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Abstract 
 

Data generated from biomedical sciences often lack completeness. Valid inferences from such data 

need to be developed with great care. Imperfect datasets may contain too many variables given the 

number of limited observations, and a significant proportion of the data may also be missing. 

Restricting the analysis to complete information alone can compromise inferences as well. This 

study investigated a number of methods for analysis of imperfect datasets and geographic 

representation of risk of disease. Particularly, Bayesian approaches have been used throughout this 

thesis owing to their strength for analyzing imperfect data and disease mapping.  To achieve the 

three overarching aims of this thesis, i.e., statistical analysis in the presence of missing data, 

variable selection, and disease mapping three separate datasets about topics from global health 

were used. These are (1) a WHO vital registration mortality dataset with the aim of predicting 

missing mortality rates associated with foodborne diseases; (2) The New Zealand 

campylobacteriosis notification and travelers’ database, with the aim of estimating missing travel 

status of notified campylobacteriosis cases; and (3) The People, Animals and their Zoonoses 

Project dataset for variable selection and spatial description of the risk of malaria in the Busia 

region, Western Kenya. First, an important subset of predictors of mortality associated with 

foodborne diseases have been selected in a stepwise way using a combination of multiple 

imputation and elastic net regularization approaches. Cluster analysis and Bayesian hierarchical 

regression then were applied to estimate missing mortality rates for countries lacking the data.  

Second, missing travel status of campylobacteriosis notifications in New Zealand was estimated 

using a Bayesian regression model, and the risk of travel associated campylobacteriosis was 

mapped for New Zealand. Third, a meaningful subset of predictors of malaria was selected, and 
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the spatial distribution of the risk of malaria was mapped for the Busia region, Western Kenya. 

The implications of the results obtained can be generalized by expanding the methods to a broader 

and wider range of problems in addition to applying the methods to assist in the prioritized 

allocation of resources for the control and prevention of the diseases. 
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  Chapter 1: Introduction and Literature review 
 

1.1 Introduction 

 

Datasets generated in biomedical research are often plagued by numerous problems that can 

hamper the full usage of available information. Such problems include missing data and the 

presence of too many variables and too few observations, called a wide-problem. Throughout this 

thesis these challenges are regarded as imperfect data problems. The focus of this thesis is to tackle 

these problems by the application of a combination of Bayesian methods, and other quantitative 

approaches, to real-world global health datasets. This thesis is organized into three parts. Chapter 

1 lays a framework and motivation for the thesis. It includes the background and context of the 

study, as well as the scope and objectives of the project. The second section of Chapter 1 describes 

a general background information about Bayesian and classical methods for data analysis, missing 

data, variable selection and disease mapping with the emphasis on the Bayesian perspective. The 

second part of this thesis is composed of four distinct and self-contained chapters (Chapters 2-5). 

This latter section is built on the analysis of three real world global health datasets that address the 

problems of missing data and variable selection. Chapter 6 of this thesis comprises a conclusion 

of the topics discussed in the preceding chapters and future directions for research. 

 

1.1.1 Background and Context  
 

The importance of the field of data analysis is ever increasing as evidenced by the large number 

of publications regarding new methods and computational tools. Public health epidemiology 

research frequently generates huge numbers of datasets that are, by their nature, often incomplete 
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[1, 2].  Conventional analysis of these imperfect datasets usually leads to flawed inferences [3, 4]. 

This can impact public health decisions because inferences are directly related to the analytic 

approach. In addition to missing or incomplete information, datasets containing large numbers of 

variables have hindered the quantification of associations between risk factors and disease. 

Nonetheless, efforts to improve global health predominantly rely on successful and accurate 

reporting of information about the status of diseases and their associated factors. Identifying and 

tackling the sources of the infections and quantifying the underlying aggravating factors 

significantly helps reduce the disease burden. Lack of resources combined with imperfect data 

demand efficient quantitative statistical tools to make best usage of the available information while 

acknowledging data gaps.  

 

Conventional methods for handling missing data are often questionable in terms of results. Most 

of these methods (and most standard software programs for data analysis) simply ignore the 

missingness by default and restrict the analysis to complete cases [5].  The major drawback of 

excluding missing observations from the dataset is that it frequently removes large proportions of 

the observations resulting in loss of statistical power due to inefficient use of available information 

[6]. Even under the best of conditions, these methods typically yield biased parameter or biased 

standard error estimates[7]. On the other hand, selecting the best subset of variables from a pool 

of potential predictors is one of the hardest and most important problems in biomedical research 

[8]. Traditional regression methods for subset selection such as stepwise, forward and backward 

elimination often encounter a problem whenever the number of variables are much larger than the 

number of observations [9]. Meanwhile, datasets generated in biomedical research may contain 

several hundred or thousands of variables and limited number of observations; therefore, the 
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classical methods can no longer be applied [10, 11]. Over the past few decades, penalized likelihood 

methods, such as the Least Absolute Shrinkage and Selection Operator (LASSO) and Elastic Net 

algorithms have been developed to meet the challenges of high dimensional data through data 

mining (introduced in section 1.2.3). These regularized methods have been used to simultaneously 

select meaningful predictors and estimate their associations with outcomes [10, 12]. 

To cope with the challenges of imperfect data, Bayesian statistical methods have been widely used 

for missing value prediction, disease mapping in time and space, and for source attribution to make 

optimal usage of imperfect data [13, 14]. The application of Bayesian frameworks to a variety of 

problems in a number of disciplines has been increasing in recent years.  This is mainly due to 

improved computational capacity that has resulted in increased application of Bayesian methods. 

These frameworks incorporate existing information (e.g., previous research findings or expert 

opinion) into the data, which is particularly important when imperfect data are used for inference 

about health outcomes [13, 15–17].  

-  

-  

1.1.2 Scope and Objectives 
 

It is vital to seek and apply methods that make optimal use of imperfect data without compromising 

inference. This thesis therefore attempts to address three overarching points. Those are missing 

data, a wide-data problem (variable selection) and spatial description of risk of disease, i.e. disease 

mapping. The general objective of this research is to apply various Bayesian frameworks and other 

quantitative approaches to tackle imperfect data problems. The specific objectives of this thesis 

are (1) to apply variable selection methods for high dimensional data (Chapter 1) and (Chapter 5) 

(2) to apply Bayesian and other quantitative methods for analysis of missing data (Chapters 1 and 

Chapter 3)  and (3) to describe the spatial and temporal distribution of risk of disease (Chapters 4 
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and 5). In order to achieve the objectives mentioned above, this thesis explored real-world global 

health datasets having one or more of these challenges (see Figure 1 below for the schematic 

representation of the study).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



5 
 

Figure 1.1 Schematic representation of the objectives, methods and implications of the study  
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1.1.3 Overview of dissertation 
 

This dissertation thesis is organized into six chapters. The first chapter is an introduction to the 

problem of missing data, variable selection and disease mapping, and it lays out a background for 

the study and describes imperfect data and their implication for inferences. This chapter reviews 

sources and types of missing data, commonly used statistical analysis approaches for imperfect 

data including frequentist and Bayesian frameworks, and introduces the concept of disease 

mapping. Chapters 2 to 5 are self-contained with their own introduction, methods, results, 

discussion and conclusions. In Chapter 2, Bayesian frameworks and other quantitative approaches 

including Multiple Imputation (MI), Cluster Analysis and Elastic net regularization methods are 

implemented for analyzing the World Health Organization’s (WHO) Vital Registration dataset 

regarding mortality associated with foodborne disease. Chapter 3 deals with the application of 

fully Bayesian modeling and MI methods for predicting missing travel status of notified 

campylobacteriosis cases in New Zealand.  Chapter 4 and 5 focus on Bayesian disease mapping 

approaches to characterize the spatial and temporal risk distribution of diseases in different 

geographical regions. While Chapter 4 describes the spatio-temporal distribution of the risk of 

travel associated campylobacteriosis in New Zealand, Chapter 5 is about the spatial analysis of 

malaria prevalence in rural homesteads of the Busia region, Western Kenya. Chapter 6 summarizes 

the findings and derives relevant conclusion and limitations of the study as well as future directions 

of research.  

All the datasets used in this thesis consist of one or more of the problems. Bayesian methods are 

employed in all the datasets either for handling missing data, for variable selection or for disease 

mapping.  
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1.2 Imperfect data 

Efficient and valid utilization of information derived from datasets depends on the quality of the 

information contained and the statistical tools applied. The quality of data is characterized by 

consistency, completeness, and number of meaningful variables and observations contained in the 

data [18]. Lack of all or either of these will result in imperfect datasets. Imperfect datasets are 

ubiquitous across a number of disciplines. The following sections describe shortcomings of 

datasets and some of the statistical analysis approaches for resolving the consequences of such 

shortcomings. For the sake of description in this thesis, the term “imperfect data” is classified into 

two categories, namely missing data and multidimensional data (i.e., the “wide data” problem or 

a dataset containing many more variables than observations). The following sections discuss 

missing data (1.2.1), multidimensional data (1.2.2), applicable statistical analysis approaches for 

imperfect data (1.2.3) and disease mapping (1.2.4).  

 

1.2.1 Missing data 
 

Given the increasing number of computational tools and the high number of incomplete datasets, 

missing data analysis has been the focus of statistical research in recent years [19–22]. Missing 

data are ubiquitous in all academic fields including biomedical, social and behavioral sciences, 

economics and machine learning [23–27]. Any research almost inevitably generates incomplete 

datasets with missing variables in the dataset or lack of variables per observation. There are several 

reasons, known and unknown, that can result in missing data. A few examples include: study 

participants may refuse to complete or skip part of a questionnaire survey, subjects may drop out 

of the study for a variety of reasons,  researchers may not be able to collect complete information 
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(e.g. bad weather, sickness etc.), data collecting equipment may malfunction and data may be 

erroneously recorded [5, 28]. Understanding the reason for missingness is crucial, because it 

determines the choice and performance of the method for analyzing the dataset [29]. In other words, 

identifying the reason by which part of the data are missing can help the data analyst to select the 

optimal method for analyzing the imperfect dataset [30].  It has been previously stressed that the 

reason for missingness is sometimes more important than the amount of missingness in the dataset 

[31]. In addition, inference using incomplete data should take into account some form of 

assumption regarding the missing values [32]. According to Rubin and colleagues (1975), there 

are three categories of missing data with regards to the mechanism by which the missingness was 

introduced [33, 34]. These are Missing Completely At Random (MCAR), Missing At Random 

(MAR) and Missing Not At Random (MNAR). These mechanisms of missing data describe the 

relationship between measured variables and the probability of unobserved or missing data. A 

description of these categories is described as follows. 

Missing Completely At Random (MCAR)                                   

Missing Completely At Random (MCAR) refers to a mechanism for generating missing data where 

the missingness does not depend on any of the observed variables in the dataset nor on unobserved 

values that have not been measured [33]. In other words, missingness in the dataset occurs entirely 

at random meaning that there is nothing systematic going on that makes some observations more 

likely to be missing than the others [12, 14].  It can be expressed as follows: (1.1). 

P(Y/y is missing) = P(Y/y is observed),                                                                                           (1.1) 

which implies that the probability that an observation Yi is missing is unrelated to its value and the 

value of other variables in the dataset. If data fulfil the MCAR assumption, then analysis of the 
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dataset can yield consistent results comparable to analysis of the dataset without missing data. For 

example, in a study that records information from cases of campylobacteriosis, missing overseas 

travel status of the cases can be assumed to be MCAR if it occurs because some individuals simply 

forgot to fill in the travel information section of the questionnaire. Therefore, complete case 

analysis (i.e. excluding all observations with missing values of a variable/s in the data) of the 

MCAR data results in valid inference [36]. 

 

Missing At Random (MAR) 

The fundamental and most widely used assumption about missing data is the MAR model [33]. 

The term MAR, however, is often confusing because of the use of the word “random”. The MAR 

mechanism is not random per se but it describes a systematic missingness in the dataset where the 

missing data are correlated with other variables in the study [37].  These other variables provide 

the mechanism for explaining missing values in the dataset. The MAR mechanism assumes that 

the missing value of Yi does not depend on the value of Yi, after controlling for other variables 

(X’s) in the dataset [38] (1.2).   

P(Y/y is missing, X) = P(Y/y is observed, X)                                           (1.2) 

In other words, the missingness in the system can be explained by the measured variables in the 

dataset, and not on either the values of the missing observation or the value of unobserved variables 

[33]. For example, in monitoring the effect of a certain diet on the level of E. coli 0157:H7 shedding 

in a dairy farm, if care takers having insufficient education have difficulties in recording the dietary 

intake of the cows then the data are MAR because it is the trouble in recording not the diet itself 
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that is causing the missing data, i.e., the absence of the data depends on the level of education of 

the care taker.  

It is generally very difficult to know the type of missingness in a dataset [38]. However, one way 

to establish the plausibility of the MAR mechanism is to include as many variables as possible in 

the analysis that are strong predictors for the outcome variable Y [39]. Sometimes MCAR and 

MAR are called ‘ignorable’ missing data mechanisms, which means that there is no need to 

separately model the missing data mechanism to draw valid inference [40]. 

Missing Not At Random (MNAR) 

If the missing data are not MAR, or if the assumption of MAR is violated, the missing data 

mechanism is said to be MNAR or non-ignorable missing data. Unfortunately, there is no standard 

empirical test for the MAR assumption and therefore it is impossible to rule out MCAR 

missingness. Missing Not At Random occurs when the missingness in the system cannot be 

adequately explained by the measured covariates in the dataset or when it depends on the value of 

the missing data. In other words, even after conditioning on X, the distributions of observed and 

missing values are not similar as shown below: (1.3). 

P(Y/y is missing, X) ≠ P(Y/y is observed, X)                                          (1.3) 

Missing Not At Random frequently occurs whenever the missing values of variable Y are related 

to the values of Y. For example, while studying mortality rate associated with foodborne diseases 

and certain regions that have a high mortality rate did not report those values, then the dataset is 

regarded to be MNAR. In such cases, the missingness is not ignorable and must be modeled 

separately to obtain a valid inference from the dataset [38]. This modeling accounts for the 

missingness mechanism and it will be incorporated into a more complex model to estimate the 
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missing data [41]. For effective estimation of missing data under MNAR situation, however, a 

good prior knowledge of the source of missing values is required. 

 

1.2.2 Multidimensional data 
 

Datasets that contain several variables but consisting of relatively few observations per variables 

are often called multidimensional datasets (i.e., the number of measured covariates is much larger 

than the sample size) [42]. Massive amounts of multidimensional datasets are continuously being 

produced by biomedical research and stored at cheaper costs than the recent past. Although these 

datasets offer rich information, they result in opportunities and challenges regarding data analysis 

[43]. In a regression model, for example, when the number of predictor variables is too high as 

compared to the number of observations, the model lacks enough degrees of freedom and therefore 

the approach is at risk of over-fitting [44]. High dimensional data analysis have become 

increasingly important in various disciplines such as in science, engineering, and biomedical 

sciences [45, 46]. Typical examples include microarray data where the number of genes represent 

the variables and the cases sampled the observations. Here, the number of variables associated 

with the cases is larger than the number of cases. Extraction of a subset of features that are relevant 

for a disease outcome from large numbers of potential risk factors is another challenging area in 

multidimensional data analysis, the so-called “variable selection process” or “dimension reduction 

process” [47]. Other examples of large data include financial data and texture classification in 

image processing research [43].  

It is frequently unnecessary to assume that all variables in the dataset contribute for the uncertainty 

associated with predicting the target response variable, such as morbidity or mortality due to a 
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certain disease. Some of the variables may be simply redundant measurements that can be 

explained by other variables in the dataset, while others may be completely irrelevant [42]. In real 

world data collection, however, researchers usually gather as much information as possible.  The 

primary goal of analyzing a dataset with too many variables and too few observations is to retain 

a subset of relevant variables that can convey as much information as the full dataset while 

increasing the scope of interpretation [48]. On the other hand, certain dimension reduction 

approaches produce fewer new ‘variables’ by means of linear combination of the existing variables 

to understand the underlying phenomenon of interest. Such methods include Principal Components 

Analysis (PCA), Factor Analysis (FA) and Linear Discriminant Analysis (LDA). Detailed 

description of these dimension reduction methods can be found in literature [49, 50]. After selecting 

the subset of meaningful variables, the appropriate analytic approach can be applied for parameter 

estimation or prediction of outcomes.  

 

1.2.3 Analysis approaches 
 

In this section, commonly used statistical analysis approaches for missing and multidimensional 

data are described. Until recently, missing data analysis has heavily relied up on analysis of only 

complete observations after discarding those with missing values [51]. However, a wide variety of 

alternative methods for efficient utilization of missing data have been developed [5, 52–54].  The 

appropriateness of a given method for analyzing missing data is dependent on the mechanism by 

which the missingness was introduced into the dataset as described in section (1.2.1). It is also 

important to know whether one is dealing with missing outcome, missing predictor or missing in 

both, as the analytic approach may depend accordingly. In the statistical literature, there are two 

frameworks for statistical inference, namely, the classical (Frequentist) and the Bayesian 
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frameworks. The following section describes various approaches within each framework for 

dealing with missing and multidimensional data. For detailed technical and theoretical 

understanding, the reader is directed to the following references [15, 54, 55] 

Classical (Frequentist) Inference 

 

The Classical (Frequentist) approach to statistical analysis, which was developed by Ronald Fisher 

in the early 20th Century, is based on the notion that probabilities are fundamentally related to the 

frequency of events [55].  Most conventional frequentist approaches do not have the full capacity 

to handle missing data without losing information. While it would be impossible to adequately 

summarize all applications of frequentist approaches in this thesis, a selection of commonly used 

methods related to analysis of imperfect data are described.   

Listwise deletion (Complete Case Analysis): Traditional methods for dealing with missing data, 

which are applied by many commonly used statistical packages, involve deleting any case that has 

missing values for any variable in the dataset (also called listwise deletion) [38]. This is the easiest 

approach and does not require any special computation method [30]. This method requires the 

MCAR assumption to hold for valid inference. Ignoring incomplete observations and restricting 

the analysis to complete cases often compromises the validity of inference derived from the 

complete cases, particularly when the proportion missing is high, and that the missingness is not 

MCAR [56]. There are a number of drawbacks to this approach. These include loss of information 

and lack of representativeness of the complete cases for making reliable inference to the population 

[30, 57].  

Expectation maximization (EM): The most common model-based framework for missing data 

under the frequentist paradigm is the EM approach.  The EM algorithm is a technique often used 
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to obtain the Maximum Likelihood (ML) estimates of the unknown parameters in a model using 

an iterative approach [58]. This method iterates through a process of estimating missing data and 

then parameters using the ML approach. It repeatedly cycles back and forth between two steps, the 

Expectation and the Maximization steps. In the Expectation step, the expected value of the log-

likelihood is estimated for the variables that have missing data and during this step, expectations 

are computed using the current parameter values. In the Maximization step, the expected log-

likelihood is maximized to obtain new parameters estimates. These cycles continues until the 

estimates do not change substantially while cycling through the two steps (i.e., until convergence 

is reached) [51, 59, 60]. The main disadvantages of the EM method include producing biased 

parameter estimates, the inability to compute standard errors and the slow rate of convergence 

particularly whenever the fraction missing is very high[51]. In addition, this method requires a 

large sample size and the assumption of MAR to hold [61].  

 

Regularization: commonly used classical regression based variable selection methods, such as the 

backward and forward regression methods, attempt to reduce the number of variables and select 

the most parsimonious model that still guarantees good predictive performance [62]. However, 

these methods are not useful if there are larger numbers of variables (p) than observations (n) in a 

dataset (i.e., p ≫ n). In such scenarios, these approaches will produce non-identifiable models, 

high collinearity of variables and can become computationally unstable [63]. The difficulty of 

determining the parameter values of data is commonly called ‘identification problem’ [64]. In this 

instance, penalized regularization methods have been proven to be meaningful both theoretically 

and empirically [65, 66]. Regularization is a process of fine tuning or selecting the preferred level 

of model complexity by introducing external information (penalty term) to avoid too complex and 
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over-fitting (or too simple and underfit) models and hence find the optimal predictive model [67]. 

For model regularization, two things are required: a tuning parameter (lambda), which controls the 

level of complexity (smoothness) of the models, and a way of checking the predictive performance 

of the models (cross validation). This technique constrains or regularizes regression coefficient 

estimates (i.e., shrinks some of the coefficient estimates towards zero, and hence retains a subset 

of variables) and improves the fit of the model [66].   

 

Several regularization solutions have been proposed in the past that include Ridge regression [68], 

the LASSO (Least Absolute Shrinkage and Selection Operator) [66] and Elastic net [65]. The ridge 

regression achieves a better prediction performance by shrinking regression coefficients. It does 

not produce a parsimonious model as it always keeps all the variables in the model. However, the 

LASSO, which is an improvement over the Ridge, does both subset selection and shrinkage. 

Because variable selection is a more important problem in modern data analysis, the LASSO is the 

more relevant of the two. The Elastic net, on the other hand is an optimized approach that carries 

both the qualities of LASSO and Ridge, for variable selection and shrinkage, respectively [65]. 

The application of Elastic net for variable selection is described in section 4.1 of this thesis. An 

exhaustive survey of regularization methods is beyond the scope of this thesis and the reader can 

find a comprehensive discussion of the statistical theory behind each method in literature [65–68].  

 

Multiple imputation (MI):  Multiple Imputation is the most commonly used model-based approach 

for handling missing data in many health research datasets. It was first proposed by Rubin (1976) 

and subsequently developed by several other researchers [33, 69–71]. As it has become a standard 
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procedure for handling missing data, most modern statistical programs contain tools to perform 

MI. The method assumes that the missingness is ignorable or MAR. Multiple Imputation consists 

of three steps. The first step is to create multiple datasets (also called “multiply datasets”) by 

imputing missing observations with plausible values using the predictive distribution of the 

covariates in the dataset [52]. Usually 5-10 multiply datasets are sufficient whenever the 

proportion missing is not excessive. However, it may be sensible to use 20 or more imputed 

datasets [72, 73]. Second, each completed dataset is analyzed separately using standard statistical 

analysis procedures as if each multiply dataset is complete dataset. Finally, individual estimates of 

each imputed dataset are combined into one overall estimate and variance using Rubin’s rule [33]. 

Since the set of possible imputed values is drawn from the conditional distribution of the missing 

variables given the observed data, the values inherently contain variation. Although MI is 

fundamentally a frequentist approach, random sampling from the distribution of the data is derived 

from Bayesian theory (described below in the next section) therefore it is a blend of both 

frameworks. There is a variety of resources for detailed information on MI [69, 71, 74, 75]. 

 

Bayesian Inference 

 

The Reverend Thomas Bayes (1702-1761) developed what is currently called “Bayes’ Theorem” 

which was the first expression for inverse probability and this theorem is the basis of Bayesian 

inference. Bayesian inference is a process of learning from data. Bayesian methods are based on 

the assumption that probability is operationalized as a degree of belief, and not a frequency as is 

done in classical, or frequentist, statistics. It has recently become a standard tool for data analysis 

and been widely used in many research areas including experimental research [76], risk assessment 
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[77], social sciences [78], economics [79], physics [80], chemistry [81] and epidemiology [82].  

More specifically, Bayesian statistical approaches have been widely used (among many others) 

for missing value prediction, disease mapping in time and space and for source attribution to make 

optimal usage of data [13, 14, 83, 84]. 

A Bayesian framework offers a formal way for combining two pieces of information using Bayes’ 

rule. These are the observed data described by the likelihood and the prior information which 

contains the distribution of previous knowledge regarding the event of interest, linked by Bayes’ 

rule as follows (1.4) 

p(θ/Y) = p(θ) p(Y/θ)/p(Y)                                                                                                                                  (1.4) 

where p(θ/Y) , often called the posterior distribution, is the conditional probability of observing θ 

(which is  the parameter of interest, e.g., the mean mortality rate due to foodborne diseases) given 

Y (the data),  p(θ) is the parameter’s prior distribution,  p(Y/θ) is the likelihood (i.e. the conditional 

probability of the data given a particular set of value of θ), and p(Y)  is the marginal distribution 

of the data. In other words, the Bayesian analysis begins with some prior belief, p(θ), and after 

learning  from the data, p(Y/θ), the prior belief about θ  will change or will be updated to obtain a 

new information, p(θ/Y). All inference will be based on this new information. 

Because of the fact that Bayesian inference is fully probabilistic, there is no distinction between 

observed data and unobserved entities in the model. This implies that observed values, missing 

values, and parameters are all treated in a unified and consistent manner which makes the Bayesian 

method superior for data analysis in the presence of uncertainty [85]. Application of Bayesian 

methodologies for a variety of health problems has been increasing in recent years [86, 87].  The 

main limiting factor to carry out Bayesian inference for routine decision making was 
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computational challenge. Therefore, the fairly recent increase in the use of Bayesian inference in 

numerous disciplines is due to the rapid development of computational hardware and software that 

have made Bayesian analysis feasible for a number of applications [88]. More specifically, the 

major advances in simulation methods (such as the Marcov Chain Monte Carlo (MCMC) process) 

and other Bayesian machinery that has been incorporated into easily available software programs 

such as WinBUGS (Windows for Bayesian Inference Using Gibbs Sampling), JAGS (Just Another 

Gibbs Sampling), INLA (Integrated Nested Laplace Approximation) and Stan have significantly 

simplified the use of Bayesian models [89–92]. 

 

1.2.4 Disease Mapping 
 

One of the fundamental requirements for the control and prevention of disease is to understand the 

underlying geographical distribution of risk of the disease in a population. Disease maps frequently 

provide a rapid visual summary of spatial information and may identify patterns in the data that 

cannot be depicted by other representations. The main focus of disease mapping lays in describing 

disease in space, for generating potential hypothesis regarding causation, for risk surveillance and 

devising policy regarding strategic resource allocation [93]. There are two main ways to obtain risk 

estimates for mapping, namely the Standardized Mortality/Morbidity Ratio (SMR) - the classical 

approach, and Bayesian Disease Mapping (BDM). In the following section, description of disease 

mapping in the context of classical and Bayesian frameworks is presented. 
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Standardized Mortality /Morbidity rates (SMR):  

Conventional methods for disease mapping utilize the SMR which is computed as the ratio of 

observed (Oi) and expected (Ei) number of events (e.g., deaths, diseases etc.) in a given area 

assuming that the events follow a Poisson distribution and that the mean is equal to the variance, 

as denoted below (1.5)[94, 95] 

    SMR (θi) = Oi/ Ei                                                                                                                                                                                                                 (1.5) 

The expected count (Ei) is usually the number of events in an age-sex adjusted population for a 

given area. One of the fundamental shortcomings of the classical SMR is that the variance can be 

large in less populated areas (and hence large Ei) and it can be small in heavily populated areas 

resulting in unstable and extreme values for risk of the disease[96, 97]. Moreover, assuming that 

the relative risks (θi) are independently drawn from a common distribution is unrealistic in most 

epidemiological studies [97]. This is due to the fact that θi’s are typically spatially (temporally) 

correlated as they reflect spatially (temporally) varying risk of disease and therefore the model 

requires incorporation of spatial (temporal) dependence [97]. Spatially smoothed estimates are, 

therefore, more appropriate for identifying true geographical variation of risk of disease which 

take spatial correlation into account [98, 99]. However, the SMR does not allow for spatial and 

temporal correlation to be taken into account while estimating the risk of disease [100, 101]. Such 

inconsistencies in risk estimates are addressed by using the Bayesian approach (discussed below) 

that can produce smoothed (shrunk) estimates.  

 

Bayesian disease mapping (BDM):  

Most disease mapping studies want to identify variation in risk of disease that could be due to 

unmeasured variables or random effects. The inherent hierarchical structure of the Bayesian 
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framework provides a convenient platform to incorporate a spatial or temporal correlation across 

the estimated local disease rates through spatial/temporal random effects [99]. Hence, the BDM 

method accounts for the spatial correlation between disease risk in neighboring regions which is 

ignored by the SMR approach [102, 103]. More specifically, the Bayesian structure partitions 

random effects into several components where each part will be assigned a distinct prior 

information based on the required inference [104]. For example, the random effect can allow for 

over-dispersion, also called Uncorrelated Heterogeneity (UH) (i.e., whenever the mean is not 

equal to the variance), and a component for spatial correlation, also called Correlated 

Heterogeneity (CH) [96]. These two components are fitted in the model to capture any extra 

variation in the data that cannot be explained otherwise. Just as in the case of other parameters in 

a Bayesian model, priors are required for these two random effect components [104]. The spatially 

structured component (CH) is usually assigned a so called Conditional Autoregressive prior 

(CAR) which assumes that the mean risk for each area, conditional on the neighboring areas, has 

a normal distribution with the mean equal to the average risk of the neighboring areas and variance 

inversely proportional to the number of neighbors [13, 99]. This prior specification assures that 

neighboring regions are more alike in risk than those that are located farther away. A prior for the 

amount of spatial similarity or unstructured heterogeneity effect of disease rates, however, is 

usually difficult to specify [105]. Therefore, a non-spatially structured (also called exchangeable) 

normal prior distribution is commonly specified for the UH component [106]. It is argued that 

including both the random effects is more flexible than only the CAR random effect since the 

former formulation allows the data to decide on the contribution of spatially structured variation 

and unstructured over-dispersion regarding residual disease risk [97, 99]. 
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The Bayesian framework essentially “borrows” more information from neighboring areas than 

from areas located further away, smoothing (shrinking) local risk towards local and neighboring 

values [99, 102]. This gives a more stable estimate of the underlying risk of disease than that 

produced by the SMR. By doing so, the Bayesian hierarchical structure allows for a model-based 

estimation of missing data whenever certain regions have less or no data while the neighboring 

regions contain relatively better information.  

 

The application of BDM is further described in Chapters 3 and 5 of this thesis. In Chapter 3, its 

application is demonstrated for identifying the temporal and spatial distribution of the risk of travel 

associated campylobacteriosis in District Health Boards of New Zealand. In Chapter 5, application 

of BDM is implemented to develop a risk map of malaria prevalence in the Busia region of Western 

Kenya using the People’s Animals and their Zoonoses (PAZ) project dataset.  
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Summary 

The purpose of the current study was to apply a model-based approach for filling data gaps in 

mortality rates associated with foodborne disease using the WHO Vital Registration mortality 

dataset. Correlation Analysis and Elastic net regularization methods were applied to drop 

redundant variables and to select the most meaningful subset of predictors. Whenever predictor 

data were missing, multiple imputation was used to fill in plausible values. Secondly, Cluster 

Analysis was applied to identify similar group of countries based on the values of the predictors. 

Finally, a Bayesian hierarchical regression model was fitted to this dataset for predicting mortality 

rates. From 113 potential predictors, 32 variables were retained after Correlation Analysis. Out of 

these 32 variables, 8 predictors with non-zero coefficient were selected using Elastic Net 

regularization. Based on values of these variables, four clusters of countries were identified.  The 

uncertainty of predictions was large for countries within the cluster lacking mortality rates and it 

is low for a cluster that has some information. A data-driven cluster of countries and a meaningful 

subset of predictors can be used to fill data gaps in mortality rate using predictions from Bayesian 

hierarchical regression models. The inherent uncertainty around the resulting mortality rates 

predictions is a consequence of the data quality. 

 

Key words: Food borne diseases, Bayesian hierarchical regression, Cluster Analysis, Mortality, 

Prediction, Elastic Net 

 

Disclaimer: The views expressed in this document are solely those of the authors and do not represent the 

views of the World Health Organization. 
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2.1 Introduction 

 

Foodborne diseases (FBD) remain a growing concern for high levels of morbidity and mortality 

in the human population worldwide [1]. There are many indictors hinting at an increase in global 

incidence of FBDs [2, 3]. For industrialized countries in general, it has been estimated that one 

third of the population suffers from foodborne illness every year [4].  A recent study estimated 

37.2 million illnesses, 228,744 hospitalizations, and 2,612 deaths each year due to FBD in the 

United States alone [5]. These figures are assumed to be extremely high in resource limited regions 

of the world although solid data are lacking in these regions [6].  

 

Currently no precise information exists about the global burden of FBDs, although their effect on 

both development and trade is considered enormous [7]. This is substantially attributed to lack of 

suitable data about mortality and morbidity rates associated with FBD in many countries and 

regions of the world [8]. Challenges associated with imperfect data have been emphasized in 

studies about estimates for the global burden of pathogen-specific FBDs such as non-typhoidal 

Salmonella gastroenteritis and typhoid fever [9, 10]. This lack of data, particularly from 

developing countries, makes it difficult to calculate global estimates of disease burden. This has 

been a challenge for appropriate allocation and prioritization of resources for food safety control 

and intervention efforts [11].  In 2006, as part of the FBD prevention and control program, the 

World Health Organization’s (WHO) Initiative to Estimate the Global Burden of Foodborne 

Diseases (FERG) was launched to fill this gap[1, 12].  

 



32 
 

This report represents a first attempt to cluster WHO countries based on average values of selected 

FBD predictors and use the variables and the clusters in a Bayesian hierarchical modeling 

framework to predict FBD mortality rates for countries missing the data.  

 

2.2 Methods 

 

Dataset 

Mortality data 

We obtained the data regarding mortality rates associated with FBD from the WHO Vital 

Registration database (2000-2005) at the launch of FERG [12]. Foodborne diseases included in 

the database are bacterial and viral gastroenteritis, parasitic diseases and hepatitis A and E. 

International Classification of  Disease coding system (ICD-10) was used to represent those 

diseases; but FBDs that are associated with chemicals and biotoxins were ruled out due to lack of 

specific ICD codes [13, 14]. The mortality rates were averaged over the available years and the 

mean rate was expressed per 100,000 population based on the 2005 population census. Since the 

mortality rate data were positively skewed, we log-transformed them to stabilize the variance and 

make the data normally distributed. Out of 194 WHO countries, only 48 have complete data on 

national mortality rates associated with FBD and the remaining 146 lack this information (see 

Figure 2.1) 
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Figure 2.1. The geographical distribution of WHO countries based on the availability of data for 

mortality rate due to foodborne diseases. 

 

Note: numbers in parenthesis are the number of countries 

 

Predictor set 

We obtained potential predictors of mortality associated with FBD from publicly available 

databases (Food and Agricultural Organization (FAO), World Bank) in two steps. First, we 

obtained 113 predictors for countries with complete mortality rate data. After we selected the 

important subset of predictors, we searched values of the selected predictors for all WHO 

countries.  The search criteria for the predictors included an established direct and/or indirect 

association with FBD mortality, a potential to be modifiable and having a global impact upon FBD 

mortality [2, 14, 15]. Not all 194 countries had a complete set of predictors therefore missing 

values ranged from 0 to 95%. 
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Statistical analysis 

Analysis of the data was performed using the freeware statistical tools R version 3.1.2 and JAGS 

(Just Another Gibbs Sampler) version 3.4.0 [16, 17].  The models were specified and 

parameterized in R and the analysis was done by calling JAGS from R using R2jags package [17]. 

A stepwise approach was followed for variable selection and estimation of missing mortality rates 

associated with FBD as follows: 

 

Correlation analysis 

First, among a total of 113 variables, 67 contained at least one missing observation and therefore 

were excluded from further analysis. The remaining 46 variables were subjected to pairwise 

correlation analysis (CorA) to avoid highly correlated and redundant variables. Those pairs of 

variables with a correlation coefficient, r>=0.85 [18], were identified and one member of a pair 

with high correlation was retained based on biological plausibility.  

 

Elastic Net regularization (ENR) 

Following CorA, we applied Elastic Net regularization path (ENR).  It offers a statistically 

appealing regression approach to select meaningful subset of predictors of mortality associated 

with FBD for the 48 countries with complete mortality data. ENR is a relatively new variable 

selection method proposed by Zou and Hastie (2005), which was developed to overcome the flaws 

of the commonly used Ordinary Least Squares approach with regard to prediction accuracy [19]. 

The basic form of linear regression model used to perform variable selection with an ENR is (4.1): 

 

Y =   Xβ+ e,  e~N(0, σ2)                                                                                                            (4.1) 
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Where Y is a vector of log-total mortality rates (response variable), X is an n x p matrix of 

predictors, β is p vector of regression coefficients and e is the vector of residual errors. The ENR 

uses a mixture of the l1 (Least Absolute Shrinkage and Selection Operator (LASSO)) and l2 (ridge 

regression) penalties, which does both automatic variable selection and shrinkage respectively 

[19]. ENR has two parameters, α and λ. We set α at 0.5 (1=LASSO and 0=Ridge) and performed 

cross-validation to find the optimal value of regularization parameter λ. The λ value was used for 

variable selection. The glmnet package in R was used to fit the ENR procedure [20]. A detailed 

description of regression–based ENR as a data mining technique can be found in literature [19–

21].   

 

Imputation of missing values 

After we selected variables using ENR, we searched values of these variables for the remaining 

146 countries from publicly available and validated databases (FAO, World Bank).  Whenever 

multiple values for a given country were available, we took the value for the latest year. Since not 

all countries had full information of the selected predictors, Multiple Imputation (MI) was 

performed to fill-in missing predictor values using the MICE (Multiple Imputation using Chained 

Equations) package in R [22]. Multiple Imputation helps to handle missing data, where missing 

values are replaced by random draws from the predictive distribution of the missing data given the 

observed data [22, 23]. The procedure generates m numbers of complete datasets (also called 

“multiply” datasets) ready for further analysis. Optimum number of m varies across studies and 

may depend on the study design and the proportion of values missing. Literature reports that 5-10 

multiply datasets are sufficient for generating valid estimates [24, 25]. We used twenty multiply 

datasets in this study. The imputed values were averaged across the number of multiply datasets 
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to fill values for a given missing value. Convergence of the imputation process was assessed by 

visually examining density plots of each variable to evaluate the plausibility of imputed values 

across the number of iterations during the imputation process.  

 

Cluster analysis 

Following the imputation step, we carried out Cluster Analysis (CA). The purpose of CA is to 

aggregate countries into groups based on similar values of predictors such that countries within a 

cluster have homogenous mortality rates.  Although several types of clustering methods exist, we 

compared four commonly used hierarchical clustering methods to identify the appropriate 

clustering solution for our dataset. These are single linkage, complete linkage, UPGMA 

(Unweighted Pair Group Mean Average) and Ward’s minimum variance methods [26]. We used 

visual examination of the resulting dendrograms, Gower’s distance [27] and Cophenetic 

correlation to select the method of choice [28]. Based on established rules, smaller Gower’s 

dissimilarity coefficient and larger Cophenetic correlation indicate that the preferred clustering 

solution fits the data well. We selected UPGMA as the clustering method of choice for our data. 

We decided on the optimal number of clusters using the gap-statistic which is one of the most 

popular methods for estimating the number of clusters in a dataset [29]. In addition we evaluated 

the average Silhouette Width (SW) which is a composite index reflecting the compactness and 

separation of clusters (a high SW indicates the clusters are homogenous). A detailed technical 

description of these methods can be found elsewhere [27, 28, 30].  
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Bayesian hierarchical Regression  

After having developed a dataset for all 194 countries, we fitted a Bayesian Hierarchical 

Regression Model (BHM) for predicting log-total mortality rate associated with FBDs (2.2). We 

incorporated the clusters obtained from the CA as random effects into our BHM. The regression 

model fitted to the data is as follows:   

 

Yi = N(αj[i] + βkXki , σy
2),  for i=1,…n ; k=1,2..K                                                                       (2.2) 

        αj =N(μα , σα
2), for j=1,..J 

 

where Yi denotes the response variable (log-total mortality); α and β  are the intercept and the 

regression coefficients, respectively; n= total number of countries; Xki denotes the predictors 

(K=8); J= number of clusters; the variance (σ2), α’s and β’s are parameters to be estimated from 

the data. (The R-JAGS code is provided in Appendix 2.1). In addition to the model constructed 

using our four cluster solution, we evaluated a new model incorporating the WHO’s Global 

Environmental Monitoring System/Food (GEMS) cluster for comparing the results. The 

GEMS/Food cluster categorizes the WHO countries into 17 groups based on food consumption 

and dietary intake of various chemicals [31]. A non-hierarchical Bayesian framework was also 

fitted to the data, which doesn’t take any clustering of the data into account. 

 

Valid inference from the above model assumes that the missingness in the system is Missing At 

Random (MAR).  Missing data is considered MAR whenever the missingness can be explained by 

one or more predictors in the dataset. Although it is not possible to directly test the MAR 

assumption based on a data alone, it can be demonstrated by showing association between 
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predictors and missingness of the response variable [32]. Therefore, we created a dummy variable 

for whether mortality rate is missing or not, and run a logistic regression to statistically test if any 

of the variables are associated with missingness. A strong statistical association indicates that the 

MAR assumption can hold. A detailed description of missing data mechanisms can be found in 

Chapter 1 (section 1.2.1) [33, 34]. 

 

Some of the predictors in our dataset were not normally distributed and therefore we log-

transformed them to stabilize their distribution before applying the regression approach. These 

subset of variables are “Per Capita animal calorie consumption”, “Birth per Adolescent”, “Fertility 

rate”, “Maternal death risk” and “Kilo calorie per day”.  

 

In a Bayesian framework all the parameters in the model must have a prior distribution, which is 

a way of quantifying lack of knowledge about the parameters [34]. We assigned all the coefficients 

to have uninformative prior distribution (i.e a normal distribution with mean 0 and a precision of 

0.01).  This implies that the magnitudes of the regression coefficients are expected to lie between 

-10 and 10.  The prior for the precisions, i.e. the inverse variances, were defined in terms of the 

standard deviation parameters and given uniform prior distribution on the range (0, 10) (Appendix 

2.1). 

 

We ran the model for 50,000 iterations with a burn-in of 5000 (i.e., discard the first 5000 

iterations). We assessed convergence by running two chains of dispersed initial values and then 

by observing autocorrelation and density plots of the parameters from the models’ outputs.  

Whenever more than one model is to be evaluated for fit, we used the Deviance Information 
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Criteria (DIC) and the effective number of parameters (pD) as model fit comparison tools [35]. 

The DIC is a Bayesian alternative of the Akaike Information Criteria for comparing competing 

models, and the pD is a measure of the complexity of the model [35]. A difference in the DIC of 

more than 5-10 units is regarded as strong evidence in favor of the model with smaller DIC [36]. 

 

Model Validation 

In order to assess the predictive performance of our model, we carried out cross validation by using 

part of the dataset with complete information on mortality rates. We implemented the leave-one-

out cross-validation method (LOOCV) used to estimate the generalizability of a model in the 

absence of external data [37]. This method takes one observation out of the data, sets it aside as a 

‘testing set’, and fits the model using the remaining data, called the ‘training set’ to assess statistical 

predictions of the model. The resulting coefficients are then applied to the ‘test set’, to generate 

predicted values which are compared to the observed value of that single case. This procedure is 

performed repeatedly for all observations of the data and the Mean Absolute Error of prediction 

(MAE) is calculated (2.3) and compared with the baseline MAE (i.e the MAE computed without 

cross validation). This comparison allows to assess ‘out-of-sample’ predictive performance of the 

model whenever no external data exists [38]. 

                               

                                                                       (2.3)                                                                                                                   

 

where, n=total number of test sets, fi =predicted log-total mortality and yi =observed log-total 

mortality. Ninety five percent Confidence Intervals for the MAEs were computed by a non-
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parametric bootstrapping method with 2000 replications using the boot.ci procedure in R. Smaller 

MAE indicates a better out of sample prediction of the model.  

 

Sensitivity analysis 

We assessed robustness of the results to model specification by changing the priors. Sensitivity 

analysis regarding priors was conducted by first assigning uninformative priors to means and 

inverse variances, and then changing the priors of the precision by a factor of 10 as shown in Table 

4. Additionally we investigated the stability of predictions by randomly deleting mortality rates 

and fitting the model, and also by randomly adding plausible hypothetical mortality rates for a 

subset of countries missing the data and refitting the model.  

 

2.3 Results  

 

Correlation Analysis 

Out of 46 variables screened by means of pairwise CorA, we retained 32 variables for further 

analysis as shown in the correlation matrix in Figure 2.2. 
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Figure 2.2. The correlation matrix of 46 potential predictors of mortality associated with 

Foodborne Diseases.  

 

 

Notes: The values on the right of the plot represent correlation coefficient between a pair of variables. 

Lighter shades show strong positive correlation while darker shades indicate strong negative correlation 

between pair of variables. Variables that are indicted by the red arrows are those variables dropped after 

correlation analysis (n=14).  
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Elastic Net Regularization 

The remaining 32 variables which were retained after CorA were subjected to ENR. Eight non-

zero coefficient variables were selected as the final subset of predictors. We used these variables 

for CA and regression analysis as indicated in the next sections. Description of the eight variables 

and the proportion of missing values for these variables for all 194 countries are indicated in Table 

2.1.  
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Table 2.1. Description and percent missing of the eight selected variables for predicting log-total 

mortality associated with Foodborne Diseases. 

 

 

  

Variable name 

 

Percent 

missing 

Description 

(Source) 

Life expectancy 11.8 Life expectancy at birth, total (Years). Life expectancy at 

birth indicates the number of years a newborn infant would 

live if prevailing patterns of mortality at the time of its birth 

were to stay the same throughout its life 
http://data.worldbank.org/indicator/SP.DYN.LE00.IN 
 

Animalcalpercap 11.8 Average Calorie Supply from Animal Products - per Capita 

http://faostat3.fao.org/search/*/E  

 

Birthperadolescent 

 

7.7 Adolescent fertility rate, the number of births per 1,000 

women ages 15-19 
http://data.worldbank.org/indicator/SP.ADO.TFRT 

 

Pctareableland 

 

  3.0 Percent arable land  

(http://data.worldbank.org/indicator/AG.LND.ARBL.ZS) 

 

Fertilityrate 

 

 

 

 

 

  5.1 Total fertility rate represents the number of children that 

would be born to a woman if she were to live to the end of 

her childbearing years and bear children in accordance with 

current age-specific fertility rates. 

(http://data.worldbank.org/indicator/SP.DYN.TFRT.IN) 

Maternaldeathrisk 

 

  7.7 Maternal mortality ratio (national estimate, per 100,000 live 

births) 

(http://data.worldbank.org/indicator/SH.STA.MMRT.NE)  

 

Laborfemmale 

 

  9.2 Labor force participation rate for females ages 15-24:  the  

proportion of the population ages 15-24 that is economically 

active. 

(http://data.worldbank.org/indicator/SL.TLF.ACTI.1524.FE

.NE.ZS) 

 

 Kcalperday   12.0  Calorie supply per capita per day 

 http://faostat.fao.org/  

 

http://data.worldbank.org/indicator/SP.DYN.LE00.IN
http://faostat3.fao.org/search/*/E
http://data.worldbank.org/indicator/SP.ADO.TFRT
http://data.worldbank.org/indicator/AG.LND.ARBL.ZS
http://data.worldbank.org/indicator/SP.DYN.TFRT.IN
http://data.worldbank.org/indicator/SH.STA.MMRT.NE
http://data.worldbank.org/indicator/SL.TLF.ACTI.1524.FE.NE.ZS
http://data.worldbank.org/indicator/SL.TLF.ACTI.1524.FE.NE.ZS
http://faostat.fao.org/
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Cluster Analysis 

The average Silhouette width (SW=0.59) and the Mantel optimal cluster methods resulted in two 

and three clusters respectively, while the gap statistic suggested four clusters to be optimum. As 

the gap statistic is the most recommended approach, we decided to partition our dataset into four 

clusters as shown in the dendrogram (Figure 2.3) [29]. 

 

 



 
 

 4
5
 

Figure 2.3.  Hierarchical Cluster Analysis of all 194 WHO countries using the Unweighted Pair Group Mean Average (UPGMA) 

method.  

Notes: (1) Eight predictors of mortality associated with foodborne diseases were used to construct the dendrogram. The numbers shown on the top 

of the dendrogram indicate the cluster identification.  
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Regression and Model validation 

Model validation and fit  

The result of a statistical test for checking validity of the MAR assumption is shown in Table 2.2. 

Three of the eight predictors are significantly associated with missingness in the data indicating 

that the MAR assumption holds for the current analysis.  

 

Table 2.2. Logistic regression of missing indicator (1=missing log-total mortality, 0=observed 

logtotal mortality) on predictors of mortality associated with Foodborne diseases to test the 

plausibility of Missing At Random Assumption. 

Coefficients Estimate Pr(>|z|) 

(Intercept) 21.14 0.002 

Life expectancy in Years               0.18 0.001** 

Per Capita calorie Supply (animal origin)*  -0.16 0.76 

Birth per adolescent* -0.89 0.01** 

Percent of arable land -0.01 0.49 

Fertility rate* 1.25 0.20 

Maternal mortality ratio* 0.05 0.87 

Female labor1 -0.02 0.05** 

Kilo calorie per day per Capita* -0.57 0.71 

*log-transformed variables; ** significantly associated at 0.05 level 
1 Labor force participation rate for females ages 15-24 

 

 

Table 2.3 shows the results of goodness-of-fit assessment (DIC and pD) and the MAEs for the 

three models having different structures. No substantial difference was observed regarding both 
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DIC and MAE among the three models. However, the model fitted with the GEMS cluster 

(Hierarchical B in Table 2.3) has the highest pD due to large number of clusters in the data. This 

model also did not converge well even after a higher number of iterations. We selected the BHM 

because its structure will allow to ‘borrow strength’ (i.e., to pool information) across clusters. The 

latter characteristic is very helpful whenever data are lacking within clusters. Assessment of 

autocorrelation, density plots and trace plots showed that convergence criteria for the BHM were 

met. 

 

Table 2.3. Goodness-of-fit and Mean Absolute Errors of three Bayesian models for predicting 

mortality rates associated with Foodborne diseases. 

Model Model fit MAE5 

(95% CI)7 

MAE6 

(95% CI) DIC3 pD4 

Non-Hierarchical 123.9 11.76 0.53(0.43,0.69) 0.65(0.53,0.82) 

Hierarchical A1 123.7 12.70 0.52(0.42,0.69) 0.66(053,0.83) 

Hierarchical B2 126.1 15.04 0.51(0.41,0.67) 0.66(0.53,0.84) 

Notes 

1 Four cluster random effect; 2 GEMS cluster random effect; 3 Deviance Information Criteria; 

4 Effective number of parameters (measure of model complexity); 5Mean Absolute Error obtained from the 

fitted model; 6MAE obtained from the model after ‘Leave One Out’ Cross validation; 7Bootstrap 95% 

confidence interval 

 

Sensitivity Analysis and Prediction of Mortality Rates 

Table 2.4 indicates the range and specifications of priors for the variance and mean components 

to evaluate robustness of the BHM. Varying the priors did not substantially change the predictions 
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of log-total mortality rates for countries within Cluster 1 (Figure 2.6a) and Cluster 4 (Figure 2.6d). 

These clusters contain countries with information regarding mortality rates. On the other hand, the 

priors has substantially influenced the uncertainty of predictions within clusters lacking any 

mortality rate data, i.e., Cluster 2 (Fig 2.6b) and Cluster 3 (Fig 2.6c).  

 

Table 2.4. Prior parameter values employed on the Bayesian hierarchical model for sensitivity 

analysis. 

 

Priors Variances Means 

Set  1 1/2~dgamma(10-3,10-3) b0~dnorm(0, 10-3) b~dnorm(0, 10-3) 

Set  2 1/2~dgamma(10-2,10-2) b0~dnorm(0, 10-2)  b~dnorm(0, 10-2) 

Set  3 1/2~dgamma(10-1,10-1) b0~dnorm(0, 10-1)  b~dnorm(0, 10-1) 

 

Notes: 1/2 : precision (inverse of the variance). In JAGS model, priors for variances are specified by 

precision. Gamma distribution is frequently used to specify priors for precision. b0: Average log-total 

mortality rate (intercept); b: priors for regression coefficients.  
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Figure 2.4. (a, b, c, d). Sensitivity analysis of the median and 95% Credible Intervals of log-total 

mortality predictions of the Bayesian Hierarchical Model using three priors. 

(a) 
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(b)  

 

(c) 
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(d) 

 

 

 

Note: The four figures represent the four clusters. Since the predictions are stable for all countries in Cluster 

1 (Fig 2.4a) while using the three priors, only the values of 50 countries are shown for optimal display of 

this Cluster. 

 

*The numbers in parenthesis indicate the number of countries that belong to the cluster 

Prior 1: precision ~ dgamma(10-3,10-3); mean~dnorm(0, 10-3) 

Prior 2: precision ~ dgamma(10-2,10-2); mean~dnorm(0, 10-2) 

Prior 3: precision ~ dgamma(10-1,10-1); mean~dnorm(0, 10-1) 

 

 

We set the same prior distribution for all clusters (also called exchangeable priors) and specified a 

smaller values for the variance of the means and precision parameters (Prior set 3) for the final 

prediction. Constraining the parameter values to be within – 10 and 10 (for example, specifying 

the prior of b0 at dnorm(0,0.01)) is not a serious restriction. Since the model is on a log-scale, it is 
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not possible that we will see values as extreme as -10 or 10, which corresponds to a mortality rate 

of e-10 or e10 per 100, 000 population. 

 

Deleting the observed mortality rate from Cluster 4 (i.e. removing the mortality rate values of 

Guatemala) and refitting the model resulted in very large uncertainty of predicted log-total 

mortality rates for all countries that belong to this cluster (Fig 2.5d). On the other hand, randomly 

adding plausible values for a subset of countries in Cluster 2 (Fig 2.5b) and Cluster 3 (Fig 2.5c), 

i.e., clusters that lack any observed mortality rate data, considerably reduced the uncertainty of 

predictions. This indicates that uncertainty is highest for clusters with little or no information and 

the predicted mortality rate for countries lacking the data can be substantially improved if mortality 

rate values are obtained for a few countries in the cluster.  The change in predicted log-total 

mortality was minimal for countries in Cluster 1 (Fig 2.5a) whenever mortality rate values were 

added or deleted from the other clusters as part of the sensitivity analysis.  
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Figure 2. 5. (a, b, c, d): Comparison of the median and 95% Credible Intervals of log-total mortality 

predictions of the Bayesian Hierarchical Model with regard to deleting, and randomly adding 

mortality rates for a subset of countries. 

 

(a) 
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(b) 

  

(c) 
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(d)  

 

Notes: (1)The four figures represent the four clusters. Since the predictions are stable for all countries in 

Cluster 1 (Fig 2.5a) regardless of deleting and adding values, only the values of 50 countries out of 142 are 

shown for optimal display of this Cluster. These four figures depict the change in uncertainty of predictions 

whenever new information is added or some information is deleted from the dataset. (2) Subsets of countries 

were randomly selected from Cluster 2 (Fig 2.5b) and Cluster 3 (Fig 2.5c) that lack mortality rate data. 

Then a log-total mortality rate of 3.75 was assigned to each of them before a model was fitted. The 3.75 

value is an observed mortality rate of Guatemala, which has the largest value among all countries that has 

information on mortality rates. Note that each plot in the above figure has different scales on the y-axis to 

optimally display the 95% Credible Intervals.  

 

Keys to the legend:  

Original data: all observed data included in model predictions. 

No mortality rate: model predictions after deleting the value of Guatemala from Cluster 4. 

One country: model predictions after a hypothetical mortality rate was assigned to one country (Angola) 

Three countries: model predictions after a hypothetical mortality rate was assigned to three countries 

(Angola, Guinea and Rwanda) 

Five countries: model predictions after a hypothetical mortality rate was assigned to five countries (Angola, 

Guinea, Rwanda, Uganda and Nepal) 

Ten countries: model predictions after a hypothetical mortality rate was assigned to ten countries (Angola, 

Guinea, Rwanda, Uganda, Nepal, Benin, Bangladesh, Madagascar, Chad, and Burkina Faso) 
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*numbers in parenthesis indicate the number of countries that belong to the cluster 
 

 

The final predicted log-total mortality rates for all countries using the BHM is shown in Appendix 

2.2. None of the countries in Cluster 2 and 3 had observed mortality rates. For countries within 

these clusters, the BHM predicted wide 95% CIs for the median of log-total mortality rates 

indicating large uncertainty. On the other hand, the uncertainty of predictions were very small for 

countries within Cluster 1 and Cluster 4. The overall median and 95% CI of the predicted log-total 

mortality rate ranges from -1.23 (-2.03, -0.44) for Greece to 5.04 (2.68, 7.36) for Afghanistan, 

which when exponentiated will yield the median mortality rate of 0.29 (0.13, 0.63) and 155.19 

(14.66, 1572.85) per 100,000 population, respectively. As indicated in Appendix 2.2, some of the 

95% CIs of predictions did not contain the observed mortality rates.  This could be due to the 

unusually high rate of missing mortality rate in the dataset.    

 

2.4 Discussion  

 

Lack of sufficient and complete data on mortality and morbidity from many countries have been 

addressed previously [15]. This scarcity of data is an ongoing challenge for the estimation of global 

burden of FBDs. Although most of the observed mortality rates in our dataset are from developed 

countries, which have a comparatively low burden of FBD, it is possible that similar potential risk 

factors (predictors) may be shared between developed and developing countries. The eight 

predictors we selected in this report are proxy attributes to capture the socio-economic, food-

production, hygiene and health status of countries. This is in agreement with a study regarding 

variable selection to estimate the missing incidence of specific foodborne diseases [40]. In 
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addition, a frequentist-based analysis of part of the current dataset highlighted that both health and 

non-health related variables can be used as a proxy predictors to measure mortality associated with 

FBDs [14].   

 

Grouping countries based on the values of these predictors is a novel attempt to create data-driven 

clusters of countries with a homogenous mortality rate. WHO countries have been previously 

grouped based on geographical attributes (e.g., WHO sub-regions) or other parameters depending 

on the goal of the classification scheme. For example, the GEMS Food Cluster is designed to group 

countries based on food consumption and risk assessment [31]. Comparison of predictions and 

model fits using the GEMS cluster and our data-driven clusters as random effects indicated that 

the model with the GEMS cluster lacks convergence while our four cluster solution has converged 

and fits the data well. In a recent study to estimate missing national level incidence of specific food 

foodborne diseases, the WHO sub-regions and the food cluster regions were used as random effects 

[40]. In our study, 47 of the 48 countries with complete mortality rate data have been grouped into 

Cluster 1, which indicates that those countries which routinely report mortality rates have 

similarities in the eight predictor values.  

 

While analyzing missing data, it is important that the mechanism of missingness in the data is 

understood [41]. Although the MAR assumption, as such, is not testable, we justified its validity 

for our dataset by demonstrating association of one or more of the predictors with the missingness 

of mortality rates. This implies that the missingness can be partly explained by the predictors in 

the dataset. Meanwhile, it is also important to note that any other missing data analysis approaches 

require assumptions that are just as difficult to justify. 
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In this study, the choice of the best fit model to use for prediction of mortality was based on 

comparison of model fit, out of sample prediction performance and the method’s suitability for 

analysis of missing data with hierarchical structure. To evaluate predictive performance of a 

model, using the same data as was initially used to build the model may introduce over-fitting 

problems [42]. In addition, collecting new data to validate the model for predictive strength is not 

practically feasible, and therefore the LOOCV method solves an over-fitting problem and helps to 

assess the predictive accuracy. Although we did not observe a substantial difference between the 

three models regarding MAEs, we preferred the BHM for a number of reasons. The structure of a 

BHM enables ‘borrowing strength’ across clusters that improves prediction of mortality rates 

which is particularly essential whenever data are missing [43]. Moreover, a BHM facilitates the 

estimation of several parameters over similar units (for example, countries within clusters) in order 

to improve the precision of the estimated effects for each unit [44]. It has also been described 

previously that a Bayesian approach allows for a more efficient use of data as the method does not 

depend on the asymptotic theory of large sample approximation [44]. This is essential whenever 

there are few observations and a high proportion of missing values in the dataset.  

 

Part of this dataset has been analyzed previously using a classical frequentist framework [14]. Our 

Bayesian approach, however, has several important advantages over this likelihood based 

frequentist method. The development of Bayesian models in general offers an opportunity to 

assign pertinent information (prior) to unknown parameters (including missing values distribution) 

[34]. This is particularly useful for analysis of a dataset with missing values. Secondly, Bayesian 

models can be easily updated rationally as new data becomes available. This will mean that future 

research on FBD can directly utilize the current results as priors.  The other reason is that BHM 
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provide a convenient setting for a dataset with inherent hierarchical structure. In our dataset, 

countries within clusters are assumed to have more similar mortality rates as compared to the rates 

between countries across clusters.  

 

Implementing BHM allows pooling of information across clusters, such that clusters with little or 

no data ‘borrow strength’ about the log-mortality rates from other clusters. In our analysis, the 

predicted median mortality rates for countries in Clusters 2 and Cluster 3 were smoothed towards 

the overall average population estimate (Figure 2.4 and Figure 2.5). Although the predicted median 

mortality rates are close to the overall average log-mortality rate, the uncertainty is large. This 

large degree of uncertainty in the prediction is a direct result of data quality or lack thereof. The 

reduction in uncertainty of the predictions achieved by adding hypothetical but plausible data for 

a subset of countries has a practical implication. For example, data collection strategy for mortality 

rates can be based on cluster information. If mortality data can be obtained from a proportion of 

countries from a properly defined cluster, we can use BHM to predict mortality rate for the 

remaining countries missing the data, making the best possible usage of all data.  

 

2.5 Conclusions 

 

The extent of the global burden associated with FBD is still unknown and therefore tackling 

mortality associated with FBD is a continuous global challenge. The difficulty of estimating the 

burden of FBD is partly due to the lack of information about mortality and morbidity rates 

associated with FBD in many countries of the world. Therefore, it will be a compromise to use 

only a fraction of countries with complete information to generalize for the overall global 
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foodborne mortality rates without using models. A subset of the most meaningful predictors of 

mortality associated with FBDs can be used to implement a BHM that predicts mortality rates for 

countries lacking the data. An informative clustering of countries based on this subset of variables 

can help ‘borrow strength’ across similar countries using a BHM to predict mortality rates 

associated with FBD. The high proportion of missing values in the dataset might be the cause for 

some of the predictions to be outside the observed range.  Therefore, the predictions obtained from 

the final model in this report should always be interpreted with caution. Finally, when resources 

are limited, the selected variables can provide suggestions for future data collection regarding risk 

factors of FBD mortality. 
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Abstract 

Background: Information from notified cases of disease has the potential to inform the 

epidemiology and risk factors for the disease. However, the value of this information is often 

compromised by incomplete or partial information related to individual cases. In an effort to 

enhance the value of information from enteric disease notifications in New Zealand, this study 

explored the use of fully Bayesian and Multiple Imputation models to fill risk factor data gaps. As 

a test case, overseas travel as a risk factor for infection with campylobacteriosis has been 

examined. 

Methods: Eleven years of short term international travel and campylobacteriosis notification data 

were obtained from New Zealand national databases. Two methods, namely Fully Bayesian 

Specification (FBS) and Multiple Imputation (MI), were compared regarding predictive 

performance for various levels of artificially induced missingness of overseas travel status in the 

dataset. Predictive performance of the models was assessed through Brier Score, Area Under the 

ROC Curve, and Percent Bias of regression coefficients.  Finally, the best model was selected and 

applied to predict missing overseas travel status of campylobacteriosis notifications.  
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Results: There was no difference in the predictive performance of the FBS and MI methods at a 

lower rate of missingness (<10%), but the FBS approach performed better than MI at a higher rate 

of missingness (50%, 65%, 80%).  The estimated proportion (95% CI) of cases associated with 

overseas travel was greatest in highly urban District Health Boards (DHBs) in Counties Manukau, 

Auckland and Waitemata, at 0.37 (0.12, 0.57), 0.33 (0.13, 0.55) and 0.28 (0.10, 0.49), whereas the 

lowest proportion was estimated for more rural West Coast, Northland and Tairawhiti DHBs at 

0.02 (0.01, 0.05), 0.03 (0.01, 0.08) and 0.04 (0.01, 0.06), respectively. The added advantage of 

using a Bayesian approach is the model’s prediction can be improved whenever new information 

becomes available.  

 

Conclusion: We propose the use of FBS, which offers a flexible approach for data augmentation 

particularly when the missing rate is very high and when the Missing At Random (MAR) 

assumption holds. High rates of travel associated cases in urban regions of New Zealand predicted 

by this approach are plausible given the high rate of travel in these regions, including destinations 

with higher risk of infection.  

Key words:  Campylobacteriosis, Fully Bayesian Specification, Multiple Imputation, missing 

value 
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3.1 Background 

 

Information originating from investigation of notified cases of an infectious disease has the 

potential to inform about the epidemiology and risk factors associated with the disease. 

Aggregating demographic and risk factor information from surveillance systems can help to set 

policy, monitor trends, and develop risk management options. However, the value of this 

information is often compromised by incomplete or partial information related to individual cases. 

In New Zealand, cases of notifiable diseases are reported by general practitioners, laboratories and 

public health workers and the information is stored in the EpiSurv database.  EpiSurv is operated 

by the Institute of Environmental Science and Research (ESR) on behalf of the Ministry of Health.  

A series of case report forms (https://surv.esr.cri.nz/episurv/index.php) are used to collect 

information about cases, disease diagnosis and clinical course, risk factors for the disease and case 

management. 

Campylobacteriosis is the most common cause of acute gastrointestinal illness in developed 

countries including New Zealand. The principal species causing the disease in humans are C. jejuni 

and to a lesser extent C. coli.  The complex epidemiology of campylobacteriosis and the presence 

of less understood risk factors such as overseas travel, has hindered the development of successful 

control programmes in many industrialized nations. Campylobacteriosis has been a notifiable 

disease in New Zealand since 1980.  Data from notified cases are reported annually in surveillance 

summaries and have been analyzed for trends and to assess the effect of specific interventions [1, 

2]. These analyses are primarily based on demographic information, since for a variety of reasons 

the risk factor information is not supplied for all cases.  However, the value of complete 

information on cases has been demonstrated by a sentinel site study in the Manawatu region of 
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New Zealand, which has made a special effort to complete risk factor reporting, alongside 

microbial subtyping [3]. 

In an effort to enhance the value of information from campylobacteriosis notifications in New 

Zealand, we have explored the use of models to fill risk factor data gaps.  As a test case, we 

examined overseas travel as a risk factor for campylobacteriosis. Identifying the proportion of 

cases of campylobacteriosis where infection was acquired overseas is important to properly 

understand and measure domestic risk factors and the success of any risk management 

interventions [4]. International travel as a risk factor is important, as the rate of overseas travel by 

New Zealanders is high (e. g. 46 trips per 100 per year as compared to the international average of 

14 per 100 in 2008) [5, 6].  However, whether (or not) cases had travelled overseas as a potential 

risk factor is reported for less than half of the notified cases of campylobacteriosis, and the 

reporting of this factor varies considerably across the 20 District Health Boards (DHBs) in New 

Zealand (see map of New Zealand in Appendix 3.1).  One approach to adjusting for this lack of 

data, as currently used in annual surveillance reports, is to apply the proportion travel related from 

the cases for which information is available.  This approach estimates that approximately 7% of 

campylobacteriosis notifications nationally over the period 2000 to 2010 were acquired overseas. 

However this information may be biased for a variety of reasons and does not fully reflect regional 

variation. 

As an alternative, we applied Multiple Imputation (MI) [7] and Fully Bayesian Specification (FBS) 

[8] models, seeking to adjust rates of travel associated illness and fill data gaps using covariates 

derived from demographic characteristics and travel rates in the general New Zealand population.  
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3.2 Methods 

 

Empirical data 

Campylobacteriosis Notifications  

Campylobacteriosis notification records were obtained from the EpiSurv database [9]. All case 

notifications were completely anonymized to conceal the identity of individuals. The database 

registers a number of demographic and risk factor characteristics of the cases in addition to clinical 

features. This project extracted the following factors;  if case had travelled overseas during the 

incubation period, countries visited during travel, reporting region in New Zealand (at District 

Health Board, DHB, level) , report date, age and gender.  

 

Overseas Travel 

A custom data extract for short term international travel of New Zealand residents between 2000 

and 2010 was obtained from Statistics New Zealand [10]. The data included the travel patterns of 

New Zealand residents to international destinations including: countries visited, month of arrival 

back in New Zealand, and demographic characteristics of travelers. Short term travel is defined as 

international departures of New Zealand residents for an intended period of less than 12 months. 

The annual number of overseas trips for a region was calculated at the DHB level. The total number 

of trips during the study period (2000-2010) was divided by the average DHB population estimates 

during the same period as extracted by Statistics New Zealand [10] to provide a population rate 

(TRAVEL RATE) which was used in the modelling. Individuals may have traveled multiple times, 
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however, this information could not be taken into account because the database does not identify 

individuals who have traveled more than once. 

 

Urban or rural lifestyle 

Statistics New Zealand [10] used seven definitions to define urban and rural New Zealand in 2006; 

main urban area, satellite urban community, independent urban community, rural area with high 

urban influence, rural area with moderate urban influence, rural area with low urban influence and 

highly remote/rural area.  The 2006 census data have been analyzed by Statistics New Zealand to 

provide population estimates in each of these urban, rural categories. The proportion of a DHB’s 

population living in one of the three urban areas, i.e. main urban, satellite urban and independent 

urban (URBAN) is used as a DHB level variable in the modelling. The main urban areas are those 

having a minimum population of 20,000 and the satellite urban areas identifies towns and 

settlements with strong links to main urban areas through employment. The independent urban 

areas on the other hand are those whose population is without a significant dependence on main 

urban centers through employment location [10]. 

 

Deprivation Index 

New Zealand Deprivation Index (DI) is a measure of socioeconomic deprivation which combines 

certain variables from the 2006 census reflecting eight dimensions of deprivation. These include 

income, home ownership, need of support, employment, educational qualifications, the amount of 

living space, access to communication and access to transport [11]. The DI is available for a 

subpopulation of a DHB in an ordinal scale from 1 to 10, where 1 represents the least deprived 
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areas and 10 the areas with the most deprived scores [11]. For the subsequent modeling, a DHB 

level DI is required. For this reason, we weighted the DI with the subpopulation size to get a 

weighted median of DI for the total DHB population. 

 

Poultry Intervention 

In 2007 interventions were put into place by the New Zealand Poultry Industry to reduce 

Campylobacter in retail poultry alongside the introduction of a regulatory Campylobacter 

Performance Target. These activities include routine monitoring and testing of poultry processors 

for the prevalence of Campylobacter spp by using cecal testing and strict hygienic practices 

throughout the production and processing stages. Mandatory Campylobacter performance targets 

were introduced based on test results and escalated regulatory responses were put in place if the 

targets were not met [2]. This resulted in a drop in campylobacteriosis notifications from 15,728 

in 2006 to 6,594 in 2008[2]. As a domestic intervention, the total decrease in campylobacteriosis 

cases would not have affected the number of cases resulting from overseas travel. A binary variable 

(INTERVENTION) was added to the model to allow the sudden drop in notifications to be 

incorporated into the model. 

 

A complete description of predictor variables in the notification and travelers’ dataset which were 

used for this analysis is shown in Table 3.1. While Deprivation index, Urban (population under 

urban influence), DHB and Travel Rate are variables at a reporting region level; Age, Sex, Season 

and Intervention (whether the case was recorded before or after 2006) are case specific variables.  
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Table 3.1. The description of variables in New Zealand campylobacteriosis notification and short 

term international travelers’ dataset (2000-2010).      

Variables Details  

DEPRIVATION INDEX Categorical, 1-10 scale (1=least deprived, 10=most deprived) 

URBAN Numeric, Proportion of DHB population under urban influence 

DHB Categorical, Residence District Health Board 

TRAVEL RATE Numeric, Residence DHB’s rate of short term international travel 

REPORT DATE Year of campylobacteriosis notification, 2000-2010 

AGE Four categories, <5, 5-19, 20-65 and 65+ Years 

SEX Two categories, Male and Female 

SEASON Four categories, Spring (Sep-Nov), Summer (Dec-Feb), Autumn (Mar-

May) & Winter (Jun-Aug) 

OVERSEAS TRAVEL Three categories, Yes, No, Unknown [The status of short term overseas 

travel, 62% of the cases did not have travel information.]    

INTERVENTION A binary indicator variable to identify before and after the 2006 poultry 

intervention period.  

Notes: (1) Deprivation index, Urban, DHB and Travel Rate are DHB level variables, whereas 

Report Date, Age, Season, Overseas Travel and Intervention are measured at an individual case 

level. 

 

Statistical Analysis 

Model development  
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Initially, analysis was restricted to Campylobacter notifications with complete information on 

overseas travel status and the predictors. This subset of the dataset included 38% (44,285) of all 

notifications reported between 2000 & 2010. The remaining 62% (72,436) lack travel information. 

The reason for performing this restricted analysis was to select the best prediction model based on 

cases with complete data. 

Next, we investigated performance of the two approaches, namely MI and FBS for different rates 

of artificially introduced missingness into the dataset (10%, 50%, 65% & 80% of the data were 

randomly deleted).  

Application of MI and FBS requires that missingness in the data is Missing At Random (MAR).  

MAR assumes the probability of missingness only depends on the observed variables in the data, 

i.e. in our analysis the probability of missing overseas travel depends on measured covariates in 

the dataset, but does not depend on whether or not an individual has actually made overseas travel. 

A detailed description of types of missingness can be found in literature [12]. While the MAR 

assumption, as such, is not testable, it can be supported by demonstrating association of predictors 

with the missingness of the variable of interest. We performed the MAR test by creating a dummy 

variable for missing overseas travel (i.e. missing overseas travel=1, otherwise= 0), fitting a logistic 

regression model of this variable on the predictors and checking for a statistical significance of the 

association.  A strong association indicates that the missingness in the system can be MAR.  

 In order to achieve the required percentage of missing values, we deleted a proportion of the travel 

status from the complete dataset. This is carried out by taking into account the association between 

the predictors and travel status to assure the validity of the MAR assumption in the resulting 

missing data. Since adding as many predictors as possible into the imputation model helps 

strengthen the MAR assumption, we used all of the variables in the imputation model. However, 
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we dropped residence DHB from the analysis model due to its high correlation with DHB level 

factors such as URBAN, DI and TRAVEL. Finally, based on the models’ performance parameters, 

we selected the best model and applied it for predicting overseas travel status in the full dataset.  

Complete case analysis 

Complete case (CC) analysis refers to analysis restricted to cases with fully reported travel status 

(disregarding missing values). The subsequent missing data analysis was compared to the results 

of the CC analysis. We fitted a multiple logistic regression model to predict overseas travel on the 

above predictors. Frequentist and Bayesian logistic regression frameworks were applied to these 

data. The generalized form of the logistic model is shown below (3.1). 

Log (p(x)/1-p(x)) = β0 + Xiβi     i=1,…, n (n=number of predictors)                                               (3.1) 

 Where p(x) is the probability that a case made short term overseas travel, βo and βi are the 

regression coefficients and Xi denotes the predictors.  

 

Multiple Imputation 

Multiple Imputation is a principled way of handling incomplete data where missing observations 

are replaced by draws from the predictive distribution of the missing data given the observed data 

[13, 14]. All potential predictors available in the dataset (Table 3.1) were incorporated into the 

imputation model. Including all variables predictive of overseas travel will help the MAR 

assumption to be increasingly plausible, in addition to producing unbiased results [15, 16]. This is 

because subjects with missing data based on (other) known characteristics, i.e. MAR- are by 

definition a random subset from the sample given these known characteristics [17]. Among all the 
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predictors in the data, 0.6% of Age and 1.6% of Sex have missing values (Table 3.1).  Since the 

proportion of missing values in these two variables is very low (i.e. less than 2%), we deleted 

records associated with missing observations, and restricted the analysis to the remaining fully 

reported case records [13]. 

 

Implementation of MI on each category of missingness was performed using the R package, MICE 

(Multiple Imputation using Chained Equations) [7]. The MI procedure creates m numbers of so 

called complete multiply datasets. Simulation studies have shown that as few as 3 multiply datasets 

are adequate for a dataset with 20% missing values [18]. Other studies have shown that 5-10 

multiply datasets are usually optimum depending on the proportion missing [7]. In this study, we 

have used 20 multiply datasets. Convergence of the imputation models was visually examined by 

assessing density plots of predicted overseas travel status [7]. Each complete dataset was analyzed 

separately with a standard logistic regression method and then point estimates and standard errors 

were pooled according to Rubin’s rule [19]. We used the pooled regression coefficients to construct 

a logistic regression equation for predicting the probability of overseas travel.  

 

Fully Bayesian Specification (FBS) 

While MI was derived from within a Bayesian framework (sampling from the posterior distribution 

of missing values, conditional on observed values), Bayesian approaches have been applied more 

generally [20]. Bayesian full probability modelling provides a flexible method for incorporating 

different assumptions about the missing data mechanism and accommodating different patterns of 

missing data in the model [21].  
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As in the MI approach, the FBS also assumes that missingness in the data is MAR. A separate 

logistic regression model of overseas travel on the predictors indicated above was fitted to each 

dataset. For Bayesian analysis, we used the JAGS 3.4.0. program (Just Another Gibbs Sampler), 

which is called into the R environment through rjags package[22]. The use of a Bayesian method 

requires that the priors of unknown parameters to be specified properly [23]. This is a way of 

incorporating uncertainty about the parameters into the model. For our analysis, all regression 

coefficients and the intercept were assigned uninformative priors (a normal distribution with mean 

0 and standard deviation of 100, i.e. each with an inverse variance of 10-4). This implies that the 

regression coefficients are expected to lie within a range from -100 to 100 (Appendix 3.2). For 

computational reasons, Bayesian models in JAGS require the variance to be specified in terms of 

the precision (inverse of the variance). The models were run for 30,000 iterations with the first 

3000 iterations discarded as burn-ins. All models were initialized with two chains. For realistic 

starting values, we set the initial values for each chain obtained from the fitted regression 

coefficients (see Appendix 3.2). 

 

Bayesian inference including FBS relies on Markov Chain-Monte Carlo (MCMC) algorithm to 

draw samples from the posterior distribution. This implies that convergence of the algorithm has 

to be assessed. Convergence indicates that the samples from the MCMC process are, in fact, drawn 

from the actual joint posterior distribution of the parameters. We have assessed convergence of the 

Bayesian models through visually evaluating density plots, autocorrelation and BGR statistic of 

the parameters in the model. Furthermore, we plotted the jags output to check the values of ‘Rhat’. 

The 'Rhat' value is a measure of convergence that takes into account the different starting values 
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for the different chains [23]. It should have a value close to 1 for declaring convergence. More 

iterations were run whenever the model appeared not to be converging.  

 

Model evaluation and performance 

We evaluated our models by comparing PB and BS of regression coefficients and predictions, 

respectively. The PB indicates the percent deviation of the regression coefficients of models fitted 

to the missing data as compared to those estimated by the fully observed dataset (i.e. Complete 

Cases) (3.2). Note that, the description of bias used here is slightly different to the usual definition 

(the expectation of difference between parameter estimates) [24]. 

PB= (bm-bf /bf)*100                                                                                                (3.2) 

where bf is the regression coefficient estimated from the models fitted to the complete cases, and 

bm is the regression coefficient estimated from the other models (i.e. missing data models). The 

BS, on the other hand, is an overall measure of predictive performance, i.e. a combination of 

discrimination and calibration [25] (2.3). The BS, or average prediction error is defined as follows: 

  t=1,…,N                                                                                          (3.3) 

in which  ft is predicted probabilities by the model, Ot is the observed outcome (0 or 1), and N is 

the total number of observations. A BS value close to 0 indicates the model performs well, whereas 

larger scores show poorly fitting models [26]. 
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Additionally, we evaluated our models using the Area Under the Receiver Operating Characteristic 

(AUC) curve. The AUC is often used to summarize and compare the discriminatory accuracy of a 

diagnostic test or modality, and to evaluate the predictive power of statistical models for binary 

outcomes [27]. We used the AUC to evaluate how accurate our logistic regression models were in 

predicting overseas travel. Accordingly, we selected the FBS approach as a method of choice to 

apply to the original dataset. 

 

Prediction of Overseas Travel 

 A fully Bayesian logistic regression model was fitted to the original dataset to predict missing 

overseas travel status of notified campylobacteriosis cases. The priors for all parameters in the 

model were specified as uninformative as before. We ran the model for 30,000 iterations, used 2 

chains and 3000 iteration burn-ins. Finally, we investigated model fit by examining density plots, 

autocorrelation and trace plots of a subset of parameters in the model for a visual graphical 

assessment. After a reasonable convergence was achieved (i.e., smooth density plots and no 

autocorrelation), we extracted the individual predicted summary measures of probability of 

overseas travel for the cases (mean, median and standard deviation) from the posterior distribution. 

These values describe the distribution of the probability of overseas travel for individual cases.  

Since the prior distribution and the likelihood (data) are normal, the posterior distribution is 

approximately normal [28]. Therefore the means and standard deviations (SD) of individual cases 

were used to simulate a normal distribution from which an estimate and 95% CI of the predicted 

proportion of travel associated cases for each DHB were computed as follows (3.4):   

Xj = N(n=10000, mean=mi, sd=sdi),  i=1,2,..,I   and  j=1,2,..,J                                                      (3.4)   
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where Xj is a normal distribution of a vector of means and SDs of individual cases in DHBj, mi 

denotes the mean value for each case, sdi is the SD of the mean value for each case, indexes I and 

J stand for the number of individual cases in a DHB and the number of DHBs, respectively. Our 

model’s prediction of the status of overseas travel was compared to the observed proportion of 

campylobacteriosis notifications.  

 

3.3 Results 

 

There were 121,764 notifications of campylobacteriosis in New Zealand reported between 2000 

and 2010. Of these most were culture confirmed (Confirmed) or epidemiologically linked to 

confirmed cases or outbreak sources (Probable) (Table 3.2). Deducting those for which the 

notification status was “Unknown” or “Under Investigation” gave 119,375 cases for the primary 

dataset. Table 3.2 shows the proportion of all campylobacteriosis cases notified between 2000 and 

2010 with and without travel information. Among 119,375 cases, 44,285 (37.1%) had complete 

information in the travel section of the EpiSurv questionnaire, and 3107 (7%) of cases who had 

filled this section had made short term international travel. As there are no definitive results for 

the cases with a case status of ‘under investigation’ and ‘Unknown’, we excluded them from the 

analysis. Furthermore, 0.6% of Age and 1.6% of Sex variables were missing in the primary dataset 

and the associated records were excluded, which makes the total number of cases available for 

analysis as 116,721. 
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Table 3.2. The total number of campylobacteriosis notification in New Zealand residents 

categorized by information on overseas travel (2000-2010). 

 

Travel status 

Campylobacter status  

Confirmed Probable Under Investigation Unknown Total 

No 41617 60 52 416 42145 

Unknown 74481 110 222 1653 76466 

Yes 3100 7 7 39 3153 

 

Total 119198 177 281 2108 121764 

 

Figure 3.1 displays the total number of notified Campylobacter cases between 2000 and 2010 

which are categorized by the status of overseas travel reporting and annual rate of overseas travels 

per person in each DHB.  Most of the cases reported from Auckland, Waitemata, and Counties 

Manukau DHBs lack travel information. However, the majority of reported cases and more than 

55% of all travel between 2000 and 2010 originated from residents in these DHBs [10]. As shown 

in Figure 3.1, more than 60% of all cases come from six DHBs, namely Waitemata (12.8%), 

Canterbury (12.7%), Auckland (10.6%), Waikato (9.3%), Capital and Coast (8.9%), and Counties 

Manukau (8.7%)  (Fig 3.1). 
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Figure 3.1. Distribution of campylobacteriosis notification categorized by the status of overseas 

travel (upper panel) and the annual proportion of short term international travels (lower panel), in 

DHBs of New Zealand (2000 – 2010). 

 

The number of short term international trips by New Zealanders consistently increased between 

2000 and 2010 (bottom panel in Figure 3.2). As evident from Figure 3.2, total campylobacteriosis 

notification in New Zealand had been increasing until 2006 except a slight decrease in 2003-2004. 
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After 2006, the total number of notifications declined considerably. The middle panel of Figure 

3.2 indicates that the total number of reported travel associated cases has slightly declined over 

time.  

Figure 3.2. Annual short term international travel and campylobacteriosis notification of New 

Zealand residents (2000-2010). 

 

*Total notified cases: total number of campylobacteriosis cases notified between 2000 and 2010 

**Observed travel associated cases: campylobacteriosis cases that had confirmed overseas travel during the 

incubation period of the disease 

***Total travels: total number of short term international travels between 2000 and 2010. Short term 

international travel is defined as international departures of New Zealand residents for an intended period 

of less than 12 months (Statistics New Zealand [http://www.stats.govt.nz/]). 
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The overall trend of the availability of information on travel status for the notified 

campylobacteriosis cases has been consistently decreasing throughout the study period (Fig 3.3).  

 

Figure 3.3. The proportion of campylobacteriosis notifications in New Zealand with known and 

unknown status of overseas travel information (2000-2010). 

 

 

 

 

 

 

 

 

 

 

The MAR assumption was examined by statistically testing the association between the missing 

value indicator and predictors of overseas travel in the dataset. Table 3.3 shows that majority of 

the predictors are strongly associated with missingness in overseas travel. This strong association 
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implies that missingness in the data can at least partially be explained by the fully observed 

variables in the model, which supports the MAR assumption (Table 3.3). 

 

Table 3.3. A Logistic regression of missing indicator (1=missing overseas travel information, 

0=observed overseas travel information) on predictors of overseas travel status to test the validity 

of Missing At Random assumption. 

 Coefficients Estimate Std. Error Pr(>|z|) 

(Intercept) -8.757 0.089 <0.001 

Urban* 2.992 0.103 <0.001 

DepIndex** 0.525 0.006 <0.001 

Travel Rate*** 0.081 0.001 <0.001 

Age(5-19) 0.154 0.027 <0.001 

Age(20-59) 0.033 0.023 0.145 

Age(60+) -0.142 0.027 <0.001 

Summer 0.014 0.018 0.443 

Autumn -0.002 0.021 0.94 

Winter 0.035 0.021 0.085 

Male 0.153 0.014 <0.001 

Intervention**** 0.345 0.016 <0.001 

Keys: * proportion of DHB population under urban influence; ** Deprivation index (scale 0-10, 0 being 

least deprived and 10 being most deprived DHB; *** Short term international travel per 100 residents of a 

DHB; ****a binary indicator variable to identify pre and post 2006 intervention. Age (<5), Spring, and 

Female sex are reference categories. 
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The outcomes of applying MI and FSB models to the datasets with artificially induced missingness 

is given in Table 3.4 and Figure 3.4. Comparison of BS and AUC to select the best predictive 

model shows that the FBS model is more robust than MI as the rate of missingness increases (Table 

3.4). At 10% MAR, there was no difference between MI and FBS. However at 50%, 65% and 80% 

MAR cases, the FBS approach resulted in relatively higher AUC and smaller BS than MI (Table 

3.4).  Furthermore, PB of regression coefficients were consistently low across all categories of 

missingness for most of the variables in the FBS models as compared to MI (Figure 3.4). This 

evidence suggests the FBS performs relatively better for a dataset with a high rate of missing 

values. 

 

Table 3.4. Comparison of Brier Score and Area Under the Curve (AUC) between Fully Bayesian 

and Multiple imputation models for the prediction of overseas travel status of campylobacteriosis 

cases. 

Accuracy 

measure 

Complete data1 Missing data 

Frequentist Bayesian Multiple iputation Fully Bayesian 

10pct3 50pct 65pct 80pct 10pct 50pct 65pct 80pct 

Brier 

Score2 

0.062 0.062 0.067 0.24 0.18 0.19 0.062 0.063 0.062 0.063 

AUC 0.67 0.67 0.64 0.49 0.42 0.49 0.67 0.67 0.65 0.64 

1 n=44,285 
2AUC=Area Under the Receiver Operating Characteristic Curve 
3 pct = percent 
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Figure 3.4. The comparison of Fully Bayesian and Multiple Imputation models regarding Percent 

Bias of regression coefficients for different proportion of missing overseas travel status of 

campylobacteriosis cases. 

 

Keys: * Deprivation index (scale 1-10, 1 being least deprived and 10 being most deprived DHB; 

**proportion of DHB population under urban influence;*** Short term international travel per 100 

residents of a DHB; ****a binary indicator variable to identify cases reported before or after 2006 poultry 

intervention period.  
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The FBS model was chosen to be applied to the original dataset to estimate the proportion of cases 

due to overseas travel in each DHB during the period 2008 to 2010. During this period the number 

of campylobacteriosis notifications and travel rates were relatively stable.  Figure 3.5 shows the 

total number of notified campylobacteriosis cases (upper panel) and the estimated proportion of 

travel related cases as predicted by our model (lower panel). The horizontal dashed line in the 

bottom panel is drawn to indicate the percent of reported travel associated cases (7%) among all 

cases that have provided travel information.  

 

In many of the DHBs with a high rate of campylobacteriosis notification (see upper panel of Figure 

3.5) and high rate of travel (see bottom panel of Figure 3.1), such as Auckland, Counties Manukau 

and Waitemata, our model predicted a high proportion of  campylobacteriosis cases to be 

associated with overseas travel. For example, the proportion of travel associated cases was higher 

in Counties Manukau, Auckland and Waitemata DHBs, at 0.34 (0.12, 0.57), 0.33 (0.13, 0.55) and 

0.28 (0.10, 0.49), whereas the lowest proportions were estimated for West Coast, Northland and 

Tairawhiti at 0.02 (0.01, 0.06), 0.03 (0.01, 0.08) and 0.04 (0.01, 0.08) respectively. Except for 

Auckland, Counties Manukau, West Coast and Waitemata DHBs, the 95% CI of the predicted 

proportion of travel associated cases included the observed national proportion of travel related 

cases (horizontal dashed line in bottom panel of Figure 3.5). Accordingly, the national estimate 

and 95% CI of the proportion of travel related cases based on our model is 0.16 (0.02, 0.48).  
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Figure 3.5. The total number of campylobacteriosis notification (upper panel) and the proportion 

of travel related cases (lower panel) for each DHB of New Zealand (2008-2010). 

 

 

Notes: (1) Bottom panel: proportion of travel related cases predicted by the Bayesian model. The error bars 

are 95% CIs of the proportion of overseas travel. (2) The dashed horizontal line is the proportion of travel 

related campylobacteriosis cases for which travel history is available nationally (7%). 
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3.4 Discussion  

 

Data gaps in notification data have been a continuous public health challenge for identifying the 

source of infection and preventing infectious diseases, including campylobacteriosis. The increase 

of overseas travel by New Zealanders and the established risk of overseas travel for Campylobacter 

infection emphasize the need to study travel associated illnesses.  

A total of 18.3 million short term international trips by New Zealand residents were recorded 

between 2000 and 2010.  Most travel was to the Pacific region, East Asia and North America, 

while the least travel was recorded for the regions of West and Central Africa and Antarctica.  This 

is in agreement with previous reports that New Zealanders travel to more than 150 countries, of 

which countries in the Pacific region and North America are the most popular destinations [6].  

International travel has been increasing since 2004 (see Figure 3.2). 

In contrast, a substantial reduction of incidence of notified campylobacteriosis cases occurred after 

2006 (Figure 3.2). The significant changes in notifications post 2006 were believed to be the result 

of interventions targeting poultry [2]. Despite this overall decline in notifications of 

campylobacteriosis in New Zealand, the change attributable to cases associated with overseas 

travel is not well understood. Although the outbound travel rate of New Zealand residents has been 

increasing, we noticed a slight decline in notified travel associated cases throughout the study 

period (middle panel of Fig 3.2). This could be due to the decrease in reporting of travel status for 

the cases throughout the study period (Figure 3.3) that may have confounded conclusions on the 

origin of the disease. 
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In addition, there is a consistently low reporting rate of detailed travel information in urban areas 

of New Zealand such as in Auckland and Wellington regions. A case control study in the New 

Zealand regions with high notification rates, including Auckland region, suggests that recent 

overseas travel was a significant risk factor for the occurrence of campylobacteriosis in this region 

[29] 

The majority (62%) of campylobacteriosis case reports in New Zealand lack travel history during 

the incubation period prior to disease. The level of completeness of travel history for notified cases 

has been a challenging task as is reported by some other studies [30–32].  It is therefore necessary 

to estimate travel associated cases based on imperfect data. 

Among the total number of notifications with known travel history in the eleven years span of our 

study, only 3107 (7% of notifications with known travel status) had reported overseas travel. As 

New Zealanders are prolific travelers, this proportion of cases may underestimate the true 

contribution of travel as a risk factor for campylobacteriosis in New Zealand. For this reason, 

model-based methods such as MI and FBS can be useful to fill the data gaps, using covariates that 

predict overseas travel. The FBS model resulted in an estimate of the national proportion of 

notifications due to overseas travel of 16%, a higher value compared to the 7% estimate using only 

known values. Higher rates of travel related campylobacteriosis have been reported in other 

developed countries such as in Canada (21.6%) [33], England (17%) [30], USA (18%) [34], 

Denmark (18%) [35] and Switzerland (46.1%) [36].  

  

Both MI and FBS have become popular for data augmentation in recent years due to their generic 

application and availability of large variety of computational tools [7, 14, 20].  Several other 
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methods have been described in the literature for filling data gaps, such as maximum likelihood 

estimation (ML) and Weighted Estimating Equations(WEE) [37, 38]. However, we focused on MI 

and FBS, because these are regarded as the most applicable and widely used methods [7, 21, 37, 

39]. When the proportion missing in the data is small, and MAR assumption holds, both methods 

resulted in similar predictions. This is supported by previous studies indicating that MI and FBS 

are asymptotically equivalent whenever the data is MAR [40]. At a higher rate of missingness, 

though, the FBS was more robust than MI. This is indicated in Table 3.4 and 3.5, that the Brier 

Score, AUC and PB of regression coefficients remained stable for the FBS case. We therefore 

chose the FBS model for predicting overseas travel status of the cases using demographic and other 

predictors.  

 

Our model predicted a high proportion of travel associated cases in major urban areas of New 

Zealand, such as in Auckland, Counties Manukau and Waitemata DHBs. This could be due to high 

rates of travel of their residents to the Pacific Islands and South East Asia regions, which is partially 

driven by the comparatively high proportion of Asian ethnicity (23.8%) and Pacific Peoples 

(14.6%) in the Auckland region [6, 10]. It has been previously established that individuals traveling 

to these world regions are at a higher risk of travel associated illnesses, including 

campylobacteriosis [41]. On the other hand, the DHBs with a smaller proportion of model-

predicted travel related cases (e.g., Northland, West Coast and Tairawhiti) are those with a lower 

outbound travel rate.  

The use of FBS and MI methods provides a methodology to calculate uncertainty bounds around 

the estimates of travel associated cases. The degree of uncertainty of the predicted proportion of 
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travel associated cases can be attributed to variation in the risk of travel associated illnesses among 

individuals that have different covariate values.  Such variation in the risk of campylobacteriosis 

with respect to age, sex and season is in agreement with previous reports in literature [5, 42]. 

If the MAR assumption holds, which is usually difficult to achieve, our Bayesian prediction model 

provides a plausible way for predicting missing overseas travel of campylobacteriosis cases. [21]. 

It is also important to note that any other missing data analysis approaches require assumptions 

that are just as difficult to justify [43]. However, the FBS procedure should not be viewed as the 

‘gold standard’ for filling data gaps for every situation, although it offers a flexible approach for 

data augmentation. Priors can be enhanced if data regarding association of risk factor–outcome 

become available. In addition, the Bayesian model specification can be modified if the MAR 

assumption is thought to be violated.  

Better notification reporting, particularly for areas with high outbound travel and high notification 

of cases such as in highly urban areas can improve our understanding of the epidemiology of travel 

associated campylobacteriosis in New Zealand. However, reporting completeness is limited by the 

resources available in each DHB. Use of alternative data collection approaches such as web based 

applications, cross tabulation of Customs data with EpiSurv data, and creating awareness in the 

population regarding the importance of the information for the public health databases may 

improve reporting completeness. Although the emphasis in this report is on predicting travel 

information of Campylobacter cases in New Zealand, the method can be implemented for other 

diseases of public health significance which have similar data gaps.  
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3.5 Conclusions  

 

The apparent challenge of data gaps regarding risk factors for campylobacteriosis suggests the use 

of model-based approaches for estimating missing values. Filling data gaps is particularly 

important for regions with a high rate of incomplete data. The fully Bayesian modelling approach 

offers a flexible alternative for data augmentation particularly when the missing rate is very high.  

Due to the strong MAR assumption necessary for the prediction, the FBS, on the other hand, may 

not be the best approach for predicting missing values in imperfect datasets. 
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 Chapter 4: Bayesian spatio-temporal analysis of travel 

associated campylobacteriosis in New Zealand 
 

Amene, E.1, Horn, B.2, Pirie, R.2 Lake, R.2 and D., Döpfer 1 

 

1University of Wisconsin-Madison, School of Veterinary Medicine, Department of Medical Sciences, USA, 

2Environemental Science and Research, Christchurch, New Zealand 

Abstract 

Background: campylobacteriosis is a notifiable disease in New Zealand. Overseas travel is one 

of the major risk factors for acquiring this disease. A better understanding of the spatial and 

temporal distribution of travel associated campylobacteriosis is crucial for control and prevention 

efforts to be effective.  

Methods: Bayesian predictive inference was applied by implementation of the INLA package in 

R, which makes usage of Integrated Laplace Approximation for prediction of risk. A Poisson 

lognormal regression model was fitted to the data with both space structured and unstructured 

random effects. For model selection and Goodness of Fit evaluation, the Deviance Information 

Criteria was used. The selected model resulted in travel associated campylobacteriosis risk maps 

of New Zealand and the main travel destinations.   

Results: Based on a combination of Deviance Information Criteria, pD, Conditional Predictive 

Ordinate and parsimony, a model consisting of both spatially structured and unstructured random 

effects, and an unstructured temporal random effect fitted the data best. A map depicting the spatial 

and temporal distribution of travel related campylobacteriosis was developed. Based on this map, 

major urban areas have consistently higher risk of travel related cases than other regions of New 

Zealand throughout the study period. The risk map constructed using observed travel associated 
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cases with known travel destination showed similar pattern of risk as compared to previously 

established campylobacteriosis risk zones of main global destinations.  

  

Conclusion: Mapping local area specific estimates of campylobacteriosis risk informs strategic 

allocation of public health resources. Spatial and temporal description of disease risks in different 

areas subject to surveillance strengthens the surveillance of the disease. The result provides a better 

understanding of the spatial risk and the variability of risk due to spatial and non-spatial 

components. Further investigation of areas with high risk of travel related campylobacteriosis in 

New Zealand yields clues toward the understanding of disease causation.  

Key words: Campylobacteriosis, New Zealand, Bayesian, travel 

 

4.1 Background 

 

Campylobacter infections are the most commonly reported bacterial causes of food borne 

gastrointestinal illnesses, accounting for more than 10% of all diarrheal cases in humans 

worldwide [1]. Particularly in developed countries, infection with Campylobacter species is the 

leading cause of human bacterial gastroenteritis [2–5].  

Although there has been a significant reduction in the incidence of campylobacteriosis in New 

Zealand after 2006, the infection rate is fairly high compared to other developed countries [6]. For 

example, the notified rate of campylobacteriosis in New Zealand in 2011 was 151.9 per 100,000 

population compared to the USA (13.02) and the EU (45.2) [7, 8]. A number of risk factors for 

acquiring campylobacteriosis have been reported in literature. The most common ones are 

consumption and handling of poultry, unpasteurized milk and dairy products; consumption of 
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untreated water; contact with domestic animals; and, international travel [6–9]. Poultry and poultry 

products have been implicated as the source of infection in up to 80% of the cases and as the risk 

factor associated with more than 41% of transmissions to humans [5, 6]. On the other hand, the 

rates of infection and epidemiology of Campylobacter infections associated with other risk factors 

such as international travel remain unclear [13]. With increasing travel and trade opportunities 

across the globe, there has been a greater risk of acquiring campylobacteriosis across borders.  A 

better understanding of the spatial and temporal distribution of travel associated 

campylobacteriosis is crucial for improved control and prevention efforts. Meanwhile, no 

information exists regarding model-based travel associated campylobacteriosis risk in New 

Zealand that takes into account the spatial and temporal dependence of the infection risk. Maps of 

spatial predictions and corresponding uncertainties in model outputs can allow informed decision-

making with regard to targeted disease control [14, 15].  In this study, we used a Bayesian disease 

mapping (BDM) framework to develop a model for predicting spatial and temporal distribution of 

risk of travel associated campylobacteriosis [16, 17]. The aim of this analysis is to classify District 

Health Boards (DHBs) of New Zealand based on distribution of the risk of travel associated 

campylobacteriosis.  

 

4.2 Methods  

Data 

Campylobacteriosis notification and short term international travel data were obtained from New 

Zealand national databases (EpiSurv and Statistics New Zealand). The EpiSurv (Notifiable Disease 

Surveillance Database) (https://surv.esr.cri.nz/episurv/index.php) records information about 

national and local notifiable cases and their associated demographic structures. Statistics New 

https://surv.esr.cri.nz/episurv/index.php
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Zealand (http://www.stats.govt.nz/), on the other hand, is the public service department of New 

Zealand responsible for collecting and producing data including census counts and migration 

patterns for New Zealand residents (such as departure regions and main travel destinations). In this 

database, short-term travel is defined as international departures of New Zealand residents for an 

intended duration of stay outside of New Zealand of less than 12 months. The original notification 

dataset, however, lacks travel information for a significant proportion of the cases. In our previous 

study, we used a covariate-driven model-based approach to fill-in notification data-gaps including 

overseas travel status for the campylobacteriosis cases (Chapter 3). We used the imputed dataset 

from our previous study for the BDM approach toward the analyses of travel associated cases. The 

summary of the dataset used for the current analysis is shown in Table 4.1 below. 

 

Table 4.1. The short term international travels and the total campylobacteriosis notifications of 

New Zealand residents (2000-2010). 

District Health Board Total 

Travels 

Total 

Notifications1 

Proportion of travel 

associated cases2 

Mean(95% CI) 

Northland 410364 2878 0.04(0.01,0.07 ) 

Waitemata 3138067 14963 0.18(0.07,0.28 ) 

Auckland 2679979 12273 0.22(0.09,0.33 ) 

Counties Manukau 2811854 10095 0.23(0.1,0.36 ) 

Waikato 1104560 10859 0.05(0.02,0.1 ) 

Bay of Plenty 687786 4342 0.06(0.02,0.11 ) 

Lakes 377901 2789 0.06(0.02,0.1 ) 

http://www.stats.govt.nz/
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Tairawhiti 98764 726 0.04(0.01,0.07 ) 

Hawke's Bay 423987 3970 0.05(0.02,0.09 ) 

MidCentral 451491 3060 0.04(0.01,0.08 ) 

Taranaki 324005 3453 0.05(0.02,0.08 ) 

Whanganui 240727 1578 0.05(0.02,0.09 ) 

Capital and Coast 1410679 10482 0.13(0.05,0.2 ) 

Hutt Valley 549565 4696 0.15(0.06,0.23 ) 

Wairarapa 204285 879 0.11(0.04,0.19 ) 

Nelson Marlborough 497308 2753 0.06(0.02,0.1 ) 

Canterbury 2054498 14874 0.07(0.03,0.12 ) 

West Coast 72688 760 0.03(0.01,0.06 ) 

South Canterbury 208955 2340 0.07(0.02,0.11 ) 

Southern 946026 8951 0.04(0.02,0.08 ) 

 

Notes: New Zealand has 20 District Health Boards (DHBs). The DHBs are organizations established by the 

New Zealand Public Health and Disability Act 2000, which are responsible for ensuring the provision of 

health and disability services to populations within a defined geographical area. 

1 Total campylobacteriosis notifications are either culture confirmed or epidemiologically linked (probable) 

cases. 2 Travel associated cases are estimated from a Bayesian hierarchical model implementing predictive 

covariates (Deprivation Index, proportion of the population under urban influence, DHB’s Travel rate, age 

of the case, season of travel and whether the case was reported before or after 2006 intervention period). 

The mean value was used to compute the estimated travel associated cases form the total notification. 

 

Statistical Analysis 

We performed a descriptive analysis regarding travel departures and total campylobacteriosis 

notifications in the DHBs and the geographic distribution of main travel destinations. For this 
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analysis, we grouped the main countries of destination into twenty ‘World Regions’ based on 

geographic proximity [13].  

 

The distribution of Campylobacter cases are assumed to follow a Poisson process, as the disease 

usually is a sporadic rare event in a large population, mean and variance are equal, and this 

distribution gives a good approximation to the true underlying process [18]. A Bayesian spatio-

temporal model with spatially structured and unstructured random effects was fitted to the data. 

Incorporating random effects into a regression model absorbs extra-variation in the data that could 

be attributable to unmeasured and clustered variables [19]. The Besag, York and Mollié model 

(BYM) was chosen to fit the data for the reason that it easily accommodates area specific random 

effects and covariate adjustments (4.1) [20]. This model corrects for spatial correlations between 

infection risks in nearby areas. This method utilizes the spatial structure of the data to “borrow” 

more information from neighboring areas compared to from those areas located far away and it 

adjusts local infection risks from local, neighboring values. A number of Bayesian hierarchical 

models have been proposed that extend the BYM model for analysis of spatially referenced data 

[21–23].  For the DHB level analysis, we adopted the model formulated to incorporate both spatial 

and temporal random effects [17]. The generalized form of the spatio-temporal Bayesian regression 

model has the following structure: 

  Yi j~ Poisson (θijEij),                                                                                                                  (4.1) 

                           

where Yij and Eij  are observed and expected number of cases, respectively, for each area i and 

time unit j; θij  denotes the relative risk in area i= 1,...n and time j=1,...J. The expected count 
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(Eij) denotes the expected number of cases in region i, which is frequently age-standardized or 

adjusted for possible confounders [23]. Since there is no information regarding this value for travel 

associated campylobacteriosis cases in New Zealand, we used the current observed national 

proportion (i.e., 7%) and applied it to the total campylobacteriosis cases of a DHB to obtain the 

expected counts of travel associated cases (Ei). The expected counts serve as an offset in the model 

(4.2).  The above formulation (4.1) is the standard generalized linear mixed model formulation 

with Poisson response [25]. Following which, the relative risk (θij) of travel associated 

campylobacteriosis is defined on a logarithmic scale as the linear combination of covariates and 

random effects (4.2).  

 log(θij)= log(Eij)+ α+ui +vi + βj + γj + δj +ξij                                                                            (4.2)     

The intercept α quantifies the average risk in all regions estimated from the data whereas ui and vi 

are area specific and non-spatial random effects, respectively, to capture the residual or 

unexplained source of variation in risk. The term ui represents a spatially structured random 

effect and vi is unstructured over-dispersion. The entity β represents the global time effect (in 

years); γ and δ are temporally structured and unstructured random effects, respectively; and ξ 

stands for the interaction between time and space; n stands for the number of regions, and J 

identifies the year of travel (J=11 years). In order to determine the risk with regard to the main 

travel destinations, we used the observed travel associated cases that have confirmed their travel 

destination. Since these proportion of cases constitute only a small proportion from the total 

notification (2.5%), we did not have enough sample to include temporal effect. Therefore we 

summarized all cases with complete information regarding travel history to develop a risk map for 

the entire eleven year duration.  
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Bayesian analysis requires prior information to be specified for all unknown parameters in the 

model, a way to incorporate uncertainty about the parameters [26]. We specified a Conditional 

Autoregressive (CAR) normal prior for the spatial component (ui) to take into account the 

neighborhood structure such that regions sharing the same border are more alike than those located 

far apart. The advantage of the CAR prior for spatial structure is that it allows one to incorporate 

spatial correlation into the model. The accommodation of spatial structure specifies the distribution 

of the random effects for the DHB regions as dependent on the collection of random effects of all 

the other neighboring DHBs while those regions share same border [27]. An exchangeable normal 

prior was used for the unstructured random effects (vi) [27]. A first order ‘random walk’ prior 

(RW1) was defined for the temporally structured effect γ. The RW1 prior reflects a belief that 

sudden jumps in the risk of travel associated campylobacteriosis between consecutive time points 

is unlikely, i.e successive time points are correlated. A detailed technical description of the CAR 

prior and the RW1 priors can be found in literature [28, 29].  Uninformative priors with mean 0 

and a small precision (10-3) are specified for all other unknown parameters in the model. This 

ensures that the results are dependent on the data. 

 

We compared goodness-of-fit of models using the Deviance Information Criteria (DIC), pD [30] 

and the Conditional Predictive Ordinate (CPO) [31]. The DIC is a generalization of Akaike 

Information Criteria (AIC) for Bayesian models [32].  It is a composite measure of model fit that 

trades off a measure of model adequacy against a measure of model complexity. The DIC is given 

by the equation (4.3): 

 DIC =D + pD,                                                                                                                               (4.3) 
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where D is the deviance of the model representing the fit of the model to the data, and pD is the 

effective number of parameters linked to model complexity. A difference of more than 5-10 units 

is regarded as strong evidence in favor of the model with smaller DIC [30]. The CPO, on the other 

hand, is a leave-one-out cross validation score that measures the predictive performance of a model 

[31] defined as (4.4): 

CPOi = π (Yi
obs /Y- i),                         (4.4) 

 

where, Yi
Obs

 refers to the observed value i, and Y-i denotes the observations Y with the ith 

component removed. It measures the posterior probability of observing the value of Yi when the 

model is fitted to all data except Yi. We used the cross validated logarithmic score (-mean (log 

(CPO)) for comparing competing models, where smaller value indicates a better predictive 

performance [33]. Both the DIC and the CPO can be obtained automatically from the INLA output 

by setting the option cpo=TRUE in the control.compute statement within the inla(.) call (see Appendix 

4.1). We selected the model with the smallest DIC for predicting relative risk estimates in the 

maps. All the analysis was performed in R version 3.1.3 and the INLA package (Integrated Laplace 

Approximation) [34, 35].  

 

Ethical consideration 

This study has been reviewed and approved by the New Zealand Southern Heath and Disability 

Ethics Committee (Ethics Reference: MEC/12/EXP/029/AM03). 
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4.3 Results 

 

Descriptive results 

The distribution of total campylobacteriosis notifications and short term international travels from 

the 20 DHBs of New Zealand is shown in Fig 4.1.  Majority of the campylobacteriosis notification 

was reported from Waitemata (12.8%), Canterbury (12.7%), Auckland (10.6%), Waikato (9.3%), 

Capital and Coast (8.9%) and Counties Manukau (8.6%). On the other hand about 56% of all 

travels were from Waitemata (16.7%), Counties Manukau (15.0%), Auckland (14.3%) and 

Canterbury (10.9%).  

Figure 4.1. The total campylobacteriosis notification in 1000s (left panel) and short term 

international travels in 100,000s (right panel) of New Zealand residents (2000-2010). 
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The main travel destinations of New Zealand residents during the study period is shown in Figure 

4.2. International destinations are categorized into twenty world regions based on geographical 

proximity of the countries of arrival and then travel counts were aggregated accordingly (see 

Figure 4.2). There were 18.3 million New Zealanders who have made a short-term international 

travels between 2000 and 2010. Most travel was to the Pacific region (68,074), East Asia (12,375), 

and Western Europe (7,500) per 100,000 travelers, while the least travel was recorded for 

Antarctica (7.6), Central and West Africa (16.8) per 100,000 travelers.  

 

Figure 4.2. The main short term international travel destinations1 of New Zealand residents in 

100,000s (2000-2010). 

 

1Notes: the main short term international travel destinations of New Zealanders is summarized into 20 world 

regions: Antarctica: Antarctica, Bouvet Island, French Southern and Antarctic Lands, Heard Island and 

McDonald Islands, South Georgia South Sandwich Islands; Nordic countries = Denmark, Finland, Iceland, 
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Norway; Western Europe = Austria, Belgium, France, Germany, Ireland, Luxembourg, The Netherlands, 

Switzerland, United Kingdom; Southern Europe = Italy, Malta, Monaco, Portugal, Spain; Eastern 

Europe = Bulgaria, Czech Republic, Estonia, Hungary, Latvia, Lithuania, Poland, Romania, Slovakia; 

Eastern Mediterranean = Albania, Cyprus, Former Yugoslavia, Greece, Israel, Turkey; Russia and 

former USSR = Armenia, Azerbaijan, Belarus, Georgia, Kazakhstan, Kyrgyzstan, Russia, Tajikistan, 

Turkmenistan, Ukraine, Uzbekistan; Arab countries and Iran = Bahrain, Iraq, Iran, Jordan, Kuwait, 

Lebanon, Oman, Qatar, Saudi Arabia, Syria, United Arab Emirates, Yemen; Indian Subcontinent = 

Afghanistan, Bangladesh, Bhutan, India, Maldives, Nepal, Pakistan, Sri Lanka; East Asia = Brunei, Burma, 

Cambodia, China, Hong Kong, Indonesia, Japan, Laos, Malaysia, Mongolia, North Korea, Philippines, 

South Korea, Singapore, Taiwan, Thailand, Tibet, Viet Nam; The Pacific = American Samoa, Australia, 

Cook Islands, Fiji, French Polynesia, Guam, Kiribati, Marshall Islands, Micronesia, Nauru, New Caledonia, 

New Zealand, Niue, Palau, Papua New Guinea, Samoa, Tokelau, Tonga, Tuvalu, Vanuatu, Wallis and 

Futuna; North Africa = Algeria, Egypt, Libya, Morocco, Tunisia; West Africa = Benin, Burkina Faso, 

Cape Verde, Ghana, Guinea, Guinea-Bissau, Ivory Coast, Liberia, Mali, Mauritania, Senegal, Sierra Leone, 

The Gambia, Togo; East Africa = Burundi, Djibouti, Eritrea, Ethiopia, Kenya, Rwanda, Seychelles, 

Somalia, Sudan, Tanzania, Uganda; Central Africa = Cameron, Central African Republic, Chad, Congo 

Brazzaville, Equatorial Guinea, Gabon, Niger, Nigeria, Republic of Congo, São Tomé et Principe; 

Southern Africa = Angola; Botswana, Lesotho, Madagascar, Malawi, Mauritius, Mozambique, Namibia, 

South Africa, Zambia, Zimbabwe; North America = Canada, USA; Central America = Belize, Costa 

Rica, El Salvador, Guatemala, Honduras, Mexico, Nicaragua, Panama; Caribbean = Antigua and Barbuda, 

Bahamas, Barbados, Bermuda, Cayman Islands, Cuba, Dominica, Dominican Republic, Grenada, 

Guadeloupe, Jamaica, Haiti, Martinique, Netherlands Antilles, Puerto Rico, S:t Christopher and Nevis, S:t 

Lucia / S:t Vincent, Saint Kitts-Nevis, The Grenadines, Trinidad and Tobago, Virgin islands; South 

America = Bolivia, Brazil, Colombia, Ecuador, French Guiana, Guyana, Honduras, Paraguay, Peru, 

Suriname, Uruguay, Venezuela. 

 

Model selection 

Table 4.2 shows the comparison of six fitted models. Adding spatial random effects (Model II) to 

the baseline model (Model I) significantly improved the fit of the model (a difference in DIC of 

4898.5). Furthermore, expanding Model III to Model IV by incorporating temporal random effects 

reduced the DIC from 443.6 to 424.2 (a difference of 19.4). Adding a structured temporal random 

effect (Model V) and a space-time interaction term (Model VI) did not improve the model. Based 

on a combination of DIC, pD and CPO criteria, there is no significant difference between Models 

IV, V and VI (see Table 4.2). Therefore, the model containing spatial and temporal random effects 
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(Model IV) has the best combination of the model comparison parameters and parsimony, 

suggesting that it fits the data best. This model contained a structured and non-structured spatial 

random effects, in addition to a non-structured temporal term.  

Table 4.2. The goodness-of-fit assessment of spatio-temporal models for estimating travel 

associated risk of campylobacteriosis in New Zealand. 

Model Parameters DIC1 pD2 M_CPO3 

I alpha  5418.5 1.2 12.43 

II alpha + u + v 520.5 19.3 1.17 

III alpha + u + v + βt 443.6 20.3 0.97 

IV4 alpha + u + v + δ 424.2 28.4 0.90 

V alpha + u + v + δ + γ 422.0 26.3 0.91 

VI alpha + u + v + δ + γ + ξi  424.7 28.6 0.91 

alpha: intercept; u: spatially structured random effect; v: spatially unstructured random effect; β: global 

temporal trend term; γ: structured temporal random effect (rw1); δ: unstructured temporal random effect; 

ξi: space-time interaction term. 
1Deviance Information Criteria; 2Effective number of parameters 
3Mean of the log of Conditional Predictive Ordinate: M_CPO = -mean (log (CPO)) 
4Bold highlighted: selected model 

 

 

We also computed the fractional variance for the unstructured and structured spatial components 

(i.e., the proportion of variance explained by each component). Dividing the variance of each 

random component by the total variance gives the proportion explained by each part. The 

structured random effect captured much of the variance attributed to unobserved confounders as 

compared to the unstructured and the temporal components (see Table 4.3). 
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Table 4.3. The fraction of standard deviation (SD) explained by each random effect component 

from the final model. 

Random effect Parameters Mean 95% Credibility Interval 

Lower Upper 

u 0.73 0.52 0.99 

v 0.01 0.003 0.02 

δ 0.09 0.05 0.14 

 

Notes: Variance=SD2 , variance explained by u = 98%; u: spatially structured random effect; v: 

unstructured random effect; δ: temporally unstructured random effect. 

 

Spatial distribution of risk  

The risk map of travel associated campylobacteriosis in New Zealand between 2000 and 2010 is 

shown in Figure 4.3. The mean relative risk indicated in the map is estimated using the model that 

takes into account both temporal and spatial random effects. The region with highest relative risk 

is characterized by darker colors and low risk of travel associated campylobacteriosis is shown in 

lighter colors. The Capital and Coast, Hutt, Wairarapa, Auckland, Counties Manukau and 

Waitmata DHBs have comparatively higher risk of travel associated campylobacteriosis than other 

DHBs. The progression of the risk over the period between 2000 and 2010 is evident from the risk 

map. Particularly from 2007 onwards there is an increasing risk of travel related 

campylobacteriosis in the Canterbury region (Fig 4.3). 



 
  

           

1
1
1
 

Figure 4.3. The spatial and temporal distribution of travel associated campylobacteriosis risk in New Zealand using observed and model 

predicted travel associated cases 

Notes: Left panel: posterior mean Relative Risk (2000-2010); Right top: Lower 95% CI; right bottom: Upper 95% CI (both 2008-2010); the regions 

in the map are New Zealand District Health Boards (DHBs). 
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Additionally, the risk of travel related cases with respect to 19 main travel destinations (world 

regions) has been estimated (see Figure 4.4). 

 

 Figure 4.4. The distribution of campylobacteriosis risk with regard to main travel destinations 

(upper panel: using Ekdahl’s campylobacteriosis risk1, bottom panel: using a model of observed 

travel associated cases in New Zealand, 2000-2010). 
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1Ekdahl qualitative campylobacteriosis risk (top panel): the original Ekdhal’s risk map shows a qualitative 

campylobacteriosis risk of returning travelers to Sweden (high, medium and low risk regions). The risk 

map at the bottom panel is developed using confirmed case notifications in New Zealand with known short 

term travel destinations (n=3109). The three risk groups were created by classifying the relative risk into 

three classes (>0.009, 0.006-0.009, <0.006). Since only 3109 (<2%) of the total campylobacteriosis 

notifications in New Zealand was used for constructing this map, the true risk may have been 

underestimated and therefore the map should only be used for general comparison if there are overlaps from 

Ekdhal’s risk map.  

Notes: Countries of main destination are grouped into nineteen world regions (excluding Antarctica): 

Nordic countries, Western Europe, Eastern Europe, Eastern Mediterranean, Southern Europe, Russia and 

former USSR, Arab countries and Iran, Indian Subcontinent, East Asia, The Pacific, North Africa, West 

Africa, East Africa, Central Africa, Southern Africa, North America, Central America, Caribbean and South 

America. 

 

 

4.4 Discussion  

 

There is a scarcity of information regarding the risk of campylobacteriosis attributable to overseas 

travel in New Zealand. One of the biggest challenges for identifying travel associated cases from 

those acquired within the country has been lack of complete data. This study attempted to estimate 

the spatial and temporal distribution of the risk of travel associated campylobacteriosis in New 

Zealand using observed and model predicted travel related cases.  The dataset used for this analysis 

does not identify whether or not individuals have made multiple trips during the study period. 

Therefore, it should be noted that some individuals may have traveled multiple times during the 

study period, and may have contributed more than once to the dataset at different times.  

 

Spatial estimation of disease risk in the Bayesian context offers a mechanism to “borrow strength” 

from neighboring areas to improve local estimates, resulting in the smoothing of extreme rates 

caused by small local sample sizes [20]. Some DHBs have very low rates of travel associated 
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campylobacteriosis (e.g., West Coast and Northland) while others have much higher rates (e.g., 

Auckland and Counties Manukau). Spatial analysis of such data using the traditional approach 

may overestimate the risk because the results may be based on a few cases from regions with 

smaller populations [36]. In the latter case, the Bayesian methods provide a flexible platform to 

incorporate various forms of random effects and spatial correlation for developing a best model to 

describe spatial and temporal risk.  The Bayesian approach takes into account the uncertainties in 

the modeling process about shrinking extreme disease risk values towards the local rates [37]. A 

significant improvement of the model fit through incorporation of spatially structured and 

unstructured random components in our analysis indicated that there is a need to consider spatial 

and temporal dimensions while trying to determine the risk of travel associated campylobacteriosis 

in New Zealand. It has been previously indicated that, in general, marked regional differences can 

be found regarding campylobacteriosis risk that may be associated with travel, because the 

tendency and destinations of individuals travelling from various regions may vary [13]. 

 

A consistently higher relative risk of travel associated campylobacteriosis was observed in the 

major urban areas of New Zealand throughout the study period. This could be attributed to a higher 

rate of short term international trips from these DHBs to certain destinations that have a higher 

incidence of campylobacteriosis infections [38]. The diverse ethnic structures of the urban areas 

in New Zealand could contribute to the majority of international travels from these areas to high 

risk regions. For example, about 88% of all New Zealand-based Pacific population reside in urban 

areas of New Zealand, with 67% living in the Auckland region alone [39]. Furthermore, higher risk 

may also be related to individual attributes such as duration of stay upon overseas travel, personal 

precaution and other unknown factors that require further investigation [40].  
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Although the similarity between Ekdhal’s qualitative risk zones and our risk map regarding travel 

destinations is evident, there are some differences. This discrepancy might be due to lack of 

sufficient information on travel destinations for the notified cases in New Zealand. The proportion 

of campylobacteriosis cases that was used to build a model for producing the risk map may have 

underestimated the true risk with regard to travel destinations. Variation in the availability of 

information concerning travel destinations for the New Zealand campylobacteriosis cases may also 

have contributed to the apparent differences between the two risk maps.  

 

The application of Bayesian modelling in the current study conferred advantages over traditional, 

frequentist modelling approaches, because the spatial dependence structure of the observed data is 

incorporated in the modeling process. The uncertainties surrounding the predicted risk estimates 

can be corrected for, enabling objective decisions about priorities for future data collection.  

 

Through comparison of models with different structures, the current study suggested that the 

incorporation of temporal and spatial dimensions in risk mapping makes the best usage of the 

available data. It can be inferred that the spatial and temporal components of the disease risk play 

a large role in explaining sources of variation without direct measurement of the variation.   

 

4.5 Conclusions  

 

Disease mapping of spatio-temporal data about travel associated campylobacteriosis using 

Bayesian frameworks identifies high disease risk areas that require further attention from health 
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policy makers. Local area specific estimates of campylobacteriosis risk inform strategic allocation 

of public health resources. Mapping disease risks in different areas subject to surveillance 

strengthens the surveillance of diseases. The result provides a better understanding of the residual 

spatial risk and the variability of risk due to spatial and non-spatial components. Further 

investigation of areas with high risk of travel associated campylobacteriosis yields clues towards 

the understanding of disease causation. 
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Abstract 

Background: Disease mapping is frequently applied to assess the pattern of disease and identify 

areas characterized by abnormally high or low risk of disease. Bayesian frameworks provide a 

convenient platform to generate a map that reflects the inherent heterogeneity of disease risk in 

small areas. This study applies a Bayesian hierarchical disease mapping approach to estimate the 

risk of Plasmodium falciparum exposure in the rural homesteads of Western Kenya. 

 

Methods: Important risk factors of Plasmodium falciparum exposure were identified by applying 

a Bayesian Model Averaging approach to a dataset obtained from the People’s Animals and their 

Zoonoses project. A Bayesian hierarchical model including spatial and non-spatial random effects 

was fitted to the data. Various models were compared using the Deviance Information Criteria and 

the preferred model was employed to predict the risk of Plasmodium falciparum exposure in 143 

Sub-locations in the Busia region, Western Kenya.  

Results: Five and seven predictors of malaria were selected from 22 and 25 candidate variables 

from two separate datasets, respectively. The disease risk and 95% Credibility Intervals adjusted 

for the covariates and spatial random effects ranges from 0.19 (0.07, 0.35) to 2 (1.01, 3.38) in 

Kokeyo and Umla Sub-locations (SL); and 0.16 (0.10, 0.26) to 1.90 (0.79, 3.82) in Yenga and 

Siranga SLs, for the two datasets, respectively. The variability of the risk in the region is mainly 

attributed to spatial factors. 

 

Conclusion: The subset of variables identified in this study help to prioritize predictors for 

Plasmodium falciparum exposure in the region. The health authorities engaged in control and 

prevention of malaria in the Busia region can adopt the risk maps as a useful tool for identifying 
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priority regions for intervention efforts given the respective individual risk profiles per SL. The 

methods in this report can guide data collection, study designs and they can be applied to other 

disease studies that include spatial representation and prioritization of risk. Data covering a wider 

geographical area and including environmental and climatic factors can improve the prediction of 

malaria risk. 

 

Key words: Busia, Plasmodium falciparum , Bayesian, mapping 

 

5.1 Background  

 

Plasmodium falciparum is a protozoal parasite predominantly responsible for causing malaria in 

many parts of Sub-Saharan Africa. Malaria is the leading cause of human illnesses and deaths in 

this region including Kenya [1]. Due to high mortality and morbidity associated with the disease, 

it has been recognized as a major health and socioeconomic burden in the region [2]. Although 

substantial reduction in the transmission of malaria has been achieved in the past decade in 

endemic areas of the Sub-Saharan Africa, the disease still remains a major health problem locally 

and worldwide [3].  

 

It has been reported that the Western part of Kenya has the highest burden of malaria in the country 

[4–6]. A number of risk factors are associated with the high occurrence of the disease in the region 

such as the agro-ecological zone, poverty, ignorance about the disease and lack of health resources 

[7]. Moreover, there is a high density of humans and animals living in close proximity in the region 

carrying a heavy burden of endemic and epidemic diseases including malaria. Prevalence and 

transmission intensity varies with geographical regions and therefore identifying important 
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predictors and consideration of the regional distribution of Plasmodium falciparum exposure helps 

to prioritize strategic health resources allocation.  

 

With the advent of routine health data indexed at a fine geographical resolution, small area risk 

mapping has become an established technique in studying the epidemiology of diseases [8]. The 

mapping of disease risks or rates, a technique that is frequently applied to assess the pattern of 

disease and to identify areas characterized by abnormally high or low risk, is important for the 

design and validation of epidemiological studies [9, 10]. Since disease risk is often not evenly 

distributed over a geographic area, detailed understanding of the geographical distribution of 

disease rates has important public health and epidemiological implications while studying diseases 

in both humans and animals.  

 

Conventional analysis of count data in a small geographic grid usually produces maps that rely on 

the raw counts of cases.  As a result, the estimated spatial distribution of risk does not reflect the 

underlying variation of risk that depends on risk “hot spots”, because the analysis relies on the raw 

data alone (see Section 1.2.4 of Chapter 1) [11]. Consequently, the hierarchical Bayesian disease 

mapping approach has been suggested as one way to generate a risk map that reflects the inherent 

heterogeneity of risk in a geographical area [10, 12, 13]. In recent years, Bayesian approaches have 

been increasingly used for modeling spatial distributions of a number of diseases including 

malaria. Bayesian Disease Mapping (BDM) provides a way to stabilize or smooth regional risk 

estimates [14–16]. In the Sub-Saharan Africa where malaria incidence is the highest, the Mapping 

Malaria Risk in Africa (MARA) project has been working towards developing a complete malaria 

risk atlas for targeted control of the disease [17]. MARA uses a biological model that sets decision 



124 
 

rules on how precipitation and temperature affect the development of Plasmodium falciparum (the 

main etiology of malaria in the region) and survival and breeding of the mosquito vector host [18]. 

In the current study, we applied Bayesian model averaging (BMA) and BDM approaches to select 

a subset of meaningful predictors and to estimate the smoothed relative risk, respectively, for 

mapping of Plasmodium falciparum exposure in the Victoria Lake Crescent and Busia region, 

Western Kenya.  

 

5.2 Methods 

 

Study area 

The Busia County covers an area of 1694.5 km2 that is located in the Western Province of Kenya, 

bordered by Lake Victoria in the South and by Uganda in the West (Fig 5.1).  

 

Figure 5.1. Map of the study area (Busia region, Western Kenya).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Note: The Busia County is located in the Western part of Kenya, bordered by Lake Victoria in the South 

and Uganda in the West. 
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The population of Busia County was about 816,452 people in 2012 distributed into 10 Divisions, 

60 Locations and 181 Sub-locations (SL) where the latter are 1st administrative units of the 

country[19]. The SLs consist of homesteads, which are the smallest geographical units typically 

consisting of several huts in close proximity and occupied by many generations of the same family. 

The spatial unit for the current disease mapping effort is the SL.  

 

 

Data source 

 

The dataset for this analysis was obtained from the People’s Animals and their Zoonoses project 

(PAZ). Since 2010, the PAZ project has investigated endemic and neglected zoonotic diseases in 

the Busia region, Western Kenya with the aim of identifying the link between risk factors, socio-

economic status, and incidence of infectious diseases [20]. The original dataset was collected in 

2010 and observations were recorded from 416 randomly selected rural homesteads [21]. For the 

purpose of our study, all individual level data and homestead level data were aggregated to the SL 

level and linked by a unique SL identifier. The number of individuals living in a homestead were 

used as a weighting variable during the data analysis.  

 

Plasmodium falciparum exposure 

A positive case was defined as a subject being positive for Plasmodium falciparum in thick or thin 

blood smears [22]. Therefore, a case in our study represents more an exposure to malaria at some 

point in time rather than an acute infection with clinical signs. Counts of positive cases per 

homestead and other relevant information (such as the number of people residing in a homestead 
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that are at risk of exposure, and the potential predictors of the disease) were aggregated at the SL 

level and used to estimate the spatial distribution of risk in the region.  

 

Predictor variables 

 

The original raw dataset was divided into cattle, human and homestead datasets collected using 

separate questionnaires, each containing a number of socioeconomic, environmental and health-

related information [21]. We start our analysis from two subsets of predictors that were previously 

selected from several hundred variables during a stepwise model selection process that consisted 

of a combination of Elastic net regularization (see Section 1.2.3 of Chapter 1) and stepwise 

regression analysis [23]. The first subset (hereafter called Subset A) consists of 224 homesteads 

with 22 variables describing the  homesteads, humans and their cattle, whereas the second subset 

(hereafter called Subset B) was comprised of 415 homesteads with 25 variables describing 

information about homesteads and humans only. The reason for splitting the raw dataset into two 

is that, for half of the homesteads the ‘cattle variables’ were missing, because no cattle were being 

kept at those homesteads.  

 

Statistical analysis 

Selection of variables  

Shrinking the large data set to a subset of most meaningful variables is a pre-requisite for BDM to 

avoid overparameterization, overfitting and instability of the model outcomes [24]. Since all the 

variables in both subsets have been selected from a much larger pool of predictors, further 

reduction of these variables requires careful consideration of both biological and statistical 
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significance. In order to select a meaningful subset of variables, we used a Bayesian Model 

Averaging (BMA) approach that compares models using Bayes’ rule [25]. The application of 

BMA for variable selection has been extensively described in literature [26–28]. BMA is a 

Bayesian framework approach for choosing among competing models while accounting for model 

uncertainty [25]. For example, in a dataset with 25 predictors, there are up to 225 possible models 

that can be fitted for all combinations of the predictors. However, only a small proportion of these 

models are usually considered to have an acceptable goodness-of-fit (usually the first 5000 models 

are retained and the results are reported based on them) [29, 30].  In BMA, the potential explanatory 

variables are quantified by their Posterior Model Probabilities (PMP) that indicate the importance 

of the variables for explaining the data [30]. In other words, the PMPs are the probabilities of a 

variable being in a model. We considered a strong association between the risk factor (Xi) and the 

malaria risk (Yi) given the data (D), whenever the Posterior Inclusion Probability (PIP) (i.e., the 

sum of PMPs for all models wherein the variable was incorporated) was greater than 75% [26], 

i.e., Pr(β ≠ 0/ D) >0.75, where β’s are regression parameters. This cut-off was chosen, because the 

models showed a jump in PIP below and above the value of 75%. 

 

Model Development 

 

After the shrinkage step described above, the selected subsets of predictors were used for a Poisson 

regression model and the outcomes were mapped. Poisson regression in the Bayesian hierarchical 

framework has been used for disease mapping whenever the counts of cases were low and located 

on a relatively small geographical area or whenever the disease was a rare event [10, 31]. While 

mapping P. falciparum exposure, accounting for the spatial dependence of the neighboring SLs 
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aids in “borrowing information” from neighboring regions to strengthen the robustness of risk 

estimates. Bayesian formulation of this problem has been proposed to overcome the substantial 

extra variability of small area disease risk estimates [32, 33].  

Counts of cases of are considered to follow a Poisson process. The generalized form of the equation 

for the Poisson model used is shown in equation (5.1) 

             Oi ∼ Poisson (λiEi)                                                                                                               (5.1) 

 

where Oi denotes the observed counts of positive cases in SLi , λi is the relative risk of the disease 

in SLi and Ei  is the expected number of cases in SLi. The expected number of cases, used as an 

offset in our model, is defined as the product of the number of individuals at risk of the disease in 

a given geographical area and a constant “baseline” risk [10, 34]. The baseline risk for malaria was 

computed by dividing the previously reported malaria prevalence in the Western lake endemic 

zone (i.e., 38%) [2] to the total number of individuals that were evaluated in each SL during the 

PAZ project as shown in equation (5.2). For example, the expected count of malaria cases in a 

homestead in each SL was defined as:  

 

  Ei = (Casesi / NumbHS)*prev,                                                                                                     (5.2) 

 
where Casesi is the total number of malaria cases in homesteads per SL, NumbHS refers to the 

total number of residents in the homesteads per SL and prev is the known prevalence of malaria in 

the region. 

 

To adjust for the impact of the observed predictors and random effects on the incidence of 

exposure, we fitted a Poisson random effect regression model specified as a linear combination of 
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a common intercept, two independent random terms and relevant predictors in equation (5.3). The 

mean log-relative risk was therefore modeled as follows: 

 

log (λi)= log(Ei)+ (α +βiXij )+ θi + ψi                                                                                        (5.3) 

 

i=1,2,…I (number of Sub-locations),  j=1,2…J (number of predictors) 

 

where α is the intercept, θi and ψi are  structured and unstructured random effects, Xi is a vector of 

predictors, and βi represents the regression coefficients.  The structured random effect (also called 

correlated heterogeneity) denotes local spatial structure by taking into account the neighborhood 

structure of the SLs. The neighborhood structure reflects that areas in close geographical proximity 

to one another may have more similar risk compared to those areas that are far apart [35]. The 

unstructured random component (uncorrelated heterogeneity) represents the variation in risk that 

does not depend on geographic location. The random effect for each area is the sum of the spatially 

structured and unstructured components [35]. This formulation allows the model to compensate 

for how much of the residual risk is attributable to spatially structured variation and how much is 

unstructured over-dispersion after accounting for the effect of the predictor variables. The relative 

contribution of the variance explained by the spatial component was computed for each model. 

 

Bayesian analysis requires that all unknown parameters in the model have a prior information that 

describes the uncertainty of the parameters [36]. For all the regression coefficients, standard non-

informative priors were assigned, i.e., those are normal distributions with mean 0 and precision 

10-3 (this precision is equivalent to a variance of 1000). In WinBUGS a normal distribution is 

defined by the mean and precision where precision is inverse of the variance [37]. The spatial 

relationship between the SLs (θ) is assigned a so-called CAR (Conditional Autoregressive) prior, 
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making sure that neighboring SLs sharing a same border are more alike than arbitrary locations 

[35]. The CAR prior defines such structure through an adjacency weights matrix, i.e., weight =1 

for any two SLs that shared a border, and weight =0 otherwise. The value of each spatially 

structured random effect depends on the mean and variance of disease risk of adjacent SLs. In 

other words, the CAR prior specifies that the distribution of each area specific structured effect, 

given all other spatial effects, is a normal distribution with mean equal to the average of its 

bordering regions and variance inversely proportional to the number of regions sharing the same 

border [35, 38]. A detailed technical description of the CAR models can be found in literature [14, 

35, 36]. In addition, we assigned a normal prior distribution with mean 0 and precision 10-3 for the 

non-spatial random effect (ψ) (see Appendix 5.1). 

 

The goodness-of-fit and complexity in terms of number of parameters estimated were compared 

for the fitted models using the Deviance Information Criterion (DIC) [39]. The DIC is a 

generalization of Akaike Information Criteria (AIC) that indicates the sum of the posterior mean 

deviance (to reflect the model fit), and the effective number of parameters, pD (to reflect model 

complexity) [37]. A difference in the DIC values of 7 or more is considered to be significant in 

favor of the model with the smallest DIC [40].  

 

              

All the statistical analysis was performed in R version 3.2.1 [41]. Bayesian analysis was 

implemented in WinBUGS 1.4 (Windows for Bayesian Inference Using Gibbs Sampling) program 

that can be called within the R environment through the r2winbugs package [42]. We used the 

maptools library to import shape files to R, and the spdep library to create the adjacency matrices 
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of the regions (i.e., to define the neighborhood structure of the SLs) for the CAR model (see 

Appendix 1.1). 

 

Each model was fitted in WinBUGS using 50,000 iterations while discarding the first 5,000 

iterations (so-called “burn-ins”). Convergence of the models was assessed by running two chains 

of initial values and visually inspecting a subset of trace plots and density plots (see WinBUGS 

code provided in Appendix 5.1). Both R and WinBUGS are freely available on the web using the 

following links: [http://www.r-project.org/] and [http://www.mrc-bsu.cam.ac.uk/software/bugs/the-

bugs-project-winbugs/], respectively. The BMS (Bayesian Model Sampling) package in R was used 

to perform Bayesian model averaging [30]. 

 

Ethical clearance  

 

Human data and samples collected in this study were collected following approval by the KEMRI 

Ethical Review Committee, SC#1701. Animal samples were collected following approval from 

the Roslin Institute Animal Welfare and Ethical Review Committee AWA004. In addition, the 

Institutional Review Board (IRB) at UW-Madison approved this study (IRB no. 2013-0072). 

 

5.3 Results  

 

Descriptive analysis 

The 415 homesteads assessed in this study are distributed across 143 SLs of the Busia region 

ranging from 0 to 6 homesteads per SL (see the distribution of homesteads across SLs in Figure 

http://www.r-project.org/
http://www.mrc-bsu.cam.ac.uk/software/bugs/the-bugs-project-winbugs/
http://www.mrc-bsu.cam.ac.uk/software/bugs/the-bugs-project-winbugs/
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5.2). A total of 624 cases was reported from a population of 2098 living in the homesteads of the 

Busia region, representing a crude incidence of 297 cases per 1000 individuals per year for the 

region (Fig. 5.2). 

Figure 5.2. The distribution of homesteads and the crude incidence of malaria cases per 1000 

individuals in 2010 in the Busia region, Western Kenya. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Notes: (1) Crude incidence was computed by dividing the total number of observed malaria cases by the 

total number of individuals living in the homesteads evaluated within the Sub-locations (2). No data was 

available from the two unshaded SLs in the middle of the map (Kagonia and Murumba SLs)  

 

Bayesian Variable selection  
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As indicated before, variable selection was performed using a Bayesian approach. Tables 5.1 and 

5.2 indicate the selected variables and the posterior summaries of their parameters from Subset A 

and Subset B, respectively. The BMA Analysis of Subset A resulted in 5 meaningful predictors to 

be retained for BDM. These variables mainly reflect the influence of cattle ownership on malaria 

risk. Keeping livestock may distract the mosquito and hence may result in reduced biting rate. 

However, there are mixed reports regarding livestock keeping and malaria incidence. The 5 

variables include livestock feeding practices and activities involving the control of internal and 

external parasites. While prophylactic treatment when ticks are seen was positively associated with 

malaria risk, drenching to control internal parasites (with unknown medicine) was negatively 

associated (Table 5.1). Furthermore individuals that do not obtain treatment despite fever and 

children under the age of 9 are at a higher risk of malaria in this region (see Table 5. 1). 

 

Table 5.1. The variables selected from Subset A using Bayesian Model Averaging.  

 

Note: The top five predictors have posterior inclusion probabilities greater than 75%. Model inclusion 

was based on best 5000 models. 
†Posterior Inclusion Probabilities. 
‡ The mean of regression coefficients averaged over 5000 models. 

*Standard Deviation of the mean. 
1proportion of individuals in the age group 5-9; 2Control worms in cattle with drench (unknown drug); 
3Prophylactic treatment of cattle when ticks seen; 4Had fever but didn’t seek treatment; 5Feeding livestock 

once a week.  

Predictors PIP† Posterior Mean‡ Posterior SD* 

a51 1.000 0.365 0.077 

cattle_dewormer_drench2 0.993 -0.104 0.032 

prophylactic_timing_ticksseen3 0.992 0.157 0.046 

had_fever_treatment_dontseektx4 0.904 0.178 0.084 

feeding_livestock_onceaweek5 0.834 0.153 0.088 
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Separate analysis of Subset B (i.e., 25 variables containing information about homesteads, cattle 

and humans from Tremblay et al 2015 [22]) resulted in 7 predictors for malaria risk in the region. 

These variables are mainly demographic descriptors such as age, and indictors of socioeconomic 

status including occupation, quality of housing and access to health treatment (see Table 5.2). 

 

 

Table 5.2. The variables selected from Subset B using Bayesian Model Averaging.  

 

Predictors PIP† Posterior Mean‡ 

 

Posterior SD* 

 

age51 1.000 0.306 0.068 

age102 1.000 0.308 0.075 

occupation_none3 0.952 0.489 0.191 

had_fever_treatment_chemist4 0.951 -0.205 0.080 

count_floorcement5 0.857 -0.048 0.026 

recent_illness_abdominalpain6 0.838 0.151 0.086 

drought_last6months7 0.779 0.076 0.050 

The seven predictors have PIP of greater than 75%. Model inclusion was based on best 5000 models. 

†Posterior Inclusion Probabilities. 
‡ The mean of regression coefficients averaged over 5000 models. 

*Standard Deviation of the mean. 
1Number of individuals in the age group 5-9; 2Number of individuals in the age group 10-15; 
3Occupation- none; 4Had fever and treated by chemist; 5Number houses with cement floors; 6Recent 

illness- abdominal pain; 7Experienced drought in the last 6 months.  
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Model comparison 

The goodness-of-fit of the models with regard to adding spatial and non-spatial random effects, 

and covariate adjustments is shown in Table 5.3. According to the DIC criteria, the model 

including both spatial random effects and the covariates has the smallest DIC and therefore it fits 

the data best. We used this model to produce the risk maps for the region. The spatially structured 

component accounted for 84.2% of the total unexplained variance for Subset A, and 58.7% for 

Subset B (see θratio in Table 5.3). 

 

Table 5.3. The goodness-of-fit assessment of Bayesian models for estimating the spatial 

distribution of the risk of Plasmodium falciparum exposure in the Busia region, Western Kenya 

 Subset A Subset B 

Model DIC1 pD2 DIC pD 

    
intercept 581.1 1.0 611.6 1.01 

intercept + Xij 504.1 6.0 563.1 8.9 

intercept + Xij + θi + ψi  481.7 36.1 562.1 17.4 

θratio3 84.2% 58.7% 

Intercept: baseline; θ: spatially structured random effect; ψ: spatially unstructured random effect; 
1Deviance Information Criteria;  
2Effective number of parameters;  
3 The proportion of variance explained by the spatial component (θ): is the variance explained by the 

spatially structured component divided by the sum of the variances contributed by both spatially structured 

and unstructured components. 

X: covariates; i=1,2,..I (I= number of Sub-locations); j=1,2..J (J=number of covariates) 

 

 

Mapping risk 
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The spatial distribution of the risk of Plasmodium falciparum exposure in the Busia region is 

shown in Figure 5.3. We produced separate maps for the two datasets. Sub-locations with darker 

hues have a relatively higher risk of malaria than those shown in lighter hues compared to the 

“baseline risk” of 38%. In both maps, many of the Northern and South Western SLs were found 

to have higher risk of malaria.  

The relative risk and 95% Credibility Intervals (CI) adjusted for the covariates and spatial random 

effects range from 0.19 (0.07, 0.35) to 2 (0.96, 3.38) in Kokeyo and Umla SLs, for Subset A, and 

0.16 (0.10, 0.26) to 1.90 (0.79, 3.82) in Yenga and Siranga SLs, for Subset B, respectively. In 

addition, maps for the lower and upper 95% CI estimates are also displayed to show the uncertainty 

of the predictions (Figure 5.3). The SLs are shaded in the same way for the ease of comparing 

maps. As noticed in Figure 5.3, some SLs in the Central, Northern and South Western regions 

show a relatively higher risk for malaria. However, there is not much variation in Bayesian relative 

risk estimates between most of the SLs. 

Figure 5.3. The predicted risk map of Plasmodium falciparum exposure in the Busia region, 

Western Kenya, estimated by a Bayesian model. Left panel: Subset A, Right panel: Subset B. The 

risk estimates in the map are based on the median (left), 2.5% (top) and 97.5% (bottom) percentiles 

of the posterior distribution. 
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Notes: (1)Subset A has five predictors (proportion of individuals in the age group 5-9, Control worms in 

cattle with drench (unknown drug); Prophylactic treatment of cattle when ticks seen, Had fever but didn’t 

seek treatment and Feeding livestock once a week); wheras Subset B has seven predictors (Number of 

individuals in the age group 5-9,Number of individuals in the age group 10-15, Occupation- none, Had 

fever and treated by chemist, Number houses with cement floors, Recent illness- abdominal pain and 

Experienced drought in the last 6 months).  

(2) The expected rate is computed from the reported prevalence of malaria in the region (38%)  

 

 

In both Subsets A and B, variances explained by the spatially structured component was higher 

than non-spatial factors.  

 

5.4 Discussion  

 

Advances in the control and prevention of endemic diseases such as malaria require the 

identification of most meaningful predictors and stratification of regions based on disease risk of 

malaria for the Busia region, Western Kenya. The resulting risk maps help to prioritize high risk 

areas and aid in the efficient implementation of prevention and control measures by health 
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authorities. The current study presents a Bayesian framework for geostatistical analysis of the PAZ 

dataset.  

 

The variable selection process using the BMA approach in this report can be viewed either as an 

independent general approach for risk factor analysis, or as a strategy for selection of a meaningful 

subset of predictors for specific mapping of malaria risk. The subsets of variables selected from 

both datasets in this study represent a wide range of risk factors including socioeconomic 

indicators (housing floor type, unemployment, access to treatment), demographic factors (age), 

cattle management practices (feeding frequency, internal and external parasite control practices) 

and history of drought. The direction of association found between socioeconomic indicators 

(having a cement floor housing – negative, not seeking treatment and unemployment - positive) 

confirmed earlier reports [42–45]. Good housing condition prevents the exposure to mosquitos and 

reduces the incidence of malaria while difficulty in access to health care increases the risk of 

malaria prevalence in a region. A strong positive association between the risk of malaria and 

history of drought in a region and the presence of high proportion of younger age groups has also 

been reported before [46]. Other selected predictors of malaria risk in this report such as recent 

abdominal illness (positive association) and the history of current medication (negative 

association) are also in agreement with other studies [47, 48]. A negative association of malaria 

risk and individuals currently taking medication in this study can be a proxy to health treatment 

access and therefore a low risk of malaria. However, other studies have found that treatment 

seeking behavior can be associated with both accessibility and the severity of malarial disease [49].   
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We chose the Bayesian disease mapping approach over the other spatial analysis methods because 

the BDM accounts better for spatial correlation. This approach assigns pertinent prior information 

to the variability of disease rates in the overall study region in addition to the observed rates in 

each SL. This will smooth disease rates towards the overall rate whenever few or no malaria case 

are reported in selected regions.  

 

In both datasets, inclusion of the selected variables into the Bayesian models significantly reduced 

the DIC (a reduction by 78 and 49, for Subsets A and B, respectively) as compared to the model 

containing only the intercept (see Table 5.3). This indicates that the variables indeed explain a 

significant amount of variance in the data. In addition, incorporating spatial random effect terms 

into the models further improved the fit, showing that there is a need for ‘borrowing strength’ from 

other regions and without the spatial effects the risk is modeled less efficiently. Particularly, the 

DIC for the model with spatially structured random effect was larger compared to the non-spatial 

effect models for both datasets. This indicates that local rather than global shrinkage is more 

important to achieve good model fit. Several reports have shown that the incorporation of spatial 

and non-spatial terms into a disease mapping regression model improved prediction of risk [15, 

50]. Larger variance attributed to the spatial components in Subset A compared to Subset B can 

be due to differences of the two datasets in terms of the number of homesteads and location for 

each dataset. Subset A included variables from about half the homesteads of Subset B although 

Subset A has more diverse variables. Since Subset A has fewer homesteads and hence less spatial 

coverage, a significant amount of unmeasured factors attributable to variation in risk may be more 

spatially related compared to Subset B. These spatial effects can be considered as proxy measures 

for unobserved indicators of risk such as climatic and environmental factors. Updating maps 
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should be carried out regularly as new information arrives and this is well suited to the Bayesian 

Disease Mapping approach described in this study. 

 

5.5 Conclusions 

 

The results of this study confirms reported subsets of predictors for malaria and identifies high risk 

areas for decision makers to prioritize resources for strategic control and prevention of malaria in 

the Busia region. The risk maps provide a visual representation of estimates of risk at Sub-locations 

of the Busia region. Although the risk maps are informative regarding variation in risk of 

Plasmodium falciparum exposure in the region, interpretation of the maps should be done with 

care. Depending on the type and umber of predictors used for constructing maps, variation in risk 

distribution may be observed, as seen by the differences noticed between the two risk maps. 

Although a representative subset of homesteads are evaluated in the SLs, there is always a risk that 

information has been omitted. In addition, the estimated risk is a function of the reported 

prevalence of malaria in the region and therefore relies on the accurateness of those baseline 

reports. More data covering a wider geographic area and including environmental and climatic 

factors can improve the prediction of Plasmodium falciparum exposure when structured per SLs. 
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 Chapter 6: Conclusions, Implications and Future 

Direction 
 

6.1 Introduction 

The three objectives of this thesis were to explore (1) the common problem of missing data, (2) 

variable selection (multidimensionality problem or data shrinkage), and (3) spatial and temporal 

analysis and representation of disease risk using real word datasets about global health topics. The 

general aim of the study was to explore quantitative methods for deriving best inferences from 

imperfect datasets. The thesis represents the collection and application of statistical tools to be 

applied to imperfect data sets. In the first section of Chapter 1 (1.1), the background and context 

of the problem as well as the scope of the study is described. The second section of Chapter 1 (1.2) 

represents a literature review of the statistical analysis of imperfect data and outlined selected 

statistical tools for remediating the problems encountered when analyzing imperfect data along 

with their implications and shortcomings. Chapters 2, 3, 4 and 5 are self-contained chapters 

consisting of their own introduction, methods, results and relevant conclusions. These latter 

chapters present methods to apply to real world datasets that are imperfect and they result in 

recommendations for improved statistical inferences. This final Chapter 6 of the thesis summarizes 

the findings, discusses limitations of the study and suggests future directions for research. 

 

6.2 Specific Findings  

This study used three real world global health imperfect datasets from developed and developing 

countries and each one of the three datasets had at least one of the problems to be addressed by the 

three aims of the thesis. The following section describes the specific findings of the study. 
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1). Chapter 2 concentrated on working with missing data and variable selection. For this project, 

a number of predictors obtained from publicly available databases and mortality rates from the 

WHO vital registration database were used. The objective was to identify major predictors of 

mortality associated with foodborne disease and to develop a model for predicting missing 

mortality rates of countries lacking the data. The study identified eight major predictors of 

mortality rates and developed four data driven clusters of WHO countries based on the selected 

predictors (see Table 2.1 and Figure 2.2). A Bayesian hierarchical model was fitted to the data and 

produced predictions for mortality rates for countries lacking the data. The mortality rates 

predicted in this study can be used to conduct global burden of foodborne disease studies. This 

study also demonstrated how mortality rates from a subset of countries (units) with missing values 

can be estimated from well-defined clusters of countries using Bayesian hierarchical models. 

 

2). In Chapter 3, the general aim of the study was to find ways to fill in national disease notification 

data gaps for New Zealand travelers. For this specific project, 11 years of the campylobacteriosis 

notification database from New Zealand were used. The main challenge of the dataset was the lack 

of information regarding the international travel status of notified campylobacteriosis cases so as 

to identify these cases as acquired domestically or from overseas travel. Covariate driven Bayesian 

models were developed and the distribution of the probability of overseas travel was predicted for 

the cases missing the data. The analysis prioritizes areas in New Zealand that require further 

attention regarding Campylobacter risk from global travel. Estimating the proportion of travel 

associated Campylobacter cases is particularly important for regions with a high rate of incomplete 

data. In addition to helping generate new hypothesis, the results of this study assist in designing 
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strategic interventions for the control and prevention of travel associated campylobacteriosis in 

New Zealand.  

 

3).  Chapter 4 presents a Bayesian disease mapping approach to generate spatial and temporal maps 

displaying the travel associated campylobacteriosis risk in New Zealand. The District Health 

Boards (DHB), which are geographically defined regions of New Zealand used as units for 

displaying the risk. Risk maps of DHBs of New Zealand identifying high and low risk areas have 

been developed. Major urban areas of New Zealand were found to have higher rates of travel 

associated cases compared to other regions in the country. In addition, a Campylobacter risk map 

for the main global travel destinations was generated. The disease mapping study for New Zealand 

demonstrates how the hierarchical structure of the Bayesian framework is used to estimate the 

disease risk for areas with limited data by ‘borrowing strength’ from neighboring areas. Visual 

representation of disease risk through maps visualizes the underlying geographical patterns of 

disease, identifies hot spots and such visualizations are hypotheses generating with regards to 

causes of disease.  

 

4). Finally, Chapter 5 shows an approach towards the selection of a subset of predictors for malaria 

prevalence and mapping of malaria risk in the Busia region of Western Kenya. Using a Bayesian 

Model Averaging approach, 5 and 7 meaningful predictors were identified from two groups of 

variables (consisting of 22 and 25 variables each as shown in Table 5.1 and Table 5.2).  Malaria 

risk maps for the Busia region were developed. The results of this study provide a visual 

representation of the variation in the malaria risk in the region. This aids in prioritizing health 

resources aimed at the strategic control and prevention of malaria exposure in the region. However, 
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any visualization of the maps must consider the uncertainty around the risk estimates to avoid 

over-interpretation and bias. 

 

6.3 Implications  

In addition to the specific results, the thesis more generally represents the collection and 

application of statistical tools applied to imperfect data analysis. It focuses on Bayesian 

frameworks for statistical inference and spatial analysis resulting in tools and resources for future 

studies. The implications of the study are general in that the approaches can be applied to other 

diseases and health topics to improve the allocation of health resources for the control and 

prevention of diseases. The main implications of the findings of the current study are: 

- The study assembled a unique collection of methods and tools that can be applied to 

imperfect datasets for producing valid inference. 

- Special emphasis is on Bayesian approaches, which are very applicable for the statistical 

analysis of imperfect datasets. No single method accommodates all three data challenges 

such as the imputation of missing values, shrinkage of number of variables and risk 

mapping, but the collection of tools presented can be used in parallel or a series of 

combination of methods for generating statistical inferences. 

- The approaches toward identifying meaningful small subsets of predictors for disease risk 

guide the design of future studies. Therefore the approaches help to save time and 

resources.  

- The systematic approaches presented can be applied to other global and public health topics 

of interest. 
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- The predicted mortality rates give important clues regarding the burden of mortality 

associated with foodborne disease around the world.  

- Campylobacteriosis control and prevention efforts in New Zealand benefit from the 

findings of this study because of the stratification of regions based on the magnitude of 

travel related campylobacteriosis. Such stratification can guide intervention efforts. In 

addition, the high variation in the proportion of travel associated cases among the DHBs 

requires further study, for example by collecting more demographic data. 

- Malaria control and prevention efforts in the Busia region benefit from the results of this 

study for intervention efforts in high risk areas.   

- The results have implications for policy makers. The control and prevention of endemic 

and foodborne disease relies on a good and up-to-date knowledge about the epidemiology 

of disease. This requires the proper identification of the spatial and temporal distribution 

of the diseases and their major risk factors. Strategic allocation of resources to the control 

and prevention efforts are the consequence. For example, more public health resources 

should be directed to high risk areas shown in the risk maps of this study for prioritizing 

preventive measures.  

 

6.4 Limitation and Future research direction 

As indicated in the literature review section of the thesis (Chapter 1 Section 1.2), missing data 

analysis requires assumptions such as the “missing at random” assumption (MAR). In this study, 

the MAR assumption was checked through statistical testing alone. However, the exact reason for 

the mechanism of missingness is unknown and requires further investigation. The results of data 
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analysis and inferences on the other hand can be significantly flawed if the MAR assumption is 

violated.  

Validation of the models was performed by internal validation only, that is by leave-one-out cross 

validation in most cases. However, internal validation may not be sufficient and the results and 

conclusions of the data analysis are strengthened if external and independent data were available 

to fully evaluate the predictive performance of the models.  

Some of the geo-referenced datasets (e.g., number of homesteads in Chapter 5) represent only a 

fraction of the total number of homesteads in the Sub-locations of the Busia region.  Therefore the 

results may not represent the full picture of the malaria risk in the region.  More data covering a 

wider geographic area and including environmental, demographic and climatic factors can 

improve the prediction of malaria risk. In addition, the estimated disease risk is a function of the 

expected background risk (e.g., prevalence of malaria in Chapter 5 and proportion of observed 

travel associated campylobacteriosis cases in Chapter 3). The results, therefore, rely on the 

accurateness of the background risks. Finally, analysis of geo-referenced data frequently depends 

on aggregate measures per units of observation (e.g., demographic, socioeconomic factors etc. 

summarized for the geographic unit). Individual level inference from such analysis is prone to the 

so-called ‘ecological fallacy’[1]. This type of bias occurs when the degree and magnitude of 

association between the risk factors and the outcome differ between the levels of the units of 

observations.  

 

While acknowledging the above limitations, the methods employed to predict missing data, to 

reduce excess variables, and to depict geographic representation of spatial and temporal risk are 

quite robust. Future research direction in the area of imperfect data analysis should improve 



151 
 

measures to test validity and reproducibility of the research. This can be achieved by obtaining 

external data from other regions with comparable disease risks, or through simulation studies. 

Missing data are difficult to avoid, however, efforts have to be made to minimize their occurrence 

and non-randomness during the data collection phase of a research.  

 

Systematic data collection is advisable for the areas of New Zealand with unusually high rate of 

missing travel information. Such efforts will result in new hypothesis as to why particularly the 

urban areas are at a higher risk from travel acquired campylobacteriosis. Missing data analysis 

should identify type of missingness in the data, particularly when information exists about the 

mechanism by which missing values was generated. In the Bayesian context, this includes 

formulating informative priors obtained from expert opinions or from pilot studies for the models.  

 

6.5 Conclusions 

Despite careful planning, study design, and extra precaution while collecting data, it is often 

impossible to completely avoid missing values and lack of statistical power due to the imbalance 

between multiple predictors and limited numbers of observations. Data quality challenges are 

always to be reckoned with when statistical inferences are drawn from datasets. Many data 

augmentation techniques to remedy missing values have been suggested in literature, each of 

which with their own advantages and disadvantages.  This thesis research assembled and 

demonstrated several methods for handling imperfect data. The application of Bayesian modelling 

in the current study with regard to missing data estimation, variable selection and disease mapping 

has conferred a considerable advantage over traditional, frequentist modelling approaches. Given 
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the growing availability of computational tools in recent years, this directly recommends to use 

Bayesian frameworks for analyzing imperfect data. This thesis research showed that the Bayesian 

methods along with other quantitative tools aid in deriving valid inferences from imperfect data. 

Since these methods are based on probabilistic sampling from a distribution, uncertainties around 

parameter estimates (i.e., 95% Credible Intervals) should always be reported together with model 

specification. While Bayesian frameworks seem superior for analyzing imperfect data, it should 

be noted that specifying the prior information should always be taken with great care as the method 

can be substantially affected by the choice of priors.  

In conclusion, incorporating Bayesian statistical tools and other quantitative methods, in light of 

the stepwise applications suggested in this thesis research, into a decision making process will 

enable policy makers to make efficient use of available resources.  The communication between 

development and application of Bayesian models for imperfect data and decision makers has to be 

undertaken with great care to optimize inference for health policy and improve health outcomes. 
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Appendices 
Appendix 1.1 Useful statistical programs and resources.  

A number of statistical programs were used either in parallel or independently to perform data 

cleaning, preparation and analysis. Below are short descriptions, versions and resources for some 

of them. The following software was used: 

Preparation of shape files 

- R statistical program (version 3.1.3): R is a freely available software program for 

performing a number of statistical computing and graphics [3]. R is highly flexible 

programming language through the use of user-submitted “packages” for executing 

specific functions or specific areas of study. There are over 5800 “packages” available in 

various repositories (such as the Comprehensive R Archive Network (CRAN), 

Biconductor, GitHub etc.) and it is increasing over time. Packages are typically installed 

to the computer and accessed through “library”.  R can be freely downloaded from: 

http://www.r-project.org/  

 

- Maps2WinBUGS: available as a standalone program or a QGIS plugin to facilitate data 

processing for Bayesian spatial modelling [2]. It converts shape files to appropriate formats 

export to GeoBUGS. The map format used by GeoBUGS differs from the standard formats 

used in geographical information systems (GIS). maps2WinBUGS, helps the user prepare 

maps data for use in GeoBUGS. With this tool, one can obtain adjacency lists, convert 

maps, and merge back the results of model runs with a source map in QGIS. It can be freely 

downloaded from: 

http://sourceforge.net/projects/maps2winbugs/  

 

http://www.r-project.org/
http://sourceforge.net/projects/maps2winbugs/
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Data Analysis 

- R statistical program (version 3.1.3): R is a freely available software program for 

performing a number of statistical computing and graphics [3]. R is highly flexible and 

extensible program particularly through the use of user-submitted “packages” for executing 

specific functions or specific areas of study. There are over 5800 “packages” available in 

various repositories (such as the Comprehensive R Archive Network (CRAN), 

Biconductor, GitHub etc.) and it is increasing over time. Packages are typically installed 

to the computer and accessed through “library”.  R can be freely downloaded from: 

http://www.r-project.org/  

 

- JAGS: stands for Just Another Gibbs Sampler, is a tool for analysis of Bayesian models 

using Marcov Chain Monte Carlo simulation [4]. Unlike BUGS, JAGS runs in all 

commonly used platforms (MacOS, Linux, and Windows). It can be called within the R 

environment through rjags package [5]. Currently JAGS does not have a functionality to 

perform spatial analysis. JAGS can be freely downloaded from:     

http://sourceforge.net/projects/mcmc-jags/files/  

 

- INLA (Integrated Nested Laplace Approximation): INLA is a less computationally 

expensive alternative to the Marcov Chain Monte Carlo method to estimate the posterior 

distribution of a Bayesian model [6]. It returns a similar result with commonly used 

software like BUGS and JAGS with significantly less amount of time. For analysis of 

spatial data using the INLA package, additional tools are required. These include setting 

up a neighborhood adjacency matrix for use with conditional autoregressive (CAR) models 

and to map results. There are several ways to import and process shape files in R. For 

http://www.r-project.org/
http://sourceforge.net/projects/mcmc-jags/files/
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example, The R package “maptools” is essential in this case. The “readShapePoly()” 

function from this package will read in shapefiles into the R environment, and the spdep 

package provides  “poly2nb()” followed by nb2INLA() functions to create the adjacency 

matrix neighbor structures for use with a CAR model in the INLA format. Mapping the 

results is performed by either the spplot (from sp package) or ggplot (from ggplot2 

package) functions. INLA can be freely downloaded from: http://www.r-

inla.org/download  

 

- WinBUGS 1.4: WinBUGS (Windows for Bayesian Inference Using Gibbs Sampling) is a 

freely available program which is used to fit a complex statistical models using Markov 

chain Monte Carlo (MCMC) methods [7]. The program produces posterior distributions 

from which estimates, standard deviations, Credible Intervals as well as monitoring and 

convergence diagnostics plots are produced. WinBUGS  can be freely downloaded from:       

http://www.mrc-bsu.cam.ac.uk/software/bugs/the-bugs-project-winbugs/  

1. QGIS Geographic Information System. Open Source Geospatial Foundation Project [qgis.osgeo.org] 

2. Solymosi N, Wagner SE, Maróti-Agóts Á, Allepuz A: maps2WinBUGS: a QGIS plugin to facilitate data 

processing for Bayesian spatial modeling. Ecography 2010, 33:1093–1096. 

3. R: The R Project for Statistical Computing. R Foundation for   Statistical Computing, Vienna, Austria 

[http://www.r-project.org/] 

4. Plummer M, others: JAGS: A program for analysis of Bayesian graphical models using Gibbs sampling. In 

Proceedings of the 3rd international workshop on distributed statistical computing. Volume 124. Technische 

Universit at Wien; 2003:125. 

5. Plummer M, Stukalov A, Denwood M, Plummer MM: Package “rjags.” update 2015, 16:1. 

6. Lindgren F, Rue H: Bayesian Spatial Modelling with R-INLA. . 

7. Lunn DJ, Thomas A, Best N, Spiegelhalter D: WinBUGS-a Bayesian modelling framework: concepts, structure, 

and extensibility. Stat Comput 2000, 10:325–337. 

 

 

 

 

 

http://www.r-inla.org/download
http://www.r-inla.org/download
http://www.mrc-bsu.cam.ac.uk/software/bugs/the-bugs-project-winbugs/
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Appendix 2.1. A JAGS code for the Bayesian Hierarchical Model for predicting 

missing mortality rates associated with foodborne diseases. 

 
The JAGS model for performing regression analysis of mortality associated with foodborne 

diseases is provided below 

 

modelstring = " 

model{ 

for (i in 1:n){ 

y[i] ~ dnorm(mu[i], sigma.tot) 

      mu[i] <- b.0[Cluster[i]]+ b[1]*x1[i]+ b[2]*x2[i]+ b[3]*x3[i]+  

               b[4]*x4[i]+ b[5]*x5[i] + b[6]*x6[i]+ b[7]*x7[i]+ b[8]*x8[i]  

} 

 

# Random effects for each Cluster (J=4) 

for (j in 1:J){ 

b.0[j] ~ dnorm(mu.j, tau.u) 

} 

 

# Prior for regression coefficients 

for (a in 1:8){ 

b[a] ~ dnorm(0, 0.01) 

} 

 

# Prior for the mean of the random effects 

     mu.j~dnorm(0, 0.01) 

 

# Prior for precisions 

     tau.u <- pow(sigma.u,-2) 

     sigma.u ~ dunif(0,10) 

     tau.tot <- pow(sigma.tot,-2) 

     sigma.tot ~ dunif(0,10) 

 

# Compute and extract predicted values 

for (i in 1:n) { 

Predictions[i] <- mu[i]                   # Predicted values 

             

} 

" 

writeLines(modelstring,con="model.txt") 

modelCheck( "model.txt" )            # Check the model 

 

# Bundle data:   

data.list <- list( 

  Cluster =data$Cluster, 

  J=length(unique(data$Cluster)), 
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  n=nrow(data), 

  y=(data$y), 

  x1=(data$lifeexpectancy), 

  x2=log(data$animalcalpercap), 

  x3=log(data$birthperadolescent), 

  x4=( data$pctareableland), 

  x5=log(data$fertilityrate),  

  x6=log(data$maternaldeathrisk), 

  x7=( data$laborfemmale), 

  x8=log(data$kcalperday))  

 

# Parameters to monitor:  

params= c("b.0", "b", "sigma.tot","predictions" ) 

 

# Gibbs sampling 

jags.model <- jags(data=data.list, 

                   inits=NULL, 

                   parameters.to.save=params,  

                   model.file="model.txt",  

                   n.thin=5,  

                   n.chains=2,  

                   n.burnin=5000,  

                   n.iter=50000) 
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Appendix 2.2. The predictions of log-total mortality rates and associated 95% 

Credible Intervals for all WHO countries using Bayesian hierarchical model.   
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Notes: (1) Cluster 1: 142 countries; Cluster 2: 20 countries; Cluster 3: 3 countries; Cluster 4: 29 countries; 

(2) Eight predictors of mortality associated with food brome disease were used to form the four clusters. 

These predictors are: Life expectancy at birth, Average Calorie Supply from Animal Products - per Capita, 

Adolescent fertility rate(the number of births per 1,000 women ages 15-19), Percent arable land, Total 

fertility rate, Maternal mortality ratio, Labor force participation rate for females ages 15-24 and Calorie 

supply per capita per day 

*observed log-total mortality rate outside of the predicted 95% Credible Intervals.  
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Appendix 3.1. Map of New Zealand showing the District Health Boards 

Notes: There are 20 District Health Boards (DHB) in New Zealand which were created after the New 

Zealand Public Health and Disability Act 2000. They are organizations responsible for ensuring the 

provision of health and disability services to populations within a defined geographical boundary [1].  

References 

1. New Zealand Ministry of Health. My DHB [http://www.health.govt.nz/new-zealand-health-system/my-

dhb] 
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Appendix 3.2. JAGS code used for the Bayesian Hierarchical model to 

estimate travel related campylobacteriosis cases in New Zealand  

 

The JAGS code used for predicting the overseas travel status of campylobacteriosis notifications 

in New Zealand is presented below. All the unknown parameters in the model were given non-

informative prior distributions (i.e., assigned dnorm(0, 0.0001) priors, which implies a normal 

distribution with mean = 0 and precision =10-4). Two chains of dispersed initial values were ran 

each with 30,000 iterations and a burn-in of 3,000. Model convergence was assessed by observing 

the mixing of the two chains over time and visually checking the density plots and autocorrelation.  

 

modelstring = " 

model { 

for(i in 1:N) {         

OvseasCat [i] ~ dbern(p[i])     # Likelihood: observed  travel status of individual cases is  

Bernoulli distributed                   
p[i] <- 1/(1+exp(-(alpha  + 

             beta.ur*urban[i] +beta.dep*DepIndex[i]+beta.tr*TrvlRate[i]+beta.age[age[i]]+   

beta.seas[season[i]]+ beta.sex[sex[i]])))   # Predicted values 

  }                                                                                  

 

alpha ~ dnorm(0, 0.0001)        # Uninformative priors on regression coefficients 

beta.dep~dnorm(0, 0.0001) 

beta.ur~dnorm(0, 0.0001) 

beta.tr~dnorm(0, 0.0001) 

 

beta.age[1]<-0                        # Set first categories of factors to 0 (reference categories) 

beta.seas[1]<-0 

beta.sex[1]<-0 

 

for (b in 2:4)                          # Uninformative exchangeable priors for categorical predictors 

    { beta.age[b]~dnorm(0, 0.0001)  } 

for (a in 2:4)            

   { beta.seas[a]~dnorm(0, 0.0001) } 

beta.sex[2]~dnorm(0, 0.0001)  

 } 

" 

writeLines(modelstring,con="model.txt") 
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# Check the model 
modelCheck( "model.txt" )       

 

# Define data 

data <- list(   

  N=length(data$OvseasCat),   OvseasCat = data$OvseasCat,    ProU = data$urban, 

  DepIn = data$DepInex, TrvlRate = data$TrvR,  age = data$age, 

  season = data$season,  sex = data.$sex 

  ) 

 

# Parameters to monitor 

parameters = c("alpha","beta.dep","beta.ur","beta.tr", "beta.age", 

                            "beta.seas","beta.sex", "p") 

 

set.seed (123) 

 

# MCMC settings 

nc <- 2                                    #Number of Chains 

ni <-  30000                            #Number of draws from posterior 

nb <- 3000                              #Number of draws to discard as burn-in 

# Gibbs sampling 

 jags.fit <-  jags(data=data,  inits=NULL,  

                           parameters.to.save=parameters,  

                           model.file="model.txt",  

                           n.chains=nc,  

                           n.burnin=nb, 

                           n.iter=ni) 
 

Notes: OvseasCat: Overseas travel status (YES, NO, UNKNOWN). 

JAGS (Just Another Gibbs Sampler): is a standalone program for simulating from a Bayesian Hierarchical 

models that takes a model string written in an R-like syntax and that compiles and generated a Monte Carlo 

Marcov Chain (MCMC) samples from this model using the Gibbs sampling algorithm [1]. The main 

advantage of JAGS over the classical BUGS (Bayesian Inference Using Gibbs Sampling e.g., WinBUGS) is 

its platform independence that it can operate in all main operating systems, while BUGS is broadly 

Windows specific. JAGS is called and controlled within the R environment through rjags package [2]. It 

parameterizes distributions using precision instead of standard deviation (σ), where the precision τ = 1/ σ2. 

Therefore in the above JAGS code, the standard deviation of the prior distribution becomes: 

0.0001 =1/1002 
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Appendix 4.1. An R-INLA code for spatio-temporal analysis of travel related 

campylobacteriosis in New Zealand 

The R-INLA code for conducting spatio-temporal analysis of travel associated campylobacteriosis 

risk in New Zealand is presented below.  

# Load required libraries 

library(spdep) 

library(sp) 

library(maptools) 

library(INLA) 

 

# 1. Prepare spatial data 

# 1.1 Load New Zealand DHB shapefile  

DHB <- readShapePoly("DHB.shp") 

# 1.2 Create adjacency matrix for the DHBs (define neighborhood structure) 

adjacency <- poly2nb(DHB) 

# 1.3 Convert the adjacency matrix into a file in the INLA format 

nb2INLA("DHB.graph", adjacency) 

# 1.4 Create region identifier ID  

DHB$ID<-1:20 

# 2. Prepare long data format (220 rows= 20 regions by 11 time points) 

case<-case                                       # case counts for each region and time point 

exp<-exp                                         # expected value for each region and time point 

year<-rep(1:11,each=20,len=220)  # "year" is time identifier variable 

region<-ID                                      # each DHB region is identified by a unique ID 

region1<-ID                                    # make a duplicate column for region 

data <-data.frame(case=case, exp=exp, year=year,    # Inla requires a dataframe 

                            region=region,region1=region1) 

 

# 3. Analysis 

formula <-case~1+f(region, model="bym", 

                 adjust.for.con.comp = FALSE, graph="DHB.graph",  #"bym" for specifying both   

spatially  structured and 

unstructured random effects 

            

 hyper = list(prec.unstruct = list(prior="loggamma", 

                                                                param=c(1,0.0005)),           # Non-informative prior for    

                     prec.spatial = list(prior="loggamma",                                precisions(default) 
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                                                                param=c(1,0.0005))))+  

                                f(year, model="iid")                                                     # Unstructured temporal    

component 
  

 

# NB: Alternatively it is possible to specify the two "bym" components separately using  

# f(ID,model="besag",graph="DHB.graph") for the spatial structured (CAR) [1] and  

# f(ID2,model="iid",graph="DHB.graph") for the unstructured component. In this case  

# the region ID needs to be duplicated (region=region1) as it is not allowed to define two  

# functions on the same variable [2]                        

 

inla.output<-inla(formula, 

                  family="poisson",                                  # define family of distribution 

                  data=data,E=exp,                                   # provide dataframe and expected values 

                  control.compute=list(dic=TRUE,cpo=TRUE), # compute DIC and CPO 

                  control.inla=list(int.strategy = "grid", diff.logdens = 4)) 

 

inla.output$dic$dic                         # Extract DIC 

inla.output$dic$p.eff                       # Extract pD 

-mean(log(inla.output$cpo$cpo )) # “leave-one-out” measures of fit (negative mean log of 

Conditional Predictive Ordinate) 

 

# Computing the variance explained by each random component on an SD scale 

Out <- inla.contrib.sd(inla.output, nsamples=10000) 

SD<-Out$hyper                              # Extract the SDs 

 

# Variance explained (variance=SD2) 

var.U<-sd[1,1]^2  # structured random effect (spatial) 

var.V<-sd[2,1]^2  # unstructured random effect (non-spatial) 

var.T<-sd[3,1]^2  # unstructured temporal random effect 

 

var.U.prop=var.U/(var.U+var.V+var.T) # Proportion of variance explained by the spatial component 

 

# Extract mean and 95% Credibility Intervals of predicted values 

RR<-as.data.frame(inla.output$summary.fitted.values[c("mean", "0.025quant","0.975quant")]) 
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Appendix 5. 1. A WinBUGS code for doing spatial analysis of malaria 

prevalence in the Busia region, Western Kenya 

A model for conducting spatial analysis of malaria prevalence in the Busia region, Western 

Kenya is provided below.  

 

Model  

{ 

# Likelihood 

 

    for (i in 1:N)                                                                  # N= number of Sub-locations in the study 

 

{      

      Cases[i]  ~ dpois(mu[i])                                      # Cases are observed counts and assumed     Poisson 

distributed with mean mu[i], which is a function of 

the RR[i] and the expected count E[i] 

       

log(mu[i]) <-log(E[i])+ beta0 + beta.x[i]*X[i]+ U[region[i]]+ V[region[i]]  

 

        RR[i]<- exp(beta0 + beta0 + beta.x[i]*X[i]+ U[region[i]]+ V[region[i]])   

 
                                                                                         # the log of the RR is a linear function of both fixed effects 

(beta0 and X’s) and random effects (U and V). Here, 

beta0 denotes the overall log of the RR (i.e., for the 

entire Busia region), U denotes unknown random 

effects that are not spatially correlated, and U denotes 

random effects that are spatially correlated. X’s are 

covaraites and beta.x’s are the associated regression 

coefficients 

  

    } 

     

# Prior distributions 

 

               # prior on the intercept 

 

    beta0 ~ dflat()                                                                # Uninformative prior for the intercept, assumes   that the 

risk is same for all Sub-locations 

              

              # prior for the CAR distribution 

 

U[1:N]~car.normal(adj[],weights[],num[],tau.u)            # Conditionally autoregressive (CAR)[2] prior 

distribution for    the spatially correlated random 

effect; this specification assumes that the spatial 

random effects for each region[i ] are conditional on 

adjacency for each region[i], and weighted 

according to the strength of the adjacency and with a 

variance of tau.u 
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                               # Weights   for the CAR prior distribution  

  

  for(i in 1:sumNumNeigh) 

 

        { weights[i] <- 1                                       # Weights for the CAR distribution where the regions are  adjacent 

(share same border), the assigned weight is 1, otherwise 0. 

 

                                                                          

 

                   # prior for the unstructured random effect 

 

    for (i in 1:N) 

    { 

      V[i]~dnorm(0,tau.v)                                      # exchangeable normal prior distribution for the uncorrelated 

random effect component; it assumes that the non-spatial 

random effects for each region[i] are normally distributed 

with mean of zero and a precision of tau.v.                                                                           

Precison =1/variance 

    } 

                                                                             

 

                # prior for regression coefficients 

 

beta.x~dnorm(0,0.0001)                                        # for all regression coefficients in the model, a normal 

distribution with mean 0 and precision 10-3 is assumed. 

           

    # Hyper priors 

 

    tau.u~dgamma(0.5,0.005) 

 

    tau.v~dgamma(0.5,0.005)                      # tau.u and tau.v  are precisions (inverse of the variance)  of the  random 

effect priors, and assumed to follow the gamma distribution, which 

are defined by the scale (a=0.5) and the shape (b =0.0005) 

parameters. This is a skewed distribution with mean=a/b and 

variance= κ / b2 

 

 # Variance explained by the spatial component    

     

    sigma2.u<-1/tau.u 

    sigma2.v<-1/tau.v 

    uratio <-  sigma2.u/( sigma2.u+sigma2.v)    # uratio computes the fractional variance  explained by    the 

spatial component.  

} 

  

References    

1. Lunn DJ, Thomas A, Best N, Spiegelhalter D: WinBUGS-a Bayesian modelling framework: concepts, 

structure, and extensibility. Stat Comput 2000, 10:325–337. 



174 
 

2. Besag J, York J, Mollié A: Bayesian image restoration, with two applications in spatial statistics. Ann 

Inst Stat Math 1991, 43:1–20. 

 


