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Abstract 

Recent years have seen rapid development in the technologies used to sequence gene expression 

across the genome; automated systems have increased the speed with which multiple biological 

samples can be processed and droplet/microfluidics systems now allow the preparation/sequencing 

of thousands of single cells. The newly generated datasets thereby pair novel experimental designs 

with altered statistical properties of the underlying data. To address these changes, we develop two 

new normalization techniques and a novel analysis pipeline for time series data. 

A critical component of gene expression analysis, normalization aims to remove nuisance 

variation from expression data. New, droplet/microfluidics-based systems can, however, challenge 

current approaches due to the corresponding sparsity in the data. Specifically, proportions of zeros 
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are dependent upon technical sources of variation. Existing methods typically assume an 

approximately continuous distributions of expression and so struggle to remove the dependency 

relationship between zeros and nuisance variation. To address this, we introduce Distributional 

Normalization (Dino), a normalization procedure which transforms the expression data by careful 

sampling from an estimated distribution conditioned on the observed expression levels. 

Modern sequencing protocols – which typically process samples containing heterogenous 

cell-types – also have the potential to confound biological and nuisance variation. In particular, 

total expression levels of individual cells, the typical measure of nuisance variation, may differ 

across cell-types. As such, existing normalization techniques risk the removal of true biological 

variation. To address this, we introduce Robust Heterogeneity Integration Normalization (Rhino), 

a normalization method which aims to identify sets of genes with constant expression levels across 

cell-types and thereby normalize in a manner which is sensitive to biologically derived differences 

in total expression levels. 

Finally, taking advantage of the improved automation of sample maintenance and 

preparation, we focus on a time-series experiment studying differential developmental timing 

between human, mouse, and chimeric mixed human/mouse stem cells. Our aim is to determine 

whether the rates of development can be altered through cellular signaling. We therefore develop 

an analysis pipeline to identify both differentially regulated genes over time and genes which 

appear accelerated/decelerated compared to control, thereby allowing us to characterize changes 

in the rates of development between experimental conditions. 

  



 1 
1 Introduction 

The experimental platforms facilitating RNA-sequencing (RNA-seq) experiments have advanced 

dramatically over the past decade. In a traditional, or bulk, RNA-seq experiment, the abundance, 

or expression, of mRNA molecules is assayed in a tissue sample for all genes in the genome, 

resulting in a functionally averaged measure of mRNA abundance across the individual cells in 

the sample. Hundreds of studies driving biological discoveries have been based on such bulk 

experiments and have thus increased the interest in RNA-sequencing protocols. Such discoveries 

in turn have fueled a virtuous cycle in which new technological developments have allowed 

hundreds more studies to occur, implementing previously impossible or excessively expensive 

measurements, and thereby assessing biological questions with greater sensitivity and precision 

(A. R. Wu et al., 2017; Hwang et al., 2018; Bacher and Kendziorski, 2016; Haque et al., 2017; 

Kolodziejczyk et al., 2015). 

Of particular note is the maturation of microfluidics systems for single-cell RNA-seq 

(scRNA-seq) in which genome-wide gene expression is assayed individually for each cell in a 

biological sample. Technologies implementing this technique include Drop-seq (Macosko et al., 

2015), inDrop (Klein et al., 2015), and perhaps most commonly observed in published studies, the 

commercially available 10X Chromium platform (Zheng et al., 2017). Previous methods for 

scRNA-seq tended to treat individual cells as individual biological samples, requiring sorting, 

isolation, and processing of individual cells in a way that practically limited the number of single 

cells that could be simultaneously sequenced to the 10s or 100s. In contrast, microfluidics systems 

like the above perform single-cell isolation by forming an emulsion of water droplets in oil on the 

microfluidics chip and capturing single cells together with barcoded primers in the water droplets 
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as they flow through the system; a process which occurs many times per second. One of the 

particular contributions of these techniques is the novel addition of barcodes to the primers 

captured with individual cells which are unique to that water droplet and thus unique to the co-

captured cell. These cell-specific barcodes on the primers allow downstream sequencing to treat 

the entire emulsion of droplets and cells as a single biological sample with sequenced reads being 

sorted after-the-fact into their source cells by the unique cellular barcode. In this way, and for the 

first time, it has become feasible to simultaneously sequence genome-wide gene expression in 

1,000s to 100,000s of individual cells. 

While these novel platforms are unquestionably both impressive in and of themselves as 

well as impactful for the scientific community, the ability to derive statistically meaningful results 

naturally remains predicated on the degree to which variations in gene expression are due to 

biological factors of interest. In practice, however, multiple sources of nuisance variation – 

including some technical sources particular to the sequencing platform – confound true, 

biologically derived differences between cells and experimental conditions. 

 Generally, the class of statistical techniques denoted as normalization methods aim to first 

identify such technical and/or nuisance variation and then transform the sequenced gene 

expression in order to remove nuisance variation prior to downstream analysis. A main 

contribution of this thesis concerns novel statistical methods and their corresponding software 

implementations to remove nuisance variation. The identification of particular types of nuisance 

variation and methods to address them are discussed in Chapters 2 & 3. We should also note that 

while characterizing normalization as the identification and removal by mathematical 

transformation of nuisance variation is the more common definition of normalization methods 

(and the one used in this document), some techniques alternately describe normalization as the 
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accounting for nuisance variation while simultaneously performing downstream analysis, typically 

by modeling such variation through a cell-specific covariate. 

To date, many normalization techniques have been developed and published (several are 

described in Chapter 2) to correct for nuisance variation in RNA-seq datasets, some specifically 

for scRNA-seq data. Unfortunately, existing techniques often struggle when applied to modern 

scRNA-seq data generated from microfluidics platforms. Being statistical techniques, the success 

of these methods is naturally contingent on the model assumptions being made matching the 

statistical properties of the data they are applied to. Historically, bulk (as opposed to single-cell) 

sequencing has resulted in high expression levels for many, even a majority of genes in a dataset 

to the point that continuous distributions could feasibly be used for modeling purposes. Likewise, 

older single-cell techniques which sequenced on the order of 10s to 100s of cells at once 

demonstrated sufficiently high expression (if still much lower than bulk) that continuous models 

were successful. By contrast, the above introduced microfluidics systems often sequence similar 

total numbers of cDNA molecules, but must divide that sequencing budget across thousands, or 

tens of thousands, of cells. This in turn results in cell-specific estimates of expression which are 

not only lower than previous techniques, but also characteristically sparse. 

This dramatic reduction in per-cell reads fundamentally alters the statistical properties of 

the data. In particular, continuous assumptions no longer hold, even approximately. The 

distributional failure can be seen most strongly when it is observed that genes normalized by 

existing methods are not fully independent of nuisance variation.  

While there are multiple sources of variation affecting counts, the one that is of primary 

interest in most normalization efforts is the cell-specific value denoted as library size (LS or 
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occasionally LSj to denote the specific LS value for cell j). A detailed definition of LS is given in 

Chapter 2. However, one can think of library size as the total sequenced gene expression within a 

cell. Ideally, this total could be controlled across cells so that expression levels between cells could 

be directly compared. This is not the case in practice, and differences in LS values between cells 

have been shown to dramatically confound sequenced expression levels and therefore require 

proper normalization to correct for this nuisance variation. 

Existing methods for normalization typically ensure that some properties of normalized 

gene expression, such as the mean, are independent of LS. However, as we show in Chapter 2, the 

full expression distribution is not independent of LS; a fact which can lead to systematic errors, 

particularly large numbers of false positives, in downstream testing and analysis. Beyond this, 

many existing techniques struggle algorithmically as well as statistically. The high proportion of 

zeros across genes, often greater than 90% for a given cell (Townes et al., 2019), results in 

algorithmic instability or outright failure in existing methods. 

To solve these challenges, we developed a method titled Distributional Normalization, or 

Dino (Brown, Ni, et al., 2021). Dino directly accommodates the discrete nature of scRNA-seq 

count data by modeling expression as a mixture of negative binomial (NB) distributions. As such, 

the high proportion of zeros typically present in modern scRNA-seq data can be directly 

accommodated by correspondingly low mixture component means. Further, the use of a mixture 

model accommodates deviations from a pure NB distribution, particularly in the case of multi-

modal expression as might be the case for genes that define differences between cell types. To 

generate normalized expression, Dino deviates from existing methods that perform deterministic 

transformations of expression data. Instead, Dino normalizes by sampling from the posterior 

distribution of cell- and gene-specific means, thereby generating normalized expression for which 
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the full distribution is largely independent of nuisance variation. The full details behind the 

inspiration for, development of, and testing of the Dino method are the subject of Chapter 2. 

Dino is specifically designed to be robust to variations in the input data. As mentioned 

above, the choice of a mixture distribution accommodates both heterogenous cell populations as 

well as a certain (sometimes large) degree of uncertainty in the true underlying distribution of the 

data. To expand on this robustness, Dino further allows the user to provide alternate cell-specific 

size-factor estimates as the covariate measure of nuisance variation, overriding the default 

calculation of LS as the measure of nuisance variation. However, Dino itself is unable to compute 

alternate estimates of nuisance variation. 

In fact, most existing normalization methods do not estimate a measure of nuisance 

variation, relying instead on LS to be a valid – and fast to compute – estimate. While the many 

successful studies employing such methods show that this can be true, at least approximately, such 

is not always the case. Generally, any time that LS is correlated with – or otherwise dependent 

upon (i.e., if the dependency relationship is non-linear) – the biological variability of interest, 

normalization to remove the effects of LS will compromise downstream analysis. At best, this will 

take the form of the removal of both technical and some biological variability, reducing the power 

to detect true differences between groups of cells. At worst, however, such events can artificially 

generate the appearance of differences where none exist in the actual tissues under study. 

The normalization methods which estimate size-factor measures of nuisance variation 

other than LS acknowledge this fact. Most commonly they make implicit biological assumptions 

such as: the “median” gene is equivalently expressed across all tissues, and so expected (average) 

expression for this gene should be constant between all subsets of cells in the normalized data 
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(quotes because “median” takes a more complicated definition in the actual algorithms). The 

understanding of the importance of clarifying biological assumptions dates back at least to 2010 

when Robinson and Oshlack, while developing their normalization method Trimmed Mean of M-

Values (TMM), observed that simultaneously normalizing RNA-seq data from kidney and liver 

cells using LS as the measure of nuisance variation systematically biased testing between the two 

tissues. In particular, the liver cells, which presumably upregulated more genes compared to the 

kidneys, appeared systematically downregulated due to the division by too large of a size-factor 

(when LS was used as that size-factor), resulting in a panel of housekeeping genes appearing 

differentially expressed (Robinson and Oshlack, 2010). Despite this, the majority of modern 

studies still use normalization methods based upon LS. 

To address this, we are developing a novel normalization method called Robust 

Heterogeneity Integration Normalization, or Rhino. Full details of the inspiration for, methods of, 

and preliminary testing of the Rhino method are the subject of Chapter 3. While Rhino aims to 

improve several aspects of the normalization pipeline, its primary purpose is the robust estimation 

of improved size-factor estimates of nuisance variation. To this end, Rhino is based around the 

underlying biological assumption that, between any two cells (or samples), there is some non-

empty set of genes which are equivalently expressed, and as such, post normalization, the expected 

(average) expression of these genes should be constant between those two cells. The primary 

difference between Rhino and previous methods which made similar assumptions is two-fold. First, 

the set of equivalently expressed genes may change between different pairs of cells, and so optimal 

estimates of nuisance variation should use all such genes, both for improved accuracy and 

improved precision of estimation. Second, the identification of such genes is model based, 
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avoiding heuristics such as the median gene is equivalently expressed or the 5% of genes with the 

greatest absolute log-fold change are differentially expressed. 

While both of great significance to the field as well as forming the foundation upon which 

much of this dissertation is based, the technologies of microfluidics are far from the only impactful 

technological developments of recent years. The increasing speed and automation by which cells 

and tissues can be processed and sequenced has also impacted the types of studies that can be 

conducted. Of particular interest is the increase in time-series genomics studies being conducted, 

many of which remain better suited to bulk RNA-seq. It is in this context that we transition into 

the final chapter of this dissertation. 

One of the great potentials of modern treatments is the development of regenerative 

medicine by which grown cells, tissues, and even full organs could be used for therapeutic effect. 

However, many of the more dramatic promises of this field of study remain unrealized, partially 

due to the difficulty and complexity inherent in the attempt to grow in-vitro tissues and organs. 

While the use of pluripotent stem cells offers to mitigate many of the outstanding challenges, it is 

curious to note that stem-cells grown in-vitro still differentiate and develop at about the same speed 

as the species from which they were derived, despite the absence of maternal chemical signaling 

(Barry et al., 2017; Kanton et al., 2019; Espuny-Camacho et al., 2013; Maroof et al., 2013; 

Gaspard et al., 2008; Pollen et al., 2019; Nicholas et al., 2013). This suggests the existence of an 

“intrinsic developmental clock.” Given the observation that pluripotent mouse stem cells develop 

in accordance with the 20-day mouse gestation time while pluripotent human stem cells develop 

in accordance with the 9-month human gestation time, Dr. Christopher Barry and I set out to 

determine whether, and if so, to what degree and in which way factors that are active during the 
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more rapid murine development could accelerate the development of human cells (Brown, Barry, 

et al., 2021).  

In particular, the lack of maternal influence on the developmental clock suggests that 

differences in developmental timing are the result of differences in the timing of cell-to-cell 

signaling events. We therefore directly test this hypothesis by co-culturing mouse and human stem 

cells such that the human cells are exposed to both ambient and direct contact signaling from the 

more rapidly developing mouse cells. Beyond answering the question of whether developmental 

rates can be moderated by external signaling factors, the contribution of this thesis is also the 

development of an analysis pipeline to handle these data. 

Previous methods exist to aid in the analysis of time-series genomic data. However, such 

methods are typically restricted to the identification of dynamic or differentially regulated genes 

over time between conditions. For our purposes, it is not sufficient to identify differential 

regulation. Rather, in order to address questions of developmental rate, we were required to 

characterize the relative acceleration or deceleration of genes expression trajectories between 

conditions and then summarize those measures across the genome to identify systems of 

accelerated or decelerated activity, and ultimately assess global differences in developmental rate. 

We approached this task by leveraging multiple statistical modalities. These approaches and the 

findings of our study are the subject of Chapter 4. 
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2 Normalizing full expression distributions with Dino 

2.1 Background 

Normalization is a critical first step in the analysis of RNA-seq data. We define normalization here 

as a procedure which transforms sequenced expression levels to remove nuisance variation, 

possibly calculating a measure of nuisance variation as a first step. As such, proper normalization 

removes the dependency relationship between expression and technical or nuisance artifacts. In 

contrast and as a preview to the motivation for this chapter, unsuccessful normalization may result 

in transformed expression values which retain some degree of dependence on the measured 

nuisance variation. 

The simplest and, perhaps, the most common measure of nuisance variation in sequencing 

experiments is the cell-specific library size (LS or LSj for the specific value associated with cell j). 

LS is simply defined as the cell-specific sum of expression across the genome. In the usual 

representation of gene expression as a G×J integer matrix with G-many genes on the rows and J-

many cells on the columns, LS is calculated as the J column sums. Estimated this way, LS and 

gene sequenced expression levels are typically linearly related. This relationship is further 

theoretically reinforced by the observation that, if the number of reads sequenced for a given cell 

increases (LS increases), then the expected number reads aligning to any given gene should 

increase proportionately; i.e., if total reads double, so too does the expected (sequenced) expression 

level for each gene. 

Many existing methods leverage this simple relationship. The most computationally rapid 

and possibly the most commonly used are based on scale-factor transformations of the expression 
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data. In such approaches, a scale factor is calculated for each cell and the expression level for each 

gene in that cell is divided by that same scale factor. In Counts Per Ten thousand (CPT), a version 

of which is implemented in the Seurat analysis pipeline (Butler et al., 2018), scale-factors are 

calculated by dividing LSj by ten thousand, thus resulting in normalized expression which sums to 

ten thousand for each cell. The older Counts Per Million (CPM) (Law et al., 2014) is similar, but 

scales cell-specific expression to one million. 

Other methods leverage the expected linear relationship between LS and expression in a 

similar way. Like CPT and CPM, Scran (Lun et al., 2016) transforms sequenced expression 

through the use of scale factors. In this case, however, scale-factors are estimated based on a 

modified version of the Median-Ratio (MR) algorithm (Anders and Huber, 2010) applied across 

pools of cells. Being based on MR, Scran aims to be more robust to potential sources of bias than 

is the case with LS which is only valid to the extent that differences in LS between cells are due 

to technical, rather than biological factors. Further, by pooling expression across cells when 

estimating size factors, Scran aims to be more robust to the zeros often present in the pre-

microfluidics scRNA-seq that were becoming common when the method was developed, an 

algorithmic constraint of MR. 

Around the same time Scran was developed, Bacher et al. (Bacher et al., 2017) 

demonstrated that single-cell normalization could be improved by the adoption of gene-specific 

scale-factors, indicating that the common use of global scale factors could compromise 

performance. In their method, scNorm, scale-factors are computed for groups of genes with similar 

relationships (slopes) between expression and LS through the use of quantile regression with LS 

as a model covariate. Their method, however, was developed for pre-microfluidics platforms, such 

as the protocols implemented in the Fluidigm products, and so does not directly apply to the 
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expression values being considered here. In particular, in the FAQ section of the GitHub repository 

and Bioconductor vignette for scNorm, it is noted that, for datasets with more than about 80% 

zeros, the model parameters may fail to converge. By contrast, typical microfluidics-based datasets 

often have greater than 90% zeros (Townes et al., 2019).  

This dramatic difference in dataset sparsity is driven by at least two factors. As mentioned 

in Chapter 1, microfluidics protocols treat the entire emulsion of cells captured in water droplets 

suspended in oil as a single sequencing sample whereas previous single-cell techniques treated 

each individual cell as a single sequencing sample. The method by which the emulsion is generated 

allows the rapid preparation of 1000s of cells simultaneously for sequencing, with unique, droplet-

specific, and thus cell-specific barcodes on the polydT primers allowing for reads originating from 

a given cell to be identified and sorted after sequencing. However, by dividing the available 

sequencing budget (the total number of reads which can be sequenced) for a given sequencing 

sample among 1000s of cells, the resulting LS for any given cell is correspondingly reduced, even 

for deep-sequencing applications.  

The second factor driving the sparsity of microfluidics expression estimates is the use of 

unique molecular identifiers, or UMIs. Closely related to the cell-specific barcodes, UMIs are a 

polydT primer-specific barcode. The advantage when using UMIs is that technical copies of a 

given mRNA molecule can be identified and removed following sequencing. Such copies typically 

arise when the concentration of cDNA molecules in the sequencing library is increased by 

polymerase chain reaction (PCR) amplification, copying the extant cDNA molecules, sometimes 

many fold. The use of PCR is generally necessary to boost cDNA densities to levels that can be 

reasonably detected, but risks the event where multiple reads in the final sequencing dataset are 

derived from the exact same mRNA molecule in the cell under study. By tagging each mRNA 
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molecule prior to the construction of the PCR amplified cDNA library, such duplicates can be 

identified following sequencing, and just one copy retained for analysis during “de-duplication”. 

This practice has the benefit of dramatically reducing biases in observed gene expression due to 

PCR artifacts and transcript length (Tung et al., 2017; Grün et al., 2014; Islam et al., 2014; Zheng 

et al., 2017). Further, UMI-based data appears to be better behaved than previous types, closely 

following a Poisson distribution of counts with means scaled by LS, rather than the zero-inflated 

distributions of older data (Svensson, 2020). However, the de-duplication of UMIs further reduces 

the per-cell LS, and therefore increases the observed sparsity of the data. Note that in the following 

text, we use UMI to refer to both the molecular tag described above as well as the resulting integer 

counts in the corresponding expression matrix. Whenever the intended use is not clear from context, 

we specify which is meant. 

More recently, Hafemeister and Satija developed scTransform which, to our knowledge, 

represents the first normalization method specifically targeted at UMI count data (Hafemeister and 

Satija, 2019). In their approach it is observed, as with scNorm, that genes typically required unique 

model parameters and, also like scNorm, these parameters are similar for genes with similar 

expression levels. In this case, however, the unique parameters generally do not correspond to 

different slopes between expression levels and LS, although such differences are allowed, but 

rather to gene-specific overdispersion parameters. Specifically, scTransform approaches 

normalization as a parametric regression problem wherein parameter estimates are smoothed via 

spline regression across genes to improve robustness to overfitting. Following parameter 

estimation, normalized expression is derived by calculating the cell- and gene-specific Pearson 

residuals from the model. In this way, scTransform aims to remove the effects on both expression 

mean and variance of technical variation in LS. 
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With the significant amount of work in this area, it might seem as though this were a field 

in which the potential gains of novel approaches would be more marginal than meaningful. 

However, for both the above methods and others, the normalized expression from UMI datasets 

remains unfortunately dependent upon LS. Specifically, even though existing approaches may 

remove the dependency relationship from certain characteristics of the expression distribution – 

all methods seem to reasonably well remove the relationship between average expression and LS 

for example – the normalized distributions themselves remain dependent upon nuisance variation 

as measured by LS for UMI count data. 

The most dramatic way in which to observe this effect is to consider the zeros in the 

expression matrix; gene-cell pairs for which no UMIs were sequenced. For a given gene, the 

proportion of zeros is naturally correlated with LS; as LS increases, the proportion of zeros 

decreases, or equivalently, the average expression increases. Under a scale factor approach (which 

includes most of the above), however, a pre-normalization zero directly translates into a post-

normalization zero, and thus the proportion of zeros remains dependent upon LS in the normalized 

expression data. Likewise, in order to remove the dependency of average expression on LS (as 

most methods do), the relatively rare non-zeros among the low-LS cells must be normalized to 

higher values than the more common non-zeros among the high-LS cells. Both of these effects are 

demonstrated in Figure 2.2. 

To solve this problem, that is, to normalize in a way that removes the dependency between 

LS and gene expression from the full distribution of expression, we developed Dino. Dino is a 

model-based normalization method, like scNorm and scTransform, in that it constructs, for each 

gene, a parameterized model of expression. The Dino method, however, possesses two unique 

attributes which set it apart in both function and results. First, the Dino model is comprised of a 
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mixture of Negative Binomial components, thereby allowing it to accommodate the potentially 

high levels of cell-type heterogeneity which can be present in these data. Second, Dino normalizes 

by resampling from the posterior distribution of the cell- and gene-specific estimated mean 

expression values, thereby removing the dependency of the normalized distribution on LS. 

Focusing on the zeros as the most dramatic example, by normalizing by resampling, low LS zeros 

can be sampled to values other than zero, and high LS, low count values can be sampled to zero, 

thereby equalizing the proportion of zeros in LS following normalization. 

2.2 Materials and methods 

2.2.1 The Dino model 

As mentioned above, Dino normalizes expression data by resampling from the posterior 

distribution of cell- and gene-specific estimated mean expression values conditional on observed 

UMI counts and LS, rather than directly transforming the UMI counts by some function of LS. As 

such, Dino aims to estimate cell- and gene-specific mean parameters λgj. To formalize the notation, 

let the sequenced expression data be stored as a count matrix Y with genes on the rows and cells 

on the columns. Then, for G-many genes and J-many cells, Y is of dimension G × J and the integer 

element ygj denotes the observed UMIs for gene g in cell j. 

Being count data and, in particular, being count data derived from an experimental 

procedure which closely mimics random sampling of unique elements (referring to the UMIs) from 

a large pool, the counts ygj lend themselves naturally to a Generalized Linear Model (GLM). Not 

only is there this theoretical bases for the choice of a GLM, but previous methods have successfully 

modeled sequencing count data by Negative Binomial (NB) or Poisson distributions (Anders and 

Huber, 2010; Hafemeister and Satija, 2019; Townes et al., 2019). Beyond this, and as discussed 
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above, the model means, λgj, are expected to scale linearly with LS, suggesting a log-linear model 

given an appropriate transformation of LS (Anders and Huber, 2010; Lun et al., 2016; Hafemeister 

and Satija, 2019; Townes et al., 2019). Given this, we might consider a model of counts ygj as 

𝑦!" ∼ 𝑓#$𝜆!"𝛿"';	𝛿" ≔ LS$/𝑐 

where fP is a Poisson mass function, δj is the scaled LS, and c is a centering parameter (by default, 

the median LS across cells). 

Such a model, while useful for setting up the Dino method, is limited in two ways. First, it 

may be that the counts ygj are over-dispersed with respect to the Poisson distribution as has been 

the case for previous count models of sequencing data, although there is some evidence that the 

use of UMIs has at least reduced and possibly removed such overdispersion (Svensson, 2020). 

Second, and more importantly, the presence of heterogenous sub-populations of cell types may 

render the underlying distribution of counts neither a Poisson nor a NB distribution; rather, the 

underlying distribution may be multimodal. When considering high-throughput, single-cell 

sequencing, the existence of multiple sub-populations of cells is common if not generally expected. 

To accommodate both concerns and to facilitate the forthcoming calculation of the 

posterior distribution on the λgj, we impose a hierarchical mixture of Gammas distribution on the 

λgj. Ignoring for the moment the mixture part of this formulation, the use of a Gamma component 

in this way is reassuring in that the resultant marginal distribution on the counts ygj is then NB, the 

same model assumption from scTransform (Hafemeister and Satija, 2019), DESeq2 (Love et al., 

2014), ZINB-WaVE (Risso et al., 2018), and SAVER (Huang et al., 2018). The use of a mixture 

of Gammas thus alters the model only to the extent that the corresponding marginal distribution of 

the counts ygj is then a mixture of NB distributions. 
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Noting that the Dino model is fit independently to each gene, the subscript g can then be 

dropped in the full Dino model: 

𝑦" ∼ 𝑓#$𝜆"𝛿"' 

𝜆" ∼/𝜋%
&

𝑓' 1
𝜇%
𝜃 , 𝜃5 

where K is the number of mixture components, πk is the weight of component k such that ∑kπk = 

1, fG is a gamma density using the shape and scale parameterization, μk is the mean of the 

corresponding Gamma component, and θ is a gene-specific scale term. 

The details of how the parameters of the mixture model are estimated (a modified 

expectation maximization algorithm) are left until the next section. However, following estimation, 

the hierarchical model of counts results in a simple posterior distribution. In particular, the Gamma 

distribution is a conjugate prior to the Poisson, and so the posterior distribution on the means λj 

can be expressed as 

ℙ$𝜆"7𝑦" , 𝛿"' ∝ 𝑓#$𝜆"𝛿"'/𝜋%
&

𝑓' 1
𝜇%
𝜃 , 𝜃5 

which, after a slight modification, reduces to a mixture of Gamma distributions on λj 

ℙ$𝜆"7𝑦" , 𝛿"' =/𝜏%"
&

𝑓' ;
𝜇%
𝜃 + 𝛾𝑦" ,

1

11𝜃 + 𝛾𝛿"5
? 

where τkj denotes the conditional likelihood that mean λj derives from mixture component k given 

the observed data and γ (whose inclusion is the above mentioned “slight modification”) is a 

concentration parameter. Testing has shown that sampling normalized values from the unaltered 

posterior distribution can result in excessive variance in the normalized data, reducing the power 
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to test for biological variation while (default) values of γ = 15 were more successful across a 

variety of datasets (Supplemental Figures A1-3). The concentration parameter, γ, can alternately 

be seen as a type of regularizer, pulling normalized values (samples from the posterior distribution) 

towards their scale-factor variant. In fact, in the limit as γ increases, the normalized values 

converge in probability to yj / δj. 

2.2.2 Parameter initialization and estimation 

In order to accelerate calculations, the Dino model approximates the above mixture of NBs when 

estimating parameters. In particular, while the mixture of NB distributions does not have a clean, 

closed-form update to the Expectation-Maximization (EM) algorithm, a similar mixture of 

Poissons does. For this reason, Dino takes a two-step approach to parameter estimation. First, Dino 

approximates the data as a mixture of Poissons to fit the mixture component means. Second, with 

mean parameters fixed and with cell-specific component-membership likelihoods determined by 

the EM algorithm, Dino estimates the hierarchical Gamma distribution parameters – thereby 

returning the model to a mixture of NB distributions – in a manner aimed at matching the Empirical 

Bayes prior distribution on λj to the observed distribution of UMIs. 

It is for this reason – matching the distribution on λj to the distribution of the UMIs – that 

the parameter choice for the number of mixture components, K, is chosen as the minimum of 100 

(default) and the (rounded) square-root of the number of yj which are greater than zero (there is a 

lower bound of at least 2 components). This over-parameterization is therefore clearly not 

intended to estimate the true number of clusters/modes which may exist in the expression 

distribution for a particular gene. For example, if the true underlying distribution is a mixture of 

two NBs, the choice of K will still be (much) larger for all but the lowest expressing genes. Instead, 
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this approach should be understood as a parametric approximation to a non-parametric model. This 

approach is inspired by the methods in the ash model for False Discovery Rate (FDR) correction 

by Stephens et al. 2017 in which it was shown that any arbitrary unimodal distribution could be 

approximated by a mixture of uniform distributions, with infinitely many components as “a non-

parametric limit” (Stephens, 2017). As a similar approach, Dino uses an arbitrarily large number 

of components to approximate the unknown, underlying expression distribution of the UMI counts. 

Similar results surrounding the use of large mixture models were demonstrated even earlier by 

Cordy and Thomas in their work on distributional deconvolution (Cordy and Thomas, 1997). 

Figure 2.1 demonstrates this effect where the empirical densities of UMI counts for three 

genes from experimentally derived cells (subsetting cells in a small neighborhood of the median 

LS) follow complex, multimodal distributions (blue). A simple, unimodal NB regression on the 

data fails to capture this distribution (green), while the estimated distribution of the λj from the 

Dino model (red), which is functionally a mixture of K Gamma distributions, much more 

accurately captures the underlying distribution. Similar results can be seen for simulated genes 

(Supplemental Figures A4-5). 
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With K fixed, the means, μk, in the mixture of Poissons approximation to the mixture of 

NB can be initialized. Aiming to speed model fitting with a robust parameter initialization, the μk 

are sampled from K evenly spaced points from an Empirical Cumulative Distribution Function 

(eCDF) of the underlying UMI counts at LS δ = 1. Since this underlying distribution is complicated 

both by its confounding with LS and by a censoring threshold – values less than zero cannot be 

Figure 2.1: A single Negative Binomial distribution fails to capture the heterogeneity 
of observed expression.  

For each of three different genes (RPL13, RPL10, RPS4X, top to bottom) from the 
PBMC68K_Pure dataset we plotted the empirical density of observed UMI counts (blue) 
from cells with scaled log-LS between -0.5 and 0.5. These curves were overlayed by the 
distribution (at log-LS=0) implied by the fitted parameters from a single Negative Binomial 
GLM (green) and the prior distribution estimated by Dino (red) used for resampling 
normalized expression. 
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observed – we developed a fast estimation procedure based on the inversion of Censored Least 

Absolute Deviations (cLAD) regression, also called censored quantile regression (Powell, 1984, 

1986; Branham, R. L., 1982). This approach, originally described in the supplement to Brown et 

al. 2021 is presented in Appendix A.1 (Brown, Ni, et al., 2021). 

Following initialization, the mixture of Poissons model is estimated by an accelerated EM 

algorithm. As mentioned above, the mixture of Poissons model has simple, closed-form updates 

to the EM iterations. Model convergence is then further accelerated by the incorporation of quasi-

Newton corrections to the EM updates. Letting the usual EM update be denoted by 

Σ!"# = 𝑔(Σ!);	Σ! ≔ [𝜋! , 𝜇!]	

 the corrected update for a step length of 1 is  

Σ!"# = 𝑔(Σ!) − 𝑆 ∗ 𝑔𝑙(Σ!)	

where S is an approximate inverse Hessian matrix based on the Broyden-Fletcher-Goldfarb-

Shanno SR2 update, and gl(Σt) is the likelihood gradient at the given parameters (Jamshidian and 

Jennrich, 1997). In practice, step lengths of 1 are attempted and adjusted if necessary to conform 

to the strong Wolfe conditions. 

Having	estimated	the	µk,	and,	as	a	consequence	of	the	EM	algorithm	also	the	τkj,	the	

parameters	 of	 the	mixture	 of	 Gamma	 distributions	 can	 be	 estimated	 to	 reformulate	 the	

counts	model	 into	 the	mixture	 of	 NBs	 described	 above.	 Specifically,	 we	 set	 µk	≔	 λk	 and	

estimate	θ	from	an	application	of	kernel	density	estimation.	In	particular,	given	a	sample	of	

(strictly	 positive)	 data,	 such	 as	 the	 µk,	 the	 underlying	 distribution	 of	 these	 data	 can	 be	

estimated	 as	 a	mixture	 of	 Gamma	 distributions	with	 shape	 parameters	 µk	 /	 θ	 and	 scale	

parameter	θ	(Chen,	2000).	In	our	case,	θ	is	estimated	using	a	kernel	bandwidth	estimator	

applied	to	the	µk	which	is	then	trimmed	to	a	maximum	of	1.	The	restriction	of	the	parameter	
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θ	 is	designed	 to	 limit	 the	variance	of	 the	Gamma	components	 to	not	be	greater	 than	 the	

variance	of	the	Poisson	components	from	which	the	means	µk	were	derived.	

2.2.3 Datasets used for validation 

Dino was tested using a variety of both experimentally derived and simulated datasets. On the 

experimental side, six publicly available datasets were analyzed. Five of these datasets were 

derived from the data published by 10X genomics, including PBMC68K_Pure, PBMC5K_Prot, 

MaltTumor10K, MouseBrain, and PBMC68K while one, EMT, was derived from a third-party 

study. 

All experimental datasets were tested, but PBMC68K_Pure is primarily used for displaying 

the following results. This dataset represents a set of peripheral blood mononuclear cells (PBMCs) 

which were first purified into known cell-types, after which each purified sample was individually 

sequenced on the 10X Genomics Chromium platform (their primary UMI-based microfluidics 

system) (Zheng et al., 2017). This procedure allows individual cells to be annotated with specific 

cell-types, further allowing cell type-specific analysis and validation. To further improve the 

accuracy of validation based on such cell-type annotations, only the six cell types for which the 

tSNE plots of expression (van der Maaten and Hinton, 2008; Van Der Maaten, 2014) remained 

homogenous (no sub-groups) were retained: CD4+ T Helper, CD4+/CD25 T Reg, 

CD4+/CD45RA+/CD25- Naïve T, CD4+/CD45RO+ Memory, CD56+ NK, and CD8+/CD45RA+ 

Naive Cytotoxic. These cell types are identified by the original authors as demonstrating little sub-

structure. 

EMT is a dataset constructed of about 5,000 cells undergoing an induced epithelial to 

mesenchymal transition (McFaline-Figueroa et al., 2019). The cells were grown in culture in such 
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a manner that cells on the exterior were preferentially induced to transition. As such, cells sampled 

and sequenced from the center of the tissue culture were expected to be predominantly epithelial 

while cells sampled and sequenced from the outer sections of the culture were expected to be 

primarily mesenchymal. This structure produces a dataset which spans the full differentiation 

pathway and which further can be compared to the source tissue region (inner vs. outer regions) to 

validate or to anchor analysis techniques such as pseudo-time ordering. The authors further 

describe eight gene sets derived from the Hallmark collection of gene sets (Liberzon et al., 2015) 

which they consider to be characteristic of the cellular dynamics being induced. These eight gene 

sets were used here as validation. 

The remaining datasets used for validation are considered in supplementary materials. Full 

details on the above-described datasets, PBMC68K_Pure and EMT, as well as the 4 remaining 

experimental datasets are described in appendix A.2. 

Dino was also validated against simulated data. As with all simulated data, the aim was to 

capture as faithfully as possible the underlying distributional structure of experimentally derived 

UMI counts. In this case, the intended testing environment was a test of Differential Expression 

(DE) vs. Equivalent Expression (EE) where an EE gene is one for which average expression is 

constant between the two testing groups and a DE gene is one for which some difference in average 

expression exists. Note that these definitions, particularly that of DE, can be test specific; e.g., 

using a Wilcoxon Rank Sum (Wilcoxon) test implies a null hypothesis that EE genes are those 

with equivalent distributions, not just equivalent means while a likelihood ratio test of nested 

models implies that EE genes are those following the reduced model. In cases in the following 

where the definition of DE differs from a simple difference in latent average expression, the 

specific test and, if necessary, the fuller alternate definitions of EE and DE are specified.  
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Given these constraints, it was chosen to simulate UMI counts by careful down-sampling 

of experimentally derived expression data. Down-sampling has the advantage of not imposing an 

assumed expression distribution on the experimentally derived counts while careful choice of the 

(expected) proportion of UMIs to be retained for each gene following down-sampling allows one 

to control which genes are EE or DE, as well as the degree of fold-change in the DE genes, between 

two simulated groups. Full simulation details are provided in appendix A.3. In brief, however, 

simulated cells are generated as “cluster-pairs” where cells in each of the two sub-clusters in the 

cluster-pair differ on average in LS and where the genes which are EE/DE between each sub-

cluster are known by construction. This is achieved by first taking two experimentally sequenced 

and transcriptionally similar cells and summing their UMI counts to generate a pooled pseudo-cell. 

This pseudo-cell is then down-sampled twice to generate one simulated cell in each sub-cluster of 

a cluster-pair. Systematic differences in the sampling proportion – p from a Binomial distribution 

– induce an expected difference in LS between the two simulated cells while further alteration of 

the sampling proportion for individual genes generates known DE genes. Following this procedure, 

multiple cluster-pairs are simulated to generate an aggregate dataset whose transcriptional 

heterogeneity mimics that of experimental data. Performance testing is only conducted between 

sub-clusters in a cluster-pair as the true EE/DE genes are not known between cluster-pairs. 

2.3 Results 

As previously discussed, both scale factor methods such as CPT and Scran as well as model-based 

methods such as scTransform can suffer from distributional dependencies on LS even after 

normalization. While such normalization successfully removes the effects of LS on average 

expression (within a cell type), and even the effects of LS on expression variance as in scTransform, 
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there are clear differences in the overall distributions of expression between cells in the low-LS 

(5-25% of LS) and high-LS groups (75-95% of LS) (Figure 2.2 A-B). Further, it can be shown that 

these results are not unique to the gene plotted. By constructing modified qq-plots where, for each 

gene, quantiles of expression in the low-LS group (y-axis) are plotted against quantiles of 

expression in the high-LS group (x-axis), distributions of expression can be aggregated across 

genes as a density heatmap. Were it the case that distributions were equal between these groups, 

at least for a significant proportion of genes, then the region of high density would follow the 

diagonal of the plot; as is the case for a typical qq-plot. However, significant off-diagonal regions 

of high density can clearly be observed for Scran and scTransform (Figure 2.2 C). In contrast, the 

resampling procedure implemented in Dino successfully removes the dependency relationship 

between LS and the full, normalized expression distribution across genes (Figure 2.2). 
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While these results are theoretically interesting, suggesting at least statistical limitations of 

existing methods, these initial results do not demonstrate practical problems for downstream 

analysis following the use of existing methods. To address this, we conducted a test of differential 

expression between cells in the low-LS and high-LS groups for each cell type in the 

Figure 2.2: Evaluation of gene-specific expression distributions following 
normalization.  

Expression data in the PBMC68K_Pure dataset were normalized by Scran, scTransform, 
and Dino. a)-b) Normalized expression is shown here for a homogeneous set of cells 
(CD4+/CD45RO+ memory cells) to minimize the effects of cell subpopulation 
heterogeneity. a) Normalized expression from a typical gene (NME1) under Scran, 
scTransform, and Dino plotted against LS. Fitted regression lines (solid black) show 
generally constant means across methods. Low-LS (5%-25% of LS) and high-LS (75%-
95% of LS) subsets of cells are indicated by dashed lines and are used in the following 
panels. b) Density plots of normalized expression from low-LS and high-LS cells show 
that the constant mean is maintained by balancing the changing proportions of zeros, or 
near zeros in the case of scTransform, with expression shifts in normalized non-zeros. c) 
Quantile-quantile heatmaps compare normalized expression quantiles in the high-LS (x-
coordinate) and low-LS cells (y-coordinate) across genes and cell-type annotations (S4.3 
Section). As in panel b, there are systematic shifts in the distributions. 
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PBMC68K_Pure dataset. Using the default Wilcoxon rank sum test from the Seurat analysis 

pipeline (Butler et al., 2018), we observed large numbers of genes with significant FDR corrected 

p-values (Figure 2.3 A). As tests were conducted within cell type annotations, the majority, if not 

all of these significant tests are expected to be false positives. This is not unexpected as the 

Wilcoxon test, as well as other single-cell specific tests such as MAST (Finak et al., 2015), are 

sensitive to differences in the distribution of expression. Dino, by normalizing the full distribution 

for effects of LS, removes this dependency resulting in an order of magnitude fewer false positives 

(Figure 2.3 A). 
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Figure 2.3: The effects of normalization on downstream DE and enrichment analysis.  

a) Expression data from the PBMC68K_Pure dataset were normalized and genes were 
tested for DE using a Wilcoxon rank sum test between low-LS and high-LS cells (5%-25% 
and 75%-95% of LS respectively) within cell-type annotations. Box plots show numbers 
of significant genes. Given that cells only differ in LS, significant results are considered 
false positives.  b) Expression data from the EMT dataset were analyzed using Monocle2 
to identify genes with significantly variable expression over pseudo-time. Total numbers 
of significant genes are shown in a bar plot. c) Significance values of Hallmark terms 
enriched for DE genes from the EMT dataset, colored for each normalization method, are 
plotted for the subset of terms previously identified as defining expression shifts during 
epithelial to mesenchymal transition. 
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In order to further validate the performance of Dino, and importantly to demonstrate that 

the reduction in false discoveries is not due to a reduction in overall power, we performed a similar 

analysis on the EMT dataset (McFaline-Figueroa et al., 2019). Following the analysis pipeline of 

the original authors of this data, we performed pseudo-time ordering of the EMT cells which aims 

to place individual cells along an estimated differentiation path (Trapnell et al., 2014; Qiu et al., 

2017). In our case, we would expect the epithelial cells to be mapped to early pseudo-times 

corresponding to their position at the start of the differentiation path and mesenchymal cells to be 

mapped to late pseudo-times. As with the original authors of the data, we followed the pseudo-

time ordering of the cells with a test for DE. In this case, however, the test aimed to identify gene 

with statistically significant variation as a function of pseudo-time, which, in turn, was considered 

a proxy measure for the position of any given cell on the transition between epithelial and 

mesenchymal cells. To identify these genes associated with the transition captured by the data, DE 

was tested through a likelihood ratio test between a smooth spline model of expression against 

pseudo-time and an intercept-only null model of expression against time. As before, data 

normalized by Dino resulted in the fewest significant genes, but, unlike before, there were still 

large numbers of genes detected as significant under Dino (around 5,000), consistent with a 

reduction in FDR, not a reduction in power (Figure 2.3 B).  

To confirm this result, we performed gene-set enrichment on the gene significance values 

for tests based on each normalization method against the Hallmark collection of gene sets 

(Liberzon et al., 2015). Highlighting the eight gene-sets originally identified by McFaline-

Figueroa et al. as being characteristic of the epithelial to mesenchymal transition, it can be 

observed that Dino normalized data results in competitive significance in four out of the eight 

gene-sets and the greatest significance (corresponding to the greatest statistical power in DE 
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testing) in the remaining four. Of particular interest, the gene set denoted by the curators of the 

Hallmark collection as specifically pertaining to the epithelial to mesenchymal transition, is one 

of these last four for which Dino normalized data is close to an order of magnitude more significant 

(p-adj = 3.3e-4) than the next most significant alternative method (CPT, p-adj = 1.9e-3). 

To expand testing beyond this individual dataset and thus show a general reduction in false 

discoveries and maintenance of testing power, we applied Dino to several simulated datasets which 

were, in turn, derived from several published datasets of UMI counts, including a simulation based 

on the above mentioned PBMC68K_Pure dataset. As datasets were constructed in such a way that 

the set of DE and EE genes is known between sub-clusters in simulated cluster-pairs, testing for 

DE could be conducted against a known ground truth. Therefore, we normalized the simulated 

data according to a panel of methods and, following normalization, conducted tests for DE using 

the Wilcoxon rank sum test. Receiver operator curves (ROCs) show that test results, averaged over 

30 replications of the simulation-normalization-testing procedure, result for most methods in high 

statistical power only at the cost of high FDRs (Figure 2.4, Supplemental Figure A.6). For datasets 

normalized by Dino, however, high statistical power can be achieved at far lower FDRs, further 

supporting the results from the previous negative and positive control case studies. 
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To expand on these results, we further conducted the simulation-normalization-testing 

procedure under the MAST test designed for single-cell data and a simple t-test; both tests being 

applied to data simulated from the full panel of experimental data. Under the MAST test, results 

were similar to those observed for the Wilcoxon test, an expected result as both tests are sensitive 

to differences in distribution while the t-test resulted in more consistent results across methods due 

to that test’s focus on differences in mean rather than differences in distribution (Supplemental 

Figures A7-8). In most cases across both datasets and testing methodologies, normalization with 

Figure 2.4: The effects of normalization on downstream DE analysis.  

Simulated data based on the PBMC68K_Pure dataset were normalized using each method. 
ROC curves colored by normalization method define the relationship between average TPR 
and average FPR for a Wilcoxon rank sum test, where the average is calculated across 30 
simulated datasets. 
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Dino and thresholding significance at an adjusted p-value of 0.01 via the method of Benjamini and 

Hochberg (Benjamini and Hochberg, 1995) resulted in the meaningfully higher statistical power 

observed in Figure 2.4. In almost all cases, the use of Dino at a minimum resulted in significantly 

lower FDRs at similar statistical power (Supplemental Tables A1-3). 

Finally, to consider implications for another common analysis technique, we performed 

dimension reduction and clustering on our three datasets with either cell type annotations 

(PBMC68K_Pure) or pseudo-annotations (MaltTumor10K and PBMC5K_Prot). Computed 

clusters were then compared to the ground truth annotations by the Adjusted Rand Index (ARI). 

In the PBMC68K_Pure dataset, Dino performed similarly to its closest comparators, Scran and 

scTransform, with a slightly but not significantly higher ARI (Figure 2.5 A). To stress test the 

normalization methods’ ability to remove nuisance variation without compromising downstream 

analysis, we performed a duplicate analysis where, prior to normalization, a random sample of half 

of the cells in the dataset were downsampled to 25% of their original LS. In all cases, this greater 

technical variation can be seen as an artifact in the dimension reduction where the downsampled 

cells (bold) of a particular cell type annotation (color) form a cluster offset from the unaltered cells. 

However, this effect is visually less dramatic for Dino normalized data, resulting in less 

confounding of cell types in the dimension reduction, and significantly higher ARI (p-value ≤ 1e-

16 under a t-test) when the downsampling-normalization-clustering pipeline is repeated (Figure 

2.5 B-C). These effects are observed again when conducting the testing pipeline on other datasets 

(Supplemental Figures A9-10). 
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2.4 Discussion 

The development of novel sequencing platforms has dramatically increased the resolution with 

which transcriptional dynamics can be assayed. In particular, the parallel construction of cDNA 

sequencing libraries from microfluidics systems has allowed the simultaneous sequencing of many 

Figure 2.5: The effects of normalization on clustering.  

a) tSNE plots of normalized PBMC68K_Pure data, colored by 6 cell-type annotations, 
show similarly high clustering accuracy across methods. b) The same clustering plots as in 
(a), but with half the data down-sampled (down-sampled cells in bold) prior to 
normalization to produce greater differences in LS. c) Boxplots of ARIs for multiple un-
modified and down-sampled datasets across 24 samples of 25 thousand cells from the 
PBMC68K_Pure dataset. 
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thousands of individual cells from a common tissue sample. Simultaneously, the integration into 

such pipelines of UMIs has improved both the accuracy and precision with which such 

measurements can be taken, primarily by reducing or removing expression biases such as those 

introduced during PCR amplification. However, these technological advancements bring with 

them a fundamental change in the statistical properties of the data they generate, most notably by 

dramatically reducing the per-cell number of reads which can be sequenced; increasing the number 

of zeros present in the resulting dataset and rendering techniques which rely on (approximately) 

continuous distributions of counts less effective or even ineffective. 

Our proposed method, Dino, addresses these challenges to effective normalization of 

technical variation in LS by adopting a model of count data based on the NB distribution. This 

modeling framework is common among existing techniques (Hafemeister and Satija, 2019; Love 

et al., 2014; Risso et al., 2018; Huang et al., 2018). However, the incorporation of mixture 

components in Dino grants the method unique flexibility to accommodate the heterogeneity of 

expression present in many modern datasets. Dino further improves on existing methods by 

normalizing not through a deterministic transformation of observed UMI counts, but rather through 

a resampling procedure based on a flexible estimate of the true distribution of gene expression 

conditioned on observed UMI counts and LS for each gene and cell. This stochastic approach 

uniquely allows Dino to reduce or remove the dependency relationship between the distribution of 

normalized expression data and LS which remains after normalization with existing methods. In 

so doing, normalization by Dino results in more accurate and more powerful downstream analyses. 
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2.5 Future work 

2.5.1 Restricted quantile sampling 

The stochastic resampling procedure incorporated in the Dino method is successful at removing 

the dependency relationship between LS and the distribution of normalized expression. Further, 

the high power observed in simulated testing is both consistent across repeated simulations (Figure 

2.4 and Supplemental Figures A.6-8) and our testing showed high concurrence (>90%) in true 

positive and false negative calls when testing on the same dataset normalized by Dino with 

different random seeds. Nonetheless, the stochastic nature of this procedure might be a concern to 

some researchers. For this reason, we are currently developing and testing an alternate resampling 

framework specifically aimed at preserving the relative rank or order of sequenced UMIs after 

normalization. While currently considered experimental, our procedure, Restricted Quantile 

Sampling (RQS) is an alternate sampling procedure available to the user as a function option in 

our R package. 

RQS is based on the idea that, if two cells have the same LS but, for a given gene, the first 

cell has strictly more sequenced UMIs than the second cell, then, after normalization, the first cell 

should still have strictly greater normalized expression than the second cell. In other words, the 

ranks of UMI counts for cells of the same LS should not change, and the ranks of UMI counts for 

cells with similar LS should be unlikely to change, as is the case for deterministic methods such 

as the count scaling implemented in Scran. This approach is implemented by sampling not from 

the posterior distribution of the gene- and cell-specific latent means, λj, but rather by sampling 

from a restricted range of the marginal distribution (mixture of Gammas) of λ with the range 

restriction being a function of the observed cell-specific LS and UMI counts. 
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Specifically, let F(q|δj) denote the CMF of the mixture of Poissons distribution estimated 

by the accelerated EM algorithm, conditioned on the cell specific (transformed) LS, δj. Then the 

sampling bounds for the RQS method can be defined as 

𝐿$ ≔ 3
0 𝑖𝑓	𝑦$ = 0

𝐹9𝑦$ − 1;𝛿$= 𝑒𝑙𝑠𝑒  

𝐻$ ≔ 𝐹(𝑦$|𝛿$) 

If we further define the inverse CDF of the mixture of Gammas distribution on λ as G-1(p) 

and let U(L,H) denote the uniform distribution between lower-bound L≥0 and upper bound H<1, 

then the RQS normalized expression can be sampled from: 

𝑦B$ ≔ 𝐺%#(𝑝$)	
𝑝$ ∼ 𝑈(𝐿$ , 𝐻$)	

In current testing, RQS performs competitively with default Dino, and may in fact have 

slightly higher power in some situations. For this reason, we may make RQS the default method 

in future updates to the package. However, further validation is required before this step can be 

taken. 

2.5.2 Alternate cell-specific size-factors 

By default, Dino uses cell-specific LS as the measure of nuisance variation. In many cases this 

may be appropriate, or at least sufficient for successful analysis. However, in some situations it 

may be that LS is meaningfully correlated with (or otherwise dependent upon) true biological 

variability of scientific interest. This could occur when the majority of DE genes between two cell 

types are upregulated in one cell type compared to the other; i.e., a generally more transcriptionally 

active cell type across the full transcriptome. In such cases, normalization to remove the effects of 

nuisance variation measured by LS will, in the best case, additionally remove biological variation 
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of interest or, in the worst case, even induce spurious differences in average expression in the 

normalized data leading to high rates of false positives. 

For this reason, Dino allows the user to supply alternate cell-specific measures of nuisance 

variation, such as the size-factors calculated by Scran. This observation and quick solution in Dino 

are also the foundation upon which the ongoing work on our new normalization method, Rhino, 

are based. Further details on this concern and on the current work on Rhino are the topics of 

Chapter 3. 

2.6 Publication information 

The methods, results, and figures described in this chapter are published in Brown, et al., 2021 

(Brown, Ni, et al., 2021).  

The methods are further publicly available as an R package on Github 

(https://github.com/JBrownBiostat/Dino) and Zenodo (https://doi.org/10.5281/zenodo.4897558). 

  



 37 
3 Improving nuisance variation estimation with Rhino  

3.1 Background 

A fundamental first step in the effective normalization of genomic data is the calculation of 

accurate measures of nuisance variability inherent in a given dataset. The normalization method 

then attempts to correct for gene expression differences characterized by these measures of 

nuisance variation. If any biases or systematic errors are introduced into the initial estimation of 

nuisance variation, such errors will be propagated to all downstream analysis. 

Most frequently in modern RNA-sequencing analysis, nuisance variation is measured as 

cell-specific (or sample-specific) LS. LS is simple to define and quick to calculate – simply the 

column sums of the gene by cell expression matrix – and many studies demonstrate that LS is often 

at least sufficient for useful analysis. However, the use of LS has an in-built limitation in that the 

measure implicitly assumes that the sources of nuisance variation are typically technical in their 

origin, their influence being independent of the biological condition of any given cell. Specifically, 

one might suppose that technical sources of variation would alter the total per-cell sequenced 

expression, otherwise called LS. However, by using LS as the measure of nuisance variation, the 

scientist is implicitly also assuming that all such variations in LS are technical (specifically 

nuisance), an assumption which precludes the possibility that certain cell-types or conditions might 

express more or less in total across the genome for biological reasons of interest. 

A more robust measure, by contrast, might be enabled by a more flexible assumption on 

the underlying biology being studied. For example, Scran, as well as MR upon which it is based 

(Lun et al., 2016; Anders and Huber, 2010), both assume that some set of genes are equivalently 
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expressed (EE, having the same expected value after correcting for nuisance variation) between 

any individual cell and a reference measure of gene expression generated by taking the geometric 

mean of expression across cells, or between pooled cell expression and the reference in the case 

of Scran. Further, these methods suppose that a representative EE gene in this group can be 

identified by identifying the median of ratios of expression between the test cell and the 

constructed reference. Such an approach has the clear potential advantage of allowing the 

estimation of nuisance variation to be robust to biologically relevant differences in the underlying 

distribution of total expression across the genome. Of course, the downside of such an approach is 

one of precision; estimating size factors from the ratio of expression of just one gene is much less 

precise than estimating size factors by LS which, by definition, pools expression information 

across the entire genome. 

Relative advantages or disadvantages aside, the potential relevance of this difference in 

approaches – basing the method for estimating nuisance variation on biological assumptions – can 

be demonstrated through an example of a (very) simple sequencing dataset. Suppose that we 

sequence two genes from four cells. Further suppose that the first two cells (columns 1 & 2 in the 

expression matrix) are of one cell-type and the second two cells (columns 3 & 4 in the expression 

matrix) are of another cell-type. Finally suppose that we have prior knowledge that the first gene 

(row 1 of the expression matrix) is DE between the two cell-types and that the second gene (row 

2 of the expression matrix) is EE between the two cell-types. We observe the following raw 

expression: 

G2 4 7 14
1 2 2 4 K	

If we were to use LS as the measure of nuisance variation, then our scale factors would be 

some constant multiple of 3, 6, 9, and 18, those being the LS values for cells 1 through 4 
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respectively. Choosing a convenient multiplier such that, after normalization, the total expression 

for each cell is 9, our cell-specific scale factors are: 3/9, 6/9, 9/9, and 18/9. Dividing by these scale 

factors gives the LS normalized expression: 

G6 6 7 7
3 3 2 2K	

In this case, the problem is clear. Gene 2, which we know to be an EE gene, is normalized 

to express 50% more in the first cell type compared to the second; a larger fold change than even 

exists in gene 1 between cell types, despite the implicit assumption that gene 1 could be DE. If 

instead we derive scale factors as a multiple of the expression in gene 2, known to be EE, we would 

calculate factors such as: 1/2, 2/2, 2/2, and 4/2 respectively (multiplying the expression in gene 2 

by ½), giving normalized expression of: 

G4 4 7 7
2 2 2 2K	

Here, not only is the EE status of gene 2 maintained across cell-types as desired, but also 

the fold change between cell-types for gene 1 has increased. This improvement further highlights 

the potential problem inherent in normalization to remove the effects of LS: doing so can not only 

remove true biological differences as in gene 1 above, but further, inappropriate correction for LS 

can in fact induce spurious DE between genes which should be expressed at similar rates between 

groups as in gene 2 above. This observation, that correcting for a biased measurement of nuisance 

variation can induce false positives is not new. As mentioned in the Introduction, at least as far 

back as 2010, Robinson and Oshlack observed that normalization for LS between cell-types, 

kidney and liver in their case, could induce false positives (Robinson and Oshlack, 2010). In their 

case, the effect was as dramatic as an approximately 30% apparent downregulation of the average 

gene in liver cells compared to kidney, including an average ~30% downregulation of expression 

in a select panel of housekeeping genes in liver compared to kidney. These genes, by definition of 
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being identified as housekeeping genes, were particularly expected to demonstrate constant 

expression following appropriate normalization. In their case, the culprit was that among truly DE 

genes between liver and kidney, upregulation was systematically higher in liver resulting in 

inflated LS measures of nuisance variation for that tissue and correspondingly overcorrected 

(divided by too large a scale factor) expression following normalization. 

We observe a similar effect in modern sequencing data. In particular, we analyzed spatial 

sequencing data (10X Visium platform) from a sequential pair of sections from a skin biopsy with 

the lab of Dr. Drolet, Department of Dermatology at UW Madison. In these sections, the cell-type 

heterogeneity is clear from the H&E imaging, and this heterogeneity directly corresponds to 

region-specific variation in the total number of sequenced UMIs for each spot (the unit of 

measurement for this technology with spot-specific location metadata); each spot containing on 

the order of 10s of cells (Figure 3.1). High density regions such as the epidermal layer (far right in 

sample A, bottom in sample B) or highly active regions such as glandular tissue (center in both 

samples) show higher raw expression than low density/low activity regions such as the deeper 

adipose tissue (far left in sample A, top in sample B). Following successful normalization, we 

would expect that these effects, when driven by technical attributes such as the density of cells, 

would be removed. However, when driven by biological effects such as the cell-type-specific 

systematic upregulation of a set of genes, we would expect successful normalization to preserve 

these regional differences, similarly to the liver and kidney cells of Robinson and Oshlack. 
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However, following normalization for LS under the Dino method, we see that total 

normalized expression is constant up to sampling variation across the whole tissue section, as is 

expected for methods that correct for LS (Figure 3.2). Looking deeper, if we plot the spatial sum 

of normalized expression from a subset of the top 1,000 highest variance genes (variance of 

log(x+1) on normalized expression), we observe there are spatial patterns in the sum of normalized 

expression as expected. However, performing the same analysis on the following 4,000, low 

variance genes (all remaining genes after these first 5,000 are considered “non-expressed”), spatial 

Figure 3.1: Spatial patterns in total sequencing levels 

(top) H&E stain (left) and sum of total sequenced UMIs (right, log10 scale) from Sample 
A show correlation between cell-type/chromatin density in the H&E image and total 
sequenced UMIs. (bottom) Similar results hold for the Sample B section and sequencing 
taken from the same skin biopsy as Sample A. 
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patterning persists despite the fact that this subset is expected to contain primarily, if not only, 

housekeeping and other EE genes across cell types. 

 

Further, we can subset two sub-populations of cells by their morphology on the H&E image 

and known marker genes: transcriptionally active cells from the sweat glands and less 

Figure 3.2: LS normalization induces spurious differential expression 

(top-left) Normalization of expression by Dino for sample A results in roughly constant 
total expression across the tissue section. Sub-setting the top 1000 highest variance genes 
following normalization recapitulates the spatial dependency on expression levels as 
expected (top-right). However, the spatial dependency remains even when considering the 
next 4000 genes (low variance) (bottom-left) indicating a systematic bias in normalized 
expression for the typical gene. This systematic bias is measured between sweat glands and 
the dermis papillary with the more transcriptionally active sweat glands being 
systematically downregulated (median in red) after normalization as shown by an M vs. A 
plot of the full 5,000 genes previously considered (bottom-right). 
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transcriptionally active cells from the structural dermis papillary. If we calculate the fold-changes 

in average (normalized) gene expression between these two tissues for the same first 5,000 genes 

and visualize the log-ratios as an M vs. A plot, we observe systematic bias away from 0 in the 

estimated fold-change values (Figure 3.2). In particular, the median log2 fold change across genes 

is about -0.1, corresponding to a roughly 7% systematic down-regulation of the median gene in 

the sweat gland spots compared to the dermis papillary spots, contrary to the assumption that only 

a minority of genes should be DE between the two populations. 

It is with these motivating examples in mind that we are developing a new method: Robust 

Heterogeneity Integration Normalization or Rhino. Adapting the resampling techniques from Dino 

for the specific normalization component of the method, the main contribution of Rhino is the 

accurate and precise estimation of cell-specific size factors which are unaffected by the potential 

biases of LS factors when calculated on heterogenous samples. As single cell and spatial 

sequencing techniques become both increasingly powerful and economical, we expect the analysis 

of such heterogenous data only to increase, and thus the potential benefit of methods such as Rhino 

to be significant. 

3.2 Methods 

3.2.1 Model specification 

Like Dino, Rhino approaches normalization as a modeling challenge; calculating parameters for 

an estimation of the underlying expression distribution and then using that estimate in an empirical 

Bayes framework to resample normalized expression values. Rhino differs, however, in basing the 

model of normalized expression on a generalized linear model (GLM). This sacrifices the per-gene 

flexibility of the approximately non-parametric estimate of gene expression which is present in 
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Dino. The benefit – similar to and inspired by previous work on GLMPCA (Townes et al., 2019; 

Townes, 2019) and ZINB-WaVE (Risso et al., 2018) – is that information can be pooled across 

genes for an improved global estimate as well as the potential to include further experimental or 

nuisance covariates (e.g., identifiers to correct for batch effects). The pooling of information across 

genes in Rhino is, further, critical to its primary purpose of estimating robust cell-specific size 

factors as will be demonstrated below. The model of gene/cell expression can be written for G-

many genes and J-many cells as: 

𝑌&×( ∼ 𝑓)9𝜇&×(=	
𝜇&×( = 𝑒𝑥𝑝9𝐵&×*𝑋*×( +𝑊&×+𝑍+×( + 1&×#𝛿#×(=	

Here we have abused notation slightly to indicate that the elements, ygj, of the expression 

matrix Y are each independent samples from a Poisson distribution with corresponding mean μgj. 

The matrix of Poisson means further follows the usual log link function such that exp(⋅) is applied 

elementwise to the contained linear function. The purpose and format of the included matrices in 

the log-linear function can be described as follows. 

1. BG×NXN×J: Intercept and experimental conditions. This term encodes 

information on the log-average expression level for each gene insofar as the 

remaining terms are in some way centered. Further, this term encodes any 

additional information about experimental conditions, batch effects, or other 

covariates to be modeled. 

a. BG×N is the coefficient matrix for the g-many intercepts and experimental 

linear effects across the N-many effects. At a minimum, N = 1 and BG×1 

contains only gene intercept (expression level) information. At greater 
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values of N, BG×N can encode, e.g., shifts in gene intercept to correct for 

batch effects. 

b. XN×J is the design matrix for the dataset. In all cases, and in particular in the 

minimal case of N = 1, the first row of X is a row of 1s allowing for a 

common intercept for each gene g across all cells j. Further rows of X 

encode user supplied variables to explicitly model and/or regress out during 

the normalization procedure. For example, these further rows of X may 

contain indicator variables to encode shifts in average expression between 

batches. In the formulation of μG×J, X is the only parameter which is known; 

all others need to be estimated. 

2. WG×LZL×J: Latent space representation. This term encodes a latent space 

representation of the observed expression in L-many dimensions. As such, this term 

contains the representation of all biological variability across cells, excepting only 

any experimental conditions the user may choose to incorporate into X, and is 

directly inspired by an analogous term in GLMPCA (Townes et al., 2019; Townes, 

2019). 

a. WG×L is the matrix of latent dimensions, directly analogous to the 

components in Principal Component Analysis (PCA). As such, the columns 

are constrained to be unit length and (approximately) orthogonal. 

b. ZL×J is the matrix of representations in the latent dimensions for each cell j. 

3. 1G×1δ1×J: Per-cell size factors. This term, in particular the parameter row-vector, δ, 

encodes the per-cell size factors, the estimated measures of nuisance variation 
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between cells. Being log-additive, this term performs the same function as scaling 

the mean expression, μj, by a constant across all genes for a given cell as is the case 

for most normalization methods. Somewhat uniquely, however, δ encodes “relative” 

rather than absolute measures of the “size” of a particular cell. In particular, δ is 

constrained to be mean 0 such that ∑jδj = 0. This implies that if δ1 - δ2 = 1, then 

all that is known is that cell 1 contains exp(1) times as many UMIs as cell 2 for 

reasons of nuisance variation after accounting for any differences due to biological 

variability or linear effects encoded in the WZ and BX matrices respectively. 

The observant reader may have already realized that the model as described is not estimable, 

even given the restricted solution space for W and δ. In particular, the rows of Z can translate 

arbitrarily while all and any differences can be accounted for by corresponding shifts in the 

intercept encoded by the first column of B. For this reason, as well as for reasons of computational 

stability and, not least, the robust estimation of size factors δ, parameters are estimated via 

penalized maximum likelihood estimation. For the likelihood function induced by the above model 

of sequenced UMIs, the following negative, penalized, log-likelihood function is minimized 
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Several of the penalty terms serve critical or nuanced purposes, and so we describe each 

penalty term in detail in a dedicated section below. In brief, however: 

1. Batch effects: the penalty term with the λB penalty coefficient is an l-1 penalty on 

the non-intercept coefficients of B, that is, an l-1 penalty on the batch/experimental 

effects. 

2. Sparse latent space: the penalty terms with the λl penalty coefficients are l-1 

penalties on the columns of W, imposing sparsity on that matrix. 

3. Latent space orthogonality: the penalty term with the λO penalty coefficient 

enforces approximate orthogonality on the columns of W. 

4. Sparse representations: the penalty term with the λz penalty coefficient imposes 

sparsity and median-0 centering on the representations zj of cells in the latent space. 

5. Latent space “gravity”: the penalty term with the λE penalty coefficient imposes 

an attractive force between latent representations of neighboring cells. Given the 

approximately inverse-square weighting imposed by Pij, this penalty is roughly 

analogous to adding a gravitational force which attracts neighboring cells towards 

each other with little influence on more distant cells. In the above notation, 𝒩p(i) 

denotes the set of p-many nearest neighbors to the point zi.  

3.2.2 Model penalties 

The penalty terms imposed on the Rhino model optimization serve not only to regularize and 

render estimable the parameters, they also serve functional purposes. Some terms like the 

penalization on experimental effects aid in the interpretability of the resulting model. Others like 
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the attraction between neighboring cells are manifestations of underlying biological assumptions. 

In this section we detail the purpose and construction of the penalty terms in greater detail. 

3.2.2.1 Batch effects 

The l-1 penalty on the non-intercept columns of the experimental effects matrix, B, serves 

two purposes. At the first level, assuming there is more than one column of B (otherwise this 

penalty term has no effect on the objective function being optimized), this penalty serves as a 

regularizer in the spirit of Lasso regression with the corresponding potential to reduce the error of 

the subsequent coefficient estimates. More importantly, however, the penalty on the columns of B 

serves to enforce the expectation that estimated coefficients in fact represent the 

experimental/batch effects being modeled. While it is still imperative upon the user to protect 

against confounding of biological and experimental/technical variability, the penalization on B 

preferences cell-to-cell variability being modeled in the WZ term as intended with the estimated 

coefficients in B representing global shifts between experimental conditions that occur across cell-

types. For this reason, it is important that λB>λz and that the user have some reasonable confidence 

that the cell-types across experimental conditions are both heterogenous and somewhat constant. 

The default value for λB is currently set to 1, but can be altered by the user. 

3.2.2.2 Sparse latent space 

The l-1 penalty on the columns of W serves a similar, but actually more critical function to 

the penalization of the non-intercept columns of B. As before, the penalty imposes Lasso-type 

regularization. However, the key purpose of this penalty is the sparsity itself. As already stated, 

the fundamental goal of Rhino is the robust estimation of per-cell size factors. The biological 

assumption which underpins this approach is that, between any pair of cells, there is some set of 
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equivalently expressed genes. As with previous methods that made similar assumptions, like Scran, 

MR, and TMM, the goal is then to estimate size factors from this subset of EE genes. In the context 

of Rhino, an EE gene is one for which the latent space representation of expression is equal 

between two cells, that is, wg (zI - zj) = 0. This is trivially true for any row of W which is zero, i.e., 

for any wg = 0. Such genes are thus considered globally EE, and serve as reference points by which 

the relative size factors between cell-types can be set. 

The details of how this sparsity on W allows for robust estimation of the size factors δ are 

the subject of section 3.2.3. In the meantime, it is clear that careful consideration must be given to 

the selection of penalty coefficients λ1, λ2, …, λl for each column of W. For this reason, the selection 

of these coefficients is algorithmic, rather than set by the user. To perform coefficient selection, 

we first note that, for any element wgl = 0, the minimization of the objective function will keep wgl 

= 0 if and only if the magnitude of the un-penalized partial derivative with respect to wgl is less 

than or equal to the corresponding l-1 penalty coefficient, λl. 

We therefore calculate the un-penalized partial derivative with respect to each element wgl 

at wgl = 0. In practice, the ordering of absolute value of the un-penalized partial derivatives for 

each column of W results not just in a monotonically-decreasing trend, as must be the case by 

construction, but an L-shaped, visually convex curve (“visually” because local non-convexities 

may exist). This is consistent with the hypothesis that any given component (column of W) is 

representing the biological variation of a finite – and typically small – number of genes across 

cells, these genes being related or at least correlated in their activity and thus forming the vertical 

component of the L-curve. The remaining majority of genes, which form the horizontal component 

of the L-curve are thus considered to be noise; only correlated with the expression in the direction 

of the component by chance. This then suggests a rule by which to select the penalty coefficients 
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λl: set λl equal to the absolute un-penalized partial at the elbow-point – that is, the point of 

maximum curvature – in the ordered list of partials. 

In practice, we allow the user to bias the algorithm in favor of modeling more genes by 

setting λl equal to some multiple of the elbow-point, by default this multiple is 0.95. Further, sanity 

controls are placed on the estimation procedure such that λl should be set between some bounds. 

By default, these bounds are set at the 99th and 50th quantiles of absolute, un-penalized partials. In 

practice, this imposes the restriction that no less than 1% and no greater than 50% of genes will be 

non-zero for any given column of W. 

3.2.2.3 Latent space orthogonality 

In order to make the representation of each cell in the latent space as useful as possible for 

downstream analysis – e.g., for graph-based clustering on the Rhino output rather than on 

secondary PCA of the normalized expression – we impose a soft orthogonality condition on the 

columns of W through the penalty: 

𝜆0VY𝑎𝑐𝑜𝑠9𝑤12𝑤$= −
𝜋
2]

3

1.$

	

Since the columns of W are constrained to the unit sphere, this reduces to a penalty on the 

angle between each pair of components, preferencing orthogonal components, i.e., acos(wiTwj) - 
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In words, the gradient is a scaled vector in the direction of wj. However, as we are 

performing constrained optimization on the unit sphere, it is the component of the gradient which 

is perpendicular to wi which is important. Denoting the scalar values above by c, this perpendicular 

component can be calculated as 

𝑐9𝑤$ −𝑤1𝑤12𝑤$=	

which in turn has length 
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which further implies that the gradient can be represented as 
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where the representation follows from expanding c and where wji⊥ denotes the unit vector in the 

direction of the component of wj which is perpendicular to wi. That is, the gradient in wi is a unit 

vector pointing directly towards/away from wj along the meridian of the unit sphere defined by wj 

and wi, scaled by the angle between the two components wi and wj. 

In practice, the penalty coefficient, λO, is progressively increased during optimization such 

that |WTW-I|F should be small, on the order of 1e-4, where |⋅	|F is the Frobenius matrix norm. 

3.2.2.4 Sparse representations 

We impose an l-1 penalty on the latent space representations, Z, of the cells primarily for 

the purpose of estimability. As has already been mentioned, the unpenalized likelihood function is 

inestimable as any translation of the rows of Z can be matched by corresponding updates to the 

intercept column of B. To solve this, we impose a functional restriction that the median in each 

row of Z should be zero through the l-1 penalty.  
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Further, model testing has demonstrated that, in some cases, individual elements zlj may 

diverge independent of the above mentioned estimability concerns. This occurs in sparse cells for 

which the non-zeros in the column yj occur only in genes for which wg is partially or completely 

non-zero. In such a case, optimization will attempt to minimize the size factor, δj so that the zero 

elements of yj match the estimated non-zero mean for that gene. This minimization in δj is matched 

by corresponding inflation of zj. A sufficient penalty on zj likewise controls this divergent behavior. 

In practice, we choose 0.01 as the default value for λz, being an empirical intermediate 

between a smaller value which allows greater freedom and a sufficiently large value to prevent 

divergent behavior. 

3.2.2.5 Latent space “gravity” 

The final penalty term is guided by first, the desire to perform soft-clustering within the 

Rhino framework, and second, the assumption that neighboring cells within the latent space are 

more likely than not derived from the same cell-type. This second component in particular suggests 

that differences between neighboring cells are more likely due to random noise than to true 

biological differences, and so differences in the estimated means for such pairs of cells should be 

penalized; a principle which provides the functional basis for the desired soft-clustering. 

The specific formulation of this penalty term is driven in general by the theory of diffusion 

maps and in particular by the mathematics behind the t-SNE dimension reduction technique (van 

der Maaten and Hinton, 2008). The specific formulation of this penalty is, as noted above 

𝜆5𝑈 = 𝜆5VV
1
2𝑃1$;𝑧1 − 𝑧$;3

3

$1

	

This formulation has a convenient interpretation: as with the similar term in t-SNE, it is 

exactly the formula for the spring potential energy (hence the notation λEU) of the system of cell 
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representations, zj, if each cell is connected to all others by springs, and the strength (spring 

coefficient) of those connecting springs is Pij. Minimizing the objective function thus includes a 

minimization of the potential energy of the latent representation; drawing nearby cells closer to 

each other. 

The value Pij has a dual interpretation, however. In the context of energy minimization as 

above, Pij is the spring coefficient of the spring connecting cell i to cell j. In the context of diffusion 

mapping, however, Pij is the conditional probability that cell i would choose cell j as its neighbor if this 

selection was a random process with selection probabilities being a function of Euclidean distance. For this 

reason, we follow the developments incorporated into t-SNE and use a Cauchy distribution (equivalent to 

a t-distribution with 1 degree of freedom) as the neighbor selection kernel. This gives the formula for Pij as 

𝑃1$ = e
Y1 + ;𝑧1 − 𝑧$;3

3]
%#

∑ (1 + |𝑧1 − 𝑧6|33)%#6∈𝒩!(1)
		𝑗 ∈ 𝒩;(𝑖)

0		𝑒𝑙𝑠𝑒

	

For computational efficiency, we only calculate Pij on a small set of p-many neighbors of 

cell i, 𝒩p(i),	setting	values	for	other	cells	j	to	zero.	As	with	t-SNE,	the	Cauchy	distribution	has	

a	convenient	density-preserving	property	when	used	in	this	way.	This	is	because	the	Cauchy	

PDF	is	approximately	an	inverse-square	function	of	the	distance	between	cells.	If	two	cells	zj	

and	zk	are	both	in	the	neighborhood	of	cell	zi,	but	zk	is	twice	as	far	away	as	zj,	the	conditional	

probability	 that	 cell	 zk	 will	 be	 selected	 as	 the	 neighbor	 is	 approximately	 one	 fourth	 the	

probability	that	cell	zj	will	be	selected	regardless	of	the	actual	magnitude	of	those	distances.	

In	 the	application	to	Rhino,	we	 further	extend	this	density-preserving	property	by	

scaling	 the	 values	 Pij	 by	 a	 cell-specific	 constant,	 ci.	 While	 the	 conditional	 likelihoods	 of	

neighbor	selection	might	be	approximately	scale-invariant	under	the	Cauchy	distribution,	

the	corresponding	spring	energies	incorporated	into	the	objective	function	are	not	through	
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the	action	of	 the	squared	distance	component.	For	 this	 reason,	we	normalize	 the	penalty	

across	all	neighbors	of	cell	zi	such	that	the	expected	value	of	the	penalty,	when	initialized,	is	

1	for	all	cells.	Specifically,	we	set	

𝑐1 = j
1
2V𝑃1$

$

;𝑧1 − 𝑧$;3
3
k

%#

	

In practice it would be unstable, not to mention inconvenient, to have the values of P vary 

as the values of Z do. For this reason, the values of P are fixed following initialization for all future 

parameter updates. To ensure that the values of Z are reasonable at the time of initialization, the 

objective function is allowed to optimize without the influence of this energy penalty for several 

iterations. After this initial estimate of Z, P is initialized, and the optimization is continued under 

the full penalty. By default, the energy penalty coefficient is set to λE = 1. 

3.2.3 Robust estimation of cell-specific size factors 

Much of the introduction was dedicated to demonstrating why the use of LS as the measure of 

nuisance variation could lead to biased results, particularly in the context of cell-type heterogeneity. 

However, these estimates do have one particular benefit, their precision. By pooling information 

across all genes for each cell, LS factors are quite precise measures, even if they are measures of 

potentially the wrong thing. This is in contrast to some of the existing methods which attempt to 

provide unbiased size factor estimates. 

Scran as the particular example improves upon previous techniques by pooling information 

across cells and then uses that pooled information to back-calculate cell-specific factors. This 

procedure gives Scran a certain robustness to the large numbers of zeros often present in modern 

data. However, at its core, Scran is still based on a ratio of the expression of one gene to a reference 
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expression level. Even when pooled, the expression level of the median ratio gene can still be in 

the single digits, resulting in an accurate, but imprecise size factor estimates. 

Rhino aims to combine both approaches. Like Scran, Rhino aims to identify the set of EE 

genes and use those genes to calculate relative size factors between cells of potentially different 

types. However, like LS estimation, Rhino still uses information from all genes, particularly 

leveraging these data when calculating size factors between cells of the same or similar cell-types. 

The key to this approach is letting the WZ term identify first when two cells are likely to be of 

similar or different cell-types. If of different types, the relative difference in size factors will be 

driven by the EE genes (zeros, particularly zero rows in W). If of similar types, the WZ term drops 

out of the calculation of relative size factors and information across all genes can be leveraged. 

We sketch the inspiration for this in the context of maximum likelihood estimation below. 

Consider two cells of the same cell type, j and j’. By this fact, they will have similar values 

of zj and zj’ since there is little if any biological variability between them. In the absence of 

extraneous cell-specific nuisance or experimental effects (e.g., X is absent from the model 

excepting the first intercept row), the cell specific mean vectors will be: 

𝜇$ = 𝑒𝑥𝑝n𝐵# +𝑊𝑧$ + 1&𝛿$o = 𝑒𝑥𝑝n𝐵# +𝑊𝑧$o 𝛥$ = 𝜇=5,$𝛥$ 	
𝜇$? = 𝜇=5,$?𝛥$?	

where, as before, exp{} is applied elementwise. It can also be shown that the unpenalized derivative 

in δj is given by: 

V𝜇@$ − 𝑦@$ = 𝛥$𝜇=5,⋅$ − 𝑦⋅$
@

	

which implies that the maximum likelihood estimate of Δj is given by Δj = y⋅	j / μRE,⋅ j. By extension, 

the ratio of exponentiated size factors is: 
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𝑦⋅$"𝜇=5,⋅$

	

However, as residual biological differences recede, that is, as |zj-zj’|→ 0, we observe that 

μRE,⋅ j - μRE,⋅ j→ 0 which further implies Δj / Δj’→ y⋅ j / y⋅ j’. In words, for two cells without estimated 

biological differences, the ratio of exponentiated RE size factors is simply the ratio of the LS of 

the two cells. In this way, a larger proportion of genomic information is used to improve the 

precision of size factor estimates δj = log(Δj ). 

The alternate case, where there are two new cells, j and j’ which are from different cell 

types (still no experimental effects) is more complicated, so we suppose for this illustration that 

we are in the simplified situation where the entire dataset is comprised of just these two cells and 

proceed by contradiction. Suppose it is the case that we have obtained the maximum likelihood 

estimate for the unpenalized objective function. Further suppose that the set of estimated EE genes, 

i.e., those for which the rows of W are 0, is denoted by ℰ and that 

𝛥$
𝛥$?

≠
∑ 𝑦@$@∈ℰ

∑ 𝑦@$?@∈ℰ
	

Since it is the case that μRE,g,j = μRE,g,j’∀g∈ℰ, and since the gradient in B can be written as 

(μj - yj) + (μj’ - yj’), we are left with two options. 

First, if 

𝜇=5,@,$9𝛥$ + 𝛥$"= − 9𝑦@$ + 𝑦@$"= ≠ 0	𝑓𝑜𝑟	𝑎𝑛𝑦	𝑔 ∈ ℰ	

then the gradient in B is not zero and hence our parameters do not derive from a maximum 

likelihood estimate, a contradiction. 

In the alternate case, we have that 
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and since 
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we have that both  

𝛥$ ≠
∑ 𝑦@$@∈ℰ
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Since the maximum likelihood estimate implies that Δj	=	∑gygj	/	∑gµRE,g,	we	have	that	

V𝑦@$
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≠ 𝛥$V𝜇=5,@,$
@∉ℰ
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Since the unpenalized gradient with respect to zj can be written as 

𝑊2(𝜇$ − 𝑦$)	

unless W is orthogonal to both differences in j and j’, this implies that the gradient with respect to 

zj or zj’ is non-zero and again, our parameters cannot derive from a maximum likelihood estimate, 

a contradiction. 

Finally, since the unpenalized gradient with respect to W can be written as 

(𝜇 − 𝑌)𝑍2	

optimization updates to W will move W into the span of at least some of the differences μj-yj 

excepting only the pathological case wherein the parameters are initialized at a saddle point in the 

objective function. Given the dimensionality of the data and the fact that W and Z are initialized 

by PCA on log(Y + 1), such a pathological case is implausible. 

Between these two situations – cells of the same cell-type or cells of differing cell-types – 

we have a worst-case scenario analogous to the method of TMM absent the heuristic in that method. 

That is, relative differences in scale-factors are minimally estimated by the sum of observed UMIs 
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across the set of genes estimated to be globally EE. In the best case, between cells of the same 

type, the sum of expression across all genes is used as all genes are definitionally EE between such 

cells. The reality is, of course, somewhere in-between as there will presumably be multiple cells 

in each of multiple cell-types in the dataset. Robust estimations will be derived across all genes 

for cells of the same type and information is then pooled across cells of different types through the 

action of WZ to estimate improved between cell-type size factors. 

3.2.4 Model optimization 

The Rhino model of gene expression is estimated, as has been previously mentioned, by the 

method of maximum likelihood. In particular, we proceed by minimizing the penalized, negative 

log-likelihood function. However, three challenges present themselves. First, many of the penalty 

terms take the form of l-1 penalties which naturally do not lend themselves to standard calculus-

based optimization techniques. Second, the objective function is easily shown to be non-convex, 

both in terms of the likelihood parameters as well as some of the penalty functions. Third, two 

parameters, δ and W are constrained in their solution space. To address all three of these challenges, 

we perform a modified quasi-newton optimization based on the L-BFGS method (Liu and Nocedal, 

1989). 

The first and simplest modification is to perform partitioned optimization, partially 

optimizing the objective function in Z and δ and then partially optimizing in B and W, alternating 

until convergence or iteration limit. This modification provides two benefits. First, it partially 

(though by no means completely) resolves the non-convexity issues. Second, and more importantly, 

updates in Z and δ require computing the gradient on all cells while updates in B and W do not. 

We therefore proceed, in the case of large datasets, to optimize B and W on rotating, random 
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subsets of the data, increasing the size of the subset when the observed increase in likelihood 

(calculated during updates to Z and δ) becomes a small fraction of the predicted increase. In this, 

we follow the method of Multi-Batch L-BFGS described by Berahas and Takáč (Berahas and 

Takáč, 2020). 

Second, in order to perform optimization in the context of l-1 penalties, we alter the 

calculated and stored gradients in accordance with the OWL-QN method (Andrew and Gao, 2007). 

In particular, Andrew and Gao observed that the Hessian was a function of only the component of 

the objective function which did not include the l-1 penalty. As such, when using modified L-

BFGS, we can and do derive accurate estimates of the approximate Hessian by taking the 

differences of the gradients calculated only on the negative log-likelihood and penalty terms that 

do not contain l-1 regularization. Andrew and Gao further observed that the full gradient could be 

accurately calculated assuming that the initial and update point remain in the same quadrant, that 

is, that all parameter signs remain constant before and after the update, excepting only parameters 

that become zero or become non-zero. Replicating this procedure, we set to zero any parameters 

whose sign flips from positive to negative or visa-versa upon update. 

The most important aspect of the fitting of the Rhino model is the constrained optimization 

of W and δ. Here, we once again adapt our implementation of sparse L-BFGS, relying this time on 

some of the work into optimization on manifolds (Qi et al., 2010; Huang et al., 2015). Applying 

the techniques of orthogonal projection of the gradient onto the tangent space and vector transport 

are straight forward in the case of updates to δ where the restriction is merely one of zero mean. 

The procedure is slightly more complex in the case of optimization of W. Fortunately, the theory 

of optimization on the unit sphere is well studied, and we are thus able to extend it to the context 
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of l-1 optimization implemented through our application of OWL-QN. Generally, the tangent 

space at a given point, x, is: 

𝑇D𝑆-%# = {𝜉 ∈ ℝ-: 𝑥2𝜉 = 0} = {𝜉 ∈ ℝ-: 𝑥2𝜉 + 𝜉2𝑥 = 0}	

The orthogonal projection onto the tangent space is: 

𝑃D𝜉D = 𝜉 − 𝑥𝑥2𝜉D	

The retraction onto the unit sphere Sn-1 is: 

𝑅D(𝜂D) =
𝑥 + 𝜂D
|𝑥 + 𝜂D|3

	

The parallel transport of a vector in the tangent space, ξ, along the geodesic from a point x 

in the direction of another vector in the tangent space, η, is: 

𝑃E#
!←G𝜉 = |𝐼- + (𝑐𝑜𝑠(|𝜂|3𝑡) − 1)

𝜂𝜂2

|𝜂|33
− 𝑠𝑖𝑛(|𝜂|3𝑡)

𝑥𝜂2

|𝜂|3
~ 𝜉	

In our application, we calculate the update direction d by Riemannian L-BFGS (Huang et 

al., 2015). However, the l-1 penalty and OWL-QN approach mean that our updated point may not 

lie along the geodesic from our starting point in the direction of d. Specifically, our updated point 

may not be Rx(d) for initial point x and step length 1. As such, we must re-calculate the “actual” 

update direction, d’; that is, calculate the updated direction such that Rx1(d’) = x2 for updated point, 

x2, as: 

𝑑? =
𝑥3
𝑥#2𝑥3

− 𝑥#	

When calculating and updating the stored vectors s and y for Riemannian L-BFGS, we can 

then use d’ when performing parallel transport on the old space. In particular, the parallel transport 

from x1 to x2 in the direction of d’ becomes 

𝑃H?(𝜉) = |𝐼- + (𝑥#2𝑥3 − 1)
𝑑?𝑑?2

|𝑑?|33
−�1 − (𝑥#2𝑥3)3

𝑥#𝑑?
2

|𝑑?|33
~ 𝜉	
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Finally, when correcting the transported previous gradient in the calculation of the current 

y, the differential retraction can be calculated as: 

𝒯=$"%(𝜉D) ≔
𝑑
𝑑𝑡 𝑅D

(𝑑? + 𝑡𝜉D)|!IG	

In our case, however, ξx = d’, and so the above reduces to: 

𝒯=$"%(𝜉D) =
𝑑
𝑑𝑡

𝑥 + 𝑑′(1 + 𝑡)
|𝑥 + 𝑑′(1 + 𝑡)|3

=
|𝑥 + 𝑑?|3𝑑? − (𝑥 + 𝑑?)|𝑥 + 𝑑?|3%#(𝑥 + 𝑑?)2𝑑′

|𝑥 + 𝑑?|33
	

3.2.5 Normalization by resampling 

As previously mentioned, the Rhino model identifies robust, cell-specific size factors through the 

unsupervised identification of candidate DE genes and leverages cell-type similarities to pool 

information across cells both in the construction of the latent space and through the action of the 

potential energy penalization. To use the now fitted Rhino model for normalization, we adopt the 

resampling techniques from Dino.  

In particular, given maximum likelihood estimates of μ, we reformulate the model as a NB 

random variable to account for any potential overdispersion. Gene-specific overdispersion 

parameters, θg, are fit via maximum likelihood on the corresponding likelihood function for fixed 

mean μ: 

𝑦@$ ∼ 𝑁𝐵J&',K&(𝑦@$)	

The NB distribution is parameterized under the mean-dispersion form such that the 

variance is represented as θgμgj2 + μgj. Estimates of overdispersion are then smoothed across gene 

expression (B1), as in scTransform, to reduce overfitting. 

Factoring μ into nuisance and biological components yields: 

𝜇 = 𝑒𝑥𝑝{𝐵%#𝑋%# + 1&𝛿} ∘ 𝑒𝑥𝑝n𝐵#1(2 +𝑊𝑍o = 𝜇* ∘ 𝜇,	
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where exponentiation is once again elementwise and ∘ denotes the (elementwise) Hadamard 

product. Normalized expression values are then computed as in Dino by sampling from the 

posterior distribution of the biological component of expected expression conditional on the 

observed counts Y and the estimated nuisance component of expression. This posterior distribution 

can then be concisely written as: 

𝑦B@$ ∼ 𝑓& �𝑦@$ + 𝜃@%#,
1

𝜇*,@$ +
1

𝜇,,@𝜃@

�	

3.3 Preliminary results 

To test and validate the performance of Rhino, we first reconsider the dermal skin sections from 

the introduction. Performing Rhino normalization on these data resolves several of the concerns 

previously introduced in the context of LS-type normalization. Notably, we first observe that the 

per-spot sum of normalized expression is no longer roughly constant across the Sample A skin 

section (Figure 3.3). Of note, the region of glandular tissue, roughly half way between the left 

(largely adipose) and right (epidermis) edges of the section, retains its high level of expression 

first observed in the plot of unnormalized UMIs (Figure 3.1). This is consistent with the hypothesis 

that glandular tissue, by definition, upregulates a set of genes directly related to the glandular 

function. Since glandular tissue presumably still needs to express the same housekeeping genes at 

similar levels to surrounding tissue, properly normalized data should equalize to this second group 

of housekeeping genes, maintaining the upregulation of the gland-specific genes, and resulting in 

an overall up-regulation of glandular tissues compared to surrounding tissues.  

By contrast, the epidermal layer on the far right of the tissue also demonstrated high un-

normalized expression while the Rhino normalized sum is roughly equivalent to neighboring but 
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deeper tissues (Figure 3.3). From examination of the H&E stain (Figure 3.1), we know that there 

exists at least one source of nuisance variation that contributes to the high un-normalized counts. 

Specifically, the blue staining of chromatin on the surface of the tissue indicates a significantly 

higher density of cells than for deeper tissues which one might subsequently expect to result in 

higher-than-average total UMIs for that tissue region, as is indeed observed. However, the Rhino 

normalization which equalizes this surface layer with deeper tissues suggests that the entirety of 

this effect on the raw UMIs is artifactual. 
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As before, we attempt to assess the normalization quality by subsetting the top 1,000 

highest variance genes and the following 4,000 low variance genes (variance calculated on 

normalized data, genes beyond these first 5,000 are denoted as non-expressing for these purposes). 

Under Rhino, we observe clear spatial effects in the high variance subset, directly mirroring the 

Figure 3.3: Rhino normalization identifies nuisance variation 

(top-left) Normalization of expression by Rhino for sample A results in roughly spatially 
variable total expression across the tissue section. Sub-setting the top 1000 highest variance 
genes following normalization recapitulates the spatial dependency on expression levels as 
expected (top-right). The spatial dependency, however, is removed when considering the 
next 4000 genes (low variance), indicating the removal of the previous systematic bias in 
normalized expression from Dino for the typical gene (bottom-left). This correction is 
verified between sweat glands and the dermis papillary for the same panel of 5,000 genes 
with the more transcriptionally active sweat glands demonstrating equivalent expression 
across most genes (median in red) after normalization as shown by an M vs. A plot (bottom-
right). 
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spatial effects which, to a lesser degree, exist in the sum of all normalized expression plot (Figure 

3.3). Unlike the data normalized by Dino, however, the subset of low variance genes exhibits 

largely flat expression over the full surface of the tissue section, consistent with the assumption 

that these low-variance genes are expected to contain mostly if not entirely housekeeping and other 

EE genes whose expression should be constant across cells in well normalized data. To follow up 

on this point, we recapitulate the M vs. A plot from before on the Rhino normalized data between 

the subset of spots from the Sweat Glands and the subset of spots from the Dermis Papillary (Figure 

3.3). Unlike previously, however, we largely fail to see any systematic bias in the estimated fold 

changes between cell-types with the median log2 fold change reduced to only about -0.02 (red 

line). 

To further validate Rhino, we repeated the analysis of the EMT dataset from the Dino 

testing on normalized output from Rhino, Dino, and Scran. Similar to previous methods, Rhino is 

able to cleanly separate the predominantly epithelial cells from the inner region of the cell culture 

(purple) from the predominantly mesenchymal cells from the outer region of the cell culture 

(orange) (Figure 3.4). Further, when conducting an identical testing protocol to that used in the 

validation of Dino, the enrichment results on the curated list of 8 Hallmark terms from Rhino 

demonstrate similar or greater levels of significance than the corresponding analysis on Dino 

normalized data, both of which are generally more significant than results derived from Scran 

normalized data. As with Dino in Chapter 2, of particular note is the greater enrichment 

significance of the key Hallmark term defining the epithelial to mesenchymal transition for the 

Rhino normalized data (Figure 3.4). 
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3.4 Future work 

The discussed preliminary results are more than encouraging, suggesting that Rhino is 

accomplishing its primary goal of computing unbiased estimates of nuisance variation. However, 

further validation is clearly necessary. In particular, it is necessary to run Rhino on a large set of 

experimental datasets from a variety of sources and containing a variety of levels of cell-type 

heterogeneity to ensure stability of the algorithm. Further, testing on simulated data is required to 

ensure that the high-level positive results so far seen extend, as with the enrichment testing on the 

EMT dataset, to improved sensitivity and specificity in detecting differential expression at the level 

of individual genes. Related, it is important to ensure that the soft clustering and implicit 

imputation of the Rhino method do not obscure the unique expression profiles of rare cell types, 

and so clustering and expression testing will need to be conducted on both simulated and 

experimental datasets which contain multiple small, unique sub-populations of cells. 

Figure 3.4: Rhino improves power to detect differentiation pathways 

(left) tSNE plot of Rhino normalized EMT (same as from Dino validation) data cleanly 
separates the predominantly epithelial cells of the inner culture region (purple) from the 
predominantly mesenchymal cells of the outer culture region (orange). (right) Enrichment 
significance values for the curated subset of Hallmark gene sets. 
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However, prior to this in-depth validation work, a few technical challenges remain to be 

addressed. Of primary concern is the observed although slight instability in the optimization 

procedure. A likely candidate for this is the high degree of non-convexity imposed on the objective 

function by the orthogonality penalty, particularly in the later stages of optimization when λO has 

grown large to enforce stricter orthogonality in the columns of W: 

𝜆0VY𝑎𝑐𝑜𝑠9𝑤12𝑤$= −
𝜋
2]

3

1.$

	

To resolve this source of non-convexity and generally improve the efficiency of 

optimization, we observe that the desired form of W is, in fact, an element of the Stiefel manifold 

St(G,L): the set of all G×L orthonormal matrices. Fortunately, the theory of Riemannian 

optimization on the Stiefel manifold is almost as robust as that on the unit sphere, with well-known 

orthogonal projections, retractions, and vector transport functions. Unfortunately, however, and 

unlike optimization on the unit sphere, the retraction onto the Stiefel manifold is not zero 

preserving (except for the first column of W), the specific function form for tranporting from 

element X in the Stiefel manifold in the direction of ηX being: 

𝑅L(𝜂L) = 𝑞𝑓(𝑋 + 𝜂L)	

where qf(⋅ ) returns the orthonormal matrix Q from the QR decomposition of the input. A similar 

problem exists for the orthogonal projection function: 

𝑃L(𝜉L) = (𝐼 − 𝑋𝑋2)𝜉L +
1
2𝑋(𝑋

2𝜉L − 𝜉L2𝑋)	

However, as all other optimization operations occur either on the gradient absent the l-1 

penalty or on the corrected update vector defined by the difference between the starting and the 

OWL-QN corrected updated matrix W, only this retraction and projection need to be specifically 

modified to zero preserving. 



 68 
Following this method update and validation, we intend to release Rhino as a freely 

available R package on Bioconductor. 
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4 Accelerating developmental timing in chimeric stem cell cultures 

4.1 Background 

The potential benefits of regenerative medicine are great and, as such, have generated significant 

scientific interest in the field. With a shortage in general of organs available for transplant – never 

mind organs which are additionally immunologically compatible with the recipient – the ability to 

grow organs for transplant, as just one application, would represent immediate and dramatic 

improvements in patient care. In this pursuit, significant attention has been paid to understanding 

the biology of stems cells, whether embryological (ESCs) or induced pluripotent (IPSCs). Not only 

can ESCs/IPSCs be used to grow any tissue in theory, but IPSCs derived from a patient would, by 

definition, be perfectly compatible with the recipient’s immune system. 

Beyond the many outstanding technical challenges to such clinical application, practical 

considerations also exist. In particular, and perhaps surprisingly, it has been observed that stem 

cells grown in vitro develop at the same rate as the corresponding tissues in vivo (Barry et al., 

2017; Kanton et al., 2019; Espuny-Camacho et al., 2013; Maroof et al., 2013; Gaspard et al., 2008; 

Pollen et al., 2019; Nicholas et al., 2013). These slow developmental rates therefore necessitate 

equally long differentiation protocols, slowing both research into as well as future implementations 

of regenerative medicine (Saha and Jaenisch, 2009; Broccoli et al., 2014). 

The mirroring of developmental timing between in vitro and in vivo tissues, while a 

challenge, also suggests the existence of a developmental clock, intrinsic to species-specific 

genomes given the maintenance of the in vitro developmental timeline despite the lack of maternal 

signaling (Ebisuya and Briscoe, 2018). However, the presumed nature of this developmental clock 
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remains unknown and whether and to what degree the timing can be altered likewise remains 

unclear. 

However, there is some indication that timings need not be fixed. For example, while 

human stem cells develop slowly as discussed, mouse stem cells develop in accordance with a 20-

day gestation period (Gaspard et al., 2008; Ying et al., 2003; Shen et al., 2006) despite the fact 

that many of these more rapidly developing tissues naturally perform analogous functions to their 

human counterparts. In particular, while mature neurons require several months to develop from 

human ESCs (hES), the same cells only take 5-14 days when derived from mouse ESCs (mES) 

(Nicholas et al., 2013; Chuang et al., 2013; Sun et al., 2017; Shi et al., 2012). 

To expand our understanding of embryological developmental timing, we set out to test 

whether mature human neurons could be induced to develop according to an accelerated timeline 

similar to that observed in mouse cells. It was previously demonstrated that teratomas developed 

in a mouse host followed the original, slow developmental timeline, indicating that the mere 

presence of murine host factors was insufficient to accelerate development in human cells (Barry 

et al., 2017). However, it remains unclear whether the transient signals expressed during murine 

development – which, by definition, were not present in the teratoma experiment – have the 

potential to accelerate the development of human cells. As such, we investigated whether human 

and mouse stem cells, grown in a chimeric co-culture, and driven towards neural differentiation 

would result in an accelerated developmental timeline for the human cells. 



 71 
4.2 Results 

4.2.1 Experimental design and data 

Previously, a detailed RNA-sequencing (RNA-seq) time course of mouse and human pluripotent 

stem cells over three- or six-weeks of neural differentiation described, respectively, the drastically 

different species-specific rates of development in vitro (Barry et al., 2017). Here, we set out to 

determine if co-differentiating human cells with mouse cells together could induce the human cells 

to differentiation at a quickened pace. Since hES cells are thought to more closely represent a post-

implantation pluripotent stage, we used the similarly-staged mouse Epiblast stem (mEpiS) cells to 

compare with H9 hES cells (Brons et al., 2007; Greber et al., 2010; Tesar et al., 2007). To identify 

cells from each species, we used mEpiS cells constitutively expressing cytoplasmic efficient green 

fluorescent protein (EGFP) and H9 cells expressing nuclear-localized H2B-mCherry (Figure 4.1).  

 

Figure 4.1: Overview of data collection/analysis pipeline.  

(top left) Human (red) and mouse (green) cells are cultured at various mixing proportions 
over a 42 day neural differentiation time course; samples are harvested every 1-2 days for 
RNA-seq. Low quality biological replicates are removed from analysis and the data are 
normalized. (top right) Normalized data are fit to segmented regression built for RNA-seq 
data (Trendy) and temporal gene characteristics, such as peak times, are identified. (bottom 
right) Classified gene sets are further analyzed, including enrichment analysis for GO terms 
which are temporally accelerated or otherwise systematically altered in H10 compared to 
H100. (bottom left) In parallel to the previous analysis, normalized data are also correlated 
between time courses to identify transcriptome-wide effects. 
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To maximize any potential mouse-induced effects on human differentiation rate, we began 

by outnumbering human cells with the more quickly differentiating mouse cells in a ten-to-one 

ratio. 10% human co-cultured cells (H10), along with 100% mouse (M100) or 100% human 

(H100) control samples, were cultured under identical neural differentiation culture conditions 

(Brown, Barry, et al., 2021) and samples in triplicate were collected for RNA-seq every 24 or 48 

hours for six weeks (Figure 4.1). To minimize any confounding of results with known differences 

in cell cycle and cell fate choices due to differences in cell densities (Chetty et al., 2013; D’Amour 

et al., 2005; Bauwens et al., 2008; Pauklin and Vallier, 2013; Roccio et al., 2013), interspecies 

cell seeding confluencies were kept constant across species mixtures. After aligning transcripts to 

a combined human-mouse transcriptome to derive species-specific expression from the chimeric 

samples, samples passing quality control parameters (Supplemental Figure B.1) were processed 

for correlation analysis, fitted with gene expression patterns using the segmentation regression 

analysis R-package Trendy (Bacher et al., 2018), and the timing of expression pattern changes was 

compared across samples (Figure 4.1). 

Although mouse and human cells were singularized before seeding, time lapse microscopy 

revealed that, despite the clear occurrence of interspecies cell-cell interactions, cells preferentially 

clustered and proliferated with cells of their own species (Figure 4.2). Flow cytometry analysis 

revealed that while the intended starting cell ratios were seeded, as mouse cells differentiated 

quickly to become post-mitotic neurons, the still-proliferating human progenitor cells eventually 

overtook the culture.  By day 12 of differentiation ~50% of H10 samples were of human 

composition, and by day 16 over 75% of samples were human cells (Supplemental Figure B.2). 
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4.2.2 Differential timing in the up-regulation of neural genes 

To determine if gene expression patterns were accelerated in chimeric co-cultures, genes with 

fitted expression trends were compared between neural differentiation of human cells alone (H100) 

versus cells in a co-culture of 10% human cells mixed with 90% mouse cells (H10). We first asked 

if upregulated genes (genes trending up immediately or genes showing no change and then 

trending up) were upregulated earlier in mixed compared to control samples. Our bioinformatic 

analysis (See B.1 Statistical Methods) revealed that 929 genes were upregulated significantly 

earlier (begin up trending at least 2 days earlier) in H10 versus H100 samples, representing over 

57% of all genes that trend up in both H10 and H100, excluding genes that begin to trend up on 

Figure 4.2: Microscopy images of the H10 mixture across the time course.  

10% Human ES cells expressing nuclear-localized H2B-mCherry (red) were mixed with 
90% mouse EpiS cells (expressing cytoplasmic GFP (green)) and co-cultured together 
under neural differentiation conditions for six weeks. Images captured at the time points 
indicated show clusters of associating human and mouse cells (red and green clusters 
respectively). Scale bars = 200µm. 
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day 0 in both cases (Figure 4.3A). We recognized several well-described neurogenic genes 

identified as accelerated in this early-upregulated category (Supplemental Figure B.3A), including 

genes involved in neural differentiation and migration (e.g., STMN2, DCX, NEFL, NEUROG2, 

MYT1, MAPT), neuronal signaling and synapse transmission (e.g., SNAP25, SYT3, SYT4, SYN1), 

neural stem cell identity (e.g., FABP7, FGF10), and glutamatergic and GABAergic neurons (e.g., 

SLC1A3, GRIN2D, GABRA1; Fig 3E). Therefore, genes from a seemingly wide range of 

neurodevelopmental functions were upregulated earlier under chimeric differentiation conditions. 
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Figure 4.3: Changes in neurodevelopmental gene expression are accelerated in human ES cells differentiated 
among mouse EpiS cells.  

(A) All genes which trend up in both H10 and H100 are classified as either early, late, or unchanged in H10 relative 
to H100 (omitting genes which already start up-trending at day 0 in both H10 and H100). (B) The top 10 most 
significant GO terms enriched for early upregulation in H10 demonstrated a clear pattern of acceleration in neuron 
and synaptic signaling-related genes (term enrichments shown as log10 adjusted p-values (FDR)). (C) All genes which 
peak in both H10 and H100 were classified as either early, late, or unchanged in H10 relative to H100. (D) The top 
10 most significant GO terms enriched for early peaks in H10 showed acceleration of genes involved in neurogenesis 
and neuron development (term enrichments shown as log10 adjusted p-values (FDR)). (E) Relative expression plots 
of a curated subset of early-up (EU) genes collected into functional/regional groups. H10 (blue) and H100 (red) time 
courses were scaled such that 0 expression shows black and maximum expression between H10 and H100 shows as 
1/-1 (within gene). (F) Relative expression plots of a curated subset of early-peak (EP) genes collected into 
functional/regional groups. (G) Genes with shared peaks or shared up-trends between H10 and H100 were used to 
compute acceleration rate point estimates as the ratio of H100 event times (e.g., time of peak in H100) to H10 event 
times. Point estimates were smoothed to give a continuous estimate of the H10 acceleration factor. The median fitted 
acceleration factor calculated over the first 16 days for H10 was given as 1.699. 
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Given that several recognizable neurogenic genes were among those identified as 

upregulated earlier in H10 compared to H100 samples (Supplemental Figure B.3A and Figure 

4.3E), we set out to statistically test if early upregulated genes were specific to neural 

differentiation or a collection of genes within a random assortment of cellular processes. 

Functional GO-term enrichment (See B.1 Statistical Methods) of early-upregulated genes revealed 

that all of the ten most statistically significantly-enriched terms were associated with neuron and 

synaptic signaling (Figure 4.3B). In contrast, we did not observe neural-related GO term 

enrichment in genes upregulated later in H10 than in H100 (Supplemental Figure B.4A), 

confirming that neural genes were indeed specifically upregulated earlier in human cells co-

differentiated with mouse cells. 

In addition to the earlier upregulation of genes associated with neuron and synapse 

signaling, the duration of up-regulation was also significantly longer, often still trending upwards 

at the end point of the 6-week time course (Supplemental Figure B.5A). However, despite earlier 

onset of upregulation, their slopes were also significantly less steep than those of H100 samples 

(Supplemental Figure B.5A). These results indicate an earlier onset of synaptic signaling gene 

activation characterized by a more sustained, yet slower, rate of upregulation. 

To ensure these results were not artifacts of transcript misalignment to the wrong species 

within the combined human and mouse reference transcriptome, we conducted an additional 

interspecies mixing time course experiment where intermixed cells were re-purified according to 

their species using Fluorescence-Activated Cell Sorting (FACS) (human-mCherry vs mouse-GFP) 

at each time point prior to RNA-isolation and sequencing. Importantly, post-sorted samples were 

aligned to the identical combined human and mouse transcriptome library. Sorted (s) sample 
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datasets are therefore labeled sH100, sH10, and sM100 to differentiate the sorted samples from 

the previously described data.  

Computation of empirical misalignment rates showed low overall rates of misalignment 

across days (median 0.53% for sH100 and median 2.23% for sH10) (Supplemental Figure B.6A), 

and enrichment of misaligned transcripts failed to demonstrate any bias in neural-associated genes 

(Supplemental Figure B.6B). Although the sorted time course could not be performed in triplicate, 

nor at the same sampling frequency as the unsorted time course due to the extensive sort times 

necessary to collect enough cells to achieve sufficient read-depth, sorted sample expression 

analyses resulted in the same acceleration effects in sH10 relative to sH100 that we observed in 

unsorted samples (Supplemental Figure B.6C-E), confirming that our earlier detection of 

acceleration was not due to species-misaligned transcripts. 

4.2.3 Differential timing in the peaks of transient expression of neural genes 

During development, genes involved in neural differentiation are often not simply turned on, but 

rather are expressed in temporally-regulated dynamic patterns (Gurok et al., 2004; van de Leemput 

et al., 2014). To determine if genes with coordinated expression profiles were regulated more 

quickly, we next tested whether genes with peak expression profiles (consecutive up-down or up-

flat segments) peaked earlier under chimeric versus human control conditions (See B.1 Statistical 

Methods). 

Overall, we identified 535 genes that peaked earlier (at least two days) in chimeric culture 

conditions compared to control samples, representing over 46% of all peaking genes identified in 

the time course (Figure 4.3C). Similarly to early-upregulated genes, we recognized several peaking 

genes involved in neural development in the accelerated peak category (Figure 4.3F and 



 78 
Supplemental Figure B.3B), including genes involved in neurogenesis (e.g., ASCL1, NGFR, 

NEFM, TUBB3), neural tube development (e.g., MEIS1, GLI3, DLL3), neuron signaling (e.g., 

SNAP25, ATCAY), and ventral midbrain differentiation (e.g., ISL1, LHX4, NKX6-1). We further 

validated that genes involved in neurodevelopment were specifically peaking early through GO-

term enrichment analysis, and we found that all of the top ten most significantly enriched terms 

were associated with neural development (Figure 4.3D), whereas no obvious trend in neural-

related GO-terms was found for genes with delayed peaks (Supplemental Figure B.4B). In contrast 

to early-upregulated genes that were enriched in neuron and synaptic signaling, early peaked genes 

were involved in neurogenesis, neuron projection development, and neuron differentiation (Figure 

4.3D). Further, whereas early-upregulated genes had a slower rate of increase compared to control 

cells, early peaked genes exhibited an earlier time of start of upregulation towards the peak and a 

faster rate of upregulation to reach the peak (Supplemental Figure B.5B). Taken together, we report 

that the regulation of neurogenic genes was specifically accelerated in H10 compared to H100. 

To quantify the degree of acceleration and investigate if acceleration was variable or 

uniform across the time course, we considered genes with shared peaks or shared up trends in both 

H10 and H100 and computed acceleration factors as the percent difference in time to peak or the 

start of up regulation in H10 compared to H100. Smooth regression of these point estimates 

provided a continuous estimate of the relative acceleration between H10 and H100 (Figure 4.3G, 

see B.1 Statistical Methods).  

From this analysis, we uncovered that the majority of acceleration was in fact not constant 

over the course of co-differentiation. Rather, the majority of acceleration takes place during the 

first 16 days. While the median acceleration factor (reflecting fold-change acceleration of 

expression events) during this time was 1.699, acceleration varied from a maximum factor of 2.75 
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at the earliest stages of differentiation, converging eventually to a factor of 1 (non-accelerated) by 

day 20 (Figure 4.3G).  It is notable that this gradual reduction in acceleration rate occurs 

concurrently as human cells begin out-proliferating post-mitotic mouse neurons (Figure 4.2 and 

Supplemental Figure B.2). Human cells start outnumbering mouse cells at day 12, the time at 

which acceleration effects dissipate, suggesting a correlation between mouse cell number and the 

acceleration effect they induce in co-culture (Figure 4.3G and Supplemental Figure B.2). 

4.2.4 Chimeric co-culture affected the timing and expressions levels of some genes 

associated with neuron or brain region identity 

Our neural differentiation protocol recapitulates a general neural developmental program and 

produces neurons of various regional identities (Barry et al., 2017). To determine if chimeric co-

culture of hES cells would affect cell lineage outcomes, we identified genes that were most 

differentially expressed (measured as fold change between maximum expression along the time 

course) in chimeric mixed samples compared to hES cell controls (Supplemental Figure B.8). 

We observed some changes in the expression of transient signals as well as changes in 

sustained region-specific expression. For example, certain genes associated with the anterior dorsal 

neural tube showed earlier downregulation in H10 compared to H100, whereas genes linked to 

Gluta- and GABAergic neurons and neuron signal transduction showed patterns of downregulation 

at later times (Supplemental Figure B.8). Other genes broadly associated with neurogenesis show 

a mixture of these patterns. In contrast, some genes associated with the ventral midbrain showed 

transient upregulation in chimeric mixed samples compared to control samples (Supplemental 

Figure B.8). These effects would be consistent with an early exposure of Shh from mouse cells 

that could have triggered a cascade of downstream effects on gene expression, including FOXA2 
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(Bayly et al., 2012), NKX2.1, and PHOX2B (Supplemental Figure B.8) (Dias et al., 2020; Dessaud 

et al., 2008).  Our analysis therefore revealed that some genes associated with neuron cell type and 

regional identity were temporally and/or differentially expressed under chimeric conditions. 

To verify that the acceleration effects described in this report were not largely due to a 

general shift towards neural cell types that appear earlier in development rather than a true 

acceleration, we performed a deconvolution analysis of H100 and H10 samples to monitor the 

appearance of various progenitor and intermediate cell stages and their differentiation over time 

(See B.1 Statistical Methods). This type of analysis estimates the relative proportions of cell types 

that may be present in a bulk sample by comparing bulk expression to a reference of purified or 

annotated single cell data. We compared our data to the CoDEx dataset of annotated single-cell 

sequencing from the developing human cortex (Polioudakis et al., 2019) with the MuSiC R 

package (Wang et al., 2019). Smoothed estimates of neural stage proportions indicated that co-

cultured human cells mirrored the developmental progression of cell types of control samples, but 

at an accelerated pace (Supplemental Figure B.9). Specifically, similar progenitor-to-mature neural 

cell markers appeared in the same order in H10 and H100 (Supplemental Figure B.9), yet high 

proportions of excitatory neurons in H10 occurred earlier (days 12-16) compared to H100 (days 

18-24). Taken together, although differential expression analyses identified changes in expression 

levels of some genes implicated in nervous system development, differentiation followed similar 

lineage pathways but at accelerated rates in chimeric compared to unmixed conditions. 



 81 
4.2.5 Dose-dependency relationship between mixture proportions and human 

developmental timing 

If the acceleration of hES cell differentiation was indeed mouse cell-induced, we reasoned that the 

rate of acceleration would be dose-dependent on the amount of mouse cells present in human co-

cultures. Harnessing the data from multiple initial interspecies mixing proportions (0%, 10%, 85%, 

and 100% human vs mouse), we tested the dependence of the initial mixing proportions on the 

acceleration rate observed (Figure 4.4A). 
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Figure 4.4: Variable mixing proportions show a dose response of acceleration effects.  

(A) An additional, intermediate interspecies mixing proportion, H85(M15), was compared 
to H0(M100), H10, and H100 time courses. (B) Expression plots of curated EU and EP 
genes with fitted trend lines (solid) for H100 (blue), H85 (purple), H10 (red), and M100 
(green). Observed, normalized data are also plotted (dots). (C) Top 10 EU and EP GO 
terms from H10 showing relative significance of term enrichment for H10 and H85. (D) 
Smoothed acceleration factors are calculated between each of H10, H85, and M100 (human 
orthologous genes) against H100 using the method in Figure 4.3 G (B.1 Statistical 
Methods). The median fitted acceleration from the first 16 days is reported. (E) Correlation 
(Spearman) heat maps where regions of high correlation (red) below the diagonal indicate 
accelerated activity where later days in H100 are correlated with earlier days in the 
comparison mixture. Correlations are calculated on a subset of highly dynamic genes (see 
Materials and Methods). 
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Overall, expression profiles of a selection of key neuronal genes with either early up-

regulation or early peaks in H85 samples were chronologically intermediate between H10 and 

H100 expression profiles (Figure 4.4B). Overlaying these trends with the expression profiles of 

orthologous genes in the M100 sample reveals progressively later onsets of gene up-

regulation/peaks with decreasing proportions of mouse cells among these genes (Figure 4.4B). 

To determine whether these results extended to the broader set of neuron-associated genes, 

we replicated the GO-term enrichment analysis in the H85 sample. Testing term enrichment on 

those genes which either upregulated or peaked earlier in H85 relative to H100 resulted in a list of 

the most significant terms with the same patterns as in H10. However, comparing term significance 

levels between the top 10 most significant terms in the H10 analysis and their H85 counterparts 

shows that, while the H85 terms were still highly significant, they were less so than the H10 terms 

(Figure 4.4C). Further, direct computation of acceleration factors of the first 16 days, based on 

differences in shared peak times and the starts of up trends, resulted in progressively decreasing 

calculated accelerations with stepwise drops in percentage mouse cells:  2.727 (H0/M100), 1.699 

(H10/M90), and 1.376 (H85/M15), consistent with a dose-response effect on acceleration (Figure 

4.4D).  

Pairwise correlations allowed us to further aggregate relative expression trends across 

genes. We took a subset of genes, targeting those with dynamic expression over time, and plotted 

correlations calculated between pairs of time points relative to H100 (Figure 4.4E). Mouse 

orthologs demonstrate a visually significant acceleration with day 2 expression being highly 

correlated with H100 out to day 16. The H10 and H85 time courses both showed visual 

acceleration with regions of high correlation below the diagonal, but with respectively lower 

magnitudes as the proportion of mouse cells decreases. Adapting a technique for estimating 
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acceleration factors from these correlation plots described in Rayon et al.(Rayon et al., 2020) (see 

B.1 Statistical Methods) allowed us to compute average acceleration over the first 16 days 

independently of peaks or other expression events. We observed similar acceleration dynamics 

with correlation-based acceleration factors of 1.726 over the first 16 days for H10 and 1.314 over 

the first 16 days for H85 (Figure 4.4E). These correlation results, while dependent on specific 

geometries of the correlation plots, are themselves supported by comparing to the deconvolution 

of H10, H85, and H100, a procedure which is similarly based on a large panel of dynamic genes. 

In the deconvolution analysis, we observed higher proportions of mouse cells in mixtures resulting 

in the progressively earlier sequential maturation of progenitor and intermediate cell types 

(Supplemental Figure B.9). 

4.2.6 Differential correlation with in vivo control tissues 

We compared our data with the Brain Span human fetal sample references to assess if our in vitro 

acceleration is consistent with sample maturity in utero (Sunkin et al., 2013; Miller et al., 2014; 

Allan Human Brain Atlas: BrainSpan (Atlas of the Developing Brain)). We calculated correlations 

between our observed in vitro data and five tissue regions from the Brain Span database across 

weeks 8, 9, and 12 of development (See B.1 Statistical Methods). Across all time points and tissues, 

our mixed H10 and H85 samples increased correlation with the Brain Span reference earlier than 

the H100 control in a manner that was dose-dependent (Figure 4.5A). 
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A complementary analysis based on a variation of principal component analysis (PCA) 

(Townes, 2019; Townes et al., 2019) replicates these findings. Dimension reduction of the gene 

expression data allows the distance between the representation of Brain Span references and the 

representations of our experimental data to be interpreted as a dissimilarity metric (See B.1 

Figure 4.5: Comparison with Brain-Span regions further demonstrates a dose-
response in acceleration effects.  

(A) Correlations (Spearman) between fitted trends and Brain-Span data are calculated at 
three Brain-Span time points and across the five brain regions represented at all three times. 
Calculations are performed on a subset of highly dynamic genes (see Materials and 
Methods). (B) Dissimilarity (PCA-based distance, see Materials and Methods) between 
species mixtures and each of the 5 reference brain regions are computed for each day and 
smoothed to estimate a continuous dissimilarity metric over time. 
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Statistical Methods). Smoothing across regions for the week 9 reference, we observed that H10 

minimizes dissimilarity between days 12-16, which is before H85 (days 16-20), which is further 

before H100 (days 20-24) (Figure 4.5B). Accelerated correlation to in vivo data was also confirmed 

through a similar analysis of annotated brain tissue from the Human Protein Atlas (Yu et al., 2015; 

RNA FANTOM brain region gene data) (Supplemental Figure B.10), consistent with a genome-

wide neural program that is activated earliest in M100, then significantly accelerated in H10, 

followed by moderately earlier in H85, and latest in H100 samples. 

While we leave the determination of mechanisms responsible for regulating the 

developmental clock to future work, comparisons of accelerated genes with curated gene sets 

allowed us to speculate on candidate pathways and transcription factors/miRNAs that may be 

involved (Subramanian et al., 2005; Liberzon et al., 2015; Kanehisa, 2000, 2019; Kanehisa et al., 

2021; Nishimura, 2001; Jassal et al., 2020; Chen and Wang, 2020; Yevshin et al., 2019). 

Enrichment of the differences between up-trend/peak times (See B.1 Statistical Methods) 

identified signaling pathways activated earlier in both H10 and in M100 compared to H100 

samples, including G-protein coupled receptor (GPCR) signaling pathways and miRNA-regulated 

pathways MAPK/ERK (MIR4801, MIR4731) (Gholizadeh et al., 2020; Alahverdi et al., 2020), 

and PI3K/AKT (Gao et al., 2020; Zhihong et al., 2020), which may play roles driving 

developmental rates (Supplemental Figure B.11). We also identified developmental regulators of 

interest, such as NSRF, a master neural developmental regulator essential for gastrulation that may 

also influence the expression of thousands of genes during development (Wang et al., 2012; 

Schoenherr and Anderson, 1995; Thompson and Chan, 2018; Bruce et al., 2004) and OCT1, an 

essential regulator of development that plays crucial roles in the earliest cell fate decisions during 
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embryonic development (Sebastiano et al., 2010; Shen et al., 2017; Perovanovic et al., 2020), that 

may warrant further investigation. 

4.3 Discussion 

In this study, we report for the first time multifaceted effects of interspecies mixing on the 

differentiation of hES cells. Through comprehensive RNA-seq time courses, we uncover that co-

differentiation of hES cells intermixed with mEpiS cells was sufficient to accelerate components 

of neural gene regulatory programs, and identified genes with roles in neural lineage and regional 

identities that were both temporally and differentially expressed. We went on to demonstrate that 

the acceleration effect was dose-dependent on the starting ratio of interspecies cells (Figure 4.4), 

and that the chimeric samples correlated to in vivo tissue samples earlier in the differentiation time 

course than human samples alone (Figure 4.5 and Supplemental Figure B.10). 

Previously, it was reported that the faster differentiation of mouse cells compared to human 

cells may be in part caused by increased speed of transcriptional upregulation of genes, indicated 

by steeper slopes in gene expression over time (Barry et al., 2019). Consistent with a mouse cell-

induced acceleration of human cell neural differentiation, here we found that the slopes of peaked 

genes in human cells co-differentiated with mouse cells were also significantly increased in 

accelerated genes compared to control samples (Supplemental Figure B.5B). However, non-

peaking, mostly monotonic, genes whose upregulation began earlier showed lesser slopes in 

chimeric samples, despite starting their upward trend significantly earlier and often continuing 

upwards for the duration of the time course (Supplemental Figure B.5A). These results may 

suggest different functional roles of early-upregulated monotonic genes compared to genes with 

peak expression profiles. Indeed, genes with increased slopes and earlier peaks were significantly 
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enriched in processes of generation of neurons and neuron cell projections, whereas earlier 

upregulated monotonic gene trends with lesser slopes were enriched in neuron and synaptic 

signaling events (Figure 4.3). Although we identify differences in gene expression profiles in our 

time course in this report, the functional maturity of resulting neurons in control versus chimeric 

co-differentiation conditions remains to be determined. 

The mechanisms regulating developmental tempos and how interspecies co-culture might 

affect the differentiation speed of another species remain unknown. Although cells from different 

species exhibit different cell cycle rates, and counting rounds of cell division has been proposed 

as a possible mechanism for a cell’s ability to track developmental time (Temple and Raff, 1986), 

multiple reports also suggest that cell division is not required for differentiation in a number of 

systems(Gao et al., 1997; Burton et al., 1999; Harris and Hartenstein, 1991). Cell size is also 

unlikely to regulate developmental speeds as many cell types are of similar sizes across species 

with drastically different developmental rates (Savage et al., 2007). Another intriguing possibility 

is that metabolic rates, sometimes related to cell size, cell cycle, and mammalian body mass 

(Savage et al., 2007), could directly modulate species-specific developmental timing (Brown et 

al., 2004; Hamilton et al., 2011; Miyazawa and Aulehla, 2018). However, when removed from the 

body and placed into tissue culture, cells from different species exhibit similar metabolic rates, 

indicating variable metabolic rates are unlikely to account for the species-specific developmental 

speeds retained in vitro (Brown et al., 2007; Wheatley and Clegg, 1994). Genome size similarly 

does not seem well-correlated to developmental time across mammalian species (Kasai et al., 

2013; Árnason et al., 2018). 

Recently, elegant in vitro models of mouse and human segmentation clocks with species-

specific timing have been reported and are being used to study factors affecting developmental 
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time (Matsumiya et al., 2018; Chu et al., 2019; Matsuda, Yamanaka, et al., 2020; Diaz-Cuadros 

et al., 2020). Two recent papers have identified a correlation between some biochemical reaction 

rates (e.g. protein stability and turnover rates) and developmental tempos (Matsuda, Hayashi, et 

al., 2020; Rayon et al., 2020), although if, or to what extent, intrinsic developmental clocks could 

be altered was not determined (Matsuda, Hayashi, et al., 2020). Here, we show that cell-cell 

signaling alone is sufficient to affect the developmental clock. Further, we identified candidate 

signaling pathways and regulators activated earlier in both H10 and in M100 compared to H100 

samples that may warrant future investigations (Supplemental Figure B.11). 

Previously, several studies suggested that the intrinsic species-specific developmental 

timer was faithfully retained under various conditions, including 2D vs 3D culture methods 

(Nicholas et al., 2013; Marchetto et al., 2019; Pollen et al., 2019; Lancaster et al., 2013; Kelava 

and Lancaster, 2016) and interspecies transplant/implantation studies into adult hosts (Barry et al., 

2017; Espuny-Camacho et al., 2013; Maroof et al., 2013; Nicholas et al., 2013). While these 

studies revealed that non-embryonic interspecies conditions were insufficient to alter 

developmental time, in this study we demonstrate that factors actively driving an embryonic 

developmental program from pluripotency, rather than a mature host environment, can be 

sufficient to affect components of the developmental clock of cells from another species. 

The ability of stem cells of different species to resolve conflicting developmental speeds 

has significant implications in the development of chimeric embryos for human organ formation 

(De Los Angeles et al., 2018). With a widespread shortage of immunologically-matched organs 

for patients in need of organ transplants, the ability to grow transplantable human organs through 

human stem cell chimeric contributions to embryos remains an interesting potential therapeutic 

approach (J. Wu et al., 2017; Das et al., 2020). However, many barriers remain, including poor 
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human chimeric contributions, possibly in part due to the vastly different developmental rates 

between neighboring cells of different species (De Los Angeles et al., 2018; Ebisuya and Briscoe, 

2018; Masaki et al., 2015). In this study, we demonstrate that it is possible for mouse cells to 

influence developmental rates and outcomes of neighboring human cells.  

Previous reports of successful human cell contributions to chimeric mammalian embryos 

(Mascetti and Pedersen, 2016; J. Wu et al., 2017; Yang et al., 2017), including a recent report of 

the highest contribution (4%) of human cells in mouse-human chimeric embryos (Hu et al., 2020), 

could imply that human pluripotent stem cells may be induced to accelerate their developmental 

rate to match that of their embryonic host species. However, maturation rates of human cells in 

interspecies chimeras have not been well characterized. Our comprehensive time course results in 

this study indicate that human developmental time could be accelerated by co-differentiating cells 

within chimeric embryos, although collateral impacts in cell lineage outcomes may occur. In the 

case of neural differentiation in this study, we did find genes involved in dorsal forebrain 

development, for example, that were temporally downregulated in interspecies samples while 

genes involved in ventral midbrain development were upregulated, likely, at least in part, due to 

an earlier and increased exposure to Shh (Figuress 4.3-4.5) (Placzek and Furley, 1996; Dale et al., 

1997; Lupo et al., 2006). Importantly, mouse and human brains do not share identical brain 

physiologies, cell type compositions, nor brain region proportions (Hodge et al., 2019; Sjöstedt et 

al., 2020), so it is perhaps not surprising that some altered cell fate choices are made when cells 

are exposed to signals intended to created divergent outcomes.  Thus, it will be important to 

monitor cell outcomes in chimeric embryos for human organ growth to verify that cell type 

contributions and organ functions are not affected.  
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Although the protocol described here will not have clinical applications due to the 

xenotropic nature of the conditions, it does suggest that the human developmental clock can be 

accelerated; and while specific factors involved and clock mechanism itself remain to be dissected, 

our proof-of-concept study provides evidence that the species-specific developmental clock may 

be amenable to acceleration for clinically-relevant benefit. 

4.4 Publication information 

The methods and results described in this chapter are published in Brown, Barry, et al., 2021 

(Brown, Barry, et al., 2021). 
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A Appendix to Chapter 2 

A.1 Estimation of gene-specific CDFs by cLAD regression 

This section is edited for clarity from supplement S1.4 from Brown et al. 2021 (Brown, Ni, et al., 

2021). 

Chapter 2.2.2 mentions that the initial values of the means, λk, are taken from equal spacings 

along an estimate of the eCDF of the counts yj at LS δ=1. Unfortunately, estimation of this eCDF 

is non-trivial; standard formulas for the eCDF are confounded by the need to remove the effect of 

LS prior to computation and, more importantly, are further confounded by the truncation of yj at 

0. 

To solve this problem, we demonstrate that this eCDF can, in fact, be efficiently calculated 

for each gene by a modified application of cLAD regression (Powell, 1984, 1986) at a carefully 

chosen grid of given intercepts. cLAD regression has the benefit here of solving for linear functions 

of quantiles in data – hence its alternate name, quantile regression. The pairing of fitted intercepts 

(quantiles) and corresponding percentiles then define points along the desired eCDF. 

Regression calculations are conducted on the log-log scale, so the both the LS values, δi, 

and the counts, yj, are log transformed with a floor of log(0.999) for the observed counts; dj = 

log(δj), zj=max{log(yj), log(0.999)}. The implicit addition of a ≈1 pseudo count to the observed 

zeros prior to log transformation is motivated by the fact that computations are performed using 

censored quantile regression, which can be written as standard quantile (LAD) regression on the 

subset of data to the right of the intersection of the regression curve and censoring threshold 

(Powell, 1986). In particular, the regression model for the observed data is: 
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𝑧" = 𝑚𝑎𝑥{𝑙𝑜𝑔(0.999) , 𝛽( + 𝑑" + 𝜖"� 

where β0 is some gene-specific intercept and ϵj is a random error term following some, possibly 

complex distribution. For example, in the presence of population heterogeneity, the ϵj might follow 

a bi-modal distribution. Placing the zeros at log(0.999) allows the regression solutions to be 

defined in terms of the strictly positive data as the censoring threshold is placed just below log(1). 

The choice of a constant slope term (the implicit coefficient of 1 on the LS term), while 

mathematically convenient in the following, is also not unreasonable. On the multiplicative (log) 

scale, expression should have about a slope one relationship with LS across all genes, recalling the 

above comment that both counts and LS are log-transformed for the cLAD regression. 

A.1.1 Estimation of expression distribution quantiles  

The gene-specific eCDFs to be computed are denoted by vectors of quantiles and the 

associated estimated percentiles. To calculate the sample quantiles and percentiles of the eCDF, 

and as a natural extension of the censored linear model of the data distribution, the mathematics 

of censored least absolute deviations regression (cLAD) are adopted. The cLAD minimization 

problem is 

𝑚𝑖𝑛
M(

�V𝑝Nl𝑧$ − 9𝛽G + 𝑧$=
∗m

$

�	

where pπ(x)=(π-𝕀(x<0))(x), (x)*=max{log(0.999), x), and π is some percentile (eg. π=0.5 for 

median quantile regression). It has previously been shown that cLAD regression has beneficial 

properties, particularly consistency in the presence of only weakly defined residual distributions 

(Powell, 1984, 1986). Additionally, study of the solution set to cLAD regression has shown that 

solution coefficients define lines which pass through at least as many data points as there are free 
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parameters (Branham, R. L., 1982). Given this, the regression problem can be significantly 

reduced. Given a fixed percentile, π, the set of possible solutions is confined to a set of parallel 

lines – one intersecting each point in the data set – which is finite for finite data. The regression 

problem is then to determine which line, uniquely defined by its intercept β0, minimizes the loss 

function. 

As such, the set of quantiles defining the eCDF is easily defined. In particular, the eCDF 

quantiles are the set of intercepts, β0j, defining the lines passing through each of the data points. 

The intercepts/quantiles refer to the previously mentioned “grid of given intercepts.” Since this set 

of intercepts contains the minimizing solution regardless of the choice of π in the regression 

problem, any additional quantiles would by definition be redundant. Specifically, the set of 

quantiles {qj} is defined as: 

n𝑞$o = n𝛽G$o = {𝑧$ − 𝑑$}	

A.1.2 Estimation of expression distribution percentiles  

For simplicity, consider a highly expressed gene for which there are no observed zero 

counts prior to log transformation and suppose without loss of generality that the quantiles {qi} are 

all unique and that the indices j are of decreasing order such that qj>qj+1∀j, q1=max{qj}. In this 

case, computing the percentiles associated with each quantile is trivial and follows the standard 

eCDF formula: 

𝑝$ =
1
𝑛V𝕀9𝑞1 ≤ 𝑞$=

1

=
𝑛 − 𝑗 + 1

𝑛 	

where n=|{qj}|. The more general case where a gene may contain zeros, possibly many zeros, is 

more complicated. However, given the assumption that the residual distribution (ϵj) is constant in 

LS, a simple and analogous solution exists: 



 95 

𝑝$ =
𝑛$ − ;{𝑞1}$;

𝑛$
	

where 

𝛬$ = n𝑖: 𝛿1 ≥ 𝛿$ − 9𝑧$ − 𝑙𝑜𝑔(0.999)=o	
𝑛$ = ;𝛬$;	

{𝑞1}$ = n𝑞1: 𝑞1 > 𝑞$ , 𝑖 ∈ 𝛬$o 
 

The linear interpolation of the set {$q$, p$'�	defines an eCDF from which the πj can be 

initialized. 

A.1.3 Monotonicity correction 

In practice, this estimate of the percentiles pj can become unstable for high j (when nj 

becomes small). Additionally, some forms of population heterogeneity can cause estimation 

problems, especially as they can violate the assumption of constant residual distribution. Here we 

derive the above formulation for the percentiles, pj, as well as corrections for these situations. 

Recall the example of the highly expressing gene mentioned above. As noted, it is trivial 

to estimate pj, and guaranteed that the pj will be both unique and monotone. To facilitate the 

discussion of the more general case (where there are zero counts), consider this ideal problem (no 

zeros) in the context of standard LAD regression. For notational convenience, make the following 

definitions: 

𝑆𝑈𝐷$?9𝛽G$= ≔ V l𝑧1 − 9𝛽G$ + 𝑑1=m
{1:4).RM('"H)S}

	

𝑆𝐿𝐷$?9𝛽G$= ≔ V l9𝛽G$ + 𝑑1= − 𝑧1m
{1:4)URM('"H)S}

	

where the abbreviations denote “sum of upper deviations” and “sum of lower deviations” 

respectively across the collection of cells indexed by i. 
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To solve for a percentile given a quantile, the previous regression problem is inverted – 

and expanded to remove the pπ(⋅	) notation – to find the set 

�𝜋: 𝛽G$ = 𝑚𝑖𝑛
M(

Y𝜋𝑆𝑈𝐷$?(𝛽G) + (1 − 𝜋)𝑆𝐿𝐷$?(𝛽G)]�	

Note that SUD1’=0 and SLDn’=0 and that SUDj’ (SLDj’) are increasing (decreasing) in j. 

Additionally, a linear interpolation of SUDj’ (SLDj’) would have positive (negative) derivatives. 

Thus, the surface of the convex hull of the set {(SUDj’, SLDj’)} contains all points within the set. 

This means that for each β0j, there exists some πj for which β0j is the unique minimizer of the usual, 

non-inverted, LAD problem. Specifically, a minimizing πj is one such that the line πjSUDj’-(1-

πj)SLDj’=c, for some constant c, is a sub-tangent of the linear interpolation of {(SUDj’, SLDj’)} at 

the relevant point. 

This can be demonstrated as follows: suppose -πj/(1-πj) is a slope in the sub-derivative of 

the linear interpolation at point (SUDj’, SLDj’) so that the convex combination of sums of deviations 

takes some value, πjSUDj’+(1-πj)SLDj’=b. Consider then the point (SUDj+1’, SLDj+1’) and define 

(dU,dL)≔(SUDj+1’,SLDj+1’)-(SUDj’,SLDj’) where dU,-dL>0 so the convex combination at j+1 can 

be written as πj(SUDj’+dU)+(1-πj)(SLDj’+dL)=b+πjdU+(1-πj)dL. Since -πj/(1-πj) is in the sub-

derivative, it is the case that 

−
𝜋$

91 − 𝜋$=
≤
𝑑𝐿
𝑑𝑈 ⟹ 𝜋$𝑑𝑈 + 91 − 𝜋$=𝑑𝐿 ≥ 0	

with equality only if -πj/(1-πj) is the maximal sub-derivative, showing β0(j+1) is not a solution for 

the LAD problem given weight πj excepting only the minimal πj allowed by the sub-derivative. A 

similar result holds for point j-1. 

Therefore, to solve for a percentile pj, one can consider the derivatives of the sums of 

deviations parameterized by the intercept β0j  
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𝑑𝑆𝑈𝐷$? =

𝑑
𝑑9𝛽G$=

𝑆𝑈𝐷$? = −;{𝑗: 𝑧$ > 9𝛽G$ + 𝑑$=};  = −(𝑗 − 1)	

𝑑𝑆𝐿𝐷$? =
𝑑

𝑑9𝛽G$=
𝑆𝐿𝐷$? = ;{𝑗: 𝑧$ ≤ 9𝛽G$ + 𝑑$=}; = (𝑛 − 𝑗 + 1)	

where the second equalities follow from the uniqueness and ordering of the indices j. 

Then the slope of one possible subtangent in terms of πj is 

−
𝜋$

91 − 𝜋$=
=
𝑑𝑆𝐿𝐷$?

𝑑𝑆𝑈𝐷$?
= −

(𝑛 − 𝑗 + 1)
(𝑗 − 1) 	

so 

𝑝$ = 𝜋$ =
−
𝑑𝑆𝐿𝐷$?

𝑑𝑆𝑈𝐷$?

1 −
𝑑𝑆𝐿𝐷$?

𝑑𝑆𝑈𝐷$?
=

(𝑛 − 𝑗 + 1)
(𝑗 − 1) + (𝑛 − 𝑗 + 1) =

𝑛 − 𝑗 + 1
𝑛 	

which is the same result as above. 

To generalize solving for percentiles {pj} in the context of cLAD regression, one need only 

make a few modifications to the above results. First, define 

𝑆𝑈𝐷$9𝛽G$= = V l𝑧1 − 9𝛽G$ + 𝑑1=
∗m

4)VRM('"H)S
∗

	

𝑆𝐿𝐷$9𝛽G$= = V l9𝛽G$ + 𝑑1=
∗ − 𝑧1m

4)WRM('"H)S
∗

	

for the censoring function (x)*. Then the percentile problem seeks to find sets of a familiar form: 

�𝜋: 𝛽G$ = 𝑚𝑖𝑛
M(

Y𝜋𝑆𝑈𝐷$(𝛽G) + (1 − 𝜋)𝑆𝐿𝐷$(𝛽G)]�	

with a familiar solution, 

−
𝜋$

91 − 𝜋$=
=
𝑑𝑆𝐿𝐷$
𝑑𝑆𝑈𝐷$

	

assuming the same convexity conditions hold for the set {(SUDj,SLDj)}.  

In the presence of censoring, the convexity conditions may not hold. A correction to 

enforce convexity is discussed later in the section. The main difference between the general result 
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which accommodates censoring and that for LAD regression is in the precise formulation of the 

derivatives of the sums of deviations. 

𝑑𝑆𝑈𝐷$ =
𝑑

𝑑9𝛽G$=
𝑆𝑈𝐷$ 	

= −;n𝑗: 𝑧$ > 9𝛽G$ + 𝑑$=
∗, 𝑑$ ≥ 𝛽G$ − 𝑙𝑜𝑔(0.999)o;	

𝑑𝑆𝐿𝐷$ =
𝑑

𝑑9𝛽G$=
𝑆𝐿𝐷$ 	

= ;n𝑗: 𝑧$ ≤ 9𝛽G$ + 𝑑$=
∗, 𝑑$ ≥ 𝛽G$ − 𝑙𝑜𝑔(0.999)o;	

These derivatives do have a similar interpretation to those of the previous section, however. 

Specifically, up to a sign change, they are the number of observations above/below the regression 

line under consideration which also have LS above the point where that regression line hits the 

censoring threshold of log(0.999).  

This gives a convenient interpretation to the solution for pj as well. The solution itself is 

𝑝$ =
𝑑𝑆𝐿𝐷$

𝑑𝑆𝐿𝐷$ − 𝑑𝑆𝑈𝐷$
	

which is simply the empirical percentile from before, but computed on the subset of observations 

with LS above the point where the regression line becomes censored. This is consistent with the 

result from Powell that cLAD regression is equivalent to LAD regression performed on the subset 

of data for which the probability of censoring is uniformly no greater than the regression percentile 

π and at some covariates the probability of censoring is strictly less than π.  

It was previously noted that the censored data do not guarantee the convexity conditions 

on the set of upper and lower deviations as is the case in traditional LAD regression. This can 

occur stochastically in the lower quantiles when there are few data points from which to estimate 

the percentiles. This can also occur systematically when the observed expression is correlated with 

LS as may occur when sub-populations of cells express in aggregate at different levels. 
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To correct for both of these issues simultaneously, a monotonicity condition is imposed on 

the estimated pj. First, the pj are computed only on the subset of upper/lower deviations that exist 

on the edge of the convex hull of {SUDj, SLDj}. Following computation of percentiles on this 

subset of quantiles, percentiles are adjusted such that differences between adjacent percentiles are 

bounded above and below. The bounds are as follows: 

𝑝$ − 𝑝$"# ≥
∑ 𝑧6 > 9𝛽G$ + 𝑑6=

∗
6 − ∑ 𝑧6 > 9𝛽G$"# + 𝑑6=

∗
6

𝑛 	

𝑝$ − 𝑝$"# ≤ 𝑝$ −
∑ 𝑧6 < 9𝛽G$"# + 𝑑6=

∗
6

𝑛 	

A.2 Datasets 

This section is edited for clarity from supplement S2 from Brown et al. 2021 (Brown, Ni, et al., 

2021). 

A.2.1 PBMC_Pure 

PBMC68K_Pure is a partner dataset to PBMC68K (Zheng et al., 2017) produced by purifying 

peripheral blood mononuclear cells (PBMCs) into 10 cell types through the use of cell-type 

specific isolation kits and separately sequencing each group. One group was then computationally 

separated into two resulting in 11 annotated cell-types. These cell-type annotations are considered 

here as ground truth when evaluating the effects of normalization on downstream clustering. For 

increased accuracy, the six cell-types for which tSNE plots do not separate into sub-groups (van 

der Maaten and Hinton, 2008; Van Der Maaten, 2014) were subset: CD4+ T Helper2, CD4+/CD25 

T Reg, CD4+/CD45RA+/CD25- Naive T, CD4+/CD45RO+ Memory, CD56+ NK, and  

CD8+/CD45RA+ Naive Cytotoxic. Zheng et al. identify these particular cell-types as 

demonstrating little sub-structure (Zheng et al., 2017). 
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UMI count matrices and barcode (cell) metadata are available from the GitHub repository 

associated with the publication: https://github.com/10XGenomics/single-cell-3prime-

paper/tree/master/pbmc68k_analysis.  

A.2.2 PBMC5K_Prot 

PBMC5K_Prot is a dataset of approximately 5 thousand PBMCs sequenced by and available from 

10X genomics under the name “5k Peripheral blood mononuclear cells (PBMCs) from a healthy 

donor with cell surface proteins (v3 chemistry)” and processed under cell ranger version 3.1.0. A 

panel of 31 surface proteins were sequenced in parallel with the cDNA libraries. We perform 

unsupervised clustering on the protein abundance estimates to generate pseudo-annotations 

independently from RNA expression measurements. 

A.2.3 MaltTumor10K 

MaltTumor10K is a dataset of approximately 10 thousand cells from a MALT tumor sequenced by 

and available from 10X genomics under the name “10k Cells from a MALT Tumor - Gene 

Expression and Cell Surface Protein” and processed under cell ranger version 3.0.0. A panel of 17 

surface proteins were sequenced in parallel with the cDNA libraries. We perform unsupervised 

clustering on the protein abundance estimates to generate pseudo-annotations independently from 

RNA expression measurements. 

A.2.4 MouseBrain 

MouseBrain is a dataset of approximately 9 thousand mouse brain cells sequenced by and available 

from 10X genomics under the name “9k Brain Cells from an E18 Mouse” and processed under 

cell ranger version 1.3.0. 
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A.2.5 PBMC68K 

PBMC68K is a partner dataset to PBMC68K_Pure (Zheng et al., 2017) produced by sequencing 

approximately 68 thousand PBMCs. In the original paper, pseudo-annotations were generated by 

computational matching of these cells to the purified lines of PBMC68K_Pure. We, however, treat 

these as unannotated cells. UMI count matrices are available from 10X genomics under the name 

“Fresh 68k PBMCs (Donor A)” and processed under cell ranger version 1.1.0. 

A.2.6 EMT 

EMT is a dataset of 5,004 sequenced MCF10A mammary epithelial cells induced to undergo 

spontaneous epithelial to mesenchymal transitions (EMTs) through the cellular detection of 

neighboring unoccupied space (McFaline-Figueroa et al., 2019). This spatial effect allowed the 

authors to dissect an inner region a-priori expected to be primarily epithelial cells and an outer 

region a-priori expected to be primarily mesenchymal cells which were then sequenced separately. 

The authors produced another dataset of cells activated by TGF-b (denoted TGFB in the barcode 

metadata), but we consider only the first dataset (denoted Mock in the barcode metadata). Included 

in the initial publication, the authors describe eight gene sets from the Hallmark collection 

(Liberzon et al., 2015) which they consider to be significantly enriched for activity during EMT. 

We take this set of terms as a ground truth for assessing power under a range of normalization 

techniques: ESTROGEN RESPONSE LATE, ESTROGEN RESPONSE EARLY, P53 

PATHWAY, KRAS SIGNALING DN, MYC TARGETS V1, MYC TARGETS V2, PI3K AKT 

MTOR SIGNALING, and EPITHELIAL MESENCHYMAL TRANSITION. The UMI count 

matrices and barcode metadata are available on GEO under accession number GSE114687. 
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A.2.7 Dataset processing 

For the un-annotated datasets published by 10X (PBMC5K_Prot, MaltTumor10K, MouseBrain, 

PBMC68K), the UMI count matrices analyzed in this paper were derived from un-filtered gene-

barcode matrices. emptyDrops (R package: DropletUtils; parameters: lower = 20, niters = 160000, 

test.ambient = TRUE) was used to differentiate empty droplets from barcodes associated with cells 

(Lun et al., 2019). Cellular barcodes were then defined as those with FDR corrected p-values less 

than 1e-3. For the datasets with surface protein expression (PBMC5K_Prot and MaltTumor10K), 

cells were additionally filtered to retain only those with a minimum of 100 protein-specific UMIs. 

This procedure resulted in datasets with 4978 cells (PBMC5K_Prot), 8670 cells (MaltTumor10K), 

3756 cells (MouseBrain), and 77249 cells (PBMC68K). Where applicable, surface protein 

expression was omitted from the rows of UMI count matrices for downstream analysis and testing. 

Pseudo-annotations were generated from the datasets with surface protein expression 

(PBMC5K_Prot and MaltTumor10K) in a manner similar to the unsupervised clustering of all 

datasets. Surface protein expression was normalized by the method of median ratio (Anders and 

Huber, 2010). Note: as all surface proteins are generally expected to have cell-type-specific 

abundances, this normalization is only expected to equalize counts within cell-types meaning that 

between cell-type calculations of relative abundance are rendered inapplicable; as our purpose is 

clustering, this is not a problem. Using the Seurat pipeline, protein expression is reduced to 20 

dimensions for PBMC5K_Prot (from 29 distinct proteins) and 15 dimensions for MaltTumor10K 

(from 17 distinct proteins). Graph based clustering is then performed using FindNeighbors and 

FindClusters (additional parameters: algorithm = 3, n.start = 100, n.iter = 100) from the Seurat 

package. 
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A.3 Data simulation 

This section is edited for clarity from supplement S3 from Brown et al. 2021 (Brown, Ni, et al., 

2021). 

A.3.1 Initial grouping 

We generate our simulated datasets from experimentally derived UMIs with the purpose of making 

our simulations as representative of the characteristics of individual, experimentally derived cells 

as possible. The first step is to normalize experimental data using Dino and then perform 

unsupervised clustering on the normalized data. This results in (relatively) homogenous subsets of 

cells. Using these cluster annotations, we then generate individual clusters of simulated data from 

the raw (unnormalized) UMI counts from each of these cluster annotations. These simulated 

clusters, mirroring the cell-type heterogeneity in the original data, are then merged into a test 

dataset. 

A.3.2 Group filtering 

We vary the size of simulated clusters by powers of 2 (40 cells, 80 cells, 160 cells, etc.). To this 

end, we calculate the largest k such that we have k calculated clusters with at least 40×2k cells and 

discard the remaining experimental data. If k=6, then we have exactly 6 clusters of experimental 

data with at least 40×26=2560 cells in each group, and we discard cells from any smaller clusters. 

A.3.3 Cluster pair simulation 

The simulated dataset is constructed of pairs of simulated clusters for which the EE and DE genes 

are known by design. In the case were k=6 as above, the simulated datasets then consist of 6 cluster 

pairs, or 12 simulated clusters total. Within a cluster pair, there is an induced difference in LS 
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between the pairs and DE genes are randomly selected. Between cluster pairs, there may also be 

systematic differences in LS, but only to the extent that there are systematic differences in the LSs 

of the experimental cells these cluster pairs are based on. 

To construct one cluster pair, an experimental cluster, denoted by Ck, is randomly sampled. 

Each of the two simulated clusters in the pair will consist of 40 cells if this is the first cluster pair, 

80 cells if this is the second cluster pair, and so on increasing by factors of 2. Denote the number 

of simulated cells in each cluster by n. To generate the first n/2 cells in each cluster, we sample n 

cells from the experimental data. In order of increasing LS, we sum pairs of experimental cells to 

create n/2 pseudo-cells with roughly double the LS of either of the cells they are comprised of.  

Denote the simulated clusters in the pair by A and B, each to consist of n simulated cells. 

To induce a difference in LS between A and B, we sample a LS fold change, δfc, from the range 3/2 

to 4, and for convenience assign A to be the group with higher average LS. The first n/2 cells in 

each group will be generated by binomial sampling from the n/2 pseudo-cells, with the induced 

fold change in LS arising from differences in the binomial probability parameter, p. Some algebra 

shows that the choice of 

𝑝 = 0.5 ±
(𝛿XY − 1)
2(𝛿XY + 1)

	

for A and B respectively will produce clusters with all EE genes once LS is accounted for under 

normalization. Specifically, for pseudo-cell sj, simulated cells aj and bj from A and B respectively 

are generated as: 

𝑎$ ∼ 𝐵𝑖𝑛𝑜𝑚9𝑠$ , 𝑝"= 
𝑏$ ∼ 𝐵𝑖𝑛𝑜𝑚(𝑠$ , 𝑝%) 

where p+ and p- are the two variants of p respectively.  
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However, this approach only generates EE genes. To simulate known DE genes, we subset 

those genes in Ck with at least 25% non-zeros. From this set of genes, we sample 10 to be induced 

DE genes, with sampling weighted by the inverse density of log gene expression, calculated simply 

as the log of the mean UMIs in Ck. As with the fold change in LS, we sample 10 DE fold changes 

from the range 3/2 to 6, denoted by γfc,g with the subscript g indexing the 10 gene-specific DE fold 

changes. As we do not want all DE genes to be upregulated in A, we invert each of the γfc,g with 

probability 0.5. If we now consider the binomial probability, p, to be a vector of length equal to 

the number of genes, and pDE to denote the subset of elements which are DE after correcting for 

LS, some similar algebra to the above shows that 

𝑝Z5,@ = 0.5 ±
(𝛿XY𝛾XY,@ − 1)
2(𝛿XY𝛾XY,@ + 1)

	

where this formulation also allows the definition of aj and bj to be defined as the same binomial 

random variable parameterized by p+ or p-, where p now includes information about DE sampling. 

Two problems remain to be addressed; that we have only discussed the generation of n/2 of the 

cells in each group and that correcting for LS as defined here can induce slight but systematic 

differential expression in the EE genes. Take, for example, the extreme case where all the DE 

genes are upregulated in A relative to B after correcting for LS. In this case, calculating LS from 

the sum of simulated UMIs within a cell, and correcting for that LS, will induce a slight but 

consistent down-regulation in the EE genes in A relative to B. We address this by adding a 

correction factor to the remaining n/2 simulated cells in each cluster. 

The degree of this induced bias can be simply calculated as the ratio of expected total LS 

(total meaning summed across cells as well as genes) under the above DE model and the model 

where all genes are simulated EE. Let p+ be, as above, a vector of binomial probabilities which 
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includes DE information for the simulation of A and let pEE+ be a corresponding binomial 

probability vector for which all genes are EE, that is, suppose all elements of pEE+ are equal to the 

original, scalar, definition of p+. Let Ck- denote a vector of gene-wise UMIs, summed across all 

cells in Ck. Then, the total expected LS for the EE case is pEE+TCk- and the degree of bias in the 

above simulated cells, inducing DE in simulated EE genes, is 

𝛼"[1\] =
𝑝"2𝐶6%
𝑝55"2 𝐶6%

	

This can be interpreted as implying that normalized EE genes in A will, on average, be a 

factor of 1/α+bias different from what would have been the case had all genes had been simulated 

as EE. If α-bias=α+bias, then this wouldn’t be a problem, but such is not the case. Unfortunately, it 

is also the case that α-bias≠1/α+bias, as can be shown by simple counter examples. Therefore, we 

compute separate corrective factors for A and B under the principle that expression of EE genes 

between A and B should, when averaged across the first n/2 cells and the second, corrected n/2 

cells demonstrate the desired fold change in LS. This leads to the corrective factor, c 

|
𝑐"𝑝"2𝐶6%
𝑝552 𝐶6%

~
%#

= 1 − �
1

𝛼"[1\]
− 1�	

⇒ 𝑐" =
1

2𝛼"[1\] − 1
	

⇒ 𝑐% =
1

2𝛼%[1\] − 1
	

This then fully defines the simulated cells: 

𝑎$ ∼ �
𝐵𝑖𝑛𝑜𝑚9𝑠$ , 𝑝"=, 𝑗 ≤ 𝑛/2

𝐵𝑖𝑛𝑜𝑚�𝑠$%-3
, 𝑐"𝑝"� , 𝑗 > 𝑛/2

	

𝑏$ ∼ �
𝐵𝑖𝑛𝑜𝑚9𝑠$ , 𝑝%=, 𝑗 ≤ 𝑛/2

𝐵𝑖𝑛𝑜𝑚 �𝑠$%-3
, 𝑐%𝑝%� , 𝑗 > 𝑛/2
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To complete a simulated dataset, the above steps for generating the cluster pair A and B are 

repeated for the remaining experimental clusters, generating a heterogenous samples of simulated 

data for which pairs of simulated clusters have known EE and DE genes. 
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A.4 Supplemental Figures 

Supplemental Figure A.1: Dino concentration parameter variation: Wilcoxon test. 

Simulated data based on each of the considered datasets were normalized using each method. 
ROC curves colored by normalization method define the relationship between average TPR 
(Power) and average FPR for a Wilcoxon rank sum test, where the average is calculated across 
12 simulations from each dataset. The concentration parameter (default 15) used for each run 
of Dino is indicated in the numeric suffix. 
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Supplemental Figure A.2: Dino concentration parameter variation: MAST test.  

Simulated data based on each of the considered datasets were normalized using each method. 
ROC curves colored by normalization method define the relationship between average TPR 
(Power) and average FPR for a MAST test, where the average is calculated across 12 
simulations from each dataset. The concentration parameter (default 15) used for each run of 
Dino is indicated in the numeric suffix. 
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Supplemental Figure A.3: Dino concentration parameter variation: t-test.  

Simulated data based on each of the considered datasets were normalized using each method. 
ROC curves colored by normalization method define the relationship between average TPR 
(Power) and average FPR for a t-test, where the average is calculated across 12 simulations 
from each dataset. The concentration parameter (default 15) used for each run of Dino is 
indicated in the numeric suffix. 
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Supplemental Figure A.4: Larger values of K improve model fit for unimodal distributions.  

We simulated UMI count data under a unimodal Negative Binomial distribution. Each row of 
the figure indicates a new simulation with sequentially larger values of K for the Dino fit. The 
background of the left column plots the simulated UMI counts as a heatmap (log expression 
against log library size). Overlaying this heatmap are the mean trend lines fitted from the Dino 
mixture model (gray) and the true mean of the sampling distribution (red). The right column 
plots the true distribution of the simulated data at LS=0 (red) and the Dino estimate of the prior 
distribution which is subsequently used to generate normalized expression values. In practice 
K is chosen algorithmically for each gene, and so small values of K relate to correspondingly 
fewer data points, hence the sparsity of the heatmap of simulated data for K=5. 
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Supplemental Figure A.5: Larger values of K improve model fit for multimodal 
distributions. 

 We simulated equal numbers of UMI counts from a mixture of two NB distributions, each with 
different means and dispersion parameters. Each row of the figure indicates a new simulation 
with sequentially larger values of K for the Dino fit. The background of the left column plots 
the simulated UMI counts as a heatmap (log expression against log library size). Overlaying 
this heatmap are the mean trend lines fitted from the Dino mixture model (gray) and the true 
means of the sampling distribution (red). The right column plots the true distribution of the 
simulated data at LS=0 (red) and the Dino estimate of the prior distribution which is 
subsequently used to generate normalized expression values. In practice K is chosen 
algorithmically for each gene, and so small values of K relate to correspondingly fewer data 
points, hence the sparsity of the heatmap of simulated data for K=5. 
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Supplemental Figure A.6: Normalized DE testing comparison: Wilcoxon test.  

Simulated data based on each of the considered datasets were normalized using each method. ROC 
curves colored by normalization method define the relationship between average TPR (Power) and 
average FPR for a Wilcoxon rank sum test, where the average is calculated across 30 simulations 
from each dataset. 
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Supplemental Figure A.7: Normalized DE testing comparison: MAST test.  

Simulated data based on each of the considered datasets were normalized using each method. 
ROC curves colored by normalization method define the relationship between average TPR 
(Power) and average FPR for a MAST test, where the average is calculated across 30 
simulations from each dataset. 
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Supplemental Figure A.8: Normalized DE testing comparison: t-test.  

Simulated data based on each of the considered datasets were normalized using each method. 
ROC curves colored by normalization method define the relationship between average TPR 
(Power) and average FPR for a t-test, where the average is calculated across 30 simulations 
from each dataset. 
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Supplemental Figure A.9: Normalized clustering comparison: MaltTumor10K.  

a) tSNE plots of normalized MaltTumor10K data, colored by 11 pseudo-annotations, show 
similarly high accuracy across methods. b) The same clustering plots as in (a), but with half the 
data down-sampled prior to normalization to produce greater differences in LS. c) Boxplots of 
ARIs for multiple un-modified and down-sampled datasets across 24 replications of the 
normalization procedures and, for the down-sampled data, 24 applications of the down-
sampling. 
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Supplemental Figure A.10: Normalized clustering comparison: PBMC5K_Prot.  

a) tSNE plots of normalized PBMC5K_Prot data, colored by 11 pseudo-annotations, show 
similarly high accuracy across methods. b) The same clustering plots as in (a), but with half the 
data down-sampled prior to normalization to produce greater differences in LS. c) Boxplots of 
ARIs for multiple un-modified and down-sampled datasets across 24 replications of the 
normalization procedures and, for the down-sampled data, 24 applications of the down-
sampling. 
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Supplemental Table A.1: Average power and FPR statistics: Wilcoxon test.  

30 simulated datasets are produced from each case study dataset. In each simulation, the data are normalized by the 
panel of methods and significantly DE genes are identified using the Wilcoxon rank sum test. DE genes are defined 
as those with a Benjamini and Hochberg adjusted p-value less than 0.01. Average power and FPR is calculated over 
the 30 simulated datasets (standard error computed across simulations). 
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Supplemental Table A.2: Average power and FPR statistics: MAST test.  

30 simulated datasets are produced from each case study dataset. In each simulation, the data are normalized by the 
panel of methods and significantly DE genes are identified using the MAST test. DE genes are defined as those with 
a Benjamini and Hochberg adjusted p-value less than 0.01. Average power and FPR is calculated over the 30 simulated 
datasets (standard error computed across simulations). 
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Supplemental Table A.3: Average power and FPR statistics: t-test.  

30 simulated datasets are produced from each case study dataset. In each simulation, the data are normalized by the 
panel of methods and significantly DE genes are identified using the t-test. DE genes are defined as those with a 
Benjamini and Hochberg adjusted p-value less than 0.01. Average power and FPR is calculated over the 30 simulated 
datasets (standard error computed across simulations). 
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B Appendix to Chapter 4 

B.1 Statistical Methods 

B.1.1 Mixed species sample quality control 

To assess the quality of alignment to the combined human-mouse transcriptome, misalignment 

rates were quantified in the H100 (pure human) and M100 (pure mouse) samples. In these cases, 

transcripts which align to the mouse and human subset of the transcriptome respectively represent 

errors of misalignment.  Typical misalignment rates across samples appeared to be well controlled 

as the majority of H100 samples aligned less than 0.5% of transcripts to mouse genes (median 

~0.35%, third quartile ~0.37%). The majority of M100 samples similarly aligned less than 1.5% 

of transcripts to human genes (median ~0.53%, third quartile ~1.42%) (S1 Fig).  

A few samples (~5%) exhibited high misalignment rates (>5%). For this reason, samples 

with unusually low sequencing depth were removed. The filtering criteria considered log10 

transformed sequencing depth (within sample sum of total expression) and removed samples with 

depth below the median minus 1.5 times the IQR. This procedure removed the majority of 

individual samples in H100 and M100 with high alignment error rates. Therefore, misalignment is 

believed to be primarily a function of, or at least well predicted by, low sequencing depth 

(Supplemental Figure B.1). 

A second filter was implemented to remove samples with expression profiles significantly 

different from biological replicates of the same time point and temporally neighboring samples. 

Normalized data (see below for details) from the top 1000 highest variance genes across samples 

within each mixture was reduced to 10 principal components. This number roughly accounts for 
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the majority of temporal variability based on the variance explained by each component. Loadings 

for each component were expected to follow a smooth curve in time, following the portion of the 

developmental trajectory defined by the principal component. For this reason, loadings were fitted 

with a 4th degree spline regressed against time. Studentized residuals were tested for being 

significantly different than the regression curve. A sample level p-value was derived by testing 

against the null distribution that the maximum residual across the 10 components (in absolute 

value) was t-distributed. The method of Benjamini and Hochberg(Benjamini and Hochberg, 1995) 

was used to provide adjusted p-values. A backward elimination and forward selection procedure 

was then applied. Specifically, the sample with the smallest adjusted p-value below 1e-05 was 

removed and the process repeated until no samples had an adjusted p-value below 1e-05 (if a 

sample is the last remaining observation from a particular time point, it was not considered for 

removal regardless of its adjusted p-value). Samples were then added back in one-at-a-time in the 

order of removal. Any with adjusted p-values above 1e-05 were retained for further analysis, and 

otherwise were rejected permanently. The filtered dataset was renormalized prior to analysis. 

Empirically, this procedure was shown to remove several remaining high-error samples 

from M100 without removing high sequencing depth samples across species mixture groups 

(Supplemental Figure B.1). 

B.1.2 Normalization of mixed species samples 

We used a modified application of the scran(Lun et al., 2016) method for normalization of the 

expected count data. Human and mouse aligned transcripts were normalized separately, and so 

relative levels of normalized expression were not directly comparable between species. Consider 

the human mixtures (H10, H85, or H100); mouse mixtures were normalized identically. When 
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biological replicates existed for a time point, scran was first applied to normalize these samples. 

Average normalized expression of biological replicates was then normalized, again via scran, 

across both time points and mixtures.  

B.1.3 Segmented regression and gene-trend classification 

The dynamics of gene expression through time were defined by a segmented regression 

implemented using the Trendy(Bacher et al., 2018) package. Trendy automatically selects the 

optimal number of segments (up to a maximum of 5 in this application) and requires that each 

segment contain a minimum number of samples (5 in this application). Additionally, an automatic 

significance test on segment slopes classifies segments as increasing, decreasing, or flat. As the 

test is itself somewhat conservative, we used a significance threshold of 0.1 (default) to determine 

these slope classifications. Trendy was then applied to all genes for which the 80% quantile of 

normalized expression is above 20 for at least one mixture. 

Following regression, the segment trend classifications were used to define sets of genes 

by patterns of behavior relative to a reference dataset (H100 in the majority of the published 

analysis). Genes were classified into subsets of accelerated or differentially expressed (DE) 

relative to the reference dataset according to the following criteria: 

1. Accelerated by Early Up (EU):  

a. Both the test gene and the reference gene contain an increasing segment which is 

not preceded by a decreasing segment. If multiple such segments exist, only the 

first is considered.  

b. The increasing segment in the test gene must start at least 2 days before the 

increasing segment in the reference gene. 
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c. The slope of the increasing segment in the test gene must be at least 5 times the 

slope of the (non-increasing) reference segment which contains the start time of the 

test increasing segment (typically the segment just prior to the increasing reference 

segment). This filter removes genes for which the reference segment containing the 

start time is labeled as flat by Trendy (slope is not significantly different from 0), 

but is fitted with an up-trending slope. This can happen in instances where the 

reference segment is short and so does not contain enough sample points for the up-

trend to be labeled as significant. 

2. Accelerated by Early Peak (EP): 

a. Both the test gene and the reference gene contain a peak defined by an increasing 

segment followed by a flat or decreasing segment. The peak itself is defined by the 

time of the breakpoint between these two segments. 

b. The peak in the test gene must be at least 2 days before the peak in the reference 

gene. 

3. DE Up: 

a. The maximum fitted value of the test gene plus 1 must be at least 3 times the 

maximum fitted value of the reference gene plus 1. The inclusion of the plus 1 bias 

to each side prevents very lowly expressing genes from appearing DE due to small 

differences in fitted values which are only multiplicatively large due to the low 

overall expression. 

Genes in H10 or H85 matching these acceleration/up-regulation criteria were denoted as 

“Early” or “Up” respectively.  
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We also ran this classification denoting H100 as the test datasets. When genes matched the 

criteria in this case, we denoted the corresponding gene in the reference dataset, H10 or H85, “Late” 

or “Down” according to the specific criteria met. 

B.1.4 Acceleration factor estimation 

Point estimates of the relative acceleration of one dataset compared to another were computed 

from genes which either peak in both datasets or trend up in both datasets. For simplicity, consider 

the case of H10 relative to H100. From peaking/up-trending genes, the event time was calculated: 

time of peak or time of the start of up-trend respectively. When a gene both peaks and trends up, 

the peak was preferred as it was assumed to be a more accurate estimate of regulatory changes. 

Up-trending genes (without peaks) which start up-trending in either H10 or H100 on day 0 were 

discarded. Point estimates were then calculated as the ratio of the event time in H100 to the event 

time in H10. In this way, a ratio of 2 would indicate that, at the time of the even in H10, that gene 

is accelerated to be 2x as fast as the gene in H100. Point estimates are computed across pairs of 

datasets. 

To compute a continuous estimate of acceleration factors, the above point estimates are 

smoothed using spline regression (linear model in R with a basis spline under default parameters) 

against event time in the test (e.g., H10) dataset. It should be noted that these acceleration factors 

are best interpreted as estimates of the relative acceleration of the genes which are active at that 

time point. Acceleration factors of 1 therefore identify time points, and thereby sets of genes active 

at that time point, which are relatively unchanged between the conditions. 
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B.1.5 Gene set enrichment 

Accelerated and DE gene sets were further characterized through testing for GO term enrichment. 

The topGO(Alexa et al., 2006) package and org.Hs.eg.db(Carlson, 2019) dataset were used to 

perform enrichment testing on GO terms belonging to the biological processes (BP) ontology. The 

set of all genes on which Trendy segmented regression was run was used as the background set 

(see above for subset definition). Significant p-values were then FDR corrected(Benjamini and 

Hochberg, 1995) prior to analysis. 

Pathway and transcription factor/miRNA enrichment was performed in a similar manner. 

In these cases, the piano(Väremo et al., 2013) package was used to accommodate non-binary 

statistics. Specifically, enrichment was performed on the difference between up-trend or peak 

events between a test dataset (e.g., H10) and a reference dataset (e.g., H100). When available, the 

difference was calculated from the time of peaks in each dataset. Absent peaks, the difference was 

calculated from the time of the start of up-trends. Genes without either shared peaks or shared up-

trends were given a difference of 0.  

Enrichment for these differences were performed against two collections of gene sets from 

the MSigDB database(Subramanian et al., 2005; Liberzon et al., 2015). The first was a curated 

collection of pathways, including KEGG(Kanehisa, 2000, 2019; Kanehisa et al., 2021), 

Biocarta(Nishimura, 2001), and Reactome(Jassal et al., 2020) sets of gene pathways. The second 

was a collection of miRNAs(Chen and Wang, 2020) and transcription factors(Yevshin et al., 2019) 

(TFs) and downstream regulated genes. Enrichment was performed with the runGSA function 

from the piano package (4e6 permutations, minimum gene set size of 1, maximum gene set size 

of 250). 
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B.1.6 Sorted sample quality control validation 

Sorted samples, sH100, sH10, sM90, and sM100 were similarly aligned to a combined 

transcriptome (as described above) to provide a validation dataset. One data point was removed 

for low sequencing depth (day 29 from sH10, fewer than 1e3 expected counts where typical sorted 

samples had greater than 1e6 expected counts) and all others were retained.  

Empirical misalignment rates were computed for sH100 and sH10 as the fraction of 

expected counts aligned to the mouse portion of the transcriptome; median values across days were 

0.53% and 2.23% respectively. 

Active misaligned genes were identified as genes in the off-target portion of the reference 

transcriptome (e.g., mouse genes for sH10) with an 80% quantile of expected counts ≥ 20. 

Enrichment following the above-described procedure was performed on these gene sets. 

Normalization was performed using the calculateSumFactors function in scran (default 

parameters) to compute scale factors which expected counts were then divided by. As with the 

other data, Trendy was used to perform segmented regression (maximum 4 breakpoints, minimum 

2 points per segment, p-value threshold 0.1). Output from Trendy was used to classify genes as 

EU/LU. Peak analysis was omitted as the lower resolution of the data prevent robust identification 

of peaks (e.g., visually identifiable peaks are not significant under Trendy regression).  

Acceleration factor estimation was computed from these shared up-trend genes in the above-

described manner, and enrichment was performed on EU genes, again as above. 

B.1.7 Correlation analysis 

Expression similarity across time points, species mixtures, and external reference datasets was 

assessed through gene expression correlations. To ensure that computed correlations were 
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representative of the temporal gene dynamics being studied, correlations were computed on only 

a subset of genes. Highly dynamic genes were subset from all Trendy-fit genes by calculating the 

coefficient of variation of fitted values. The highest CV across species mixtures was then retained 

as a measure of each gene’s level of temporal dynamics, and the top 2000 most dynamic (highest 

CV) genes were subset for analysis. 

Relative similarity of species-mixtures was computed as the correlation matrix (spearman 

type) between time points where within-day biological replicates were averaged together to obtain 

a single day expression value. 

Similar calculations of correlations between the species-mixture data and two outside 

datasets, the BrainSpan atlas of the developing human brain(Miller et al., 2014; Allan Human 

Brain Atlas: BrainSpan (Atlas of the Developing Brain)) and the Human protein atlas(Yu et al., 

2015; RNA FANTOM brain region gene data), were conducted. In these cases, the genes used to 

calculate correlations were the union of the top 1500 most dynamic genes from H10/H85/H100 

and the top 1500 most dynamic genes (highest CV across cell-types) from the relevant in vivo 

reference dataset. 

B.1.8 Correlation-based acceleration 

To use in vitro correlation heatmaps to estimate acceleration factors, we adapted a technique 

described in Rayon et al. 2020(Rayon et al., 2020). Specifically, we performed a version of 

weighted regression whereby the weights derive from the correlation values. However, as the in 

vitro data was observed to not have a constant acceleration factor, we performed segmented 

regression with a fixed breakpoint at day 16. The specific function to minimize was then: 
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where EC denotes expected counts (correlation is spearman type, so normalization in unnecessary), 

ti and tj denote days in the reference and test datasets respectively (e.g., H100 and H10), and dist⊥() 

denotes the perpendicular distance to the current estimate of the segmented regression given 

regression coefficients θ* from the provided time pair (coordinates on the correlation heatmap). 

Minimization was conducted in R using the optim function (L-BFGS-B method, upper and lower 

bounds of 10 and 1/10 respectively, segmented regression fixed to pass through (0, 0), initial slopes 

set to 1 in each segment). Standard errors for coefficient estimates were generated by bootstrapping 

solutions from random samples (with replacement) of the input genes. Regression slopes then 

defined the desired acceleration factor up to an inversion. 

B.1.9 In vivo dissimilarity 

Dissimilarity between in vitro data (average across biological replicates for a given day and species 

mixture) and in vivo references was computed from highly dynamic genes (see criteria above in 

Correlation analysis) using a variation of principal component analysis (PCA). To accommodate 

the distributional properties of these sequencing data, as well as the properties of the reference 

data, a variation on PCA, glmpca(Townes, 2019; Townes et al., 2019), which uses a negative 

binomial model residuals was used to perform dimension reduction to 6 dimensions (6 principal 

components). Dissimilarity was then computed as the distance (Euclidian) between an in vitro data 

point in the low dimensional space and the corresponding low dimensional representation of a 

reference in vivo data point. glmpca was run with the negative binomial family, fisher optimizer, 

penalty of 10, minimum iterations of 400, and was parameterized by size factors derived from 
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Scran to normalize the (unnormalized) expected counts from the in vitro data and the in vivo 

reference. 

Note that the BrainsSpan data were available as reads per kilobse million (rpkm) rather 

than the expected counts (EC) used in this analysis. For this reason, analysis on the BrainSpan data 

was conducted using fpkm from the in vitro data as the best available analog. 

B.1.10 Deconvolution analysis 

Deconvolution analyses to estimate proportions of cell-types in the observed bulk sequencing data 

were performed using the music_prop function (default parameters) from the MuSiC(Wang et al., 

2019) package with the CoDEx database of annotated developing brain cells(Polioudakis et al., 

2019) as reference. Within species-mixture, estimated proportions were smoothed across 

biological replicates and days using the DirichletReg function from the DirichletReg 

package(Maier, 2020) and a basis spline (df = 4). 
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B.2 Supplemental Figures 

 

  

Supplemental Figure B.1: Quality control filtering removes samples with uncharacteristically 
low sequencing depth. 

(A) Observed per-sample misalignment rates for pure human (H100)/pure mouse (M100) mixtures. 
(B) Observed log10 total sequencing depth summed across sequences aligned to either human or 
mouse. Most samples removed from analysis (blue) are below the depth filtering threshold (dashed 
line) (see Materials and Methods). Otherwise, the M100 results suggest that the higher-depth 
removed samples are those with higher rates of misalignment (top/middle, right column). 
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Supplemental Figure B.2: Seeded human cell proportions increase over time. 

(A) Observed percent of human cells in H10 mixture out to 16 days. (B) FACS plots intensities used to 
compute relative proportions of human and mouse cells in H10 mixture. 
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Supplemental Figure B.3: Selected gene expression plots show characteristic differences between H100, 
H10, and M100.  

(A) Early-Up classified fitted trend lines (solid) are plotted for selected genes with overlaid normalized 
observed data (points). (B) Similar results are shown for selected Early-Peak classified genes (green = M100, 
pink = H10, blue = H100). 
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Supplemental Figure B.4: Enrichment of late-up (LU) and late-peak (LP) genes fail to demonstrate a 
pattern of neuron development-related terms.  

(A) Top GO terms enriched for LU genes in H10 compared to H100 with corresponding FDR corrected p-
values (log 10 scale). (B) Top GO terms enriched for LP genes in H10 compared to H100 with corresponding 
FDR corrected p-values (log 10 scale). 
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Supplemental Figure B.5: Up-trends show defining shifts in H10 among EU and EP genes.  

(A) EU genes from each of the listed GO terms are plotted. The start of uptrends between H10 and H100 are plotted 
(top left) with KS testing sowing significant left shift corresponding to significantly earlier trend starts in H10. Slope 
ratio (ratio of H10 up-trend slope over H100 up-trend slope) densities are plotted (top right) on the log scale for top 
enriched GO terms with KS testing showing a significant left-shift corresponding to significantly reduced slopes in 
H10 among these genes. Densities of the duration of up-trends (bottom left) show significantly longer (KS test) trends 
for H10 (red) than H100 (blue). (B) EP genes from each of the listed GO terms are plotted. The timing of peaks are 
plotted (top left) with KS testing showing significant left shift corresponding to significantly earlier peaks in H10. 
Similar results for EP genes as the above EU genes show significantly earlier up-trend starts, significant increases in 
slope in H10, and reduced duration of up-trends (pink = H10, blue = H100). 
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Supplemental Figure B.6: Expression from sorted co-culture cells fails to show misalignment bias.  

(A) Empirical misalignment for sH100 and sH10 are plotted by day. (B) Misaligned genes for the sH10 and sM90 
(mouse and human aligned reads respectively) are subset. Enrichment testing is performed on active genes, defined 
as those with 80% quantile of observed expression of at least 20 expected counts, and top terms are plotted against 
FDR corrected p-values (log 10 scale). (C) Expression from selected genes which are accelerated in the H10-H100 
comparison are plotted for sH100, sH10, and sM100, and show similar acceleration effects in this sorted control 
dataset. (D) EU/LU genes are tabulated for sH10. (E) Continuous acceleration factors are calculated for sH10 and top 
EU enriched GO terms are plotted. 
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Supplemental Figure B.7: Analysis of co-cultured mouse expression suggests deceleration of mouse gene 
expression patterns.  

(A-B) Genes identified as shared up-trends (excluding those which start to trend up on day 0 in both M100 and M15) 
or shared peaks between M15 and M100 are classified as either early, late, or unchanged, and then tabulated. (C) 
Shared up-trending and peaking genes are used to estimate a continuous acceleration factor for M15 relative to M100 
in an identical manner to the human data. The median acceleration factor (over the first 16 days) of 0.894 indicates a 
deceleration in gene activity. (D-G) Top terms enriched for EU, LU, EP, and LP genes respectively are plotted against 
FDR corrected p-values. Neural associated terms are either unique to the late category or are more significant in that 
group, suggesting a deceleration effect specific to neural genes. 
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Supplemental Figure B.8: Up/down regulation of genes in H10 show region specific 
patterns.  

Relative expressions of curated genes in regional/functional groups are plotted on a 
normalized -1 to 1 scale. Gene expression (within gene) is normalized such that the 
maximum difference in fitted expression (in H100 or H10) equals 1. Relative expressions 
are then calculated as the difference between H10 and H10 where higher H10 values tend 
towards 1 (red), lower H10 values tend towards -1 (blue), and equivalent values tend 
towards 0 (black). 
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Supplemental Figure B.9: Deconvolution analysis of mixed-species data supports dose-response 
effect.  

Expression data for H100, H85, and H10 respectively are deconvolved relative to the CoDEx 
reference dataset of annotated developing brain single cell expression. Deconvolution produces 
estimates of the relative proportions of reference cell-types present in the bulk data. Estimates are 
smoothed against time and plotted for each of H100 (top), H85 (middle), and H10 (bottom). 
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Supplemental Figure B.10: Correlation with Human Protein Atlas (HPA) data further demonstrates 
dose response behaviors.  

Correlations (Spearman) between fitted trends HPA data are calculated across the thirteen HPA regions. 
Calculations are performed on a subset of highly dynamic genes (see Materials and Methods). Dissimilarity 
(PCA-based distance, see Materials and Methods) between species mixtures and each of 6 HPA cell-types 
are computed for each day and smoothed to estimate a continuous dissimilarity metric over time. 
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Supplemental Figure B.11: Candidate pathways, transcription factors (TFs), and miRNAs 
mediate the observed acceleration.  

(A) Top pathways (left) and TFs/miRNAs (right) enriched for acceleration in H10 are plotted against 
their FDR corrected p-values. (B) Similar analysis is performed on M100 orthologs compared to 
H100 expression. Prior to plotting top pathways (left) and TFs/miRNAs (right), enriched terms are 
subset to include only those which are also significant (FDR corrected p-value ≤ 1e-2) in the above 
H10 comparison. 
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