootstrap being a bit worse than binomial. We believe this

targeting of the wrong value for small n+m is the primary explanation

for the low coverage of bootstrap and cross-validation seen in Figure 4.7.
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Comments on Bootstrap and Cross-Validation Intervals

The increased bias in the intervals produced by bootstrap and cross-validation

occurs because these methods use many smaller data sets to produce a

variance estimate. k-fold cross-validation reduces the effective data set size

by a factor of k, while bootstrap is less extreme but still reduces the effec-

tive size by a factor of roughly 1.5. Since the estimators become more

biased with smaller data sets (as demonstrated in Figure 4.5), the point

estimates used to construct the bootstrap and cross-validation intervals are

more biased, leading to the misplaced intervals and less than (1 − α)%

coverage.

Additionally, the bootstrap has no small sample theoretical justification

and tends to break down for very small sample sizes (Efron, 1988). When

estimating AUCPR with skewed data, the critical number is the number

of positive examples n, not the size of the data set n+m. Even when the

data set itself seems reasonably large with n +m = 200, there are only

n = 20 positive examples if π = 0.1. With just 20 samples, it is difficult

to obtain representative samples during the bootstrap. The small sample

size contributes to the lower than expected 95% coverage and presents a

possible explanation for the bootstrap widths being even smaller than the

empirically ideal widths seen in Figure 4.8.

We emphasize that both the binomial and logit intervals are valid and

do not require the additional computation that the cross-validation and

bootstrap intervals do. For large sample sizes bootstrap approaches (1−α)%

coverage, but it approaches from below, so care should be taken. Cross-

validation is even more problematic, with proper coverage not obtained

even at n+m = 10, 000 for some of our case studies.



69

4.5 Chapter Summary

Our computational study has determined that simple confidence interval

estimators can achieve nearly ideal interval widths while maintaining

valid coverage for AUCPR estimation. A key point is that these simple

estimates are easily evaluated and do not require resampling nor do they

add to the computational workload. Conversely, computationally expen-

sive, empirical procedures (bootstrap and cross-validation) yield interval

estimates that do not provide adequate coverage for small sample sizes

and only asymptotically approach (1 − α)% coverage.

We have also tested a variety of point estimates for AUCPR and we

determined that the parametric binormal estimate is extremely poor when

the true generating distribution is not normal. Practically, data may be

re-scaled (e.g., the Box-Cox transformation) to make this assumption fit

better, but this seems unnecessary because robust, easily accessible, non-

parametric estimates exist.

The scenarios we studied are by no means exhaustive, but they are

representative, and the conclusions can be further tested in specific cases

if necessary. In summary, our investigation concludes that the lower trape-

zoid, average precision, and interpolated median point estimates are the most

robust estimators and we recommend the binomial and logit methods for

constructing interval estimates.

This chapter concludes the section focused on PR space, where we

discussed the unachievable region in Chapter 3 and estimators of AUCPR

in this chapter. Next, we consider the data from which AUCROCs and

AUCPRs are generated and how to protect the privacy of those test sets

while still releasing useful performance assessments.
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Figure 4.7: Coverage for selected estimators and 95% CIs calculated using
the four interval methods. Results for selected n+m are shown for π = 0.1.
To be valid 95% CIs, the coverage should be at least 0.95. Note that the
coverage for a few of the cross-validation intervals is below 0.75. These
points are represented as half-points along the bottom border.
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Figure 4.9: Mean location of the intervals produced by the binomial, boot-
strap, and cross-validation methods (logit is identical to binomial). As in
Figure 4.5, the y-axis is the bias ratio, the ratio of the location (essentially a
point estimate based on the interval) to the true AUCPR. Cross-validation
is considerably more biased than the other methods are and bootstrap is
slightly more biased than binomial is.
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5 differentially private evaluation

After discussing properties and estimators of PR curves in the previous

chapters, we consider the data upon which evaluation is performed in

this chapter. As data sets and models leverage increasing amounts of

information about the examples, there is growing concern about privacy.

In particular, privacy is a concern when the examples are people, as is the

case in social networking and medical diagnosis tasks. In this chapter, we

address the privacy of the test set data.

5.1 Introduction

Our aim in this chapter is to expand the scope of differential privacy in

machine learning to include the protection of test data sets beyond the

existing work on the protection of training data sets. To our knowledge,

this is the first time the privacy of evaluating models, even differentially

private models, on new data and the added privacy risk involved has been

addressed.

We start by motivating our application of differential privacy to evalu-

ation by discussing potential attacks on ROC analysis in Section 5.2. In

Section 5.3, we define the task of differentially private evaluation, and then

discuss differentially private algorithms for AUCROC and average preci-

sion in Sections 5.4 and 5.5. Finally, in Section 5.6, we perform experiments

analyzing the utility and behavior of these algorithms.

5.2 Attacks on ROC Curves and AUCROC

Prior work has demonstrated the vulnerability of data points in ROC

curves to reidentification (Matthews and Harel, 2013); we extend that to

AUCROC to demonstrate that the problem remains even with the summary
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metric. Given the AUCROC of the full data set, consider the problem of

identifying the class of one of the examples. Here, the adversary has access

to all of the data points but one, and also knows the AUCROC of the full

data set. The goal is to predict whether the final example is a member of

the positive or negative class. Note that we do not assume the adversary

knows where the target example should go in the ranking.

The adversary’s algorithm is to attempt to place the target example

at each position in the ranking, and calculate the resulting AUCROC

under the assumption that the example is positive and again assuming

it is negative. The class that produces an answer closest to the released

AUCROC for the full data set (or the most frequent class in the case of

ties) is guessed as the class of the example. This setup is similar to the

assumptions of differential privacy in terms of looking at the influence of

a single example on AUCROC. However, it is not a worst case analysis and

it is concerned with identifying an attribute value of the target example,

not simply its presence in the original data.

Figure 5.1 shows the ability of the attacker to guess the class of the target

example given a sample of data from the UCI adult data set (details of

the data set are discussed in Section 5.6). One heuristic method that could

be used to interfere with this attack is to round the released AUCROC to

a smaller number of decimal places, and this is illustrated in Figure 5.1.

When the AUCROC is given to a high number of decimal places, the

adversary is able to recover the class value with high probability, though

this ability decreases as the number of data points increases. Rounding

the AUCROC value to fewer decimal places does reduce the adversary’s

success, but it comes at a cost to precision.
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Figure 5.1: Adversary’s success rate at identifying the class of the missing
example given AUCROC of a data set containing half positives and half
negatives with the specified significant digits. The horizontal black line at
0.5 denotes performance of randomly guessing the class.

5.3 Private Evaluation

Our discussion of differentially private evaluation will assume that a

classification model is applied to a private database. The model could be

hand-constructed by the submitter, trained on another private database in

a differentially private way, or trained on a public database. Our goal is to

ensure the evaluation output does not release too much information about

any particular example in the private database by requiring a differentially

private evaluation function.
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We assume that the size of the database, N = n +m, is public infor-

mation, but that the specific values of n and m are not publicly available.

Though allowing n and m to be public would make our analysis for AU-

CROC and AP simpler and might achieve induced neighbors privacy (Kifer

and Machanavajjhala, 2014), we believe that keeping the number of pos-

itive and negative examples private is a critical aspect of private model

evaluation. If n and m were public information, the worst-case adversary

for differential privacy who knows all but one row of the database would

be able to trivially infer whether the last row is a positive or negative.

Since the class label is often the most sensitive piece of information in a

prediction task, releasing precise counts of positives and negatives would

greatly weaken the security provided by a privacy framework. Instead,

we assume that only the size of the database, N, is public information.

As discussed in Section 2.4, we are using bounded differential privacy,

so neighboring databases always have the same number of examples or

rows. However, neighboring databases may differ (by a maximum of 1)

in the number of positives and number of negatives. To illustrate the

difference in neighboring databases in ROC analysis, ROC curves for two

neighboring databases are shown in Figure 5.2.

What types of evaluation metrics can be released privately under this

framework? Any metric based on a single confusion matrix can be made

private by applying the standard methods, such as Laplace noise, for

differentially private counts or marginals (Dwork, 2006). Therefore, differ-

entially private accuracy, recall, specificity, precision, etc. can be obtained.

We focus on more complex metrics, such as AUCROC, that are both more

useful for classifier evaluation (Provost et al., 1998) and more challenging

to implement privately.
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Figure 5.2: ROC curves for two neighboring databases where the difference
between D and D ′ is that a negative was changed to a positive and given
a new score. D contains 15 positives and 15 negatives and D ′ contains 16
positives and 14 negatives. AUCROCs for D and D ′ are 0.796 and 0.772,
respectively.



78

5.4 Private AUCROC

To create a private AUCROC algorithm, we first need to find the sensi-

tivity of AUCROC. In particular, we will start with the local sensitivity

(Definition 2.7) that provides database-specific bounds on the change in

AUCROC.

We repeat the formula for AUCROC from Equation (2.1) for easy refer-

ence:

AUCROC =
1

nm

m∑

i=1

n∑

j=1

1[xi < yj] (5.1)

Looking at Equation (5.1) to calculate sensitivity of AUCROC, each

example can contribute to the sum multiple times. The sensitivity of

AUCROC is further complicated because the factor 1
nm

differs between

neighboring data sets when a positive example changes to a negative or

vice versa. Fortunately, we can bound the maximum change in AUCROC

between neighboring data sets to find the local sensitivity in Theorem 5.1.

Note that we assume no ties in the scores assigned to positive and nega-

tive examples to simplify the proofs, i.e., we assume a total ordering for

the ranking of examples from most to least likely to be positive. In case

of ties, a complete ordering can be created where an arbitrary order is

chosen within the tied negatives and tied positives and among scores with

both negatives and positives, the negative examples are placed before the

positive examples to avoid overestimation of the curves and areas.

Theorem 5.1. Local sensitivity of the area under the ROC curve (AUCROC) is

LSAUCROC(n,m) =






1
min(n,m)

if n > 1 and m > 1

1 otherwise
(5.2)

where n and m are the number of positive and negative examples in the test set,

respectively.
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Proof. Let D and D ′ be two neighboring databases that differ by exactly

one row. Let n and m be the number of positive and negative examples in

D.

We consider the four cases of moving a negative in the ranking, moving

a positive, changing a positive to a negative (and moving it), and changing

a negative to a positive. Our analysis of these four cases requires n > 1

and m > 1, so for completeness, we say the local sensitivity of AUCROC

is 1 if either n 6 1 or m 6 1. Because the range of AUCROC is [0, 1], the

maximum change from neighboring databases is 1.

Case 1) Move negative: D ′ has the same xi and yj as D except for some xk

that is now x∗ in D ′. The only changes in Equation (5.1) occur when xk is

compared in the indicator functions. xk appears n times and each time

the indicator function can change by at most 1, so in this case, sensitivity is

n

nm
=

1
m

(5.3)

Case 2) Move positive: Similar to Case 1, D ′ is the same as D except for some

yk that changes to y∗. This yk appears in Equation (5.1) m times, so the

sensitivity is
m

nm
=

1
n

(5.4)

Case 3) Change negative to positive: Here, D ′ has n + 1 positive and m − 1

negative examples with the same xi and yj except for some xk that has

been removed and a new positive example with score y∗ has been added.

Note that we are only concerned with m > 2, so D ′ has at least 1 negative

example. Without loss of generality, assume that k = m. Let C be the

result of the sum for the indicator functions that remain the same between

D and D ′. Note that 0 6 C 6 (m − 1)n. Using C to collect the identical
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terms, we have

AUCROC(D) =
1

nm
(C+

n∑

j=1

1[xm < yj]) (5.5)

AUCROC(D ′) =
1

(n+ 1)(m− 1)
(C+

m−1∑

i=1

1[xi < y∗]). (5.6)

We need to bound the difference,

AUCROC(D) − AUCROC(D ′) = (
1

nm
−

1
(n+ 1)(m− 1)

)C

+
1

nm

n∑

j=1

1[xk < yj] −
1

(n+ 1)(m− 1)

m−1∑

i=1

1[xi < y∗]

(5.7)

=
m− n− 1

nm(n+ 1)(m− 1)
C+

1
nm

n∑

j=1

1[xm < yj]

−
1

(n+ 1)(m− 1)

m−1∑

i=1

1[xi < y∗]

(5.8)

Equation (5.8) is maximized when each of the three terms is maximized.

The first term is maximized when m > n and C = (m− 1)n,

m− n− 1
nm(n+ 1)(m− 1)

C 6
m− n− 1
m(n+ 1)

. (5.9)

The second and third terms are bounded above by n
nm

and 0, respectively.

Putting it all together we have an upper bound of

m− n− 1
m(n+ 1)

+
n

nm
6

m− n− 1
nm

+
n

nm
=

m− 1
nm

6
m

nm
=

1
n

. (5.10)

Similarly, the lower bound for Equation (5.8) occurs when n > m and is

m− n− 1
m(n+ 1)

−
m− 1

(n+ 1)(m− 1)
=

(m− 1)(m− n− 1) −m(m− 1)
(n+ 1)m(m− 1)

(5.11)
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=
−n− 1

m(n+ 1)
= −

1

m
. (5.12)

Thus, for the case of changing a negative to a positive example, we have

LSAUCROC 6 max
(

1
n

,
1
m

)
=

1
min(n,m)

(5.13)

Case 4) Change positive to negative: Symmetric with Case 3, the result is the

same as Equation (5.13).

Taking the maximum among all four cases we have

LSAUCROC =
1

min(n,m)
(5.14)

as the local sensitivity for area under the ROC curve.

Local sensitivity itself is not suitable for creating differentially private al-

gorithms because adding different amounts of noise for adjacent databases

can leak information (Nissim et al., 2007). Instead, we use β-smooth sensi-

tivity which ensures that the scale of noise for adjacent databases is within

a factor of eβ.

Theorem 5.2. β-smooth sensitivity of the area under the ROC curve (AUCROC)

is

S∗

AUCROC,β(D) = max
06i6n+m

LSAUCROC(i,n+m− i)e−β|i−n| (5.15)

where n and m are the number of positive and negative examples in D.

Proof. The proof is a straightforward application of the definition of β-

smooth sensitivity. Let n ′ and m ′ be the number of positive and negative
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examples in database D ′. From Definition 2.2 of Nissim et al. (2007),

S∗

AUCROC,β(D) = max
D ′∈D

LSAUCROC(D ′)e−βd(D,D ′). (5.16)

The smallest row difference between D and D ′ occurs if we just need to

change the positive or negative labels on the minimal number of examples

to ensure the n and m counts are correct, hence d(D,D ′) > |n− n ′|. Then

we have,

S∗

AUCROC,β(D) = max
D ′∈D

LSAUCROC(n ′,m ′)e−β|n−n ′| (5.17)

= max
06i6n+m

LSAUCROC(i,n+m− i)e−β|n−i| (5.18)

because there always exists some D ′ for which d(D,D ′) = |n− n ′|.

Figure 5.3 shows the smooth sensitivity given by Equation (5.15) for

several database sizes and values of β. The advantages of small smooth

sensitivity are only available with large β, large database size, and when

neither positive nor negative examples are extremely rare.

With theβ-smooth sensitivity of AUCROC, appropriately scaled Cauchy

noise can be used to obtain ǫ-differential privacy or Laplace noise can

be used to obtain (ǫ, δ)-differential privacy as described in Theorem 2.9.

Because the range of AUCROC is [0, 1], we truncate the output to be in

that range. The truncation does not violate differential privacy because an

adversary also knows the range of the true function (Ghosh et al., 2009).

5.5 Private Average Precision

Among the AUCPR estimators discussed in Chapter 4, average precision is

one of the recommended estimators. AP is somewhat similar to AUCROC

since it also uses sums and indicator functions for counting. This suggests

we may be able to bound the change in AP between neighboring databases
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Figure 5.3: β-smooth sensitivity for AUCROC versus n, the number of
positive examples in the database, for database sizes 100, 1000, and 10000.
β of none indicates the original, non-smoothed local sensitivity.

as we did for AUCROC in Theorem 5.1. We use the following formulation

for AP:

AP =
1
n

n∑

j=1

j

j+
∑m

i=1 1[xi > yj]
(5.19)

where xi for 1 6 i 6 m are the scores on the negative examples in the

test set and yj for 1 6 j 6 n are the scores on the positive examples.

Additionally, we assume that the yj’s (but not the xi’s) are sorted, i.e.,

y1 > y2 > ... > yn.

Precision at low recall has high variance because changing just a single

row for neighboring data sets can cause precision to go from 1 to 1
2 simply

by adding a high-scoring negative example. Though precision at low
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recalls can vary substantially between neighboring data sets, the impact

on average precision is mitigated by the 1
n

coefficient in Equation (5.19)

and the sensitivity is bounded in the following theorem.

Theorem 5.3. Local sensitivity of average precision (AP) is

LSAP =






max
(

log(n+1)
n

, 9+log(n−1)
4(n−1)

)
+ max

(
log(n+1)

n
, 9+logn

4n

)
if n > 1

1 if n 6 1
(5.20)

where n is the number of positive examples in the test set.

Proof. Let x1, x2, ..., xm and y1,y2, ...,yn be the classifier scores on the m

negative and n positive examples for a data set D. To bound the maximum

change in AP between D and a neighboring database, we consider the four

cases of adding or removing a positive example and adding or removing a

negative example. Once we have characterized adding and removing each

type of example, we consider the combination of adding and removing in

sequence to find the local sensitivity when the size of the database remains

the same.

The rest of this proof will assume n > 1, so for n 6 1 we default to a

local sensitivity of 1, which encompasses the maximum range from 0 to 1

of AP 1.

Case 1) Remove positive: Assume WLOG that y1 > y2 > ... > yn. Consider

makingD ′ by removing a positive example yz. Separating out the different

parts of the AP sum to facilitate comparison between D and D ′, we have

AP(D) =
1
n

[
z−1∑

i=1

i

i+ si
+

z

z+ sz
+

n∑

i=z+1

i

i+ si

]
(5.21)

1Though there is a non-zero minimum AP for any particular choice of n and m, the
minimum AP approaches 0 as n

m
→ 0.
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where si =
∑m

j=1 1[xj > yi]. Removing the yz example for D ′ yields

AP(D ′) =
1

n− 1

[
z−1∑

i=1

i

i+ si
+

n∑

i=z+1

i− 1
i− 1 + si

]
. (5.22)

We need to bound |AP(D) − AP(D ′)|, so we start by aligning like terms

from Equations (5.21) and (5.22).

AP(D) − AP(D ′) =
1

n(n− 1)

[
z−1∑

i=1

(
(n− 1)i
i+ si

−
ni

i+ si

)
+

(n− 1)z
z+ sz

+

n∑

i=z+1

(n− 1)i
i+ si

−
n(i− 1)
i− 1 + si

]

(5.23)

=
1

n(n− 1)

[
z−1∑

i=1

−i

i+ si
+

(n− 1)z
z+ sz

+

n∑

i=z+1

(n− 1)i(i− 1 + si) − n(i− 1)(i+ si)

(i+ si)(i− 1 + si)

]

(5.24)

=
1

n(n− 1)

[
z−1∑

i=1

−i

i+ si
+

(n− 1)z
z+ sz

+

n∑

i=z+1

i− i2 − isi + nsi

(i+ si)(i− 1 + si)

] (5.25)

=
1

n(n− 1)

[
z−1∑

i=1

−i

i+ si
+

(n− 1)z
z+ sz

+

n∑

i=z+1

−i

i+ si
+

n∑

i=z+1

nsi

(i+ si)(i− 1 + si)

] (5.26)

The two sums of −i
i+si

in Equation (5.26) include all i’s except i = z. So we
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can add and subtract z
z+sz

to get,

AP(D) − AP(D ′) =
1

n(n− 1)

[
nz

z+ sz
+

n∑

i=1

−i

i+ si

+

n∑

i=z+1

nsi

(i+ si)(i− 1 + si)

]
.

(5.27)

To find |AP(D) − AP(D ′)|, we maximize the absolute value of each term

in Equation (5.27) separately. The first term is maximized when sz = 0, so

∣∣∣∣
z

(n− 1)(z+ sz)

∣∣∣∣ 6
1

n− 1
. (5.28)

The second term is maximized when si = 0 ∀ i,

∣∣∣∣∣
1

n(n− 1)

n∑

i=1

−i

i+ si

∣∣∣∣∣ 6
n

n(n− 1)
=

1
n− 1

. (5.29)

For the third term, the values of si that maximize the sum depend on i,

∣∣∣∣∣
1

n− 1

n∑

i=z+1

si

(i+ si)(i− 1 + si)

∣∣∣∣∣ 6
∣∣∣∣∣

1
n− 1

n∑

i=z+1

si

(i− 1 + si)2

∣∣∣∣∣ . (5.30)

For a simpler analysis, we use the relaxation in Equation (5.30). We need

to maximize si
(i−1+si)2 for each i where si is free to take any (integer) value

between 0 and m. Taking the derivative of f(x) = x
(i−1+x)2 , setting it to

0, and then solving for x, we find that f(x) is maximized when x = i− 1.

Since i is an integer and i > 1, this means that the maximizer si = i− 1 is

always a valid choice for si, which gives an upper bound of

1
n− 1

n∑

i=z+1

i− 1
(i− 1 + i− 1)2

=
1

4(n− 1)

n∑

i=z+1

1
i− 1

. (5.31)
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Since all terms of the sum in Equation (5.31) are positive (z > 1 so i > 2), it

is maximized when there are as many terms as possible, i.e., when z = 1:

1
4(n− 1)

n∑

i=z+1

1
i− 1

6
1

4(n− 1)

n∑

i=2

1
i− 1

=
1

4(n− 1)

n−1∑

j=1

1
j
. (5.32)

The final sum in Equation (5.32) is simply the (n− 1)st harmonic number,

Hn−1. Therefore, an upper bound for the third term in Equation (5.27) is

Hn−1

4(n− 1)
. (5.33)

Combining the three terms from Equations (5.28), (5.29) and (5.33) to

bound Equation (5.27), we have

LSAP =
2

n− 1
+

Hn−1

4(n− 1)
=

8 +Hn−1

4(n− 1)
(5.34)

Case 2) Add positive: Equivalent to Case 1, but if D has n positive examples,

then D ′ has n+ 1, so the sensitivity is

LSAP =
8 +Hn

4n
. (5.35)

Case 3) Remove negative: Consider making D ′ by removing a negative

example xk.

AP(D) =
1
n

n∑

i=1

i

i+ si
(5.36)

AP(D ′) =
1
n

n∑

i=1

i

i+ si + δi
(5.37)

where si =
∑m

j=1 1[xj > yi] and δi = −1[xk > yi] is the change in false
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positive counts between D and D ′. The difference in AP is

AP(D) − AP(D ′) =
1
n

n∑

i=1

i

i+ si
−

i

i+ si + δi
(5.38)

=
1
n

n∑

i=1

i(i+ si + δi) − i(i+ si)

(i+ si)(i+ si + δi)
(5.39)

=
1
n

n∑

i=1

iδi

(i+ si)(i+ si + δi)
. (5.40)

δi ∈ {0,−1}, so the absolute value of Equation (5.40) is maximized when

δi = −1 and si = 1 ∀ i (si = 1 and not 0 because there must be an existing

false positive to remove).

|AP(D) − AP(D ′)| 6
1
n

n∑

i=1

i

(i+ 1)i
=

1
n

n∑

i=1

1
i+ 1

(5.41)

This is again a harmonic sum (minus the first term), so

LSAP =
Hn+1 − 1

n
. (5.42)

Case 4) Add negative: If we add a negative example instead of removing it,

we again get to Equation (5.40), but now δi ∈ {0, 1}, and the absolute value

is maximized when δi = 1 and si = 0 ∀ i.

|AP(D) − AP(D ′)| 6
1
n

n∑

i=1

i

i(i+ 1)
=

Hn+1 − 1
n

. (5.43)

Therefore the sensitivity for adding a negative example is the same as for

removing a negative.

With bounds for each of the four cases, we can find the sensitivity of

AP for changing a single row in a database. Changing a row is equivalent
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to adding and removing a row (or vice versa), so the sensitivity is bounded

by the sum of sensitivities of adding and removing an example. Thus,

LSAP = max
(
Hn+1 − 1

n
,
8 +Hn−1

4(n− 1)

)
+ max

(
Hn+1 − 1

n
,
8 +Hn

4n

)

(5.44)

is our tightest bound on the sensitivity. We can remove the dependence

on the harmonic numbers by using the fact that Hn < 1 + logn:

LSAP = max
(

log(n+ 1)
n

,
9 + log(n− 1)

4(n− 1)

)

+ max
(

log(n+ 1)
n

,
9 + logn

4n

) (5.45)

Tighter bounds exist for the harmonic numbers (Guo and Qi, 2011; Qi and

Guo, 2009), but we use this approximation for its simplicity.

Note that the local sensitivity of AP depends only on the number of

positive examples, n, and not the number of negative examples. This

aligns with the notion that AP (and PR curves) focuses on the positives

and does not give credit for true negatives.

Theorem 5.4. β-smooth sensitivity of average precision (AP) is

S∗

AP,β
= max

06i6n+m
LSAP(i)e

−β|i−n| (5.46)

Proof is virtually identical to that of Theorem 5.2.

As in AUCROC, we can use Cauchy or Laplace noise to produce ǫ- or

(ǫ, δ)-differentially private outputs. As discussed in Chapter 3, the range

of AP is not [0,1] because the minimum AP for any particular n and m is

strictly greater than zero. Though the minimum AP can be sizable (about

0.3 when n = m), it depends on the non-public n and m, so we cannot
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Figure 5.4: Root-mean-square error (RMSE) of (ǫ, δ)-differentially private
AUCROC versus ǫ for several different data set sizes (n=m) usingβ-smooth
sensitivity. The far left subplots use Cauchy noise, such that δ = 0, and are
ǫ-differentially private. The other subplots use Laplace noise with varying
values of δ.

truncate to the database specific minimum AP and instead just truncate to

the overall range of [0,1].

5.6 Experiments

In this section, we apply the algorithms from Sections 5.4 and 5.5 to two

data sets. Since our mechanisms operate on the outputs of a classification
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model and the true labels, they should not be influenced by the number

of features in the original data set. The first data set is adult from the UCI

repository (Bache and Lichman, 2013). It contains potentially private infor-

mation in both the class label (yearly income greater or less than $50,000)

and other features (e.g., capital gain/loss and work status) that individuals

might be hesitant to provide without privacy guarantees. The data set

has 14 features and 48,842 examples. The second data set is diabetes –

a medical data set from a Kaggle competition2 to predict diabetes from

anonymized electronic health records. We processed the data set to in-

clude age, gender, and binary features for the 50 most common drugs,

diagnoses, and laboratory tests for a total of 152 features. The data set

contains 9,948 patients. Again, many of these features could be considered

private information.

We imagine a scenario where an organization collects this informa-

tion from individuals with the promise that all query responses will be

differentially private. In these experiments, we trained a model on part

of each data set using logistic regression. We perform differentially pri-

vate evaluation on subsets of the rest of the data set. These subsets are

a surrogate for a private test database. We investigate the accuracy of

the differentially private evaluations with root-mean-square error (RMSE)

between the differentially private output and the true answer as calculated

directly from the private data.

Figure 5.4 shows the error of private AUCROC for several data set

sizes. When δ = 0, Cauchy noise is used as described in Theorem 2.9.

This provides stronger privacy guarantees, but the RMSE approaches zero

error more slowly as ǫ and n increase. For δ > 0, Laplace noise is used

for the relaxed (ǫ, δ)-differential privacy. As data set size or ǫ increases,

utility improves as RMSE approaches 0. With 1000 each of positive and

negative examples in the data set, reasonable empirical accuracy of the
2http://www.kaggle.com/c/pf2012-diabetes
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differentially private AUCROC is obtained for ǫ > 0.25.

For AP, we begin with the same setup as Figure 5.4, with error versus

ǫ for several data set sizes with n = m. The general trends for AP in

Figure 5.5 are similar to those for AUCROC, but with much higher error

and slower decay of error as ǫ increases. This is due to the additional logn

factor in the local sensitivity of AP. Figure 5.6 shows the distribution of

outputted private AP values for selected n and m. For larger data sets like

the top histogram, the outputs are nicely clustered around the true AP.

However, when n and m are small, most of the outputs are truncated to 0

or 1.

5.7 Chapter Summary

Differentially private models allow organizations with sensitive data to

provide guarantees about the effect of model release on the privacy of

database entries. But for these models to be effectively evaluated, they

must be run on new data, which may have similar privacy concerns. We

presented methods for providing the same differential privacy guarantees

for model evaluation, irrespective of the training setting. We provided

high-utility mechanisms for AUCROC and AP and discussed the straight-

forward application of Laplace noise for accuracy and similar metrics.

Future work includes creating mechanisms for other evaluation methods,

such as private ROC and PR curves, and investigating the effect of per-

forming cross-validation on a private database. We hope the discussion

of differential privacy for model evaluation motivates future work to en-

able differential privacy to be applied more broadly throughout machine

learning.

This chapter on private evaluation concludes the main contributions

of this dissertation. In the final chapter we discuss future work in more

detail and conclude with a summary.
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Figure 5.5: Root-mean-square error of (ǫ, δ)-differentially private AP ver-
sus ǫ for several different data set sizes (n = m) using β-smooth sensi-
tivity. The far left subplots use Cauchy noise, such that δ = 0, and are
ǫ-differentially private. The other subplots use Laplace noise.
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Figure 5.6: Histograms of (ǫ, δ)-differentially private AP output with
varying data set sizes on the adult data set. ǫ = 1 and δ = 0.01.
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6 conclusion

6.1 Future Work

Before a final summary in Section 6.2, we briefly discuss several possibili-

ties for future work building upon and inspired by this dissertation.

Aggregation with Different Skews

As mentioned in Section 3.4, the best way to aggregate PR curves from tasks

with different skews is not known. The normalization used for AUCNPR

suggests calculating the percentage of the achievable range of precision

obtained at each recall by each of the curves. This can then be averaged

across the tasks and translated back to a PR curve by choosing a repre-

sentative skew. However, this leads to nonlinear transformations of PR

space that can change the area under the curves in counterintuitive ways.

An effective method for generating a summary PR curve that preserves

measures of area in a satisfactory way and accounts for the unachievable

region would be useful and is a promising area of future research.

AUCPR Estimators

While the lower trapezoid, average precision, and interpolated median estima-

tors from Chapter 4 all converge to the correct answer in expectation as

the test set size increases, they can have poor performance for small data

sets. A high variance of the estimates is to be expected with few samples,

but the fact that the recommended methods’ estimates were substantially

biased is troubling. Investigation of how these methods work on real

outputs from trained classifiers and how well real outputs match the three

scenarios would tell us how concerning this really is. Additionally, devel-

opment of an improved estimator that is not as biased for small sample
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sizes would be valuable. An improved estimator would be particularly

useful for cross-validation since cross-validation’s poor performance is

mostly due to the biased estimators providing the wrong center for the

interval.

AUCPR Confidence Intervals

In Chapter 4, we recommend using the binomial or logit methods to com-

pute confidence intervals because they provide proper coverage. While the

coverage is above the nominal (1−α)%, the intervals appear to be slightly

too wide, as the coverage is consistently above (1 − α)% in Figure 4.7. The

intervals being wider than necessary is also supported by Figure 4.8. This

suggests that the sample size, n, used in calculating the standard error

is not entirely correct. Perhaps the number of negative examples should

partially contribute to an effective sample size that would produce tighter,

but still valid, intervals. Thus, empirical and theoretical investigation

of a more representative effective sample size for use in the parametric

intervals is an intriguing area for future research.

Private Curves

Chapter 5 presented private methods for calculating AUCROC and AUCPR.

However, the ROC and PR curves themselves are highly indicative of per-

formance and provide a visual representation of the trade-offs at different

operating points. Therefore, it would useful to have private methods for

generating ROC and PR curves. Since confusion matrices are simply a

collection of count queries, a simple approach is to add Laplace noise to

each of the N confusion matrices from every decision threshold. Unfortu-

nately, because the privacy budget must be split amongst all the confusion

matrices, there is too much noise added at each point to be useful. This

approach also does not improve with more data, as the privacy budget
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must be spread across even more applications of Laplace noise with the

larger test set.

Though adding noise to each point individually is not practical, it ap-

pears a private version of the curves might still be possible because curves

from neighboring databases are quite similar, especially as N increases.

Some potential approaches include choosing a small number of “impor-

tant” points in the true curve to add noise to, restricting the outputted

curves to a parametric family like binormal ROC curves, using the expo-

nential mechanism to choose from some set of potential curves, or using

the propose-test-release framework of Dwork and Lei (2009).

Cross-Validation and Privacy

Another important topic regarding privacy of test sets is how differential

privacy applies to the commonly used evaluation technique of k-fold cross-

validation. In cross-validation, a data set is divided into k folds and several

iterations of training and testing are performed to obtain an estimate of

future performance. Open questions regarding private applications of

cross-validation include:

• When training and testing on the k folds, should the sequential com-

position of Theorem 2.5 be used? Or is the more generous parallel

composition from McSherry (2009) applicable?

• How should the folds be chosen? Should the folds be randomized

for every query or just once for each database?

• Can a non-private learning algorithm (in the form of code) be sub-

mitted and evaluated provided the only output is the result of a

differentially private evaluation method?

• Are there additional query types or constructs that should be added

to a private database system to facilitate cross-validation?
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6.2 Summary

In this dissertation, we investigated novel properties of PR space, assessed

methods for estimating AUCPR, and considered privacy preservation for

test data in support of the thesis: Not all methods of generating thresholdless

metrics are created equal, and potential pitfalls and benefits accrue based on which

methods are chosen.

In Chapter 3, we demonstrated the existence of the unachievable region

in PR space, proved theorems regarding its size and location, and discussed

the implications for machine learning practitioners. In particular, great

care must be taken when skew changes, because PR curves, AUCPR, AP,

and Fβ metrics intrinsically change with skew, regardless of the algorithm

or model being evaluated. Next, an empirical evaluation of methods for

estimating AUCPR and associated confidence intervals was performed

in Chapter 4. We showed that different estimators do exhibit different

behavior based on the score distributions and test set size. Therefore,

choosing a good estimator and confidence interval method for any given

problem is not simply a matter of blindly using a default choice. While we

provide recommendations on good all-around methods, it is important to

understand the properties of these methods and use those that best fit the

prior knowledge of a particular task.

Switching to privacy, in Chapter 5 we raised the issue of test set privacy

in addition to the privacy of training data. While a differentially private

learning algorithm may provide a model that may be published with a

small risk of disclosure, the same privacy concerns exist when evaluating

that model. We provide algorithms to create private AUCROC and AP

and prove their differential privacy, and we outline how to use standard

differential privacy methods to privatize dichotomous model metrics.

In summary, evaluation methods are just as important as the learn-

ing algorithms we evaluate, and they should bear equal scrutiny and

investigation. This dissertation investigated PR analysis and differentially
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private evaluation to expand the knowledge of thresholdless evaluation

and provided several avenues for future research in Section 6.1.
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list of notation

D

a data set or database.

Hn

nth harmonic number.

Beta(a,b)

beta distribution parametrized by shape parameters a and b.

Binomial(n,p)

binomial distribution for n trials with probability p of success.

Uniform(a,b)

uniform distribution on the range [a,b].

AUCPRMAX

maximum AUCPR, b − a when calculating AUCPR for recalls be-

tween a and b.

AUCPRMIN

minimum AUCPR, equivalent to the size of the unachievable region.

fn

number of false negatives in test set.

fp

number of false positives in test set.

APMIN

minimum AP as required by the unachievable region.
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θ

variable for AUCPR.

tn

number of true negatives in test set.

tp

number of true positives in test set.

c

decision threshold for labeling examples greater than c positive and

the rest negative.

d(D,D ′)

number of rows that differ between D and D ′.

D

set of all data sets with N examples or databases with N rows.

1[A]

indicator function for event A, 0 if A is false, 1 if A is true.

m

number of negative examples in test set.

N

total number of examples in test set.

n

number of positive examples in test set.
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N(µ,σ2)

normal distribution with mean µ and variance σ2.

p

precision on test set.

π

proportion of positive examples in test set, n
N

.

r

recall on test set.

X

random variable for outputs on negative examples.

xi

score or model output on the ith negative test example.

Y

random variable for outputs on positive examples.

yj

score or model output on the jth positive test example.

y(i)

ith order statistic of y, i.e., the ith largest value among the yi’s.

Z

random variable for outputs (all examples).
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list of acronyms

AP average precision.

AUCNPR normalized area under the PR curve.

AUCPR area under the PR curve.

AUCROC area under the ROC curve.

CI confidence interval.

FPR false positive rate.

IMDB internet movie database.

IR information retrieval.

LSM Learning using Structural Motifs.

MAP mean average precision.

PR precision-recall.

RMSE root-mean-square error.

ROC receiver operating characteristic.

SAYU Score-As-You-Use.

TPR true positive rate.

UW-CSE University of Washington Department of Computer Science and

Engineering.

WLOG without loss of generality.
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