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Abstract

Modern agriculture faces some of the most pressing problems in the 21st century: farm prof-

itability, food security, and environmental sustainability. To address these problems, it is

essential to raise productivity in a sustainable manner, an overarching goal known as sus-

tainable intensification. In efforts to increase productivity through improved management

of agricultural systems, a fundamental challenge is enormous complexity arising from both

biological and social aspects of agricultural systems. However, despite the apparent need for

research in modeling such socio-ecological systems without trivializing their complexity, most

of the existing agricultural research only focuses on basic component sub-processes, making

itself largely irrelevant for practical decision making for sustainable intensification. My con-

tribution to the research community is twofold: exemplify practical models for management

of agricultural systems and lay the foundation for some specific problems. In particular, two

distinct models are constructed to support decision making at different levels of agricultural

systems. Both models are predominantly characterized by their computational approaches,

which capitalize on the ever increasing data and computational capacity. At an individual

level, adaptive experimental designs based on Bayesian optimization techniques help individ-

ual farmers to efficiently learn complex management practices through on-farm experiments.

In contrast, agent-based models help policy makers to gain insights into complex socio-

ecological systems and design effective mitigation policies for insect resistance management

at an aggregate landscape level. Although these models are necessarily ad hoc solutions

to the specific problems, their modeling techniques (Bayesian optimization and agent-based

modeling) are very general and applicable to many other practical problems.
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Chapter 1

Introduction

“All models are wrong, but some are useful.”

—George E. P. Box (1976, 1979)

Modern agriculture faces some of the most pressing problems in the 21st century: farm

profitability, food security, and environmental sustainability. To address these problems, it

is essential to increase agricultural productivity in an environmentally sustainable manner,

an overarching goal known as sustainable intensification (Tilman et al., 2011). Moreover,

as indicated in Sustainable Development Goals (Food and Agriculture Organization of the

United Nations, 2016), the productivity increase also needs to happen in terms of nutritional

quality beyond bulk yield and development of multifunctional landscape (Jones et al., 2017).

Since society-wide productivity is an aggregate result of individual productivity, each farming

practice at an individual level must be improved and, to support the improvement, public

policies have roles to play (Garnett et al., 2013).

In efforts to improve individual farming practices, a fundamental challenge is the enor-

mous complexity of agricultural systems, which are often regarded as managed ecosystems

(Antle and Capalbo, 2001, 2002; Swinton et al., 2007) where farmers intervene in the natural

environment to produce food, fiber and energy. It is important to bear in mind that this
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complexity arises from both ecological and social aspects of agricultural systems. On the

one hand, to manage ecosystems, farmers try to control complex bio-physical and chemical

reactions towards desired economic outcomes. On the other hand, each farmer’s manage-

ment decisions are intrinsically influenced by and influence others’ decisions through social

interactions and economic conditions, which are endogenously influenced by their collective

decisions (Arthur, 2013). Thus, at the center of sustainable intensification is development of

software systems that support decision making in complex agricultural systems (Lindblom

et al., 2017).

Despite the apparent need for research in modeling such socio-ecological systems without

trivializing their complexity, most of the existing agricultural research is not designed for

management of complex agricultural systems (Antle et al., 2017a; Capalbo et al., 2017) and

largely irrelevant for practical decisions (McCown et al., 2009; McCown, 2002). Instead

of confronting complex processes involved in practical agriculture and policy intervention,

academic research tends to focus on scientific understanding of basic component processes,

which are “more easily studied in a laboratory or institutional setting, and may result in

more publishable findings. Producing useful decision tools for farmers or policy decision-

makers is at best a secondary consideration in many academic settings” (Antle et al., 2017a,

p.256). As a result of this “researcher-centricity”, despite the major advances in digital and

farming technology, agricultural models have not progressed much over the last 30 years;

in other words, there are significant untapped resources that can help dramatically advance

farming practices (Lindblom et al., 2017; Rose et al., 2018).

My contribution to the research community of agricultural sciences and economics is to

build practical models that are intended to help practitioners make decisions on management

of complex agricultural systems. All the models are predominantly characterized by their

computational approaches, which capitalize on the ever increasing data and computational

capacity. Chapter 2 and 3 are closely connected and both concern efficiency and efficacy

of agricultural field experiments to learn optimal input use and management practices. In
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many branches of the agricultural sciences and commercial enterprises, field experimentation

is the fundamental technique to gain insights into the mechanisms of complex biophysical

systems in agriculture and how farmers should act upon such systems to maximize profits.

My conjecture and presumption for the remainder of the dissertation is that gaining insights

into the former (the mechanisms) is certainly helpful but not necessary and often inefficient

for gaining insights into the latter (practical management). In other words, simple mod-

els for scientific understanding of agricultural systems are hardly useful for practical profit

maximization in the complex systems. Given the current state of knowledge about the com-

plexity of agricultural systems, pursuing scientific understanding is not the best route to help

farmers and policy makers today. This is a key realization to bear in mind when addressing

the issue of researcher-centricity and facilitating practical decision making.

Chapter 2 specifically deals with cost-efficient experimental designs of field trials which

are conducted to learn optimal management choices. In most cases, traditionally, field ex-

periments are based on factorial design. It is intuitive, easy to use, and can be effective for

some problems. However, what is hidden in these advantages is inefficiency in choosing fac-

tor levels to investigate. The inefficiency becomes evident when the objective of experiments

is to estimate an optimal choice under some response function, rather than to estimate the

overall shape of the response function. Moreover, it is particularly problematic in realistic

scenarios, where response functions of practical interest involve many management variables

to optimize. In this case, factorial design is likely infeasible, requiring too many combina-

tions of factor levels to investigate. As a solution, Chapter 2 presents a machine learning

algorithm for an adaptive experimental design based on a numerical optimization technique

called Bayesian optimization.

Chapter 3 extends the algorithm developed in Chapter 2 and applies it to profit maxi-

mization problems in precision agriculture. Thanks to advanced farming technologies, preci-

sion agriculture holds the promise of increasing productivity through optimizing site-specific

management. In reality, however, these technologies are too sophisticated to fully exploit.
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Indeed, decisions on site-specific management are still based on simple rule-of-thumb and not

remotely optimal (Capalbo et al., 2017). In precision agriculture, there are not only many

management factors but also many different growing environments, in each of which the

management variables need to be optimized. To help farmers solve larger and more complex

optimization problems than those dealt with in Chapter 2, the algorithm is modified so that

individual farmers can efficiently learn their own optimal site-specific management for each

site in a field.

In contrast to the previous two chapters, Chapter 4 investigates effectiveness of public

policies for mitigating development of insect resistance to control technologies at a landscape

level. While modeling impacts of pests and diseases on crop yield itself continues to be a sig-

nificant challenge for the agricultural research community (Donatelli et al., 2017), Chapter

4 sheds light on another important yet often-neglected aspect of pest control problems—

significance of social factors. To control insect damage, modern crop production relies on ge-

netic engineering technologies including Bt (Bacillus thuringiensis) crops. Although insects

eventually develop resistance to any technology and make it obsolete, its lifespan consider-

ably depends on the rate of insect evolution, which in turn depends on how the technology

is utilized by farmers. Since farmers’ management decisions can be influenced by many

social factors and regulations, there is room for designing effective public policies. Thus,

to facilitate policy experiments in silico, an agent-based model is constructed and used to

integrate key social factors with insect population dynamics. Instead of directly modeling

a macro phenomenon of interest, the model is constructed from the bottom up; a macro

phenomenon emerges as a result of interaction among heterogeneous agents (farmers) in a

spatiotemporally explicit environment.

This dissertation is based on the humility to accept our inadequate understanding of

agricultural systems to manage their complexity as well as the sense of urgency to sustainable

intensification. To take immediate actions for sustainable agriculture and society at large,

the prevailing researcher-centricity needs to be rectified. The dissertation attempts to shift
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the balance between researcher-centric scientific pursuit and practicality so that we can

divert more research resources into practically useful models for sustainable intensification

in the near future. To both exemplify the point and lay the foundation for some specific

problems, the dissertation presents models that capitalize on the ever increasing data and

computational capacity.
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Chapter 2

Adaptive experimental design using
Bayesian optimization to improve the
cost efficiency of field trials

Yuji Saikai

Vivak Patel

Shawn P. Conley

Paul D. Mitchell

2.1 Introduction

In many branches of the agricultural sciences, field experimentation is the fundamental tech-

nique to determine optimal input use and management practices across different production

environments (Mead et al., 2002; Petersen, 1994). For example, field trials have been used

for determining optimal fertilizer application rates (Buresh et al., 2019; Cela et al., 2011;

Huang et al., 2008; Jin et al., 2019a; Li et al., 2018; Rens et al., 2018; Storer et al., 2018;

Wang et al., 2017; Wang et al., 2012), fungicide dose rates (Lynch et al., 2017), plant vari-

eties (Huang et al., 2008; Lynch et al., 2017; Storer et al., 2018), seeding rates (Dai et al.,

2013), and plant densities (Khan et al., 2017; Ren et al., 2017). Unfortunately, since any
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experiment is subject to limited resources and incurs economic costs, exhaustive field trials

are infeasible. Indeed, most studies including those cited above involve only a handful of

levels for each factor, and the total number of factors is very small. When involving many

factors, each factor usually allows for only two levels (Orlowski et al., 2016). Thus, in de-

termining optimal management, field experiments must be carefully designed to maximize

scarce resources.

In most cases, field experiments are based on factorial designs, in which all possible com-

binations of the levels of every factor are investigated and replicated over several years (Mont-

gomery, 2017). As an example, Jin et al. (2019a) conducted field experiments based on a fac-

torial design of four biochar rates (0,5,20,40) and four nitrogen fertilizer rates (0,60,90,120),

which were replicated from 2011 to 2016. As another example, Lynch et al. (2017) conducted

field experiments based on a factorial design of two fungicide types (azole, azole+SDHI), five

applications rates (0, 0.25, 0.50, 1.0, 2.0), and three varieties (SR5, SR7, SR8), which were

replicated from 2012 to 2015. Although these and many other field experiments that em-

ploy factorial designs provide qualitative insights into dependencies between factors and

clues about optimal levels, in terms of quantitatively maximizing scarce resources, they are

problematic for several reasons:

1. With sufficient domain knowledge, hand-picked factor levels may work. But, they are

less likely to work if growing environments and/or factors are considerably different

from the existing ones on which such domain knowledge is based.

2. Even with well-chosen factor levels, the fixed number of levels limits exploration of

factors that incorporate continuous values.

3. Finally, static experimental designs by definition preclude adaptation of designs that

reflects the information obtained in the preceding years to explore more promising

values.

Recently, Chen et al. (2019) address the inefficiency issue of factorial design by using orthog-
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onal experimental design. However, their approach is still a static design over three years

and not particularly designed for efficient optimization. Indeed, the study amasses a large

number of samples (>40,000).

In addition to the inefficiency in data collection, the standard approaches to agricultural

experimentation suffer from model misspecification that can potentially have a negative

impact on profitability. After collecting data, researchers next estimate some statistical

model of yield/profit function and maximize this estimated function to determine optimal

management choices. The standard approaches typically use relatively simple statistical

models of limited flexibility. Therefore, if the underlying function takes a complex shape,

which is quite possible in cases involving many variables as we show in our experiments,

such models will fail to capture the function’s major structure and provide poor guidance on

profit maximization. In contrast, our approach uses a sufficiently flexible statistical model

to avoid model misspecification.

In summary, field experiments that use factorial designs for optimizing input use and

management practices make inefficient use of scarce resources dedicated to experimenta-

tion. Moreover, simple statistical models that typically accompany factorial designs may

suffer from model misspecification, further reducing efficiency. In this work, we propose an

adaptive, flexible experimental designs for optimization. Our approach, based on Bayesian

optimization (BO) (Brochu et al., 2010; Shahriari et al., 2016), reflects information from the

preceding years in the current design, so as to make the most of scarce resources, and has

the ability to capture potentially complex profit functions.

We demonstrate the advantage of our approach over the traditional factorial designs by

using two distinct simulation environments: one constructed from real field-trial data and

the other from the existing cropping systems simulator. As a result of our methodology, field

experiments can be conducted more efficiently, allowing farmers to determine optimal input

use and management practices with fewer experimental resources and, thereby, reducing the

costs.



9

2.2 Materials and methods

We compare two regimes of experimental designs, BO design and factorial design, in six

different simulation environments. Each simulation environment is characterized by an “or-

acle,” a conceptual device that tells us the crop yield for a set of specific levels of production

factors. Using the yield obtained from the oracle, we then calculate a profit using an output

price and input costs. Once we set up the simulation environments, we carry out simulations

over 1- to 10-year time horizons and compare their performances on profit maximization

based on both years of experiment and number of sampling plots required to reach a certain

level of profit.

2.2.1 Oracle and simulation environment

An oracle returns a yield when we query a set of specific values of production factors. It is a

yield response function corrupted by random noise. Mathematically, yield (y) is defined as

follows:

y = f(x) + ε,

where f : X → R+, a function that takes a set of production factors x ∈ X and returns a

nonnegative yield y ∈ R+. Note that we assume ε ∼ N(0, σ2), that is, normally distributed

noise with standard deviation of σ. For each yield (y), profit (π) is defined as follows:

π = py − c · x,

where p is an output price and c is a set of input prices. To characterize the effects of

simulation environments on the performance of designs, we construct two distinct types of

simulation environments: low-dimensional with discrete choice and high-dimensional.
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Scenario A (low-dimensional with discrete choice)

This environment is meant to capture a traditional field study that involves a small number

of both continuous and discrete factors. We base this simulation study on the following

story.

Imagine a researcher who tries to determine optimal seeding rates and seed treat-

ments of a new seed variety under 16 different soil pHs {6.0, 6.1, . . . , 7.5}. There

are two types of seed treatments, F (fungicide) and FI (fungicide and insecticide),

in addition to UTC (untreated control), where UTC is cheapest and FI is most

expensive. Optimality is defined as maximizing the expected profit. Overall,

through field trials, the researcher tries to determine 16 optimal combinations

of seeding rate and seed treatment, one for each soil pH. Given the economic

costs associated with each trial, the researcher wants to make efficient use of the

limited experimental resources. Which combinations in what order should the

researcher use to proceed with the experiment?

We consider this to be a reasonable setting, albeit stylized, because the ability to adjust

soil pH is usually constrained both financially and physically such as buffer pH (Camberato,

2014). Hence, it is valuable to have a recommendation for each soil pH.

Let x1 denote seeding rate (in 1,000 seeds/ac), x2 denote soil pH, and τ denote seed

treatment. Then, we have x1 ∈ [0, 150], x2 ∈ {6.0, 6.1, . . . , 7.5}, and τ ∈ {UTC, F, FI}. The

oracle for this setting is a collection of three yield response functions (fτ for each τ). In

other words, when we query a combination (τ, x1, x2), the oracle returns a noise-corrupted

yield,

y = fτ (x1, x2) + ε.

We construct these three response functions using real-world data from soybean field

trials (Gaspar et al., 2015). Specifically, for each seed treatment (τ), we fit a nonparametric

regression, namely a local linear regression (Hastie et al., 2016). Then, for each yield, we
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calculate the corresponding profit (π) using a soybean price and seed cost for that treatment.

Formally,

π = py − cτx1,

where p is the soybean price and cτ is the seed cost for treatment τ , all of which are found

in Gaspar et al. (2015).

The following figures depict three profit response surfaces (without noise). As you can

see, each surface is not globally concave.

seeding rate (×1000 seeds/ac)

40 60 80 100
120

140

pH

6.0
6.3

6.6
6.9

7.2
7.5

pr
of

it 
($

/a
c)

300

400

500

600

700

UTC

seeding rate (×1000 seeds/ac)

40 60 80 100
120

140

pH

6.0
6.3

6.6
6.9

7.2
7.5

pr
of

it 
($

/a
c)

300

400

500

600

700

F

seeding rate (×1000 seeds/ac)

40 60 80 100
120

140

pH

6.0
6.3

6.6
6.9

7.2
7.5

pr
of

it 
($

/a
c)

300

400

500

600

700

FI

Figure 2.1: Profit response surfaces
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Figure 2.2: Profit response curves at the selected pHs

N indicates the maximum profit for each pH. The following table contains specific values.

pH 6.0 6.1 6.2 6.3 6.4 6.5 6.6 6.7 6.8 6.9 7.0 7.1 7.2 7.3 7.4 7.5

Treatment UTC UTC UTC FI FI FI FI FI FI FI F F F F FI FI

Seeding rate 113 119 112 148 148 147 150 150 150 150 150 150 150 150 150 150

Table 2.1: Optimal seed treatments and seeding rates for each pH
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To investigate the effects of noise, we implement three different noise levels, σ ∈ {10, 30, 50},

which corresponds to respectively about 10%, 30%, and 50% of the maximum possible yield.

Scenario B (high-dimensional)

This environment is meant to serve as a more realistic scenario in which farmers make many

decisions on input use and management practices. In particular, there are more continuous

choices than the low-dimensional case. Scenario B is relevant not only in practice but also

has attracted attention in the literature (Orlowski et al., 2016). Since there rarely exist

datasets densely covering a high-dimensional continuous space, to create a suitable oracle,

we make use of the Agricultural Production Systems sIMulator (APSIM), a highly advanced

simulator of agricultural systems (Holzworth et al., 2014) being widely used for generating

hypothetical datasets (Jin et al., 2018, 2019b, 2017a; Lobell et al., 2013, 2014, 2015).

We simulate a maize production system in Ames, Iowa, using the weather data from

2013. In the APSIM maize module, we identify six production factors that are suitable for

our purpose:

• x1 : sowing density (seeds/m2)

• x2 : sowing depth (mm)

• x3 : row spacing (m)

• x4 : N fertilizer amount before sowing (kg/ha)

• x5 : N fertilizer amount at sowing (kg/ha)

• x6 : N fertilizer amount for top dressing (kg/ha)

Thus, this oracle returns a yield (y) based on the levels of six factors x = (x1, . . . , x6)

y = f(x) + ε.
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Profit is calculated in a similar way:

π = py − c · x.

The output price (p) is obtained from Duffy (2013), and the input costs (c) are obtained

from Johanns (2019). We assume no cost for sowing depth and row spacing, which implies

the cost vector c = (c1, 0, 0, c4, c5, c6). It turns out that the maximum profit is $1,288/ha,

achieved by the management choices x = (7, 120, 0.5, 0, 100, 20). Due to the six-dimensional

space, it is impossible to directly plot the profit surface. We instead plot six pairs of interest,

(x1, x5), (x1, x6), (x2, x3), (x4, x5), (x4, x6), and (x5, x6), while fixing the other four factors

at the optimal levels. As seen below, the profit function takes a complex shape as a mixture

of flat, convex and concave portions.

To investigate effects of noise, we implement three different noise levels, σ ∈ {500, 1000, 1500},

which corresponds, respectively, to about 5%, 10%, and 15% of the maximum possible yield.

Notice that this is a much smaller variation than seen in scenario A. The reason is that, due

to the higher dimensionality, the effect of noise is stronger and 15% of noise is large enough

to make learning very difficult.
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Figure 3: Profit surfaces of the high-dimensional oracle around the maximum
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Figure 2.3: Selected profit surfaces of the high-dimensional oracle around the maximum

2.2.2 Experimental designs

Every experimental design either explicitly or implicitly assumes an accompanying statistical

model that researchers estimate using the data collected by implementing the design (Mont-

gomery, 2017). In agricultural experiments, it is common to use simple concave functions

including quadratic (Bachmaier and Gandorfer, 2009; Meyer-Aurich et al., 2010b; Whelan

et al., 2012), negative exponential (Edwards and Purcell, 2005; Gaspar et al., 2015), and

piecewise linear (Ouedraogo and Brorsen, 2018; Park et al., 2018). In the BO literature,

(adaptive) designs are called “acquisition functions,” and typically accompanied by a Gaus-

sian process statistical model (Rasmussen and Williams, 2006).

Each experiment proceeds on a batch-sampling basis over years. Let M denote a batch

size. Then, every year a researcher employs M plots and collect M samples. For scenario

A, an optimal seeding rate for each pH is searched for over x1 ∈ [30, 150]. For scenario

B, an optimal level of the six factors is searched for over x1 ∈ [5.0, 11.0], x2 ∈ [120, 180],

x3 ∈ [0.5, 0.9], x4 ∈ [0, 220], x5 ∈ [0, 220], and x6 ∈ [0, 220].

Factorial design

For scenario A, a factorial design consists of {45, 75, 105, 135} in seeding rate and {6.0, 6.5, 7.0, 7.5}

in pH for each of three seed treatments, making up M = 4 × 4 × 3 = 48. For scenario B,

we choose two levels for each factor, making up M = 26 = 64. Specifically, x1 ∈ {7.0, 9.0},
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x2 ∈ {140, 160}, x3 ∈ {0.6, 0.8}, x4 ∈ {60, 140}, x5 ∈ {60, 140}, and x6 ∈ {60, 140}. In-

tuitively, two levels for each factor may be too coarse to detect good optimal values over

the continuous search space. However, with three levels, it would be 36 = 729 and too

large to be practical. This already indicates a fundamental problem of factorial design in a

high-dimensional space, a problem dubbed the “curse of dimensionality” (Bellman, 2015).

As is standard in the literature, the design in each scenario is fixed over the years. Finally,

for an accompanying statistical model, we assume a quadratic model, which is in the case of

x = (x1, x2):

f(x) = β0 + β1x1 + β2x2 + β3x
2
1 + β4x1x2 + β5x

2
2,

and in the case of x = (x1, x2, x3, x4, x5, x6):

f(x) =
∑

k1+k2+···+k6≤2

βk

6∏
j=1

x
kj
j ,

where kj ∈ {0, 1, 2} for all j ∈ {1, 2, . . . , 6}, and k = (k1, k2, k3, k4, k5, k6) denotes one of 28

indices for the coefficient β jointly defined by k1, k2, . . . , k6.

Bayesian optimization design

In contrast, the BO design adaptively chooses any combinations recommended by the al-

gorithm. Each time after obtaining M samples, it updates the Gaussian process statistical

models and reflects these updates on the next year’s sampling recommendation. Hence,

the adaptive experimental design. The algorithm is named “batch expected improvement,”

which is an extension of the standard expected improvement (EI) algorithm (Jones et al.,

1998; Moćkus et al., 1978). The details of the algorithms for both scenario A and B are

found in Appendix. The basic mathematics for and the specifications of Gaussian process

are also found in Appendix.

While the standard EI algorithm is a strictly sequential algorithm designed to recom-

mend only a single combination for the next sampling occasion, in agricultural experiments,
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we test multiple combinations at each occasion (typically, a year). Hence, we need to extend

it so as to recommend multiple combinations at a time. To this end, we run the standard EI

algorithm M times within a year by assuming M − 1 hypothetical samples, as if they were

sequentially observed. We adopt the idea from Ginsbourger et al. (2010) and assume each

hypothetical sample to be equal to the lowest value observed so far (see line 7 in Algorithm

1). In other words, we assume within a year the algorithm makes a bad recommenda-

tion (remember the objective of the profit maximization—searching for a combination that

returns the highest value). This heuristic allows the EI algorithm to do more exploration

than exploitation; otherwise, the EI algorithm would tend to over-exploit suboptimal choices

without sufficient exploration (Berk et al., 2018).

2.2.3 Performance metric

To compare alternatives, we need a performance metric. For this purpose, we use a notion of

“regret” defined as a percentage of missed profit—a relative difference between the maximum

possible profit and a profit computed using a statistical model of the environment estimated

with the samples collected by following a design.

Regret =
True maximum profit− Estimated maximum profit

True maximum profit
× 100.

For scenario A, since a regret can be calculated for each of 16 pHs, we use their average as

the regret of a design.

2.2.4 Overall procedure

Our simulation study places the researcher in two distinct scenarios, each of which has three

subscenarios characterized by different noise levels. In each subscenario, experiments last for

T years. In each year, a design does the following:
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1. Picks M testing combinations

2. Queries each combination to the oracle

3. Receives corresponding M yield observations and computes their profits

4. Adds them to the sample pool

5. Updates the statistical model for the underlying profit function

Note that step 5 is meaningful only for the BO design because the factorial design is static and

independent of the statistical model. After T years, a regret is calculated as a performance

metric of the design. To reduce the effect of the randomness involved in both yield noise and

the algorithms themselves, we run multiple Monte Carlo simulations for each subscenario

and report their sample mean and standard deviation as a final result.

2.3 Results

2.3.1 Scenario A

The study for scenario A was conducted with 1,000 Monte Carlo simulations. Besides the

fact that the factorial design had M = 48, the BO version also used the same number for the

batch size. The effects of noise are illustrated separately for the factorial and BO designs in

the figures below. As expected, the greater the noise level, the more difficult it is to learn

profit functions and optimize them. With a greater noise level, clearly, the regret in any time

horizon T is higher. In addition, at noise level 50, the BO version hardly learns anything

even after 10 years, but the factorial does no better, nonetheless.
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Figure 2.4: Effect of noise on learning (Factorial)
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Figure 2.5: Effect of noise on learning (BO)

To show more detail, the following three figures plot the results separately for each noise

level. Solid lines trace the mean regret at each time horizon (T ), and shaded areas represent

1 standard deviation around the means. Overall, on average, the BO design demonstrates

higher performance for most time horizons in all the subscenarios. However, the differences

may not be seen as economically significant, and moreover, their distributions are largely

overlapped, indicating even weaker appeal of the higher mean performances.

10% noise

Years 1 2 3 4 5 6 7 8 9 10

Factorial 6.8 5.4 4.8 4.1 3.8 4.0 3.6 3.5 3.5 3.4

(std) (5.0) (4.6) (3.9) (2.4) (1.4) (2.1) (1.2) (1.2) (1.2) (1.3)

BO 7.4 4.9 4.2 3.7 3.1 3.1 2.7 2.6 2.2 2.2

(std) (6.0) (2.3) (1.6) (1.4) (1.4) (1.7) (1.5) (1.5) (1.0) (1.2)

Difference -0.6 0.5 0.6 0.4 0.7 0.9 0.9 0.9 1.3 1.2



19

1 2 3 4 5 6 7 8 9 10
Years

0

2

4

6

8

10

12

14

16

18

Re
gr

et
 (%

)

Factorial
BO

Figure 2.6: Regret under noise = 10%, M = 48

30% noise

Years 1 2 3 4 5 6 7 8 9 10

Factorial 11.9 9.6 9.7 8.9 8.2 8.1 7.6 6.8 7.2 6.7

(std) (7.3) (5.7) (6.4) (5.1) (5.7) (5.1) (5.0) (4.4) (4.7) (4.0)

BO 9.9 9.5 8.5 8.7 6.7 6.7 6.3 5.5 5.5 4.2

(std) (7.0) (6.0) (6.8) (7.7) (6.4) (6.4) (6.4) (3.5) (4.7) (2.7)

Difference 2.0 0.1 1.2 0.2 1.5 1.4 1.3 1.3 1.7 2.5
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Figure 2.7: Regret under noise = 30%, M = 48
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50% noise

Years 1 2 3 4 5 6 7 8 9 10

Factorial 15.7 14.5 13.0 11.9 10.8 11.3 10.5 10.2 9.3 10.6

(std) (7.9) (7.7) (7.5) (6.9) (6.5) (6.4) (6.3) (5.7) (5.6) (6.1)

BO 10.7 10.6 9.3 8.9 9.1 9.7 9.3 10.9 9.7 8.3

(std) (3.6) (5.4) (5.0) (2.9) (3.7) (4.2) (2.0) (4.5) (2.5) (1.7)

Difference 5.0 3.9 3.7 3.0 1.7 1.6 1.2 -0.7 -0.4 2.3
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Figure 2.8: Regret under noise = 50%, M = 48

2.3.2 Scenario B

The study for scenario B was conducted with 1,000 Monte Carlo simulations. As opposed to

M = 64 of the factorial design, the BO design here uses only M = 30 for the batch size. The

reason for the smaller batch size is because it turned out M = 30 is sufficient to produce

convincing results, and the computational costs grow increasingly with batch size. First,

the effects of noise are illustrated separately for the factorial and BO designs in the figures

below. Similar to scenario A, there is a pattern that the greater the noise level, the more

difficult it is to learn profit functions and optimize them.
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Figure 2.9: Effect of noise on learning (Factorial)
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Figure 2.10: Effect of noise on learning (BO)

To show this in more detail, the following three figures plot the results separately for

each noise level. Solid lines trace the mean regret at each time horizon (T ), and shaded

areas represent the corresponding 1 standard deviations around the means. It is evident

that, on average, the BO design outperformed the factorial design by a wide margin, at least

12.9 percentage points and larger with longer time horizons. Besides, as indicated by the

two largely separated shaded areas in each figure, the mean regrets of the BO design is also

statistically distant from that of the factorial. Moreover, it is probably a more practical

question to ask how often the BO design “beat” the factorial design. So, at the bottom of

each table, we also show the percentage of simulation runs when the BO had lower regrets

than the factorial at each time horizon. To be fair, we gave both designs the same random

realization of noise at each simulation run (and of course different randomness across 1,000

runs). As implied by the large mean differences, the BO beat the factorial at least 83.3% of

times and generally more as the horizon became longer.
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5% noise

Years 1 2 3 4 5 6 7 8 9 10

Factorial 25.5 23.6 22.4 21.7 21.4 20.9 20.6 20.4 20.3 19.9

(std) (9.3) (7.7) (6.2) (5.7) (5.1) (4.8) (4.4) (4.1) (4.0) (3.9)

BO 12.6 9.6 6.9 4.8 3.7 2.9 2.5 2.1 1.8 1.7

(std) (11.0) (9.2) (7.8) (6.3) (4.6) (3.8) (3.1) (2.8) (2.1) (2.0)

Difference 12.9 14.0 15.5 16.9 17.7 18.0 18.1 18.3 18.5 18.2

%wins 83.3 87.4 92.5 95.8 97.9 98.2 99.0 99.3 99.6 99.8
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Figure 2.11: Regret under noise = 5%, M = 30, 64

10% noise

Years 1 2 3 4 5 6 7 8 9 10

Factorial 29.4 27.8 26.0 25.3 24.9 24.1 24.1 23.7 23.6 23.3

(std) (12.2) (11.0) (9.7) (9.1) (8.4) (8.1) (8.0) (7.2) (6.8) (6.8)

BO 11.3 11.9 10.3 8.2 6.4 5.4 4.7 3.8 3.5 3.1

(std) (8.7) (10.4) (9.8) (8.5) (6.6) (5.8) (5.8) (4.5) (4.0) (3.2)

Difference 18.1 15.9 15.7 17.1 18.5 18.7 19.4 19.9 20.1 20.2

%wins 89.0 88.4 89.4 91.3 95.2 96.9 96.3 98.5 98.8 99.0
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Figure 2.12: Regret under noise = 10%, M = 30, 64

15% noise

Years 1 2 3 4 5 6 7 8 9 10

Factorial 31.7 30.0 28.8 27.7 26.8 26.5 26.4 25.9 26.0 25.4

(std) (13.1) (12.5) (11.9) (10.9) (10.4) (10.2) (10.1) (9.8) (9.2) (8.9)

BO 10.6 10.5 10.5 9.6 8.6 7.8 6.6 5.8 5.5 5.2

(std) (8.3) (8.3) (8.9) (8.6) (8.3) (7.8) (6.3) (5.5) (5.7) (5.3)

Difference 21.1 19.5 18.3 18.1 18.2 18.7 19.8 20.1 20.5 20.2

%wins 92.8 92.2 90.2 90.0 92.1 93.2 95.6 95.9 96.6 96.8
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Figure 2.13: Regret under noise = 15%, M = 30, 64
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2.4 Discussion

We created two distinct simulation environments and tested optimization performances of

factorial designs and adaptive designs based on BO. Two environments were constructed to

highlight conditions in which the BO design could offer the most benefits—high-dimensional

environments involving many management and environmental variables. The common re-

sults in both designs were that the noisier the production systems, the more difficult it is

to learn and optimize. These were intuitive results and reiterated the difficulty involved in

optimizing agricultural systems, where a considerable amount of noise is typically present.

In terms of relative performance, the BO designs outperformed the factorial designs on av-

erage, indicated by the blue curves located below the orange curves for most time horizons

in Figures 6-8 and 11-13. Recall that one of the reasons for replication is to reduce the

variability of estimator or standard error (Mead et al., 2002). However, as the similar sizes

of the shaded areas in each figure indicated, the variability of the factorial design in both

scenarios is by no means smaller than that of the BO design at large and even larger in many

cases (e.g. Figures 8, 12, 13). So, the factorial design in this case actually sacrificed the

quality (i.e., average regret) of the estimator without gaining anything. Besides the common

characteristics of the results between the two scenarios, there are notable differences between

scenario A and scenario B.

In scenario A, while the overall performance of the BO design is higher in most time

horizons, the performance differences are small, ranging from -0.7 to 5.0 percentage points

across all the subscenarios (Figures 6-8). As a result, these differences may not be seen

as economically significant. Moreover, the distributions of the two designs at each time

horizon are largely overlapped, indicating even weaker statistical appeal of the BO design’s

higher average performances. This was attributed to the low dimensionality of the scenario.

Specifically, while there were technically three dimensions in scenario A—seed treatment,

seeding rate, and pH—the seed treatment dimension was discrete containing only three

elements {UTC, F, FI}. Therefore, it was still “easy” to cover the dimension by the factorial
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design, reducing the relative advantage of the BO version.

In contrast, in scenario B, the BO design overwhelmingly outperformed the factorial

design by a wide margin, ranging from 12.9 to 21.1 percentage points. With the maximum

possible profit of $1,288/ha, 20 points of difference in regret are equivalent to $258/ha,

which is of considerable economic benefits. To examine this in more detail, consider a five-

year experimental horizon. The differences in regret across three subscenarios are 17.7 (5%

noise), 18.5 (10% noise), and 18.2 (15% noise), corresponding to $228/ha, $238/ha, and

$234/ha respectively. Remember that the BO design used only 30 samples each year, less

than half of the 64 samples used by the factorial design. Thus, the addition of experimental

cost saving made the economic benefits of the BO version even more significant. Furthermore,

as clearly seen under the 5% noise subscenario (Figure 11), the performance difference in

some cases widened as the time horizon became longer, indicating that the BO design learned

more than the factorial.

Despite the promising ability and performance of BO experimental designs, there are

several clarifications and limitations to note for real-world implementations and future re-

search.

• We do not claim that the constructed simulation environments are particularly ac-

curate or realistic in every detail. Instead, what we tried to create are independent

and impartial devices that allow us to systematically test and compare alternative

experimental designs.

• We implicitly assumed that, within a subscenario characterized by an oracle and a noise

level, the noise distribution is stationary over the time horizon. For example, given the

strong influence of weather on agricultural yield, it may be necessary to reflect weather

patterns over multiple years.

• We assumed homoskedasticity—a common noise level across all values of x within

a subscenario. With appropriate data, we can test that. Then, if violated, we can

estimate heteroskedastic errors and reflect them in simulations.
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• Our BO technique is limited to one-shot optimization, in other words, that researchers

choose all the factor levels at the beginning of the year and wait to see results until

the end of the year. In agriculture, many management choices are made within the

year. To handle such more realistic situations, we need to construct dynamic models

in which feedback information and learning take place both within and across years.

• When variables were theoretically continuous (e.g., seeding rate), we assumed that it

was possible to choose any arbitrary level and run the BO algorithm accordingly. In

reality, however, choices of continuous variables are constrained for various practical

reasons. For example, for a technical reason, we cannot change a fertilizer amount

precisely by a fraction of a kilogram. Even though technically possible, it is economi-

cally infeasible to change row spacing every time an algorithm recommends a different

value. Therefore, for real-world implementations, we need to modify those continuous

factors into discrete ones.

2.5 Conclusions

The goal of our work is to introduce BO techniques to agricultural audiences so that they

can apply them to their own problems. To this end, we have described an experimental

design based on BO and demonstrated its potential by conducting simulation studies. In

general, the benefits of BO will likely be significant when the dimensionality of management

and environmental variables is high, and the nature of production factors is continuous.

As we try to optimize more variables, the number of combinations to examine increases

exponentially. Consequently, fixed factorial designs or any brute-force search strategy is less

effective, relatively increasing the advantage of sophisticated designs such as those based

on BO. In addition, the more variables involved in defining the yield response function,

the higher the chances of interactions between them (Bullock and Bullock, 2000; Ruffo et

al., 2006), leading to a complex shape of the profit function, which is difficult to optimize
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by using the traditional experimental designs. Thus, it is safer and likely beneficial for

researchers to use more flexible statistical models (e.g., Gaussian process used in BO) and

guard against potential model mispecification and, thereby, substantial loss. In summary,

experimental designs based on BO address these issues and potentially create significant

economic benefits.

Appendices

Algorithms for the BO designs

In terms of notation, T is the total number of years used for experimentation, Sτ is a set

of samples for seed treatment τ , GPτ is a Gaussian process regression model for the profit

response function of seed treatment τ , miny{Sτ∗} implies the minimum observed yield for

τ ∗, and ατ is an acquisition function defined based on GPτ . A pair of braces { } indicates

a collection or set that contains elements, for example, {ατ} is a set of three acquisition

functions: αUTC , αF , and αFI . Notice that, in the first year, M/3 number of samples are

randomly collected for each seed treatment and stored in Sτ .
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Algorithm 1 Batch expected improvement for scenario A

1: require: T , M , {Sτ}, {GPτ}, {ατ}
2: for t ∈ {2, 3, . . . , T} do
3: Iτ ← { } for all τ ∈ {UTC, F, FI}
4: ĜPτ ← GPτ for all τ ∈ {UTC, F, FI}
5: for m ∈ {1, 2, . . . ,M} do
6: (τ ∗, x∗)← argmaxτ,x ατ (x)
7: Iτ∗ ← Iτ∗ ∪ {(x∗, y)} where y = miny{Sτ∗}
8: Update ĜP τ∗ with Sτ∗ ∪ Iτ∗
9: for τ ∈ {UTC, F, FI} do

10: for (x, y) ∈ Iτ do
11: y ← Oracle(τ, x)
12: Sτ ← Sτ ∪ {(x, y)}
13: Update GPτ with Sτ
14: return M × T number of samples

Notice that, despite the larger factor space in scenario B, it is algorithmically simpler because

of the lack of discrete choice of seed treatment that require separate GP s. Note also that

the difference between the two algorithms is not because of ad hoc adaptation to the specific

scenarios; instead, it is due simply to the structural difference of the two scenarios. Hence,

our BO design is consistent and general.

Algorithm 2 Batch expected improvement for scenario B

1: require: T , M , S, GP , α
2: for t ∈ {2, 3, . . . , T} do
3: I ← { }
4: ĜP ← GP
5: for m ∈ {1, 2, . . . ,M} do
6: x∗ ← argmaxx α(x)
7: I ← I ∪ {(x∗, y)} where y = miny{S}
8: Update ĜP with S ∪ I
9: for (x, y) ∈ I do

10: y ← Oracle(x)
11: S ← S ∪ {(x, y)}
12: Update GP with S
13: return M × T number of samples
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Gaussian process

Gaussian process is a Bayesian nonparametric model, and its behavior is largely dependent

on a kernel (Rasmussen and Williams, 2006). A kernel is a function that returns a similarity

measure k(x, x′) between two points x and x′. We use the Matérn kernel—a popular class

of isotropic stationary kernels.

kν(x, x
′) = σ2 21−ν

Γ(ν)

(
√

2ν
d

ρ

)ν

Bν

(
√

2ν
d

ρ

)
,

where Γ is the gamma function, Bν is the modified Bessel function of the second kind, and

d is a metric often induced by the Euclidean norm, i.e. d = ‖x− x′‖. The Matérn kernel is

characterized by two parameters ν and ρ, which control, respectively, the smoothness and the

scaling of distance. As standard in applied work, we do not estimate but rather handpick ν

and write as Matérnν or kν(x, x
′). To simplify the notation, let r denote the scaled distance,

r = d/ρ. An important property of the Matérn kernel is that when ν = p + 1/2, p ∈ N, it

can be written as a product of an exponential and a polynomial of order p:
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Common choices of ν are 1/2, 3/2, 5/2 and ∞, with each of which the kernel reduces to,

respectively,

k1/2(x, x′) = σ2 exp(−r)
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.
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We use ν = 3/2 for the BO design. Matérn∞ is also known as squared exponential kernel

or radial basis function. The following figure plots kν(x, x
′) with σ2 = ρ = 1 for ν ∈

{1/2, 3/2,∞}.
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Figure 2.14: Matérnν kernels

Expected improvement acquisition function

In Bayesian optimization, an algorithm prescribes the next sampling point x based on how

we value the mean and variance at x estimated by the accompanying GP. Specifically, the

recommendation xt for the next round t is determined by maximizing an acquisition function

α(x|Dt−1):

xt = argmax
x

α(x|Dt−1),

where Dt−1 is the data used to fit the GP at round t − 1. The acquisition function is

a reflection of the underlying utility of the next sample or our preference in selecting the

next sampling point. It is heuristic and designed to trade off exploration of the search

space and exploitation of the current promising areas. There are a number of acquisitions

functions proposed in the literature. One of the popular acquisition functions is called

expected improvement, which is constructed based on the following intuitive idea. Let y∗ be

the maximum value observed up until round t − 1, i.e. y∗ = max{y1, . . . , yt−1}. Then, we
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may define “improvement” at point x at round t to be

max{0, GP (x)− y∗},

which is random asGP (x) is a random function. Thus, the expected improvement acquisition

function is defined to be:

αEI(x|Dt−1) = E[max{0, GP (x)− y∗}|Dt−1].

When using Gaussian process, at each point x in the domain, we haveGP (x) ∼ N (µ(x), σ(x)),

which allows the expected improvement to have a closed form (Jones et al., 1998; Moćkus

et al., 1978):

αEI(x|Dt−1) =


(µ(x)− y∗)Φ

(
µ(x)−y∗
σ(x)

)
+ σ(x)φ

(
µ(x)−y∗
σ(x)

)
if σ(x) > 0

0 if σ(x) = 0

,

where Φ is the standard normal cumulative distribution function and φ is the standard

normal probability density function.
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Chapter 3

Machine learning for optimizing
complex site-specific management

Yuji Saikai

Vivak Patel

Paul D. Mitchell

3.1 Introduction

Modern agriculture faces some of the most challenging problems of the 21st century, includ-

ing food security, farm profitability and environmental sustainability, all of which require

increasing agricultural productivity. To increase the productivity, it is crucial to exploit

advanced farming (together known as precision agriculture) technologies such as yield mon-

itors, remote sensing, and variable rate application, from which site-specific management

(SSM) emerges as an effective management strategy (Auernhammer, 2001; Bongiovanni and

Lowenberg-DeBoer, 2004; Cassman, 1999; Gebbers and Adamchuk, 2010). This is because

SSM can optimize a production system at the subfield level, which amounts to finer-scale

optimization than at the field level. Therefore, for both individual profitability and collective

societal benefits, SSM has been advocated to farmers over the past two decades (Cook and
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Bramley, 1998).

Despite the potential benefits for farmers, the adoption of SSM has been slower than

expected (Bramley, 2009; Schimmelpfennig, 2016), which is attributed to a lack of relative

advantage over the current management strategies (Pathak et al., 2019), particularly a lack

of greater profitability (Castle et al., 2016; Gandorfer and Meyer-Aurich, 2017). In principle,

those advantages of SSM can be realized by exploiting advanced technologies (e.g., adjusting

fertilizer application rates across the field according to varying soil conditions inferred from

satellite imagery). In reality, however, these technologies are quite sophisticated and difficult

to exploit. Indeed, many farmers express their concerns about the complexity of these

technologies (Bramley and Ouzman, 2019) and have yet to be convinced of the value of SSM

(Antle, 2019; Antle et al., 2017b; Leonard et al., 2017; Lowenberg-DeBoer and Erickson,

2019). This lack of actionable procedures or decision support systems for SSM is noted as a

serious problem in the literature (Lindblom et al., 2017).

The vast majority of SSM research investigates only a handful of management types

in particular research environments. Commonly explored types include nitrogen fertilizer

(Anselin et al., 2004; Boyer et al., 2011; Jin et al., 2017b; Karatay and Meyer-Aurich,

2019; Lo et al., 2019; Pahlmann et al., 2017; Pannell et al., 2019; Thöle et al., 2013),

irrigation water (Cid-Garcia et al., 2014; Haghverdi et al., 2016), and sowing density (He

et al., 2019a,b). Besides the fact that other types of management (e.g., tillage, spraying, and

harvest) are also important, in practice, what really makes farm management difficult is the

total number of decisions farmers have to make. Note that the total number of decisions

increases exponentially as types of management increases, because each type of management

typically involves decisions on its amount, frequency, and timing. Since crop yield and hence

the overall effectiveness of SSM are determined by the totality of these management decisions

and environmental factors (Bullock and Bullock, 2000; Bullock et al., 2002; Ruffo et al.,

2006), independent studies of few management types involving a small number of decisions

provide only partial knowledge and can be misleading as complex systems typically involve
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significant nonlinearity (Altieri, 2018; Gliessman, 1990).

Besides the small number of management decisions investigated in the existing research,

farmers are also concerned about the generalizability of results obtained under the partic-

ular research environments, because such results may not be representative of their unique

environments (Cook et al., 2013). Each farm is unique and operates with different resources

(e.g., machinery) in different environments (e.g., soil and weather). Consequently, results

from studying “representative” cases are useful for only farmers who face similar managerial

and environmental conditions (Gomez and Gomez, 1984; Panten et al., 2010). This problem

is exacerbated in modern agriculture where the high dimensionality created by advanced

sensor technologies makes it even more difficult for selected cases to be representative, the

problem called “the curse of dimensionality” in mathematics (Bellman, 2015). As an ex-

ample of how particular a typical study setting can be, Lo et al. (2019) have studied SSM

of nitrogen fertilizer at a university research site in Nebraska that has been “under annual

summer corn or soybean production without any tillage and any stover removal” with ir-

rigation water applied through “a center pivot with sprayhead sprinklers positioned every

other interrow at a height of 0.6 m above ground” using “GrowSmart Precision Variable

Rate Irrigation system”. The problem is not how particular existing studies are, as they

serve different research purposes. Rather, the problem is a lack of studies that generalize

the effects of environmental factors and jointly examine many management variables for the

purpose of optimizing SSM in practice.

To address these issues (few management variables only in particular environments) and

offer an actionable procedure for SSM, we develop a machine learning algorithm that en-

ables each farmer to efficiently learn unique SSM through on-farm experiments implemented

via existing advanced farming technologies. We emphasize the significance of on-farm ex-

perimentation (Cook et al., 2013; Griffin, 2018; Meyer-Aurich et al., 2010a; Piepho et al.,

2011) to deal with both issues. First, on-farm experimentation allows farmers to adaptively

design experiments and efficiently navigate a high-dimensional variable space (Saikai et al.,
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2020). Second, on-farm experimentation inherently allows each farmer to collect data from

his/her unique environment and circumvents the representativeness issue. Particularly for

SSM, use of field-scale experimentation is important to deal with spatial, infield variabil-

ity (Bramley et al., 2011; Panten et al., 2010; Pringle et al., 2004a,b). Notice that our

approach is different from the most common type of machine learning (i.e., supervised learn-

ing), which constructs an empirical model that assumes specific variables and estimates their

associated parameters using a large observational dataset. The constructed model is sup-

posed to be representative of users’ production systems and therefore capable of indicating

their optimal choices. However, owing to the nature of observational data, such a dataset

likely contains insufficient variation in the high-dimensional management space because ob-

served management choices mostly follow the standard recommendations from the existing

low-dimensional studies (Bullock et al., 2019). In other words, purposeful experimentation

is crucial to include unconventional management choices and discover unexpected optimal

choices. Consequently, it is highly unlikely for such supervised learning models to be able to

indicate optimal choices. Our approach is, instead, a machine learning algorithm that allows

each farmer to construct a unique model. It is sufficiently versatile to be used for learn-

ing optimal SSM through on-farm experiments in a wide range of farming scenarios. The

algorithm is based on Bayesian optimization (Saikai et al., 2020), and capable of handling

an arbitrary number of management and environmental variables and adapt to unexpected

interaction effects. Moreover, if the farmer has historical data, large or small, it can be

incorporated as prior knowledge.

In the remainder of the paper, we first mathematically formulate the farmer’s problem,

and then we describe our machine learning algorithm as a solution to the problem. We

test the algorithm’s performance and versatility in two simulated environments, with either

medium- or high-complexity. To highlight the generality of the approach, we report results

on a per-hectare basis so that they can be easily scaled. Results suggest that complex SSM

can be learned very efficiently through on-farm experiments within a few years, and it can
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be more profitable and more environmentally sustainable than uniform management.

3.2 Materials and methods

3.2.1 Farmer’s problem

Imagine a farmer who has access to precision agriculture equipment for SSM but currently

does not implement it due to a lack of knowledge, a typical story about SSM (Lindblom et al.,

2017). Suppose that the farmer is now interested in learning optimal SSM through on-farm

experiments. To conduct field-scale experiments, the farmer divides an entire field into a

grid of sites of equal size according to the capacity of the existing variable rate technologies,

yield monitors, and other sensors that monitor soil properties. Specifically, it is assumed

that there is no spatial misalignment among these technologies, all of which has the same

spatial resolution. As a result, this resolution defines a site as the observational unit (Bullock

et al., 2019), and in each site the farmer collects a pair of data (x, y)—applying a vector

of management x and observing the corresponding scalar yield y. Let M denote the total

number of sites. Site s ∈ {1, 2, . . . ,M} is characterized by a state vector zs, to which

management xs is applied. Then, a site-specific profit function for site s is

π(xs|zs) = py(xs|zs)− c · xs,

where y(xs|zs) is a site-specific yield function for site s, p is an output price, and c is a

vector of prices for xs. Notice that this specification is technically a partial profit, as we

subtract only the costs for modeled management xs. Nonetheless, it is immaterial because

our analysis is based on the difference between profits using SSM and uniform management.

For conventional low-dimensional yield functions, it is common to use simple concave

functions such as quadratic (Bachmaier and Gandorfer, 2009; Meyer-Aurich et al., 2010b;

Whelan et al., 2012), negative exponential (Edwards and Purcell, 2005; Gaspar et al., 2015),
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and piecewise linear (Ouedraogo and Brorsen, 2018; Park et al., 2018). These simple func-

tions may serve well for answering isolated questions about the optimality of a single man-

agement variable under homogeneous conditions. However, in high-dimensional cropping

systems, the yield function is a fundamental source of the challenge because its uncertainty

increases with the number of variables entering the site-specific yield function y( · | · ).

Note that each site need not be recognized as distinct or, equivalently, each zs need not

be distinct. A simple consequence of this assumption is that adjacent sites {s1, s2, . . . } may

have the same values zs1 = zs2 = . . . and form a homogeneous “zone”, which receives the

same management. The research literature and farmer practice commonly use this type of

zone delineation for SSM (Albornoz et al., 2018; Cid-Garcia et al., 2014; Fraisse et al., 2001;

Fridgen et al., 2004; Gili et al., 2017; Leroux and Tisseyre, 2019; Li et al., 2007; Scudiero

et al., 2013). Our formulation is more general and contains zone delineation as a special

case.

Having each site-specific profit defined, field-level profit is simply the sum of the site-

specific profits:
M∑
s=1

π(xs|zs) =
M∑
s=1

py(xs|zs)− c · xs.

The farmer’s objective is to learn optimal SSM x∗s for all s ∈ {1, 2, . . . ,M}

(x∗1, . . . ,x
∗
M) = argmax

x1,...,xM

M∑
s=1

π(xs|zs).

In contrast, under uniform management, a single management x is applied to every site s,

so that field-level profit function is

M∑
s=1

π(x|zs) =
M∑
s=1

py(x|zs)− c · x,
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and optimal uniform management x̄∗ is

x̄∗ = argmax
x

M∑
s=1

π(x|zs).

3.2.2 Solution algorithm

We construct an algorithm based on Bayesian optimization (BO) (Brochu et al., 2010; Shahri-

ari et al., 2016), a class of numerical optimization techniques to find the global optimum of

an unknown objective function. As with many other numerical optimization techniques, BO

navigates the search space by examining one point at a time until it locates an acceptable

point and halts. Since BO tries to optimize an unknown function, it needs a surrogate model

to guide its search. A Gaussian process (GP) statistical model is the standard choice in the

literature.

BO has two features that make it suitable for agricultural experiments (Saikai et al.,

2020). First, GP as a nonparametric Bayesian model is sufficiently flexible so that it can

adapt to cases in which the objective function takes a complex shape. In high-dimensional

SSM, this complexity will likely happen due to strong interactions among the many variables

involved. Second, BO is in general known for its sample efficiency, which means that BO can

locate a good enough point with relatively a small number of examinations. Since agricultural

experiments take time before obtaining results, typically a year, sample efficiency is a strongly

desirable feature.

While the basic BO sequentially processes one sample at a time, we modify it using the

“batch BO” proposed by Saikai et al. (2020) in order to process M samples at a time. Each

year, the algorithm proceeds as follows:

1. Prescribe xs for each site s by maximizing the acquisition function α(x|zs)

2. Observe a yield y(xs|zs) for each s

3. Compute the corresponding π(xs|zs) for each s



39

4. Update the GP with {(xs, zs, πs)}Ms=1 and the samples from the preceding years.

After completing the planned number of years of experiments, a candidate for x∗s for each s

can be obtained by maximizing the mean function of the learned GP with fixed zs. Below

is the complete algorithm.

Algorithm 3 Batch Bayesian optimization for site-
specific management

1: require: T , M , S, GP , α
2: for t ∈ {1, 2, . . . , T} do
3: I ← { }
4: ĜP ← GP
5: for s ∈ {1, 2, . . . ,M} do
6: xs ← argmaxx α(x|zs)
7: I ← I ∪ {(xs, zs, π)} where π = min{Sπ}
8: Update ĜP with S ∪ I
9: for s ∈ {1, 2, . . . ,M} do

10: ys ← Oracle(xs|zs)
11: πs ← pys − c · xs
12: S ← S ∪ {(xs, zs, πs)}
13: Update GP with S
14: return M × T number of samples

In terms of notation, T is the total number of years used for experimentation, S is a set of

samples, min{Sπ} implies the minimum realized profit, α( · |zs) is the acquisition function for

site s defined based on the Gaussian process GP , and Oracle(x|z) returns an observed yield

when x is applied to a site characterized by z. As in Saikai et al. (2020), for the acquisition

function, we use the expected improvement (Jones et al., 1998; Moćkus et al., 1978). Also,

for the oracle function, we use a crop simulator as described in the next section. Notice that

in Line 5-8 the interim ĜP is kept updated with hypothetical observation (π) so that we can

prescribe M sampling points {xs}Ms=1 without any real sample. As a small detail, in Line

5, site s is chosen in a random order to avoid a systematic bias arising from how sites are

numbered. Another detail is that, when updating GP s, we fit the hyperparameters of the

GP only to observed data (Line 13) and not to hypothetical data (Line 8).
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3.2.3 Simulation experiments

To construct simulation environments, we make use of the Agricultural Production Systems

sIMulator (APSIM), an advanced simulator of cropping systems (Holzworth et al., 2014)

widely used for various purposes, including generating synthetic datasets (Burke and Lobell,

2017; Jin et al., 2018, 2019b, 2017a; Lobell et al., 2013, 2014, 2015). In each environment,

we run the algorithm to learn optimal SSM over T years and compare the profit resulting

from implementing the learned SSM against the benchmark profit resulting from uniform

management. This analysis assumes that uniform management follows university extension

recommendations.

Depending on specific scenarios, we can customize the algorithm in many ways. An

interesting modification is to incorporate observational data collected prior to beginning on-

farm experimentation, the case for many farmers. When using uniform management as a

benchmark for comparison, a natural dataset incorporated is the data from implementing

uniform management, as it represents the existing knowledge. Here, we initialize the GP

embedded in the algorithm as follows: let {(x̄, zs, π̄s)}Ms=1 be a set of the uniform management

(x̄), site characteristics (zs), and the corresponding profits (π̄s) and then, we fit the GP to

these M data points before the algorithm starts a learning process. Note that the use of

uniform management for both benchmark and prior knowledge is a useful case for illustration.

In practical applications, farmers may use any benchmark management of interest (either

uniform or not) and any existing dataset. Finally, since the algorithm itself involves some

randomness, we conduct Monte Carlo simulations and present averaged results over 100

Monte Carlo samples.

Though the algorithm’s applicability is by no means restricted to the scenarios described

in this section, we rely on the APSIM simulator and construct illustrative test beds within

its capability. We simulate a maize production system in Ames, Iowa using the daily weather

data for 2013, the most recent annual dataset available in APSIM. In terms of management

variables, we follow Saikai et al. (2020) and identify six variables x = (x1, . . . , x6) in the
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APSIM maize module:

• x1 : Sowing density (seeds/m2)

• x2 : Sowing depth (mm)

• x3 : Row spacing (m)

• x4 : Amount of N fertilizer applied before sowing (kg/ha)

• x5 : Amount of N fertilizer applied at sowing (kg/ha)

• x6 : Amount of N fertilizer applied for top dressing (kg/ha)

Based on Iowa State University extension recommendations, we specify uniform management

(x̄) as:

(x̄1, x̄2, x̄3, x̄4, x̄5, x̄6) = (8, 50, 0.76, 67, 67, 67).

x̄1 = 8, x̄2 = 50, and x̄3 = 0.76 follow from Elmore (2013) and Farnham (2001). The

recommended total nitrogen amount is identified by using the Corn Nitrogen Rate Calculator

(Sawyer, 2019), which gives x̄4 + x̄5 + x̄6 = 201. We evenly split it into x̄4 = x̄5 = x̄6 = 67.

Finally, for calculating profits, the output price is p = $0.177/kg (Duffy, 2013), and input

costs are c1 = $3.64/1000 seeds and c4 = c5 = c6 = $1.29/kg (Johanns, 2019). We assume no

cost for sowing depth and row spacing, which implies the cost vector c = (c1, 0, 0, c4, c5, c6).

Based on these same sources, when the algorithm searches for the optimal management,

the search space is restricted to the following:

• x1 ∈ [6.0, 10.0] (seeds/m2)

• x2 ∈ [25, 150] (mm)

• x3 ∈ [0.4, 1.0] (m)

• x4, x5, x6 ∈ [0, 200] (kg/ha)

Finally, data points resulting from the benchmark uniform management {(x̄, zs, π̄s)}Ms=1 are

the only existing dataset incorporated prior to beginning on-farm experimentation. Since
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initial uniform management provides no variation in x, to build up smoothly, in the first

year, the algorithm randomly chooses x for each s from the range defined by ±50% of the

uniform management.

Scenario A (medium complexity)

This scenario assumes that a square field is divided into a grid of 25 sites (M = 25). All the

sites are distinct, each characterized by a state vector zs = (z1
s , z

2
s) where z1

s is plant available

water capacity (mm) and z2
s is organic carbon (%). We set z1

s ∈ {231, 259, 288, 317, 346} and

z2
s ∈ {2.56, 2.88, 3.2, 3.52, 3.84} (0%, ±10% and ±20% from the default values in the APSIM

soil module used).
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Figure 3.1: Simulated maize field divided into a grid of 25 distinct sites. The first number in each
grid indicates plant available water capacity (mm) and the second indicates organic carbon (%) at
that site.

Scenario B (high complexity)

This scenario imagines that the farmer possesses more precise equipment that can operate

at a more granular scale, and so divides a field into more granular sites: 16× 9 = 144 sites.

We also assume that the farmer has conducted more exhaustive soil tests, measuring four

state variables (z1, z2, z3, z4) in each site:

• z1: plant available water capacity (mm)

• z2: organic carbon (%)
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• z3: initial nitrate-N (kg/ha)

• z4: initial ammonium-N (kg/ha)

The addition of z3 and z4 is because of their significance for nitrogen management (Cam-

berato and Nielsen, 2017) and availability in APSIM. Notice that nitrogen is also supplied

by soil organic matter (z1) through N-mineralization, creating stronger interactions among

management and environmental variables (Sawyer, 2008), so that SSM in scenario B is more

complex than in scenario A. We generate a state vector for each site in a random but spatially

correlated fashion, namely, a random walk (see Appendices for details). Below are summary

statistics of the generated state vectors for the 144 sites.

• z1: mean = 296, std = 32, min = 199, max = 365

• z2: mean = 3.19, std = 0.31, min = 2.59, max = 3.90

• z3: mean = 9.1, std = 0.98, min = 7.0, max = 11.5

• z4: mean = 10.6, std = 1.6, min = 7.7, max = 14.1

Instead of reporting four numbers at each site, we illustrate the in-field variability using a

yield map arising from applying the uniform management to the generated field. Since each

site receives the same management, the variability in yield indicates the variability in the

underlying growing conditions.
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Figure 3.2: Yield map (kg/ha) resulting from the uniform management in scenario B. Axis ticks
indicate site coordinates.

3.3 Results

3.3.1 Scenario A (medium complexity)

Table 3.1 and Figure 3.3 report field-level profits ($/ha) from implementing the SSM learned

after conducting experiments for T years. Specifically, the value for each T ∈ {1, 2, . . . , 10} is

the profit if the farmer terminates the experiments after T years and implements the learned

SSM without further improvement.

Years (T) 1 2 3 4 5 6 7 8 9 10

Learned 1103 1237 1266 1274 1277 1280 1283 1284 1285 1285

Uniform 1234 1234 1234 1234 1234 1234 1234 1234 1234 1234

Difference -131 3 32 40 43 46 49 50 51 51

($/ha)

Table 3.1: Field-level profits ($/ha) from implementing the learned SSM and uniform management
in scenario A.
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Figure 3.3: Learning curve of the algorithm with profits plotted against years of experiments in
scenario A. The shaded areas indicate two standard deviations around each mean field-level profit
over 100 Monte Carlo samples.

The shaded areas indicate two standard deviations around each mean field-level profit over

100 Monte Carlo samples. The dashed line indicates the maximum possible profit obtained

by implementing the optimal SSM, while the dotted line indicates the profit from uniform

management.

Since a field-level profit is the sum of the site-specific profits, we next examine profit at

each site. Figure 3.4 illustrates profits from the learned SSM after five years and uniform

management. T = 5 is chosen because the learning mostly levels off and the deviation from

the mean prediction becomes small after four or five years.
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Figure 3.4: Site-specific profits ($/ha) for the learned SSM after 5 years and uniform management
in scenario A

As indicated in the panel for uniform management, plant available water capacity (z1) has

a much stronger influence on profits than organic carbon (z2). However, as both variables

increase, the site becomes more fertile (though hard to see for organic carbon z2). Since

panels for both management systems look quite similar, to highlight their difference, Figure

3.5 illustrates the difference at each site.
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Figure 3.5: Differences in site-specific profit ($/ha) for SSM versus uniform management in scenario
A. The maximum difference is $138/ha at site (231,3.84) and the minimum difference is $-9.4/ha
at site (317,2.56).

Finally, Figure 3.6 reports the learned SSM (x1, . . . , x6) after 5 years.
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Figure 3.6: Learned SSM after 5 years in scenario A. The average sowing density is 7.3 seeds/m2,
and the average amount of total nitrogen is 156 kg/ha.

The average sowing density is

1

25

25∑
s=1

x1
s = 7.3 seeds/m2,

and the average amount of total nitrogen fertilizer is

1

25

25∑
s=1

6∑
i=4

xis = 156 kg/ha.

As a result, $43/ha higher profit is achieved by using 0.7 fewer seeds/m2 and 45 kg/ha less

nitrogen than uniform management. To further emphasize the generality and robustness of

our algorithmic approach, results from other years than 2013 are also provided in Appendices.
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3.3.2 Scenario B (high complexity)

Table 3.2 and Figure 3.7 report field-level profits ($/ha) from implementing the SSM learned

after conducting experiments for T years. Again, the value for each T ∈ {1, 2, . . . , 10} is the

profit if the farmer terminates the experiments after T years and implements the learned

SSM without further improvement.

Years (T) 1 2 3 4 5 6 7 8 9 10

Learned 1319 1324 1331 1333 1335 1335 1336 1337 1338 1339

Uniform 1295 1295 1295 1295 1295 1295 1295 1295 1295 1295

Difference 24 29 36 38 40 40 41 42 43 44

($/ha)

Table 3.2: Field-level profits ($/ha) from implementing the learned SSM and uniform management
in scenario B.
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Figure 3.7: Learning curve of the algorithm with profits plotted against years of experiments in
scenario B. The shaded areas indicate two standard deviations around each mean field-level profit
over 100 Monte Carlo samples.

The shaded areas indicate two standard deviations around each mean field-level profit over

100 Monte Carlo samples. Again, the dashed line indicates the maximum possible profit
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obtained by implementing the optimal SSM, while the dotted line indicates the profit from

uniform management.

The following heatmaps (Figure 3.8) compare the site-specific profits from the learned

SSM at T = 5 and uniform management.
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Figure 3.8: Site-specific profits ($/ha) for the learned SSM after 5 years and uniform management
in scenario B

As in scenario A, the difference between the two management systems is difficult to dis-

cern. The SSM, however, has higher profits (darker colors) in low-yielding sites. Figure 3.9

illustrates the difference at each site.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

1

2

3

4

5

6

7

8

9

Differences in site-specific profit

0

20

40

60

80

100

120

140

Figure 3.9: Differences in site-specific profit ($/ha) for SSM versus uniform management in scenario
B. The maximum difference is $153/ha at site (16,6) and the minimum difference is $-5.7/ha at
site (8,1).

Finally, Figure 3.10 illustrates the learned SSM (x1, . . . , x6) after 5 years.
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Figure 3.10: Learned SSM after 5 years in scenario B. The average sowing density is 7.4 seeds/m2,
and the average amount of total nitrogen is 146 kg/ha.

The average sowing density is

1
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s=1

x1
s = 7.4 seeds/m2,

and the average amount of total nitrogen fertilizer is

1

144
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s=1

6∑
i=4

xis = 146 kg/ha.
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As a result, $40/ha higher profit is achieved by using 0.6 fewer seeds/m2 and 55 kg/ha less

nitrogen than uniform management.

3.4 Discussion

The results for field-level profit presented in Tables 3.1 and 3.2 and Figures 3.3 and 3.7

are well aligned with our common notion about learning—the longer an algorithm learns,

the higher profit the learned SSM generates. When the algorithm starts with little existing

data to incorporate, the algorithm has difficulty identifying good management. This is

particularly the case in scenario A, in which the profit from the learned SSM after one year

is far below that for uniform management. In contrast to scenario A, good management is

found in scenario B even after one year because, although most sites are technically distinct,

some sites are similar to each other and provide mutual information. As a result, with a

greater number of sites in the field, more information is collected each year. Despite the low

performance in the first year in scenario A, the algorithm quickly learns and its performance

surpasses the performance with uniform management after two years. In both scenarios, the

algorithm continues to learn and widen the performance gap. With five years of learning, the

estimated profit reaches $1,277 or 97% of the maximum possible profit ($1,310) in scenario

A and $1,335 or 98% of the maximum possible profit ($1,365) in scenario B.

The random sampling used in year 1 creates the large shaded area formed by two stan-

dard deviations around the mean predictions over the first few years in scenario A (Figure

3.3), indicating that imprecise prediction of mean profits. However, performance dramati-

cally improves after four years, and thereafter its spread around the mean profits continues

to shrink. Combined with the increasing mean profits, this is a desirable feature because it

implies that no matter how the algorithm starts off, after several years, the algorithm con-

sistently learns good SSM. Scenario B exhibits far less imprecision due to the larger sample

size used right from the beginning (Figure 3.7).
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As seen in Figures 3.4,3.5,3.8, and 3.9, the higher field-level profits for the learned SSM

are due mainly to their higher profits from the low-yielding sites (e.g., sites with z1 ∈

{231, 259} in scenario A and sites around (11,2) and (15,7) in scenario B). These results

imply that uniform management is excessively tailored to the high-yielding conditions—

z1 ∈ {317, 346} in scenario A and the left half of the field in scenario B—leading to the

decrease in profitability in the low-yielding sites where it is optimal to put less inputs.

Overall, albeit not necessarily true in other environments, the algorithm discovers that it is

profitable to put more inputs in the high-yielding sites and less in the low-yielding sites as

indicated in panels for x1, x4, x5, and x6 in Figure 3.6 and 3.10.

We dismiss the patchy look of row spacing (x3) in Figures 3.6 and 3.10 as an artifact of

numerical optimization, which strictly distinguishes two values whenever one results in even

a minuscule amount greater than the other. Indeed, the color bar for x3 has a very small

range (0.830–0.855 in scenario A and 0.73–0.79 in scenario B), indicating little practical

significance for learning SSM. Nonetheless, we have included row spacing in the learning of

SSM because we do not assume its insignificance before running the algorithm. In general,

with little prior knowledge about which management variables are significant and should be

included for learning their optimal management choices, we should include them and let the

algorithm learn.

In both scenarios, the learned SSM is evidently more efficient in input use for generating

profits than the benchmark uniform management. After five years, for example, the learned

SSM generates $43/ha higher profits with 45 kg/ha less nitrogen in scenario A and $40/ha

higher profits with 55 kg/ha less nitrogen in scenario B. In terms of yield, the learned

management produces 210 kg/ha less maize in scenario A and 278 kg/ha less maize in

scenario B. While the SSM optimization is guided by profit maximization, it turns out to be

environmentally more sustainable as well because both costs of fertilizer (i.e., to profitability

and to the environment) are aligned so that less is better. However, higher yield does not

necessarily coincide with higher profit, though yield increases with more inputs, substantially
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higher input costs can reduce profit.

Although the focus of this paper is on development and demonstration of the algorithm,

we mention some implications and implementation of the algorithm in practice for future

empirical studies. Imagine a corn farmer in Iowa whose farming situation is well captured

by scenario B. Then, implications of the higher projected profits largely depend on whether

the farmer needs to invest in new equipment and if so, how large the operation scale is.

As mentioned in section 2.1, a typical story about SSM is that, despite the existing access

to required equipment, a lack of actionable procedure for SSM prevents the farmer from

implementing it (Lindblom et al., 2017). In this case, extra profits may be sufficient to cover

costs for experiment and overcome psychological barriers to change (e.g. accepting lower

yield for higher profit). In contrast, if new investment is necessary, further financial analysis

is required. Suppose that the farm size is 100 ha and extra $40/ha is projected. Then,

the analysis involves comparing a stream of extra $4,000/year against equipment and other

financial costs.

To implement the algorithm in practice, we suggest the following design for a web appli-

cation that seamlessly works with common desktop software (e.g., Ag Leader SMSTM) used

to communicate with a wide range of precision farming equipment. For the sake of simple

illustration, it is assumed that data is organized and contained in a single table, implying

no spatial misalignment across all the variables. In addition, for all site s ∈ {1, 2, . . . ,M}, a

state vector zs remains the same over time. First of all, as an initial setup, the farmer enters

management and soil information in the web-app interface. For the former, specify manage-

ment variables (x1, x2, . . . ) to be investigated and a range of values that each variable can

take. For the latter, enter zs for all s, which should be surveyed in advanced. Then, at the

beginning of each year, the farmer uploads the existing data from the preceding years. Based

on this information, the algorithm runs on the web server and returns a prescription xs for

all s in a file format (e.g., shapefile) that can be downloaded and imported into the desktop

software. The desktop software exports the prescription data into a file format (e.g., tgt file)
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that can be imported into the tractor display. Now, following the loaded prescription, the

farmer implements each management and, after harvesting, exports observed yield data {ys}

out of the display. Finally, using price information, the farmer calculates profits {πs} and,

along with the corresponding {(xs, zs)}, add them to the existing data.

Despite the promising results, there are several clarifications and limitations to note

before real-world implementations, as well as future research needs.

• While we have formulated a farmer’s problem as profit maximization and developed

an algorithm to solve it, in reality, many farmers are concerned with maximizing their

yields. In fact, our optimization framework is flexible and can be applied to solving

yield maximization problems as well, which will be the focus in future work. In this pa-

per, we concentrate on the profit maximization formulation for the following reasons.

First and foremost, since the main objective of this paper is to introduce the novel

optimization method to the literature, we try to highlight its features and usefulness

for precision agriculture. To this end, profit maximization formulation is technically

simpler than yield maximization. In addition, as extensively studied over the past

two decades, the adoption of PA (or the lack thereof) is explained by many and com-

plex determinants, among which profitability is identified as one of the key factors in

the literature (Castle et al., 2017; Gandorfer and Meyer-Aurich, 2017; Pathak et al.,

2019; Schimmelpfennig, 2016). Even for those who try to maximize yields, as part

of commercial enterprises, yield maximization is rarely unconstrained. Indeed, there

are typically implicit upper bound for input use (e.g., avoiding unnecessary fertilizer

application). In this case, constrained yield maximization becomes similar to profit

maximization.

• This analysis assumes no costs for switching management from site to site, which can

be unrealistic for some inputs and management types. For example, varying types of

fertilizer, seed treatments or hybrids may require equipment modifications, multiple

field passes or additional labor. As another example, changing seeding rates too fre-
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quently may put an excessive strain on and damage an electric motor. If these are costs

to consider, optimization of SSM will be even harder due to the switching frequencies

of management as another set of control variables to optimize.

• The algorithm assumes choice variables are continuous, even though choices of continu-

ous variables can be constrained for various practical reasons. For example, though the

algorithm may recommend fertilizer application rates that differ by less than 0.1 kg/ha,

such small differences are impossible to implement practically with current equipment.

Real-world implementation will require modifying the algorithm to convert continuous

choice variables into appropriate discrete variables.

• The simulations use a single season’s weather pattern, output price, and input prices

that prevail over T years. In reality, these differ from year to year, and such fluctuations

may have strong implications for the algorithm’s performance.

• The current algorithm assumes risk neutrality of farmers when the acquisition function

prescribes the next sampling choices. In the real world, however, many farmers are risk

averse (Monjardino et al., 2015), for whom it will be difficult to accept and implement

some strongly explorative prescriptions made by the algorithm that reflects expected

profit but not its variance. To be more realistic and useful for practical applications,

future work needs to modify the acquisition function and parameterize a level of risk

aversion so that the algorithm can be uniquely adjusted to each farmer.

• This approach is limited to one-shot optimization in which the farmer makes all the

management decisions at the beginning of the year, implements them, and waits to see

results at the end of the year. In practice, many management choices are sequentially

made throughout the year, while they affect site characteristics and are affected by

evolving site characteristics. To handle these more realistic situations requires dynamic

models with information feedback and learning that take place both within and across

years.
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• The simulations assume no spatial interaction between input choices across sites (e.g.,

fertilizer use on one site does not affect adjacent sites). Depending on the grid granu-

larity, these assumptions may be excessively strong under some circumstances. Thus,

besides the temporal dynamics mentioned above, future work focuses on developing

spatiotemporally explicit models that handle dynamics over space and time.

• As with many other machine learning studies on large and complex datasets, it is ex-

tremely beneficial to have access to a simulator of high fidelity. We find in APSIM

only six management variables and four environmental variables suitable for this study.

Since the algorithm is very flexible and capable of dealing with an arbitrary number of

variables, demonstration of the algorithm would be more realistic and compelling with

a simulator in which a greater number of variables and resulting yield are intricately

interdependent, better representing the complexity of biophysical systems. Thus, fur-

ther advancement of crop simulators is crucial for validation and improvement of the

current algorithm.

3.5 Conclusions

We have proposed an algorithmic approach to optimizing complex site-specific management

with many management and environmental variables. The proposed algorithm enables in-

dividual farmers to efficiently learn their own site-specific management through on-farm

experiments. We have demonstrated its performance using simulated environments. The

results have provided a positive answer to both the learnability of complex site-specific man-

agement and the higher profitability possible relative to uniform management. While these

results are promising, we do not know in general under which environment the algorithm

works. Thus, we need more validation studies, especially field experiments with farmer co-

operators. Long-term, the results suggest that on-farm experimentation implemented with

precision agriculture equipment can help to realize the benefits of precision agriculture—more
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profitable management, greater food security, and improved environmental sustainability.

Appendices

APSIM configuration

As a basis, we use the Continuous Maize module in APSIM. Then, to simulate maize pro-

duction in Ames, Iowa, we modify its default settings as follows.

• Metfile: USA Iowa Ames.met

• Calendar: Jan 1, 2013 - Dec 31, 2013

• Cultivar: Pioneer 3394

• Sowing window START data: 15-apr

• Sowing window END data: 2-may

• Soil: Iowa Nicollet soil series

• Initial nitrogen: 0 kg/ha for both NO3 and NH4 for scenario A

• Initial water: 80% filled from top

Sensitivity analysis

In addition to two simulated environments with medium- and high-complexity, to further

emphasize the generality and robustness of our algorithmic approach, we conducted simula-

tion experiments in different years than 2013. Since output price, input prices, and weather

are all dependent on a particular year, the differences in year provide different environments

for profit maximization. The price information for each year was obtained from the same

sources (Duffy, 2013; Johanns, 2019).
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Year 2007 2008 2009 2010 2011 2012

Output price ($/kg) 0.17 0.16 0.14 0.21 0.24 0.27

Seed price ($/1000 seeds) 1.82 2.10 3.13 3.44 3.25 3.40

Nitrogen price ($/kg) 0.69 1.02 1.51 0.73 1.13 1.40

Note that all sensitivity analysis was conducted under the environments with medium com-

plexity, because of the significantly greater computational resources required in environments

with high complexity. While there were considerable variations in both the growing and eco-

nomic conditions across the different years, overall, the algorithm is quite versatile and able

to learn good SSM within a few years in every environment. Similar to Figure 3.3, for each

environment, we plot estimated field-level profits after T -year experiments.
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Constructing scenario B

To generate a state vector z = (z1, z2, z3, z4) for each site, we need to choose which site s and

what values for (z1
s , z

2
s , z

3
s , z

4
s). For both purposes, we use random walk. Start from the mid

site (9, 5) with the initial values (288, 3.2, 10, 10) assigned. Then, with probability of 1/3,

randomly either move right, move left, or stay. Similarly, with probability of 1/3, randomly

either move up, move down, or stay. This gives us the next site to consider. If the move

means hitting a boundary, it stays at the site. Once moving into the new site, see if the site

has already been assigned a state vector. If not, with probability of 1/3, randomly perturb

the state vector at the originating site by either -5%, 0%, or 5%. Continue the process until

all sites are assigned a state vector.
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Chapter 4

An agent-based model of insect
resistance management and
mitigation for Bt maize: A social
science perspective

Yuji Saikai

Terrance M. Hurley

Paul D. Mitchell

4.1 Introduction

Globally, farmers have planted more than 2.3 billion hectares of genetically engineered crops

since their commercial introduction in 1996, including a new maximum of 190 million hectares

in 2017 (ISAAA, 2017). Focusing on maize (Zea mays), the world’s leading grain crop with

annual production exceeding a billion metric tons, the United States, Brazil and Argentina

together produced almost half of the world’s supply in 2017 (USDA, 2018b). Bt maize—

maize genetically engineered to produce Bacillus thuringiensis (Bt) toxins in plant tissues

for insect control—accounted for more than 80% of the maize planted in each of these

three nations in 2017 (ISAAA, 2017). After more than two decades of commercial use of
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genetically engineered crops, insect resistance to Bt toxins continues to be a major concern

around the world (Tabashnik, 2015). A high-dose/refuge resistance management strategy

continues to be the primary policy in multiple nations for delaying resistance to these Bt

toxins (Huang et al., 2011; Pardo-López et al., 2013; Tabashnik et al., 2013). Nevertheless,

field-evolved resistance to some of these Bt toxins has been documented for populations

of western corn rootworm (Diabrotica virgifera virgifera) in the United States and various

lepidopteran species in multiple locations (Gassmann et al., 2011).

The commercialization of Bt crops has generated a variety of research, including bioe-

conomic models that integrate population genetics and pest ecology with farmer economic

returns (Crowder et al., 2005; Hurley et al., 2001; Mitchell and Onstad, 2005). Though these

models contributed to the development of insect resistance management policies, little other

work exists on the role of social factors in the evolution of insect resistance to commercialized

toxins. Insect resistance to these toxins evolves in response to human management activities,

activities driven by a variety of social factors that include not only economic considerations,

but also sociological, psychological, cultural, historical and political considerations (Hurley

and Mitchell, 2014). As a result, examining genetic and ecological processes in isolation from

these broader social factors driving human behavior potentially misses key determinants of

the evolution of insect resistance. Hence, a broader, complex systems model of insect re-

sistance management that incorporates both biological and social processes can potentially

provide new insights (Rebaudo and Dangles, 2013).

In the United States (US), the Environmental Protection Agency (EPA) required com-

panies commercializing Bt crops to develop resistance mitigation plans as a condition for

product registration (USDA, 2010). Once a resistant population has been officially docu-

mented according to the EPA process, these resistance mitigation plans generally restrict

the availability of the technology (Bt seed) in and around the region where the resistant

population emerges. Though resistant insect populations and field failures in the US have

been documented in the scientific literature (Gassmann et al., 2011, 2014), the official EPA
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criteria have yet to trigger implementation of these mitigation plans for any pest. Instead,

the EPA has required a more generalized response by Bt crop registrants (Andow et al.,

2016). Interestingly, little research exists that evaluates and compares the mitigation plans

that have been filed or other mitigation policies, particularly from an economic perspective.

Given the length of time that Bt crops have been in use in the US and elsewhere, insect

resistance is likely to become an increasing problem, making more research on mitigation

responses and strategies especially timely.

This paper has two goals. First, we develop an agent-based model of insect resistance to

Bt maize that incorporates farmer adoption behavior. We then use the model to compare

different mitigation policies in order to inform policymakers and other stakeholders of the

types of programs that are likely to generate the largest economic benefits for society. Second,

focusing specifically on the impact of social networks on farmer adoption behavior, we show

that social factors can also play a key role in the evolution of insect resistance to Bt toxins

in agricultural cropping systems.

Agent-based modeling has become more widely-used for studying complex systems and

emergent behavior, including socio-ecological modeling of insect resistance management

(Miller and Page, 2009; Peck, 2004). In agent-based models, an observed macroscopic phe-

nomenon emerges as a result of interaction among heterogeneous agents in a dynamically

evolving environment. Agents typically follow simple decision rules and influence each other

either directly or indirectly through the environment, which itself evolves according to its

own rules and agent actions. Because the processes being explicitly modeled are complex,

researchers use computer simulations to examine outcomes over a wide range of parameter

values. In short, agent-based models are laboratory experiments conducted in silico (Ep-

stein, 2006; Peck, 2004). Despite the remaining challenges to overcome, such as ad hoc

assumptions and lack of relevant data for validation (Durlauf, 2012; Feola and Binder, 2010;

Filatova et al., 2013), agent-based modeling can provide insights into complex systems that

would be difficult to study otherwise. Given the merits, applications of agent-based models
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to pest and resistance management in agricultural systems have been developed (Gay et al.,

2017; Renton, 2013; Renton et al., 2014).

Although agent-based models can integrate many factors, they still face the fundamental

tradeoff in modeling: fidelity to the phenomenon being examined and abstraction for ease

of analysis and interpretation (Peck, 2004). This paper focuses on deriving new insights

into policy options for mitigating insect resistance once it has evolved, and emphasizes the

significance of social factors for questions relevant to policymakers (Renton, 2013). As a

result, social components are richer than existing models that use individual-based modeling

to incorporate social factors (Milne et al., 2015), while the biological aspects of the model

are simpler than other models focusing on biological processes (Ives et al., 2017; Onstad and

Meinke, 2010; Storer, 2003).

We extend existing work (Milne et al., 2015) on insect resistance management for Bt

crops by more fully leveraging the power of agent-based modeling. First, we explicitly model

the local influence that neighbors have on farmers through social networks as they make

decisions regarding adoption of Bt maize, creating a hybrid decision process that mixes

both individual profit considerations and a desire to mimic neighbors. Second, we allow the

additional cost of planting Bt seed to vary over time, because this cost influences adoption

decisions and companies have reduced the cost of single-toxin Bt seed to encourage farmers

to continue to plant Bt maize in the face of pest population suppression (Shi et al., 2010).

With this pricing flexibility, we calibrate the farmer decision model using historical data that

reflects these decreasing prices, and then can examine the impact of a tax on Bt seed as a

policy option for mitigating resistance.

For this analysis, we parameterize a bioeconomic model of maize production with the

option to use high-dose Bt maize to manage European corn borer (Ostrinia nubilalis). We

calibrate the Bt maize adoption model using aggregate historical adoption data for farmers

in the state of Wisconsin. Through the calibration process, we emphasize the significant

role that a social factor—the local influence of social networks on Bt maize adoption (Kaup,
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2008)—can play in the evolution of insect resistance. Using the calibrated model, we then

simulate a number of mitigation policies implemented either over the entire landscape or

around the areas where resistance develops. In particular, we consider combinations of an

increased refuge requirement and a tax on the sale of Bt seed for all farms, and a ban on

the use of Bt maize and areawide use of an additional insecticide to control the pest in the

area around where resistance emerges. To assess the relative performance of each policy, we

use economic surplus as a monetary measure of the social value generated by the use of Bt

maize and conduct sensitivity analysis of key parameters to explore the robustness of model

results.

4.2 Materials and methods

4.2.1 Landscape

The spatially explicit model used a 30×70 grid space representing the cropland in Wisconsin.

Modeled farmers mimic the Wisconsin crop landscape (USDA, 2012) and plant 44% of the

fields to maize, the host crop for the pest. Fields maintain their initial random assignment

to maize or non-maize production during a simulation but are reassigned at the start of

each new simulation. During a simulation, maize farmers decide adoption of Bt maize each

period. Figure 4.1 depicts a typical model landscape, in this case with 59% Bt adoption

and a resistance allele frequency of 41% for the total population. A circle (◦) represents a

farmer who plants conventional (non-Bt) maize, whereas a black dot (•) represents a farmer

who adopts Bt maize. A light-gray background (�) indicates that the pest population

in an individual field before adult dispersal has a resistance allele frequency of more than

50%, the criterion used for declaring that a population is resistant (Tabashnik, 2008). To

avoid boundary effects, top fields wrap to corresponding bottom fields and left-most fields

to corresponding right-most fields, creating a torus, implying that the model space is part
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of a larger landscape with comparable dynamics occurring for the pest population and its

genetic structure (Storer, 2003).
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Figure 4.1: Example model landscape. Circle (◦) represents a field planted to non-Bt maize, black
dot (•) represents a field planted to Bt maize, and light-gray (�) indicates a field with a pest
population with a resistance allele frequency of more than 50% before adult dispersal.

4.2.2 Pest Population Genetics

The pest population-genetics model is parametrized for European corn borer (Ostrinia nu-

bilalis), a major pest for Midwestern maize and the primary target for initial commercial

releases of Bt maize beginning in 1996 (Hutchison et al., 2010). The insect model uses dis-

crete time steps corresponding to distinct generations and consistent with the seasonality of

many types of crop production and pest life cycles. O. nubilalis typically has two generations

per year in the major US maize production region, though northern regions may have only

one generation per year and southern regions may have three or more (Mason et al., 1996).

The model simplifies these dynamics to one discrete time step per year that aggregates pop-

ulation dynamics and genetic selection across these generations. Hutchison et al. (2010) used

a comparable empirical approach to estimate annual population growth rates for O. nubilalis

using annual observations of second-generation adult population densities in Minnesota and

Wisconsin.

Historically, the O. nubilalis population in the Midwestern US has oscillated with an ap-

proximately seven year cycle (Onstad and Maddox, 1989) largely due to the entomopathogenic



66

parasite Nosema pyrausta (Bell et al., 2012). Field data for second-generation populations

in Wisconsin over 1944-1995 show an average peak and trough for the oscillation of about

1.2 and 0.2 larvae per plant (Bell et al., 2012; Hutchison et al., 2010). The population model

approximates these dynamics using a lagged logistic growth model:

Nt+1 = gNt

(
1− Nt−1

K

)
(4.1)

where Nt is the second-generation larval population (larvae per maize plant), g is the annual

growth rate and K is the carrying capacity. Using g = 2.15 and K = 1.4 generates a

reasonable approximation of historical O. nubilalis population dynamics in Wisconsin, with

a similar range of population minimums and maximums as observed and six or seven years

between peaks.

The genetics model assumes two alleles, R for resistant and S for susceptible, creating

three genotypes, homozygous resistant RR, homozygous susceptible SS, and heterozygous

RS, with respective Bt toxin larval survival rates of 1.0, 0.0, and 0.18. Each period, after Bt

toxin mortality and density-dependent mortality for larvae, random mating occurs among the

adult population within each field before adult dispersal. Note that, with random mating,

RR and RS genotypes both contribute R alleles, but RS genotypes do so half as often on

average, also contributing S alleles just as often. Let αt, βt, and γt respectively denote the

relative frequencies in period t of RR, SS, and RS genotypes, which by definition sum to 1.

Random mating then implies

1 = αt+1 + βt+1 + γt+1

= (αt + βt + γt)
2

= (αt + 0.5γt)
2 + (βt + 0.5γt)

2 + 2(αt + 0.5γt)(βt + 0.5γt)
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so that

αt+1 = (αt + 0.5γt)
2

βt+1 = (βt + 0.5γt)
2

γt+1 = 2(αt + 0.5γt)(βt + 0.5γt)

(4.2)

Adults disperse uniformly within a radius of maize fields (i.e., not onto non-maize fields).

While the literature provides a range of observations for dispersal due to various influencing

factors including season, gender, and mating status (Dorhout et al., 2011, 2008; Showers

et al., 2001), it takes place within 20km in most cases. To capture the effects of dispersal

yet remain computationally tractable, the model uses a dispersal radius of 15km, which

corresponds to 3 fields in the model grid space. We assume that the natal field is always

available as a destination, which implies that if no neighboring fields exist within the dispersal

range, adults stay in the same field.

4.2.3 Farmer behavior

Individual farmers manage each field and decide each period whether to plant Bt or non-Bt

maize. A number of economic and social factors influence farmers’ adoption decisions for Bt

maize (Useche et al., 2009). Rather than explicitly enumerating and modeling these multiple

factors, agent-based models combine simple behavioral models with suitable random compo-

nents and let complex phenomenon emerge (Epstein, 2006). Though expected profitability

greatly influences farmer management decisions in commercial agriculture, their local social

networks also significantly influence their behaviors, not just by providing additional infor-

mation regarding the relative profitability of different practices (Kaup, 2008; Lubell and

Fulton, 2007; McAllister et al., 2015). Therefore, we model the Bt adoption process as a

hybrid of individual profit maximization and local imitation to capture the effect of social

networks.
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4.2.4 Farmer profit

The profit-based component of farmer behavior uses the following switching function (Milne

et al., 2015):

Pr(Switch C to A) =


1− exp[−ρ(πA − πC)] if πA > πC

0 otherwise

(4.3)

Here, πA is the profitability of the alternative choice and πC is the profitability of the cur-

rent choice, with both profits calculated using the pest population density for the previous

period in the field. The function determines the probability that the farmer switches from

the current choice to the alternative (Switch C to A), with the probability increasing as

the alternative becomes relatively more profitable than the current choice. We use a “soft”

probabilistic switching decision to capture the effect of other unobserved individual factors

(Mason et al., 1996). The parameter ρ captures the responsiveness of farmer adoption to

profitability differences, with a greater ρ increasing the probability farmers use the more prof-

itable alternative. As explained in the Calibration section, we calibrate ρ against the Bt seed

adoption data for Wisconsin to derive ρ = 0.0023. The negative-exponential function implies

that the switching probability is the farmers’ expected utility gain from switching when the

gain is uncertain, assuming constant absolute risk aversion for the farmer, a commonly used

assumption for empirical analysis (Chavas, 2004; Mitchell and Hutchison, 2008).

Farmer profit for a field (π) is crop revenue minus cost, where revenue declines as the

pest population increases and cost varies with the scenario:

π = PY (1− Loss(N))− Cost (4.4)

Here P is crop price ($Mg-1), Y is potential or pest-free crop yield (Mg ha-1), Loss is

proportional crop loss, which depends on N , the average pest population density (larvae

per plant), and Cost is the production cost ($ ha-1). To focus on factors other than annual
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variability in crop prices and yields, crop price and potential yield are fixed at reported

averages in 2017 for Wisconsin farmers: P = $129.91 ha-1 and Y = 10.92 Mg ha-1 (USDA,

2019). These values imply constant potential revenue of $1,418.62 ha-1 across fields and

seasons. The proportion of potential revenue lost due to pest damage depends on the average

larval population density based on an empirical model (Hurley et al., 2004): Loss(N) =

0.1186N0.5146.

Cost consists of a base cost C ($ ha-1) that does not vary by policy scenario and costs

that do:

Cost =


C + T (1− θ)(1 + τ) + Cs if Bt maize

C + Cs if non-Bt maize

(4.5)

Based on US Department of Agriculture crop budgets (USDA, 2016), the base cost C is set

to $1,202.51 ha-1, the reported average for 2017 in the region containing Wisconsin for all

costs except opportunity costs for land and operator labor and management. T ($ ha-1) is

the additional seed cost for Bt maize (“technology fee”), which varies over time based on

the function estimated with Wisconsin market data (Onstad and Meinke, 2010). Specially,

T = $17.49 ha-1 from 1996 to 2003, and then declines to T = $17.45 ha-1 for 2004, $15.78 ha-1

for 2006, $13.75 ha-1 for 2007, $11.41 ha-1 for 2008, $9.18 ha-1 for 2009, $8.29 ha-1 for 2010,

$7.82 ha-1 for 2011, $7.39 ha-1 for 2012, and then remains at a base of $7.04 ha-1 for years

2013 and afterward. The remaining cost parameters vary with the policy scenario: θ is the

proportion of refuge (non-Bt maize) planted with Bt maize, τ is the tax rate for Bt maize,

and Cs is the cost ($ ha-1) for a foliar insecticidal spray as part of areawide management

of adults. Each scenario sets these cost parameters at appropriate values as described in

the Policy Experiments section. For example, a refuge only scenario sets τ = Cs = 0 and

sets θ at 0.05, 0.20 or 0.50; a ban only scenario sets τ = Cs = 0 and θ = 1 (100% refuge)

in fields where a ban is in effect; and an areawide spray policy sets τ = 0 and imposes the

cost Cs for all affected fields. The cost of an insecticidal spray Cs is $33.51 ha-1 based on

published survey averages for insecticide active ingredients used in maize and application
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costs, adjusted for inflation to 2017 equivalents (Mitchell, 2017; USDA, 2018a).

Lastly, a refuge policy is implemented as a fixed proportion θ of non-Bt maize with

complete compliance by farmers, the so-called “refuge in a bag” (Hodgson, 2010) in which

the company mixes Bt and non-Bt maize seeds before purchase. In our model, the refuge

requirement has two effects. First, the effective seed cost is the proportion (1 − θ) of the

technology fee T at that period. Second, the effective survival rate of each genotype is

calculated as the weighted average: θ + (1− θ)s, where s is the original survival rate. That

is, with probability θ, any genotype survives due to the non-Bt maize, and with probability

1 − θ, each genotype survives according to its Bt toxin survival rate. Initially, we assume

θ = 0.05, which is the lowest refuge requirement already in place, and later increased refuge

levels are examined as resistance mitigation policies.

4.2.5 Social network

Network analysis has been widely applied to understand the diffusion of innovations as a

social phenomenon, including in agriculture (Easley and Kleinberg, 2010; Jackson, 2010).

Neighboring farmers have been shown to create a local environment that affects individual

farmer adoption decisions, both for hybrid maize seed and for Bt maize (Kaup, 2008; Ryan

and Gross, 1943). To capture this social network effect, the model assumes each farmer

in a field is connected to farmers in neighboring fields, with the size of the neighborhood

determined by a “radius”. Figure 4.2 shows an example of a size-2 neighborhood for a farmer

with nine neighbors who plant maize, either Bt or non-Bt.
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Figure 4.2: Example size-2 neighborhood. It is centered on a farmer (×) with nine neighbors who
plant maize, either Bt maize (•) or non-Bt maize (◦).

Those neighbors themselves have their own neighborhoods, with each connection undi-

rected so that the local social networks are tightly overlapped. The number of neighbors for

a size-n neighborhood can range from 0 to a maximum of 4n(n+ 1). With no data for social

network sizes for farmers and considering that n = 3 gives up to 48 neighbors (implying

a substantial computational burden), the model randomly assigns a neighborhood size to

each farmer for all seasons using a uniform distribution over {0, 1, 2}. Given this local social

network, each maize farmer chooses each season to grow either Bt or non-Bt maize for a

field. A parameter q defines the impact of social networks on farmer adoption decisions.

With probability q, a farmer focuses solely on individual profits using the switching function

and with probability 1−q follows the majority choice of his neighbors in the previous season.

For example, the farmer in Figure 4.2 follows the majority and plants Bt maize next season

because his neighborhood has 5 Bt maize adopters and 4 non-adopters.

4.2.6 Running the model

Each model run begins with initialization, including randomly placing farmers across the

landscape. Since corn fields occupy roughly 44% of total farmland in Wisconsin (represented

by 30 × 70 fields configured as a torus), the total number of maize farmers for a run is

approximately 0.44× 30× 70 = 924. After initialization, the run proceeds period by period,

with a period corresponding to a growing season or year. Before introducing Bt maize into
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the model, the insect module runs for 11 periods, which corresponds to the pre-Bt periods

and helps stabilize the model’s biological dynamics. Thereafter, the model simultaneously

updates the pest population density of each field for each period. First, Bt toxin effects

reduce each fields pest population based on the survival rates of the genotypes established

there the previous season. Second, mating determines the genotype composition of the next

generation based on random mating of the population in the field. Third, reproduction

determines the pest population density based on the lagged logistic growth model. Fourth,

the population locally re-mixes across fields based on the dispersal model. Finally, maize

farmers simultaneously make planting decisions (whether to plant Bt or non-Bt maize) for

the next period based on the farmer behavioral model. In short, during a growing season

the Bt toxin (if present) reduces the natal population in a field, survivors randomly mate

and produce the next generation, which then disperses locally across fields, and then farmers

make maize planting decisions for the following spring.

4.2.7 Calibration

We used aggregate Bt maize adoption data for Wisconsin to calibrate the model. Our calibra-

tion minimized the average of the mean squared error (MSE) of prediction for the simulated

landscape compared to the observed data. Specifically, the MSE for a run was the squared

deviation of the simulated Bt adoption rate from the annual Wisconsin adoption data, aver-

aged across all periods with adoption data (t = 11 to 32). Since runs were random, the MSEs

were averaged across 1,000 runs. The two calibration parameters were the responsiveness

of farmers to expected profit differences between alternatives (ρ) and the probability (q)

that farmers focus solely on profit differences to make adoption decisions, rather than their

neighbors’ choices. To avoiding both over-fitting and excessive computational requirements,

a grid search was used with increments of 0.0002 for ρ and of 0.1 for q. To highlight the

significance of local networks, we also calibrated the model by fixing q = 1 and using only

ρ, which “shut off” all social network effects on adoption.
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Plotting the Wisconsin Bt maize adoption data and both calibration fits shows the supe-

rior fitting of the two-parameter hybrid model relative to the one-parameter model (Figure

4.3). Using the same random seeds for both models, the optimum solutions are ρ = 0.0036

and q = 0.3 for the hybrid model and ρ = 0.0022 for the single parameter model. These

optimal values for the two-parameter model imply that 70% of the years, farmers follow

the majority choice of their neighborhood, suggesting that network effects are important for

understanding farmer adoption dynamics for Bt maize.
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Figure 4.3: Aggregate adoption of Bt maize in Wisconsin and two simulated results. The simulated
results are generated by calibrating one parameter and two-parameters.

4.3 Results

4.3.1 Baseline results

Running the calibrated model 1,000 times with different random seeds and averaging over

these iterations gave baseline results for the insect population, the Bt seed adoption rate,

and the resistance (R) allele frequency at the landscape level. In the model, periods 0 to 10

were an initialization phase, periods 11 to 32 were a calibration phase corresponding to years
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1996 to 2017, and periods 33 to 60 were projections (see Materials & Methods). The baseline

model captured the aggregate Bt adoption rate of Wisconsin farmers by calibrating two

parameters that determined Bt maize adoption—farmer responsiveness to profit incentives

and the farmer tendency to mimic the adoption decisions of neighbors due to social network

effects. The calibrated model reproduced the previously noted oscillation of the European

corn borer population before the advent of Bt maize (Bell et al., 2012), and the documented

suppression of the pest population due to the widespread farmer adoption of Bt maize in

Wisconsin and other states (Hutchison et al., 2010). As expected, the calibrated model

projected a surge in the R-allele frequency as the insect resistance developed, resulting in

the eventual recovery of the pest population. Baseline results suggested that period 33 was

the beginning of a significant increase in the R-allele frequency. In period 33, the R-allele

frequency was 4.1%, but rose quickly, exceeding 10% in period 36, 20% in period 38, 30%

in period 39, 40% in period 40 and 50% in period 41. The pest population did not recover

until later, with the average density not exceeding 0.5 larvae per plant until period 50.

4.3.2 Policy experiments

We simulated policies to mitigate resistance to the Bt toxin once it emerged. Refuge require-

ments have been the lynch pin of resistance management, and so the mitigation policies we

examined began with increasing refuge requirements. In addition, building on the model’s

capacity for capturing the complexity from the interaction of biological and social factors,

we experimented with combinations of three other types of mitigation policies: localized

bans on the use of Bt maize around areas where resistance emerged, areawide applications

of other insecticides to control the pest around areas where resistance emerged, and a uni-

form tax on the sale of Bt seed for all farmers buying it. Refuge policies and localized bans

directly regulate the use of Bt maize, areawide spray policies directly manage resistant pest

populations, and the Bt seed tax adjusts farmer incentives to use Bt maize. The simulation

of resistance mitigation policies was a combination of different assumptions for these four
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policy parameters: the refuge requirement, localized bans, areawide management, and a Bt

seed tax.

The simulated landscape consisted of a grid of fields, with 44% of fields assigned randomly

to maize production initially and the remainder to non-maize. Fields remained in their

initial allocation throughout a simulation, but were reassigned for each simulation. During a

simulation, insect resistance was declared when the R-allele frequency exceeded 50% in the

pest population in a field after Bt toxin mortality and before pest dispersal occurred. The

50% threshold was chosen because at this level the landscape-average pest population began

to increase (Figure 4.4), implying that higher population densities were occurring in some

fields due to resistance. For resistance mitigation, the refuge requirement was increased

from the baseline of 5% to either 20% or 50% for all farmers on the landscape planting

Bt maize, with complete compliance achieved using seed mixtures. The localized ban was

imposed only on farms within a radius r of any field where resistance was declared, again

with complete compliance assumed. We considered two radii: once and twice the distance

of adult dispersal from the natal field (r = 1 × dispersal, r = 2 × dispersal). Conceptually,

this ban was a 100% refuge requirement applied locally and dynamically imposed and lifted

according to the situation in the previous period. For areawide management, a non-Bt

insecticide was applied in the period when resistance was declared, either covering only the

field of resistance or all maize fields in a neighborhood around the field within the distance

of adult dispersal (r = 0× dispersal, r = 1× dispersal). We assumed 100% compliance with

the insecticide application for all fields within this area and that the application reduced the

pest population by 80% after Bt toxin mortality and increased farmer costs by $33.51 ha-1.

This cost was based on published survey averages for active ingredient and application costs

and adjusted for inflation to 2017 equivalents (Mitchell, 2017; USDA, 2018a). Finally, the

tax policy increased the Bt seed cost by 25% or 50% for all farmers on the landscape for

all periods after resistance was declared. In brief, each policy parameter had the following

three levels: refuge requirement (5%, 20%, 50%), localized ban (none, r = 1 × dispersal,
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r = 2× dispersal), areawide spray (none, r = 0× dispersal, r = 1× dispersal), and Bt seed

tax (0%, 25%, 50%). Three levels for each of these four policy parameters created 34 = 81

mitigation policy combinations to simulate.
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Figure 4.4: Baseline results from the calibrated model. It contains the insect population density
(Insect), Bt seed adoption rate (Bt), and the resistance allele frequency (R) (results for each period
are averages over 1,000 simulations).

The calibrated model was run 1,000 times for each policy and, just as for the baseline,

the following three results variables were averaged over all 1,000 iterations for each period:

aggregate farmer adoption of Bt maize, population-level R-allele frequency, and average pest

population density for the landscape. In addition, as a performance metric to compare each

policy, we approximated economic surplus each period as the sum of farmer profits and the

technology fees collected by the seed company, divided by the total number of farmers.

Costs for spraying insecticides were subtracted from farmer profits for those making

applications, while collected taxes were subtracted from farmer profits, but added to the

economic surplus (i.e., the tax was a surplus transfer, not a surplus loss). To simplify

the analysis, we did not discount future surpluses. Each policy scenario began after the

calibration phase (i.e., at period 33), and the cumulative surplus was evaluated for each

length of planning horizon ranging from 1 to 25 years (i.e., periods 33 to 57).
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To build intuition about the nature of each policy treatment (i.e. refuge, tax, spray,

and ban), we first report results for each policy individually (not combinations of policies)

by plotting the dynamics for Bt adoption, the R-allele frequency, and the pest population

density (Figure 4.5–4.7). In Figure 4.5 (Bt adoption), results for the ban policy (Ban 1x)

are plotted with a separate vertical axis due to its qualitatively different and much stronger

effect than for the other policies. Also, results for the spray policy with r = 1 × dispersal

(Spray 1x) and the ban policy with r = 2× dispersal (Ban 2x) are omitted as they were very

similar to those with smaller radii. In total, Figure 4.5 plots the Bt adoption rate against the

planning horizon for the following policies: baseline (Baseline), 20% refuge (20% Refuge),

50% refuge (50% Refuge), 25% seed tax (25% Tax), 50% seed tax (50% Tax), areawide spray

in the field with resistance (Spray 0x) and a localized ban on Bt seed within one pest dispersal

radius of the field with resistance (Ban 1x). Consistent with Figure 4.4, the baseline policy

showed a continuing increase in Bt maize adoption from planning horizon year 0 (period 32

in Figure 4.4), with a peak of almost 86.5% in planning horizon year 9 (period 41 in Figure

4.4). All policies showed this same general trend (with one exception), but with a lower

adoption peak occurring sooner for the seed tax policies, a higher adoption peak occurring

later for the increased refuge policies (especially for 50% refuge), and a slightly higher and

later peak occurring for the areawide spray policies. The one exception were localized bans

the sale of Bt seed, for which implementation caused a rapid decline in the use of Bt maize,

with almost complete dis-adoption by the end of the simulation in horizon period 25.



78

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

65%

70%

75%

80%

85%

90%

95%

0 5 10 15 20 25

%
Bt

 a
do

pt
io

n 
un

de
r 

Ba
n 

1×

%
Bt

 a
do

pt
io

n

Planning horizon

Baseline 20% Refuge 50% Refuge 25% Tax

50% Tax Spray 0× Ban 1×

Figure 4.5: Bt adoption rate under single policies plotted against the planning horizon. The results
for each period are averages over 1,000 simulations.
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Figure 4.6: R-allele frequency under single policies plotted against the planning horizon. The
results for each period are averages over 1,000 simulations.



79

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

0 5 10 15 20 25

La
rv

ae
 /

 p
la

nt

Planning horizon

Baseline 20% Refuge 50% Refuge Spray 0× Ban 1×

Figure 4.7: Insect population density under simple policies plotted against the planning horizon.
The results for each period are averages over 1,000 simulations.

In Figure 4.6 (R-allele frequency), results for both tax policies are omitted as they were

almost identical to the results for the baseline, suggesting low policy efficacy. This result

was surprising because Bt adoption differs noticeably for these policies (Figure 4.5). All

mitigation policies plotted in Figure 4.6 slowed the development of resistance compared to

the baseline. The most effective mitigation policies were the 50% refuge for all farms (50%

Refuge) and a localized ban on and around fields with resistance (Ban 1x), both of which kept

the R-allele frequency below 20% for more than 20 years. By horizon period 25, however, the

50% refuge policy showed a rapid increase in the R-allele frequency, suggesting its failure,

while the ban policy kept the frequency below 20%, suggesting that it was the most effective

policy for mitigating resistance over the long-run (> 25 years). The 20% refuge for all farms

(20% Refuge) effectively mitigated the resistance for about 10 years, and then the R-allele

frequency began a rapid increase, reaching the baseline level by horizon period 25. The spray

policies (Spray 0x) were not particularly effective for mitigating resistance, showing a steady

increase in the R-allele frequency, though slower than for the baseline and tax policies.

In Figure 4.7 (pest population density), results for both tax policies are again omitted as



80

they were almost identical to results for the baseline. The areawide spray policy (Spray 0x)

kept the pest population density low over all 25 years, even with a radius = 0, due to the

efficacy of the insecticide spray. The baseline with no intervention to mitigate resistance kept

the pest population density low for about 15 years, and then the population increased and

began to oscillate as expected. Surprisingly, the refuge policies showed distinctly different

patterns over the 25 years. The 20% refuge policy (20% Refuge) kept the pest population

low for about 20 years (about 5 years longer than the baseline), while the 50% refuge (50%

Refuge) showed a long slowly increasing pest population density over all 25 years, exceeding

the baseline in year 17 and the 20% refuge policy in year 23. Interestingly, the ban policy

(Ban 1x) only kept the pest population low for about 10 years (about 5 years longer than

the baseline).

These results showed the tradeoffs inherent in the mitigation of resistance. For example,

the 50% refuge and ban policies were both the most effective at reducing the frequency of

resistance alleles (Figure 4.6), but came at the cost of reduced adoption of Bt maize (Figure

4.5) and higher average pest populations (Figure 4.7), both implying lower benefits. Hence,

we used economic surplus as a measure that integrates across costs and benefits in order to

compare mitigation policies and to develop recommendations.

Figure 4.8 plots average annual economic surplus against the planning horizon, again

omitting results for the tax policies as they were almost identical to baseline results. Each

point on the curves in Figure 4.8 is an annualized average of the accumulated surplus over

the corresponding planning horizon, i.e., the sum of landscape surplus over the planning

horizon, divided by the number of years in the planning horizon and the maize planted area.

As seen in Figure 4.8, the baseline (5% refuge, no localized ban, no areawide spray, no Bt

seed tax) generated the greatest average annual surplus for all planning horizons up to 15

years. This result occurred because the surplus measure was cumulative, and the baseline

policy accumulated more surplus during the early years than the other policies. However,

for planning horizons of 16 or more years, the optimal mitigation policy increased the refuge
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requirement from 5% to 20% for all farms, but did not impose a localized ban, an areawide

spray, or Bt seed tax. The areawide spray was suboptimal due to the additional costs incurred

by farmers, while the ban policy was sub-optimal due to the loss of Bt maize benefits for

farmers and the lost revenue for the seed company. Interestingly, the 50% refuge policy

generated the lowest economic surplus—though it was one of the most effective mitigation

policies, its cost in terms of lost benefits to farmers was too high. Recall that results for the

two omitted tax policies (25% Tax, 50% Tax) were almost identical to the baseline.
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Figure 4.8: Average annual surplus for different mitigation policies plotted against the planning
horizon.

Because the results in Figure 4.8 did not include combinations of mitigation policies,

Table 4.1 summarizes results over the 81 policy combinations evaluated. Three combinations

emerged as optimal for some length of planning horizon. For a planning horizon of 1 to 15

years, the baseline policy (5% refuge, no localized ban, no areawide spray, no Bt seed tax)

continued to be optimal even as resistance increased. For a planning horizon of 16 to 22

years, the optimal policy increased the refuge requirement from 5% to 20%, but did not

impose a localized ban, an areawide spray, or Bt seed tax. For a planning horizon of 23 to 25
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years, technically adding the 50% tax to the 20% refuge requirement was optimal, but the

increase in economic surplus was trivial (< 0.05%). Therefore, our economic surplus criterion

suggested that the optimal resistance mitigation policy was no intervention if a shorter (≤ 15

years) planning horizon was used and, if a longer (≥ 16 years) planning horizon was used,

increasing the required refuge to 20% for all farmers when resistance emerged. Because

mitigation policies that increased the required refuge decreased current benefits to achieve

increased future benefits, discounting implies that the 20% and 50% refuge policies would

have generated less surplus than plotted in Figure 4.8. Calculations showed that, with a

13% or higher discount rate, the no-intervention baseline remained the optimal policy for all

planning horizons less than or equal to 25 years.

Table 4.1: Optimal policy combinations by length of planning horizon

Length of

Planning Horizon

Refuge

Requirement

Localized

Ban

Areawide

Spray

Bt Seed

Tax

1-15 5% None None 0%

16-22 20% None None 0%

23-25 20% None None 50%

We also investigated the distribution of surplus shares under three resistance mitigation

policies: the baseline (with a 5% refuge), a 20% refuge for all farmers planting Bt maize,

and both a 20% refuge and a 50% Bt seed tax for all farmers planting Bt maize. Recall that

economic surplus was the sum of farmer profit, the technology fee collected by the company

and tax revenue and that adding the Bt seed tax as a mitigation policy had little impact on

surplus with a 20% refuge requirement. For the baseline, farmers and the companies roughly

divided the surplus evenly as yield gains and technology fees (Figure 4.11). Increasing the

refuge requirement from the baseline of 5% to 20% to mitigate resistance increased the

company share of surplus by about 5 to 10 percentage points, with the farmer share falling

to about 40% (Figure 4.11). Adding a 50% Bt seed tax on top of the 20% refuge requirement
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to mitigate resistance, the tax burden was borne more by the companies, with their share

declining by about 15 percentage points to 45% of the surplus, while farmers received about

35% of the surplus and tax revenue accounts for about 20% of the surplus.

4.3.3 Role of social networks

To highlight the difference created by incorporating the effects of social networks, Figure

4.9 and Figure 4.10 show results with all parameters the same as for the baseline except

that the model was recalibrated with social networks “shut off” by setting the parameter

q = 1. In this case, farmers made Bt maize adoption decisions based only on their individual

expected profitably, giving no weight to their neighbors’ decisions. In terms of Bt maize

adoption, without the effect of social networks, the farmer adoption rate grew faster first,

but then slowed and eventually declined from period 43 onward (Figure 4.9). This result was

explained by the lack of social network effects. Without them, profitable adoption by early

adopters was not slowed by neighboring non-adopters. Similarly, as the technology became

less effective due to resistance, profit-motivated dis-adoption of Bt maize was not slowed by

neighbors’ inertia. As a consequence of the lower usage of Bt maize, the R-allele frequency

reached key levels later than for the baseline. Specifically, the R-allele frequency did not

exceed 10% until period 42, 20% until period 45, 30% until period 46, 40% until period 47,

and 50% until period 48, or about 7 years later than for the baseline. Hence, not including

the effects of social networks on farmer adoption of Bt maize slowed the estimated evolution

of resistance by about 7 years.
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Figure 4.9: Results from the calibrated model without social network effects. It contains the insect
population density (Insect), Bt seed adoption rate (Bt), and the resistance allele frequency (R) for
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1,000 simulations.
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Figure 4.10: Average annual surplus for different mitigation policies. Each is plotted against the
planning horizon for the calibrated model without social network effects.

Figure 4.10 plots average annual economic surplus against the planning horizon with the

effect of social networks on adoption “shut off.” Again, results for the tax policies were

omitted as they were almost identical to baseline results. Compared to Figure 4.8, which
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incorporated the effects of social networks on adoption, Figure 4.10 shows that all mitigation

policies generated essentially the same surplus for the first 6 or 7 years. Because mitiga-

tion policies were not implemented until the R-allele frequency exceeded a 50% threshold,

the slower projected evolution of resistance without social networks effects delayed policy

implementation, so that all policies were initially equivalent.

Based on Figure 4.10, the optimal policy depended on the planning horizon and varied

from Figure 4.8. The baseline again generated the greatest average annual surplus for all

planning horizons up to 17 years (about the same as in Figure 4.8). Again, the 20% refuge

for all farmers was the optimal mitigation policy for longer planning horizons, but only for

the narrow range from 18 to 20 years. Furthermore, the difference between the baseline

(with 5% refuge) and the 20% refuge mitigation policy was much smaller than in Figure 4.8.

However, just as in Figure 4.8, the 50% refuge policy generated among the lowest amounts

of economic surplus. Interestingly, for planning horizons exceeding 20 years, the areawide

spray policy became optimal, which did not occur in Figure 4.8. This result occurred because

without social network effects, farmers more quickly dis-adopted Bt maize when resistance

developed, thus avoiding the higher costs of the spray policy and lower Bt maize benefits,

and so they generated higher surplus. Again, the ban policy generated the lowest economic

surplus over many planning horizons, even with the more rapid dis-adoption of Bt maize

when resistance developed.

Because the results in Figure 4.10 did not include combinations of mitigation policies,

Table 4.2 summarizes results over the 81 policy combinations evaluated, just as Table 4.1 did

for Figure 4.8. Without social network effects, farmer adoption of Bt maize only responded

to individual profitability, which created some shifts in the optimal mitigation policy. Three

policy combinations again emerged as optimal for some length of planning horizon. For

a planning horizon of 1 to 17 years, the baseline policy continued to be optimal even as

resistance increased, and for a planning horizon of 18 to 19 years, the optimal policy increased

the refuge requirement from 5% to 20%. These were the same policies as when the effects
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of social networks were included, but the planning horizons changed to be slightly longer

for the baseline policy and shorter for the 20% refuge policy (Table 4.1). The greatest

change without social network effects was for the longest planning horizons. For a 20- to

25-year planning horizon, the optimal resistance mitigation policy was to reduce the refuge

requirement back to 5% for all farmers, to add a 50% Bt maize seed tax on all farmers, and

to make areawide insecticide applications in areas where resistance emerged. With social

network effects and longer planning horizons of 22 to 25 years, the refuge remained at 20%

and only the 50% Bt seed tax was added (Table 4.1). The greater responsiveness of farmers

to individual profitability without social network effects made more active mitigation policies

optimal, but only for longer planning horizons. However, the effect was not large, as again

calculations showed that with a 9% or higher discount rate, the no-intervention baseline

remained the optimal policy for all planning horizons less than 25 years.

Table 4.2: Optimal policy combination by length of planning horizon without social network effects

Length of

Planning Horizon

Refuge

Requirement

Localized

Ban

Areawide

Spray

Bt Seed

Tax

1-17 5% None None 0%

18-19 20% None None 0%

20-25 5% None r = 0 50%

4.4 Discussion

Research on insect resistance mitigation strategies and empirical applications of agent-based

models to pest and resistance management are limited (Gay et al., 2017; Renton, 2013; Ren-

ton et al., 2014). Hence, as part of this paper’s first goal, we demonstrated the capacity of an

agent-based model to produce results of use by policymakers and other stakeholders, specif-

ically examining resistance mitigation policies for Bt maize and the European corn borer

and the role of social networks in Bt maize adoption. We evaluated 81 resistance mitigation
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policies that combined three levels of four policies (non-Bt maize refuge, areawide non-Bt

insecticide sprays, localized Bt maize bans, Bt maize seed tax) implemented when and/or

where resistance emerged. These combinations showed variation in projected dynamics for

Bt maize adoption, resistance allele frequency in the pest population, and the average pest

population density.

From a biological perspective focused on keeping the frequency of resistance alleles in the

pest population low, the most effective mitigation policies were a 50% refuge requirement for

all farms when resistance emerged on the landscape and a localized ban on planting Bt maize

within one radius of adult dispersal of farms with resistance. Bringing a broader economic

perspective that balanced costs and benefits, we used economic surplus (the sum of farmer

profit from maize production, company technology fees from selling Bt maize seed, and

any tax revenue collected) to identify recommended mitigation policies. Surprisingly, results

showed that when resistance emerged, the optimal response in terms of maximizing economic

surplus was making no policy changes, but continuing the current resistance management

policy of 5% non-Bt refuge, with no requirement of insecticidal sprays or localized Bt maize

bans in and around areas of resistance, or Bt seed taxes when resistance emerges. For

planning horizons beyond 16 years it became optimal to increase refuge requirements to

20% for all farmers when resistance developed. Furthermore, for planning horizons beyond

22 years it became optimal to add a 50% tax on all Bt maize seed sold when resistance

developed in addition to the 20% refuge requirement. These results show the impacts that

incorporating broader social science perspectives into resistance management or mitigation

can have on recommended policy responses.

Several caveats apply to these results, as models cannot avoid the fundamental trade-

off between fidelity to the phenomenon examined and abstraction for ease of analysis and

interpretation. Baseline results assume one single-toxin Bt maize producing a high dose of

the toxin. However, multiple single-toxin Bt maize hybrids with different modes of action

have been commercialized in the US, and single-toxin Bt maize hybrids have been phased
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out as companies have shifted to Bt maize hybrids with multiple, pyramided traits (Hur-

ley and Sun, 2019). Furthermore, refuge requirements in the Midwest have changed over

time for the different Bt maize hybrids. Initial requirements were for 20% non-Bt maize as

structured refuge, but more recently, some Bt maize hybrids with pyramided traits have a

5% or 10% refuge requirement implemented as a seed mix and/or structured refuge (Hurley

and Sun, 2019; U.S. Environmental Protection Agency, 2019). Our model does not capture

the use of multiple toxins entering the market at different times, overlapping use of hybrids

with multiple, pyramided traits at the same time by neighboring farmers, or changes in

refuge requirements and methods of implementation. In addition, our model assumes that

Bt maize delivers a high dose of the toxin, which is accurate for European corn borer, but

not for other lepidopteran pests such as corn earworm (Helicoverpa zea) or Bt maize for corn

rootworm (Burkness et al., 2010; Gassmann et al., 2014; U.S. Environmental Protection

Agency, 2018). Furthermore, the model focuses on a single pest, though farmers simulta-

neously manage multiple pests with varying levels of control by different Bt maize hybrids

(Mason et al., 1996). In addition, the model assumes a single selection by the Bt toxin each

year, while many target pests, including the European corn borer, have multiple generations

per season with more than one selection event by Bt maize (Mason et al., 1996). Also,

economic surplus is not a complete measure of social benefits (Mitchell et al., 2018). For

example, as used here, it does not include environmental impacts of insect management, even

though a significant benefit of Bt maize is that farmers use it as a substitute for conventional

insecticides (Brookes, 2019; Catarino et al., 2019; Perry et al., 2016).

With these caveats, the policy experiments reported here suggest that refuge requirements

remain the foundation of resistance mitigation for high-dose technologies, just as they are for

resistance management. Based on maximizing social surplus, the optimal policy to mitigate

resistance when it emerges was to maintain the current refuge requirement or to modestly

increase it for all farmers, rather than to implement localized bans on the sale of Bt maize

in areas where resistance develops or to make areawide applications of insecticidal sprays
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on resistant populations. Based on the economic surplus criterion, the benefits of lower

resistance allele frequency for these policies did not adequately compensate for the added

costs or loss of the benefits from using Bt maize. Taxes on the sale of Bt maize seed did not

cause surplus to differ substantially from the baseline policy, suggesting a possible mechanism

to fund various programs to improve Bt maize use, such as development of educational

materials and outreach or research activities. However, the results showed that companies

bear a large share of these costs, suggesting that it would be more efficient for companies to

directly fund these programs based on seed sales rather than creating a seed tax program to

fund them. Also, as a caveat, this model did not incorporate the Bt technology market. As

a result, for example, the model did not include market competition among companies via

differentiated traits, including different regulatory requirements, as, for example, companies

would lobby to not have their hybrids included in tax schemes if resistance developed to a

competitor’s Bt maize.

As a secondary goal of this paper, we demonstrated that social factors can play key roles

in the development and management of insect resistance, focusing on the effect that social

networks can play on farmer adoption of Bt maize. As modeled here, adoption depended

in part on the average adoption of a farmer’s neighbors, not just each farmer’s expected

profitability, as a way to capture the effects of information exchange, integration of multiple

farmers’ experiences with pests and adoption, shared local institutions and markets, and

similar factors. Modeling the mechanisms for this social network and the specific connec-

tions among individual farmers is beyond the scope of this analysis. Relative to a model in

which farmers responded only to their individual profitability, social networks as modeled

here impeded farmer responsiveness to profitability signals, which slowed the initial adoption

of Bt maize and its dis-adoption as pest populations declined or resistance developed. Model

calibration to observed state-level adoption rates identified model parameters and reduced

differences in initial adoption rates with and without social networks. However, this cali-

brated model implied a relatively slower adjustment in Bt maize use by farmers. As a result,
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when including social network effects, our model projected that resistance develops about

7 years earlier than without social network effects and the optimal mitigation policy more

strongly favored use of moderate increases in refuge for all farmers. Resistance developed

earlier because farmers uses Bt maize more intensely since they did not dis-adopt Bt maize

as pest populations declined and resistance developed, even though the profitability of Bt

maize decreased. With social network effects, the optimal resistance mitigation policy also

more strongly favored use of modest increases in refuge because more farmers continued to

use Bt maize and obtain it benefits relative to more costly, but effective, policies such as

areawide sprays or localized bans. In this example, ignoring social network effects could

contribute to making inappropriate policy recommendations for managing pest resistance or

mitigating it once it develops.

The intensity and extent of farmer adoption of Bt maize plays a key role in the manage-

ment and mitigation of pest resistance. This agent-based model incorporated the influence

of social factors by having individual farmer adoption respond to expected profitability and

the adoption behavior of neighboring farmers. However, many social factors not addressed

by this model also affect adoption. For example, expected profitability depends not only

on all the market factors driving maize prices, but also technology markets and the pricing

behavior of firms selling Bt maize (Shi et al., 2010). Similarly, farmers adopt Bt maize not

only for expected profit, but also to manage income risk (Hurley et al., 2004; Shi et al.,

2013). Also, social networks for agricultural management rarely have the simple spatial

structure assumed here, but typically have varying nodes of importance such as key crop

consultants, retailers, and extension agents (Kaup, 2008; Lubell and Fulton, 2007). In ad-

dition, social factors affect resistance through more than just adoption of Bt maize, such as

through farmer compliance with resistance management and mitigation practices and how

Bt maize affects broader cropping systems such as crop rotations (Hurley and Mitchell, 2014;

Mitchell and Onstad, 2005). Overall, our results demonstrate that social factors can play

an important role in resistance management and mitigation. However, more applied and
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quantitative social science research would contribute to developing better policy recommen-

dations for resistance management and mitigation, and agent-based models can be a part of

this contribution.
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Figure 4.11: Cumulative share of surplus by planning horizon. The top panel is for the baseline,
the middle is for the 20% refuge mitigation policy, and the bottom is for the 20% refuge mitigation
policy combined with a 50% Bt seed tax.
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Figure 4.12: Bt adoption rate under simple policies. Each is plotted against the planning horizon
without social network effects. The results for each period are averages over 1,000 simulations.
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Figure 4.13: R-allele frequency under simple policies. Each is plotted against the planning horizon
without social network effects. The results for each period are averages over 1,000 simulations.
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Figure 4.14: Insect population density under simple policies. Each is plotted against the plan-
ning horizon without social network effects. The results for each period are averages over 1,000
simulations.
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Chapter 5

Conclusions

This dissertation has presented computational models to address complex practical prob-

lems in agriculture. The work is motivated by the critical situation surrounding modern

agriculture—despite the urgent need for sustainable intensification across the world, the

researcher-centricity prevails in academic disciplines yielding research outputs largely irrel-

evant for real-world complex problems. The models serve two purposes: to demonstrate

potential approaches to addressing complex agricultural problems in general and to lay the

foundation for selected specific problems.

These models are by no means general solutions; instead, these models are constructed

ad hoc for specific problems. This is the point. The current state of knowledge about agri-

cultural systems is inadequate to manage their complexities for practical purposes, while

sustainable intensification is an acute problem demanding immediate actions for produc-

tivity increase. Although it would be ideal to deductively design solutions based on the

first principles, there is no such principle to rely on in agricultural sciences and economics

today. Therefore, to address complex practical problems, we must be content with ad hoc

approaches for the time being. Fortunately, using the emerging data streams and ever in-

creasing computational capacity, we can build effective empirical models for complex prob-

lems. Although the models presented in this dissertation are ad hoc solutions to specific
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problems, their modeling techniques (Bayesian optimization and agent-based modeling) are

very general and applicable to many other practical problems.

Bayesian optimization is a data-driven optimization technique, featuring sample efficiency

and flexibility to handle arbitrary objective functions. These characteristics make the tech-

nique suitable for optimization in complex systems, including agricultural systems, where

objective functions are formulated essentially unknown, and effective trade-off between ex-

ploration and exploitation is crucial. While Chapter 2 and 3 have demonstrated applications

to static problems, Bayesian optimization can be useful for dynamic problems as well. A

common goal in dynamic optimization is to determine an optimal policy, which prescribes

an action to each state so that a cumulative reward over time is maximized. Since learning

of an optimal policy is guided by maximizing some performance metric, Bayesian optimiza-

tion can be applied to this internal optimization task. The sample efficiency of Bayesian

optimization will be even more beneficial because brute force search is infeasible in realistic

dynamic optimization problems.

In contrast to Bayesian optimization and machine learning in general, agent-based mod-

eling plays a unique role in addressing complex agricultural problems. Despite the ever

increasing data available in agriculture at large, suitable one for data-driven dynamical sys-

tems and control is still lacking in many cases. Agent-based modeling provides a viable

option to conduct analyses and gain insights into complex agricultural systems even without

much data. Basically, this is achieved by taking advantage of the modular nature of agent-

based modeling and imposing assumptions on each component sub-process. Assumptions are

typically in the form of parameters and functional relations, which are derived from domain

knowledge in relevant disciplines. While the capability of this kind is certainly a strength of

agent-based modeling, it is also a danger of undisciplined realism. As mentioned as caveats

in Section 4.4, our model is wrong in many aspects of the reality. We could address some or

even all of those caveats by making each sub-process and assumption more realistic. However,

once again, “All models are wrong, but some are useful.” So, whether it is for understanding
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mechanisms or solving practical problems, a blind pursuit of realism is never a good principle

of modeling as it would be wrong anyway but merely inflating model complexities. Instead,

every model should serve specific purposes in order to be useful. In agent-based modeling,

we should be particularly mindful of such purposes and guard against the temptation of

realism. In our case, bringing in multi-trait hybrid seeds and market structure would make

the model more realistic but no more useful for illustrating the significance of spatiotemporal

dynamics and social factors in designing effective policies for insect resistance management.

Ultimately, with purposes firmly kept in mind, it is a trial-and-error process; to discover

a useful model, we must build many models and test them to see whether they serve the

purposes.

It is my hope that the emphasis on practicality will be shared in the agricultural research

community so that we can achieve a better balance between scientific pursuit of understand-

ing mechanisms and practical problem-solving in complex agricultural systems.
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