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Abstract 

Forests cover about 30% of Earth’s land surface, affect the environment from local to global scales, 

and provide important services to humankind. Both ecological processes and ecosystem services 

depend greatly on which tree species are present. Unfortunately, mapping tree species across large 

areas is difficult. However, there are new opportunities for mapping tree species thanks to new 

satellites, more frequent satellite images, and new algorithms. The goal for my dissertation was to 

map main groups of tree species aggregated to forest types across large areas with satellite imagery. 

I analyzed data from three satellite programs: Landsat, Sentinel-2, and MODIS. I achieved three 

main outcomes. First, my results show a positive effect of the number of observations on 

classification accuracy. Increase in the number of image acquisitions improved the accuracy of my 

maps especially when the cloud-free scenes were not available. Second, I improved the methodology 

of generating dense time-series of vegetation indexes, which are useful for both monitoring forest 

phenology and forest type classifications. I did so by advancing the use of the STARFM algorithm, a 

tool for fusing Landsat and MODIS imagery, to conditions of low data availability, where the 

standard application of STARFM is suboptimal. Finally, I evaluated the usefulness of the imagery 

from constellation of three satellites: Landsat-8, Sentinel-2A and 2B. Forest type classifications 

based on imagery from all three satellites were as good as classifications based on Landsat imagery 

from three-year period. My results advance remote sensing technology, and are relevant for 

environmental sciences, forest management, and conservation. Managers can utilize forest type maps 

to assess the commercial value of the forests, develop climate change adaptation strategies, and 

manage wildlife habitat. 
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Introduction 

Problem statement 

Forests cover about 30% of the Earth’s land surface providing various services to natural systems 

and humankind largely depending on their tree species composition. In order to accurately assess 

the value of the forests, for example in terms of the timber resources, biofuel potential, influence 

on biodiversity and climate, or habitat quality for wildlife, detailed information on location of 

individual tree species is necessary. Unfortunately, such data is difficult to obtain for large areas. 

The standard on-the-ground methods for generating tree species maps are cost- and time-

prohibitive, and the remote sensing approaches have been far from operational applications due 

to technical limitations of satellite systems. Fortunately, recent developments in satellite remote 

sensing, mainly new satellites, open access to unprecedented amounts of image data, and 

improvements in analysis techniques provide new opportunities for mapping trees from space 

and assessing their condition. Therefore, my overarching goal in this dissertation is to evaluate 

how these developments can improve the mapping main groups of tree species aggregated to 

forest types across large areas. To achieve this goal, I divided my research in to three chapters 

where I asked the following questions corresponding to mapping forest tree species: 1) how can 

we use the large amounts of partially cloudy and incomplete Landsat imagery? 2) can we 

improve the monitoring of single year phenology by fusing the data from MODIS and Landsat? 

and 3) can very frequent and harmonized data from Virtual Constellation of Landsat-8 and 

Sentinel-2 satellites improve the mapping? 

 Background 

Spatially explicit maps of forest types corresponding to tree species location can improve many 

applications including environmental sciences, forest management, and conservation efforts. The 
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need for such maps is particularly pressing for areas that have a large number of tree species, for 

example the Great Lakes Region in Midwest USA, and for temperate forests that will be affected 

the most by climate change (Iverson and Prasad 1998). The lack of species-specific, up-to-date 

forest data hinders numerous natural resources management efforts including deer management 

(Rooney, 2001), the development of climate change adaptation strategies (Hanewinkel et al., 

2012), and bioenergy initiatives (Jenkins et al., 2003). 

Tree species vary in how they influence numerous ecological processes. For example, they differ 

in aboveground net primary production (Gower et al., 1993) and thus in the rates of carbon 

sequestration (Bergh et al., 2003). The chemical structure of their leaves and needles affects 

nutrition cycling in soils (Finzi, Van Breelmen, and Canham 1998; Hobbie et al., 2007), water 

chemistry (Lovett, Weathers, and Arthur, 2002), and fire regimes (Bergeron et al., 2004). Their 

composition shapes the Earth’s environment on a global scale i.e. by affecting the rates of 

climate change (Bonan, 2008), as well as on a local scale impacting biodiversity (Barbier, 

Gosselin, and Balandier, 2008), and influencing the quality of water in streams and lakes (Lovett, 

Weathers, and Arthur, 2002). 

In terms of forest management, tree species drive the monetary value of the forests because the 

dimensions and the quality of timber that can be produced from given species differ. They vary 

in terms of costs of harvesting, regeneration and regrowth time which affects the profitability and 

biofuel potential (Sims et al., 2001). Last but not least trees differ greatly in susceptibility to 

disturbance (He, Mladenoff, and Gustafson, 2002), and elasticity to changing climatic conditions 

(Hanewinkel et al., 2012). 
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Finally, in terms of conservation, trees create habitats for specific wildlife (Lee and Rotenberry, 

2005; Wood et al., 2012; Kumar et al., 2018) determining the protection zones for unique species 

(Poole et al., 1996). Species composition can also influence the food availability in forests. For 

example, mixed forest stands have prolonged green-up period that sustain insects that feed on 

young leaves and provide food to insectivorous birds (Burger et al., 2012). 

Mapping tree species is difficult. One reason is that standard on-the-ground methods for 

generating maps of tree species are time and cost prohibitive for large areas. Second, the remote 

sensing methods are still not mature. Remote sensing can identify the tree species accurately via 

wide range of techniques and provide the information at spatial scales ranging from individual 

trees to forest stands (Fassnacht et al., 2016), but it is not a routine forest application due 

numerous limitations of satellite systems: shortage of data, unfavorable spatial resolution, and 

insufficient revisit time. For example, trees can be recognized with great accuracy based on 

species-specific reflectance characteristics recorded by hyperspectral imagery (Fassnacht et al., 

2014; Fagan et al., 2015), a trees’ structural properties are captured by LiDAR (Jeronimo et al., 

2018), but the access to such data is still too limited for operational use. Therefore, even though 

forests have been widely monitored with satellite imagery, the scope of that monitoring is largely 

limited to the detection of forest change (Hansen et al., 2013), forest disturbances, such as forest 

fires, wind-throws and harvests (Kennedy et al., 2010; Zhu et al., 2012), and the mapping of the 

broad forest categories (Griffiths et al., 2014).  

Fortunately, two recent developments in optical remote sensing offer new opportunities to map 

tree species across large areas with moderate spatial resolution imagery, mainly: 1) much better 

data availability, and 2) new algorithms to process large numbers of satellite images. 
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First, data from Landsat satellite program is now openly available from USGS making it cost-

effective to use both cloud-free and partially cloudy acquisitions (Wulder et al., 2012). 

Furthermore, the amount of Landsat-like data has increased in recent years thanks to successful 

launch of two Sentinel-2 satellites (A and B) as part of the European Copernicus program. 

Together, with NASA/USGS Landsat-8 satellite they create a Virtual Constellation of satellites 

providing surface reflectance data at global scale in unprecedented temporal resolution of 2-3 

days (Claverie et al., 2018). 

Second, the increasing amounts of data has driven the development of new algorithms that can 

take advantage of large image repositories (Wulder et al., 2016). New algorithms include: 1) the 

methodology for analyzing incomplete data sets that could tackle the problem of cloud cover 

(Schneider, 2012; Zhu and Woodcock, 2014), 2) techniques for fusing data of multiple sensors in 

order to combine their assets (Gao et al., 2006; Baumann et al., 2017), and 3) approaches to 

harmonize data from synergetic sensors (Claverie et al., 2018). 

Landsat-like data has played a key role in efforts to making mapping of forest tree species across 

large areas a routine remote sensing application. Monitoring forest resources that has been one of 

strong focus of the Landsat program since its beginnings in 1972 including monitoring forest 

phenology (Fisher and Mustard, 2007), mapping forest cover (Wulder et al., 2003), forest 

disturbance (Kennedy et al., 2010; Zhu et al., 2012; Griffiths et al., 2014), and mapping forest 

tree species (Wolter et al., 1995; Wolter et al., 2008; Dymond, Mladenoff, & Radeloff, 2002). 

The greatest advantages of Landsat-like imagery are: 1) moderate spatial resolution, 2) global 

coverage, and 3) fairly frequent repeat cycle. The Landsat-8 and Sentinel-2 systems are 

characterized by moderate spatial resolution of 10-30 meters which is sufficient for capturing 
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information from fairly small groups of trees and therefore for extracting information about the 

dominating tree species. The data provided by the systems consists visible (blue, green, and red) 

and infra-red (infra-red and short wave infra-red) reflectance bands crucial for characterization of 

species-specific reflectance characteristics (Iverson et al., 1989). The imagery is collected at 

global scale revisiting each area every 16 days in case of a single Landsat satellite (8 days for 

constellation of two Landsat satellites) and every 10 days for Sentinel-2 (5-days for Sentinel-2 A 

and B together). This allows for tracking changes in trees phenology that are crucial for 

capturing the inter-species differences in reflectance characteristics caused by synchronization of 

green-up, fall coloring, and senescence (Isaacson et al., 2012; Melaas et al., 2013; Baumann et 

al., 2017). 

Development of the methods for mapping forest tree species with Landsat data 

Over the years the Landsat-based approaches to mapping tree species have developed greatly, 

driven by the improvements in sensors installed onboard the satellites and data availability. The 

pioneering activities started in the eighties focused mostly on temperate forests of the US, 

especially in the Midwest region. The initial assessments of data from Landsat Thematic Mapper 

(TM) showed the usefulness of its bands, especially bands 3, 4, and 5, for separation of forest 

classes (Horler and Ahern, 1986). However, the first attempts to classify TM data with 

supervised approaches were of moderate accuracy. The classification of nine forest classes in 

area of northern Wisconsin based on single Landsat acquisitions reached overall accuracy of 

69% (Hopkins et al., 1988). It is also worth noticing the promising work done on measuring the 

separation between the tree species of boreal forest in Minnesota using TM data simulated from 

aerial photography (Shen, Badhwar, and Carnes, 1985). 
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Later developments in image processing allowed for more complex classification activities, e.g. 

comparisons between sensors, or using additional environmental information. The TM sensor 

showed superiority over MSS data for mapping trees (Moore and Bauer, 1990). The usage of 

single TM imagery in combination with environmental information on soils, and topography 

increased the classification accuracy from 65-72% to 82-94% for 13 forest classes in northern 

Wisconsin (Bolstad and Lillesand, 1992).  

The next improvement in mapping tree species with Landsat data was due to application of 

multi-seasonal acquisitions and a stepwise hierarchical approach. The base assumption of this 

methodology is capturing the inter-species spectral differences occurring on imagery from key 

periods where trees are in varying stages phenology. The first application of such approach on 

four MSS, and one TM images (from spring, summer, autumn and winter, enriched by use of 

Normalized Difference Vegetation Index NDVI), allowed for differentiation of 13 forest types in 

northern Lake States region with overall accuracy of 83% (Wolter et al., 1995). In this case land 

cover classes were delineated in stepwise process using band thresholding, and maximum 

likelihood classification. The stepwise, hierarchical approach was also used for mapping wetland 

tree species of southeastern USA reaching overall accuracy of 92% including non-forest classes 

(Townsend et al., 2001), and for forest land cover in outwash and loess plains of Northern 

Wisconsin, where the accuracies ranged from 33% up to 87% for different tree species (Dymond, 

Mladenoff, and Radeloff, 2002). In both cases the spectral data was enriched with NDVI, 

Tasseled Cap layers, and band differences. 

In the nineties, the way of applying the multi-seasonal Landsat data for mapping tree species 

developed to use of the multi-band data stacks, taking advantage from multi-temporal signatures 

depicting tree phenology over the year. Usage of 18-layered image containing data from three 
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images capturing spring, summer, and fall phenology made it possible to distinguish 33 forest 

classes in northwestern Connecticut with overall accuracy of 79% (Mickelson et al., 1998). Here 

a minimum-distance-to-means classifier was applied, allowing for work with non-normal 

distribution of forest areas. A similar approach was used during the first edition of the 

WISCLAND project (1994-1998), fostering the process of mapping tree species to statewide 

scale using dual date image stacks acquired on spring and fall (Reese et al., 2002). Forests were 

classified according to Anderson levels I-III with accuracies of 95% for deciduous and 93% for 

coniferous forests at level I, and in range from 70% to 84% at lower levels, respectively. It is 

also worth noting that the combination of TM bands with Tasseled Cap layers, and band ratios 

classified in hybrid setting of ISODATA and maximal likelihood classifiers allowed Bauer et al. 

(1993) to reach accuracy ranging from 68% to 80% for 6 forest and 5 non-forest classes. The 

final conclusion from this classification activity was that Landsat data could be useful input for 

operational forest monitoring in Minnesota in 4-year intervals. 

The opening the Landsat archives in 2008 started a new era for monitoring land cover allowing 

for analysis of dense data stacks and time series of Landsat data with machine learning and 

statistical tools. One example of such analysis in land cover classification is the use of Support 

Vector Machines (SVM) to a stack of 7 Landsat acquisitions for mapping pine, oak and mixed-

mesophytic forests in area of varying topography located in southeastern Ohio (Zhu and Liu, 

2014). This work pointed out the problem of overfitting the SVM with high dimensional data and 

need for feature selection. In the study, 15 features (from total set of 48) allowed the 

discrimination of 3 forest classes with an overall accuracy of 90%. A recent application of dense 

image stacks of Landsat data was performed for Wisconsin for the WISCLAND-2 project 

(Wiscland 2, 2016). Here, the data from Landsat-5, -7, and -8 were combined and classified with 
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a boosted technique applied to decision trees, providing classification accuracies from 70% to 

90% depending on tree species. The authors used a hierarchical approach to classify trees at 4 

levels, starting from forest cover at level 1, and ending at detailed tree species on level 4. 

Statistical tools have also been used for mapping distributions and abundance of tree species. For 

example, Partial Least Squares (PLS) regression has proven to be an effective tool for modeling 

forest structure within heterogeneous forests (Wolter et al., 2008). Finally, the analysis of 

averaged multi-year time series of Landsat observations made it possible to quantify both 

harmonic and phenological metrics in a set of spectral-temporal features allowing accurate 

mapping across multiple footprints (Pasquarella et al., 2018). 

Despite the great potential of data from the Sentinel-2 satellites, the imagery has not yet been 

heavily tested for mapping tree species. Only one study focusing on temperate forests of 

southeastern Germany reported somewhat low levels of accuracy (65%) when a single late-

summer image was classified (Immitzer, Vuolo and Atzberger, 2016). The most probable reason 

for this result was a limited amount of data and sub-optimal acquisition time. However, the 

accuracy expressed in kappa coefficient of 0.95 was achieved with 17 multi-seasonal images 

from spatially similar Formosat-2 satellite (spatial resolution of 8 meters) for 8 broadleaves and 5 

coniferous tree species (Sheeren et al., 2016). This result shows the potential of Sentinel-2 data 

for mapping tree species composition. 

Goal and objectives 

My goal for this dissertation was to evaluate how currently available satellite data from Landsat, 

Sentinel-2, and MODIS can improve the applicability of mapping main groups of tree species 

aggregated to forest types across large areas with moderate spatial resolution of 30 meters. I 

focused on three particular objectives. In my first chapter, I looked at the relationship between 
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mapping accuracy and the availability of cloud-free and partially incomplete Landsat 

acquisitions due to clouds or the Scanning Line Corrector malfunction. In my second chapter, I 

focus on deriving a dense time series of forest phenology by blending Landsat and MODIS data 

to support the mapping process. Finally, in my third chapter, I evaluate the usefulness of the 

harmonized surface reflectance data from Virtual Constellation of Landsat-8 and Sentinel-2. 

Chapter summaries 

In the following pages I will provide a short synopsis for each chapter, and their contribution to 

previous studies (Table 1). 

Chapter 1 summary 

Mapping temperate tree species with Landsat-like data relies on the availability of cloud-free 

observations capturing inter-species differences in phenology. Unfortunately, the access to high 

quality Landsat observations is limited due to cloud cover and SLC gaps. Moreover, the relation 

between the mapping performance to the number of image acquisition, their seasonality, and 

levels of missing data has not yet been evaluated for tree species mapping. 

My overarching goal for this chapter was to map tree species aggregated to forest types with 

Landsat imagery, and to maximize mapping accuracy by including imagery with gaps due to 

both cloud cover and SLC gaps. My specific objectives were to assess the effects of a) the 

number of acquisitions, b) the amount of missing data, and c) the seasons for with the imagery 

was available, on classification accuracy. 

I achieved an overall accuracy of 88% for my final map of tree types for northern Wisconsin 

containing 23 classes. Depending on the type of sampling my maps provided a good combination 
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of species-specific accuracies (70-97%) for the most abundant forest types, or reasonable 

accuracies (70-85%) for all forest types regardless of their abundance. 

My results show a positive effect of the number of observations on classification accuracy. This 

is emphasized the most for cloudy imagery, e.g. the high number of acquisitions allowed me to 

keep the level of accuracy close to 80% even when using data missing >=30% of pixels. In other 

words, a stack of imagery containing sufficiently high number of partially clouded acquisitions 

provided enough data for: a) covering the whole study area with at least single clear observation, 

and b) capturing the differences in reflectance occurring due to species-specific phenology. In 

terms of seasonality, the fall acquisitions added the most to the mapping performance providing 

the best accuracy than any combination of other seasons and just slightly better accuracy when 

combined with imagery from other seasons. 

Interpreting my results, I drew guidelines for mapping forest type with Landsat data. First, that 

acceptable classification accuracy can be achieved only with handful of cloud-free acquisitions. 

Especially, if they cover spring and fall season. However, I recommend to use all available 

Landsat images from at least 3-year period if cloud-free acquisitions are not available. 

Chapter 2 summary 

Recent scientific literature report improvements in mapping temperate tree species with Landsat 

data coming from combination of surface reflectance and phenology information (Pasquarella et 

al., 2018). However, deriving the information on phenology from Landsat is difficult due to low 

frequency of available clear observations. This applies especially to areas affected by climate 

change and inter-annual variability in tree-phenology for which the single year phenology is 

required. Often, clear observations are too sparse for statistically valid modelling of phenology 
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or any remedy processing, e.g. gap filling (Baumann et al., 2017). Moreover, the lack of entirely 

cloud-free acquisitions over the year excludes also the classical applications of spatial-temporal 

blending of Landsat with spatially coarse but frequent MODIS data that could provide the 

sufficiently dense time series of satellite observations (Gao et al., 2006). 

My goal for this chapter was to design an approach for generating a cloud-free time series of 

Landsat surface reflectance covering a period of single growing season, that could be used even 

the data availability is very low. My specific objectives were to: a) improve the applicability of 

spatial-temporal blending of Landsat and MODIS data to large areas, b) generate the cloud-free 

time series of Landsat surface reflectance based on compositing of the outcomes of numerous 

spatial-temporal models blending cloudy Landsat and MODIS, and c) assess the optimal 

approach to composite the outcomes of fusing Landsat and MODIS. 

I have improved the applicability of spatial-temporal blending of the data from Landsat and 

MODIS, by removing the need for at least one cloud-free Landsat acquisition per year. My 

approach provided a quality time series of cloud-free surface reflectance filling the data gaps 

caused by clouds and SLC gaps and retaining all original Landsat observations. 

My results suggest that simple averaging the predictions of Landsat surface reflectance from 

multiple fusing models based on numerous cloudy acquisitions is sufficient for generating cloud-

free data sets. My predictions were fairly uniform among multiple models with standard 

deviations in surface reflectance varying from 2 up to 7 percentage points between my models. 

However, the cloud-free time series did not improve classifications of forest type. 
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Chapter 3 summary 

Combination of imagery from Landsat and Sentinel-2 provides unprecedented temporal 

frequency of 2-3 days providing opportunity to increase the accuracy of mapping forest type. 

According to results in my first chapter, the high number of partially cloudy Landsat 

observations allow us to map forest type at levels of accuracy comparable to results obtained 

with almost cloud free acquisitions. Therefore, increased data availability resulting from 

combining the imagery from both systems should improve the mapping performance especially 

when only partially cloudy imagery is available. 

My goal for this chapter was to evaluate how harmonized data from Landsat-8 and Sentinel-2 

(HLS) affects the mapping tree species aggregated to temperate forest types in northern 

Wisconsin. My specific objectives were to: a) assess how single year of data from Landsat and 

Sentinel-2 improves the mapping accuracy comparing to imagery from individual systems, b) 

evaluate the usefulness of 8-day, and 16-day image composites for mapping tree species, and c) 

check whether HLS data is more resistant to the effects of cloud cover comparing to the less 

frequent individual systems. 

My results did not show great improvements resulting from usage of HLS data compared to the 

imagery from either Landsat-8 or Sentinel-2. The differences in mapping accuracy between the 

data subsets was <5%. Similarly, compositing of the HLS imagery to either 8-day or 16-day 

periods did not improve the classification accuracy, but it accelerated the mapping process. 

Finally, all three data subsets performed similarly when all available acquisitions contained 

>25% of pixels clouded resulting in about 10 percentage points drop in mapping accuracy. 
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My findings from this chapter provide first insights to usage of harmonized data from the full 

Virtual Constellation of Landsat-8 and Sentinel-2 for mapping forest type. However, even 

though I found only minor mapping improvements resulted from increased temporal frequency 

of the data I conclude that the data can be useful for more accurate monitoring single year 

spatial-temporal and phenological patterns of woody vegetation. 

Significance 

Working on remote sensing methodology for mapping tree species aggregated to forest types, I 

have contributed to technology, science, forest management, and conservation. 

In terms of technology, I provide useful insights how to map forest type with Landsat-type data, 

and make important arguments in discussion of future of satellite monitoring. Remote sensing is 

changing, providing us with both numerous advantages and challenges coming with new 

technology (Wulder et al., 2012; Wulder et al., 2016; Young et al., 2017). Thus it is important to 

validate new data, new ways how to process it, and to point out both problems and promises. The 

blessing of access to large archives of Landsat and Sentinel-2 repositories provide us with 

tremendous amounts of useful information, but also comes with the curse of dealing with its 

quality (Ju and Roy, 2008). By evaluating how statistical learning tools deals with data gaps 

caused by clouds and SLC gaps, I was able to draw guidelines for using such incomplete datasets 

and assess the necessity of filling these missing values. My solutions are directly applicable to 

results of current NASA’s efforts focused on generating harmonized surface reflectance (HLS) 

product from Landsat-8 and Sentinel-2 satellites (Claverie et al., 2018). Finally, my conclusions 

on the relation between mapping accuracy and amount of satellite information, and its source, is 

important for discussion of future of Earth Observation missions. I conclude that for mapping 

forest type the access to just few good quality images is sufficient, but when cloud-free data is 
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not available, then the advantages of data from numerous synergetic satellites are notable. 

Considering the costs of building, launching, and maintaining satellite missions, such 

conclusions should be of great value. 

More broadly, my results on mapping forest type are useful for all scientific areas that require 

spatially explicit information on location of main groups of tree species. Forests influence natural 

systems largely depending on their tree species composition. Trees vary in influence to numerous 

ecological processes and their composition shapes the Earth’s environment at both global and 

local scales (Lovett, Weathers, and Arthur, 2002; Bergh et al., 2003; Barbier, Gosselin, and 

Balandier, 2008). More spatially detailed information on location of forest types can help to 

model these processes with greater accuracy. Because on-the-ground mapping of forest type is 

time and cost prohibitive, my results present an alternative for repeated mapping activities that 

could provide data to evaluate results of research focused on modeling climate change at wide 

range of scales. Considering estimated species migrations such information could be very useful 

argument in discussion on how to protect the environment. 

Finally, by generating tools for image processing and maps of forest type distribution, I have 

contributed to forest management and conservation. Trees are important economically 

(Hanewinkel et al., 2012), and for human wellbeing (Bell and Thompson, 2013). Since tree 

species differ in their timber value and silvicultural methods, it is necessary to monitor their 

availability. History shows that usage of forests can be very rapid and lead to fast exhaustion of 

timber resources (Curtis, 1959; Radeloff et al., 1999; Rhemtulla et al., 2007; Rhemtulla et al., 

2009). Therefore, development of time efficient ways to monitor forest resources is necessary for 

sustainable management, and to prevent illegal logging. Forests are also habitats for unique 

wildlife that is affected by tree species composition. For example, numerous species of birds 
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breed in areas of particular trees (Holmes and Robinson, 1981). Knowledge on current forest 

composition and monitoring its change can provide arguments for protecting certain areas. This 

is important considering the cultural value of forests for future generations. 
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List of tables 

Table 1. The overview of the remote sensing studies focused on mapping tree species communities including the findings from this 
dissertation. 

Study Location 
Number of 

forest classes 
Data Methods Accuracy / Conclusions 

Horler and Ahern, 
1986 

US 1 Landsat TM 
The assessment of TM data for forest 

monitoring 
Usefulness of TM bands: 3, 

4, and 5 

Shen, Badhwar, and 
Carnes, 1985 

Minnesota, US 1 Aerial imagery 
Using simulated TM data from aerial 

imagery 

Promising possibility of using 
real TM data for mapping 

forests 

Hopkins, Maclean, 
and Lillesand, 1988 

Wisconsin, US 9 
Single Landsat TM 

image 
Classification of multiple forest classes 0.69 

Moore and Bauer, 
1990 

Northern 
Wisconsin, US 

3 
Landsat MSS, 
Landsat TM 

Comparison of imagery from Landsat 
sensors 

Superiority of TM data over 
MSS 

Bolstad and Lillesand, 
1992 

Northern 
Wisconsin, US 

13 Landsat TM 
Addition of environmental information 

(soils, topography) 
82-94%  

Bauer et al., 1993 Minnesota, US 6 Landsat TM 
multi-layer image stacks classified with 

hybrid method combining ISODATA and 
Maximal Likelihood classifiers 

68% - 80% for forest and 
non-forest classes 

Wolter et al., 1995 
Northern Lake 

State Region, US 
13 

Landsat MSS, 
Landsat TM 

Multi-temporal imagery; hierarchical 
stepwise classification 

83% / problems with access 
cloud free to data 

Mickelson, Civco, and 
Silander, 1998 

North-western 
Connecticut, US 

33 Landsat TM 
18-layer image stack classified with 

minimal distance classifier 
Overall accuracy 78,9% 

Townsend et al., 2001 South-eastern US 21 Landsat TM 
hierarchical stepwise classification; 
addition of vegetation indices, and 

Tasseled Cap layers 

92.1% including non-forest 
classes 

Dymond, Mladenoff, 
and Radeloff, 2002 

Wisconsin, US 12 Landsat TM 
hierarchical stepwise classification; 
addition of vegetation indices, and 

Tasseled Cap layers 

Accuracy for forest classes: 
33-84 % 

Reese et al., 2002 Wisconsin, US 
Multiple at 4 

levels  
Landsat TM 

Large scale mapping activity covering the 
whole state of Wisconsin 

Accuracy for tree species: 
70-84% 
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Study Location 
Number of 

forest classes 
Data Novelty Accuracy / Conclusions 

Zhu and Liu, 2014 
South-eastern 

Ohio, US 
3 Landsat ETM+ 

Using dense Landsat image stack with 
SVM classifier; feature selection 

Overall accuracy including 
non-forest classes 96.27% 

Gao et al., 2015 North China 1 Landsat OLI Addition of multiscale texture measures 92.70% 

Wiscland 2 Land, 
2016 

Wisconsin, US 
Multiple at 4 

levels  
Landsat TM, ETM+, 

OLI 

Boosted Decision Trees applied to large 
stacks of multi-temporal image acquisitions 

and vegetation indices 

Accuracy for tree species: 
70-90% 

Immitzer, Vuolo, and 
Atzberger, 2016 

South-eastern 
Germany 

7 Sentinel-2A MSI 
First published use of Sentinel-2A data for 

classifying tree species 

Overall accuracy 65% due to 
un-favored timing of image 

acquisition 

Pasquarrella et al., 
2018 

Massachusetts, US 8 
Landsat MSS, 

Landsat TM, Landsat 
ETM+, Landsat OLI 

Use of spectral and temporal features 
derived from all available observations 

from 1985 to 2015 
83.39 ±2.31% 

Chapter 1 Wisconsin, US 23 Landsat-7, Landsat-8 
Use of partially clouded imagery; multi-

temporal image stacks 
Overall accuracy of 88.1%; 
no need for cloud free data 

Chapter 2 Wisconsin, US 23 
Landsat-7, Landsat-8, 

MODIS 43A4 
Actual Landsat observations filled with 

STARFM predictions 

The outcomes of SATARFM 
do not improve classification 

accuracy  

Chapter 3 Wisconsin, US 23 
Harmonized Landsat-

8 and Sentinel-2 
Use of 8-day and 16-day intra-annual 

image composites 

16-day intra annual 
composites improve the 

efficiency of mapping tree 
types without decrease in 

classification accuracy 
(83.5%) 
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Chapter 1. Mapping forest types over large areas with Landsat imagery partially affected 

by clouds and SLC gaps 

Contributors: Konrad Turlej1, Mutlu Ozdogan1, Volker C. Radeloff1 

1 Department of Forest and Wildlife Ecology, University of Wisconsin-Madison 

Abstract 

Forests provide numerous services, but which services they provide depends greatly on their tree 

species composition. That makes it important to map not only forest extent and its dynamics, 

something that remote sensing excels in, but also to map tree species. Our main goal was to map 

tree species aggregated to forest types with Landsat imagery, and to test when adding imagery 

with missing data, either due to clouds or scan line problems, improves classification accuracy. 

Our study area covered one Landsat footprint (26/28) in Northern Wisconsin, USA, with 

predominantly temperate forests. We selected this area because of spatially heterogeneous forests 

and availability of high-quality reference data. We quantified how species-level classification 

accuracy was affected by a) the amount of missing data due to cloud cover and SLC gaps, b) the 

number of acquisitions, and c) the seasons for which images were available. We classified data 

for both a single year and a three-year period of Landsat 7 and 8 images with a decision tree 

classifier and mapped the dominant tree species in each pixel and in each forest stand of our 

reference data. We obtained three major results. First, we achieved producer’s accuracies ranging 

from 72.4% to 97% and user’s accuracies ranging from 79.8% to 93.4% for the most abundant 

forest types in the study area (>2% of the forest area). Second, classification accuracy improved 

with more acquisitions, especially when images were available for spring, summer, and fall, even 

when we included only imagery with more than 30% pixels missing pixels. Finally, 

classifications for pure stands were 10 to 30 percentage points better than those for mixed stands. 
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We conclude that inclusion of Landsat imagery with missing data allows to map forest types 

with accuracies that were previously possible only for those rare years for which several cloud-

free images were available. Our resulting maps with high accuracy provide important data for 

both forest management and ecology. 

Keywords 

Forest type, Landsat, clouds, SLC gaps, remote sensing, classification, forest inventory map, 

Wisconsin, USA 

Introduction 

Forests cover about one third of the Earth’s land surface and provide numerous services, but 

which services they provide exactly depends on tree species composition. Tree species vary, for 

example, in their rates of carbon sequestration (Bergh et al., 2003), nutrition cycling in soils 

(Finzi, Van Breelmen, and Canham 1998; Hobbie et al., 2007), and their effects on soil water 

chemistry (Lovett et al., 2002). Tree species composition shapes the Earth’s environment at a 

global scale, e.g., by affecting the rates of climate change (Bonan, 2008), and at a local scale, 

e.g., by providing habitats for wildlife (Wood et al., 2012; Lee & Rotenberry, 2005), and 

affecting biodiversity (Barbier, Gosselin, and Balandier, 2008), and runoff water quality (Lovett, 

Weathers, and Arthur, 2002). Last but not least, tree species differ greatly in their timber value 

and susceptibility to disturbance (Hanewinkel et al., 2012). Therefore, tree species maps are 

necessary for science, where they constitute important input data for modeling of various 

environmental variables, and for forest management and the sustainable use of forest resources 

(Portoghesi, 2006). Finally, knowledge about the location of certain tree species is important for 

their conservation and to model distributions of related wildlife species (Loiselle et al., 2003). 
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On-the-ground mapping of tree species is cost-prohibitive for large areas. However, recent 

technological developments in remote sensing may make it possible to map tree species 

efficiently. Tree species can be successfully separated by measuring the reflectance and its 

annual changes due to phenology. The best results are obtained with hyperspectral data, which 

provide species-specific reflectance and absorption characteristics (Fassnacht et al., 2014), but 

hyperspectral imagery is not widely available. For both hyperspectral and multispectral data, 

mapping accuracy increases when using multi-temporal acquisitions that capture differences in 

tree phenology are used (Elatawneh et al., 2013). For example, the use of a single Sentinel-2 

image resulted in an overall accuracy of 66.2% for temperate forests in Germany (Immitzer et 

al., 2016), while  multi-temporal data from Formosat-2 satellite imagery resulted in reported 

accuracies ranging from 0.90 to 0.96 for the kappa coefficient (Sheeren et al., 2016). Similarly, 

the use of Landsat data covering multiple stages of forest phenology results in mapping accuracy 

ranging from 83% to 96% depending on the number of tree species (Townsend et al., 2001; Zhu 

and Liu, 2014). In rare cases, high classification accuracy can be achieved with only a handful 

images from spring, summer, and fall (Mickelson, Civco, and Silander, 1998). However, a large 

number of acquisitions is an advantage as long as the additional imagery introduces more 

information on differences in tree phenology (Wolter et al., 1995; Zhu and Liu, 2014). 

When the goal is to map tree species for large areas, Landsat and Sentinel-2 imagery is the only 

viable choice because of its spatial and temporal resolution, coverage of spectral ranges essential 

for monitoring tree phenology, radiometric stability, and deep image archives. First, the spatial 

resolution of 10-30 meters of these images allows for collecting information over extensive 

areas, yet captures the reflectance from a sufficiently small group of trees so that the dominant 

species for each pixel can be assessed (Wolter et al., 1995). Second, the 5-8-day acquisition 
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frequency of two Landsat satellites, plus additional Sentinel-2 images for recent years, make it 

possible to capture rapid changes in canopy development during the growing season, which is 

what makes inter-species differences most apparent (Mickelson, Civco, and Silander, 1998). 

Finally, the radiometric quality of all Landsat bands is stable over the entire historical archive 

(Wulder et al., 2012) making it possible to classify changes in tree species over time (Pasquarella 

et al., 2018). 

The challenge is that in order to map tree species accurately using Landsat data, multi-temporal 

imagery is necessary, but most images have gaps due to clouds, their shadows, and scan line 

corrector (SLC) gaps on Landsat 7. These gaps preclude the use of many mapping approaches, 

including those that employ thresholds for the imagery (Wolter et al., 1995; Wolter et al., 2008; 

Dymond, Mladenoff, & Radeloff, 2002), statistical classifiers (Mickelson, Civco, and Silander, 

1998), and random forest classifiers (Zhu and Liu, 2014) that require completely cloud-free 

imagery. For example, having two images from spring is highly desirable, because bud burst is 

often rapid and differences in its timing among tree species can be subtle, but the probability of 

two cloud-free observations within 16 days from Landsat satellite being available is low for 

conterminous United States (Ju and Roy, 2008). 

One possible solution to the shortage of cloud-free Landsat data is to analyze image with gaps 

via machine learning algorithms that can handle missing data. Indeed, Landsat data with gaps 

can be useful when mapping general land cover categories (Schneider, 2012), as well as tree 

species (Wiscland 2 Land Cover User Guide, 2016), and so is partially cloudy imagery from the 

Formosat-2 satellites (Sheeren et al., 2016). However, the question is up to which level of 

missing pixels imagery is still useful to map tree species, and how both the number of 

acquisitions and the seasons for which imagery is available affects classification accuracy. 
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The main goal of our work was to map tree species aggregated to forest types with Landsat 

imagery, and to maximize mapping accuracy by including imagery with gaps due to both cloud 

cover and SLC gaps. Our specific objectives were to assess the effects of a) the amount of 

missing data, b) the number of image acquisitions, and c) the seasonality of the imagery on 

classification accuracy. 

Methods 

Study area 

Our study area was in northern Wisconsin and consisted of the forested areas of one Landsat 

footprint (path 26, row 28) (Figure 1. 1a). The area is divided by three ecoregions: Lake 

Superior Lowland, Northern Highland, and western part of Central Plain (Martin, 1965). The 

local climate is temperate continental and influenced by three air masses passing over the area: 

the cold and dry arctic, warm and moist subtropical, and very dry continental. The flat 

topography, mostly a rolling plain shaped by glaciers during the Pleistocene, provides no natural 

obstacles for air masses causing characteristic zonal distribution of vegetation (Curtis, 1959). In 

addition to air masses, climate is influenced by Lake Superior in the north causing local 

temperature gradients. 

Tree species composition in the local forests stands is mixed. Abundant tree species include 

aspen spp. (Populous), oak spp. (Quercus), pine spp. (Pinus), spruce spp. (Picea), maple spp. 

(Acer), and miscellaneous hardwoods, accompanied by tamarack (Larix larcina), eastern 

hemlock (Tsuga canadensis), and white cedar (Thuja occidentalis). Contemporary tree species 

distributions have been shaped mainly by land use, and differs substantially from the period prior 

to onset of European settlers in the mid-19th century (Curtis, 1959; Radeloff et al., 1999; 
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Rhemtulla et al., 2007; Rhemtulla et al., 2009). The local species composition prior to European 

settlement was dominated by hemlock and northern hardwood species in till plains and mesic 

moraines, and pines on sandy outwash soils (Curtis, 1959). Pines were accompanied by less 

abundant aspen also present in composition with oaks in the areas of the forest-savanna (Schulte 

et al., 2002). The changes resulted from deforestation, i.e., land conversion from forest to 

croplands followed by rapid logging between 19th and 20th centuries, and from disturbance, i.e., 

insect outbreaks and return of severe fire events in middle of 20th century. The regrowth of the 

forests since the 1930s did not follow the species distribution characteristic prior to European 

settlement. 

Data 

We focus here on Landsat data only excluding the imagery from Sentinel-2 satellite because of 

differences in resolution, and band wavelength ranges that can affect our results on the data 

availability. We analyzed Landsat-7 and Landsat-8 imagery from 1/1/2014 to 12/31/2016. In 

total, 82 acquisitions, out of 133, provided at least some cloud free pixels for our study area. 

Specifically, we analyzed the USGS Collection-1 Surface Reflectance product; bands 2-7 of 

Landsat-8 OLI, and bands 1-5 and 7 of Landsat-7 ETM+ (Table 1. 1). The Landsat-7 data were 

processed via the Landsat Ecosystem Disturbance Adaptive Processing System (LEDAPS) 

(Department of the Interior U.S. Geological Survey, 2012; Department of the Interior U.S. 

Geological Survey, 2017a) and the Landsat-8 data via the Landsat Surface Reflectance Code 

(LaSRC) (Department of the Interior U.S. Geological Survey, 2017b). We removed pixels that 

were: a) flagged as clouds, cloud shadows, or water based on the quality band, b) that exceeded 

the valid range of surface reflectance, and c) all non-forest pixels according to the 2011 National 

Land Cover Database (NLCD, Figure 1. 1c, Homer et al., 2015). 
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Our ground reference data were the Reconnaissance forest inventory data of the Wisconsin 

Forest Inventory & Reporting System (WisFIRS) of the Wisconsin Department of Natural 

Resources and County Forests (State of Wisconsin Department of Natural Resources, 2013, 

Figure 1b). The dataset provides stand-level information on forest types (Appendix 1. B): 

primary tree type (>= 50% of the basal area), secondary tree type, understory type, tree height, 

tree density, total basal area, year of stand establishment, and year of last field examination. We 

separated pure stands, where primary, secondary, and understory vegetation type were all of the 

same tree species, from mixed stands, which included all remaining stands. The dataset does not 

provide detailed information on the composition of tree species in mixed stands. The majority of 

the Reconnaissance forest stands were examined in the field after 2000, less than 16 years before 

the satellite data we used for this study were acquired (Figure 1. 2). 

Classification 

Our main goal was to obtain an accurate pixel-level classification of forest type for all forests 

according to the National Land Cover Database (NLCD). In order to do so, we conducted 

numerous classifications to test: 1) the influence of missing data due to cloud cover and SLC 

scanning gaps on classification accuracy, 2) the influence of number of image acquisitions on 

classification accuracy, and 3) the usefulness of imagery from different seasons and their 

combinations. We performed cross validation repeating each tests 10 times for the only-2016 

imagery versus 2014-2016 imagery, as well as for pure stands only versus pure-plus-mixed 

stands. For each of the 10 repetitions, we randomly divided the forest stands from RECON into 

training and testing subsets, each time drawing 25% of the pure stands of each forest type into 

training and leaving remaining 75% of pure stands plus all mixed stands for testing. For each 

repetition, we built a classification model using all pixels belonging to the training stands, and 
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applied the model to the pixels from the test stands. Finally, we used the model providing the 

best accuracy to map the forest types within forests according to NLCD database. 

We used the C5.0 Decision Trees and Rule-Based Models, implemented in R statistical software, 

as our tool for classification because it can handle incomplete datasets (Farhangfar et al., 2008), 

such as partially clouded imagery. We built each model requiring 100 boosting iterations, the 

maximum in C5.0, because higher numbers improved the classification accuracy. However, the 

actual number of iterations varied between the models depending on the amount of data and the 

level of missing pixels in the training data set. 

Test 1: Missing data due to cloud cover and SLC scanning gaps 

To evaluate the influence of missing data on the classification accuracy, we ran a series of 

classifications with changing thresholds for the minimum and maximum percentage of pixels 

missing values. For each threshold, we recorded: 1) the overall accuracy, 2) the number of image 

acquisitions meeting the threshold, 3) the percent of the pixels in the study area with at least one 

cloud-free observation, 4) the percent ratio between the number of cloud-free observations and 

the number of the pixels in the study area (e.g., 100% means that on average there was one cloud 

free value for each pixel of the study area, but some pixels may have had multiple observations, 

and others none), and 5) the overall percentage of missing data within the image stack. In total, 

we tested 19 thresholds separated by 10% steps. We started with the most incomplete imagery, 

containing >=90% and <=100% values missing. Next, we broaden the range of missing values to 

add images providing values until we included all acquisitions, from 0% to 100% pixel values 

missing. Finally, we narrowed the range by removing the most incomplete imagery form the 

analysis. We finished with the imagery with the data missing least (0% to 10% of pixel values). 

For this test we used only imagery from 2016. 



34 
 

 
 

Test 2: Number of image acquisitions 

To test the effects of higher number of images on classification accuracy, we extended the image 

acquisition time to three years (2014 to 2016), and repeated the tests with different levels of 

missing data (see above). For each threshold, we assessed the improvement in classification 

accuracy when analyzing three years of data, and compared the differences in 1) the number of 

image acquisitions meeting current percentages of pixels missing values, 2) the percent of the 

pixels in the study area for which the data provided at least one cloud-free observation, 3) the 

percent ratio between the number of cloud-free observations and the number of the pixels in the 

study area, and 4) the overall percentage of missing data within the image stack. 

Test 3: Seasonality 

To determine the seasons most important for the forest types classifications, we performed 15 

tests of all possible combinations of data from winter (December, January, February), spring 

(March, April, May), summer (June, July, August), and fall (September, October, November). 

We tested two data sets containing all images from 2016 only versus 2014-2016, and compared 

1) the overall accuracy, 2) the number of image acquisitions meeting current percentages of 

pixels missing values, 3) the percent ratio between the number of cloud-free observations and the 

number of the pixels in the study area, 4) the percent ratio between the total number of the pixels 

and the number of cloud-free observations available, and 5) the overall percentage of missing 

data within the image stacks. 

Accuracy assessment, classification probability 

We recorded the area-weighted overall accuracy of classification for all iterations of our tests and 

presented the detailed class-level accuracies for the classification generated with the model based 

on the best selection of image acquisitions. We aggregated our classifications to the forest stands, 
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labeling each stand based on its most common class. We excluded edge pixels within 30 meter of 

the stand border, calculated the overall classification accuracy, user’s and producer’s accuracy 

(Congalton, 1991), and derived graphs and error matrices to present the minimal, mean, and 

maximal value of overall accuracy for each data set related to cloud cover and seasonal 

distribution of the imagery for both all stands and pure stands only. Finally, to estimate class-

level accuracies at the forest-stand level, we calculated the area-weighted accuracy for our best 

classification by using all 2,786,133 pixels for the 44,741 forest stands remaining for the 

accuracy assessment. We calculated accuracy for pure stands, mixed stands and for all stands 

together. 

For our final map, we calculated class-specific inverted probability for the entire study area, 

which we defined at pixel level as 100% minus the percent probability of the pixel classification. 

We compared its values for individual forest types in box and whisker plots. Finally, we 

presented a map depicting the spatial distribution of the inverted classification probability.  

Additionally, we analyzed how the time since the last field examination of our reference stands 

affected the results of our classification. In order to do that we performed logistic regression 

whether our classification at the stand level was correct or not (values of 1 and 0) and the number 

of years from last field visit for pure forest stands. 

Results 

We were able to classify forest types with high accuracy. Our classification accuracy at the stand 

level reach 86.6% for pure stands, and 74.6% for all stands when analyzing all available data 

from 2014-2016, and 84.2% for pure stands, and 73.6% for all stands based on data for 2016 

alone (Figure 1. 3). 
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Test 1 - Missing data due to cloud cover and SLC scanning gaps 

Several clear results emerged when we tested the value of including imagery with missing data 

in the classifications. First of all, when cloud-free imagery was available, i.e., included in our 

classifications, the addition of imagery with missing data improved classification accuracies only 

marginally (Figure 1. 3d).  This was even the case when analyzing data for 2016 only, for which 

only 2 cloud-free images were available (Figure 1. 3b). Furthermore, once cloud-free images 

were included as input, there was only a minor improvement in classification accuracy when 

using data from 2014-2016 versus 2016 only. 

However, when no cloud-free images were included (i.e., when simulating a situation where no 

cloud-free imagery is available) then having data for three years was clearly advantageous. With 

three years of data, classification accuracy remained high even when the best images had >=20% 

data gaps (Figure 1. 3c), and the eight best images were removed from the image stack (Figure 

1. 3a).  However, classification accuracies for imagery from 2016 alone dropped precipitously as 

soon as the cloud-free imagery was removed (Figure 1. 3c). 

When comparing classifications for pure stands (Figure 1. 3c-d) with those for all stands 

(Figure 1. 3e-f), accuracies for pure stands alone were generally 10 percentage points higher 

than those for all stands, but the general patterns when including imagery with missing data were 

very similar. 

Test 2 – number of acquisitions 

Analyzing data for three years instead of only one improved image availability from 24 to 84 

acquisitions, with some cloud-free pixels (Figure 1. 3a-b). However, the increase the number of 
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acquisitions varied depending on the cloud cover range and shrank to 12 and 4 for 0-30% and 0-

10% cloudy imagery respectively. 

Data from three years provided at least one cloud-free observation for each pixel even with 

imagery that had 60-100% missing values. In contrast for data from one year, imagery with 20-

100% missing data was necessary. Second, the maximal number of observations per pixel was 59 

considering all acquisitions from three-year period (Figure 1. 1c). The average number of cloud-

free observations per pixel grew rapidly from <1 for the most clouded imagery (10 acquisitions 

missing >= 90% and < 100% pixel values) to 35 for data set containing all available imagery (0-

100%) from years 2014-2016 and 9 for 2016 only. Finally, the overall level of missing data 

decreased gradually when we added less clouded imagery (Figure 1. 3a), and when we removed 

clouded imagery (Figure 1. 3b). In both cases the overall level of missing data was similar for 

both data set from 2014-2016 and 2016 only. 

As mentioned above, the increase in classification accuracy due to additional data acquisitions 

was marginal when cloud-free imagery was included (Figure 1. 3d). Even with just four images 

with 0-30% missing data for 2016 alone, classification accuracy was 85.2%, compared to 86.5% 

for the 82 acquisitions for 2014-2016, and 86.4% for the 53 acquisitions for the data with 0-70% 

missing values, which was the highest mean accuracy. However, without the cloud-free imagery, 

differences between 2016-only versus 2014-16 data were stark, especially in the range of 10-100 

to 40-100% missing values, where the three-year data sets with many more observations 

increased classification accuracy up to level of 76% (Figure 1. 3c). Results for pure and mixed 

stands were again similar in trends but lower in absolute values (Figure 1. 3e-f). 
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Test 3 – seasonal data distribution 

The season during which the images were recorded affected classification accuracy greatly 

(Figure 1. 4a-b). Fall imagery was by far the most valuable for mapping forest types, providing 

by itself a level of accuracy just slightly lower than most of the combination of fall imagery with 

data from other seasons. For pure stands, we achieved the highest accuracy using combinations 

of all seasons when using the imagery from the three-year period 2014-2016 (86.1%) and from 

2016 only (85.2%). In other words, as long as a fall image was available, then data from a single 

year performed almost as well as data from three years. 

When we simulated situations where no fall image was available, then the difference in the 

classifications for 2016-only versus 2014-16 data was pronounced (Figure 1. 4a), presumably 

because of the large number of image acquisitions for the three-year period (Figure 1. 4c). When 

we tested the value of imagery for different seasons for pure versus all stands, the latter had 

again lower accuracy by 10-15 percentage points (Figure 1. 4b). The most useful imagery was 

again from fall, and as long as fall imagery was included, the 2014-2016 dataset resulted in only 

marginally better classifications (74.4%) than the 2016-only data (72.8%). 

Accuracy assessment 

The overall accuracy at the stand level weighted by the number of classes’ pixel counts of our 

final classification within the boundaries of reference RECON stands was 86.6% for pure stands 

(88.1% when the least abundant classes are aggregated for purpose of presentation), 63.3% for 

mixed stands, and 74% for all stands. User’s accuracy for individual forest types generally 

decreased with decreasing species acreage, but producer’s accuracy showed no visible pattern. 

However, for most forest types the producer’s accuracy was noticeably higher for pure stands 
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than for mixed stands, with differences ranging from 10 to almost 30 percentage points for most 

of the classes (Figure 1. 5a). 

For pure stands of forest types that covered >=2% of the area (Table 1. 2), we obtained generally 

high user’s accuracy: oak (93.4%), brush (93.2%), red pine (92.5%),  northern hardwoods 

(91.3%), scrub oak (87.5%), swamp hardwoods (85.5%), jack pine (84.8%), aspen (83.9%), and 

black spruce (79.8). With exception of jack pine (79.4%), scrub oak (72.4%), swamp hardwoods 

(69.2%), and oak (46.9%), we achieved also high producer’s accuracy for these classes: northern 

hardwoods (97%), aspen (95,7%), black spruce (91.7%), red pine (88.8%), and brush (87%). For 

the classes covering <2% of the area, we achieved low range accuracies (Appendix 1. A), 

missing them entirely or having producer’s accuracy at maximum level of 24.4%. However, we 

mapped most of these classes with high user’s accuracy of >= 80%.  

While we did not check the overall accuracy of the map, because we did not have independent 

ground truth data to do so, we confirmed that the prediction probabilities were moderately high 

(Figure 1. 1e). For most of the mapped area, the inverted probability was lower than 60%, and 

for a large portion <10%. It varied among classes, but more abundant tree species were generally 

classified with greater probability (Figure 1. 5b). However, for most classes the maximal range 

of inverted probability ranged from 0 to 90%. 

The relation between the time of last field examination of our reference forest stands and our 

classification varied among forest type. For example, we found no significant relation between 

correct classification of oak stands and the time when they were last examined (Table 1. 3). 

Whereas, for northern hardwoods such relation existed showing significant negative effect on 

correct stand classification (Table 1. 4). In both oak and northern hardwoods cases, the majority 
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of the stands were visited within 15 years from the date of acquisition of our satellite imagery 

(Figure 1. 6). 

Discussion 

We were able to map forest types accurately by analyzing Landsat imagery with missing values 

concomitantly with cloud-free images, and by applying the C5.0 decision trees algorithm, which 

can handle data with gaps.  Our approach is thus an advancement over previous approaches such 

as image thresholding (Wolter et al., 1995s; Wolter et al., 2008; Dymond, Mladenoff, & 

Radeloff, 2002), traditional classification algorithms (e.g. Minimum Distance To Means 

Classifier, Mickelson, Civco, and Silander, 1998), or other machine learning algorithms (e.g. 

Random Forest Classifier, Zhu and Liu, 2014). Furthermore, our approach does not require gap 

filling, making it more efficient especially for large-area mapping. In general, we found that 1) 

forest types in temperate forests can be classified with accuracies in the range of 72.4%-97%, 2) 

that imagery from multiple years is crucial when cloud-free imagery is lacking, and 3) that data 

from fall is by far the most important for high classification accuracies. 

When cloud-free imagery is lacking, we recommend to map forest types based on Landsat data 

from multiple years to increase the number of acquisitions, and to ensure that each pixel has 

cloud-free observations from different stages of phenology. However, when multiple cloud-free 

images are available for a single year, then that will probably suffice, as long as one image is 

from fall.  Similar findings were reported for data from WorldView-2 where 7 out of 20 cloud 

free images provided already the maximal classification accuracy (Elatawneh et al., 2013). For 

tests with Landsat-like data, the number of images that provided satisfactory results ranged from 

three (Mickelson, Civco, and Silander, 1998), four (Dymond et al., 2002), seven (Zhu and Liu, 

2014), 8 (Townsend et al., 2001), to ten clear images (Wolter et al., 1995). Pasquarella et al. 
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(2018) obtained similar results to ours using pairs of cloud-free imagery from multiple years, and 

up to 5% better accuracy using spectral and temporal indices derived from all available 

observations from 1985 to 2015. However, the highest improvement in that study was due to the 

addition of ancillary data, such as topography and wetland probability, which we did not test 

here. 

The data from all seasons used together provided the best classification accuracy, but the fall 

imagery was by far the most important. For both, the imagery from 2016 only, and for the three-

year period 2014-2016, fall imagery by itself resulted in a higher accuracy than imagery from 

spring, summer and winter combined. In general, the season with more acquisitions and lower 

percentage of missing values improved classification accuracy the most. Our findings generally 

follow those from prior research identifying spring and fall imagery as the most useful for 

discriminating forest types (Wolter et al., 1995; Mickelson, Civco, and Silander, 1998), but 

summer imagery being useful if its quality is high (Elatawneh et al., 2013). 

The high classification accuracy for pure forest stands provides strong support for of our 

approach especially considering the large extent of our reference data set. However, the RECON 

data set provides information at the stand level, which does not perfectly match the scale of 

remotely sensed imagery. In total we used 2,786,133 pixels to validate the classification within 

reference forest stands. Validation datasets in prior studies were generally smaller, i.e., 370 

(Bolstad and Lillesand, 1992), 1,211 (Wolter et al., 1995), 322 (Mickelson et al., 1998), 529 

(Townsend et al., 2001), 528 (Dymond et al., 2002), 95 (Zhu and Liu, 2014), but Pasquarella et 

al., (2018) had 161,880 samples. Since we did not have access to detailed information tree 

species composition within each stand, we calculated classification accuracy based on the 

dominant tree species in each stand (Bolstad & Lillesand, 1992; Wolter et al., 1995; Dymond et 



42 
 

 
 

al., 2002; Zhu & Liu, 2014), as is typical for forest inventory maps. An alternative would be to 

use fuzzy logic to depict the actual species composition (Mickelson, Civco, and Silander, 1998; 

Townsend et al., 2001), but we did not pursue this. It is worth to mention that the RECON data 

set is highly unbalanced in terms of the class abundance, reflecting species distributions on the 

ground, which leads to better recognition of the more abundant forest types. In tests we were able 

to improve the accuracy for less abundant forest types by up to 13.3% by leveling the number of 

training samples per class (results not shown). Lastly, our results may be also affected by the 

date of the RECON data. Depending on the forest type, stands that had not been recently 

examined in the field were less likely to be correctly classified. 

Our results have important implications for science, forest industry, and conservation planning, 

and provide a promising methodology for large scale, detailed, and accurate mapping of 

temperate forest types. First, our approach makes it possible to map forest types for large areas 

because it does not require cloud free images (Ju and Roy, 2008). Second, our maps are at 30-m 

resolution, thereby providing detailed input for modeling of various environmental variables 

(Richardson et al., 2012). Third, our maps could be used to update stand-level forest inventories 

and hence support forest management (Portoghesi, 2006) and conservation efforts. 

We conclude that even Landsat imagery with missing observations due to cloud cover and SLC 

scanning gaps can be used for the operational mapping of the temperate forest types. We found 

that just a handful of fairly complete and cloud-free acquisitions combined with imagery with 

missing values, especially from fall, can result in accurate forest types maps, which represent a 

major advancement over prior approaches that required cloud-free imagery. 
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List of tables 

Table 1. 1. The list of the acquisitions used in this study. 

  Landsat 7 ETM+ Landsat 8 OLI 
2014                     

Winter 7-Jan 23-Jan 8-Feb 24-Feb  15-Jan 31-Jan 16-Feb   

Spring 12-Mar 28-Mar 31-May   4-Mar 20-Mar 5-Apr 21-Apr  

Summer 16-Jun 2-Jul 18-Jul 3-Aug  24-Jun     

Fall 4-Sep 20-Sep 6-Oct 22-Oct  14-Oct 15-Nov    

2015           

Winter 10-Jan 27-Feb    3-Feb 19-Feb    

Spring 31-Mar 16-Apr 2-May   7-Mar 23-Mar 10-May   

Summer 19-Jun 5-Jul 21-Jul 6-Aug 22-Aug 27-Jun 13-Jul 29-Jul 14-Aug 30-Aug 
Fall 7-Sep 23-Sep 9-Oct 25-Oct 10-Nov 15-Sep 1-Oct 17-Oct 18-Nov  

2016           

Winter 14-Dec     5-Jan 22-Dec    

Spring 1-Mar 2-Apr 4-May 20-May  25-Mar 10-Apr    

Summer 21-Jun 7-Jul 8-Aug 24-Aug  15-Jul 31-Jul 16-Aug   

Fall 9-Sep 12-Nov 28-Nov   1-Sep 3-Oct 19-Oct 4-Nov 20-Nov 
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Table 1. 2. The error matrix for the classification at the stand level weighted by the number of pixel belonging to the pure forest stands 
in the reference RECON validation set; the classification was generated with Landsat imagery acquired in years 2014-2016 
characterized by cloud cover ranging from 0% up to 70%. 

  ASPEN BLACK 
SPRUCE 

JACK 
PINE 

NORTHERN 
HARDWOODS OAK RED 

PINE 
SCRUB 

OAK 
SWAMP 

HARDWOODS BRUSH OTHER Row 
sum 

User's 
accuracy 

(%) 
ASPEN 330311 1538 2381 11945 9248 2381 4220 7319 12086 12224 393653 83.9 
BLACK 
SPRUCE 357 35567 40 84 - 18 16 47 1469 6961 44559 79.8 

JACK PINE 201 1 34068 9 4 5217 365 - 204 112 40181 84.8 

NORTHERN 
HARDWOODS 6788 348 6 440618 9454 629 146 8202 2354 14123 482668 91.3 

OAK 355 10 111 638 17809 34 8 9 74 23 19071 93.4 
RED PINE 373 41 4094 26 11 73640 88 10 123 1184 79590 92.5 
SCRUB OAK 501 1 561 - 76 194 13535 2 526 81 15477 87.5 

SWAMP 
HARDWOODS 589 165 11 390 1365 7 31 39860 2138 2065 46621 85.5 

BRUSH 1101 509 1642 191 10 778 286 1990 130755 3045 140307 93.2 
OTHER 4494 623 5 252 - 5 3 203 527 9958 16070 62.0 

Column sum 345070 38803 42919 454153 37977 82903 18698 57642 150256 49776 
Overall 
Accuracy 88.1 Producer's 

accuracy (%) 95.7 91.7 79.4 97.0 46.9 88.8 72.4 69.2 87.0 20.0 
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Table 1. 3. Logistic regression table between correctly classified stands and numbers of years 
from last field examination for pure oak forest stands 

  Coefficients:       
Model Estimate Std. Error z value Pr(>|z|) 
(Intercept) -0.087 0.116 -0.748 0.454 
years from last examination -0.009 0.011 -0.826 0.409 
Null deviance: 737.28  on 533  degrees of freedom     
Residual deviance: 736.59  on 532  degrees of freedom     
AIC: 740.59         
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Table 1. 4. Logistic regression table between correctly classified stands and numbers of years 
from last field examination for pure north hardwoods forest stands 

  Coefficients:       
Model Estimate Std. Error z value Pr(>|z|) 
(Intercept) 2.852 0.164 17.419 <  2e-16 
years from last examination -0.044 0.012 -3.604 0.0003 
Null deviance: 532.77  on 999  degrees of freedom     
Residual deviance: 521.65  on 998  degrees of freedom     
AIC: 525.65         
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List of appendices 

Appendix 1. A. The full error matrix for the classification at the stand level weighted by the number of pixel belonging to the pure 
forest stands in the reference RECON validation set; the classification was generated with Landsat imagery acquired in years 2014-
2016 characterized by cloud cover ranging from 0% up to 70%. 

  
ASPEN BALSAM 

FIR 
BLACK 

SPRUCE 
BOTTOMLAND 
HARDWOODS 

FIR 
SPRUCE 

HEMLOCK JACK 
PINE 

LOWLAND 
BRUSH 

LOWLAND BRUSH 
ALDER 

ASPEN 330311 446 1538 788 353 468 2381 5388 5181 
BALSAM FIR - - - - - - - - - 
BLACK SPRUCE 357 108 35567 3 155 3 40 287 1180 
BOTTOMLAND HARDWOODS - - - - - - - - - 
FIR SPRUCE - - - - - - - - - 
HEMLOCK - - - - - - - - - 
JACK PINE 201 - 1 - 13 - 34068 28 3 
LOWLAND BRUSH 209 - 278 170 - - 10 52432 5418 
LOWLAND BRUSH ALDER 837 17 229 - 5 - 206 10464 45103 
LOWLAND BRUSH WILLOW - - - - - - - - - 
NORTHERN HARDWOODS 6788 13 348 68 501 350 6 609 1446 
OAK 355 - 10 - - - 111 36 18 
RED MAPLE - - - - - - - - - 
RED PINE 373 - 41 - 159 - 4094 40 24 
SCRUB OAK 501 - 1 - - - 561 28 22 
SWAMP CONIFER 2 - 61 - 5 - - 10 42 
SWAMP HARDWOODS 589 7 165 71 97 33 11 910 1112 
TAMARACK 4475 - 534 - - - 5 24 224 
UPLAND BRUSH 55 - 2 - - - 1426 - 9 
WHITE BIRCH - - - - - - - - - 
WHITE CEDAR 17 5 28 - 19 - - 17 44 
WHITE PINE - - - - - - - - 1 
WHITE SPRUCE - - - - - - - - - 
C.sum 345070 596 38803 1100 1307 854 42919 70273 59827 
Producer's accuracy (%) 95.7 0.0 91.7 0.0 0.0 0.0 79.4 74.6 75.4 
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LOWLAND 

BRUSH 
WILLOW 

NORTHERN 
HARDWOODS 

OAK RED 
MAPLE 

RED 
PINE 

SCRUB 
OAK 

SWAMP 
CONIFER 

SWAMP 
HARDWOODS 

TAMARACK 

ASPEN 19 11945 9248 1326 2381 4220 686 7319 1410 
BALSAM FIR - - - - - - - - - 
BLACK SPRUCE 1 84 - 3 18 16 2231 47 3707 
BOTTOMLAND HARDWOODS - - - - - - - - - 
FIR SPRUCE - - - - - - - - - 
HEMLOCK - - - - - - - - - 
JACK PINE - 9 4 - 5217 365 - - 8 
LOWLAND BRUSH 742 55 9 - 35 214 113 746 658 
LOWLAND BRUSH ALDER - 133 1 227 21 1 464 1243 775 
LOWLAND BRUSH WILLOW - - - - - - - - - 
NORTHERN HARDWOODS 1 440618 9454 8276 629 146 2748 8202 103 
OAK - 638 17809 - 34 8 1 9 6 
RED MAPLE - 56 - - - 1 - 1 - 
RED PINE - 26 11 - 73640 88 6 10 3 
SCRUB OAK - - 76 - 194 13535 - 2 19 
SWAMP CONIFER - 65 - - 1 - 2389 152 - 
SWAMP HARDWOODS - 390 1365 22 7 31 741 39860 117 
TAMARACK - 131 - 4 - 2 - 14 887 
UPLAND BRUSH - 3 - - 722 71 - 1 - 
WHITE BIRCH - - - - - - - 4 - 
WHITE CEDAR - - - - - - 400 32 - 
WHITE PINE - - - - 4 - - - - 
WHITE SPRUCE - - - - - - - - - 
C.sum 763 454153 37977 9858 82903 18698 9779 57642 7693 
Producer's accuracy (%) 0.0 97.0 46.9 0.0 88.8 72.4 24.4 69.2 11.5 
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  UPLAND 
BRUSH 

WHITE 
BIRCH 

WHITE 
CEDAR 

WHITE 
PINE 

WHITE 
SPRUCE 

R.sum User's 
accuracy 

(%) 

ASPEN 1498 1908 845 3099 895 393653 83.9 
BALSAM FIR - - - - - - - 
BLACK SPRUCE 1 10 564 3 174 44559 79.8 
BOTTOMLAND HARDWOODS - - - - - - - 
FIR SPRUCE - - - - - - - 
HEMLOCK - - - - - - - 
JACK PINE 173 - - 65 26 40181 84.8 
LOWLAND BRUSH 567 11 44 1 2 61714 85.0 
LOWLAND BRUSH ALDER 199 - 469 5 84 60483 74.6 
LOWLAND BRUSH WILLOW - - - - - - - 
NORTHERN HARDWOODS 298 916 923 54 171 482668 91.3 
OAK 20 12 - 4 - 19071 93.4 
RED MAPLE - - - - 48 106 0.0 
RED PINE 59 26 20 929 41 79590 92.5 
SCRUB OAK 476 52 - 10 - 15477 87.5 
SWAMP CONIFER - - 1838 - 1 4566 52.3 
SWAMP HARDWOODS 116 - 962 5 10 46621 85.5 
TAMARACK 165 - - - 45 6510 13.6 
UPLAND BRUSH 15821 - - - - 18110 87.4 
WHITE BIRCH - - - - - 4 0.0 
WHITE CEDAR - - 4011 - - 4573 87.7 
WHITE PINE - - - 291 - 296 98.3 
WHITE SPRUCE - - - - 15 15 100.0 
C.sum 19393 2935 9676 4466 1512 Overall 

Accuracy 
86.6 

Producer's accuracy (%) 81.6 0.0 41.5 6.5 1.0 
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Appendix 1. B. Tree species composition included in forest types mapped in this study 

Forest type Tree species 
ASPEN aspen (Populus spp.) 

BALSAM FIR balsam fir (Abies balsamea) 

BLACK SPRUCE black spruce (Picea mariana) 

BOTTOMLAND HARDWOODS 
silver maple (Acer saccharinum), green ash (Fraxinus pennsylvanica), 
swamp white oak (Quercus bicolor), American elm (Ulmus americana), 
river birch (Betula nigra), cottonwood (Populus deltoides) 

FIR SPRUCE fir (Abies spp.), spruce (Picea spp.) 

HEMLOCK hemlock (Tsuga canadensis) 

JACK PINE jack pine (Pinus banksiana) 

LOWLAND BRUSH alder (Alnus spp.), willow (Salix spp.), bog  birch (Betula pumila) 

LOWLAND BRUSH ALDER alder (Alnus spp.)  

LOWLAND BRUSH WILLOW willow (Salix spp.) 

NORTHERN HARDWOODS 
sugar maple (Acer saccharum), beech (Fagus grandifolia), basswood (Tilia 
americana), white ash (Fraxinus americana), yellow birch (Betula 
alleghaniensis) 

OAK oak (Quercus spp.) 

RED MAPLE red maple (Acer rubrum) 

RED PINE red pine (Pinus resinosa) 

SCRUB OAK 
black oak (Quercus velutina), white oak (Quercus alba), northern pin oak 
(Quercus  ellipsoidalis), bur oak (Quercus  macrocarpa) 

SWAMP CONIFER 
white cedar (Thuja occidentalis), black spruce (Picea mariana), tamarack 
(Larix laricina), balsam fir (Abies balsamea) 

SWAMP HARDWOODS 
black ash (Fraxinus nigra), green ash (Fraxinus pennsylvanica), red maple 
(Acer rubrum), silver maple (Acer saccharinum), swamp white oak 
(Quercus bicolor), American elm (Ulmus americana) 

TAMARACK tamarack (Larix laricina) 

UPLAND BRUSH 
hazel (Corylus spp.), dogwood (Cornus spp.), juneberry (Amelanchier spp.), 
sumac (Rhus spp.), ninebark (Physocarpus spp.), prickly ash (Aralia 
spinosa) 

WHITE BIRCH white birch (Betula papyrifera) 

WHITE CEDAR white cedar (Thuja occidentalis) 

WHITE PINE white pine (Pinus strobus) 

WHITE SPRUCE white spruce (Picea glauca) 
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Figure 1. 1 Study area a) location of the footprint path: 26 row: 28, b) the forest types in RECON 
polygons, c) number of cloud-free observations per forest pixels in period 2014-2016, d) 
classification of tree species, e) inverted classification probability. 
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Figure 1. 2. Dates of last field examination for forest stands in the reference data set.



60 
 

 

 
 

 

Figure 1. 3. The data availability and classification accuracy for tests of mapping forest types 
with image stacks containing imagery from 2016 and 2014-2016 characterized by various 
percentage of pixels with missing values: a) data availability along the addition of imagery 
containing less missing values, b) data availability along the removal of imagery with large 
percentage of missing values, c) classification accuracy along the addition of imagery containing 
less missing values – pure forest stands, d) classification accuracy along the removal of imagery 
with large percentage of missing values – pure forest stands, e) classification accuracy along the 
addition of imagery containing less missing values – pure and mixed stands, f) classification 
accuracy along the removal of imagery with large percentage of missing values – pure and mixed 
stands. 
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Figure 1. 4. The classification accuracy (a – pure forest stands, b – pure and mixed stands) and 
data availability (c) for tests of mapping forest types with image stacks containing imagery from 
various seasonal combinations from 2016 and 2014-2016. 



62 
 

 

 
 

 

Figure 1. 5. The accuracy assessment: a) the agreement between classification and the RECON 
data set - producer’s accuracy for forest types for pure, mixed and all stands; b) the inverted 
probability of pixel classification for tree types in the final map, the width of the boxes depicts 
the variability in the number of the pixels belonging to classes in the final map. 
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Figure 1. 6. Number of years from last field examination for pure reference forest stands of a) 
oak and b) northern hardwoods forest types. 
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Chapter 2 – Fusing MODIS and Landsat data for analyzing phenology and mapping forest 

types 

Contributors: Konrad Turlej1, Feng Gao2, Mutlu Ozdogan1, Volker C. Radeloff1 

1 SILVIS Lab, Department of Forest and Wildlife Ecology, University of Wisconsin-Madison 

2 USDA-ARS Hydrology and Remote Sensing Laboratory 

Abstract 

Forest phenology greatly affects various ecological processes occurring both at local and global 

scales including carbon sequestration and therefore climate change. However, tracking annual 

phenology cycles is difficult at medium resolutions (i.e., around 30 m). Our goal was to generate 

an 8-day time series of cloud-free surface reflectance product that can capture phenology for a 

single year at 30 m resolution. In order to achieve our goal, we combined satellite observations 

from different types of sensors because Landsat data alone was too infrequent. We composited 

the available cloud-free Landsat observations with synthetic data generated by fusing Landsat 

imagery with MODIS imagery using the STARFM algorithm. In contrast to the standard 

application of STARFM, which pairs only one or two cloud-free Landsat acquisitions, we 

applied STARFM to all available Landsat images, even those that were incomplete due to cloud 

cover and gaps resulted from the Scanning Line Corrector (SLC) malfunction, and composited 

the resulting, partially-complete synthetic images with four different compositing algorithms. We 

created high-quality data on surface reflectance, which allowed us to generate a smooth time 

series of Enhanced Vegetation Index (EVI) that reflected forest phenology. STARFM predictions 

for surface reflectance were fairly consistent during the growing season (standard deviation of 

surface reflectance < 0.05) but varied considerably in winter (up to 0.15). However, the resulting 
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dense time series of actual and synthetic Landsat images did not improve forest type 

classifications compared with those based only on actual Landsat images. Our application of 

STARFM has two main advantages over its standard implementation: 1) it retains all available 

Landsat acquisitions, and 2) it can generate pixel-level, single-year phenology curves for large 

areas with low data availability and no cloud-free acquisitions, where both standard applications 

of STARFM and per-pixel modelling fail. 

Keywords 

Forest type, phenology, Landsat, MODIS, STARFM, image fusion, cloud cover, Wisconsin, 

USA 

Introduction 

Information on annual forest green leaf phenology is important for modeling various ecological 

processes including carbon sequestration and climate change. As an adaptation to annual 

seasonal cycle (Lechowicz, 1984), the spatial and temporal patterns of forest phenology are 

controlled by climate, day-length, species type and age, as well as substrate (Schaber & Badeck, 

2003; Wolfe et al., 2005). The growing season length, in turn, is a key determinant of the Carbon 

Uptake Period (CUP), i.e., the period when trees are a net carbon sink, and thus can approximate 

the annual carbon exchange (Churkina et al., 2005). At a local scale, detailed data on tree 

phenology, and its spatial variability is useful information for modelling food availability for 

wildlife in the forest ecosystems, for example migrating insectivorous birds (Burger et al., 2012). 

This relates directly to the quality of forest habitats because the abundance of certain insects 

supporting insectivorous birds correlates with the variability in spatial pattern of phenology 

(Jones et al., 2003). Last but not least, key phenology dates vary among tree species and, when 
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combined with information on trees’ reflectance characteristics, can improve forest type 

classifications based on remotely sensed imagery (Pasquarella et al., 2018). 

Remote sensing is a source of information on forest phenology at global, regional, and local 

scales (Fisher and Mustard, 2007; Helman, 2018). Because phenology advances rapidly, 

especially during green-up, most phenology studies based on remote sensing employ satellite 

systems that provide frequent observations, such as MODIS on Terra/Aqua, AVHRR on 

NOAA’s satellites, and Sentinel-3, which provide 250-1000-m data. Based on dense time-series 

of these satellite data, often converted into a vegetation index it is then possible to measure key 

phenology dates such as the 1) start of the season, 2) maturity, 3) total seasonal greenness, 4) 

senescence, 5) end of the season, and 6) dormancy (Elmore et al., 2012).  

However, characterizing single year forest phenology over large areas at moderate resolutions, 

i.e., around 30-m pixel size, is still difficult because phenology information at moderate spatial 

resolution is necessary for numerous ecological applications, and generally correlates better with 

on-the-ground measurements (Fisher et al., 2006). The problem is that there are rarely enough 

satellite observations for a single year at 30-m resolution because of the lower temporal 

resolution of satellites such as Landsat, and frequent cloud cover. To some extent, the 

availability of two Landsat and Sentinel-2 satellites has alleviated this problem and increased the 

data availability in recent years (Claverie and Masek, 2016), but this does not allow for 

assessment of changes in phenology for the pre-Sentinel-2 era, and even in the current record, 

problems with clouds and gaps resulted by malfunction of Scanning Line Corrector remain for 

the most cloudy areas (Ju and Roy, 2008). 

One option to overcome the lack of sufficient observations for a single year is to combine 

acquisitions from several years to assess an averaged multi-year phenology. Such a cumulative 
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multi-year satellite dataset is typically organized according to the day of the year when the 

imagery was acquired, considerably increasing the number of per-pixel observations (Elmore et 

al., 2012; Melaas et al., 2016). A refinement of this approach is to calibrate the date of the 

Landsat data based on MODIS-derived phenology (Isaacson et al., 2012; Baumann et al., 2017), 

to account, for example, for an early spring in one year. However, any assessment of phenology 

based on multiple years of satellite data requires no changes in land cover among the years of the 

satellite observations, which is especially problematic when analyzing agricultural areas where 

crops differ from year to year. 

An alternative to the analysis of multi-year data is to generate additional, synthetic Landsat-style 

observations. Indeed, when one or two cloud-free Landsat acquisitions are available then single-

year phenology can be obtained at 30-m resolution by fusing imagery from infrequent sensors, 

such as Landsat, with imagery from coarse-resolution by temporally frequent sensors, such as 

MODIS.  There are several algorithms that can combine cloud-free Landsat and MODIS imagery 

as long as there is at least one (e.g. STARFM - Spatial and Temporal Adaptive Reflectance 

Fusion Model (Gao et al., 2006)) or two (e.g. STAARCH - Spatial Temporal Adaptive 

Algorithm for mapping Reflectance Change (Hilker et al., 2009); ESTARFM -Enhanced 

STARFM (Zhu et al., 2010)) pairs of Landsat-MODIS images. If such pairs of imagery are 

available, then it is possible to generate synthetic Landscape observations for any date and area 

for which cloud-free MODIS data is available. However, the application of STARFM or similar 

algorithms has two shortcomings. First of all, they require at least one cloud-free Landsat image, 

which is not always available.  Second, once such an image is available, the observations from 

other Landsat images, either cloud-free or partially clouded, are not retained. Assuming that the 

original satellite observations are better than synthetic predictions (Senf et al., 2015), and given 
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that there are typically many images available that provide partial coverage, that second 

limitation seems particularly unfortunate. 

Therefore, our goal was to generate a single-year, 30-m resolution time-series of EVI that 

captures single-year phenology even when no cloud-free acquisitions are available and that retain 

all available Landsat observations. We developed a new approach to fuse Landsat and MODIS 

data based on the STARFM algorithm. We had two specific objectives: 1) to composite a time 

series of surface reflectance from both Landsat and MODIS data, and 2) to test if that time series 

improves forest types classifications. 

Methods 

Study area 

Our study area was one Landsat footprint (path 26, row 28) located in northern Wisconsin, USA 

(Figure 2. 1). We selected it due to its high spatial heterogeneity, and considerable variability of 

climatic conditions, which create a challenging environment to assess forest phenology. 

Geographically, our study area includes parts of three distinct ecoregions: the Central Plain in the 

east, the Northern Highlands in the west, and the Lake Superior Lowland in the north (Martin, 

1965). The topography of the area is flat, consisting mostly of rolling plains stemming from 

Pleistocene and its last glacial expansion, and creating no natural obstacles for air masses that 

cause the major zonal distribution of the vegetation (Curtis, 1959). Local climatology is 

characterized by strong seasonality, considerable inter-annual variability, and climatic changes. 

There is considerable inter-annual variability in phenology during spring and fall. Winter 

conditions depend largely on climatological teleconnections, especially El Niño (warm years) 

and La Niña (cold years) (Trenberth et al., 1998; Mcphaden et al., 2014). In the northern part of 
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the region seasonality is also influenced by Lake Superior, which creates local temperature 

gradients due to lake effects. In addition, the study area has been affected by climate change over 

the last 30 years including regional warming, cooler springs, considerable fall warming, and an 

average increase in the length of the growing season by +0.27 days/year (Garcia and Townsend, 

2016). 

The region is characterized by spatially heterogeneous forests. The most abundant trees species 

are aspen spp. (Populus), oak spp. (Quercus), pine spp. (Pinus), spruce spp. (Picea), maple spp. 

(Acer), accompanied by tamarack (Larix larcina), eastern hemlock (Tsuga canadensis), and 

white cedar (Thuja occidentalis). Current tree species distributions differ substantially from those 

prior to European settlement in the mid-19th century. Previously, pines dominated forests on 

sandy outwash soils (Curtis, 1959), sometimes accompanied by aspen and oaks in forest-

savannas (Schulte et al., 2002), whereas the till plains and mesic moraines were mostly 

dominated by hemlock and northern hardwood species (Curtis, 1959; Radeloff et al., 1999; 

Rhemtulla et al., 2007; Rhemtulla et al., 2009). Current tree species distributions resulted from 

intensive logging and land conversion to croplands accompanied by insect outbreaks 

(McCullough et al., 1998) and severe fires (Schulete and Mladenoff, 2005). Forest have regrown 

in many areas but with novel species composition (Goring et al., 2015; Goring et al., 2016). 

Image data 

We combined 1) the USGS Collection-1 surface reflectance data from Landsat-7, and -8, and 2) 

16-day MODIS BRDF adjusted surface reflectance data (MCD43A4). For each data set, we 

obtained all available acquisitions for 2016. 
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Landsat 

The USGS Collection-1 surface reflectance is processed via the Landsat Ecosystem Disturbance 

Adaptive Processing System (LEDAPS) for Landsat-7 (Department of the Interior U.S. 

Geological Survey, 2012, Department of the Interior U.S. Geological Survey, 2017a) and the 

Landsat Surface Reflectance Code (LaSRC) for Landsat-8 imagery (Department of the Interior 

U.S. Geological Survey, 2017b) both of which apply radiometric, atmospheric, and geometric 

image corrections. We also used the information on clouds and cloud-shadows generated via the 

F-mask algorithm, which is embedded in the product’s quality band. 

MODIS 

We analyzed 16-day MODIS reflectance (MCD43A4), which is a Nadir Bidirectional 

Reflectance Distribution Function (BRDF) adjusted product containing 16-day image composites 

for MODIS bands 1-4 and 6-7 that correspond to the Landsat spectral bands. The data are 

provided every 8 days at 500-m resolution. In total, we had 46 MODIS composites for 2016. We 

preprocessed the data to STARFM requirements, which included the reprojection from native 

sinusoidal to Landsat’s UTM, resampling to 30-meters spatial resolution, and cropping to the 

Landsat footprint boundaries. 

Reference data on tree species composition 

For our classifications, we used the Reconnaissance forest inventory data (RECON) as training 

and validation data, which is available via the Wisconsin Forest Inventory & Reporting System 

(WisFIRS) of the Wisconsin Department of Natural Resources. The data set contains forest 

inventory information for forest stands, and a wide range of forest characteristics including the 

primary tree type defined as tree species representing ≥ 50% of the stand’s basal area, the 

secondary tree type, understory type, the year of stand establishment, year of last field 
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examination, and information on trees’ height, density, and basal area. Based on that information 

we divided stands into pure and mixed stands. We defined pure stands as those for which the 

primary tree species, secondary species, and understory type was the same, or for which only the 

primary tree species was specified. We defined all other stands as mixed. 

Predicting surface reflectance via STARFM 

We generated the STARFM predictions for each of the 46 dates for which the MODIS 

MCD43A4 product provides reflectance data. In total, we made 18 STARFM predictions for 

each of the 46 dates, where each prediction was based on a different, unique Landsat-MODIS 

pair of acquisitions. We made predictions based on all available Landsat acquisitions containing 

>= 20% of cloud-free pixels, and made STARFM predictions for all pixels that were cloud-free 

in both the 18 Landsat and MODIS image pairs, and cloud-free in the 46 MODIS images for 

which the predictions were performed. 

Compositing Landsat and STARFM data 

In order to generate a dense time series of 30-m reflectance data for each pixel, we composited 

the original Landsat data and STARFM predictions (Figure 2. 2). We evaluated 2 temporal 

schemes and 2 compositing schemes. Our temporal schemes were: 1) the Landsat acquisition 

scheme where we filled gaps in all of the 44 original Landsat acquisitions from 2016 with 

composited STARFM predictions (i.e., including Landsat dates which were entirely cloudy), and 

2) the MODIS MCD43A4 dates where we composited the Landsat data and STARFM 

predictions for each of the 46 dates. In both temporal schemes we retained all available Landsat 

observations and used STARFM predictions only for the areas where Landsat data were missing. 

The advantage of the first approach is that it matches the original Landsat dates exactly. The 

advantage of the second approach lies in harmonizing data to the global MODIS 8-day scheme, 
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which makes it possible to generate large-area phenology datasets with consistent dates, since the 

Landsat dates differ among neighboring paths.  

Our image compositing schemes were: 1) selection of the predictions generated with the 

Landsat-MODIS input pair acquired closest to the prediction date, and 2) the mean value from all 

predictions available for a given period. The advantage of the first scheme is that STARFM 

predictions based on the closest Landsat-MODIS pair should be most accurate (Wang et al., 

2014). The advantage of the second approach is that the mean accounts for variability among 

predictions generated with STARFM models based on different Landsat-MODIS image pairs. 

Evaluation of the quality of STARFM predictions and compositing process 

We examined the variability of STARFM predictions by quantifying how much the predictions 

based on different Landsat-MODIS image pairs diverged. To do this we analyzed the 

distributions (standard deviation) of the predictions generated by our models. We calculated 

these standard deviations at the pixel level for each band and each date. 

Classification and accuracy assessment 

Our second objective was to see if our time series improve classifications of forest type 

compared to classifications using only the original Landsat data. For this part of our analysis we 

examined only areas identified as forests in the National Land Cover Database (NLCD 2011). As 

input for the classifications, we used our composited data sets of Landsat/STARFM surface 

reflectance. We tested the data generated with all four compositing approaches. We performed 

cross-validation classifying each composited data set ten times, training our models with 

randomly selected subsets of training and validation areas. Each time we drew 25% of the pure 
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forest stands of each tree species for training, and left the remaining 75% of the pure stands plus 

all mixed stands for validation. 

We used the Trees and Rule-Based Models from the C5.0 package, implemented in R statistical 

software, to classify our imagery (Quinlan, 1993; Friedl and Brodley, 1997; DeFries and Chan, 

2000). The algorithm has gradient boosting capabilities that improve learning and it can handle 

incomplete datasets (Farhangfar et al., 2008). For each of our models we conducted 100 boosting 

iterations, the highest possible setting in C5.0, because it improved the classification accuracy. 

We calculated the area-weighted overall accuracies for all trials of our classifications, and 

present class-level accuracies for the model that achieved the best overall accuracy. We 

calculated user’s and producer’s accuracy (Congalton, 1991; Foody, 2002) separately for three 

types of validation data sets: 1) pure forest stands only, 2) mixed forest stands only, and 3) both 

pure and mixed forest stands together. Each time, we excluded edge pixels within 30 m of the 

stand border. We aggregated our classifications to forest stands and weighted the class area with 

the number of pixels belonging to each stand. In total, we analyzed 2,786,133 pixels belonging to 

44,741 forest stands. 

Results 

Compositing Landsat and STARFM data 

Our compositing of actual Landsat and STARFM-predicted Landsat-style data resulted 

in a nearly complete time series of surface reflectance. By filling the data gaps in the original 

Landsat acquisitions from 2016 with STARFM predictions, we increased the number of images 

providing at least some information for parts of the image from 24 to 44, i.e., to all dates for 

which Landsat acquisitions were made (Figure 2. 3). Furthermore, after compositing, we had 28 
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dates for which there was surface reflectance information for >90% of the footprint. Gaps in the 

MODIS imagery, especially in winter images, were the cause for missing predictions in the 

remaining dates. 

Variability between synthetic STARFM time series  

Two results emerged from our analysis of the variability of the STARFM predictions 

based on the 18 Landsat-MODIS image pairs (Figure 2. 4). First, variability among predictions 

was generally low, especially during spring, summer, and fall (SD of surface reflectance <0.05), 

but higher during winter (SD of surface reflectance up to 0.15).  Second, variability among 

predictions was most pronounced for the visible spectrum: i.e., for bands 2-4 (Blue, Green, Red) 

SD varied from 0.02 to 0.15, but it was less prominent for the near infrared band (5), and 

virtually non-existent for the short-wave infra-red bands (6 and 7). 

Phenology 

The dense stack of composited Landsat/STARFM surface reflectance data resulted in a 

smooth time series of phenology information. There were three clear patterns when comparing 

the phenological curves resulting from our four compositing schemes. First, in general, our 

time-series were fairly similar. Second, the type of compositing scheme, i.e., based on the 

nearest date versus the mean value from all predictions, caused differences, especially at the 

start of the season and during senescence (Figure 2. 5). In most cases the curves generated based 

on the nearest date matched the original Landsat acquisitions better. In contrast, the curves 

generated in the “mean” mode smoothed the phenology curves, and tended to result in rapid 

changes in the EVI close to the original Landsat observations. This was especially striking when 

time series were based on a larger number of actual Landsat observations. Third, differences 

between the two temporal schemes (Landsat vs. MODIS) were generally smaller than those 
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based on closest date versus mean prediction. In spring, the MODIS temporal scheme showed 

earlier green-up in general, and in fall, later senescence on the order of approximately 4 days, 

equal to the 4-day shift between the temporal schemes of the Landsat and MODIS datasets. 

However, this trend occurred only for data predicted based on the compositing to the nearest 

date. Moreover, an artifact is that a single Landsat observation is sometimes used for two 

subsequent MODIS periods. 

Our dataset allowed us to capture species-specific phenologies and environmental 

gradients. The phenology visible in averaged EVI time series follow the general order in which 

tree species shoot and shade leaves (Figure 2. 6). Birch has the earliest green-up followed by 

maple and oak species. We also noticed a considerable delay in phenology for stands located in 

the north (Figure 2. 7), as well in for the stands located near the shore of Lake Superior (Figure 

2. 8). 

Classification 

The results of our classifications provided us with overall accuracy >80% for pure forest 

stands of 23 forest types (Figure 2. 9). None of the four compositing schemes ultimately resulted 

in a classification accuracy exceeding that of the original Landsat images by themselves, which 

was 88.1% (Chapter 1). We achieved the best results with the data stack of original gap filled 

Landsat acquisitions corresponding to the growing season (max overall accuracy of 83.5%) 

followed by the data set composited to the MODIS temporal scheme based on the closest date 

(max overall accuracy of 83.3%). The results for mixed forest stands followed the same trends 

compared to pure stands, but had substantially lower accuracy (around 60% for mixed forest 

stands, and 70% for all stands together). 
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Discussion  

We successfully generated 30-m resolution time-series of surface reflectance based on 

satellite data for a single year based on the combination of Landsat and MODIS data.  

Compared to prior approaches, our time series have the advantage that they retain all available 

Landsat observations.  The standard application of STARFM (Gao et al., 2006) and most of its 

improvements (Zhu et al., 2010;  Wang et al., 2014), or modifications (Hilker et al., 2009; Weng et 

al., 2014) rely only on one or two cloud-free Landsat acquisitions and discard the other potential 

acquisition during the year, which can provide valuable data even when these images have only 

partial coverage. 

Our approach can successfully perform for the areas that are often cloudy, because it 

does not require a fully cloud-free Landsat acquisition. We found that the STARFM predictions 

based on different Landsat-MODIS input image pairs were generally very similar for the 

growing season, but not for winter. This suggests that it is valid to composite the predictions 

coming from various STARFM models in order to cover larger areas for which the separate 

models cannot generate predictions. As long as all the partially-cloudy Landsat imagery in total 

cover the entire footprint, and there is a cloud-free MODIS observation available for each pixel 

for the date of the corresponding Landsat observation, it is possible to generate surface 

reflectance. 

Thanks to our composited data sets, we generated a dense time series of single year 

forest phenology. Ultimately, we increased the number of dates for which there was 

information on surface reflectance available for > 90% of the image from 2 to 28 for 2016. By 

using data for a single year, we avoided the problems related to inter-annual variability in 



77 
 

 

 
 

forest phenology, that are common for temperate forests. This is an improvement over methods 

relying on multi-year data (Fisher et al., 2006; Elmore et al., 2012; Melaas et al., 2013). 

Our results suggest that the mode of compositing Landsat data with the predictions 

based on STARFM, i.e., either using the prediction based on the image pair from the nearest 

date or the mean of the predictions of all image pairs, affects the resulting time series more than 

the compositing temporal scheme (Landsat vs. MODIS dates). The phenology curves based on 

the nearest dates were more in line with the actual Landsat observations confirming that 

predictions from models based on input Landsat-MODIS imagery closer to the prediction dates 

are advantageous. 

In regards to the two temporal composition schemes, i.e., whether to predict data based 

on the Landsat acquisition date or the MODIS acquisition date, we found only minor 

differences between the two. The advantage of the Landsat dates is that this scheme retains the 

exact data of the original Landsat surface reflectance data. However, it makes it more difficult to 

mosaic data for neighboring paths due to varying acquisition dates. The advantage of 

harmonizing information to the global MODIS 8-day scheme is that it allows us to generate 

wall-to-wall information for large areas. However, the MODIS temporal scheme tends to 

smooth the phenology curves more than the Landsat acquisition scheme. 

Unexpectedly, the much denser time series resulting from the compositing of Landsat 

and MODIS data did not improve mapping accuracy compared to classifying only the original 

Landsat imagery (Chapter 1). The blending of Landsat and MODIS data do not increase the 

level of inter-species heterogeneity beyond the level already present in the original acquisitions. 

This generally follows the findings from prior research on spatial and temporal fusing where 

original Landsat data typically resulted in better classification accuracy than their synthetic 
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alternative, but allowed to achieve acceptable results in situations of when actual acquisitions 

were not available (Senf et al., 2015). 

Our results are relevant for environmental science, forest management, and 

conservation because they provide spatially-detailed information on vegetation phenology for 

large areas. Our approach can provide single-year information on surface reflectance and 

vegetation phenology even when actual Landsat observations are sparse and no cloud-free 

imagery exists. 
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Figure 2. 1. Study area covering single Landsat footprint (path 26, row 28) located in Northern 
Wisconsin, USA. 
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Figure 2. 2. General compositing scheme. The Landsat-MODIS input pairs are combined with 
the MODIS imagery for prediction periods in order to generate the STARFM predictions for 
periods where Landsat data is not available. Then, the original Landsat data is composited with 
STARFM creating the gap-free imagery. 
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Figure 2. 3. Data augmentation resulted from filling gaps in Landsat data from 2016. 
Compositing original Landsat data with STARFM predictions allowed us to reduce the number 
of pixels missing due to cloud cover and SLC gaps and to increase the number of compleate 
acquisitions. This considerably decreased the level of missing pixels in the image stacks 
consisting imagery of various levels of missing pixels. 
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Figure 2. 4. Variability among STARFM predictions. Each box-plot represents values of 
standard deviation of predicted surface reflectance from 18 STARFM models based on Landsat-
MODIS image pairs from all seasons; a) dates of Landsat acquisition scheme, b) MODIS 
periods. 
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Figure 2. 5. The examples of phenology time series for 4 random forest pixels containing varying 
number of original Landsat observations. The EVI time series were generated for two temporal 
schemes: Landsat acquisition and MODIS product scheme, and with two compositing 
approaches: nearest date and mean value. 
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Figure 2. 6. Differences in the timing of phenology expressed with average EVI values for forest 
stands for three tree types: birch, maple, and oak. 

 



90 
 

 

 
 

 

 

Figure 2. 7. Differences in the timing of phenology expressed with average EVI values for forest 
stands for two aspen stands located in the northern and in the southern part of the study area. 
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Figure 2. 8. Effects of phenology delay caused by neighborhood of the Lake Superior visible in 
the average values of EVI for two aspen forest stands located inland and near the shore. 
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Figure 2. 9. Accuracy assessment: comparison of overall accuracy of forest type mapping 
performed with four image compositing algorithms and for three forest stand types.  Ranges of 
accuracies resulted from multiple iterations of classification performed with randomly selected 
subsets of training and validation areas. 
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Chapter 3 - The value of Landsat-8 and Sentinel-2 Virtual Constellation for mapping forest 

types 

Contributors: Konrad Turlej1, Volker C. Radeloff1 

1 SILVIS Lab, Department of Forest and Wildlife Ecology, University of Wisconsin-Madison 

Abstract 

The higher frequency of available remote sensing data with moderate spatial resolution provides 

new opportunities for more accurate mapping of forest tree species. The combination of recently 

launched satellites: European Sentinel-2 (S-2A in 2015, S-2B in 2017) and NASA-USGS 

Landsat-8 (2013) provides ≤30-m resolution imagery every 2-3 days. Such frequent observations 

may provide sufficient information to depict spectral differences among tree species at key 

phenological periods even in cloudy areas. Our goal was to evaluate how the combination of data 

from Landsat-8 and Sentinel-2 satellites affects the mapping of temperate tree species. We 

analyzed a single year of Harmonized Landsat and Sentinel-2 data (September 2017 – mid 

October 2018) and mapped 23 forest types present in northern Wisconsin, USA. Specifically, we 

tested: 1) combined HLS L30 and S30 imagery, 2) 8-day and 16-day composites generated from 

HLS data, 3) imagery from each system classified separately, and 4) data sets without any cloud-

free imagery. We achieved an overall accuracy of 71.1% for maps based on either the full HLS 

data set, or 16-day composites, 70.6% for Sentinel-2 data only, and 67.2% for Landsat-8 only. 

For pure forest stands the accuracy ranged from 79.6% to 83.6%, for mixed stands it was 

<= 60.7%. However, a larger number of satellite images is only advantageous when no cloud 

free images exist. Compositing the HLS data in 8- or 16-day periods did not improve the 

classification accuracy, but accelerated the processing speed. While we did not find a major 

improvement in classification accuracy when analyzing Harmonized Landsat-8 and Sentinel-2 
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imagery, we still see the HLS data useful for forestry applications. The data from three sensors 

increases the probability of sensing a cloud free imagery in spring and fall, i.e. the periods of the 

year that are most important for mapping forest types. 

Keywords 

Forest type, remote sensing, Harmonized Landsat Sentinel-2, HLS, Landsat-8, Sentinel-2, 

gradient boosting decision trees, C50, intra-annual image composite 

Introduction 

The frequency of available remote sensing data with 30-m resolution has never been so high, 

thanks to concurrent operation of the recent launch of satellites: USGS/NASA Landsat-8 (L8) 

(launched in 2013), and European Union Copernicus: Sentinel-2 (S2) (platform A launched in 

2015 and platform B in 2017).  This Virtual Constellation of three similar satellites provides 

imagery across the globe every 2-3 days (Claverie et al., 2018). The triad of Landsat-8 Sentinel-2 

is a powerful data source for numerous remote sensing applications including the monitoring of 

forests, which has been one strong focus of the Landsat program since its beginnings in 1972 

(Iverson et al., 1989; Cohen et al., 2004; Wulder et al., 2012). Several key forest attributes are 

routinely monitored, including forest phenology (Fisher and Mustard, 2007), forest cover 

(Wulder et al., 2003), forest disturbance (Kennedy et al., 2010; Zhu et al., 2012; Griffiths et al., 

2014), and tree species (Fassnacht et al., 2016). All of these applications can potentially benefit 

from the increased number of satellite observations available at ≤30-m resolution. 

Combining data from Landsat-8 and Sentinel-2 is relatively straightforward because both sensors 

make similar measurements in regards to spectral, radiometric, spatial, and angular 

characteristics and timing (Wulder et al., 2015). Furthermore, both systems are placed in sun-
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synchronous orbits setting the acquisition time to 10 am for Landsat-8 in a 16-day repeat cycle, 

and 10:30 am for Sentinel-2 in a 10-day repeat cycle (5-day for two satellites). The Multi-

Spectral Instrument (MSI) installed on Sentinel-2 records the electromagnetic energy in 12 

spectral bands out of which 7 are equivalent to the Landsat-8 Operational Land Imager (OLI) 

bands: a costal aerosol (L8/S2 band 1), optical bands blue, green, and red (L8/S2 bands 2-4), 

near infrared (L8 band 5; S2 band 8A), and two short wave infrared bands (L8 bands 6-7; S2 

bands 11-12). The differences are that OLI collects 30-m resolution data for aerosol, all optical, 

and infrared bands, and 100-meter for thermal bands, whereas MSI provides 10-m data for 

optical and wide Infra-Red bands, 20-m for remaining NIR and SWIR bands, and 60-m for 

aerosol bands. 

However, before combining images from different sensors, it is necessary to normalize the data, 

and resample it to common spatial reference (Wulder et al., 2015). Data harmonization and 

distribution of Landsat imagery has resulted in Analysis Ready Data (ARD) for the entire 

Landsat archive for every 8 days (Young et al., 2017). An equivalent of ARD for Landsat-8 and 

Sentinel-2 data is the Harmonized Landsat and Sentinel-2 (HLS) product (Claverie et al., 2018). 

The HLS provides surface reflectance data from Landsat-8 (L30) and Sentinel-2 (S30) satellites 

processed and resampled to a seamless moderate spatial resolution (<30-meters) product. HLS 

processing steps include atmospheric correction using LaSRC version 3.5.5 (Vermote et al., 

2016), cloud and cloud-shadow masking, spectral bandpass adjustment, and Nadir BRDF 

adjustment (NBAR) according to the c-factor global 12 month fixed BRDF technique (Roy et al., 

2016). The Sentinel-2 data included in the HLS are resampled to Landsat’s 30-m spatial 

resolution via: 1) boxcar method (Sentinel-2 10-m bands), 2) area weighted averaging (Sentinel-
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2 20-m bands), and 3) nearest neighbor split (Sentinel-2 60-m bands). The Landsat data are co-

registered to common gridding system following Sentinel’s 2 tailing scheme. 

The HLS products provide the most frequent, openly available data set of surface reflectance at 

30-m resolution. After the successful launch of Sentinel-2B satellite in 2017, the HLS data have 

reached the expected temporal resolution of 2-3-days. Such frequent observations make it 

possible to generate temporal composites of surface reflectance similar to the MODIS product 

MCD43A4 (Schaaf et al., 2002). The advantage of such 8- or 16-day composites is that cloud 

contamination is minimized, resulting in better spatial coverage and a more stable temporal 

scheme (Griffiths et al., 2019). 

In the context of monitoring forest resources, the HLS data meets the requirements of large scale, 

spatially explicit mapping of forest types better than any other data set that is currently available 

(Fassnacht et al., 2016). The HLS data may overcome the problems of limited Landsat data 

availability, when the theoretical 8-day repeat cycle for two concurrent Landsat platforms was 

rarely achieved because of clouds and cloud shadows. HLS may thus be frequent enough to 

capture crucial aspects of forest phenology that are necessary to distinguish between tree species. 

First, the HLS data capture the species-specific surface reflectance in the most important visible 

and IR and SWIR parts of the spectrum that corresponds to tree type (coniferous, deciduous) and 

chemical structure (Shen et al., 1985; Fassnacht et al., 2014). Second, the imagery is acquired 

every 2-3 days, making it possible to monitor even slight changes in the reflectance 

characteristics due to phenology (Kodani et al., 2002). These changes in phenology differ among 

species and depend on particular adaptation of trees to late ground frost in spring, and leaf 

structure and longevity in the fall (Lechowicz, 1984) and can be observed with multi-temporal 

imagery (Townsend et al., 2001; Zhu and Liu, 2014). The improved ability to monitor phenology 
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thus may improve forest type mapping especially if there are acquisitions from periods when the 

trees appearance is most apparent (Wolter et al., 1995). Moreover, multi-date compositing can 

provide a more spatially complete view of differences in tree appearance in the most important 

green-up and senescence periods (Griffiths et al., 2013; Griffiths et al., 2019). 

Our goal was to test how the combined imagery from Landsat-8 and Sentinel- in the HLS surface 

reflectance product performs in context of mapping temperate forests. Our objectives were to 

compare tree species classifications based on: 1) the full HLS dataset, 2) the temporal image 

composites (8- and 16- day), 3) the data from only Sentinel-2 and only Landsat-8, and 4) the 

dataset without cloud-free imagery. 

Methods 

Study area 

Our study area was located in northern Wisconsin (Figure 3. 1) due to the highly forested 

landscapes and high spatial heterogeneity. The study area contains portions of three ecoregions: 

Lake Superior Lowland, Northern Highland, and the western part of the Central Plain (Martin, 

1965). The local climate is temperate-continental and influenced by three air masses: the cold 

and dry Arctic, warm and moist Subtropical, and very dry Continental. The flat topography, 

mostly a rolling plain shaped by glaciers during the Pleistocene, provides no obstacles for air 

masses causing the zonal distribution of vegetation (Curtis, 1959). In addition to air masses, 

climate is influenced by Lake Superior in the north causing local temperature gradients. 

Tree species composition of the forests is mixed consisting mostly aspen spp. (Populous), oak 

spp. (Quercus), pine spp. (Pinus), spruce spp. (Picea), maple spp. (Acer), and miscellaneous 

hardwoods, accompanied by tamarack (Larix larcina), eastern hemlock (Tsuga canadensis), and 
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white cedar (Thuja occidentalis). Contemporary tree species distributions differ substantially 

from those prior to European settlement in the mid-19th century due to land use (Curtis, 1959; 

Radeloff et al., 1999; Rhemtulla et al., 2007; Rhemtulla et al., 2009). In the past the forests on 

sandy outwash plains were dominated by pines (Curtis, 1959), sometimes accompanied by aspen 

and oaks in forest-savannas (Schulte et al., 2002), whereas the till plains and mesic moraines 

were dominated by hemlock and northern hardwood species (Curtis, 1959; Radeloff et al., 1999; 

Rhemtulla et al., 2007; Rhemtulla et al., 2009). Forest composition changes resulted from 

deforestation, i.e., land conversion from forest to croplands accompanied by rapid logging 

between 19th and 20th centuries, and from disturbance, i.e., insect outbreaks and return of severe 

fire events in middle of the 20th century (Schulete and Mladenoff, 2005). As a result, the forests 

that regrew since the 1930s differed considerably in species distribution from those prior to 

European settlement (Goring et al., 2015; Goring et al., 2016). 

Data 

We analyzed the Harmonized Landsat and Sentinel-2 (HLS) data version 1.4 (Skakun et al., 

2018) for an area covering a single Landsat footprint (WRS2 path: 26, row: 28; MGRS tiles: 

15TWL, 15TWM ,15TXL, 15TXM, 15TYM). We included a single year of HLS imagery 

starting from September 2017 to mid-October 2018 in order to include the data from two 

Sentinel-2 satellites (A and B). Contrary to version 1.3 (Claverie et al., 2018), the version 1.4 

uses Landsat 8 Collection-1 data instead of the pre-Collection data set. 

The HLS provides surface reflectance data from Landsat-8 (L30) and Sentinel-2 (S30) satellites 

processed and resampled in order to obtain a seamless moderate spatial resolution (30-meters) 

product. We included 6 bands of Landsat-8: 1) optical: Blue, Green, and Red, 2) Near Infra-Red, 

and 3) two Short Wave Infra-Red bands. In case of Sentinel-2 we also included the three narrow 
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Red-Edge spectra (bands 5-7), and the broad Near Infra-Red spectrum (band 8) that do not have 

Landsat equivalents. We masked out clouds, cloud-shadows, and snow using the outputs of 

Fmask (Zhu et al., 2015) embedded in the HLS quality bands. 

One of our tests was to composite the HLS data to 8-day and 16-day periods in order to improve 

spatial coverage and temporal stability. We selected the maximal band values from all available 

acquisitions recorded both by the Landsat-8 and Sentinel-2 within each period. We performed 

this procedure for all 6 bands that are equivalent between the systems. 

We used forest inventory data from the Wisconsin Forest Inventory & Reporting System 

(WisFIRS) generated by the Wisconsin Department of Natural Resources and County Forests 

(State of Wisconsin Department of Natural Resources, 2013). The data were collected in the field 

and provide stand-level information on forest types (Appendix 1. B): the primary tree type (>= 

50% of the stand basal area), secondary tree type, understory type, and additional information 

including the tree height, tree density, total basal area. For our analyses, we selected two 

subclasses for forest stands: 1) pure stands (where primary, secondary, and understory vegetation 

type were all of the same tree species), and 2) mixed stands, all remaining stands. The WisFIRS 

dataset does not provide detailed information on the composition of tree species in mixed stands. 

The majority of the Reconnaissance forest stands were examined in the field after 2000, i.e., less 

than 16 years before the satellite data we used for this study were acquired (Figure 1. 2). 

Mapping forest types 

We tested four combinations of HLS data: 1) L30 + S30 with all optical and infrared bands of 

both Landsat-8 and Sentinel-2 systems, 2) the L30 + S30 for equivalent OLI and MSI bands only 

composited to 8- and 16- day periods, and 3) the L30 and S30 data separately. For each data 
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subset we repeated analyses two times: 1) all imagery, and 2) only imagery that were missing 

data with >=25% clouds and cloud shadows, to simulate a situation where no cloud-free imagery 

is available. 

We randomly divided our reference forest stands in to 25% training and 75% testing subsets, and 

applied the Gradient Boosting Decision Trees, implemented in C5.0 package developed for R 

statistical software as our tool for classification. The method is described in detail in Quinlan 

(1993), Friedl and Brodley (1997), and DeFries and Chan (2000). We used this tool because it 

can handle incomplete datasets (Farhangfar et al., 2008), such as satellite imagery affected by 

clouds and cloud shadows. We built each model based on 100 boosting iterations, the maximum 

in C5.0, because higher numbers improved the classification accuracy. However, the actual 

number of iterations varied between the models depending on the amount of the data and the 

level of missing pixels in the training data set. 

We assessed the accuracy of our maps, and compared the accuracy of the maps generated with 

the three subsets of HLS data and the two compositing schemes. We performed an area-weighted 

accuracy assessment and reported overall accuracy and class-specific producer’s and user’s 

accuracy (Congalton, 1991; Foody, 2002). For this assessment, we aggregated our results to the 

stand level labeling each stand’s pixels with the value taken from majority vote from our 

classification.  

Results 

The combined HLS L30 and S30 imagery resulted in an overall classification accuracy of 73.1% 

for all types of forest stands, 83.5% for pure stands, and 60.7% for mixed stands (Figure 3. 2). 

Our resulting forest types map generally follows the patterns of species distribution visible in the 



101 
 

 

 
 

reference data set (Figure 3. 3). The most abundant tree classes: aspen, northern hardwoods, red 

pine, jack pine, and also the less abundant class ‘lowland brush’ are mapped in the correct 

locations. However, our map omits rare forest types, which occur throughout the study area, and 

this is reflected in the species-specific accuracy measurements (Table 3. 1). The user’s accuracy 

was >80% for most of the classes, and exceeding 90% for jack pine (90.5%), and red pine 

(90.4%), but only 73.6% for black spruce. In terms of producer’s accuracy, we achieved the 

highest accuracies for northern hardwoods (97.6%), aspen (95.3%), red pine (90.4%), black 

spruce (84.3%), brushes (82.6%), and jack pine (71.3%). The values for swamp hardwoods, 

scrub oak, and oak were considerably lower: 55.2%, 47.5%, 31.7%, respectively. The remaining 

types, which covered <2% of the total forest area, were mostly omitted (producer’s accuracy 

equal to 19%) but had high user’s accuracy. We present the full error matrix for all 23 forest 

types in Appendix 3. A. 

The 8-day and 16-day temporal composites generated from the HLS data performed almost as 

well as the original HLS product (Figure 3. 4). However, the 8-day composites resulted in a 

minor decrease in classification accuracy for all forest stands (a 3.3 percentage point drop in 

overall accuracy). The results for the full HLS product and 16-day composites were virtually 

identical. 

Analyzing only Landsat-8 and only Sentinel-2 data also resulted in only minor differences 

(Figure 3. 5). We recorded the highest overall accuracy for the full HLS product. Maps based 

only on Sentinel-2 imagery had 0.6, 0.4, and 0.8 percentage points lower accuracy for all forest 

stands, pure forest stands, and mixed forest stands. For data from Landsat-8 only, the drop in 

accuracy comparing to full HLS product was 3.9, 3.9, and 4 percentage points for all, pure, and 

mixed forest stands. 
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Type-specific accuracies followed the same trends as overall accuracies for most of the dominant 

tree species. In terms of producer’s accuracy, the general trend of performance were: lowest 

classification accuracy for only Landsat-8 data, slightly better for 8-day HLS composites, almost 

equal for data from Sentinel-2 and 16-day composites, and the highest species-level accuracies 

for the full HLS data set (Figure 3. 6a). For oak, scrub oak, and swamp hardwoods differences 

were greater than for the other tree species.  

In terms of user’s accuracy our classifications were reliable for the most abundant tree species 

irrespective to the input satellite data that we used (Figure 3. 6b). We achieved around 80.0% 

accuracy for aspen, black spruce, northern hardwoods, scrub oak, and swamp hardwoods, and 

around 90.0% accuracy for jack pine, and red pine. The differences in user’s accuracy among the 

data sets were minor in most cases. We found the most pronounced differences for oak, for 

which we achieved 95.9% user’s accuracy using images from Landsat-8 only, but only 76.6% 

using 8-day composites. These value are opposite to the measures of producer’s accuracy 

(Figure 3. 6a) suggesting that improvements in mapping with Landsat-8 data oak resulted in the 

increase of omission error. 

Finally, the removal of cloud free acquisitions from the classified image stack resulted in a 

substantial drop in overall classification accuracy for all data subsets (Figure 3. 7). Limiting the 

data coverage to maximally 75% of the study area (i.e. simulating the lack of cloud-free images) 

reduced overall classification accuracies by about 9 percentage points for the full HLS data set, 

11-12 percentage points for Sentinel-2data only, and 10 percentage points for Landsat-8 data 

only. 
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Discussion 

We assessed the value of combining imagery from Landsat-8 and two Sentinel-2 satellites, 

represented by HLS (Harmonized Landsat-8 and Sentinel-2) surface reflectance product, for 

mapping tree species in Northern Wisconsin, USA. Our results proved the usefulness of the HLS 

data for distinguishing temperate tree species based on annual characteristics of their reflectance 

(Kodani et al., 2002). The combination of the three satellites provided more cloud-free image 

acquisitions than separate systems, making it possible to capture the stages of the tree phenology 

with greater frequency. In total, we had access to 270 images compared to 73 for Landsat-8, and 

197 for Sentinel-2. Generally, a single year of HLS data provided the similar amount of useful 

imagery comparable to three years of Landsat data (Chapter 1). 

While the HLS dataset resulted in the highest overall classification accuracy, the advantage of 

frequent 2-, 3-day repeat cycle of the HLS data was minor compared the data from the two 

Sentinel-2 satellites alone, and even a single Landsat-8. Overall accuracy ranged from 67.2% to 

71.1% for all forest stands, and 79.6% to 83.5% for pure forest stands, and <= 60.7% for mixed 

stands. We found that a large number of satellite images did not improve classification accuracy 

very much, and what mattered most was if acquisitions added an unique information capturing 

spectral heterogeneity among tree species at certain times of the year (Chapter 1; Wolter et al., 

1995; Zhu and Liu, 2014). Although data from three satellites increases the chances of more 

cloud free images, our results show that more imagery by itself does not necessarily improve the 

mapping accuracy. This result is similar to what has been reported for hyperspectral imagery 

(Hesketh and Sánchez-Azofeifa, 2012). 

 Compositing the HLS data in to 8-day and 16-day composites did not improve the classification 

accuracy, but reduced computing time. Our 16-day image composites performed similarly to the 
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full HLS data, whereas the 8-day composites resulted in a minor drop in mapping accuracy. This 

was unexpected considering the advantages of intra-annual image compositing (Griffiths et al., 

2019). However, our study was the first to focus on mapping tree forest types, not just general 

land cover classes (Griffiths et al., 2013) or agriculture (Griffiths et al., 2019). Therefore, the 

lack of improvement in our case may reflect the fact that the available cloud-free imagery 

contained already most of the heterogeneity necessary to distinguish forest types. 

The considerable differences in mapping accuracies for pure and mixed forest stands accurately 

may be partially due to our reference data. According to the WisFIRS methodology, each forest 

stand is labeled according to the: 1) dominating tree type which covers at least 50% of the given 

stand’s basal area, 2) secondary tree species (no strict definition), and 3) understory tree type (no 

strict definition) (State of Wisconsin Department of Natural Resources, 2013). In contrast, we 

assigned the dominant tree species to each pixel, and labeled the forest stands according to the 

species that was most abundant. Thus, our classification may not reflect the on-the-ground 

measurements perfectly for mixed stands. However, considering that we captured pure forest 

stands correctly, i.e. the stands where primary, secondary, and understory tree types are identical, 

we see the results of our classification as reliable at the pixel level, but with the current reference 

data we were not able to quantify pixel-level accuracy. 

Considering that mapping forest resources has been a strong focus of satellite remote sensing 

since the launch of the first Landsat satellite in 1972 (Iverson et al., 1989; Cohen et al., 2004; 

Wulder et al., 2012), our results have important implications for environmental science, resource 

management, and policy making. Our evaluation of the HLS data showed that it is a valid source 

of information to map forest type, and thereby update stand-level forest inventories and support 
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forest management (Portoghesi, 2006), and support the conservation of wildlife species (Loiselle 

et al., 2003). 

Finally, we conclude that our findings provide insights into the process of mapping forest types 

using 30-m resolution optical data. We highlight the benefit of HLS imagery for forest type and 

its increased possibility for acquiring cloud-free data due to the frequent repeat cycle of 2-3 days. 

The harmonization of the data allows for 1) combining the data from Landsat-8 and Sentinel-2 

seamlessly, and 2) generating 16-day compositions that can accelerate the mapping speed 

without compromising its accuracy. 
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List of tables 

Table 3. 1 Accuracy assessment for all HLS data for pure forest stands. 

  ASPEN 
BLACK 

SPRUCE 
JACK 
PINE 

NORTHERN 
HARDWOODS 

OAK 
RED 
PINE 

SCRUB 
OAK 

SWAMP 
HARDWOODS 

BRUSH OTHER R.sum 
User's 

accuracy 
(%) 

ASPEN 321900 1080 4203 9332 8930 3405 7923 13845 15862 14762 401242 80.2 
BLACK 
SPRUCE 

112 34735 8 100 1 11 9 133 1718 10372 47199 73.6 

JACK PINE 246 94 31082 16 2 2490 245 - 34 147 34356 90.5 
NORTHERN 
HARDWOODS 

13529 3803 586 441184 15886 813 1031 8433 2980 14609 502854 87.7 

OAK 143 1 - 1259 11578 15 160 2 21 9 13188 87.8 

RED PINE 285 93 5792 17 21 74905 136 30 157 1468 82904 90.4 

SCRUB OAK 106 - 358 9 131 158 9522 - 1019 2 11305 84.2 
SWAMP 
HARDWOODS 

217 372 - 31 - 6 - 34671 3139 2506 40942 84.7 

BRUSH 1109 477 1555 225 3 1023 1163 5118 120821 3372 134866 89.6 

OTHER 44 572 - 35 - 13 - 531 486 8042 9723 82.7 

C.sum 337691 41227 43584 452208 36552 82839 20189 62763 146237 55289     
Producer's 
accuracy (%) 

95.3 84.3 71.3 97.6 31.7 90.4 47.2 55.2 82.6 14.5 
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Appendix 3. A The full error matrix for pure forest stands. Classification based on all HLS images. 

  ASPEN 
BALSAM 

FIR 
BLACK 

SPRUCE 
BOTTOMLAND 
HARDWOODS 

FIR 
SPRUCE 

HEMLOCK 
JACK 
PINE 

LOWLAND 
BRUSH 

LOWLAND 
BRUSH 
ALDER 

ASPEN 321900 239 1080 949 615 461 4203 6390 6462 
BALSAM FIR 1 - - - - - - - - 
BLACK SPRUCE 112 14 34735 - 60 3 8 543 1167 
BOTTOMLAND HARDWOODS - - - - - - - - - 
FIR SPRUCE 1 - 2 - - - - - - 
HEMLOCK - - - - - - - - - 
JACK PINE 246 99 94 - 28 - 31082 19 10 
LOWLAND BRUSH 688 50 359 - 29 - 6 46767 12387 
LOWLAND BRUSH ALDER 419 17 118 - 6 1 19 5998 42024 
LOWLAND BRUSH WILLOW - - - - - - - - - 
NORTHERN HARDWOODS 13529 56 3803 42 485 466 586 753 1833 
OAK 143 - 1 - - - - 19 2 
RED MAPLE 1 - - - - - - - - 
RED PINE 285 3 93 - 11 9 5792 55 42 
SCRUB OAK 106 - - 1 - - 358 - - 
SWAMP CONIFER 5 25 218 - - - - 21 174 
SWAMP HARDWOODS 217 54 372 4 4 34 - 2036 1013 
TAMARACK 4 - 207 - 3 - - 177 20 
UPLAND BRUSH 2 - - - - - 1530 1 1 
WHITE BIRCH 2 - - - - - - - - 
WHITE CEDAR 23 - 144 - 38 - - - 92 
WHITE PINE 6 - 1 - - - - - 1 
WHITE SPRUCE 1 - - - - - - - - 
C.sum 337691 557 41227 996 1279 974 43584 62779 65228 
Producer's accuracy (%) 95.3 - 84.3 - - - 71.3 74.5 64.4 
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LOWLAND 

BRUSH 
WILLOW 

NORTHERN 
HARDWOODS 

OAK RED 
MAPLE 

RED 
PINE 

SCRUB 
OAK 

SWAMP 
CONIFER 

SWAMP 
HARDWOODS 

TAMARACK 

ASPEN 82 9332 8930 4449 3405 7923 480 13845 903 
BALSAM FIR - - - - - - - - - 
BLACK SPRUCE - 100 1 19 11 9 4270 133 5434 
BOTTOMLAND HARDWOODS - - - - - - - - - 
FIR SPRUCE - - - - - - - - - 
HEMLOCK - - - - - - - - - 
JACK PINE - 16 2 - 2490 245 - - 1 
LOWLAND BRUSH 339 104 2 12 179 120 122 4016 1024 
LOWLAND BRUSH ALDER 56 118 1 47 22 5 153 1102 1044 
LOWLAND BRUSH WILLOW - - - - - - - - - 
NORTHERN HARDWOODS 1 441184 15886 9016 813 1031 2222 8433 252 
OAK - 1259 11578 1 15 160 - 2 1 
RED MAPLE - - - - - - - - 1 
RED PINE - 17 21 - 74905 136 265 30 19 
SCRUB OAK - 9 131 - 158 9522 - - - 
SWAMP CONIFER - 15 - - 4 - 2348 375 3 
SWAMP HARDWOODS - 31 - 41 6 - 818 34671 32 
TAMARACK - 7 - 4 1 - - - 232 
UPLAND BRUSH - 3 - - 822 1038 - - - 
WHITE BIRCH - - - - - - - - - 
WHITE CEDAR - 13 - - - - 688 156 - 
WHITE PINE - - - - 8 - - - - 
WHITE SPRUCE - - - - - - 1 - - 
C.sum 478 452208 36552 13589 82839 20189 11367 62763 8946 
Producer's accuracy (%) - 97.6 31.7 - 90.4 47.2 20.7 55.2 2.6 
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UPLAND 
BRUSH 

WHITE 
BIRCH 

WHITE 
CEDAR 

WHITE 
PINE 

WHITE 
SPRUCE 

R.sum 
User's 

accuracy 
(%) 

ASPEN 2928 2117 770 2948 831 393653 80.2 
BALSAM FIR - - - - - 0 - 
BLACK SPRUCE 8 32 392 - 148 44559 73.6 
BOTTOMLAND HARDWOODS - - - - - 0 - 
FIR SPRUCE - - - - 5 0 - 
HEMLOCK - - - - - 0 - 
JACK PINE 5 - - 8 11 40181 90.5 
LOWLAND BRUSH 99 2 334 - 48 61714 70.1 
LOWLAND BRUSH ALDER 157 - 452 2 29 60483 81.1 
LOWLAND BRUSH WILLOW - - - - - 0 - 
NORTHERN HARDWOODS 393 931 964 85 90 482668 87.7 
OAK - 2 - 5 - 19071 87.8 
RED MAPLE - - - - - 106 - 
RED PINE 60 25 154 909 73 79590 90.4 
SCRUB OAK 1019 - - 1 - 15477 84.2 
SWAMP CONIFER - - 1416 - - 4566 51.0 
SWAMP HARDWOODS 90 5 1500 - 14 46621 84.7 
TAMARACK - - - - 108 6510 30.4 
UPLAND BRUSH 12992 - - - - 18110 79.3 
WHITE BIRCH - - - - - 4 - 
WHITE CEDAR - - 3007 - - 4573 72.3 
WHITE PINE - - - 95 - 296 85.6 
WHITE SPRUCE 1 - - - 68 15 95.8 
C.sum 17752 3114 8989 4053 1425 Overall 

83.5 
Producer's accuracy 73.2 - 33.5 2.3 4.8 Accuracy 
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Figure 3. 1. The location of the study area in Northern Wisconsin, USA. The area covers a single 
Landsat WRS2 footprint (path: 26, row: 28) and 5 HLS UTM MGRS tiles (15TWL, 15TWM, 
15TXL, 15TXM, 15TYM) 
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Figure 3. 2. Overall classification accuracy for the full HLS data for all forest stands, pure forest 
stands, and mixed forest stands. 
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Figure 3. 3 Maps of forest forest typess for a portion of the study area for a) the best 
classification generated with the full HLS data set, b) the reference data set. 
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Figure 3. 4. Overall classification accuracy for the full HLS data set, and 8-day, and 16-day 
temporal compositions. 
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Figure 3. 5. Overall classification accuracy for the full HLS dataset, only Landsat-8 imagery, and 
only Sentinel-2 imagery. 
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Figure 3. 6. Type-specific classification accuracies for the most abundant forest typess for different 
types of input data: a) producer’s accuracy, b) user’s accuracy. 
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Figure 3. 7 Overall classification accuracy obtained with and without cloud-free imagery. Data 
presented for a) all forest stands, b) pure forest stands, and c) mixed forest stands.  

 

 


