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Abstract

Predicting vehicle trajectories and ensuring safe and efficient trajectory planning
are critical for the operational efficiency and safety of automated vehicles, espe-
cially on congested multi-lane highways. In these dynamic environments, a ve-
hicle’s movement is influenced by its historical behaviors and interactions with
surrounding vehicles. These complex interactions result from unpredictable mo-
tion patterns, leading to diverse modalities of driving behaviors that necessitate
thorough investigation. Additionally, in multi-agent systems, dynamic interac-
tions among agents often display cooperative and competitive behaviors. Such
group-wise interactions, though common, are rarely modeled. Traditional meth-
ods, while effective in capturing pair-wise interactions, fail to represent the collec-
tive influence of groups on each other’s behaviors in real-world traffic scenarios.
Therefore, modeling the group-wise interactions of multi-modal driving behaviors
among multiple agents is essential. In dense traffic conditions, vehicles frequently
change lanes, accelerate, decelerate, and engage in complex interactions with other
agents. These interactions often involve multiple possible longitudinal and lateral
behaviors of various entities influencing each other simultaneously, which cannot



xiv

be fully captured by considering only pair-wise relationships. Furthermore, the
stochastic nature of human behavior adds complexity, requiring models that han-
dle the uncertainty and variability in agent behaviors for safe and efficient driving.
Thus, a critical challenge lies in representing and reasoning about the diverse in-
teractions among agents and their multiple possible behaviors to achieve socially
inspired automated driving.

This dissertation introduces the Graph-based Interaction-aware Multi-modal
Trajectory Prediction (GIMTP) framework, designed to probabilistically predict fu-
ture vehicle trajectories by effectively capturing these interactions. Within this
framework, vehicle motions are conceptualized as nodes in a time-varying graph,
and traffic interactions are represented by a dynamic adjacency matrix. To com-
prehensively capture both spatial and temporal dependencies embedded in this
dynamic adjacency matrix, the methodology employs the Diffusion Graph Convo-
lutional Network (DGCN), providing a graph embedding of both historical and
future states. Additionally, a driving intention-specific feature fusion is imple-
mented, enabling the adaptive integration of historical and future embeddings for
enhanced intention recognition and trajectory prediction. This model offers two-
dimensional predictions for each mode of longitudinal and lateral driving behav-
iors and provides probabilistic future paths with corresponding probabilities, ad-
dressing the challenges of complex vehicle interactions and multi-modality of driv-
ing behaviors. To further facilitate interaction-aware multi-modal motion predic-
tion for multi-agent systems, GIMTP is enhanced to Graph-based Interaction-aware
Reliable Anticipative Feasible Future Estimator (GIRAFFE), which offers multi-modal
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predictions by considering the behaviors of multiple vehicles.
Building upon the robust GIRAFFE framework, this dissertation further inte-

grates the Relational Hypergraph Interaction-informed Neural mOtion generator
and planner (RHINO), a proposed model for motion planning that revolutionizes
interaction modeling and relational reasoning for trajectory prediction and plan-
ning with multiscale hypergraph representations. RHINO distinguishes itself by
surpassing previous methods that primarily consider pair-wise interactions with
limited relational insight. It introduces a multiscale hypergraph neural network
designed to capture intricate dynamics involving both pair-wise and group-wise
interactions across multiple scales. RHINO’s multiscale hypergraph is engineered
to be trainable, enabling the system to discern more complex interaction patterns
within traffic, such as varying group sizes and the nuances of collective behav-
iors. For interaction representation learning, RHINO adopts a three-element format
that facilitates end-to-end learning. This innovative approach allows for explicit
reasoning of relational factors, including interaction strength and category, which
are crucial for accurate and socially aware motion planning. Furthermore, RHINO is
integrated into both a Conditional Variational Autoencoder (CVAE)-based predic-
tion system and enhanced state-of-the-art prediction frameworks to yield socially
plausible trajectories grounded in relational reasoning. The efficacy of RHINO in
understanding group behavior and discerning interaction dynamics is substan-
tiated through synthetic physics simulations, reflecting its capability to capture
group behaviors and reason about the strength and category of interactions. The
effectiveness of this motion planning system is validated through extensive experi-
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ments on two real-world trajectory prediction datasets. This integrated framework
of motion prediction and planning, adopting the GIRAFFE framework and RHINO

framework, positions it as a powerful tool in advancing the safety and efficiency
of automated vehicle operations, especially in the complex and unpredictable en-
vironment of multi-lane highways.
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Chapter 1

Introduction

1.1 Background

The development and integration of connected and automated vehicles (CAVs)
hold considerable promise for advancing transportation systems in terms of mo-
bility, efficiency, and safety [1, 2, 3]. Vehicle trajectory prediction and planning are
critical components of intelligent transportation systems, essential for enhancing
traffic safety, reducing congestion, and promoting sustainable transportation [4, 5].
Efficient vehicle operation necessitates a comprehensive understanding of the driv-
ing environment and the generation of precise motion predictions for surrounding
objects [6, 7]. This understanding is crucial for intelligent decision-making, trajec-
tory planning, and control during CAV operation, ultimately contributing to the
development of an intelligent and dependable transportation network [5, 8, 9, 10].

The trajectory of a vehicle is influenced by a variety of factors present in the
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driving environment. It’s clear that a vehicle’s movement is determined not only
by its past trajectory but also by the movement and actions of surrounding vehi-
cles, especially in congested traffic situations [11, 12]. Navigating through such
complex traffic environments with numerous non-cooperative vehicles introduces
a significant level of uncertainty due to many hidden variables [13, 14]. Predicting
a target vehicle’s future trajectory has become increasingly important and is cru-
cial for improving traffic safety [15, 16]. The intricacies of automated driving and
the dynamic nature of dense traffic environments present significant challenges
for current trajectory prediction research. These challenges are particularly pro-
nounced in three areas: (i) the interactions between vehicles [17, 18], (ii) the
multi-modality of driving behaviors [15, 19], and (iii) the underlying relational
interactions between vehicles and their behaviors [20, 21, 22].

1.1.1 Interaction between Vehicles

Predicting the future trajectory of a target vehicle is a complex challenge, especially
in dynamic and dense driving environments. The movement of a target vehicle is
influenced not only by its own historical path but also by the behaviors and motions
of surrounding vehicles. These interactions create a highly interdependent system
where the motion of one vehicle can significantly impact the trajectories of others
[23]. Consequently, it is essential to analyze how neighboring vehicles affect the
target vehicle’s motion. This requires the ability to infer potential interaction pat-
terns from raw trajectory data, which is a significant challenge. The difficulty lies
in accurately capturing and modeling the diverse and often unpredictable ways in
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Figure 1.1: Vehicle interaction and behavior multimodality.

which vehicles interact with each other on the road [17].

1.1.2 Multi-modality of Driving Behaviors

The inherent unpredictability and uncertainty of real-world driving scenarios present
a major obstacle in accurately predicting a single future trajectory. Various un-
known factors, such as individual driver characteristics, and their physical and
psychological conditions, lead to different behaviors and reactions among drivers
in identical driving situations. For instance, two drivers might respond differently
to the same traffic signal, one might slow down gradually, while the other might
brake suddenly. Therefore, it is crucial to model the multi-modality of driving
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intentions. This approach involves generating multiple potential trajectories that
represent the range of possible future actions a driver might take. By considering
these multiple possible outcomes, prediction models can better account for the
variability and uncertainty inherent in driving behaviors, leading to more robust
and reliable predictions.

1.1.3 Interaction Relational Reasoning between Vehicles

Predicting the trajectories of multiple agents is crucial in various practical applica-
tions, including autonomous driving, mobile robot navigation, and other domains
where groups of entities interact, leading to complex behavior patterns at both the
individual and system levels. Typically, we have access only to the trajectories of
individual entities without any insight into the underlying interaction patterns,
and each agent can exhibit multiple possible behavior modalities. This makes
modeling these dynamics and predicting future behaviors particularly challeng-
ing. Additionally, it is important to study behaviors at the group level, beyond just
pair-wise interactions. In multi-agent systems, the dynamic interactions among
agents often display cooperative and competitive behaviors [11, 12, 24]. Although
these group-level interactions are common, they are rarely modeled. Traditional
graph-based methods, while effective at capturing pair-wise interactions, are inad-
equate in representing the collective influence of groups of entities on each other’s
behaviors in real-world traffic situations.

As we delve deeper into the intricacies of autonomous driving systems, a promi-
nent challenge that emerges is Interaction Relational Reasoning [20, 21]. The com-



5

plexity of autonomous driving does not solely lie in the sensor technology or the
computational algorithms but equally in the subtleties of interaction between ve-
hicles that share the road.

Autonomous driving systems require a profound understanding of implicit
agent interactions. This understanding is crucial because it allows for the anticipa-
tion and interpretation of other vehicles’ actions without needing a priori knowl-
edge of their underlying intentions. In dense traffic scenarios, vehicles frequently
change lanes, accelerate or decelerate, and engage in complex interactions with
other agents. These interactions often involve multiple possible longitudinal and
lateral behaviors of multiple entities influencing each other simultaneously, which
cannot be fully captured by considering only pair-wise relationships. Additionally,
the stochastic nature of human behavior adds further complexity, necessitating
models that can handle the uncertainty and variability in agent behaviors, which is
essential for safe and efficient driving. Therefore, to untangle social influence and
achieve socially inspired automated driving, a critical challenge lies in represent-
ing and reasoning about the diverse interactions among agents and their multiple
possible behaviors [20, 25, 26].

The work by [20] underscores the importance of relational reasoning as a ve-
hicle navigates environments teeming with dynamic and unpredictable elements.
Here, the underlying relations that facilitate this silent communication include im-
plicit rules, dependencies, or associations that may exist between different agents
or among the different modalities of behaviors of these agents. These relations are
“implicit” in that they are neither directly observable nor explicitly communicated.
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Instead, they form the hidden tapestry of road interaction that an autonomous ve-
hicle must interpret. This ability to decipher and adapt to these silent rules enables
an autonomous vehicle to understand how one agent’s intention or behavior could
influence another’s, thereby ensuring harmonious coexistence on the road.

The explainability in autonomous systems highlights the significance of being
able to elucidate the behaviors and intentions of autonomous vehicles [27]. This
quest for clarity is pivotal for validating the decisions made by such systems and
essential for strategic planning amid the uncertainty of multi-agent interactions.
Explainability thus becomes a bedrock for achieving a level of decision-making
and planning that mirrors human-like intuition and judgment.

Safety and efficiency, the cornerstones of AV and CAV operations, are directly
impacted by the capability of these vehicles to reason relationally. It ensures that
the vehicles operate not in isolation but in a state of continuous and fluid dialogue
with the surrounding traffic. This dialogue does not occur through explicit com-
munication but rather through a sophisticated understanding of traffic flow, other
vehicles’ movements, and the silent choreography of the road.

In summary, the relational reasoning and implicit understanding of the com-
plex web of interactions between vehicles play a pivotal role in the present and
future of autonomous driving. Advancements in this area will continue to push
the boundaries of what is possible, guiding us toward a future where vehicles are
not merely machines on the road but active, responsive participants in a larger
vehicular society.
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1.1.4 The “Social” Nature of Automated Driving

The SAE J3216_202107 standard “Taxonomy and Definitions for Terms Related to
Cooperative Driving Automation for On-Road Motor Vehicles” [28] provides a
taxonomy and definitions for terms related to Cooperative Driving Automation
(CDA) for on-road motor vehicles, marking a significant step toward the realiza-
tion of fully automated and cooperative driving systems. The classification of CDA
is structured into four classes:

1. Status-sharing: At the fundamental level, status-sharing encompasses the
communication of a vehicle’s state to traffic participants and the environ-
ment. This class forms the basis for all higher levels of CDA.

2. Intent-sharing: Intent-sharing involves conveying the intended actions of the
Cooperative-ADS (C-ADS) to other traffic participants and understanding
their intentions in return, which enhances the perception and predictability
of vehicular actions.

3. Agreement-seeking: A more advanced level, agreement-seeking, denotes the
process of negotiating and establishing consensus among traffic participants
for proposed actions, allowing for coordinated maneuvers.

4. Prescriptive: The most sophisticated level, prescriptive CDA, involves the ve-
hicle adhering to specific directives such as traffic rules, control device states,
or evacuation orders, where vehicle motion control becomes fully integrated
with the broader traffic management system.
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Figure 1.2: “Table 1 - Relationship between classes of CDA cooperation and levels
of automation” in SAE J3216_202107 standard

The SAE J3216_202107 standard highlights that as we advance through the
CDA cooperation classes, the “social” aspect of automated driving becomes in-
creasingly dominant. This social nature implies that AVs or CAVs will not only be
aware of each other’s presence but also actively engage in communication, compre-
hension, negotiation, and collaboration with other road users and environmental
elements. It is, therefore, necessary to study the social interactions between these
entities to facilitate truly cooperative driving, thereby optimizing safety, efficiency,
and user experience.
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1.2 Thesis Overview

1.2.1 Research Objectives and Scope of Work

This dissertation focuses on developing a predictive control pipeline for CAVs in
automated driving systems under mixed traffic conditions. Initially, we developed
a deep learning-based lane change prediction model to accurately forecast the lane
change behavior of surrounding vehicles. This model was designed to take into ac-
count the dynamic and unpredictable nature of lane change maneuvers, which are
critical for preventing collisions and ensuring smooth traffic flow. Subsequently,
we created a deep learning-based integrated two-dimensional trajectory predic-
tion model that considers both lateral and longitudinal movements of vehicles.
This model aims to provide more comprehensive and accurate predictions of ve-
hicle trajectories by incorporating a wider range of motion patterns. Finally, we
established a prediction-to-planning pipeline that utilizes the predicted outputs
to provide safe and trustworthy planning results for CAVs in mixed traffic condi-
tions. Specifically, the research objectives are as follows:

1. Develop vehicle motion prediction models that consider both historical tra-
jectories and future interactions between vehicles to enhance prediction ac-
curacy.

2. Create vehicle intention prediction models that account for the multimodal-
ity of driving behaviors, reflecting the diverse possible actions a driver might
take in various traffic scenarios.
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3. Integrate motion prediction with intention prediction in a probabilistic man-
ner, allowing for the consideration of multiple potential future scenarios and
their associated probabilities.

4. Implement multi-agent cooperative motion prediction and trajectory gener-
ation, enabling CAVs to anticipate and react to the movements of other vehi-
cles in a coordinated manner.

5. Guide decision-making using interaction reasoning and motion planning-
informed trajectory generation, ensuring that CAVs can make informed de-
cisions based on a comprehensive understanding of their environment.

6. Optimize trajectories with a focus on safety and adherence to traffic rules,
prioritizing the prevention of accidents and ensuring compliance with road
regulations.

1.2.2 Research Contribution

This dissertation proposes an Integrated Framework of Motion Prediction and Plan-
ning for CAVs, comprising three main modules:

• GIMTP: Graph-based Interaction-aware Multi-modal Trajectory Prediction

• GIRAFFE: Graph-based Interaction-aware Reliable Anticipative Feasible Future
Estimator

• RHINO: Relational Hypergraph Interaction-informed Neural mOtion genera-
tor and planner
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– RHINO-Gen: Multi-agent Motion Generator

– RHINO-Plan: Neural Motion Planner

Figure 1.3: Contributions.

As introduced in my prior work [29], the field of autonomous vehicle naviga-
tion has seen significant advancements with the introduction of the GIMTP frame-
work. GIMTP marks a pivotal shift in how autonomous systems forecast vehicle
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trajectories, considering not only the vehicle’s individual path but also the inter-
woven patterns of surrounding traffic. By utilizing a dynamic graph that encapsu-
lates the nuanced motion states of vehicles, GIMTP sets the stage for understanding
the sophisticated and bidirectional interactions that take place in real-time traffic
scenarios. With an embedded system that leverages historical motion data, GIMTP

provides a predictive glimpse into the future, illustrating potential vehicular inter-
actions and their ripple effect on the road.

Building on the solid foundations of GIMTP, the upgraded GIRAFFE framework
emerges as a robust Graph-based Interaction-aware Reliable Anticipative Feasi-
ble Future Estimator. GIRAFFE enhances GIMTP by integrating additional layers
of predictive accuracy and anticipative capabilities. It leverages multi-modal and
probabilistic techniques to not just predict but anticipate future states of traffic, ac-
counting for a multitude of potential outcomes and their associated probabilities.
This allows for a prediction mechanism that is both flexible and informed, capable
of adjusting to the ever-changing tapestry of road dynamics. GIRAFFE’s advance-
ments represent a significant contribution to the autonomous vehicle field, offering
a more reliable and comprehensive solution for multi-agent trajectory prediction,
and paving the way for smarter, safer, and more socially adept autonomous driv-
ing systems.

RHINO, the Relational Hypergraph Interaction-informed Neural Motion gener-
ator and planner, represents the next frontier in motion generation and planning.
It comprises two innovative components: RHINO-Gen and RHINO-Plan. RHINO-Gen,
the Multi-agent Motion Generator, is an intricate system designed to synthesize
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motion states from a rich tapestry of group-wise interactions and behaviors ob-
served in various agents. This system adeptly captures the social dynamics of
driving, encoding the interactions within hypergraphs that mirror the complex-
ities of real-world traffic situations. Through this representation, RHINO-Gen facili-
tates a deeper understanding of social behavior-inspired driving, enabling vehicles
to engage in a more harmonious and socially aware navigation. RHINO-Plan, the
Neural Motion Planner, builds on the foundations laid by RHINO-Gen. It utilizes the
hypergraph-encoded information to craft strategic motion plans that consider not
only the immediate future but also the extended horizon of vehicle interactions. By
learning from the stochastic behaviors of agents, RHINO-Plan generates plausible
trajectories that are iteratively refined, ensuring that the resulting motion plans
prioritize safety, efficiency, and comfort. The RHINO framework, through its Gen
and Plan components, exemplifies a significant leap toward actualizing human-
like automated driving that is both intuitive and integrated into the societal norms
of road sharing.

The main contributions of this research are summarized as follows:

1. Propose the GIMTP framework for forecasting vehicle motion.

2. Develop a dynamic graph to capture the evolving motion states of vehicles
and to model the complex bidirectional and heterogeneous interactions oc-
curring among them.

3. Map historical motion data onto future states through the application of an
estimated future-guided graph embedding, highlighting the interdependen-
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cies of future vehicular motion states.

4. Utilize a multi-modal and probabilistic approach for generating trajectory
predictions by merging the feature space with potential semantic intentions
and by forecasting potential future trajectories and their likelihoods.

5. Enhance GIMTP to GIRAFFE for improved multi-agent trajectory prediction ca-
pability.

6. Propose the RHINO framework for hypergraph-based interaction relational
reasoning motion generation and planning.

7. Represent the group-wise interaction among different modalities of behav-
iors and the corresponding motion states of different agents through hyper-
graphs, enabling social behavior-inspired automated driving.

8. Incorporate interaction representation learning and relational reasoning to
improve the social nature of automated driving.

9. Consider future relations and interactions and learn the posterior distribu-
tion to handle the stochasticity of each agent’s behavior.

10. Generate plausible motion planning and refine the planned trajectory prior-
itizing safety, efficiency, and comfort, enabling human-like automated driv-
ing.
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1.2.3 Organization of the Thesis

The thesis is systematically structured to present the research process. Chapter
1 introduces the topic by outlining the research subject, its importance, and the
objectives. Chapter 2 offers a Literature Review, critically examining existing re-
search to highlight knowledge gaps and establish the study’s theoretical frame-
work. Chapter 3 presents the Problem Statement, clearly defining the research
challenges that will be addressed. The Methodology section, spread across mul-
tiple chapters, details the research design: Chapter 4 defines graphs and hyper-
graphs, Chapter 5 introduces the GIMTP model, and Chapter 6 covers the RHINO

model. Chapter 7 thoroughly describes the Experiment Settings, specifying the
framework and conditions under which the research was conducted. Chapter 8,
Experiment Results and Discussions, interprets the findings in relation to the re-
search questions and emphasizes the study’s contributions to the field. The thesis
concludes with Chapter 9, summarizing the findings and suggesting directions for
future research.
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Chapter 2

Literature Review

2.1 Interaction between Vehicles

Understanding interaction laws and their inherent complexities is crucial across a
multitude of scientific and engineering fields, including autonomous driving [30],
human behavior analysis [31], and interactions within chemical molecules [32]
and brain networks [33]. Complex systems with interacting entities are typically
modeled as graphs, where edges represent the corresponding interactions.

Understanding the interaction between vehicles is essential for predicting so-
cially aware trajectories [17, 34]. Traditional methods, such as physics-based mod-
els [35] and the Kalman filter method [36], alongside classic machine learning
approaches [37, 38, 39], often fall short in complex prediction contexts [16].

Recently, deep learning has become a favored tool for trajectory prediction due
to its ability to learn intricate features and account for physics, road geometry,
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and vehicle interactions. Transforming historical information into representations
that highlight temporal and spatial correlations is crucial. Techniques such as
time series sequences [40, 41], occupancy grids [42, 43], and rasterized images
[36, 44] have been utilized. Recurrent neural networks (RNN), particularly Long
Short-Term Memory (LSTM) and Gated Recurrent Unit (GRU) variants, effec-
tively capture temporal correlations in sequential data. For spatial correlations,
methods including Convolutional Neural Networks (CNN) [17, 42, 45, 46, 47, 48],
attention-driven methods [49, 50, 51, 52, 53], and Graph Neural Networks (GNN)
[54, 18, 55, 56, 57] have been proposed.

GNN-based methods are particularly promising for understanding non-Euclidean
spatial dependencies, making them suitable for simulating interactions. However,
most graph-based approaches rely on adjacency matrices based on neighborhood
[58] and vehicular distances [59], which may not accurately reflect the influence
among vehicles’ motion states, especially on highways where longitudinal dis-
tances are more significant than lateral ones.

Furthermore, current methodologies often fail to address potential future inter-
actions. Historical relationships do not inherently predict future interactions [60].
As illustrated in Figure 2.1, while the target vehicle and vehicle 2 show a weak re-
lationship historically, they will interact significantly in the future. This highlights
the challenge of predicting future states based solely on historical data. Accurate
prediction requires considering future motion states of the target and surrounding
vehicles, incorporating these influences into the trajectory prediction.

To enhance the representation of vehicle interactions and incorporate the influ-
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Figure 2.1: Insights of this research. Insight 1: Historical relationships do not in-
herently reflect future interactions. Insight 2: Surrounding vehicles’ future motion
states strongly influence the target vehicle.

ence of surrounding vehicles’ motion states on the target vehicle, we propose con-
structing a graph with a dynamic adjacency matrix. This matrix captures interac-
tions by considering elements such as neighborhood, distance, and potential risks
derived from relative distances and velocities, assessing potential collision risks.
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Utilizing forward and backward transition mechanisms in Diffusion Graph Con-
volutional Networks (DGCN), we capture bidirectional and heterogeneous inter-
actions between the target vehicle and its surroundings. This technique integrates
historical and predicted future motion states, creating comprehensive embeddings
for refined future interaction estimation and seamless trajectory prediction integra-
tion.

2.2 Multi-modality of Driving Behaviors

The intricate interactions between vehicles result in unpredictable and uncertain
traffic conditions, making it difficult to forecast a single accurate future trajectory
[61]. Various factors, such as individual driver characteristics and psychological
aspects, lead to different driving behaviors in identical situations [15, 62]. To ac-
count for the inherent multi-modality in driving behaviors, it is essential to gen-
erate multiple possible trajectories [13]. Models addressing this challenge can be
categorized based on whether their latent variables have explicit semantics.

Driving intentions, which refer to the reasons behind a driver’s movements and
actions, are vital for ensuring safe and efficient traffic flow. In the first category,
models use latent variables with clear semantics to represent these intentions. For
example, studies by [15] and [42] utilize driving maneuvers as latent variables
to capture various behaviors. [40] employs attention mechanisms for trajectory
generation within specific scene contexts. These maneuvers are categorized and
integrated into multi-modal trajectory prediction models using Gaussian distri-
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butions. Some models opt for pre-clustered anchors instead of predefined maneu-
vers, predicting goals with vector anchors and high-definition maps [63, 64, 65, 66],
while others use diverse lane features for predictions [67]. However, many studies
rely on simple concatenation operations to merge maneuver or lane features with
encoded context, which is insufficient for producing diverse predictions.

The second category involves models where latent variables lack explicit se-
mantics, benefiting from advances in generative deep learning, particularly Varia-
tional Autoencoders (VAE) [68, 69] and Generative Adversarial Networks (GAN)
[70, 47, 71]. GANs integrate diverse factors in their generators [72, 73, 74], with
discriminators assessing latent details. VAEs use encoder-decoder structures to
enhance multi-modal trajectory predictions [75, 76]. These models employ latent
random variables to create varied, multi-modal trajectories by adding noise from
latent distributions to encoded features, resulting in stochastic outcomes. Chal-
lenges with these approaches include a lack of interpretability and difficulties in
determining optimal sample sizes and probabilistic assignments for trajectories.

This work aims to improve interpretability by treating multi-modal behaviors
as latent variables with explicit semantics, effectively representing potential driv-
ing intentions. Building on the approach of [50], we propose a probabilistic frame-
work to predict semantic intentions at each future timestamp. This framework
connects intrinsic intentions with feasible trajectories through intention-specific
feature combinations, achieving comprehensive multi-modal prediction.
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2.3 Relational Learning and Reasoning

Relational reasoning has emerged as a crucial aspect of AI, especially within multi-
agent systems operating in shared environments. This capability to comprehend,
interpret, and forecast interactions between entities is vital for the development
of intelligent systems. This review explores multi-agent relational reasoning and
its application in vehicle trajectory prediction and planning, emphasizing current
challenges and prospective advancements.

In multi-agent systems, relational reasoning involves deciphering the intricate
interactions among agents and their surroundings, which is essential for coordi-
nated actions, accurate outcome prediction, and informed decision-making. For
autonomous vehicles and intelligent transportation systems, relational reasoning
is critical in predicting the trajectories of interacting agents such as vehicles, pedes-
trians, and cyclists, forming the basis for safe and efficient trajectory planning al-
gorithms.

Traditional model-based approaches laid the groundwork by creating mathe-
matical models of vehicle dynamics and interactions. However, these models of-
ten lacked the flexibility and scalability needed for dynamic environments. Early
techniques like Locally Linear Embedding (LLE) [77] and Isomap [78] were ef-
fective with limited data but faced performance constraints. The advent of deep
learning has transformed vehicle trajectory prediction by utilizing large datasets
to capture complex spatial and temporal dependencies, although these methods
can be opaque and difficult to interpret.

Deep learning approaches model interactions through social operations [17,
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71], graph-based modeling [18, 55, 56], and attention mechanisms [50, 51, 52].
While these methods have enhanced trajectory prediction, they often fall short in
relational reasoning, primarily focusing on pairwise relationships and struggling
with the limited observable information in multi-agent systems. Some works, such
as NRI [79] and EvolveGraph [21], have made strides in explicit relational reason-
ing but are restricted to pairwise interactions and interaction categories without
considering interaction intensity.

It is crucial to study group-wise behaviors beyond pairwise interactions. In
multi-agent systems, dynamic interactions among agents frequently exhibit coop-
erative and competitive behaviors [11, 12, 24]. These group-level interactions are
common but have been rarely modeled. Traditional graph-based methods, though
effective at capturing pairwise interactions, fall short in representing the collective
influence of groups of entities on each other’s behaviors in real-world traffic sce-
narios. There is also a need to model the group-wise interactions of multi-modal
driving behaviors among multiple agents. In dense traffic scenarios, vehicles of-
ten change lanes, accelerate, decelerate, and engage in complex interactions with
other agents. These interactions involve multiple possible longitudinal and lat-
eral behaviors of multiple entities influencing each other simultaneously, which
cannot be fully captured by considering only pairwise relationships. Additionally,
the unpredictable nature of human behavior adds further complexity, necessitat-
ing models capable of handling the uncertainty and variability in agent behaviors,
which is crucial for safe and efficient driving. Therefore, a significant challenge
in achieving socially inspired automated driving is representing and reasoning
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about the diverse interactions among agents and their multiple possible behaviors
[20, 25, 26].

Advancements include “EvolveGraph” [21], which dynamically constructs and
updates a graph representing agent relationships, capturing temporal interaction
changes for a nuanced understanding of multi-agent environments. “EvolveHy-
pergraph” uses hypergraphs to represent higher-order relationships, providing a
richer representation of relational dynamics. “GroupNet” [20] and “DynGroup-
Net” [80] model group behaviors, with DynGroupNet incorporating dynamic group
formation and dissolution to reflect real-world fluid agent interactions.

Despite these advancements, challenges remain, including scalability with in-
teraction complexity, agent heterogeneity, and non-stationary behavior patterns,
which complicate modeling and prediction. Ensuring safety and reliability under
uncertainty and incomplete information, along with integrating ethical and legal
considerations, are ongoing issues in motion prediction and planning.

To advance relational reasoning in trajectory prediction, this work focuses on
capturing and representing interactions. Building on the framework of [20], we
propose a multiscale hypergraph for modeling group-wise interactions of varying
sizes, learned in a data-driven manner rather than being handcrafted. For inter-
action embedding, we introduce a three-element representation format: neural
interaction strength, category, and per-category function, capturing the interac-
tion strength and category in interactive groups. Neural message passing over the
multiscale hypergraph integrates this interaction embedding into the representa-
tion learning process.
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2.4 Learning-based Motion Planning

Motion planning is closely tied to motion prediction and has evolved significantly
through methods such as path optimization [81] and sampling [82]. However,
safely navigating complex and interactive traffic environments requires incorpo-
rating the predicted behaviors of other participants [83]. Learning-based motion
planning [84, 85] has garnered attention for its ability to manage a wide range
of driving scenarios, achieving notable results with unified neural networks [86].
For instance, PiP [87] iteratively makes conditional predictions to adjust sampling-
based planning, though it only considers marginal futures and is limited by the
planning paths it generates. DIPP [88] merges differentiable planning objectives
with joint trajectory predictions, allowing for more responsive planning. Despite
the impressive performance of learning-based motion planning in diverse scenar-
ios, its robustness and safety can be affected by instability.

Many existing learning-based motion planning methods incorporate predic-
tions by using the future trajectories of surrounding actors. However, they of-
ten overlook the group-wise interactions among multiple potential future motion
states of several agents. The three main challenges (Figure 1.1) in motion plan-
ning remain paramount. First, precise motion planning depends on accurately
predicting the multi-modality of driving behaviors, which requires robust interac-
tion models capable of forecasting multiple potential trajectories [89]. Second, the
dynamic interactions between multiple agents introduce significant uncertainty,
necessitating models that can adaptively respond to varying traffic conditions and
behaviors. Third, relational reasoning about interactions is critical in motion plan-
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ning, as it involves not only predicting potential trajectories but also understanding
the diverse interactions among agents to make informed and safe planning deci-
sions.

To tackle these challenges, we propose integrating prediction guidance for mo-
tion planning by learning group-wise interaction patterns and potential future mo-
tion states based on multi-agent multi-modal predictions. This approach aims to
develop a planning system that is safer, more robust, and socially compliant. By
focusing on group-wise interactions and adapting to the dynamic and uncertain
nature of traffic environments, this method strives to enhance the overall safety
and efficiency of motion planning in autonomous driving systems.
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Chapter 3

Problem Statement

3.1 Problem Statement

This study presents an end-to-end framework designed to provide motion trajec-
tory predictions for each target vehicle and its surrounding vehicles, as well as
motion planning for the target vehicle in a multi-lane highway scenario. The tar-
get vehicle is assumed to be a connected and autonomous vehicle (CAV), while
the surrounding vehicles can include both human-driven vehicles and other CAVs.
The prediction component aims to probabilistically forecast the multi-modal trajec-
tories of the target and surrounding vehicles by leveraging their historical motion
states and interactions. Meanwhile, the planning component focuses on devel-
oping a planned trajectory for the target vehicle by utilizing the predicted multi-
modal motion states of both the target and its surrounding vehicles, while also
reasoning about their interactions.
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Our research focuses on several key aspects: analyzing the interactions between
the target vehicle and its surrounding vehicles, understanding the multi-modality
of driving behaviors, and exploring the relationship between multi-modal future
motion states and historical motion states. This comprehensive approach aims to
enhance the accuracy and safety of trajectory prediction and motion planning in
complex traffic environments.

Figure 3.1: Framework architecture.
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3.2 Model Input

Mathematically, the task of vehicle trajectory prediction can be formulated as pre-
dicting the probability distribution of the target vehicle’s future trajectory position
based on the observed historical motion information of the target vehicle and its
surrounding vehicles. The historical states of the vehicle group over a historical
time horizon [1, . . . , T ] can be denoted as X1:T = {X1, X2, . . . , XT}. Each historical
state Xt at time step t ∈ {1, . . . , T} represents the union set of the historical states
of the target vehicle and its surrounding vehicles. Thus, Xt = {x0

t , x1
t , . . . , xN

t },
where xi

t represents the historical state of vehicle i, for all i ∈ {0, 1, . . . , N} and all
t ∈ {1, . . . , T}. In this thesis, superscripts refer to vehicle indices, with i = 0 specif-
ically for the target vehicle, and the subscript referring to time steps. The state xi

t

associated with vehicle i could include its longitudinal and lateral positions and
velocity.

3.3 Model Output

3.3.1 Single Agent Motion Prediction

Assume the current time step is T . The predicted states of the vehicle group for a
future time horizon [T+1, . . . , T+F ] are denoted as ŶT +1:T +F = {ŶT +1, ŶT +2, . . . , ŶT +F}.
Each predicted future state ŶT +f at time step T +f only includes the predicted state
of the target vehicle. Thus, ŶT +f = {ŷ0

T +f}, where ŷ0
T +f denotes the future state

of the target vehicle at time step T + f for all f ∈ {1, . . . , F}. The state ŷ0
T +f en-
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compasses the longitudinal and lateral positions of the target vehicle at time step
T + f .

It is important to note that the coordinates of all vehicles in the vehicle group
are expressed in a reference frame where the origin is the position of the target
vehicle at timestamp T . The model input consists of X1:T = {X1, X2, . . . , XT} dur-
ing the past T time steps, and the output of the model is a probability distribution
P (ŶT +1:T +F |X1:T ) over the next F time steps. In this work, the distribution of y0

T +f

is parameterized as a bivariate Gaussian distribution with mean (µT +f,x, µT +f,y),
variance (σ2

T +f,x, σ2
T +f,y), and correlation coefficient ρT +f , where the subscript x

stands for the longitudinal position and y stands for the lateral position.

3.3.2 Multi-Agent Motion Prediction

For multi-agent multi-modal motion prediction, the input to the model consists
of X1:T = {X1, X2, . . . , XT} during the past T time steps, and the output of the
model is the estimated future trajectories Ŷ M

T +1:T +F for the next F time steps. The
predicted states of the vehicle group in a future time horizon [T +1, . . . , T +F ] can
be denoted as Ŷ M

T +1:T +F = {Ŷ M
T +1, Ŷ M

T +2, . . . , Ŷ M
T +F}. Each predicted future state Ŷ M

T +f

at time step T + f is composed of the predicted motion states with M modalities
of all the vehicles in the vehicle group. Thus Ŷ M

T +f = {ŷi,m
T +f}, where ŷi,m

T +f denotes
the future states of each vehicle i in the vehicle group with M modalities at time
step T + f for all i ∈ {0, 1, . . . , N}, all m ∈ {1, . . . , M}, and all f ∈ {1, . . . , F}. The
state ŷ0

T +f consists of the longitudinal and lateral positions of the target vehicle at
time step T + f .
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3.3.3 Motion Planning

In the context of motion planning, the input to the model includes the historical
states of the vehicle group X1:T = {X1, X2, . . . , XT} during the past T time steps
and Ŷ M

T +1:T +F = {Ŷ M
T +1, Ŷ M

T +2, . . . , Ŷ M
T +F}, which is the estimated multi-modal future

trajectories of all the vehicles in the vehicle group. The output of the model is
the planned trajectories ŶT +1:T +F over the next F time steps. The predicted states
of the vehicle group in a future time horizon [T + 1, . . . , T + F ] can be denoted
as ŶT +1:T +F = {ŶT +1, ŶT +2, . . . , ŶT +F}. Each predicted planned state ŶT +f at time
step T +f is composed of the planned trajectory of the target vehicle. Thus ŶT +f =

{ŷ0
T +f}, where ŷi

T +f denotes the planned trajectory of the target vehicle at time step
T + f for all f ∈ {1, . . . , F}. The state ŷ0

T +f consists of the longitudinal and lateral
positions of the target vehicle at time step T + f .

3.4 Problem Statement in Mathematical Formulation

The trajectory prediction problem can be summarized as follows: Given the states
X1:T of all the vehicles in a vehicle group over a past time horizon [1, . . . , T ], the
objective is to train a model HPred(·) to predict the trajectory distributions ŶT +1:T +F

of the target vehicle that approximate the ground truth trajectory Y in the future
time horizon [T + 1, . . . , T + F ]:

X̂M
T +1:T +F = HPred(X1:T ) (3.1)

The subsequent trajectory planning problem can be summarized as follows:
Given the states X1:T of all the vehicles in a vehicle group over a past time horizon
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[1, . . . , T ] and the estimated multi-modal future motion states of the vehicles in the
vehicle group, the goal is to train a neural planner model HPlan(·) to generate a
planned future trajectory ŶT +1+F of the target vehicle in the future time horizon
[T + 1, . . . , T + F ] considering safety, efficiency, and comfort:

ŶT +1:T +F = HPlan(X1:T , X̂M
T +1:T +F ) (3.2)

3.5 Scenario Settings

Our scenario unfolds on a multi-lane highway characterized by a mixed traffic en-
vironment where CAVs coexist with human-driven vehicles (HDVs). The artery
of our smart transportation network is lined with sophisticated Roadside Units
(RSUs), serving as beacons of communication and data gathering. These elements
converge to create an ecosystem where information flows seamlessly between vehi-
cles and infrastructure, orchestrating a symphony of coordinated movement aimed
at enhancing safety and optimizing traffic flow. The intelligence levels of auto-
mated vehicles follow the guidelines in [90, 91, 28], and the intelligence levels of
roadside infrastructure are designed following [92, 91].

In the first deployment phase, we introduce CAVs equipped with intelligence
levels ranging from L3 to L4.. These vehicles represent a significant step towards
full automation, capable of self-driving in specific scenarios with little to no human
intervention. These CAVs are outfitted with advanced sensors that meticulously
collect data from their local traffic environment, enabling them to navigate and
respond to on-the-road situations with precision. Furthermore, these CAVs are not
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isolated units; they share the acquired data with fellow CAVs, creating a network
of shared awareness that ensures individual and collective safety and efficiency.

The second deployment phase sees the integration of CAVs operating at a slightly
lower spectrum of autonomy, within the L1 to L3 intelligence bracket, coupled with
the support of RSUs ranging from intelligence levels I2 to I4. In this arrangement,
the CAVs continue to gather local traffic data and communicate with each other.
The RSUs augment this system by collecting comprehensive data on regional traf-
fic conditions, thus providing a macroscopic view of the traffic landscape. The
RSUs serve a dual role, not only as data collectors but also as vital nodes that relay
this information back to the CAVs. This partnership enhances the capabilities of
CAVs, especially those that still rely on a degree of human control, ensuring a safer
and more informed vehicular operation within the highway environment.

Figure 3.2: Study scenarios.
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3.6 Assumptions

3.6.1 Assumptions for Communication and Sensing

In the realm of communication, the network relies on Vehicle-to-Everything (V2X)
technology [93, 94, 95, 96, 97], which is critical for the functioning of connected
vehicles. The system’s range is impressive, extending approximately 300 to 600
meters, enabling vehicles to communicate over considerable distances. For the
purpose of our study and to simplify the modeling, we will assume that there is
no communication delay.

The sensor suite on each vehicle consists of radar [98, 99], camera [100, 101,
102], and LiDAR [103, 104] systems, each with its own specific detection range.
Radar can detect objects at a range of about 150 to 250 meters, whereas cameras can
observe the environment at a distance of 150 to 300 meters. LiDAR, which stands
for Light Detection and Ranging, boasts the most extensive range of approximately
200 to 600 meters. These ranges are the backbone for the longitudinal study range,
defined by the average minimax sensor detection range, and a spacing parameter
set to span from -100 to +150 meters.

3.6.2 Study Range Parameters

When considering the study range for this project, two main dimensions are taken
into account: longitudinal and lateral ranges. As shown in Fig. 3.3, longitudi-
nally, the study accounts for an average of the minimum and maximum sensor
detection ranges, incorporating a spacing that allows for measurements ranging
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approximately from -300 to +500 feet relative to the target vehicle. Laterally, the
focus is narrowed to one adjacent lane on each side, measured from the centroid of
the target vehicle to the outer lane markings of adjacent lanes, a distance of roughly
±5.5 meters or ±18 feet.

Figure 3.3: Study range assumptions.

3.6.3 Study Object Focus

The study treats each individual vehicle as a potential target vehicle, as shown
in Figure 3.4. This includes the acquisition of historical motion states data of the
target vehicle itself, as well as the surrounding vehicles, both CAVs and HDVs.
A key assumption is that the driving behaviors are independent and identically
distributed (i.i.d.), ensuring that the data collected provides a consistent basis for
analysis.
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Figure 3.4: Study object assumptions.

3.7 Objective of the Study

The ultimate goal is to provide accurate motion prediction for all vehicles on the
highway. By understanding historical motion states and sensing ranges, the sys-
tem aims to aid in decision-making, motion planning, and control processes for
CAVs. The sophisticated mesh of communication and detection technologies is
crucial for this objective, as it allows for a comprehensive understanding of vehic-
ular movement and behavior, which is essential for the development of reliable
automated systems on our roads.

3.8 Framework Architecture

The proposed framework adopts an end-to-end architecture, as shown in Figure
3.5, which involves three major components:

1. GIMTP: Graph-based Interaction-aware Multi-modal Trajectory Prediction,
which provides multi-modal trajectory prediction for the target agent by mod-
eling the historical and future interactions as graphs.
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2. GIRAFFE: Graph-based Interaction-aware Reliable Anticipative Feasible Future
Estimator, as an enhanced version of GIMTP, which provides multi-modal tra-
jectory prediction for multiple agents by modeling the historical and future
interactions as graphs.

3. RHINO: Relational Hypergraph Interaction-informed Neural mOtion gener-
ator and planner, which provides motion generation and motion planning
by modeling the interaction relation using multiscale hypergraph represen-
tations.

Here, the overall framework architecture adopts GIRAFFE and RHINO as two ma-
jor components to fulfill the integrated motion prediction and planning functions.
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Figure 3.5: Framework architecture.
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Chapter 4

Definitions of Graphs and

Hypergraphs

4.1 Graph Definitions

Graphs are excellent representations to describe and analyze entities with relations
and interactions. Specifically, in a multi-agent system, a graph representation is
used by modeling each agent as a node and the pair-wise interaction as the edge.
Thus, we define the graph as follows:

Definition 1 (Graph) A graph G is a representation describing and analyzing entities

with relations and interactions, which can be represented by a set of nodes and a set of edges

that establish relationships between these nodes. The graph G is expressed as

G = (V , E ; X, A)
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where V ∈ RN denotes the node set, E ∈ R|N×N | denotes the edge set, X ∈ RN×C repre-

sents the feature tensor, and A ∈ RN×N indicates the adjacency matrix.

Figure 4.1: General Graph.

By modeling each vehicle agent as a node in a graph, we can further define an
Agent Graph with the same structure as a general graph:

Definition 2 (Agent Graph) Let Ga be a graph representation of the motion states and

interaction of N agents, with each agent represented as a node. Ga is expressed as

Ga = (Va, Ea; Xa, Aa)

where Va ∈ RN denotes the node set, Ea ∈ R|N×N | denotes the edge set, Xa ∈ RN×C

represents the feature tensor, and Aa ∈ RN×N indicates the adjacency matrix.

In our previous work [29] and the enhanced version GIRAFFE, we model and
represent the motion states and the interactions between the agents as Agent Graphs.

To better represent the interactions and relations of the predicted multi-agent
multi-modal motion states with graphs, we can expand each agent node with the



40

Figure 4.2: Agent Graph.

number of modalities of the behavior. Thus, we can construct an Agent-Behavior
Graph.

Definition 3 (Agent-Behavior Graph) Let Gb be a graph representation of the multi-

modal motion states of N agents, with each of M behavior modes for each agent represented

as a node. Gb is expressed as

Gb = (Vb, Eb; Xb, Ab)

where Vb ∈ R|MN | denotes the node set, Eb ∈ R|MN×MN | denotes the edge set, Xb ∈

R|MN |×C represents the feature tensor, and Ab ∈ R|MN |×|MN | indicates the adjacency ma-

trix.

4.2 Introduction to Hypergraphs

In the realm of autonomous and connected vehicular traffic systems, there are
fundamental facts and challenges that underscore the necessity for advanced in-
teraction representation. Among these, the inherent complexity of vehicular in-
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Figure 4.3: Agent-Behavior Graph.

teractions can be distilled into two primary categories: pair-wise interaction and
group-wise interaction, each presenting unique difficulties and opportunities for
improving overall traffic dynamics.

Pair-wise interaction represents the fundamental unit of vehicular interaction,
focusing on the dyadic relationships between two vehicles. This dimension is char-
acterized by direct vehicle-to-vehicle communication and has significant implica-
tions on the scale of interaction, where decisions made by one vehicle can have an
immediate and localized impact on another. The challenges here involve ensur-
ing that decision-making between pairs of vehicles is optimized to promote traffic
flow efficiency and safety. The scalability and flexibility of pair-wise interaction
models are also crucial to adapt to various traffic conditions and to incorporate an
expanding number of vehicle types and communication technologies.

On the other hand, group-wise interaction expands this focus to consider the
collective behavior of clusters of vehicles. Here, the challenges magnify as the
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complexity of interactions increases with the number of vehicles involved. It is not
merely the sum of pair-wise interactions but also includes the emergent behaviors
that arise from group dynamics. These can manifest in the form of platooning,
cooperative lane changes, and synchronized maneuvers that aim to enhance traffic
flow efficiency at a larger scale. Safety within group-wise interactions becomes
even more critical, as a single misstep could have cascading effects throughout the
vehicle cluster.

The conclusion drawn from analyzing these interactions points towards the ne-
cessity of a hypergraph interaction representation. Unlike traditional graph mod-
els that limit relationships to pairs, hypergraphs allow for a more nuanced and
comprehensive representation of group-wise dynamics. By modeling the connec-
tions among multiple vehicles simultaneously, hypergraphs provide a more ro-
bust framework for understanding and optimizing the intricate web of interactions
that define modern traffic systems. This holistic approach is anticipated to yield
substantial advancements in traffic management, vehicle routing algorithms, and
overall transportation system design.

Definition 4 (Hypergraph) A hypergraph H is a natural extension of general graphs,

allowing an edge to join any number of nodes, which can represent the higher-order rela-

tionships involving multiple entities. The hypergraphH is expressed as

H = (V , E ; X, H)

where V ∈ RN denotes the node set, E ∈ RK denotes the edge set (K can be complex),

X ∈ RN×C represents the feature tensor, and H ∈ RN×K indicates the incidence matrix,
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where Hij indicates whether node vi is part of the hyperedge ej .

Figure 4.4: Hypergraph.

Similarly, we can define an Agent Hypergraph with the same structure as a
hypergraph to represent the agents and group-wise interactions among them:

Definition 5 (Agent Hypergraph) Let Ha be a hypergraph representation of the mo-

tion states of N agents, with each agent represented as a node. The hypergraph Ha is

expressed as

Ha = (Va, Ea; Xa, Ha)

where Va ∈ RN denotes the node set, Ea ∈ RK denotes the edge set (K can be complex),

Xa ∈ RN×C represents the feature tensor, and Ha ∈ RN×K indicates the incidence matrix,

where Ha
ij indicates whether node vi is part of the hyperedge ej .

The intricate nature of vehicular dynamics on multi-lane highways necessi-
tates an understanding that extends beyond individual behaviors to encompass
the collective. This nature delves into the realm of group-wise interaction, which
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Figure 4.5: Agent Hypergraph.

involves the multifaceted behaviors of multiple vehicles. Within this context, vehi-
cles engage in a variety of interactions, some competitive, like overtaking and lane-
changing, where each vehicle’s aim may contradict another’s, leading to a complex
interplay as each strives for an advantageous position. On the flip side, there are
cooperation interactions, which include platooning and collaborative driving, as
well as the orchestrated dance of merging and diverging traffic. These interactions
represent a symphony of shared goals, where vehicles work in concert to achieve
greater efficiency, reduced energy consumption, or increased safety.

The traditional pair-wise approach falls short in capturing the full spectrum of
these interactions. This is where hyperedges come into play. As a potent represen-
tation within hypergraphs, hyperedges can encapsulate these complex group-wise
interactions by allowing for multiple nodes, or vehicles, to be connected simulta-
neously. This enables a more nuanced understanding of the collective behavior,
revealing the underlying structure and dynamics of vehicular interactions. With
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Figure 4.6: Insight 3: Pair-wise interactions and group-wise interactions among
multiple possible behaviors of multiple vehicles in different multi-lane highway
scenarios.

hyperedges, it is possible to model and analyze the rich patterns of interaction
on highways, paving the way for more sophisticated traffic management systems
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that can optimize flow, enhance safety, and reduce congestion. Thus, we define an
Agent-Behavior Hypergraph as the representation of the multi-agent multi-modal
system for group-wise interaction relational reasoning.

Definition 6 (Agent-Behavior Hypergraph) Let Hb be a hypergraph representation

of the multi-modal motion states of N agents, with each of M behavior modes for each

agent represented as a node. The hypergraphHb is expressed as

Hb = (Vb, Eb; Xb, Hb)

where Vb ∈ R|MN | denotes the node set, Eb ∈ RK denotes the edge set (K can be complex),

Xb ∈ R|MN |×C represents the feature tensor, and Hb ∈ R|MN |×K indicates the incidence

matrix, where Hb
ij indicates whether node vi is part of the hyperedge ej .

Figure 4.7: Agent-Behavior Hypergraph.

Figure 4.8 shows the relations between the six definitions of graphs and hyper-
graphs.
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Figure 4.8: Relations between the definitions.
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Chapter 5

Graph-based Interaction-aware

Multi-agent Multi-modal Trajectory

Prediction

5.1 GIMTP: Interaction-aware Multi-modal

Trajectory Prediction

To achieve precise trajectory predictions in dense traffic scenarios, it is essential to
capture the intricate temporal and social interactions between the target vehicle
and its surrounding vehicles. To this end, we propose a GIMTP model composed of
the following modules:

• Dynamic Graph Embedding Module: This module converts the original ve-
hicle motion states into a dynamic graph embedding, taking into account the
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neighborhood, the distance, and the potential risk between vehicles.

• Interaction Encoder: This module captures the interactions between vehi-
cles by employing a Diffusion Graph Convolution Network (DGCN) archi-
tecture, which is adept at handling the flow of information across the graph.

• Intention Predictor: This module maps the historical encodings and the
guiding future trajectories to both lateral and longitudinal intentions over
the future time horizon, effectively predicting the intended maneuvers.

• Multi-modal Decoder: This module merges the predicted intentions with
the latent space, generating multiple future trajectory distributions with their
corresponding probabilities.

Figure 5.1: GIMTP framework architecture.

5.1.1 Dynamic Graph Embedding Module

Accurately predicting the trajectory of the target vehicle requires a deep under-
standing of its correlation and interaction with surrounding vehicles. As illus-
trated in Figure 5.2(a), surrounding vehicles can be classified longitudinally as
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preceding, parallel, and following vehicles, and laterally as left, same-lane, and
right vehicles.

By stacking the motion states of the agent graphs along the temporal axis, we
construct a dynamic spatial-temporal graph G1:T = {Gt|∀t ∈ 1, . . . , T} to represent
the vehicle group’s movement state from step 1 to step T . Specifically, the graph
Gt = (Vt, Et; Xt, At) represents the motion states of the vehicle group at time step
t. Each node vi

t in the node set Vt = {vi
t|∀i ∈ 1, . . . , N} represents each vehicle

vi in the vehicle group at step t. The edge set Et indicates the influence between
vehicles. A zero value for edge eij means there is no interaction between nodes
vi and vj for i, j ∈ 1, . . . , N . The feature matrix Xt ∈ RN×C contains the vehicle
group’s features, where C is the number of features.

Vehicle motion can significantly impact nearby vehicles. For example, a sud-
den lane change or speed alteration might force adjacent vehicles to slow down or
change their path, while distant vehicles may remain unaffected. To quantitatively
capture these interactions, we define a weighted adjacency matrix At =

(
Aij

t

)
∈

RN×N for the graph Gt, where each element Aij
t denotes the interaction intensity

between vehicles vi and vj . This dynamic adjacency matrix is constructed by con-
sidering neighborhood, distance, and potential risks, accurately describing vehicle
interactions. The following sections provide detailed insights into these factors.

Adjacency based on neighborhood: A vehicle’s motion significantly impacts
its immediate surroundings. To capture this, a binary adjacency matrix consider-
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Figure 5.2: Dynamic graph embedding of vehicle group’s motion states.

ing immediate and preceding neighbors is defined as follows:

Aij
t,NEIGH =


1, if vi

t adjoins and precedes vj
t

0, o.w.
(5.1)

Adjacency dependent on distances: Intuitively, vehicles closer to each other
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exert a stronger influence on one another. We use a distance-decaying function
to measure the weight between two vehicles, assigning higher weights to closer
vehicles:

Aij
t,DIST = exp

−(dist(vi
t, vj

t )
σdist

)2 (5.2)

where dist(vi
t, vj

t ) is the Euclidean distance between nodes vi and vj at step t, and
σdist is the standard deviation of all distances between node pairs.

Adjacency dependent on potential risks: Potential fields are crucial for cap-
turing social interactions [105, 106], extensively applied in autonomous vehicle
path planning [107] and trajectory prediction [108]. We use the vehicles’ kinetic
energy to better represent risks and potential collisions. When a vehicle collides
with another, its kinetic energy is transferred or converted, indicating an anoma-
lous energy transfer process as per energy transfer theory [109]. Thus, potential
traffic risk can be described as follows:

Ei = 1
2mi(si)2 = 1

2misi · s
i − 0
∆di

·∆di (5.3)

where Ei, mi, si are the kinetic energy, mass, and velocity of vehicle vi, respec-
tively. ∆di is the distance between the vehicle and another position in the traffic
environment. Since Ei = F i∆di, the equivalent force F i caused by vehicle vi can
be represented as:

F i = 1
2misi · s

i − 0
∆di

(5.4)

In a car-following scenario involving a follower vehicle vi and a leader vehicle
vj , the traffic risk and the corresponding internal equivalent force between the two
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vehicles can be represented as:

Eij = 1
2misi si − sj

|di − dj|
|di − dj| (5.5)

F ij = 1
2misi si − sj

|di − dj|
(5.6)

where sj, dj are the velocity and longitudinal position of vehicle vj . The term
(si− sj)/|di− dj| indicates the relative velocity between vehicles vi and vj divided
by their relative distance. The risk exists if the relative velocity is positive. This
strategy can be extended to consider the risk in both longitudinal and lateral di-
mensions for the vehicle group. At each time step t, the longitudinal equivalent
force and lateral equivalent force between two vehicles vi and vj can be represented
as:

F ij
t,y =


0, if si

t,y − sj
t,y ≤ 0

1
2misi

t,y

si
t,y−sj

t,y

|di
t,y−dj

t,y |
, o.w.

(5.7)

F ij
t,x =


0, if si

t,x − sj
t,x ≤ 0

1
2misi

t,x

si
t,x−sj

t,x

|di
t,x−dj

t,x|
, o.w.

(5.8)

where si
t,x, di

t,x denote the lateral speed and position of vehicle vi at time step t, and
si

t,y, di
t,y denote its longitudinal velocity and position. The superscript represents

the information of vehicle vj at the same time step. The resultant force F ij can be
represented as:

F ij
t =

√
(F ij

t,x)2 + (F ij
t,y)2 (5.9)
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Thus, the adjacency matrix incorporating the potential risk can be represented
as

Aij
t,P R = tanh

(
F ij

t

σF

)
(5.10)

where tanh(·) is a hyperbolic tangent function, and σF is the standard deviation of
all the forces between every pair of nodes.

Dynamic adjacency embedding: Let A be a dynamic adjacency matrix of di-
mension RT ×N×N which is formulated by concatenating A1, . . . , AT . The matrix A

represents a normalized aggregation of three adjacency matrices ANEIGH , ADIST ,
and AP R. This aggregation is represented as:

A = normalize(As)

= normalize(ANEIGH + ADIST + AP R)
(5.11)

where the function normalize(·) is a min-max scaling normalization method which
is applied to ensure that the elements of A reside within the bounded interval [0, 1].
As is the summation of the three adjacency matrices. Specifically, the normaliza-
tion formula is given by

normalize(As) = As −min(As)
max(As)−min(As)

(5.12)

with min(As) and max(As) representing the minimum and maximum values of all
elements in As. Such a formulation of the dynamic adjacency matrix A provides a
holistic and comprehensive representation of the dynamic interaction among ve-
hicles.

It is important to note that the graph G is sparse and time-varying over the time
horizon [1, T ]. Since no single vehicle is assigned to any relative position in the ve-
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hicle group over time, vehicles do not always occupy each of the eight positions,
resulting in graph sparsity. Furthermore, as vehicles move and distances between
them change over time, the adjacency matrix continually varies. Surrounding vehi-
cles may change their relative positions to the target vehicle. For example, a vehicle
on the left of the target vehicle may accelerate and change lanes, moving from node
vl to node vp. Vehicles can also leave the group, and new vehicles may join. This
sparsity and variation over time characterize the microscopic interactions between
vehicles.

5.1.2 Interaction Encoder

Figure 5.3: Intention Encoder.



56

To effectively capture the bidirectional dependencies among nodes in the graph
embedding, we incorporate the Diffusion Graph Convolutional Networks (DGCN)
module, drawing inspiration from [110]. The DGCN layer is denoted as DGCNL(·).
The diffusion convolution is applied to the graph signal, encompassing both the
forward diffusion process and its reverse:

Hl+1 = DGCNL(Hl)

=
K∑

k=1

(
Tk(Āf ) ·Hl ·Θk

f,l + Tk(Āb) ·Hl ·Θk
b,l

) (5.13)

where the output from the l-th layer is represented by Hl+1. The masked feature
matrix X serves as the input to the initial layer. The transformation block trans-
lating Hl to Hl+1 is labeled as DGCN(·). The forward transition matrix, Āf =

A/rowsum(A), captures dependencies from downstream nodes, while the back-
ward transition matrix Āb = AT /rowsum(AT ) reflects dependencies from upstream
nodes. The function Tk(·) is a Chebyshev polynomial of order k, approximating the
convolution operation involving the k-th layer neighbors of each node, expressed
as Tk(X) = 2X · Tk−1(X) − Tk−2(X). Θk

b,l and Θk
f,l are the learnable parameters

of the l-th layer, assigning weights to input data. For each vehicle in the vehicle
group, the forward diffusion process captures influences from surrounding vehi-
cles, while the reverse process captures influences it exerts on surrounding vehi-
cles. As illustrated in Figure 5.4, this bidirectional diffusion convolution process in
a DGCN layer incorporates influences from both upstream and downstream traffic
flows [110, 111], capturing inherent bidirectional and heterogeneous interactions
between the target vehicle and its surrounding vehicles.
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Figure 5.4: Forward and backward diffusion convolution process in a DGCN layer.

The calculation process of the three-layer DGCN module in the encoder can be
summarized as follows:

H1 = DGCNL
1 (X) (5.14)

H2 = σ(DGCNL
2 (H1)) + H1 (5.15)

Ho = DGCNL
3 (H2) (5.16)

where H1 and H2 are the outputs of the first and second DGCN layers, respectively.
The hidden state Ho is the encoded feature matrix of the graph G̃, which is the
output of the DGCN module.

We employ two DGCN modules, each containing a three-layer DGCN architec-
ture, to capture the bidirectional propagation among the vehicle group. One mod-
ule encodes the historical states of the vehicle group in the historical time horizon
[1, . . . , T ] into a historical graph embedding H̃T , while the other maps the vehicle
group’s historical states to the future time horizon [T + 1, . . . , T + F ] as a future-
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guided graph embedding H̃F .

H̃T = DGCNEncH(X) (5.17)

H̃F = DGCNEncF (X) (5.18)

H̃ = [H̃T , H̃F ] (5.19)

The resulting graph matrices from both modules are merged to form an inte-
grated embedding H̃ , covering a time window [1, T + F ] that spans both historical
and future horizons.

5.1.3 Intention Predictor

Although vehicle motion states can be ambiguous due to the multifaceted and
manifold potential driving intentions in multi-lane highway environments, the
spectrum of driving intentions is rather finite. Therefore, we categorize them as
follows: laterally, into lane keeping (LK), left lane change (LLC), and right lane
change (RLC), denoted as mlat = [mLK , mLLC , mRLC ] ∈ R3×F ; longitudinally,
into constant speed (CS), acceleration (ACC), and deceleration (DEC), denoted
as mlon = [mCS, mACC , mDEC ] ∈ R3×F . Denote the ground-truth intention set as
M = [mlat, mlon] ∈ R6×F . We employ a one-hot encoding strategy for both mlat and
mlon at every time step in future time horizon F .

We treat the intention prediction as a classification problem over the future
horizon [T + 1, T + F ]. Our intention classification approach draws inspiration
and parallels the methodology detailed in [19]. As presented in Figure 5.5, we
adopt the encoded graph representation H̃ as the input. We first incorporate two
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MLP layers to reduce the dimensionality and further encode the tensor to a latent
space with hidden size z. To extract the probability distributions related to lat-
eral and longitudinal intention classes, we adopt a LatMLP and a LonMLP layer
with softmax activation function to respectively generate lateral and longitudinal
intention classification along the time axis F . The mathematical formulations are:

HIP
2 = MLP IP

2 (MLP IP
1 (H̃)) (5.20)

m̂lat = softmax(LatMLP (HIP
2 )) (5.21)

m̂lon = softmax(LonMLP (HIP
2 )) (5.22)

where MLP IP
1 aggregates the hidden states of the vehicle groups and MLP IP

2

maps the input time horizon [1, T +F ] to the output time horizon [T +1, T +F ]. m̂lat

and m̂lon denote the predicted lateral and longitudinal intentions, respectively.

Figure 5.5: Intention Predictor.
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5.1.4 Multi-modal Decoder

Feature vectors derived from the encoder over different historical time steps within
[1, T ] demonstrate varying impacts on motion states at distinct steps in the future
horizon [T + 1, T + F ]. Given the inherent sequential nature of motion, a vehi-
cle’s movement patterns at the time mark T + 1 exhibit a more pronounced asso-
ciation with its immediate preceding time steps adjacent to T compared to those
at temporally distant steps. Nonetheless, the predicted trajectories modulated by
diverse intentions exhibit heterogeneity, emphasizing the importance of feature
fusion. To capture the interrelation between each time step in the input horizon,
which spans both historical and future horizons, and each time step in the output
future horizon, we use an enhanced adaptation of the intention-specific feature
fusion proposed by [50]. This method explicitly considers the relevance of the en-
coded features by fusing the feature vectors from both distinct historical and future
time steps for each intention, fostering an enriched comprehension of their impact
on future states.

As presented in Figure 5.6, for each predicted longitudinal and lateral intention
vector, denoted as m ∈ RF , within the intention matrix M̂ = [m̂lon, m̂lat] ∈ RF ×6, a
corresponding trainable weight matrix Wm ∈ R(T +F )×F is established. The matrix
Wm =

[
um

t,t′|t ∈ [1, T + F ], t′ ∈ [T + 1, T + F ]
]

for each intention consists of weight
ut,t′ that apportions the influence of the state at a given t to the state at t′. Specifi-
cally, the weight matrix Wm corresponding to each intention can be articulated and
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structured as follows in the matrix representation:

Wm =



um
1,1 . . . um

1,F

... . . .
...

um
T,1 . . . um

T,F

um
T +1,1 . . . um

T +1,F

... . . .
...

um
T +F,1 . . . um

T +F,F



∈ R(T +F )×F (5.23)

Figure 5.6: Intention feature fusion.

TThe weight matrices of the six intentions are stacked as Wmap ∈ R(T +F )×F ×6. A
batch matrix multiplication ⊗ paired with softmax activation seamlessly empha-
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sizes the six intentions’ contributions:

Whid = softmax(Wmap ⊗ M̂) (5.24)

Given the encoded feature vectors H̃ ∈ R(T +F )×z acquired from the Interaction
Encoder, the weight matrix Whid ∈ R(T +F )×F is multiplied to harmonize the influ-
ence of the intentions with latent states, subsequently mapping this confluence to
the states within the predictive horizon [T + 1, . . . , T + F ]. This fusion results in
the generation of the encoded latent states Hdec for the Multi-modal Decoder:

Hdec = Whid · H̃ (5.25)

To approximate the probabilistic trajectory distribution, we adhere to the foun-
dational principles of the total probability theorem and decompose P (Y |X) in the
following manner:

P (Y |X) = Pθ(Y |X, M)P (M |X) (5.26)

The output {Yt′ |∀t′ ∈ [T + 1, . . . , T + F ]} consists of a five dimentional vector
governing a bivariate Gaussian distribution of the lateral and longitudinal posi-
tion: mean µt′,x, µt′,y, standard deviation σ2

t′,x, σ2
t′,y, and correlation coefficient ρt′ .

As presented in Figure 5.7, the fused feature Hdec coupled with the probabilisti-
cally inferred intention matrix M̂ are concatenated and then fed into an MLP layer
MLP MD

1 . The encoded feature states HMD
1 are successively channeled into a de-

coder structured on the GRU architecture considering the temporal continuity of
predicted trajectory. We further adopt MLP MD

2 to transform the hidden state HMD
2

into the five parameters of the bivariate Gaussian distribution. In this context:

HMD
1 = MLP MD

1 (Hdec, M̂) (5.27)
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Figure 5.7: Multi-modal Decoder.

HMD
2 = GRU(HMD

1 ) (5.28)

Ŷ = MLP MD
2 (HMD

2 ) (5.29)

where Ŷ denotes the final output yielded by the model, signifying the bivariate
Gaussian distribution associated with the predicted position.

5.2 GIRAFFE: Interaction-aware Multi-agent

Multi-modal Trajectory Prediction

As the first component of the framework, accurate multi-modal trajectory predic-
tion based on the probabilistic modeling of various behaviors for multiple agents
is essential. To achieve this, we adopted an enhanced version of GIRAFFE, build-
ing upon the GIMTP framework proposed in [29]. GIRAFFE is specifically designed
to capture the interactions between the target vehicle and its surrounding vehicles.
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We improved the multi-agent prediction capabilities and optimized computational
efficiency by pruning layers through a combination of the following modules:

• Interaction Encoder: This module captures the interactions between vehicles
by employing a light-weight Diffusion Graph Convolution Network (DGCN)
architecture, which is adept at handling the flow of information across the
graph.

• Intention Predictor: This module maps the historical encodings and the
guiding future trajectories to provide only lateral intentions over the future
time horizon, effectively predicting the intentions.

• Multi-modal Decoder: This module merges the predicted intentions with
the latent space, generating multiple future trajectory distributions with their
corresponding probabilities for all the vehicles in the vehicle group.

The process begins with constructing a dynamic spatial-temporal graph as the
model input, where each node represents a vehicle, and edges denote the interac-
tions between vehicles. These interactions are weighted by factors such as neigh-
borhood proximity, distance, and potential collision risks. The Interaction Encoder,
utilizing a DGCN architecture, encodes these dynamic graph embeddings. The
DGCN captures bidirectional dependencies among vehicles by applying diffusion
convolutions, which consider both forward and reverse processes to model the
influence of surrounding vehicles and the target vehicle’s impact on them. This
encoder generates graph embeddings for both historical states and future-guided



65

Figure 5.8: GIRAFFE framework architecture.

trajectories, merging them into a comprehensive representation that spans the en-
tire time window of interest.
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The Intention Predictor tackles the classification of future driving intentions,
both laterally and longitudinally. Using the encoded graph representation, two
MLP layers reduce the dimensions and encode the features into a latent space. The
LatMLP and LonMLP layers, equipped with softmax activation, then classify the
lateral and longitudinal intentions over the future time horizon. These predictions
are crucial for understanding potential maneuvers the vehicle might take, such as
lane changes or speed adjustments.

Finally, the Multi-modal Decoder combines the predicted intentions of multiple
agents with the latent space to produce multiple future trajectory distributions for
each agent. This decoder employs a trainable weight matrix to merge features from
distinct historical and future time steps, emphasizing the importance of sequential
motion patterns. The GRU-based decoder ensures temporal continuity in the pre-
dicted trajectories, mapping the fused features to a bivariate Gaussian distribution
representing the future vehicle positions. This approach enables the model to gen-
erate probabilistic predictions for multiple agents, enhancing the overall accuracy
and reliability of trajectory forecasting.
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Chapter 6

Hypergraph-based Interaction

Relational Reasoning Motion

Generation and Planning

The core of RHINO is the learning of a multiscale hypergraph, where nodes repre-
sent agent behaviors and hyperedges capture their group-wise interactions. This
hypergraph is utilized to derive agent and interaction embeddings, thereby pro-
viding a deeper understanding of the underlying relational dynamics. Addition-
ally, we incorporate a multi-agent trajectory generation system based on the CVAE
framework to manage the stochasticity of each agent’s potential behaviors and mo-
tion states, producing plausible trajectories for each vehicle. To ensure precise tra-
jectory planning in dense traffic for the target vehicle, a neural planner evaluates
and selects the optimal trajectory, refining it for efficiency, comfort, and safety.
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Figure 6.1: RHINO Framework.

Thus, RHINO comprises the following modules:

• Hypergraph Relational Encoder, which transforms both the original his-
torical states and predicted multi-agent multi-modal trajectories into hyper-
graphs, modeling and reasoning the underlying relations between the vehi-
cles.

• Posterior Distribution Learner, which captures the posterior distribution of
the future trajectory given the historical states and the predicted multi-modal
future motion states of all the vehicles in the vehicle group.

• Residual Decoder, which decodes the embeddings by concurrently recon-
structing the historical states and generating the future trajectories.
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• Neural Planner and Refinement, which selects and optimizes the generated
trajectory planning based on all the generated possible trajectories of all the
vehicles considering safety, efficiency, and comfort.

To clarify and distinguish between motion generation for all vehicles in the
group and motion planning for the target vehicle, we developed two versions of
the model: RHINO-Gen and RHINO-Plan. RHINO-Gen includes the Hypergraph Re-
lational Encoder, Posterior Distribution Learner, and Residual Decoder modules.
RHINO-Plan includes all these modules plus the Neural Planner and Refinement
module.

6.1 Hypergraph Relational Encoder

We employ two Hypergraph Relational Encoder modules: a Historical Hyper-
graph Relational Encoder for handling historical states and a Future Hypergraph
Relational Encoder for predicted multi-agent multi-modal trajectories from GIRAFFE.
For the Historical Hypergraph Relational Encoder, the input historical states XT

form an Agent Hypergraph Ha
T . For the Future Hypergraph Relational Encoder,

the predicted multi-agent multi-modal trajectories X̂T +1:T +F form an Agent-Behavior
Hypergraph Hb

T , where each agent node is expanded into three lateral behavior
nodes. Both modules share the same structure regardless of the input hypergraph
types.
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6.1.1 Multiscale Hypergraph Topology Inference

To capture group-wise interactions in hypergraphs across various scales, we in-
fer a multiscale hypergraph that reflects interactions at different group sizes. Let
H = {H(0),H(1), · · · ,H(S)} be a multiscale hypergraph, and V = {v1, v2, · · · , vN}

be a set of nodes. At any scale s, H(s) = (V , E (s)) has a hyperedge set E (s) =

{e(s)
1 , e

(s)
2 , · · · , e

(s)
K } representing group-wise relations with K hyperedges. A larger

s indicates a larger scale of agent groups, while H(0) = (V , E (0)) models the finest
pair-wise agent connections. The topology of each H(s) is represented as an inci-
dence matrix H(s).

Figure 6.2: Hypergraph encoder.
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6.1.1.1 Affinicy Modeling.

To understand and quantify dynamic interactions between agents, we employ tra-
jectory embedding to distill motion states into compact, informative representa-
tions. To infer a multiscale hypergraph, we construct hyperedges by grouping
agents with highly correlated trajectories, represented as high-dimensional feature
vectors. For the i-th agent, the trajectory embedding is denoted as qi, a function
of the agent’s state history over a temporal window from time 1 to time T . The
embedding function fQ, an MLP, transforms the motion states X i into a vector in
Rd. Mathematically, this is represented as:

qi = fQ(X i) ∈ Rd (6.1)

The affinity between agents is represented by an affinity matrix A, containing
the pairwise relational weights between all agents. The affinity matrix is defined
as:

A = {Aij|i, j = 1, . . . , N} ∈ RN×N (6.2)

Each element Aij is computed as the correlation between the trajectory embed-
dings of the i-th and j-th agents. The correlation is the normalized dot product of
the two trajectory embeddings, expressed as:

Aij = q⊤
i qj

∥qi∥2∥qj∥2
(6.3)

Here, ∥·∥2 denotes the L2 norm. The relational weight Aij measures the strength
of association between the trajectories of the i-th and j-th agents, capturing the
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degree to which their behaviors are correlated. This enables the assessment of in-
teraction patterns and can uncover underlying social or physical laws governing
agent dynamics.

6.1.1.2 Hyperedge Forming.

Formulating a hypergraph necessitates the strategic formation of hyperedges that
reflect the complex interactions between the nodes in the system. Initially, the 0-th
scale hypergraphH(0) is considered, where the construction is based on pair-wise
connections. Each node establishes a link with another node that has the highest
affinity score with it.

As the system’s complexity scales up, starting from scale s ≥ 1, the method-
ology shifts towards group-wise connections. This shift is based on the intuition
that agents within a particular group should display strong mutual correlations,
indicating a propensity for concerted action. To implement this, a sequence of in-
creasing group sizes {K(s)}S

s=1 is established. For every node, denoted by vi, the
objective is to discern a group of agents that are highly correlated, ultimately form-
ing K(s) groups or hyperedges at each scale s. The hyperedge associated with a
node vi at a given scale s is indicated by e

(s)
i . The determination of the most cor-

related agents is framed as an optimization problem, aiming to link these agents
into a hyperedge that accounts for group dynamics:

e
(s)
i = arg max

Ω⊆V
∥AΩ,Ω∥1,1 (6.4)

s.t. |Ω| = K(s); vi ∈ Ω; i = 1, . . . , N (6.5)



73

The culmination of this hierarchical structuring is a multiscale hypergraph, en-
capsulated by the set {H(s) ∈ RN×N}S

s=1, where each scale s embodies a distinct
layer of abstraction in representing agent relationships within the hypergraph.

Multiscale hyperedge formation is computationally efficient for identifying high-
order relationships from a single matrix, and it ensures stable and informative
training of the affinity matrix through back-propagation.

6.1.2 Hypergraph Neural Message Passing

To uncover patterns in agent motion states from the inferred multiscale hyper-
graph, we develop a multiscale hypergraph neural message passing technique.
This iteratively computes agent and interaction embeddings through node-to-hyperedge
and hyperedge-to-node processes, as shown in Figure 6.3. Initially, each agent’s
embedding is derived from its trajectory. For any given scale, the initial embed-
ding for the i-th agent, vi, is set as vi = qi ∈ Rd. During the node-to-hyperedge
phase, agent embeddings are aggregated to generate interaction embeddings. Sub-
sequently, in the hyperedge-to-node phase, each agent’s embedding is updated
based on the associated interaction embeddings. This iterative process refines
agent embeddings by considering evolving relationships encapsulated within hy-
peredges.

Node-to-Hyperedge Mapping nodes to hyperedges is crucial in constructing
the hypergraph topology. Each node vj is associated with a hyperedge ei if vj is
an element of ei. This mapping defines the hyperedge interaction embedding. The
interaction embedding for a hyperedge ei is a function of the embeddings of its con-
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Figure 6.3: Hypergraph encoder.

stituent nodes, modulated by the neural interaction strength ri and categorized by
coefficients ci,l. The per-category functionFl models each interaction category and
processes the aggregated node embeddings. Each Fl is a trainable MLP, process-
ing the node embeddings within a specific interaction category. The mathematical
formulation is:

ei = ri

L∑
l=1

ci,lFl

∑
vj∈ei

vj

 ∈ Rd (6.6)

The neural interaction strength ri captures the intensity of interaction within
the hyperedge and is obtained through a trainable model Fr, applied to a col-
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lective embedding zi with a sigmoid function σ. This collective embedding zi is
the weighted sum of the individual node embeddings within the hyperedge. The
weight wj for each node is determined by a trainable MLP Fw. The mathematical
formulations are:

ri = σ(Fr(zi)) (6.7)

zi =
∑

vj∈ei

wjvj (6.8)

wj = Fw

(
vj,

∑
vm∈ei

vm

)
(6.9)

The neural interaction category coefficients ci,l denote the probability of the l-
th neural interaction category within L possible categories. These coefficients are
computed using a softmax function applied to the output of another trainable MLP
Fc, adjusted by a Gumbel distribution g and a temperature parameter τ :

ci = softmax
(
Fc(zi) + g

τ

)
(6.10)

Hyperedge-to-Node The hyperedge-to-node mapping updates and refines agent
embeddings within the hypergraph framework. Each hyperedge ej maps back to
its constituent nodes vi, assuming vi is included in ej . The primary goal is to up-
date the agent’s embedding using the function Fv, a trainable MLP. The updated
agent embedding vi results from applying Fv to the concatenation of the agent’s
current embedding and the sum of the embeddings of all hyperedges the agent is
part of. Formally, the update rule is:
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vi ← Fv

 vi,
∑

ej∈Ei

ej

 ∈ Rd (6.11)

where Ei = {ej | vi ∈ ej}denotes the set of hyperedges associated with the i-th node
vi, and the square brackets [·, ·] symbolize the operation of embedding concatena-
tion. This operation merges the individual node embedding with the collective
information conveyed by the associated hyperedges, encapsulating the influence
exerted by the hyperedges on the individual agent.

The framework iteratively applies the node-to-hyperedge and hyperedge-to-
node phases multiple times. This iterative process refines agent embeddings by
considering the evolving relationships encapsulated within hyperedges.

Upon completion of these iterations, the output is constructed as the concatena-
tion of the agent embeddings across all scales. The final agent embedding matrix V

comprises the embeddings of all agents, where each agent embedding vi is a con-
catenation of the embeddings from all scales. This is mathematically expressed
as:

V = [vi], ∀i ∈ [1, . . . , N ] ∈ RN×|d(S+1)| (6.12)

where
vi = [v(0)

i , v
(1)
i , . . . , v

(S)
i ] ∈ R|d(S+1)| (6.13)

In these formulations, v
(s)
i denotes the embedding of the i-th agent at scale s,

and |d(S + 1)| represents the dimensionality of the concatenated embeddings, ac-
counting for all S + 1 scales.
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6.2 Posterior Distribution Learner

Figure 6.4: Posterior Distribution Learner.

In our study, we incorporated multi-scale hypergraph embeddings into a multi-
agent trajectory generation system using the CVAE framework [112] to address
the stochastic nature of each agent’s behavior. Let log p(XF |XT ) denote the log-
likelihood of predicted future trajectories XF given past trajectories XT . The cor-
responding evidence lower bound (ELBO) is defined as follows:

log p(XF |XT ) ≥ Eq(Z|XF ,XT ) log p(XF |Z, XT )

− KL(q(Z|XF , XT ) ∥ p(Z|XT )),
(6.14)

where Z ∈ RN×dz represents the latent codes corresponding to all agents; p(Z|XT )

is the conditional prior of Z, modeled as a Gaussian distribution. In this frame-
work, q(Z|XF , XT ) is implemented through an encoding process for embedding
learning, and p(XF |Z, XT ) is realized via a decoding process that forecasts the fu-
ture trajectories XF .
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Thus, the goal of the Posterior Distribution Learner is to derive the Gaussian
parameters for the approximate posterior distribution. This entails calculating the
mean µq and the variance σq from the final output embeddings VF and the target
embeddings VT . These parameters are produced using two distinct trainable mul-
tilayer perceptrons (MLPs), denoted asFµ andFσ. The latent code Z, which repre-
sents potential trajectories, is then sampled from a Gaussian distribution character-
ized by these means and variances. The final output embeddings Vout are formed
by concatenating the latent code Z with the final output embeddings VF and the
target embeddings VT . The equations that describe these processes are as follows:

µq = Fµ(VF , VT ) (6.15)

σq = Fσ(VF , VT ) (6.16)

Z ∼ N (µq, Diag(σ2
q )) (6.17)

Vout = [Z, VF , VT ] (6.18)

In these notations, µq and σq represent the mean and variance of the approxi-
mated posterior distribution. Fµ andFσ are the trainable MLPs that produce these
parameters. Z denotes the latent code of possible trajectories, and V out stands for
the output embeddings, which is an informative fusion encapsulating the potential
future states as predicted by the model.
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Figure 6.5: Residual Decoder.

6.3 Residual Decoder

The Residual Decoder is designed with a dual objective: predicting future trajecto-
ries and reconstructing past trajectories from the given embeddings. This decoder
employs successive processing blocks, each contributing a residual that refines the
trajectory estimates. The first processing block, FBlock1, takes the output embed-
dings V out and the target past trajectory XT to generate initial estimates of the fu-
ture and reconstructed past trajectories, denoted as X̂F,1 and X̂T,1 respectively.

X̂F,1, X̂T,1 = FBlock1(V out, XT ) (6.19)

Next, the second block, FBlock2, refines these estimates by considering the out-
put embeddings and the residual of the past trajectory, defined as the difference
between the target past trajectory and the initial reconstructed past trajectory XT −

X̂T,1. This process yields the second set of refined residuals, X̂F,2 and X̂T,2:
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X̂F,2, X̂T,2 = FBlock2(V out, XT − X̂T,1) (6.20)

BothFBlock1 andFBlock2 are composed of a GRU encoder for sequence encoding
and two MLPs serving as the output header. The final predicted future trajectory
X̂F and the reconstructed past trajectory X̂T are obtained by summing the respec-
tive residuals from both processing blocks:

X̂F = X̂F,1 + X̂F,2 (6.21)

X̂T = X̂T,1 + X̂T,2 (6.22)

This iterative refinement approach leverages the deep learning model’s capac-
ity to capture complex patterns in the data, enhancing the accuracy of both pre-
dictions and reconstructions. The Residual Decoder ultimately generates a set of
K planned trajectories for each vehicle in the vehicle group.

The Residual Decoder generates number of K planned trajectories for each ve-
hicle in the vehicle group.

6.4 Neural Planner and Refinement

To ensure robust motion planning for the target vehicle, based on the multi-modal
initial planning results and the generated motion states of surrounding vehicles,
we adopt a prediction-guided pipeline for planning refinement. Initially, the best-
generated trajectory is selected, followed by planning optimization to refine this
trajectory.
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Figure 6.6: Prediction guided safety evaluation workflow.

To enhance safety and motion performance, we evaluate and select the most
optimal trajectory for navigation. The objective function for this process is defined
as:
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τ ∗ = arg min
τ∈Λ

C(τ, Ŷ
(K,N)

T +1:T +F ) (6.23)

where the cost function C for a given trajectory τ and predicted states Ŷ
(K,N)

T +1+F is
the sum of individual cost components at each step t, weighted by their respective
importance:

C(τ, Ŷ
(K,N)

T +1:T +F ) =
∑

i

ωi

∑
t

ci
t (6.24)

Here, ci
t represents the cost of type i at step t, encompassing efficiency, comfort,

and safety over the prediction horizon from T + 1 to T + F , with ωi as the weight
for each cost type i.

A candidate planned trajectory τ comprises positions (xt, yt) over the time steps
of interest:

τ = {(xt, yt)|∀t ∈ [T + 1, . . . , T + F ]} (6.25)

The efficiency cost aims to maintain a consistent longitudinal speed within
speed limits, thereby enhancing on-road progress. This is crucial for ensuring the
vehicle reaches its destination in a timely manner while adhering to traffic regula-
tions. The efficiency cost is mathematically expressed as:

cefficiency
t = ẋt − vlimit (6.26)

The comfort cost penalizes fluctuations in longitudinal acceleration, jerk, and
lateral acceleration. This is important for providing a smooth driving experience,
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reducing the likelihood of abrupt movements that could discomfort passengers or
cause wear on vehicle components. The comfort cost is defined as:

ccomfort
t = ẍt + ÿt + ...

x t (6.27)

Safety is addressed by performing a collision check between the predicted oc-
cupancy grids for the target and surrounding vehicles. If a collision is detected,
the trajectory in question is discarded. The Potential Risks safety evaluation met-
ric, introduced by [109], computes the regulated resultant force between the target
vehicle and other vehicles as a measure of potential risks. This ensures that the se-
lected trajectory minimizes the risk of accidents and maintains a safe distance from
other vehicles. The safety cost is formulated as:

PR
(tar,j)
t = tanh


√√√√√F

(tar,j)
t,x

σF x

2

+
F

(tar,j)
t,y

σF y

2
 (6.28)

The safety cost aggregates the potential risks associated with all other vehicles:

csafety
t =

∑
j∈[1,N ]

PR
(tar,j)
t (6.29)

This comprehensive cost evaluation ensures that the vehicle’s planned trajec-
tory optimizes for efficiency and comfort while maintaining the highest safety stan-
dards.
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Chapter 7

Experiment Settings

7.1 Data Preparations

This research utilizes two well-known datasets for training and validating the model:
the Next Generation Simulation (NGSIM) dataset [113, 114] and the HighD dataset
[115].

The NGSIM dataset provides an extensive collection of vehicle trajectory data,
capturing traffic activity on the eastbound I-80 in the San Francisco Bay area and
the southbound US 101 in Los Angeles. Compiled by the U.S. Department of Trans-
portation in 2015, this dataset includes real-world highway scenarios recorded us-
ing overhead cameras at a sampling rate of 10 Hz.

In contrast, the HighD dataset is based on aerial drone recordings conducted
at a frequency of 25 Hz between 2017 and 2018 near Cologne, Germany. Covering
approximately 420 meters of bidirectional roadways, it documents the movements
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of around 110,000 vehicles, including cars and trucks, traveling a cumulative dis-
tance of 45,000 km.

Figure 7.1: NGSIM Dataset. (a) A digital video camera recording vehicle trajectory
data I-80. (b) I-80 study area. (c) Recorded vehicles with bounding boxes. and
HighD dataset (right).

After pre-processing, the NGSIM dataset includes 662,000 rows of data, cap-
turing 1,380 individual trajectories. The HighD dataset contains 1.09 million data
entries, covering 3,913 individual trajectories. For model training and evaluation,
the data is divided into 70% for the training set and 30% for the test set. The tem-
poral parameters for the model are set to T = 30 frames for the historical horizon
and F = 50 frames for the prediction horizon.
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Figure 7.2: HighD Dataset. (a) A drone capturing traffic from a bird’s eye view on
a road section with a length of about 420 m. (b) Recorded vehicles with bounding
boxes.

7.2 Training Metrics

Training Metrics of GTIMP Model and GIRAFFE Model. This research adopts
a two-stage training strategy, leveraging various loss functions to optimize the
learning efficiency of neural network parameters.

In the first phase, spanning five epochs, the goal is to minimize the Mean Square
Error (MSE) loss, a common metric for trajectory prediction problems:

MSE(Ŷ ; Y ) = 1
F

T +F∑
t′=T +1

(
(µt′,x − xt′)2 + (µt′,y − yt′)2

)
(7.1)

where Y = {(xt′ , yt′)} represents the ground truth position of the target vehicle at
timestamp t′, Ŷ = {(µt′,x, µt′,y)} denotes the predicted position.

From the sixth epoch onwards, the focus transitions to enhancing the network’s
capabilities via the negative log-likelihood (NLL) loss:

NLL(Ŷ ; Y ) = − log
(∑

m

Pθ(Y |X, m)P (m|X)
)

(7.2)
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For each training instance, a single intention category is designated, steering
the optimization process towards this variant of the NLL loss function:

NLL(Ŷ ; Y ) = − log(Pθ(Y |X, m)P (m|X))

= − log Pθ(Y |X, m)− log P (m|X)

= NLLtraj(Ŷ ; Y ) + NLLint(M̂ ; M)

(7.3)

The prediction of intentions is treated as a classification problem along the fu-
ture time horizon, employing the cross-entropy loss for NLLint:

NLLint(M̂ ; M) = −
∑

m∈M

m log P (m̂|X) (7.4)

where m denotes the ground truth intention. For the trajectory-related term NLLtraj ,
based on the bivariate Gaussian distribution, we have:

NLLtraj(Ŷ ; Y )

=
T +F∑

t′=T +1

(
log

(
2πσt′,xσt′,y

√
1− ρ2

t′

+ 1
2(1− ρ2

t′)

(
(µt′,x − xt′)2

σ2
t′,x

−(µt′,x − xt′)(µt′,y − yt′)
σt′,xσt′,y

+ (µt′,y − yt′)2

σ2
t′,y

)))
(7.5)

Consequently, the overall two-stage loss function L is formulated as:

L =



MSE(Ŷ ; Y ) + α ·NLLint(M̂ ; M)

+β ·MSE(H̃F ; HF ), if epoch ≤ 5

NLLtraj(Ŷ ; Y ) + α ·NLLint(M̂ ; M)

+β ·MSE(H̃F ; HF ), o.w.

(7.6)
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where Y and Ŷ represent the ground truth and predicted position distributions
of the target vehicle, respectively. Similarly, M and M̂ denote the ground truth
and predicted intentions. Additionally, HF and H̃F represent the ground truth
and predicted values corresponding to the future positions of all vehicles in the
vehicle group, including the target and surrounding vehicles.

The proposed network architecture is implemented using the PyTorch deep
learning framework. The Adam optimizer is employed with an initial learning
rate of 0.001 and a decay factor to train the network in an end-to-end manner. The
parameter settings are presented in Table 7.2.

Table 7.1: Hyperparameter Settings of GIMTP and GIRAFFE

Parameter Value Parameter Value
T 30 neuron # of GRU 128
F 50 neuron # of MLPMD

1 128
neuron # of DGCN 256 neuron # of MLPMD

2 128
neuron # of MLPIP

1 256 learning rate 0.01
neuron # of MLPIP

2 256 decaying factor 0.95
neuron # of LatMLP 256 α 0.2
neuron # of LonMLP 256 β 0.1

Training Metrics of RHINO Model. The training loss of RHINO consists of three
components:

The Evidence Lower Bound (ELBO) Loss: This is a standard loss used in vari-
ational autoencoders [112]. It consists of a reconstruction loss, which measures
the discrepancy between the predicted and actual future trajectories, and a reg-
ularization term, expressed as the Kullback-Leibler (KL) divergence between the
learned posterior distribution and a prior distribution. This regularization helps
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the learned distribution approximate the prior distribution, improving generaliza-
tion.

Lelbo = α∥X̂F −XF∥2
2 + βKL

(
N
(
µq, Diag(σ2

q )
) ∥∥∥∥N (0, λI)

)
(7.7)

The Historical Trajectory Reconstruction Loss: This loss measures the accu-
racy of the model in reconstructing the historical trajectories of vehicles. By mini-
mizing this loss, the model is trained to accurately recall past states, which is cru-
cial for understanding the dynamics and behaviors that lead to future states.

Lrecon = γ∥X̂T −XT∥2
2 (7.8)

The Variety Loss: Inspired by Social-GAN [71], this component ensures diver-
sity in the predicted future trajectories. It does so by minimizing the error across
multiple sampled trajectories, thereby encouraging the model to generate a wide
range of plausible future scenarios, which is vital in the context of multi-agent sys-
tems where uncertainty and variability are inherent.

Lvariety = min
k
∥X̂(k)

F −XT∥2
2 (7.9)

The total training loss function is a weighted sum of these components:

L = αLelbo + βLrecon + γLvariety (7.10)

Each term in the loss function serves a specific purpose. The coefficient α scales
the ELBO loss to ensure the model balances between accurate future trajectory
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prediction and adherence to the prior distribution. The coefficient β scales the
reconstruction loss to enforce the model’s ability to recall and utilize historical data
effectively. The coefficient γ scales the variety loss to promote the generation of
diverse and realistic future trajectories. The parameter λ in the KL divergence term
controls the prior distribution’s influence on the learned posterior distribution.

Table 7.2: Hyperparameter Settings of RHINO

Parameter Value Parameter Value
T 30 decaying factor 0.6

nF 50 α 1
neuron # of MLPs 128 β 0.8

learning rate 0.001 γ 0.5

7.3 Evaluation Metrics

To measure the predictive accuracy of the model, we use the Root Mean Square Er-
ror (RMSE). This metric quantifies the deviation between the predicted position,
represented as (µl

t′,x, µl
t′,y), and the ground truth position, signified by (xl

t′ , yl
t′).

Such evaluations are undertaken across discrete temporal markers t′ encompassed
within the predictive horizon prediction horizon [T + 1, T + F ].

RMSE =

√√√√ 1
LF

L∑
l=1

T +F∑
t′=T +1

(
(µl

t′,x − xl
t′)2 + (µl

t′,y − yl
t′)2
)

(7.11)

where the superscript l is employed to signify the l-th test sample from the aggre-
gate test sample set with length L. In contexts entailing multi-modal predictions,
our proposed model is capable of rendering multiple trajectory outputs. Amongst
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these, the trajectory bearing the preeminent probability is harnessed for RMSE
computation. Conversely, in more conventional settings, our model yields a single
trajectory, which is then appropriated for the ensuing evaluation.

7.4 Baseline Models

We compare our proposed model with the following baseline models:

• Social-LSTM (S-LSTM) [17]: his model uses a shared LSTM to encode the
raw trajectory data for each vehicle and aggregates the features of different
vehicles through a social pooling layer.

• Convolutional Social-LSTM (CS-LSTM) [42]: Unlike S-LSTM, this model
captures social interactions by stacking convolutional and pooling layers and
accounts for multi-modality based on the predicted intention.

• Planning-informed prediction (PiP) [87]: This model integrates trajectory
prediction with the planning of the target vehicle by conditioning on multiple
candidate trajectories.

• Graph-based Interaction-aware Trajectory Prediction (GRIP) [18]: This model
employs a graph-based representation for interactions between objects, uses
graph convolutional layers for feature extraction, and implements an encoder-
decoder LSTM for predictive analysis.
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Chapter 8

Experiment Results and Discussion

In this chapter, we present the results of our experiments conducted using two
prominent datasets for trajectory prediction. We evaluate the performance of four
baseline models in comparison to our proposed framework, employing specific
evaluation metrics within a three-lane highway scenario. Additionally, we per-
form ablation studies to highlight the importance of each model component and
to provide deeper insights into the design of our model.

8.1 Model Performance Comparison

Performance Comparison of GIMTP Model. The comparative results are pre-
sented in Table 8.1 and Figure 8.1. Our proposed framework exhibits superior per-
formance, as measured by Root Mean Square Error (RMSE), across a prediction
horizon of 50 frames when compared to the existing baseline models. Specifically,
it achieves a lower prediction error than S-LSTM, CS-LSTM, PiP, and GRIP. These
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results underscore the effectiveness of our model in capturing essential features
necessary for accurate long-term trajectory predictions.

Table 8.1: Prediction Error Obtained by Different Models in RMSE

Dataset Horizon
(Frame) S-LSTM CS-

LSTM PiP GRIP GIMTP

NGSIM

10 0.65 0.61 0.55 0.37 0.35
20 1.31 1.27 1.18 0.86 0.82
30 2.16 2.08 1.94 1.45 1.39
40 3.25 3.10 2.88 2.21 2.24
50 4.55 4.37 4.04 3.16 3.05

HighD

10 0.22 0.22 0.17 0.29 0.17
20 0.62 0.61 0.52 0.68 0.39
30 1.27 1.24 1.05 1.17 0.73
40 2.15 2.10 1.76 1.88 1.02
50 3.41 3.27 2.63 2.76 1.42

Figure 8.1: Prediction error obtained by different models in RMSE on NGSIM
dataset (left) and HighD dataset (right).

Overall, our proposed framework not only surpasses the baseline models on
the HighD dataset but also demonstrates commendable performance on the NGSIM
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dataset. These findings validate the robustness and reliability of our approach in
diverse traffic scenarios.

Performance Comparison of RHINO Model. Since the RHINO framework incor-
porates the enhanced GIRAFFE, we compare the trajectory generation capabilities of
RHINO-Gen with the original GIMTP and the enhanced GIRAFFE. Both the RHINO-Gen

model and the enhanced GIRAFFE model consistently outperform the baseline mod-
els, demonstrating superior performance across various metrics. This suggests
that our proposed approaches effectively address the limitations of traditional mod-
els, providing a robust framework for capturing complex interactions and gener-
ating accurate predictions.

Table 8.2: Generation Error Obtained by Different Models in RMSE

Dataset Horizon
(Frame) GIMTP GIRAFFE RHINO

NGSIM

10 0.35 0.38 0.32
20 0.82 0.89 0.78
30 1.39 1.45 1.34
40 2.24 2.46 2.17
50 3.05 3.24 2.97

HighD

10 0.17 0.19 0.19
20 0.39 0.42 0.26
30 0.73 0.81 0.42
40 1.02 1.13 0.65
50 1.42 1.56 0.89



95

Figure 8.2: Generation error obtained by different models in RMSE on NGSIM
dataset (left) and HighD dataset (right).

8.2 Results of Multi-modal Predictions

We begin by evaluating the performance of the multi-modal prediction approach.
The results of experiments involving the prediction of multiple trajectories, consid-
ering different lateral intentions using the HighD dataset, are displayed in Figure
8.3. The green line indicates the ground truth trajectory, while the solid red line
represents the predicted trajectory using the fused intention features. Potential tra-
jectories, influenced by the application of a lateral intention from the current time
step, are depicted by the purple lines.

In this experiment, the probabilities of Lane Keeping (LK), Left Lane Change
(LLC), and Right Lane Change (RLC) intentions are fixed at 1 throughout the
entire future time horizon, enforcing mandatory lane changing or lane keeping
for the predicted trajectories. The color opacity signifies the probability of lane-



96

changing intentions at the current time step T , with more solid colors indicating
higher probabilities, and lighter colors representing lower probabilities.

Figures 8.3 illustrate the longitudinal and lateral positions over time, respec-
tively. Figure 8.4 showcases the prediction results of the target vehicles along
with the historical trajectories of the surrounding vehicles across six experiments
in three-lane highway scenarios, with the dashed grey lines indicating the lane
markings’ positions.

Our model demonstrates proficiency in predicting the probabilities associated
with each lateral and longitudinal intention while concurrently forecasting the cor-
responding future trajectories for each intention. Additionally, the model allows
for manual inputs and adjustments of the intentions and their respective proba-
bilities at each time step within the future horizon F , enabling the observation of
the corresponding generated trajectories. This flexibility enhances the evaluation
of the model’s performance across various scenarios.

8.3 Results of Trajectory, Intention, and Interaction

Prediction

We conducted a series of experiments to analyze the predicted trajectories, inten-
tions, and interactions of vehicles, as illustrated in Figure 8.5. Figures 8.5(b) and
8.5(e) specifically depict the predicted intentions of the target vehicle at each time
step within the future time horizon for different lane-changing scenarios. Figure
8.5(b) demonstrates the process of a right lane change, while Figure 8.5(e) focuses
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Figure 8.3: Results of multi-modal trajectory generation.

Figure 8.4: Results of multi-modal trajectory prediction experiments in three-lane
highway scenarios.
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on lane-keeping scenarios.
Additionally, Figures 8.5(c) and 8.5(f) present the adjacency matrices of the

vehicle group, which are generated by the historical graph embedding H̃T and
the future-guided graph embedding H̃F within the DGCN encoder of the Graph
Interaction Encoder. These adjacency matrices reflect vehicle interactions at the
current time step, with lighter colors indicating more significant interactions.

The future-guided adjacency matrix generated by the model effectively predicts
vehicles’ entry into and exit from the vehicle group, along with their respective
motion states. This future-guided adjacency matrix is used as part of the input for
the Intention Predictor to create fused hidden states for the future horizon. The
proposed model demonstrates a successful integration of accurate future trajectory
predictions with future intention estimations, highlighting its capability to foresee
vehicle interactions and motion states accurately.

8.4 Results of Planning Trajectory Generation

The experimental results for planning trajectory generation of the top K trajectories
using the HighD dataset are presented in Figure 8.6. The historical trajectory is de-
picted by the orange dashed line, while the green line represents the ground truth
future trajectory. The potential trajectories generated by RHINO-Gen are shown in
blue, with the best generation highlighted by the solid red line. RHINO-Gen demon-
strates strong generative capabilities, effectively producing plausible motion plan-
ning scenarios. This proficiency is crucial for applications that require anticipat-
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Figure 8.5: Results of trajectory prediction experiment. (a) and (d) Predicted tra-
jectory v.s. ground truth trajectory. (b) and (e) Predicted lateral intention with
probability. (c) and (f) Adjacency matrix of the vehicle group at historical and
future time steps.

ing multiple potential future states. The generative approach not only enhances
predictive accuracy but also provides valuable insights into possible future tra-
jectories, facilitating more informed decision-making. The diversity of generated
trajectories showcases the model’s ability to account for different potential driving
behaviors, thereby improving the robustness of motion planning.
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Figure 8.6: Results of trajectory planning generation in three-lane highway scenar-
ios.

8.5 Results of Planning Trajectory Error Analysis

The analysis of trajectory generation inaccuracies is illustrated in Figure 8.7. The
generated trajectories in both the longitudinal and lateral axes, along with the error
box plots, are displayed. The box plot reveals that errors in both axes increase with
the prediction time step. However, the errors remain within an acceptable range,
indicating decent model performance. These findings demonstrate high precision
in trajectory generation when compared with the ground truth future trajectory.
Notably, the model maintains a lower error margin for shorter prediction horizons,
which is critical for short-term planning and reactive maneuvers in dynamic traffic
scenarios. The consistency of the error growth pattern suggests that the model’s
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predictive capability degrades gracefully over longer horizons, maintaining prac-
tical utility in real-world applications.

Figure 8.7: Results of longitudinal and lateral error in trajectory generation plan-
ning.

8.6 Results of Planning Trajectory Refinement

RHINO-Plan enhances the framework by refining trajectory planning for the target
vehicle, with a focus on optimizing safety, efficiency, and comfort. This prediction-
guided refinement ensures that the generated plans are not only feasible but also
optimized for practical application, addressing critical concerns in real-world de-
ployment.

Figure 8.8 illustrates the performance comparison of planning trajectories. Mul-
tiple plausible trajectories are generated for all vehicles in the scenario, with the
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Figure 8.8: Results of planning trajectory performance comparison.

refined planned trajectory contrasted against the best and worst generated trajec-
tories. The heatmaps in the right columns display the safety cost csafety for the
corresponding trajectory planning, indicating a lower safety cost for the refined
planned trajectory and a higher cost for the worst generated trajectory. This com-
parison underscores the effectiveness of RHINO-Plan in optimizing trajectories for
safety, thereby reducing potential risks in complex traffic environments.

Figure 8.9 presents the results of planning trajectory optimization and refine-
ment. The vehicle dynamics parameters, including heading angle, longitudinal
and lateral positions, velocity, and acceleration of the refined motion planning and
candidate planning trajectories, are displayed. The heatmap shows the cost values
of the 20 candidate trajectory planning. Initially, the motion planning for the target
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Figure 8.9: Results of planning trajectory optimization and refinement.

vehicle generates positions that may amplify inaccuracies during derivative calcu-
lations, rendering them infeasible for vehicle controllers. The best motion gener-
ation, characterized by the minimum total cost—encompassing safety, efficiency,
and comfort—is selected. The planning refinement further smooths the best tra-
jectory, ensuring that the vehicle dynamics, particularly acceleration and velocity,
are brought to a feasible level.

This refinement process is critical for ensuring that the planned trajectories are
not only theoretically optimal but also practically executable by real-world vehicle
controllers. The optimization process includes fine-tuning the trajectory to adhere
to realistic vehicle dynamics constraints, such as maximum acceleration and de-
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celeration limits, ensuring smooth transitions and maintaining passenger comfort.
By prioritizing these aspects, RHINO-Plan enhances the overall reliability and per-
formance of the system, leading to human-like motion planning that is both safe
and efficient.

8.7 Ablation Study

Abalation Study of GIMTP Model. An ablation study was conducted to gain
deeper insights into the performance of the GIMTP model, particularly the impact
of its various components on prediction accuracy. This was achieved by selectively
disabling specific components from the GIMTP architecture. The study considered
the following four variants:

• GIMTP w/o PR: This variant excludes the adjacency matrix influenced by po-
tential risks, relying solely on neighborhood and distance metrics within the
Dynamic Graph Embedding Module.

• GIMTP w/o DGCN: This variant replaces the Diffusion Graph Convolutional
Network (DGCN) architecture in the Interaction Encoder with a simpler
Graph Convolutional Network (GCN).

• GIMTP w/o FG: This variant omits the prediction of the encoded future-guided
graph matrix that represents future states within the Interaction Encoder, us-
ing only historical motion states for intention prediction and feature fusion.
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• GIMTP w/o FF: This variant eliminates feature fusion for each distinct lateral
and longitudinal intention, opting instead for a straightforward feature map-
ping from the hidden states generated by the Intention Encoder.

Table 8.3: Ablation Test Results of GIMTP in RMSE

Horizon
(Frame)

GIMTP
w/o PR

GIMTP
w/o

DGCN
GIMTP
w/o FG

GIMTP
w/o FF GIMTP

10 0.17 0.17 0.20 0.19 0.17
20 0.40 0.42 0.57 0.53 0.39
30 0.75 0.79 1.14 0.98 0.73
40 1.05 1.09 1.80 1.64 1.02
50 1.48 1.52 2.27 2.33 1.42

Figure 8.10: Ablation study of GIMTP.

The results, as shown in Table 8.3 and Figure 8.10, highlight several important
observations. Firstly, the exclusion of the adjacency matrix influenced by poten-
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tial risks (GIMTP w/o PR) results in a slight increase in prediction error, suggest-
ing that potential risks contribute positively to the interaction graph’s accuracy.
However, the impact of this component diminishes when combined with other
modules. Secondly, the omission of the DGCN module (GIMTP w/o DGCN) leads
to a notable decline in performance, indicating that the DGCN layers are crucial
for extracting dynamic graph-based information from the vehicles’ motion states.
Thirdly, removing the future-guided (FG) module (GIMTP w/o FG) causes a signif-
icant drop in performance, underscoring the importance of future-guided matrix
embedding generated within the Interaction Encoder. This component effectively
captures the projected future motion states of the vehicle group, which greatly in-
fluence the target vehicle’s motion. Lastly, the absence of the feature fusion (FF)
module (GIMTP w/o FF) highlights the essential role of feature fusion for each po-
tential behavioral intention.

In conclusion, the ablation study reveals that integrating all three modules—future-
guided graph embedding, feature fusion, and potential risks—substantially en-
hances the model’s performance. Among these, the future-guided graph embed-
ding and feature fusion demonstrate the most significant impact, indicating their
critical role in optimizing the predictive model’s effectiveness.

Abalation Study of RHINO Model. A detailed ablation study was conducted on
the RHINO model to assess the impact of its individual components on prediction
performance. This analysis involved systematically disabling specific components
from the complete RHINO-Gen model to observe the resultant effects on accuracy
and overall performance. The following three variants were examined:
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Table 8.4: Ablation Test Results of RHINO in RMSE

Horizon
(Frame)

RHINO-
Gen

w/o HG

RHINO-
Gen
w/o
MM

RHINO-
Gen

w/o PL
RHINO-

Gen

10 0.21 0.22 0.24 0.19
20 0.31 0.37 0.42 0.26
30 0.68 0.73 0.80 0.42
40 0.97 1.06 1.18 0.65
50 1.25 1.34 1.57 0.89

• RHINO w/o HG: This variant does not utilize the multiscale hypergraphs rep-
resentation, relying instead on pair-wise connected graph representations
within the Hypergraph Relational Encoder.

• RHINO w/o MM: This variant excludes multi-agent multi-modal trajectory pre-
diction results, using only the single predicted future states for each agent as
input to RHINO.

• RHINO w/o PL: This variant skips the Posterior Distribution Learner, directly
inputting the graph embedding into the Residual Decoder.

The results, presented in Table 8.4 and Figure 8.11, reveal several critical in-
sights. Removing various components from the RHINO model consistently leads to
a degradation in performance, underscoring the importance of each component.

When the multiscale hypergraphs (RHINO w/o HG) are excluded, there is a slight
increase in prediction error across the prediction horizon. This finding highlights
the essential role of multiscale hypergraphs in capturing the complex, group-wise
interactions among agents. Such higher-order interactions are crucial for accu-
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Figure 8.11: Ablation study of RHINO.

rately predicting trajectories in dynamic, multi-agent environments, as they allow
the model to reason about the collective behavior of agent groups rather than just
pair-wise relationships.

Excluding the multi-agent multi-modal trajectory prediction input (RHINO w/o

MM) leads to a more significant decrease in performance. This variant’s results un-
derscore the importance of considering multiple possible future behaviors for each
agent. By incorporating multi-modal predictions, the model effectively accounts
for the inherent uncertainty and variability in agents’ future actions, which is es-
sential for robust and accurate trajectory prediction in real-world scenarios.

Lastly, the removal of the Posterior Distribution Learner (RHINO w/o PL) re-
sults in the most substantial performance decline. This component is critical for
managing the stochastic nature of each agent’s behavior by refining predictions
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through a probabilistic approach. The Posterior Distribution Learner captures the
range of possible future states, thus improving the model’s ability to generate ac-
curate and reliable trajectory predictions.

In summary, the ablation study of the RHINO model reveals the relative im-
portance of each modular component in enhancing the model’s overall effective-
ness. The integration of multiscale hypergraphs, multi-agent multi-modal trajec-
tory predictions, and the Posterior Distribution Learner is vital for accurately mod-
eling and reasoning about complex interactions among multiple agents. These
components collectively contribute to significantly improved performance metrics,
demonstrating their essential roles in the RHINO model’s architecture.
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Chapter 9

Conclusion

This thesis aims to develop an integrated learning-based framework for motion
prediction and planning in connected and automated vehicles (CAVs) operating
in dynamic traffic environments. The primary objective is to address the com-
plexities associated with vehicle interactions, driving behaviors, and interaction
relational reasoning, thereby providing robust and reliable predictions and plans
that enhance the safety and efficiency of autonomous driving systems.

The core contributions of this thesis are embodied in the development of the
GIMTP, GIRAFFE, and RHINO models. GIMTP (Graph-based Interaction-aware Multi-
agent Multi-modal Trajectory Prediction) introduces a sophisticated framework
that deeply investigates vehicle interactions, offering multiple potential predic-
tions and probabilistically estimating driving behavioral intentions. A dynamic
adjacency matrix captures comprehensive vehicle interactions by considering neigh-
borhood, distance, and potential risk factors. The implementation of the Diffusion
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Graph Convolutional Network (DGCN) structure allows for the encapsulation of
both spatial and temporal vehicle interactions. This model integrates not only the
historical motion states of the vehicle group but also the inferred future motion
states, providing additional correlations and potential future interactions. Fea-
ture fusion is employed to efficiently combine historical and future embeddings
for collective intention recognition and trajectory prediction, facilitating more pre-
cise trajectory generation based on latent variables representing multi-modal be-
haviors. The model anticipates both longitudinal and lateral driving behaviors in a
multi-modal manner, associating potential future trajectories with corresponding
probabilities.

Building upon GIMTP, the enhanced GIRAFFE model further improves predic-
tion accuracy by refining the multi-agent prediction function and optimizing com-
putational efficiency. This model’s architecture incorporates intention prediction
and multi-modal decoding, enabling the generation of multiple future trajectory
distributions with associated probabilities.

The RHINO (Hypergraph-based Interaction Relational Reasoning Motion Gen-
eration and Planning) framework represented a significant leap forward by intro-
ducing hypergraph representations to model high-dimensional and group-wise
social interactions between various modalities of behaviors and motion states of
multiple agents. This model comprised several critical modules: the Hypergraph
Relational Encoder, Posterior Distribution Learner, Residual Decoder, and Neural
Planner and Refinement. RHINO employs representation learning to enable explicit
interaction relational reasoning. By inferring the multiscale hypergraph topology,
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our models are capable of providing social behavior-inspired automated driving.
This involves considering future relations and interactions and learning the pos-
terior distribution to handle the stochasticity of social behavior for each agent.
The models generate plausible motion planning in a generative manner and of-
fer planned trajectory refinements that prioritize safety, efficiency, and comfort,
ultimately enabling human-like automated driving. We validated the proposed
model using real-world trajectory datasets, confirming its effectiveness and appli-
cability in practical scenarios.

The integration of GIMTP, GIRAFFE, and RHINO into a cohesive framework pro-
vides a comprehensive approach to trajectory prediction and motion planning.
This overall framework excels in capturing the intricate interactions between multi-
ple agents, modeling the stochasticity of driving behaviors, and generating refined,
feasible trajectories that account for safety, efficiency, and comfort. By leveraging
advanced graph-based and hypergraph-based representations, the framework en-
sures robust performance in dynamic and complex traffic environments. The mod-
ular nature of the framework allows for scalable and flexible adaptations to various
traffic scenarios, thereby significantly advancing the state-of-the-art in automated
driving and multi-agent trajectory prediction.

While this thesis presents significant advancements, there are notable limita-
tions that suggest avenues for future research. The formulation of large-scale hy-
pergraphs is not computationally efficient, indicating the need for enhanced graph
and hypergraph structure learning. Current models struggle with effectively cap-
turing temporal correlations between interactions; thus, future work should fo-
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cus on developing dynamic hypergraph representations. Accurately modeling the
temporal evolution of interactions between agents is crucial for predicting future
behaviors in dynamic environments. This involves creating representations that
can adapt and change as the interactions among vehicles evolve over time, ensur-
ing that the models remain responsive to the fluid nature of traffic scenarios.

There is a notable gap between planned trajectories and actual vehicle con-
trol inputs, which can be addressed by developing differentiable cost functions for
neural planners to improve trajectory planning and refinement. This discrepancy
arises because the planned trajectories often do not consider the detailed dynam-
ics and control limitations of the vehicles. For instance, a planned trajectory might
suggest a sharp turn or sudden acceleration that is not feasible given the vehi-
cle’s mechanical constraints and current speed. To bridge this gap, future models
should incorporate differentiable cost functions that consider these physical con-
straints during the planning process. By doing so, the neural planner can gener-
ate more realistic and feasible trajectories that the vehicle can follow accurately.
Additionally, incorporating feedback from the actual control inputs back into the
planning algorithm can help refine and adjust the planned trajectories in real-time,
leading to more accurate and reliable motion planning.

The estimation of surrounding vehicles often lacks contextual information, ne-
cessitating the incorporation of vehicle-road, vehicle-environment, and road-road
interactions. Finally, the input data often lacks realistic assumptions, such as data
collection delays and errors, underscoring the importance of incorporating more
realistic assumptions and context information into future models.
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These future improvements will enhance the robustness and applicability of
hypergraph-based models, making them more efficient and capable of handling
the complexities of real-world driving scenarios.
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