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Abstract

We propose optimization-based approaches for distillation network synthesis and heat in-

tegration, which can contribute to finding more energy efficient and sustainable chemical

systems. For distillation network synthesis, we first propose unit models for distillation:

1) versatile shortcut distillation column and 2) separation energy targeting models. The

models are to address systems where the components that are present in the feed can

vary due to zero flow rates of some components, which naturally appear in process syn-

thesis problems. The distillation column model can calculate component distributions

and the energy requirement for a desired distillation task. The separation energy tar-

geting model can be used to estimate an energy requirement target for the separation

of a mixture without finding detail network configurations.

We also propose a generalized superstructure-based distillation network synthesis

model with improved modeling capabilities. The model can assign multiple mixtures

to be separated to different columns of the network while considering interactions be-

tween separation steps for each mixture. In terms of outlets, products with general

specifications, including pure components and multi-component mixtures, as well as

streams without strict specifications (e.g., reactor recycle streams), can be readily han-

dled. Stream bypass and thermal coupling are simultaneously considered to find more

energy efficient configurations. In addition, we propose an approach to leverage graphi-

cal insights in the optimization-based distillation network synthesis, where graphically-

inspired feasibility constraints are combined with a superstructure-based approach.
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For heat integration, we propose utility targeting and heat exchanger network syn-

thesis models that account for variable stream temperatures and flow rates, as well as

unclassified streams. Even with the extended capabilities, the model remains linear us-

ing discrete temperature grids, leading to a more tractable optimization model. The

proposed model is well suited to problems where process configurations and the asso-

ciated heat exchanger network are simultaneously synthesized. Several extensions are

proposed, including nonisothermal mixing and phase changes.
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Chapter 1

Introduction

In this chapter, we first introduce process synthesis and superstructure-based approaches

to address process synthesis problems. Then, we review approaches for distillation col-

umn modeling and distillation network synthesis, as well as approaches for heat integra-

tion. Lastly, we present the outline of this thesis.

1.1 Process Synthesis1

Process synthesis is a procedure to synthesize a process to meet specific goals while

satisfying given constraints. There are, in general, two types of approaches to address

process synthesis problems. The first relies on the decomposition of the problem into

various subproblems which are solved sequentially. In this way, process alternatives

are generated and assessed for each subproblem separately, and synthesis decisions are

made hierarchically. A common strategy is to decompose the problem into: (1) reaction

(or reactor) network synthesis, (2) separation network synthesis, and (3) heat exchanger

network synthesis. The design decisions made in one subproblem bound the search space

of a subsequent one; henceforth, some solutions can be excluded even if they might be

better. For example, optimizing the solvent-to-reactant ratio based only on product

1The contents of this section appear in Ryu et al., Comp. & Chem. Engr. 2020
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yield can lead to very difficult and expensive downstream separations. Also, a reaction

temperature resulting in a slightly lower selectivity may lead to better solutions when

heat exchanger network is considered.

The second approach does not rely on the decomposition of the problem. Instead,

a network which, in principle, includes all useful unit operations and relevant inter-

connections, referred to as a superstructure, is used. A superstructure for the overall

process includes all alternative reactors, separators, heat exchangers, and their potential

connections, thereby embedding all alternatives. Solving the optimization model based

on such superstructures can yield the optimal process configuration and unit operating

conditions considering interactions between elements in the superstructure.

1.2 Superstructure-based Process Synthesis2

Superstructure-based approaches can consider various interactions between different sub-

systems (e.g., reaction and separation systems), which would be ignored if each subsys-

tem is synthesized separately. Papoulias and Grossmann proposed an approach to opti-

mize a superstructure embedding several alternative reactors, separators, heat exchange

networks, and utility system [74]. Later, superstructure-based approaches were for-

malized based on the State-Task-Network (STN) and State-Equipment-Network (SEN)

representations, leading to a systematic way to represent superstructures and formulate

synthesis problems [109]. Li et al. proposed a superstructure representation based on

blocks [66]. For a detailed review on superstructure-based process synthesis, readers are

referred to some excellent review papers [7, 16, 71, 105].

2The contents of this section appear in Ryu et al., Comp. & Chem. Engr. 2020
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For the approach to be effective, the connectivity among units of the postulated

superstructure must be rich, while unnecessary connections should be excluded so that

the resulting model is computationally efficient. Accordingly, Friedler et al. proposed

a graph representation to generate the simplest superstructure that contains all rele-

vant alternatives [37]. Wu et al. introduced a framework to generate rich but simple

superstructures based on the concept of “minimal” and “feasible” sets [106].

Unit operations, which are key building blocks in the superstructure approach, can

be modeled in various ways depending on the scope of the synthesis problem. Rigorous

models based on mass/energy balances and thermodynamics can be used, but the result-

ing models can be highly challenging to solve when there are multiple unit operations in

the superstructure. Accordingly, shortcut models or surrogate-based models are more

widely used because of computational efficiency and simplicity [21, 25, 45, 80].

Superstructure-based approaches usually result in mixed-integer nonlinear program-

ming (MINLP) models, which are computationally challenging to solve. Henceforth,

the development of solution methods for these models has also received considerable

attention [9, 23, 24, 57, 93, 111]

1.3 Distillation Network Synthesis3

In chemical/petrochemical facilities, distillation has been widely used, accounting for 10

∼ 15 % of the world’s industrial energy consumption [4, 56, 91, 94]. Thus, many efforts

have been made to develop systematic and effective frameworks to synthesize more

3The contents of this section appear in Ryu and Maravelias, Comp. & Chem. Engr. 2020 and Ryu

and Maravelias, Chem. Eng. Sci. 2021
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energy/cost efficient distillation networks [16, 73]. In early works, distillation network

synthesis was addressed by heuristic rules obtained from numerical studies [99, 100]

or thermodynamic insights [39]; later, heuristic rules were combined with evolutionary

algorithms, where several initial flow sheets are generated and changed based on heuristic

rules until there is no improvement [88, 95].

Superstructure-based approaches have also been proposed [3, 13, 31, 86, 109], and

extended to handle dividing wall columns [14], non-sharp separations [2], multiple feeds

system [33], and heat-integrated columns [32, 36].

Instead of solving a single optimization problem based on the superstructure, enu-

meration based approaches, where every configuration is generated and optimized indi-

vidually, were proposed [38, 51, 72]. This approach, which is based on an efficient method

of enumerating all useful configurations using a matrix, referred to as the matrix method

[89], generated valuable insights into the characteristics of optimal solutions.

Distillation network has been also studied in conjunction with reactor systems be-

cause these two subsystems are interconnected in most chemical systems. Linke and

Kokossis [67] studied interactions between reactor and separation systems, and Kong

and Shah [62] proposed a superstructure-based approach for reaction screening while

considering separation cost.

Notably, distillation column unit models are critical to model and solve the network

synthesis problem, so various shortcut methods have been proposed. For the separation

of an ideal or nearly ideal mixture, the Underwood equations [103, 104] was proposed to

calculate minimum vapor flow rates, which are important indicators for distillation cost.

Shortcut methods that can be applied to non-ideal mixtures have also been developed;
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Doherty and coworkers developed the Boundary Value Method (BVM) to design a distil-

lation column and check the feasibility of a task [29, 28, 53]; Koehler et al. introduced a

reversible distillation model to calculate the minimum reflux [58]; Bausa et al. developed

the Rectification Body Method (RBM) for the calculation of the minimum vapor flow

rate [8]; Lucia et al. introduced the shortest stripping line method to calculate mini-

mum energy [69, 70]; Kraemer et al. proposed a shortcut method for heteroazeotropic

distillation [63], which was reformulated later for better numerical performance [92].

Recently, data-driven approaches have been used to develop efficient column models

[87]. Although more accurate methods (e.g., with rigorous thermodynamics calculation)

can be employed [23, 110], it remains challenging to find global solutions for large-scale

distillation networks with these methods.

1.4 Heat Integration4

Using surplus energy in one process/stream to satisfy energy demand of other pro-

cesses/streams, namely heat integration, can significantly reduce energy use of a chemi-

cal system. The area of heat integration has received renewed attention over the last few

years due to an emphasis on the design of energy efficient and sustainable chemical sys-

tems. There are two main approaches to heat integration: sequential and simultaneous.

In the former, the problem is decomposed into three sub-problems. The first sub-problem

seeks to find the minimum utility consumption and the location of a pinch point, known

as utility targeting [15, 75]. In the second sub-problem, several sub-networks are gener-

ated based on the location of the pinch point [75], and the optimal structure with the

4The contents of this section appear in Ryu and Maravelias, Ind. Eng. Chem. Res. 2019
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minimum number of matches to satisfy the utility target is obtained [40, 41, 42, 76].

In the third sub-problem, investment cost, based on heat exchanger area, is minimized

[35]. The sequential method may lead to a sub-optimal solution because it does not

consider the trade-off between utility cost and investment cost. Accordingly, approaches

to alleviate this limitation have been proposed, where some of these sub-problems are

combined. Floudas [34] used the concept of hyper-structure to solve the second and the

third sub-problems simultaneously. Colberg [19] and Jezowski [50] proposed different

models that can consider the first and the third sub-problems simultaneously. Later,

approaches considering all decisions (i.e., utility, matches, and area) simultaneously were

proposed to generate the optimal heat exchanger network (HEN) with the minimum to-

tal annualized cost. Ciric and Floudas [18] extended the hyper-structure to solve all the

sub-problems simultaneously; Yee and Grossmann [107] proposed a stage-wise HENS

model which has been extended by various works [1, 10, 20, 26, 48, 78, 79, 112]; Barbaro

[6] proposed a linear model based on transportation/transshipment model; Swaney [97]

extended the transportation model [15] to consider heat pump and heat engine.

1.5 Thesis Outline

The remainder of this thesis consists of five chapters, as follows. In Chapter 2, we present

distillation unit models that are tailored for superstructure-based process synthesis. In

Chapter 3, we present a superstructure-based approach for distillation network synthesis,

which can be used to address generalized problems with its extended features. In Chapter

4, we introduce another approach for distillation network synthesis, where graphically-

inspired feasibility constraints are combined with a superstructure-based optimization
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approach. In Chapter 5, we present optimization-based heat integration approaches,

which can facilitate simultaneous process synthesis and heat integration. In Chapter

6, we conclude and suggest future research directions. We use uppercase non-italic

bold letters for sets and subsets, uppercase italic for variables, and lowercase greek for

parameters.
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Chapter 2

Distillation Unit Models5

2.1 Motivation

Due to their simplicity, shortcut methods have been extensively adopted in distillation

network synthesis models. In most shortcut methods, it is necessary to know which

components are present in the feed. However, when we consider the synthesis of a

system (e.g., separation network or combined reactor-separation network), components

that are present in the feed can change depending on decisions in other subsystems

(e.g., reaction selections in upstream processes) [81]. For example, in Figure 2.1A, the

synthesis of a reactor-separation network is shown, where the reactor network consists

of five alternative reactors carrying out different reactions and the separation network

separates the outlet from the reactor network. Since different reactions produce effluents

with different components, we cannot determine which components are contained in the

feed (i.e., outlet from the reactor network) a priori [60]; henceforth, such feed is termed

as undetermined.

The presence of an undetermined feed makes the use of shortcut methods challenging

because they would have to be used for each disaggregated stream (See Figure 2.1B),

so that components that are present in the feed are known a priori, resulting in a

5The contents of this chapter appear in Ryu and Maravelias, Comp. & Chem. Engr. 2020
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RXN1

RXN2

RXN3

RXN4

RXN5

Product 1

Product 2

Product 3

⋮

Product m

OutletRaw material

Separation System

Reactor System

RXN1

RXN2

RXN3

RXN4

RXN5

Outlet 1

Raw material

Separation 
System 1

Reactor System(A) (B)

Outlet 2

Outlet 3

Outlet 4

Outlet 5

Separation 
System 2

Separation 
System 3

Separation 
System 4

Separation 
System 5

Figure 2.1: (A): A reactor network (blue box) is connected to a separation network

(red box). Depending on the reactor/reaction selection, component molar flow rates in

the outlet change, while some of them can be zero; (B): Each reactor is connected to a

separate separation network.

computationally challenging optimization problem. Accordingly, when undetermined

feeds are potentially present, relatively simple models with pre-calculation of separation

energy/cost have been adopted [62, 102].

To handle problems with undetermined feed(s) in a more computationally efficient

way, we propose generalized shortcut-based distillation unit models, which can be readily

integrated with or utilized as submodules in other superstructure-based process synthesis

models to calculate the energy requirement or cost for the separation.

2.2 Background

2.2.1 Underwood Equations

We define the ordered set I = {A,B,C, ...} to denote the postulated components in the

feed in decreasing order of volatility. We use the index i to denote the element (e.g., A

or B) or the order of that element (e.g., 1 or 2). If we consider a feed mixture with n

postulated components (|I| = n), the relative volatility of component i (αi) is defined as
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the ratio of its vapor-liquid equilibrium constant (Ki) to that of the heaviest (i.e., the

least volatile) component (αi = Ki/Ki′=n). Assuming that the relative volatilities are

constant along the column, it is shown that the followings hold [103, 104],

∑
i∈I

αiFi

αi − ϕl

= (1− q)
∑
i∈I

Fi l ∈ L (2.1)

∑
i∈I

αiDi

αi − ϕl

= V 1 l ∈ LA (2.2)

∑
i∈I

−αiBi

αi − ϕl

= V 2 l ∈ LA (2.3)

where Fi denotes the molar flow rate of component i in the feed; Di/Bi denotes the

molar flow rate of component i in the distillate/bottom stream; V 1/V 2 denotes the

minimum vapor molar flow rate in the top/bottom section of the distillation column; q

denotes the liquid fraction of the feed (e.g., q = 1/0 for saturated liquid/vapor); and

ϕl denotes an Underwood root. The set L is defined as {1, 2, ..., n − 1} to denote the

index of the Underwood roots. Note that the Underwood equations were developed

for systems where a feed mixture has an ideal or near-ideal behavior (i.e., constant

relative volatilities). If the feed mixture is non-ideal, the Underwood equations can lead

to significantly inaccurate solutions, so more rigorous methods (e.g., using tray-by-tray

column models with rigorous energy/mass balance) are needed.

We refer to Eq. (2.1) as the feed equation while Eqs. (2.2) and (2.3) as the vapor

equations. If all component flow rates in the feed (Fi) are given positive, we can solve

the feed equation to calculate ϕl. Each root is bounded by the relative volatilities of

each pair of adjacent components (αi > ϕl > αi+1, i = l). For example, if we have a feed

with four components, I = {A,B,C,D}, then there are three roots satisfying:

αA > ϕ1 > αB > ϕ2 > αC > ϕ3 > αD = 1 (2.4)
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Also, we assume one light key (LK) and one heavy key (HK); the light key is the lightest

component in the bottom stream while the heavy key is the heaviest component in

the distillate stream. Also, we refer to the components between the light and heavy

keys as distributed components and the components that are lighter than the light key

(LLK) or heavier than the heavy key (HHK) as non-distributed components. Usually,

the component molar flow rates of the key components in the distillate and bottom

streams can be set from product specifications. Also, we assume that LLKs and HHKs

are completely recovered in the distillate and bottom streams, respectively.

If root ϕl is between the relative volatilities of the light and heavy keys, it is termed

as an active root, l ∈ LA. If there are p distributed components, there are 1 + p active

roots. These active roots are used to calculate the minimum vapor flow rates in the

vapor equations. For example, if we choose component A/C as the light/heavy key

in the previous example, component B is distributed; thus, we need to use two active

roots between αA and αC (i.e., ϕ1 and ϕ2) in the vapor equations. Also, DD = 0 and

BD = FD are enforced (HHK), and DA (or BA) and DC (or BC) are determined based

on product specifications. Then, there are two unknowns in Eq. (2.2)/(2.3) (i.e., V 1/V 2

and DB/BB, respectively). With two active roots (i.e., ϕ1 and ϕ2), we can construct two

equations from Eq. (2.2)/(2.3) to calculate the unknowns.

If root ϕl′ is not between the relative volatilites of the keys (i.e., αLK < ϕl′ or

αHK > ϕl′), it is referred to as an inactive root, l′ ∈ LIA. Underwood [103] and several

researchers [44, 101] showed that if the distillation column is operated with the minimum
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vapor flow rates, the following inequalities hold for all inactive roots,

V 1 ≥
∑
i∈I

αiDi

αi − ϕl′
i ∈ I, l′ ∈ LIA (2.5)

V 2 ≥ −
∑
i∈I

αiBi

αi − ϕl′
i ∈ I, l′ ∈ LIA (2.6)

Thus, incorporating Eqs. (2.5) and (2.6) in a model can remove solutions with compo-

nent distributions that cannot be obtained with the minimum vapor flow rates. Addi-

tional discussion can be found in appendix A.1 and other works [44, 101].

2.2.2 Undetermined Feed

Most approaches employing the Underwood equations assume that the components

present in the feed are fixed, so the bounds on each root are known (e.g., Eq. (2.4)).

However, when the feed is undetermined, the bounds may not be valid [61]. To illustrate,

RXN 1

RXN 2

B + C → A + D

C → 2A

B
ABCD

AC

ABCD

ABCD

orC

Figure 2.2: A reactor network is connected to a distillation column; depending on the

reactor selection, the components present in the outlet stream change. If RXN1 is

selected, components A, B, C, and D are included in the outlet. However, if RXN2 is

selected, the flow rates of components B and D are zero, changing the number/location

of the Underwood roots.

we consider the example in Figure 2.2, where there is a reactor network including two
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alternative reactors (RXN1 and RXN2) performing different reactions (B + C → A +

D and C → 2A) to produce final product A from reactant C. Depending on the reactor

selection, the outlet stream from the reactor network consists of either {A,B,C,D} or

{A,C}. If we consider {A,B,C,D} as the postulated components in the outlet stream,

the flow rates of components B and D are zero if RXN2 is selected. Then, there is only

one distinct root (not three) satisfying,

αA > ϕ1 = ϕ2 = ϕ3 > αC (2.7)

where components B and D do not affect the location of the Underwood roots. Hence, if

we find the Underwood roots based on the bounds from the postulated components (i.e.,

{A,B,C,D}), we cannot find any roots in (αC, αD); furthermore, we can find only one

distinct root either in (αA, αB) or (αB, αC), which makes Eq. (2.4) infeasible. Therefore,

the Underwood equations need to be reformulated with appropriate constraints on each

root, rather than bounds, to address undetermined feeds.

2.2.3 Fully Thermally Coupled Distillation Network

Petluyk and coworkers [77] showed that the energy requirement in a distillation network

can be reduced by removing intermediate heat exchangers between columns, referred to

as thermal coupling. For instance, a condenser (or reboiler) of a column can be removed if

the liquid reflux (or vapor load) is provided by a stream that is withdrawn from another

column.

When the entire vapor load and liquid reflux are provided by a single reboiler and a

single condenser, respectively, the configuration is termed as the fully thermally coupled
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(FTC) configuration [77]. This configuration utilizes sloppy splits, where key compo-

nents are not adjacent (e.g., A and C). In Figure 2.3A, a distillation network to separate

a ternary mixture (ABC) is shown, where component A/C is selected as the light/heavy

key in the first column, leading to a sloppy split. This configuration can be converted

to a FTC configuration (See Figure 2.3B) by removing intermediate heat exchangers,

resulting in only one condenser/reboiler in the network. Interestingly, it is proved that

ABC

AB

A

B ABC

AB

B

C

BC

A

B

C

BC

(A) (B)

Figure 2.3: (A): Distillation network to separate a ternary mixture (ABC) into pure

components. Sloppy split is performed in the first column (AB/BC). Intermediate heat

exchangers are highlighted with black dashed boxes; (B): Fully thermally coupled (FTC)

configuration. Intermediate heat exchangers are removed, so there is only one con-

denser/reboiler in the network.

the minimum energy to separate an ideal zeotropic mixture into pure components via

distillation is always obtained by the FTC configuration [43, 44].
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Using the FTC configuration, we can obtain a more reasonable energy target, com-

pared to purely theoretical approaches (e.g., exergy analysis), for the separation of a

mixture via distillation. For example, R. T. Gooty et al. [101] found that the optimal

distillation network configuration almost always has an energy requirement which is less

than 1.2 times that of the FTC configuration. Henceforth, we refer to the energy re-

quirement for the FTC configuration as the separation energy target. This energy target

can be highly useful for preliminary process synthesis such as an initial screening of

reaction alternatives with the consideration of separation energy. Also, the minimum

vapor flow rate that needs to be condensed/vaporized by the single condenser/reboiler

(V 1FTC/V 2FTC) can be easily estimated by finding the maximum among the minimum

vapor flow rates for splits between adjacent components [43, 44] as follows,

V 1FTC = max
i

(V 1i,i+1) (2.8)

V 2FTC = V 1FTC − (1− q)
∑
i∈I

Fi (2.9)

where V 1i,i+1 denotes the minimum vapor flow rate in the top section of the column

to separate the feed between components i and i + 1, calculated by the Underwood

equations. This approach is called Vmin approach. For example, if we have a feed

with I = {A,B,C,D}, V 1FTC can be obtained by calculating the minimum vapor flow

rates for A/BCD, AB/CD, and ABC/D splits of the feed (i.e., V 1A,B, V 1B,C, and V 1C,D,

respectively) and choosing the maximum among them. Then, V 2FTC can be easily

calculated with the feed information.

Therefore, if we can calculate minimum vapor flow rates for the splits between all

pairs of adjacent components in the feed, we can also calculate the minimum vapor

flow rates (and energy requirement) needed in the FTC configuration. However, for
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systems with an undetermined feed, these calculations cannot be carried out using the

Underwood equations or any other shortcut methods.

2.3 Generalized Shortcut-based Distillation Column

Model

We propose a novel reformulation of the Underwood equations to address problems with

undetermined feed(s) in a more computationally efficient way. The reformulation enables

the calculation of all roots of Underwood equations. Then, we utilize this reformula-

tion to develop a versatile shortcut distillation column model and a separation energy

targeting model.

2.3.1 Detection of Lightest/Heaviest Component

We introduce binary variable Yi to denote whether component i has a positive molar

flow rate in the feed,

δiYi ≤ Fi ≤ δiYi i ∈ I (2.10)

where δi/δi is a lower/upper bound on Fi. We introduce binary variable Y L
i /Y H

i to

denote that component i is the lightest/heaviest component in the feed. The light-

est/heaviest component should have positive molar flow rates,

Y L
i ≤ Yi i ∈ I (2.11)

Y H
i ≤ Yi i ∈ I (2.12)
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and there should be one lightest component and one heaviest component in the feed.

∑
i∈I

Y L
i = 1 (2.13)

∑
i∈I

Y H
i = 1 (2.14)

Also, Y L
i and Y H

i are constrained as follows:

∑
i>i′∈I

Yi′ ≤ (i− 1)(1− Y L
i ) 1 < i ∈ I (2.15)

∑
i<i′∈I

Yi′ ≤ (n− i)(1− Y H
i ) n > i ∈ I (2.16)

If Y L
i = 1, the right hand side of Eq. (2.15) becomes zero, enforcing that there is no

component that is lighter than i (i.e.,
∑

i>i′∈I Yi′ = 0). Similarly, if Y H
i = 1, Eq. (2.16)

enforces that there is no component that is heavier than i (i.e.,
∑

i<i′∈I Yi′ = 0). For

example, in Figure 2.4, a system with five postulated components (I = {A,B,C,D,E})

is shown, where the molar flow rates of components A and E are zero (YA = 0 and

YE = 0). Due to Eq. (2.11), component A cannot be selected as the lightest component

A B C D E

𝑌B
𝐿 = 1

𝑌𝑖 0 1 1 1 0

𝑌A = 0 𝑌E = 0

𝐈 = {A, B, C, D, E}
𝐹A = 𝐹E = 0 Eq. (2.15) Eq. (2.16)

𝑌D
𝐻 = 1

Figure 2.4: Detection of the lightest/heaviest component in the feed. Molar flow rates

of components A and E are zero, so B/D is the lightest/heaviest component in the feed

(Y L
B = 1/Y H

D = 1).

(Y L
A = 0). Thus, only Y L

B can be activated because Eq. (2.15) is violated if another

component is selected as the lightest component. Similarly, component E cannot be
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selected as the heaviest component due to Eq. (2.12), and only Y H
D can be activated

because of Eq. (2.16).

2.3.2 Reformulation of Feed Equation

We define the set of intervals between adjacent postulated components as IR = I\{i =

n}. For example, if I = {A,B,C,D}, then IR = {A,B,C}, where i ∈ IR denotes

the interval between components i and i + 1. Then, for each interval, we define the

Underwood root ϕi, satisfying ϕi ≥ ϕi+1. We define variable UF
i,i′ as follows,

UF
i,i′ =

αiFi

αi − ϕi′
, i ∈ I, i′ ∈ IR (2.17)

Note that n− 1 Underwood roots are considered in Eq. (2.17). In the current form, Eq.

(2.17) can lead to numerical instability because the denominator can become too small.

To prevent this, it is reformulated as follows,

UF
i,i′

(
1− ϕi′

αi

)
= Fi i ∈ I, i′ ∈ IR (2.18)

− 1

ω
Fi ≤ UF

i,i′ ≤
1

ω
Fi i ∈ I, i′ ∈ IR (2.19)

where ω is a lower bound on ||1 − ϕi′/αi|| for which a sufficiently small number (e.g.,

10−4 ∼ 10−3) can be used. With this reformulation, the variable UF
i,i′ is bounded by Fi,

leading to better numerical stability. Then, the feed equation can be written as follows:∑
i∈I

UF
i,i′ = (1− q)

∑
i∈I

Fi i′ ∈ IR (2.20)

2.3.3 Number of Distinct Underwood Roots

Consider a system with n postulated components. If there are r components with zero

flow rates, the system actually has n − r components; thus, there are only n − r − 1
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distinct Underwood roots. However, we consider n−1 roots in Eq. (2.17), so some roots

must be identical.

For this, we define the set IRD = IR\{i = n − 1} to denote the intervals between

the Underwood roots. Then, the difference between adjacent Underwood roots, ∆i, is

constrained as follows,

ϕi − ϕi+1 = ∆i i ∈ IRD (2.21)

ϵ(Yi+1 − Y L
i+1 − Y H

i+1) ≤ ∆i ≤ (α− α)(Yi+1 − Y L
i+1 − Y H

i+1) i ∈ IRD (2.22)

where ϵ can be set as a small number (e.g., 10−3 ∼ 10−2); α/α is an upper/lower bound

on the roots, with α = αA and α = 1 being valid bounds. If component i + 1 has zero

flow rate (Yi+1 = 0), then Y L
i+1 = 0 and Y H

i+1 = 0 are enforced by Eqs. (2.11) and (2.12),

leading to ∆i = ϕi−ϕi+1 = 0. On the other hand, if component i+ 1 has positive molar

flow rate while it is neither the lightest nor the heaviest component, ∆i ≥ ϵ is enforced.

Finally, if component i+ 1 is either the lightest or the heaviest component (Y L
i+1 = 1 or

Y H
i+1 = 1), Yi+1−Y L

i+1−Y H
i+1 = 0 holds, enforcing ∆i = 0 again. For example, if a system

A B C D E
𝐈 = {A, B, C, D, E}
𝐹A = 𝐹C = 0 𝜙A 𝜙B 𝜙C 𝜙D

𝜙B = 𝜙C 𝜙C > 𝜙D𝜙A = 𝜙B

𝑌B
𝐿 = 1

𝑌B = 1

𝑌C
𝐿 = 0

𝑌C = 0

𝑌D
𝐿 = 0

𝑌D = 1

𝑌A
𝐿 = 0

𝑌A = 0

𝑌E
𝐿 = 0

𝑌E = 1

∆A= 0 ∆B= 0 ∆C≥ 𝜖

Figure 2.5: Distinct Underwood roots of a system with I = {A,B,C,D,E} and FA =

FC = 0.

has five postulated components (I = {A,B,C,D,E}), and components A and C have zero

flow rates (See Figure 2.5), the system has three components and two distinct roots.
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Component B has a positive molar flow rate (YB = 1) and is the lightest component

(Y L
B = 1), so ∆A = ϕA − ϕB = 0 is enforced by Eq. (2.22). Component C has zero flow

rate, so ∆B = ϕB − ϕC = 0 is enforced. Component D is neither the lightest nor the

heaviest component, so a positive difference between adjacent roots (∆C = ϕC−ϕD ≥ ϵ)

is enforced. Thus, two distinct roots are enforced (ϕA = ϕB = ϕC > ϕD).

We refer to the model composed of Eqs. (2.10)∼(2.16), (2.18)∼(2.22) as M1*. It

can be used to calculate all the relevant Underwood roots for undetermined feeds.

2.3.4 Valid Constraints on Underwood Roots

In deterministic global optimization, introducing valid strong constraints can reduce the

computation time to obtain the global optimal solution as well as to prove its global

optimality [98]. Although all distinct roots can be found with M1*, each root is not

constrained as tight as possible. Accordingly, we propose valid constraints by utilizing

the understanding of the Underwood equations, which can significantly enhance the

computational performance of the model.

Consider a system with 5 components, I = {A,B,C,D,E}, where all components

have positive molar flow rates. Then, in M1*, the roots are constrained by Eqs. (2.21)

and (2.22) and bounded by αA and 1 as follows,

αA > ϕA > ϕB > ϕC > ϕD > αE = 1 (2.23)

enforcing four distinct roots. From the knowledge about the Underwood equations, the

roots should satisfy the followings,

αA > ϕA > αB > ϕB > αC > ϕC > αD > ϕD > αE = 1 (2.24)
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Accordingly, we can introduce additional constraints as follows,

(Yi = 1) ∧ (Y L
i = 0) → αi < ϕi−1 1 < i ∈ I (2.25)

(Yi = 1) ∧ (Y H
i = 0) → αi > ϕi i ∈ IR (2.26)

where ϕi−1/ϕi is enforced to be greater/less than αi if component i has a positive molar

flow rate and is not the lightest/heaviest component in the feed. The logical propositions

in Eqs. (2.25) and (2.26) can be expressed using binary variables as follows:

(αi + σ)(Yi − Y L
i ) + α(1− Yi + Y L

i ) ≤ ϕi−1 1 < i ∈ I (2.27)

ϕi ≤ (αi − σ)(Yi − Y H
i ) + α(1− Yi + Y H

i ) i ∈ IR (2.28)

Note that Eq. (2.27)/(2.28) becomes redundant when component i has zero flow rate or

it is the lightest/heaviest component.

In the previous example where all components have positive flow rates, Eqs. (2.27)

and (2.28) enforce αi > ϕi > αi+1, i ∈ IR. Even if some components have zero flow rates,

Eqs. (2.27) and (2.28) constrain the roots to be between relevant relative volatilities.

For example, if FA = FC = 0 (YA = YC = 0) in the previous system, then there are two

distinct roots (not four) satisfying (See Figure 2.6),

αB > ϕA = ϕB = ϕC > αD > ϕD > αE = 1 (2.29)

whereas Eq. (2.22) enforces ϕA = ϕB = ϕC > ϕD. Then, ϕC > αD and ϕD > αE are

enforced by Eq. (2.27) expressed for i = D and i = E, respectively because YD = 1 and

YE = 1. Note that Eq. (2.27) expressed for i = B is relaxed because Y L
B = 1. Also,

αB > ϕB and αD > ϕD are enforced by Eq. (2.28) expressed for i = B and i = D,

respectively, because YB = 1 and YD = 1. Finally, Eqs. (2.27) and (2.28) expressed for

the components with zero flow rates (i.e., components A and C) become redundant.
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𝜙A > 𝛼

𝜙B 𝜙C

𝛼A

𝜙A 𝜙D

𝛼B 𝛼C 𝛼D 𝛼E𝐈 = {A, B, C, D, E}
𝐹A = 𝐹C = 0

𝜙B > 𝛼

𝛼 > 𝜙C 𝛼D > 𝜙D𝛼 > 𝜙A 𝛼B > 𝜙B

𝜙C > 𝛼D 𝜙D > 𝛼EEq. (2.27)

Eq. (2.28)

𝑌B
𝐿 = 1
𝑌B = 1

𝑌C = 0

𝑌C = 0𝑌A = 0

𝜙A = 𝜙B = 𝜙C > 𝜙D

Figure 2.6: System with I = {A,B,C,D,E} and FA = FC = 0. Constraints from

Eq. (2.27)/(2.28) are colored in red/blue. Also, if a constraint is not redundant, it is

highlighted with a colored box. Binary variables that relax Eqs (2.27) and (2.28) are

represented in black boxes.

We refer to the model composed of M1* with Eqs. (2.27) and (2.28) as M1. In

superstructure-based process synthesis approaches, M1 can be used to calculate all

relevant roots efficiently in the presence of undetermined feeds. Notably, when only

active roots are needed, a simpler approach has been proposed [61], whose effective valid

constraints and its extension for non-sharp splits are presented in appendix A.3 and

appendix A.4, respectively.

2.3.5 Light/Heavy Key Selection

First, we introduce binary variable Y LK
i /Y HK

i to denote the selection of component i as

the light/heavy key. There are one light and one heavy keys,

∑
i∈I

Y LK
i = 1 (2.30)

∑
i∈I

Y HK
i = 1 (2.31)
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and they should have positive molar flow rates,

Y LK
i ≤ Yi i ∈ I (2.32)

Y HK
i ≤ Yi i ∈ I (2.33)

The binary variable Zi is introduced to denote whether component i is a distributed

component.

Zi =
∑

i′≤i−1

Y LK
i′ −

∑
i′≤i

Y HK
i′ i ∈ I (2.34)

2.3.6 Reformulation of Vapor Equations

We define variables UD
i,i′ , U

B
i,i′ ,

UD
i,i′ =

αiDi

αi − ϕi′
i ∈ I, i′ ∈ IR (2.35)

UB
i,i′ = − αiBi

αi − ϕi′
i ∈ I, i′ ∈ IR (2.36)

which can be reformulated as follows,

UD
i,i′(1−

ϕi′

αi

) = Di i ∈ I, i′ ∈ IR (2.37)

UB
i,i′(1−

ϕi′

αi

) = −Bi i ∈ I, i′ ∈ IR (2.38)

− 1

ω
Di ≤ UD

i,i′ ≤
1

ω
Di i ∈ I, i′ ∈ IR (2.39)

− 1

ω
Bi ≤ UB

i,i′ ≤
1

ω
Bi i ∈ I, i′ ∈ IR (2.40)

Note that root ϕi is calculated by M1. Then, the vapor equations (i.e., Eqs. (2.2) and

(2.3)) are reformulated as follows,

V 1− Si′ ≤
∑
i∈I

UD
i,i′ ≤ V 1 i′ ∈ IR (2.41)

V 2− Si′ ≤
∑
i∈I

UB
i,i′ ≤ V 2 i′ ∈ IR (2.42)
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where the nonnegative slack variable Si′ is constrained as follows,

Si′ ≤ β(1− Zi′) i′ ∈ IR (2.43)

Si′ ≤ β(1− Y LK
i′ ) i′ ∈ IR (2.44)

The parameter β is an upper bound on the vapor flow rate. If a corresponding root (ϕi′)

is active (i.e., αLK > ϕi′ > αHK), Si′ = 0 is enforced by Eqs. (2.43) and (2.44); then,

V 1 =
∑

i∈I U
D
i,i′ and V 2 =

∑
i∈I U

B
i,i′ are enforced by Eqs. (2.41) and (2.42). Conversely,

if the root is inactive, Si′ can be positive, so only V 1 ≥
∑

i∈I U
D
i,i′ and V 2 ≥

∑
i∈I U

B
i,i′

are enforced.

For example, consider a system with I = {A,B,C,D,E}, where all components have

positive flow rates (See Figure 2.7). If component B/D is selected as the light/heavy

key (Y LK
B = 1 and Y HK

D = 1), component C is distributed (ZC = 1). Then, ϕB and

ϕC are active (between αB and αD) while ϕA and ϕD are inactive. SB = 0 is enforced

𝜙B 𝜙C

A ഥB C D E

𝜙A 𝜙D

𝑌B
𝐿𝐾 = 1 𝑌D

𝐻𝐾 = 1𝑍C = 1

𝑆B = 0 𝑆C = 0𝑆A ≤ 𝛽 𝑆D ≤ 𝛽

Active RootsInactive Root Inactive Root

Figure 2.7: (De)activation of slack variable Si depending on the light/heavy key selec-

tion. Component B/D is selected as the light/heavy key, so C is distributed. Thus, ϕB

and ϕC are active (in blue box) while ϕA and ϕD are inactive. Accordingly, SB and SC

are enforced to be 0 while SA and SD can be positive.

(i.e., ϕB is active) by Eq. (2.44) expressed for i′ = B because Y LK
B = 1. Also, SC = 0

is enforced (i.e., ϕC is active) by Eq. (2.43) expressed for i′ = C because ZC = 1. For
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inactive roots, corresponding slack variables (i.e., SA and SD) can be positive.

We assume that LLKs/HHKs are completely recovered in the distillate/bottom

stream. Thus, their component molar flow rates in the bottom/distillate stream are

deactivated accordingly,

Bi ≤ δ
B

i

∑
i′≥i

Y HK
i′ i ∈ I (2.45)

Di ≤ δ
D

i

∑
i′≤i

Y LK
i′ i ∈ I (2.46)

where δ
B

i /δ
D

i is an upper bound on the molar flow rate of component i in the bot-

tom/distillate stream. Product specifications such as recovery (ρRi )

Di ≥ ρRi Fi i ∈ IP (2.47)

Bi ≥ ρRi Fi i ∈ IP (2.48)

or purity (ρPi )

Di ≥ ρPi
∑
i′∈I

Di′ i ∈ IP (2.49)

Bi ≥ ρPi
∑
i′∈I

Bi′ i ∈ IP (2.50)

can be specified, where IP is the set of components with product specifications. Finally,

the distillation column model, referred to as M2, is formulated as follows:

Calculation of Underwood roots: M1

Distillation column modeling: Eqs. (2.30) ∼ (2.34), (2.37) ∼ (2.46) (M2)

Product specifications: Eqs. (2.47) ∼ (2.50)
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2.4 Separation Energy Targeting Model

Using M1, a separation energy targeting model to separate an ideal zeotropic mix-

ture can be formulated based on the FTC configuration. First, we introduce variable

Di,i′/Bi,i′ to denote the molar flow rate of component i in the distillate/bottom stream

when the split between components i′ and i′ +1 is achieved. Assuming sharp splits, the

following holds,

Di,i′ =


Fi if i ≤ i′,

0 if i > i′
i ∈ I, i′ ∈ IR (2.51)

Bi,i′ = Fi −Di,i′ , i ∈ I, i′ ∈ IR (2.52)

Then, we define U
D

i,i′ and U
B

i,i′ as follows:

U
D

i,i′ =
αiDi,i′

αi − ϕi′
i ∈ I, i′ ∈ IR (2.53)

U
B

i,i′ = − αiBi,i′

αi − ϕi′
i ∈ I, i′ ∈ IR (2.54)

which are reformulated using the approaches followed for Eqs. (2.37)∼(2.40) (See Eqs.

(A.3)∼(A.6)). Then, the minimum vapor flow rate for the split between components i′

and i′ + 1 (i.e., V 1i′,i′+1) can be calculated as follows,

V 1i′,i′+1 =
∑
i∈I

U
D

i,i′ i′ ∈ IR (2.55)

Finally, the minimum vapor flow rate that should be condensed in the FTC configuration

(V 1FTC) is the maximum among V 1i′,i′+1,

V 1FTC ≥ V 1i′,i′+1 − Si′ i′ ∈ IR (2.56)

Si′ ≤ β(2−
∑
i′≥i∈I

Y L
i −

∑
i′<i∈I

Y H
i ) i′ ∈ IR (2.57)
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Note that the nonnegative slack variable Si′ can be positive when the feed keeps un-

changed with the split between components i′ and i′ + 1. For example, if a feed has

four postulated components {A,B,C,D} while component D has zero flow rate (i.e.,

YD = 0), the feed remains the same after the split between C and D. However, its mini-

mum vapor flow rate (i.e., V 1C,D) is calculated as positive because the feed is assumed

to be recovered as the distillate stream by Eq. (2.51). In this case, SC can be positive

A B C D𝐈 = {A, B, C, D}
𝐹D = 0

𝑉1A,B
𝑉1B,C
𝑉1C,D

𝑌A
𝐿 = 1 𝑌C

𝐻 = 1

𝑉1𝐹𝑇𝐶 = max(𝑉1A,B, 𝑉1B,C, 𝑉1C,D − ҧ𝑆C)

ҧ𝑆A = 0
ҧ𝑆B = 0
ҧ𝑆C ≤ 𝛽

A/B

B/C
C/D

(A)

A B C D

𝑉1A,B
𝑉1B,C
𝑉1C,D

𝑌A
𝐿 = 1 𝑌D

𝐻 = 1

𝑉1𝐹𝑇𝐶 = max(𝑉1A,B − ҧ𝑆A, 𝑉1B,C, 𝑉1C,D)

ҧ𝑆A ≤ 𝛽
ҧ𝑆B = 0
ҧ𝑆C = 0

A/B

B/C
C/D

(B)

𝐈 = {A, B, C, D}

𝑍A
𝑁𝑆 = 1

𝑍A
𝑁𝑆 = 1

𝑌D
𝐻 = 0

in Eq. (2.57)

in Eq. (2.58)

Figure 2.8: (De)activation of slack variable Si′ ; (A): The molar flow rate of component

D is 0 (YD = 0). Thus, SC can be positive to relax the impact of V 1C,D on V 1FTC ; (B):

Components A and B do not need to be separated, so ZNS
A = 1 is set. Thus, SA can be

positive to relax the impact of V 1A,B on V 1FTC .

in Eq. (2.57) because Y H
D = 0, relaxing the impact of V 1C,D on V 1FTC in Eq. (2.56)

(See Figure 2.8A). Variable V 2FTC can be calculated using Eq. (2.9) if needed.

Until now, we have considered that every pair of adjacent components is separated.

This leads to the calculation of the minimum vapor flow rates when we separate the feed
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into pure components. However, in some cases, we may not know whether certain pairs

of adjacent components should be separated from each other or not. For example, for

crude oil distillation, many adjacent components do not have to be separated from each

other as long as resulting products satisfy certain property specifications. To model this,

binary variable ZNS
i′ is introduced, changing Eq. (2.57) as follows:

Si′ ≤ β(2−
∑
i′≥i∈I

Y L
i −

∑
i′<i∈I

Y H
i + ZNS

i′ ) i′ ∈ IR (2.58)

If ZNS
i′ = 1, Si′ can be positive, relaxing the impact of V 1i′,i′+1 on V 1FTC . For example,

in Figure 2.8B, a system with four postulated components (I = {A,B,C,D}) with

positive flow rates is shown. If we only aim to separate the feed into AB/C/D, then we

can set ZNS
A = 1 while setting others as 0. Then, V 1FTC will be determined as the max-

imum among V 1B,C and V 1C,D except V 1A,B because SA can be positive. Furthermore,

we can let optimization to determine ZNS
i′ depending on desired separation.

One thing to note is that when a pair of components are not separated, these compo-

nents should behave like one component. For example, when components A and B are

not separated, their split fractions to any other downstream units from the separation

system should be identical. To enforce this, additional equations are introduced,

− (1− ZNS
i′ ) ≤ Ei′,u − Ei′+1,u ≤ (1− ZNS

i′ ) i′ ∈ IR, u ∈ U (2.59)∑
u∈U

Ei′,u = 1 i′ ∈ I (2.60)

where set U denotes downstream units connected to the separation system; Ei′,u denotes

the split fraction of component i′ to unit u. If ZNS
i′ = 1, then Ei′,u = Ei′+1,u is enforced.
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The separation energy targeting model, referred to as M3, can be formulated as follows:

Calculation of Underwood roots: M1

Separation energy targeting: Eqs. (2.51) ∼ (2.56), (2.57) or (2.58) (M3)

Enforcing split fraction if Eq. (2.58) is used: Eqs. (2.59), (2.60)

2.5 Utilization For Process Synthesis

The proposed column model (M2) can be adopted as a sub-module for distillation

network synthesis [60]. Also, the separation energy targeting model (M3) can be adopted

to estimate the energy target for the separation without designing the network. Notably,

the proposed models can be readily integrated with reactor network synthesis models,

where effluents can be undetermined due to reaction selections. The integrated model

for combined reactor and separation network synthesis (MT) can be expressed as follows

(See also Figure 2.9):

min ψ(x, y)

f R(xR,yR) = 0

f S(xS,yS) = 0

h(x, y) = 0 (MT)

[xR,xS,xRS,W ] = x ∈ X ⊂ Rp

[yR,yS,yRS,W ] = y ∈ Y ⊂ {0, 1}q

Reaction information (e.g., conversions), separation information (e.g., vapor-liquid equi-

librium constants), and cost information (e.g., material costs) need to be provided. Also,
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Figure 2.9: Integrated reaction-separation network synthesis model

process constraints and specifications (e.g., purity) can be enforced. The objective func-

tion ψ can be the total annualized cost or the negation of the total profit of the pro-

cess. Vector x denotes continuous variables including those in reactor and distillation

network synthesis models (xR and xS, respectively); y denotes the vector of binary

variables including those in reactor and distillation network synthesis models (yR and

yS); and f R/f S denotes the vector of equality constraints in the reactor/distillation net-

work synthesis model. We use an extent-based reaction model with a fixed conversion

for reactor modeling, although more rigorous models (e.g., kinetics-based) can be also

adopted. Only equality constraints are considered for a generic representation assuming

that inequality constraints can be reformulated to equality constraints.

In Figure 2.9, there are two types of constraints in each network model: equations
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for unit modeling (i.e., fR,U
j and fS,Uk for the reactor and distillation networks, respec-

tively) and equations connecting the units (i.e., fR,C and fS,C). The indexes j and k indi-

cate the reactor unit and distillation column unit in the networks, respectively. The vec-

tors of continuous and binary variables for the unit modeling of the reactor/distillation

network are denoted as xR
j /x

S
k and yR

j /y
S
k , respectively. For the connectivity constraints,

vectors of auxiliary continuous (xR,W/xS,W ) and binary (yR,W/yS,W ) variables may be

needed. Notably, the proposed column model (M2) can be used for unit modeling (i.e.,

fS,Uk ), while the proposed separation energy targeting model (M3) can be used for the

entire distillation network modeling (i.e., f S). Vector h denotes the constraints coupling

the reactor and distillation network synthesis models; variables describing the effluents

from the reactor network (e.g., temperatures, flow rates, etc.) are coupled with those

describing the inlets into the distillation network. Also, variables describing the outlets

from the distillation network can be coupled with those describing the recycle streams

for the reactor network. In the coupling constraints, auxiliary continuous (xRS,W ) and

binary (yRS,W ) variables may be needed. More information about the integrated model

can be found in [81]. In the distillation network superstructure, columns can be deacti-

vated; to model this, we need to reformulate M2. Binary variable Y C
l is introduced to

denote the activation of column l. Also, all variables and equations in M2 are written

for each column l. If a column is deactivated (i.e., Y C
l = 0), the total molar flow rate of

the feed into column l is enforced to be zero,

δTl Y
C
l ≤

∑
i∈I

Fl,i ≤ δ
T

l Y
C
l l ∈ L (2.61)

where δTl /δ
T

l denotes a lower/upper bound on the total molar flow rate. Eqs. (2.13) and
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(2.14) are reformulated as follows,

∑
i∈I

Y L
l,i = Y C

l l ∈ L (2.62)

∑
i∈I

Y H
l,i = Y C

l l ∈ L (2.63)

and Eqs. (2.30) and (2.31) are reformulated as follows,

∑
i∈I

Y LK
l,i = Y C

l l ∈ L (2.64)

∑
i∈I

Y HK
l,i = Y C

l l ∈ L (2.65)

Finally, slack variable Sl,i is enforced to be zero if the column is deactivated,

Sl,i ≤ βY C
l l ∈ L, i ∈ IR (2.66)

When a column is deactivated, binary variables Y L
l,i/Y

H
l,i and Y LK

l,i /Y HK
l,i are enforced to

be zero, and only one distinct Underwood root in (1, αA) is found due to Eq. (2.22).

2.6 Illustrative Examples

All examples are solved using solver BARON (19.12.7) [64] through GAMS (30.1.0) on

a machine with AMD Ryzen 7 1700X processor 3.40 GHz and 16 GB memory. For the

stopping criteria, the relative optimality gap is set to zero, and the resource limit is set

to 1000 s.

2.6.1 Impact of Valid Constraints on Column Model

We study the impact of the proposed valid constraints (Eqs. (2.27) and (2.28)) on

the solution time of the distillation column model (M2). Six problems with four
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(I={A,B,C,D}) to nine (I={A,B,C,D,E,F,G,H, I}) components are solved with(out)

the valid constraints (M2/M2*, respectively) (See Figure 2.10). Feeds are assumed

to be saturated liquids streams. The objective is to minimize the vapor flow rate in the

top section of the column (V 1), which is used as a surrogate variable for the cost. At

least 95% of B/D should be recovered in the distillate/bottom stream, respectively.

Model/solution statistics of the resulting models are shown in Table 2.1. With

M2, all the problems can be solved in less than or around 1 s; however, with M2*, the

solution times increase considerably (i.e., 1∼3 orders of magnitude); furthermore, when

there are more than eight components, even a feasible solution cannot be found within

the resource limit. This example shows a significant impact of the valid constraints on

the computational performance of the proposed models.

A
B
C
D
E
F
G
H
I

𝐷B ≥ 0.95

𝐵D ≥ 0.95

Specifications

LK: ?
HK: ?

min 𝑉1

A
d

d
ed

Figure 2.10: Schematic representation of problems in example 2.6.1
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Table 2.1: Model/solution statistics of resulting models in example 2.6.1 with M2* and

M2. Symbol † in the solution time denotes that the solver could not find a feasible

solution within the resource limit (1000 s)

- M2* M2

Components Eqs/vars(binary) Times, s Eqs/vars(binary) Times, s

4 132/81 (24) 1.21 138/81 (24) 0.21

5 187/116 (30) 2.56 195/116 (30) 0.23

6 250/157 (36) 10.72 260/157 (36) 0.31

7 321/204 (42) 79.79 333/204 (42) 0.27

8 400/257 (48) † 414/257 (48) 0.49

9 487/316 (54) † 503/316 (54) 1.07

2.6.2 Application of Distillation Column Model in Distillation

Network Synthesis

We consider a saturated liquid feed at 1 bar with seven components (I = {A: N-Hexane,

B: 2,4-Dimethyl Pentane, C: N-Heptane, D: 2,2,3,3-Tetra Methyl Butane, E: N-Octane,

F: N-Nonane, G: N-Decane}) to produce four products which contain at least 90% of

components A, C, E, and G, respectively. We consider a distillation network with three

distillation columns (i.e., L = {H1,H2,H3}) as shown in Figure 2.11A. The objective

is to minimize the total vapor flow rate in the network (i.e.,
∑

k∈K V 1k). Note that we

do not need to specify key components a priori.

The resulting model has 1243 equations and 484 variables with 126 of them being

discrete variables. The optimal solution, which is obtained in 80.55 s, is shown in Figure

2.11B. The total vapor flow rate is 5.354. Component D/E is selected as the light/heavy

key in column H1 while A/C and F/G are selected in columns H2 and H3, respectively.
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Figure 2.11: Utilization of the proposed column model as submodules for distillation

network synthesis; (A): Problem setting; (B)/(C): Solution with FF = 0.302/0. Active

roots are colored in blue.

Note that the recovery of the light key (i.e., D) in the distillate stream of column H1

is low (DD/FD = 0.578), denoting a non-sharp split. Thus, a considerable amount of

component D is still present in the bottom stream of column H1, which is recovered as

the distillate stream of column H3. The results from the proposed model are used for

the rigorous simulation using the equilibrium mode of Radfrac module in Aspen Plus

V11. Specifically, we use V 2 and
∑

iDi obtained from the proposed model as the boilup

and total distillate stream rate, respectively, in Radfrac modules with Peng-Robinson

method for thermodynamic property calculation. The simulation results are in good

agreement with the results from the proposed model (See Table 2.2).

In addition, to illustrate the capability of handling the undetermined feed, we change

the molar flow rate of component F in the feed to column H1 to 0. The optimal solution,

which is obtained in 18.55 s, is shown in Figure 2.11C. The total vapor flow rate is

5.179. Due to zero flow rate of component F, the key selection in column H1 is changed

to E/G, and ϕE = ϕF is enforced in all columns. The results are used for a rigorous
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Table 2.2: Comparison of results between M2 and rigorous simulation with FF = 0.302.

- H1 H2 H3

- Di Bi Di Bi Di Bi

- M2 Aspen M2 Aspen M2 Aspen M2 Aspen M2 Aspen M2 Aspen

A 0.255 0.255 - 0.000 0.229 0.228 0.026 0.027 - 0.000 - 0.000

B 0.859 0.859 - 0.000 0.428 0.433 0.431 0.426 - 0.000 - 0.000

C 0.595 0.595 - 0.000 0.060 0.055 0.535 0.540 - 0.000 - 0.000

D 0.214 0.227 0.157 0.144 - 0.000 0.214 0.227 0.157 0.144 - 0.000

E 0.036 0.023 0.327 0.340 - 0.000 0.036 0.023 0.327 0.298 - 0.042

F - 0.000 0.302 0.302 - 0.000 - 0.000 0.105 0.120 0.197 0.182

G - 0.000 0.415 0.415 - 0.000 - 0.000 0.041 0.068 0.374 0.347

simulation (See Table 2.3).

2.6.3 Synthesis of Reactor-Distillation Network

The synthesis of a reactor-distillation network is studied, where distillation columns in

the network are modeled using M2. In the reactor network, there are seven alternative

reactors carrying out different reactions to produce main product E; different reactions

produce effluents with different components (ACE, ABCE, ADEF, ACEG, BCE, BCEF,

and BCEG). Product specifications are given as at least 95% purity and 90% recovery

of main product E.

We assume that product E can be separated by using at most two distillation

columns; for example, if a feed with I = {A,C,E,F} is to be separated, we have two

options. First, we can choose E as the light key (ACE/F) in the first distillation column

and separate its distillate stream in the following column where E is selected as the heavy

key (AC/E). In the second option, we can choose E as the heavy key first (AC/EF) and
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Table 2.3: Comparison of results between M2 and rigorous simulation with FF = 0.

- H1 H2 H3

- Di Bi Di Bi Di Bi

- M2 Aspen M2 Aspen M2 Aspen M2 Aspen M2 Aspen M2 Aspen

A 0.255 0.255 - 0.000 0.229 0.228 0.026 0.027 - 0.000 - 0.000

B 0.859 0.859 - 0.000 0.428 0.433 0.431 0.426 - 0.000 - 0.000

C 0.595 0.595 - 0.000 0.060 0.055 0.535 0.540 - 0.000 - 0.000

D 0.213 0.233 0.158 0.138 - 0.000 0.213 0.233 0.158 0.138 - 0.000

E 0.036 0.016 0.327 0.347 - 0.000 0.036 0.016 0.327 0.319 - 0.028

F - - - - - - - - - - - -

G - 0.000 0.415 0.415 - 0.000 - 0.000 0.041 0.069 0.374 0.346

then separate the bottom stream while choosing E as the light key (E/F).

Thus, in the distillation network, three distillation columns (L = {H1,H2,H3}) are

considered (See Figure 2.12A). In column H1, component E can be selected either as

the light key or heavy key. If E is selected as the light key, then the distillate stream

from column H1 can either be the main product or be sent to column H2 for further

separation. If column H2 is active, component E should be selected as the heavy key

in H2, and its bottom stream becomes the main product. On the other hand, if E is

selected as the heavy key in H1, the bottom stream from H1 can either be the main

product or be sent to column H3. In column H3, E is selected as the light key, and the

main product is recovered as the distillate stream. The objective is to maximize profit

which is equal to the revenue from the main product minus reactor and separation costs.

The separation cost is calculated based on the summation of all vapor flow rates in the

distillation network. More details can be found in the supporting information of the

original work [83].
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Figure 2.12: Integration of reactor network synthesis with distillation network synthesis

utilizing the proposed distillation column model. In the optimal solution, reaction 7 is

selected. Main product E is colored in blue, and active roots are colored in green.

The resulting model has 1241 equations and 497 variables with 136 of them being

discrete variables. The optimal solution, which is obtained in 15.6 s, is shown in Figure

2.12B. The optimal profit is $2.44×106/yr. In the optimal solution, reaction (7) (pro-

ducing components B, C, E, and G) is selected. Also, columns H1 and H3 are selected,

where components C/E and E/G are selected as the light/heavy key, respectively. Note

that component C is not perfectly recovered in the distillate stream in column H1, which,

in turn, results in the increase of the total molar flow rate of the main product (i.e., the

distillate stream of column H3) while satisfying the purity specification.

2.6.4 Optimal Reaction System Selection with Separation En-

ergy Targeting

We consider effluents from high-throughput experiments where 30 reaction systems are

studied. We seek to identify an optimal system (i.e., leading to the highest profit) while

considering the separation cost for the effluent. Depending on the reaction selection,
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components that are present in the effluent vary (See Figure 2.13A), leading to 15

postulated components (i.e., A to O). Rather than designing the separation network,

we aim to calculate the energy requirement target to separate the effluent into pure

components, so the proposed separation energy targeting model (M3) is utilized.

The resulting model has 1480 equations and 979 variables with 75 of them being

discrete variables. The optimal solution, which is obtained in 69.25 s, is shown in Figure

2.13B. The optimal reaction is reaction 13, so the feed contains components A, B, C,

D, E, F, I, K, L, M, and N. The split between components M and N (denoted as M/N)

determines the energy target of the distillation network (V 1M,N = 6.03) while minimum

vapor flow rates for other splits can be calculated from the optimal solution as shown in

Figure 2.13B. The optimal profit is $17.84× 106/yr while revenue is $51.20× 106/yr,

reaction system cost is $8.25× 106/yr, and separation cost is $25.11× 106/yr.
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Figure 2.13: Separation energy targeting for optimal reaction selection; (A): Problem

description; (B): Optimal solution. Reaction 13 is selected as the optimal reaction.

The split between components M and N (M/N) determines the energy target of the

separation.
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2.6.5 Integrated Process Synthesis with Separation Energy Tar-

geting

We seek to synthesize a multiple stage process using 13000 ton/yr of itaconic acid,

adopted and modified from [62]. Four stages of reaction-separator networks (See Figure

2.14A) are considered based on the reaction network in [62]; in the first stage, itaconic

acid (H), can be converted to 2-methylsuccinic acid (D), 3-methyl-dihydrofuran-2(3H)-

one (C), or 3-methlyenedihydrofuran-2,5-dione (F) through RXN1, RXN2, or RXN3,

respectively. Then, the outlet from the mixer is separated in the separator block (i.e.,

S1), which is modelled by M3. Components D and F are sent to the second stage or

can be sold to the market; component H is recycled back to the reactor, while com-

ponent C can be sold to the market or sent to the third stage. Then, in the second

stage, component D can be converted to 4-hydroxy-3-methylbutanoic acid (G), C, or 3-

methyldihydrofuran-2,5-dione (E) through RXN4, RXN5, or RXN6, respectively; also,

component F can be converted to E through RXN 7. From the separation block (i.e.,

S2), components C and G can be sent to the third stage or be sold to the market while

component E can only be sold to the market. Components D and F are recycled to the

second stage. In the third stage, components G and C can be converted to B through

RXN 8 and RXN9, respectively. From S3, components G and C are recycled to the

third stage while component B can be sent to the fourth stage or sold to the market.

In the fourth stage, component B is converted to 3-methyltetrahydrofuran (A) through

RXN10. From S4, component B is recycled to the fourth stage, while component A is

sold to the market. In each stage, only one reaction can be selected, while an entire stage

can be deactivated. We assume that all reactions have fixed conversions (i.e., ξj = 0.9),
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following [62].
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Figure 2.14: Integrated process synthesis with the proposed separation energy target-

ing model (M3), which can calculate the energy requirement target for the separation

without designing the network; (A): Superstructure; (B): Optimal solution.

Notably, feeds into separation blocks can contain different components depending

on decisions in upstream processes. For example, if RXN1 is selected, the feed into S1

contains only D and H while it contains F and H if RXN3 is selected. The objective is

to maximize profit which is equal to the revenue from products (i.e., A, B, C, D, E, F,

G) minus raw material cost, and separation cost.
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The resulting model has 611 equations and 392 variables with 56 of them being

discrete variables. The optimal solution, which is obtained in 2.23 s, is shown in Figure

2.14B. The optimal profit is $5.8× 106/yr while revenue is $28.4× 106/yr, raw material

cost is $20.8 × 106/yr, and separation cost is $1.8106/yr. In the optimal solution, only

the first and second stages are active, and RXN3 and RXN7 are selected, which are

consistent with results from [62], although the separation cost is modelled in a different

way. For the first distillation network (S1), V 1FTC is calculated as 1.101, which is based

on the split between components F and H. For the second distillation network (S2),

V 1FTC is calculated as 2.508, which is based on the split between components E and F.

2.6.6 Bio-refinery Optimization for Bioethanol Upgrading

Large-scale deployment of biofuels has the potential to mitigate the negative impacts

of fossil fuel consumption. However, the most commonly available biofuels, i.e., ethanol

and biodiesel, have maximum blending ratios with fossil-based fuels due to their proper-

ties. To achieve a higher market penetration of biofuels, upgrading ethanol into advanced

biofuels is a promising way in three ways: first, existing infrastructure for ethanol manu-

facturing can be utilized; second, fuels in the whole distillation spectrum can be produced

with ethanol upgrading; third, advancements in ethanol chemistry can be exploited to

produce fuels with tailored properties. Although ethanol upgrading is promising, find-

ing good strategies is not easy and requires system-level thinking. One of the reasons

is that there are numerous candidate reactions and their combinations, whose evalua-

tions are non-trivial. For example, there are more than twenty chemistries to upgrade

ethanol, and they can be used in multiple serial and parallel arrangements. Furthermore,



43

each chemistry can be achieved by several different catalysts. Additionally, properties of

product fuels need to be simultaneously considered. Due to these difficulties, researchers

have mainly relied on their own understanding of chemistry, fuel properties, and pro-

cess synthesis to design new upgrading strategies. However, this ad-hoc approach may

miss novel opportunities and limit the system-level understanding. Therefore, a system-

atic framework to represent the ethanol upgrading problem is needed to systematically

identify relevant trade-offs and novel upgrading strategies.

An effective framework should enable the simultaneous assessment of capital and

operating costs. Accurate estimations of these costs for each option require extensive

efforts, including extensive simulations and Techno-Economic Analysis (TEA). However,

with thousands of alternatives, it is not possible to attain this level of detail; hence, it is

necessary to find strategies to estimate these costs more efficiently. Accordingly, Lange

correlation can be utilized to estimate the capital cost of a process based on the total

amount of heat exchanged within the process,

C = µ(QE)0.55 (2.67)

where C denotes the capital cost; µ denotes the cost coefficient; QE denotes the amount

of heat exchanged. To estimate the heat exchanged within separation systems, we use the

separation energy targeting model (M3). Being combined with targeting-type models

for the reactor system, we can survey a large number of alternatives without extensive

simulation efforts to design the separation system for each candidate process.
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Superstructure

We generate a superstructure embedding the state-of-the-art technologies for ethanol

upgrading, including 22 different chemistries and 112 catalysts, upgrading ethanol to

gasoline, jet fuel, and diesel (See Figure 2.15). The associated optimization model will

be included in the future publication. Notably, the separation system should handle

an undetermined feed because the components in the feed can vary depending on the

selected catalyst.

M3

Figure 2.15: Superstructure of ethanol upgrading process. Three types of ethanol (i.e.,

50%, 95%, and 100% weight percent ethanol) are considered. Each block is named after

its primary reactant (A: Alcohols, O: Olefins; number denotes the number of carbons).

Results

By using the proposed framework, promising routes to produce gasoline, jet fuel, and

diesel from ethanol can be identified (Figure 2.16A). Also, the minimum selling prices,

fuel yields, and energy yields (Figure 2.16B and 2.16C) can be assessed depending

on the complexity of the biorefinery (i.e., the number of selected chemistries), which

provides the system-level analysis of ethanol upgrading strategies.
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Figure 2.16: Results from optimal solutions; (A): Optimal chemistries and catalysts

selected; (B): Minimum Fuel Selling Price (MFSP) and fuel yield; (C): Energy yield
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Chapter 3

Generalized Distillation Network

Synthesis6

3.1 Motivation

Although distillation network synthesis problem has been studied for several decades,

most existing models are built upon several assumptions: 1) there is a single mixture

to be separated (referred to as a source in this work); 2) components to be separated

are known a priori; and 3) outgoing streams from the distillation network, referred to

as outlets, are assumed to be almost pure components. However, if reactor network

synthesis is considered with distillation network synthesis simultaneously, the number

of sources and the components present in the sources can vary depending on decisions

(e.g., reaction selection) in the network. Also, outlets can include products with multiple

components as well as recycle streams, whose compositions are also decisions to be made

in the synthesis problem. We refer to distillation network synthesis problems where

aforementioned assumptions are relaxed as generalized problems.

Accordingly, we propose a superstructure-based distillation network synthesis model

6The contents of this chapter appear in Ryu and Maravelias, Chem. Eng. Sci. 2021
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to address generalized problems, thereby widening the scope of superstructure-based dis-

tillation network synthesis. The proposed model is applicable to systems with near-ideal

mixtures as sources. It can handle multiple sources when components that are present

in the sources can vary, while considering interactions between separation steps. Also,

bypass streams are considered to avoid unnecessary separations with full consideration

of thermal coupling, resulting in novel solutions. Due to its capabilities, the proposed

model can be readily integrated with superstructure-based reactor network synthesis to

formulate and solve an integrated synthesis problem for an entire process [81], realizing

full benefit of the superstructure-based process synthesis approach.

3.2 Superstructure

We present the concepts and methods for the generation of the distillation network

superstructure.

3.2.1 Superstructure Generation

We propose an extended version of the matrix method [89] combined with a network-

based representation (i.e., we use the concepts of nodes and arcs). First, we define the

set N to denote all nodes in the superstructure. We define source nodes NSO (yellow

circle in Figure 3.1) which correspond to sources. Also, we define sink nodes NSI (blue

circle in Figure 3.1), where each sink node has an outgoing stream denoting the outlet

of the distillation network. Outlets include products as well as recycle streams. Then,

we define the ordered set I = {A,B,C, ...} (|I| = n) to denote postulated components in

sources in decreasing order of volatilities. We use index i to denote elements or orders
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of elements (e.g., 1 or 2) in the set.

We introduce a matrix with n rows and n columns, where the set J/K denotes its

rows/columns. Elements in the upper triangular part {(j, k)|j ≤ k} of the matrix are

referred to as distillation nodes, denoted as ND. In Figure 3.1, a distillation network

superstructure with four postulated components in the source (I = {A,B,C,D}) is

shown. We refer to distillation node (j, k) as an upstream node with respect to node

(j′, k′) if k < k′ while as a downstream node if k > k′.
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Figure 3.1: Distillation network superstructure to separate one source with postulated

components {A,B,C,D}. Two sink nodes (blue circles) are shown for simplicity.

For each distillation node, the set of postulated components, ICjk, is defined as follows,

ICjk = {i ∈ I|j ≤ i ≤ n− k + j} (j, k) ∈ ND (3.1)

where only these postulated components are considered to define potential separation

tasks in each node; notably, postulated components can be different from components
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that are present. We denote the lightest and heaviest postulated components as iLjk = j

and iHjk = n− k+ j, respectively, and enforce them to be present in the sum of all inlets

to node (j, k) while other postulated components may not be present. For example,

in Figure 3.1, node (1,2) has IC12 = {A,B,C} with iL12 = A and iH12 = C. Thus,

components A and C are enforced to be present in the sum of all inlets into node (1,2)

while B is not necessary. Accordingly, splits AB/C, A/BC, AB/BC (i.e., split between

A and C while B is distributed), and A/C (i.e., split between A and C without B)

are considered as potential separation tasks. Notably, split A/C is considered due to

undetermined sources, whereas it is ignored in the matrix method [89] which is based

on the assumption that components ABC are always present. Note that component D,

which is not included in IC12, can be present in inlets into node (1,2), but it is ignored

when potential separation tasks are determined.

3.2.2 Distillation Nodes

There are two types of distillation nodes:

• Mixture node (black circle in Figure 3.1), (j, k) ∈ NDM = {(j, k) ∈ ND|k < n},

which consists of a mixer, a splitter, and a column (See Figure 3.2A).

• Pure component node (red circle in Figure 3.1), (j, k) ∈ NDP = {(j, k) ∈ ND|k =

n}, which consists of only a mixer and a splitter (See Figure 3.2B).

The mixer in a distillation node has three origins of inlets: 1) top section, 2) bottom

section of columns in upstream nodes, and 3) source nodes (See Figure 3.2). Then,

the outlet from the mixer splits in the splitter, where a part of the outlet can be sent to

sink nodes directly, termed as bypass streams. The consideration of the bypass stream
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enables to avoid unnecessary separation, leading to novel solutions that cannot be found

by previously proposed methods. In a pure component node, all streams are sent to sink

nodes (See Figure 3.2B). In a mixture node, the rest of the stream is sent to the col-

umn (See Figure 3.2A), which has the top/bottom section where the distillate/bottom

stream is recovered with the condenser/reboiler. Note that what we term columns in

our representation can be stacked to form a single column; therefore, they are equivalent

to pseudo-columns in the matrix method.
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mixer

Distillate

Bottom

column
splitter

source
bottom

top

bypass top

bottom

(B)

mixer splitter
source
bottom

top
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Figure 3.2: (A) Mixture node. (B) Pure component node.

3.2.3 Arcs

We define the set A to denote all arcs, which represent connections between nodes. Four

types of arcs are defined (See Figure 3.1):

• Source arc (yellow dashed line), AS, from a source node to a distillation node.

• Top arc (green solid line), AT, from an upstream node to a downstream node,

representing flow from the top section of the upstream column:

AT = {(j, k, j′, k′)|j′ = j, k′ > k, (j, k) ∈ NDM, (j′, k′) ∈ ND} (3.2)
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• Bottom arc (red solid line), AB, from an upstream node to a downstream node,

representing flow from the bottom section of the upstream column:

AB = {(j, k, j′, k′)|k′ − j′ = k − j, k′ > k, (j, k) ∈ NDM, (j′, k′) ∈ ND} (3.3)

• Bypass arc (blue dashed line), AP, from a distillation node to a sink node.

In the matrix perspective, top arcs (AT) represent the connections between two distilla-

tion nodes on the same row (j = j′), while bottom arcs (AB) represent the connections

between two distillation nodes on the same diagonal (k′ − j′ = k − j). Also, we refer

to top arcs from node (j, k) as ATS
jk , while top arcs toward node (j, k) as ATE

jk . Bottom

arcs from node (j, k) are denoted as ABS
jk while those toward node (j, k) as ABE

jk .

3.2.4 Logic Rules and Connectivity

Here, it is assumed that there is only one source node to facilitate the presentation of the

model, which will be relaxed later. We assume that the source and outlets are saturated

liquid. We introduce Y 0
jk ∈ {0, 1} to denote the activation of the source arc to node

(j, k) and enforce that only one source arc is active.

∑
(j,k)∈ND

Y 0
jk = 1 (3.4)

Also, we introduce Xjk ∈ {0, 1} to denote the activation of node (j, k). When Y 0
jk = 1,

the corresponding distillation node should be also active,

Y 0
jk ≤ Xjk (j, k) ∈ ND (3.5)

The activation of a top/bottom arc is denoted by Y T
jkj′k′/Y

B
jkj′k′ ∈ {0, 1}, where Y T

jkj′k′ =

1/Y B
jkj′k′ = 1 denotes that the top/bottom arc from node (j, k) to (j′, k′) is active. If
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Xjk = 1, at least one arc toward node (j, k) should be active,

Xjk ≤ Y 0
jk +

∑
(j′k′jk)∈ATE

jk

Y T
j′k′jk +

∑
(j′k′jk)∈ABE

jk

Y B
j′k′jk (j, k) ∈ ND (3.6)

which can be the source arc or top/bottom arcs. We enforce that no more than one top

arc and one bottom arc toward the same node can be active at the same time,

ζjkXjk ≥
∑

(j′k′jk)∈ATE
jk

Y T
j′k′jk +

∑
(j′k′jk)∈ABE

jk

Y B
j′k′jk (j, k) ∈ ND (3.7)

based on the results from previous works [14, 72]. Eq. (3.7) cuts off some feasible

solutions that are unlikely to be optimal. For distillation nodes that are located on the

first row or the principal diagonal of the matrix (i.e., {(j, k) ∈ ND|j = k or j = 1}),

only one arc can be active (i.e., ζjk = 1); otherwise, ζjk = 2.

We introduce XC
jk ∈ {0, 1} to denote the activation of the column in a mixture node.

If and only if column (j, k) is active, one top and one bottom arcs from (j, k) are active,

XC
jk =

∑
(j,k,j′,k′)∈ATS

jk

Y T
jkj′k′ (j, k) ∈ NDM (3.8)

XC
jk =

∑
(j,k,j′,k′)∈ABS

jk

Y B
jkj′k′ (j, k) ∈ NDM (3.9)

If a mixture node is active, at least one of the followings should hold: 1) the column

inside is active or 2) at least one bypass arc from the node is active,

Xjk ≤ XC
jk +

∑
s∈NSI

Y P
jks (j, k) ∈ NDM (3.10)

where Y P
jks ∈ {0, 1} denotes the activation of the bypass arc from node (j, k) to sink

node s. If node (j, k) is not active, then all arcs from the node (i.e., top/bottom arcs
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and bypass arcs) cannot be active.

∑
(jkj′k′)∈ATS

jk

Y T
jkj′k′ +

∑
(jkj′k′)∈ABS

jk

Y B
jkj′k′ ≤ 2Xjk (j, k) ∈ NDM (3.11)

Y P
jks ≤ Xjk (j, k) ∈ ND, s ∈ NSI (3.12)

3.3 Model Formulation

We present the formulation of the proposed model for distillation network synthesis

based on the superstructure generated in section 3.2.

3.3.1 Distillation Network Sources

The component molar flow rate of the source (F 0
i ) is disaggregated into F̃ 0

ijk,

F 0
i =

∑
(j,k)∈ND

F̃ 0
ijk i ∈ I (3.13)

F̃ 0
ijk ≤ δ

0

iY
0
jk i ∈ I, (j, k) ∈ ND (3.14)

where F̃ 0
ijk = F 0

i if Y 0
jk = 1; otherwise F̃ 0

ijk = 0. Parameter δ
0

i denotes an upper bound

on the molar flow rate of component i. Also, we introduce Yi ∈ {0, 1} to denote whether

the molar flow rate of component i in the source is greater than threshold value δ0i ,

δ0iYi ≤ F 0
i ≤ δ

0

iYi + δ0i (1− Yi) i ∈ I (3.15)

If the molar flow rate of component i is greater than δ0i (i.e, Yi = 1), the component is

considered to be present ; if it is less than δ0i (i.e., Yi = 0), the component is considered

to be not present, that is, it is not considered for task selection though material balances
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for it are enforced. If needed, the presence of a component can be determined based on

its molar fraction in the source,

− δ
T
γi(1− Yi) ≤ F 0

i − γi
∑
i∈I

F 0
i ≤ δ

0

iYi i ∈ I (3.15a)

where δ
T
is an upper bound on the total molar flow rate of the source. If the molar

fraction of component i is less than γi (i.e., F
0
i − γi

∑
i∈I F

0
i ≤ 0), the component is

considered to be not present. (i.e., Yi = 0). Note that δ0i and γi can be adjusted

depending on the desired accuracy; if a component with a smaller molar flow rate or

molar fraction should be considered, then δ0i or γi can be adjusted to a smaller value. If

component i′ is not present, nodes with either iLjk = i′ or iHjk = i′ cannot be active

Xjk ≤ Yi (j, k) ∈ ND, i ∈ {iLjk, iHjk} (3.16)

because the lightest/heaviest postulated components should be present (see section 3.2.1).

For example, in Figure 3.3, a system with postulated components I = {A,B,C,D} is

shown, where only A, B, and D are present in the source. Accordingly, nodes with

ICjk ∈ {{A,B,C}, {B,C}, {C,D}, {C}} cannot be active (See Figure 3.3A) due to Eq.

(3.16) because component C is required for these nodes to be active. Also, only one top

arc and one bottom arc originating from node (2,2) (i.e., (2,2,2,4) and (2,2,4,4)) can be

active (IC22 = {B,C,D}). Two feasible distillation networks are shown in Figure 3.3B

and Figure 3.3C.

3.3.2 Material Balances

We present material balances 1) inside each distillation node and 2) between distillation

nodes.
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Figure 3.3: (A) Distillation network superstructure for the separation of the source with

I = {A,B,C,D} and F 0
C = 0; nodes that cannot be active due to Eq. (3.16) are in gray

with C in bold; (B, C) feasible distillation networks.

Distillation Nodes

The molar flow rate of component i in the sum of all inlets to node (j, k) is denoted as

Fijk. If node (j, k) is active, the lightest and heaviest postulated components (i.e., iLjk

and iHjk) are enforced to be present in the inlets,

Fijk ≥ δFi Xjk i ∈ {iLjk, iHjk}, (j, k) ∈ ND (3.17)

In a mixture node, the sum of all inlets splits into the bypass stream (FP
ijks) and the

column feed stream (FC
ijk),

Fijk =
∑
s∈NSI

F P
ijks + FC

ijk (j, k) ∈ NDM i ∈ I (3.18)

while the sum of all inlets becomes the bypass stream in a pure component node:

Fijk =
∑
s∈NSI

F P
ijks (j, k) ∈ NDP i ∈ I (3.19)
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Bypass streams (FP
ijks) are constrained as follows,

F P
ijks = EjksFijk i ∈ I, (j, k) ∈ ND, s ∈ NSI (3.20)

Ejks ≤ Y P
jks (j, k) ∈ ND, s ∈ NSI (3.21)

where Ejks denotes the split fraction of the bypass stream to sink node s; if the bypass

arc from node (j, k) to sink node s is not active (Y P
jks = 0), then Ejks = 0. The material

balance around a column is as follows,

FC
ijk = Dijk +Bijk i ∈ I, (j, k) ∈ NDM (3.22)

where Dijk and Bijk denote the molar flow rates of the distillate and bottom streams,

respectively. The distillate and bottom streams are coupled with internal liquid/vapor

streams (See Figure 3.4A),

∑
i∈I

Dijk = V 1jk − L1jk (j, k) ∈ NDM (3.23)

∑
i∈I

Bijk = L2jk − V 2jk (j, k) ∈ NDM (3.24)

where V 1jk/V 2jk denotes the vapor molar flow rate in the top/bottom section and

L1jk/L2jk denotes the liquid molar flow rate in the top/bottom section.

Between Distillation Nodes

We introduce D̃ijkj′k′/B̃ijkj′k′ to denote the molar flow rate of component i from the

top/bottom section of column (j, k) to node (j′, k′). Variables D̃ijkj′k′ and B̃ijkj′k′ are
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constrained as follows,

Dijk − δDijk(1− Y T
jkj′k′) ≤ D̃ijkj′k′ ≤ Dijk i ∈ I, (j, k, j′, k′) ∈ AT (3.25)

D̃ijkj′k ≤ δDijkY
T
jkj′k′ i ∈ I, (j, k, j′, k′) ∈ AT (3.26)

Bijk − δBijk(1− Y B
jkj′k′) ≤ B̃ijkj′k′ ≤ Bijk i ∈ I, (j, k, j′, k′) ∈ AB (3.27)

B̃ijkj′k ≤ δBijkY
B
jkj′k′ i ∈ I, (j, k, j′, k′) ∈ AB (3.28)

where δDijk/δ
B
ijk is an upper bound on Dijk/Bijk. If the top arc from node (j, k) to (j′, k′)
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Figure 3.4: (A) Material flows inside distillation column in mixture node (j, k); (B)

Material balance between different nodes with disaggregated distillate/bottom streams.

is active (i.e., Y T
jkj′k′ = 1), then D̃ijkj′k′ = Dijk is enforced. Similarly, if the bottom arc

from node (j, k) to (j′, k′) is active (i.e., Y B
jkj′k′ = 1), then B̃ijkj′k′ = Bijk is enforced;

otherwise, D̃ijkj′k′ = 0 and B̃ijkj′k′ = 0. For example, in Figure 3.4B, there are two

top arcs (i.e., (1,1,1,2) and (1,1,1,3)) and two bottom arcs (i.e., (1,1,2,2) and (1,1,3,3))
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from node (1,1), but only the top arc to node (1,2) and the bottom arc to node (3,3) are

active; thus, D̃i,1112 = Di,11 and B̃i,1133 = Bi,11 are enforced by Eqs. (3.25) and (3.27)

respectively, whereas D̃i,1113 = 0 and B̃i,1122 = 0 are enforced by Eqs. (3.26) and (3.28),

respectively.

Finally, Fijk is constrained as follows,

Fijk =
∑

(j′k′jk)∈ATE
jk

D̃ij′k′jk +
∑

(j′k′jk)∈ABE
jk

B̃ij′k′jk + F 0
ijk i ∈ I, (j, k) ∈ ND (3.29)

3.3.3 Product Specifications

Product specifications such as purity (ρPis)

∑
(j,k)∈ND F P

ijks ≥ ρPis
∑

(j,k)∈ND

∑
i′∈I F

P
i′jks i ∈ IPs , s ∈ NSI (3.30)

or recovery (ρRis) ∑
(j,k)∈ND F P

ijks ≥ ρRisF
0
i i ∈ IPs , s ∈ NSI (3.31)

can be specified for sink nodes for products, where IPs is the set of components with

specifications in sink node s. If component i is not allowed in sink node s and present in

the source (i.e., Yi = 1), then the bypass arc from node (j, k) with i ∈ ICjk to sink node

s can be cut off:

Y P
jks ≤ 1− Yi (j, k) ∈ ND, s ∈ NSI, i ∈ INs ∩ ICjk (3.32)

where INs denotes the set of components that are not allowed in sink node s. Note

that if Yi = 0, Eq. (3.32) is relaxed. For example, for a system with I = {A,B,C},

if sink node s does not allow component C while YC = 1, bypass arcs from node (1,1)

(IC11 = {A,B,C}), (2,2) (IC22 = {B,C}), and (3,3) (IC33 = {C}) to s cannot be active

because component C is present in bypass streams from these nodes.
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3.3.4 Distillation Column Model

To handle undetermined sources into the distillation network, distillation column models

need to be capable of handling an undetermined inlet and correctly calculate vapor/liquid

flow rates for potential separation tasks. We employ the reformulated Underwood equa-

tions in appendix A.3 as unit models for the distillation column modeling. The unit

model embeds all potential distillation tasks in each distillation node based on its postu-

lated components, and feasible tasks are automatically selected depending on the com-

ponents that are present in the inlet. We present only a part of the distillation column

model while more details can be found in appendix B.1. Variable Y LK
ijk /Y HK

ijk ∈ {0, 1}

denotes whether component i is selected as the light/heavy key in column (j, k). There

are one light key and one heavy key if and only if the column is active.

XC
j,k =

∑
i∈I

Y LK
ijk (j, k) ∈ NDM (3.33)

XC
j,k =

∑
i∈I

Y HK
ijk (j, k) ∈ NDM (3.34)

Also, the key components must be present in the source:

Y LK
ijk ≤ Yi i ∈ I, (j, k) ∈ NDM (3.35)

Y HK
ijk ≤ Yi i ∈ I, (j, k) ∈ NDM (3.36)

Components between the light key and the heavy key are referred to as distributed

components. Variable Zijk ∈ {0, 1} denotes whether component i is distributed,

Zijk =
∑

i′≤i−1

Y LK
i′jk −

∑
i′≤i

Y HK
i′jk i ∈ I, (j, k) ∈ NDM (3.37)

For example, if a column separates a ABCD mixture with A/C as the light/heavy

key, component B is distributed. We enforce that components lighter/heavier than the
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light/heavy key are perfectly recovered in the distillate/bottom stream.

Bijk ≤ δBijk
∑
i′≤i

Y LK
i′jk i ∈ I, (j, k) ∈ NDM (3.38)

Dijk ≤ δDijk
∑
i′≥i

Y HK
i′jk i ∈ I, (j, k) ∈ NDM (3.39)

When a component is considered to be not present (i.e., Yi = 0) but distributed (i.e.,

Zijk = 1), we assume that the component is evenly distributed between the distillate

and bottom streams,

− δBijk(1 + Yi − Zijk) ≤ Dijk −Bijk ≤ δDijk(1 + Yi − Zijk) i ∈ I, (j, k) ∈ NDM (3.40)

3.3.5 Light/Heavy Key Selection

A separation task assigned to column (j, k) activates one top arc (j, k, j′, k′) ∈ ATS
jk and

one bottom arc (j, k, j′′, k′′) ∈ ABS
jk . We define the light key as the heaviest component

that is not a postulated component in the bottom stream (i.e., ICj′′k′′), while the heavy

key as the lightest component that is not a postulated component in the distillate stream

(i.e., ICj′k′). Thus, the light/heavy key of a separation task can be identified by checking

active top and bottom arcs. According to the definition of the key components, the set

of light/heavy key candidates (ILKj′k′j′′k′′/I
HK
j′k′j′′k′′), for the separation task associated with

top arc (j, k, j′, k′) ∈ ATS
jk and bottom arc (j, k, j′′, k′′) ∈ ABS

jk , can be defined as follows,

ILKj′k′j′′k′′ =


{i|iLj′k′ ≤ i ≤ iLj′′k′′ − 1} if iHj′k′ ≥ iLj′′k′′

{i|i = iHj′k′} if iHj′k′ < iLj′′k′′

(3.41)

IHK
j′k′j′′k′′ =


{i|iHj′k′ + 1 ≤ i ≤ iHj′′k′′} if iHj′k′ ≥ iLj′′k′′

{i|i = iLj′′k′′} if iHj′k′ < iLj′′k′′

(3.42)
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We present details on how to obtain these sets in appendix B.2. Then, we enforce key

selections to be only within the light/heavy key candidates as follows,

∑
i∈ILK

j′k′j′′k′′

Y LK
ijk ≥ Y T

jkj′k′ + Y B
jkj′′k′′ −XC

jk (j, k, j′, k′) ∈ AT, (j, k, j′′, k′′) ∈ AB (3.43)

∑
i∈IHK

j′k′j′′k′′

Y LK
ijk ≥ Y T

jkj′k′ + Y B
jkj′′k′′ −XC

jk (j, k, j′, k′) ∈ AT, (j, k, j′′, k′′) ∈ AB (3.44)

where Eqs. (3.43) and (3.44) enforce that the light and heavy keys are selected in ILKj′k′j′′k′′

and IHK
j′k′j′′k′′ , respectively, if top arc (j, k, j′, k′) and bottom arc (j, k, j′′, k′′) are active.

Also, the light key should be the heaviest component among the light key candidates

while the heavy key should be the lightest component among the heavy key candidates:

Y LK
ijk ≤ 1− Yi′ + (2XC

jk−Y T
jkj′k′ − Y B

jkj′′k′′)

i′, i ∈ ILKj′k′j′′k′′ , i
′ > i, (j, k, j′, k′) ∈ AT, (j, k, j′′, k′′) ∈ AB

(3.45)

Y HK
ijk ≤ 1− Yi′ + (2XC

jk−Y T
jkj′k′ − Y B

jkj′′k′′)

i′, i ∈ IHK
j′k′j′′k′′ , i

′ < i, (j, k, j′, k′) ∈ AT, (j, k, j′′, k′′) ∈ AB

(3.46)

When component i is selected as the light key in column (j, k) with Y T
jkj′k′ = 1 and

Y B
jkj′′k′′ = 1, then 1 ≤ 1− Yi′ holds in Eq (3.45), enforcing Yi′ = 0, i′ > i (i.e., there is no

component that is heavier than component i in the light key candidates). Similarly, if

component i is selected as the heavy key, then Yi′ = 0, i′ < i is enforced by Eq (3.46) (i.e.,

there is no component that is lighter than component i in the heavy key candidates).
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3.3.6 Thermal Coupling

We introduce Wjk ∈ {0, 1}, where Wjk = 1 denotes that there is no condenser/reboiler

associated with distillate/bottom streams that are sent to node (j, k). This includes

the case where column (j, k) is thermally coupled with upstream columns and the case

where there is no active arc to node (j, k). Conversely, Wjk = 0 denotes that there

are condensers/reboilers associated with distillate/bottom streams that are sent to node

(j, k).

Vapor/Liquid Stream Exchange

When two columns are thermally coupled, they exchange both vapor and liquid streams.

If Y B
j′,k′,j,k = 1 and Wjk = 1 (See Figure 3.5A), the liquid stream is sent from column

(j′, k′) to (j, k) while the vapor stream is sent from column (j, k) to (j′, k′). We denote

the flow rate of this liquid/vapor stream as L̃2j′k′jk/Ṽ 2j′k′jk, and constrain it as follows,

L2j′k′ − βL(1− Y B
j′k′jk) ≤ L̃2j′k′jk ≤ L2j′k′ (j′, k′, j, k) ∈ AB (3.47)

L̃2j′k′jk ≤ βLY B
j′k′jk (j′, k′, j, k) ∈ AB (3.48)

V 2j′k′ − βV (1− Y B
j′k′jk) ≤ Ṽ 2j′k′jk ≤ V 2j′k′ (j′, k′, j, k) ∈ AB (3.49)

Ṽ 2j′k′jk ≤ βV Y B
j′k′jk (j′, k′, j, k) ∈ AB (3.50)

where parameter βV /βL denotes an upper bound on the internal vapor/liquid flow rate.

If Y B
j′k′jk = 1, then L̃2j′k′jk = L2j′k′ and Ṽ 2j′k′jk = V 2j′k′ are enforced by Eqs. (3.47)

and (3.49), respectively; otherwise, L̃2j′k′jk = 0 and Ṽ 2j′k′jk = 0 are enforced by Eqs.

(3.48) and (3.50).

Similarly, if Y T
j′,k′,j,k = 1 and Wjk = 1 (See Figure 3.5B), the vapor stream is sent

from column (j′, k′) to (j, k) while the liquid stream is sent from column (j, k) to (j′, k′).
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Figure 3.5: Material balances with thermal coupling. Solid lines denote liquid streams

while dashed lines denote vapor streams; (A) Bottom section of column (j′, k′) is ther-

mally coupled with column (j, k); (B) Top section of column (j′, k′) is thermally coupled

with column (j, k).
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We denote the flow rate of this vapor/liquid stream as Ṽ 1j′k′jk/L̃1j′k′jk, and constrain

it as follows:

V 1j′k′ − βV (1− Y T
j′k′jk) ≤ Ṽ 1j′k′jk ≤ V 1j′k′ (j′, k′, j, k) ∈ AT (3.51)

Ṽ 1j′k′jk ≤ βV Y T
j′k′jk (j′, k′, j, k) ∈ AT (3.52)

L1j′k′ − βL(1− Y T
j′k′jk) ≤ L̃1j′k′jk ≤ L1j′k′ (j′, k′, j, k) ∈ AT (3.53)

L̃1j′k′jk ≤ βLY T
j′k′jk (j′, k′, j, k) ∈ AT (3.54)

If Y T
j′k′jk = 1, then Ṽ 1j′k′jk = V 1j′k′ and L̃1j′k′jk = L1j′k′ are enforced by Eqs. (3.51)

and (3.53), respectively; otherwise, Ṽ 1j′k′jk = 0 and L̃1j′k′jk = 0 are enforced by Eqs

(3.52) and (3.54).

Vapor/Liquid Flow Rate Balances

The material balance in a thermally coupled column (i.e., Wjk = 1) is as follows:

−2βV (1−Wjk) ≤ V 1jk −V 2jk −
∑

(j′k′jk)∈ATE
jk
Ṽ 1j′k′jk +

∑
(j′k′jk)∈ABE

jk
Ṽ 2j′k′jk

≤ 2βV (1−Wjk) (j, k) ∈ NDM

(3.55)

−2βL(1−Wjk) ≤ L1jk −L2jk −
∑

(j′k′jk)∈ATE
jk
L̃1j′k′jk +

∑
(j′k′jk)∈ABE

jk
L̃2j′k′jk

≤ 2βL(1−Wjk) (j, k) ∈ NDM

(3.56)

If Wjk = 1, then V 1jk −V 2jk −
∑

(j′k′jk)∈ATE
jk
Ṽ 1j′k′jk +

∑
(j′k′jk)∈ABE

jk
Ṽ 2j′k′jk = 0 and

L1jk−L2jk−
∑

(j′k′jk)∈ATE
jk
L̃1j′k′jk+

∑
(j′k′jk)∈ABE

jk
L̃2j′k′jk = 0 are enforced by Eqs (3.55)

and (3.56), respectively (See Figure 3.5); otherwise, the material balances are relaxed.
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Conversely, if Wjk = 0, liquid stream is sent to column (j, k) but no vapor stream is

sent to/from column (j, k) (See Figure 3.6). Thus, if Wj,k = 0,

−βVWjk ≤ V 1jk − V 2jk ≤ βVWjk (j, k) ∈ NDM (3.57)

V 1jk−V 2jk = 0 is enforced by Eq (3.57), denoting there is no vapor stream sent to/from

column (j, k).

𝑉1𝑗𝑘

𝑉2𝑗𝑘

𝐿1𝑗𝑘

𝐿2𝑗𝑘

Eq. (3.57)

𝑉1𝑗𝑘

𝑉2𝑗𝑘

𝐿1𝑗𝑘

𝐿2𝑗𝑘

Eq. (3.57)
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Figure 3.6: Material balances without thermal coupling. Solid lines denote liquid streams

while dashed lines denote vapor streams; (A) Bottom section of upstream column (j′, k′)

with reboiler is connected to downstream column (j, k). The bottom stream from column

(j′, k′) is liquid, so it does not change the internal vapor flow rate in column (j, k); (B)

Top section of upstream column (j′, k′) with condenser is connected to downstream

column (j, k). The distillate stream is liquid, so it does not change the internal vapor

flow rate in column (j, k)

Notably, if two arcs headed to node (j, k) (i.e., one bottom arc (j′, k′, j, k) ∈ ABE
jk and

one top arc (j′′, k′′, j, k) ∈ ATE
jk ) are active and Wjk = 0 (See Figure 3.7A), then there

is a reboiler at the bottom section of column (j′, k′) and there is a condenser at the top
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section of column (j′′, k′′). However, these reboiler and condenser can be removed (i.e.,

Wjk = 1) by stacking columns as shown in Figure 3.7B, so that capital and operating

(A)

𝑉2𝑗′𝑘′

𝑉1𝑗′′𝑘′′

𝐿2𝑗′𝑘′

𝐿1𝑗′′𝑘′′

𝑊𝑗𝑘 = 0

(B)

Removable

𝐿2𝑗′𝑘′

𝐿1𝑗′′𝑘′′

𝑉2𝑗′𝑘′

𝑉1𝑗′′𝑘′′

=

bottom

top

(𝑗′, 𝑘′)

(𝑗′′, 𝑘′′)

bottom

top

(𝑗′, 𝑘′)

(𝑗′′, 𝑘′′)

𝑊𝑗𝑘 = 1

Liquid
side stream

Figure 3.7: Cases where bottom arc (j′, k′, j, k) and top arc (j′′, k′′, j, k) are active; (A)

Downstream column (j, k) is not thermally coupled with upstream columns (Wjk =

0). Due to the condenser and the reboiler, both cooling and heating are needed; (B)

Upstream columns are stacked into a single column. The condenser and reboiler are

removed (Wjk = 1), so there is no cooling/heating duty. Only liquid side stream is

sent to column (j, k), so internal vapor flow rates in the stacked column should not be

changed by the side stream.

costs can be reduced. Thus, we enforce Wjk = 1 if two arcs headed to node (j, k) are

active.

Wjk ≥
∑

(j′k′jk)∈ATE
jk

Y T
j′k′jk +

∑
(j′k′jk)∈ABE

jk

Y B
j′k′jk − 1 (j, k) ∈ ND (3.58)

When columns (j′, k′) and (j′′, k′′) are stacked, we only consider a liquid side stream,

which is sent to node (j, k). Thus, the internal vapor flow rates in the stacked column
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should not be changed by the side stream (i.e., V 2j′k′ = V 1j′′k′′ if Y
B
j′k′jk = 1 and Y T

j′′k′′jk =

1, See Figure 3.7B). When Y B
j′k′jk = 1, then

∑
(j′′k′′jk)∈ABE

jk
Ṽ 2j′′k′′jk = V 2j′k′ holds due

to Eqs. (3.49) and (3.50). Also, when Y T
j′′k′′jk = 1, then

∑
(j′k′jk)∈ATE

jk
Ṽ 1j′k′jk = V 1j′′k′′

holds due to Eqs. (3.51) and (3.52). Thus, we can introduce the following,

− βV ψjk ≤
∑

(j′k′jk)∈ATE
jk

Ṽ 1j′k′jk −
∑

(j′k′jk)∈ABE
jk

Ṽ 2j′k′jk ≤ βV ψjk (j, k) ∈ ND (3.59)

ψjk = 2−
∑

(j′k′jk)∈ATE
jk

Y T
j′k′jk −

∑
(j′k′jk)∈ATE

jk

Y B
j′k′jk (j, k) ∈ ND (3.60)

where
∑

(j′k′jk)∈ATE
jk
Ṽ 1j′k′jk −

∑
(j′k′jk)∈ABE

jk
Ṽ 2j′k′jk = 0 is enforced by Eqs. (3.59) and

(3.60) if two arcs to node (j, k) are active.

When two columns are stacked and operated with the same internal vapor flow

rate, one column may not be operated at its minimum vapor flow rate [14]. If needed,

configurations where each column is operated at its minimum internal vapor flow rates

can be found if Eqs. (3.59) and (3.60) are excluded.

Thermal Coupling vs. Bypass

Notably, if Wjk = 1, no bypass arc from node (j, k) can be active due to Eqs. (3.47) and

(3.51). This is because if there is an active bypass arc, a part of the liquid/vapor stream

sent from upstream column (j′, k′) to downstream column (j, k) should be utilized for

the bypass stream, resulting in L̃2j′k′jk < L2j′k′ or Ṽ 1j′k′jk < V 1j′k′ . However, when

Y T
j′k′jk = 1, then L̃2j′k′jk = L2j′k′ is enforced by Eq. (3.47), so no bypass arc can be

active. Similarly, when Y B
j′k′jk = 1, then Ṽ 1j′k′jk = V 1j′k′ is enforced by Eq. (3.51), so

no bypass arc can be active. Thus, thermal coupling ”competes” with bypass streams.

If a mixture, instead of an almost pure component, is allowed for an outlet, bypass



68

streams can be chosen because separation loads in all downstream columns can be re-

duced. However, when the benefit of bypass streams is not sufficient, thermal coupling

can be selected. One key aspect of the proposed model is that it can automatically con-

sider trade-offs between the selection of bypass streams and thermal coupling depending

on outlet compositions. If needed, it is also possible to allow bypass streams and thermal

coupling at the same time, illustrated in section 3.4.1.

3.3.7 Heat Duty Calculation

We introduce QT
jk/Q

B
jk to denote the cooling/heating duty in the condenser/reboiler

associated with the distillate/bottom stream sent to node (j, k),∑
(j′k′jk)∈ATE

jk

Ṽ 1j′k′jk − βVWjk ≤
QT

jk

λjk
≤

∑
(j′k′jk)∈ATE

jk

Ṽ 1j′k′jk (j, k) ∈ ND (3.61)

∑
(j′k′jk)∈ABE

jk

Ṽ 2j′k′jk − βVWjk ≤
QB

jk

λjk
≤

∑
(j′k′jk)∈ABE

jk

Ṽ 2j′k′jk (j, k) ∈ ND (3.62)

where λjk denotes an average molar heat of vaporization of the inlet into node (j, k). If

Wjk = 0, then QT
jk/λjk =

∑
(j′k′jk)∈ATE

jk
Ṽ 1j′k′jk and QB

jk/λjk =
∑

(j′k′jk)∈ABE
jk
Ṽ 2j′k′jk are

enforced by Eqs. (3.61) and (3.62); otherwise, the equalities are relaxed. Conversely, if

Wjk = 1, the cooling/heating duty is set to zero,

QT
jk ≤ βT (1−Wjk) (j, k) ∈ ND (3.63)

QB
jk ≤ βB(1−Wjk) (j, k) ∈ ND (3.64)

3.3.8 Terminal Nodes

If node (j, k) is active (i.e., Xjk = 1) but the corresponding column is inactive (i.e.,

XC
jk = 0), then all inlets into node (j, k) are sent to sink nodes (i.e., there is no further
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separation). Thus, these nodes are termed as terminal nodes. Note that all active

pure component nodes are terminal nodes while an active mixture node can also be a

terminal node. For example, in Figure 3.8A, a distillation network where the source

with components A, B, C, and D is separated into three outlets (i.e., three sink nodes:

P1, P2, and P3) is shown; notably, sink node P1 allows a mixture of A and B. Also, the

corresponding column configuration is shown in Figure 3.8B. If the inlet into mixture

ABCD
(1,1)

ABC
(1,2)

BCD
(2,2)

AB
(1,3)

BC
(2,3)

CD
(3,3)

A
(1,4)

B
(2,4)

C
(3,4)

D
(4,4)

AB

C

D

P1

P2

P3Terminal nodes

Required condenser

Required reboiler

Optional condenser

ABCD

ABC

C

D

(A) (B) P1

P2

P3

Optional reboiler

No reboiler/condenser

AB

CD

(1,1)

(1,2)

(3,3)

Figure 3.8: (A): A distillation network to separate the source with A, B, C, and D. Sink

node P1 allows AB mixture, so mixture node (1,3) is selected as a terminal node. Reboil-

ers/condensers that can be removed by thermal coupling is represented with red/blue

dashed-circle, while reboilers/condensers that should be present are represented with

red/blue filled circle. When there should be no condenser/reboiler, it is represented as

green dashed-circle; (B): Corresponding column configuration.

node (1,3) can be directly sent to sink node P1 without any further separations between

A and B (i.e., column (1,3) is inactive), then node (1,3) becomes a terminal node (See

Figure 3.8A). Also, nodes (3,4) and (4,4) are also terminal nodes because they are

active pure component nodes.
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Notably, for a terminal node, if only one arc toward the terminal node is active, then

there should be a condenser/reboiler associated with the stream sent to the terminal

node (See Figure 3.8B). For example, since node (1,3) is a terminal node and only

one arc to (1,3) is active (i.e., top arc (1,2,1,3)), a condenser is needed in column (1,2).

Similarly, since node (4,4) is a terminal node and only one arc toward it is active (i.e.,

bottom arc (3,3,4,4)), a reboiler is needed in column (3,3). Notably, even though node

(3,4) is a terminal node, no reboiler/condenser is needed because there are two active

arcs toward node (3,4) (i.e., bottom arc (1,2,3,4) and top arc (3,3,3,4)). This requirement

is enforced as follows:

1−Wjk ≥


−
∑

(j′′k′′jk)∈ATE
jk
Y T
j′′k′′jk +

∑
(j′′k′′jk)∈ABE

jk
Y B
j′′k′′jk −XC

jk (j, k) ∈ NDM

−
∑

(j′′k′′jk)∈ATE
jk
Y T
j′′k′′jk +

∑
(j′′k′′jk)∈ABE

jk
Y B
j′′k′′jk (j, k) ∈ NDP

(3.65)

1−Wjk ≥


∑

(j′′k′′jk)∈ATE
jk
Y T
j′′k′′jk −

∑
(j′′k′′jk)∈ABE

jk
Y B
j′′k′′jk −XC

jk (j, k) ∈ NDM

∑
(j′′k′′jk)∈ATE

jk
Y T
j′′k′′jk −

∑
(j′′k′′jk)∈ABE

jk
Y B
j′′k′′jk (j, k) ∈ NDP

(3.66)

The right-hand side of Eq. (3.65) becomes 1 when there is only one active bottom arc

headed to terminal node (j, k), enforcing Wjk = 0; otherwise, it is relaxed. For pure

component nodes, there is no column, so Eq. (3.65) is defined without XC
jk. Similarly,

the right-hand side of Eq. (3.66) becomes 1 when there is only one active top arc headed

to terminal node (j, k), enforcing Wjk = 0; otherwise, relaxed.
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3.3.9 Objective Function

If the operating cost for the energy is dominant in the total annualized cost, the objective

function can be defined as the cost for total heating/cooling duty for the distillation

network (i.e.,
∑

(j,k)∈ND(µCQT
jk + µHQB

jk)), where µ
C/µH denotes the cost parameter

for cooling/heating. If the capital cost needs to be considered, we can include the

internal vapor flow rates in the objective function (i.e.,
∑

(j,k)∈ND(µCQT
jk + µHQB

jk) +∑
(j,k)∈NDM µV (V 1jk + V 2jk)), which can serve as surrogate variables for the column

diameter and height; µV denotes the cost parameter for the capital cost.

3.4 Extensions

3.4.1 Bypass with Thermal Coupling

The proposed model can be extended to allow bypass streams between thermally coupled

columns. When a bypass stream is active between thermally coupled columns (See

Figure 3.9), the flow rate of the vapor/liquid stream sent to the downstream column

(i.e., Ṽ 1j′k′jk/L̃2j′k′jk) should be strictly less than that in the upstream column (i.e.,

V 1j′k′/L2j′k′). For example, if a fraction of the vapor stream from the top section of the

upstream column is sent to a sink node, V 1j′k′ > Ṽ 1j′k′jk should hold (See Figure 3.9A).

To allow this, Eq. (3.51) is reformulated as follows,

V 1j′k′ − βV (1− Y T
j′k′jk +

∑
s∈NSI

Y P
jks) ≤ Ṽ 1j′k′jk ≤ V 1j′k′ (j′, k′, j, k) ∈ AT, (j, k) ∈ ND

(3.51a)
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Figure 3.9: Bypass stream between thermally coupled columns; (A): The top section of

the upstream column is thermally coupled with the downstream column. Only vapor

stream is allowed to bypass. As outlets are liquid, bypass stream needs to be condensed;

(B): The bottom section of the upstream column is thermally coupled with the down-

stream column. Only liquid stream is allowed to bypass.

where Ṽ 1j′k′jk < V 1j′k′ is allowed if at least one bypass arc is active (i.e.,
∑

s∈NSI Y P
jks ≥

1). Similarly, Eq. (3.47) is reformulated as follows,

L2j′k′ − βL(1− Y B
j′k′jk +

∑
s∈NSI

Y P
jks) ≤ L̃2j′k′jk ≤ L2j′k′ (j′, k′, j, k) ∈ AB, (j, k) ∈ ND

(3.47a)

where L̃2j′k′jk < L2j′k′ is allowed when at least one bypass arc is active (See Fig-

ure 3.9B). When columns are not thermally coupled (i.e., Wjk = 0 for downstream

node), Ṽ 1j′k′jk = V 1j′k′ and L̃2j′k′jk = L2j′k′ are enforced again by the following con-

straints,

V 1j′k′ − βV (1− Y T
j′k′jk +Wjk) ≤ Ṽ 1j′k′jk (j′, k′, j, k) ∈ AT, (j, k) ∈ ND (3.67)

L2j′k′ − βL(1− Y B
j′k′jk +Wjk) ≤ L̃2j′k′jk (j′, k′, j, k) ∈ AT, (j, k) ∈ ND (3.68)

If a fraction of the vapor stream from the top section is directly sent to a sink node, it

needs to be condensed to make liquid products (See Figure 3.9A). To calculate this
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condenser duty, Eq. (3.63) is reformulated as follows,

QT
jk/λjk ≥ (V 1j′k′ − Ṽ 1j′k′jk)− βV (2− Y T

j′k′jk −Wjk) (j, k, j′, k′) ∈ AT (3.63a)

QT
jk/λjk ≤ (V 1j′k′ − Ṽ 1j′k′jk) + βV (2− Y T

j′k′jk −Wjk) (j, k, j′, k′) ∈ AT (3.63b)

where QT
jk/λjk = V 1j′k′ − Ṽ 1j′k′jk is enforced if the top section of the upstream column

is thermally coupled with the downstream column (i.e., Y T
j′k′jk = 1 and Wjk = 1).

3.4.2 Multiple Sources

When there are multiple sources, Y 0
sjk ∈ {0, 1} is introduced instead of Y 0

jk. Also,

F 0
si/F̃

0
sijk ∈ R+ is introduced to replace F 0

i /F̃
0
ijk. Then, Eqs. (3.4), (3.5), (3.6), (3.13),

(3.14), and (3.31) are reformulated as follows:

∑
(j,k)∈ND

Y 0
sjk = 1 s ∈ NSO (3.4a)

Y 0
sjk ≤ Xjk s ∈ NSO, (j, k) ∈ ND

(3.5a)

Xjk ≤
∑

s∈NSO

Y 0
sjk +

∑
(j′k′jk)∈ATE

jk

Y T
j′k′jk +

∑
(j′k′jk)∈ABE

jk

Y B
j′k′jk (j, k) ∈ ND (3.6a)

F 0
si =

∑
(j,k)∈ND

F̃ 0
sijk s ∈ NSO, i ∈ I (3.13a)

F̃ 0
sijk ≤ δ

0

siY
0
sjk s ∈ NSO, i ∈ I, (j, k) ∈ ND

(3.14a)∑
(j,k)∈ND

F P
ijks ≥ ρRis

∑
s′∈NSO

F 0
s′i i ∈ IPs , s ∈ NSI (3.31a)

Furthermore, Yijk ∈ {0, 1} is introduced, instead of Yi, to denote whether component i

is present in the sum of all inlets to node (j, k). Accordingly, Eqs. (3.15), (3.16), (3.32),
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(3.35), (3.36), and (3.40) are reformulated as follows:

δijkYijk ≤ Fijk ≤ δijkYijk + δijk(1− Yijk) i ∈ ICjk, (j, k) ∈ ND (3.15b)

Xjk ≤ Yijk i ∈ {iLjk, iHjk}, (j, k) ∈ ND (3.16a)

Y P
jks ≤ 1− Yijk (j, k) ∈ ND, s ∈ NSI, i ∈ INs ∩ ICjk (3.32a)

Y LK
ijk ≤ Yijk i ∈ ICjk, (j, k) ∈ NDM (3.35a)

Y HK
ijk ≤ Yijk i ∈ ICjk, (j, k) ∈ NDM (3.36a)

− δBijk(1 + Yijk − Zijk) ≤ Dijk −Bijk ≤ δDijk(1 + Yijk − Zijk) i ∈ ICjk, (j, k) ∈ NDM

(3.40a)

Note that in Eqs. (3.15b), (3.35a), (3.36a), and (3.40a), postulated components in each

node (i.e., ICjk) are considered. Lastly, Eqs. (3.45) and (3.46) are reformulated as follows:

Y LK
ijk ≤ 1− Yi′jk + (2XC

jk−Y T
jkj′k′ − Y B

jkj′′k′′)

i′, i ∈ ILKj′k′j′′k′′ , i
′ > i, (j, k, j′, k′) ∈ AT, (j, k, j′′, k′′) ∈ AB

(3.45a)

Y HK
ijk ≤ 1− Yi′jk + (2XC

jk−Y T
jkj′k′ − Y B

jkj′′k′′)

i′, i ∈ IHK
j′k′j′′k′′ , i

′ < i, (j, k, j′, k′) ∈ AT, (j, k, j′′, k′′) ∈ AB

(3.46a)

3.5 Examples

All examples are solved using solver BARON (20.10.16) [55] through GAMS (33.1.0)

on a machine with Intel Xeon E5520 processor 2.26 GHz and 16 GB memory. For the

stopping criteria, the relative optimality gap is set to 10−3.
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3.5.1 Reactor-Distillation Network Synthesis without Recycle

We study an integrated reactor-distillation network synthesis problem. In the reac-

tor network, three alternative reactors carrying out different reactions (i.e., A→B+C,

A→C+D, and A→2D) are considered (See Figure 3.10A). The postulated compo-

nents in the distillation network are I = {A,B,C,D}. The source should be separated

into pure components (components A∼D are recovered from sink nodes P1∼P4, respec-

tively); thus, bypass streams are not considered. The objective function is to maximize

the annualized net profit of the process which is equal to the revenue from products

minus the costs of the raw material, reactor, and distillation network. The cost of the

distillation network is calculated using total cooling/heating duties (for operational cost)

and vapor flow rates (for capital cost). More details (e.g., relative volatilities, cost pa-

rameters, objective function, etc.) can be found in the supporting information of the

original work [85]. Note that selecting the third reaction can lead to a simpler distillation

network because there are only two components to separate (A/D); however, component

C, which is a product of the first and second reactors, has a higher price than component

D. Therefore, this example illustrates the trade-off between the revenue from products

and the separation cost.

The model has 2117 equations and 883 variables with 179 of them being discrete

variables. In the optimal solution, which is obtained in 19.84 s, the second reactor

(A→C+D) is selected (See Figure 3.10B). The optimal profit is $1.437×106/yr, where

the revenue is $3.962 × 106/yr; the material cost is $0.922 × 106/yr; the reactor cost is

$0.836 × 106/yr; and the separation cost is $0.767 × 106/yr. The source is assigned to

node (1,1) (IC11 = {A,B,C,D}). Column (1,1) is thermally coupled with column (3,3)
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Figure 3.10: (A): Superstructure of example 3.5.1; bypass arcs that cannot be active

due to Eq. (3.32) are not shown for clarity; (B): Optimal solution: light/heavy key is

represented in green/red; inactive reactors, streams, and components are represented in

gray; column (1,1) is thermally coupled with column (3,3) but not with column (1,2);

this is because installing the condenser at column (1,1) can reduce the vapor flow rate

in the top section (i.e., V 1) of column (1,2), reducing the capital cost.

but not with column (1,2). Because of the condenser in column (1,1), the vapor flow rate

in the top section of column (1,2) can be reduced, reducing the capital cost of column

(1,2). If the capital cost is not considered in the objective function, a fully thermally

coupled configuration is obtained in the optimal solution. Also, the internal vapor flow

rate at the bottom section of column (1,2) is equal to that at the top section of column

(3,3) because they are stacked to form a single column.

3.5.2 Reactor-Distillation Network Synthesis with Recycle

We study the synthesis of a process where a feedstock of 0.5 kmol/s of C is used to

produce component A or B through three alternative reactions (See Figure 3.11A).

All reactions require additional reactant D with different feed ratios. Also, the recycle
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of components is considered. Notably, to produce the recycle stream, the separation

between components C and D might be avoided because they are both reactants. Four

postulated components are considered (i.e., I = {A,B,C,D}) with five sink nodes (i.e.,

P1∼P5). Sink node P5 is assigned to the recycle stream while P1∼P4 are assigned to

pure components A∼D, respectively. Also, bypass with thermal coupling is allowed.

The objective is to maximize the annualized profit which is equal to the revenue from

products minus the costs for raw materials, reactors, and distillation network.

The model has 2227 equations and 933 variables with 189 of them being discrete.

The optimal solution, obtained in 1183.9 s, is shown in Figure 3.11B. The optimal
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Figure 3.11: (A): Superstructure of example 3.5.2; bypass arcs that cannot be active

due to Eq. (3.32) are not shown for clarity; (B): Optimal solution: light/heavy key is

represented in green/red; inactive reactors, streams, and nodes are represented in gray;

multiple condensers are selected while only one reboiler is selected; recycle stream (i.e.,

outlet from P5) is produced by mixing the bottom stream from the column in node (2,2)

(where sloppy split BC/CD is performed) and pure D; bypass with thermal coupling

occurs between columns in node (2,2) and (3,3).

profit is $0.703 × 106/yr, where the revenue is $2.206 × 106/yr; the material cost is
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$1.059× 106/yr; the reactor cost is $0.170× 106/yr; and the distillation network cost is

$0.274×106/yr. In the optimal solution, the second reactor is selected, so component A

is not present in the source into the distillation network. Accordingly, the source node is

assigned to node (2,2) where IC22 = {B,C,D}. Notably, a fraction of the bottom stream

from column (2,2), which is produced by BC/CD split, is directly sent to final node P5

to produce the recycle stream while columns (2,2) and (3,3) are thermally coupled; this

solution is allowed by the extension discussed in section 3.4.1.

3.5.3 Distillation Network Synthesis with Multiple Sources

We study a system with two sources containing hydrocarbon components (See Fig-

ure 3.12A): {A: 2,4-Dimethyl Pentane, B: 2,2,3,3-Tetra Methyl Butane, C: N-Octane}

and {C: N-Octane, D: N-Nonane, E: N-Decane}. The set of postulated components is

I = {A,B,C,D,E}. Sources should be separated into pure components, so five sink

nodes (i.e., P1∼P5) are considered. The objective is to minimize the annualized cost.

The resulting model has 3581 equations and 1422 variables with 310 of them being

discrete variables. The optimal solution, obtained in 1203.5 s, is shown in Figure 3.12B

and has an annualized cost of $0.339 × 106/yr. Two sources are assigned to different

columns and share the final complex column; the first source with components ABC

is separated into AB and BC, which are then sent to the final complex column. The

second source, with components CDE, is separated into CD and E, and only the distillate

stream (i.e., CD) is sent to the final complex column. When we enforce that the two

sources are first mixed, the annualized cost increases significantly (i.e., $0.451×106/yr).

Thus, this example illustrates the advantage of considering multiple sources.
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Figure 3.12: (A): Superstructure of example 3.5.3; bypass arcs that cannot be active

due to Eq. (3.32) are not shown for clarity; (B): Optimal solution: light/heavy key is

represented in green/red; the source with components ABC is separated into AB and

BC first and sent to the complex column; the source with components CDE is separated

into CD and E, and only the distillate stream (i.e., CD) is sent to the complex column.

3.5.4 Reactor-Distillation Network Synthesis with

Multiple Sources

We study the synthesis of a reactor-separation network with a given feedstock (i.e.,

1 kmol/s of A and 1 kmol/s of B), where there are two sources into the distillation

network from two different reactor networks (See Figure 3.13). In the first reactor net-

work, three reactors carrying out alternative reactions (i.e., RXN1: 2A+B→3C, RXN2:

A+3B→4D, RXN3: A+B→C+D) are considered, where components C or D can be

produced. In the second reactor network, component C can be converted to product D
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through two reactors carrying out alternative reactions (i.e., RXN4: 2C→D+E, RXN5:

C→D). Notably, adopting RXN5 instead of RXN4 can avoid the production of byprod-

uct E and can achieve a higher conversion (0.7 > 0.5), whereas a more expensive catalyst

is needed. Thus, between RXN4 and RXN5, there is a trade-off between the separation

cost for byproduct E and the catalyst cost. Component C can be produced from the first

reactor network via RXN1 and RXN3, or can be purchased with a limited availability

(C ≤ 1 kmol/s). Five postulated components are considered (I = {A,B,C,D,E}) with
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Figure 3.13: Superstructure of example 3.5.4; bypass arcs that cannot be active due to

Eq. (3.32) are not shown for clarity.

two source nodes and seven sink nodes (i.e., P1∼P7); sink nodes P1∼P5 are assigned for

pure components (i.e., A, B, C, D, and E, respectively) while P6 and P7 are assigned for

the recycle streams into the first and the second reactor network, respectively. Notably,

for the recycle stream into the first reactor network, the separation between components
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A and B might be avoided because they are both reactants. The objective is to max-

imize the total annualized profit which is equal to the revenue minus the costs for raw

materials, reactors, and distillation network.

2A+B→3C
ABC

Conversion = 0.6

Conversion = 0.6

Conversion = 0.5

A+3B→4D
ABD

A+B→C+D
ABCD

1 mol A
1 mol B

Conversion = 0.5

Conversion = 0.7

2C→D+E
CDE

C→D
CD

1 mol C

P6

P2

P3

A
(1,5)

D
(4,5)

P1

A
B
C
-
B
C
D

(1,2)

A
-
B
C

(1,3)

B
C
-
D

(2,3)

𝑉1 2.470
𝑉2 2.470
𝐿1 0.840
𝐿2 5.040

𝑉1 4.150
𝑉2 4.150
𝐿1 3.150
𝐿2 4.780

𝑉1 4.150
𝑉2 4.150
𝐿1 2.580
𝐿2 5.150

𝑄55
𝐵 = 4.150

𝑄15
𝑇 = 4.150

𝑄13
𝑇 = 2.470

𝑄23
𝐵 = 2.470

BCD

ABC

D
-
E

C
(3,5)

B
-
C

(2,4)

C
-
D
E

(3,3)

𝑉1 6.179
𝑉2 6.179
𝐿1 4.979
𝐿2 7.179

𝑉1 6.179
𝑉2 6.179
𝐿1 4.179
𝐿2 8.179

𝑄44
𝐵 = 6.179

𝑄25
𝑇 = 6.179

(4,4)

BC

𝑉1 4.150
𝑉2 4.150
𝐿1 3.150
𝐿2 5.150

B
(2,5)

E
(5,5)

P7

P4

P5

CDE

ABCD

A 1.00
B 1.20
C 1.00
D 1.00

C 2.00
D 1.00
E 1.00

A 1.00
B 1.20

C 3.00

Figure 3.14: Best solution in 72000 s for example 3.5.4. RXN3 and RXN4 are selected,

so the effluents contain {A,B,C,D} and {C,D,E}, respectively. The effluent from the

first reactor network is sent to node (1,2) while that from the second reactor network is

sent to node (3,3).

The model has 3698 equations and 1535 variables with 319 of them being discrete.

The model is solved to 6.63% optimality in 72000 s. The best solution (See Figure 3.14)

is found after 522.64 s. The profit is $1.718×106/yr while the revenue is $8.855×106/yr;

the material cost is $3.848×106/yr; the reactor cost is $1.979×106/yr; and the separation

cost is $1.297 × 106/yr. In the first reactor network, RXN3 is selected, producing the
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effluent with components A, B, C, and D. Also, the effluent is sent to node (1,2). In the

second reactor network, RXN4 is selected, producing the effluent with components C,

D, and E. The effluent is sent to node (3,3). Notably, the effluents from different reactor

networks are not mixed because their compositions are vastly different; however, they

do share some columns (i.e., column for C/D split) while utilizing thermal couplings,

illustrating the advantage of considering multiple sources into the distillation network,

which is neglected in most existing works. Note that in this solution, the bypass stream

from node (1,4) to sink node P6 is not active because the separation between A/B can

be done freely by the vapor flow rates generated for D/E split.
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Chapter 4

Distillation Network Synthesis with

Graphical Insights7

4.1 Motivation

Graphical approaches, where feasible distillation columns (i.e., columns carrying out

separation tasks that meet thermodynamics-based constraints) and distillation networks

(consisting of distillation columns, mixers, etc.) are represented in a ternary or quater-

nary diagram [22, 30, 90], have been proposed to solve distillation network synthesis

problems. Graphical approaches allow the identification of feasible distillation networks

without considering complex mathematical equations. However, they cannot be readily

used for optimization because metrics (e.g., total cost) and/or process constraints are

not easily representable. Furthermore, systems with more than four components cannot

be readily handled.

Simulation- and optimization-based approaches, which rely on models that contain

equations describing thermodynamic constraints and unit material/energy balances,

have also been proposed. In simulation-based approaches, promising network config-

urations are simulated and the best configuration is selected [65]. In optimization-based

7The contents of this chapter appear in Ryu and Maravelias, AIChE J. 2022
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approaches and, in particular, superstructure-based approaches, the optimal network

configuration and major operating decisions are identified using an optimization model

[38, 51, 52, 60]. Superstructure-based models have not been typically combined with

rigorous unit models because the resulting integrated models would be computation-

ally expensive. One potential research avenue therefore is the use of models that can

cheaply calculate the cost of a column combined with methods that ensure feasibility of

the corresponding separation task. Towards this goal, we propose an approach where

graphically-inspired feasibility constraints are combined with simplified surrogate cost

models.

4.2 Model Formulation

We outline mathematical models for the distillation column and distillation network.

4.2.1 Distillation Column

We define ordered set I = {A,B, ...} to denote components in decreasing order of volatil-

ity and set L to denote distillation columns. For a given feed composition, a composition

of the distillate/bottom stream of a column is said to be contained in the feasible re-

gion of distillation if it can be achieved by the column. One common approximation

to represent feasible regions, usually used in graphical approaches, is based on the fact

that a more volatile component is more concentrated in the distillate stream while less

concentrated in the bottom stream. Mathematically, this assumption can be compactly
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represented as follows,

xDl,i−1

xDl,i
≥
xFl,i−1

xFl,i
≥
xBl,i−1

xBl,i
l ∈ L, i ∈ I \ {A} (4.1)

where xFl,i/x
D
l,i/x

B
l,i denotes the molar fraction in the feed/distillate/bottom stream. For a
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Figure 4.1: Feasible regions for distillate and bottom streams (A): ternary mixture; (B):

three hyperplanes associated with Eq. (1) in quaternary mixture; (C): feasible polytopes

determined by Eq. (4.1) in quaternary mixture.

ternary mixture, Eq. (4.1) represents four inequalities, resulting in two 2-D polytopes in

the ternary diagram. These polytopes approximate feasible regions for the distillate and

bottom streams, respectively (See Figure 4.1A). This approximation can be generalized

for n-component mixtures. For a quaternary mixture, six inequalities from Eq. (4.1)

result in two 3-D polytopes in the quaternary diagram (See Figure 4.1B and 4.1C). A

special case of Eq. (4.1) was proposed for a subset of pairs of consecutive components

depending on pre-defined distillation tasks to improve computational performance [72].

Eq. (4.1) is more general in that it is used for all pairs of consecutive components to

enforce feasibility when distillation tasks are not predefined. Additionally, the material

balance should be met for each column,

Fl,i = Dl,i +Bl,i l ∈ L, i ∈ I (4.2)
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where Fl,i/Dl,i/Bl,i denotes the molar flow rate of the feed/distillate/bottom stream.

Molar fractions of components in the streams are calculated as follows:

xFl,i =
Fl,i∑
i′∈I Fl,i′

l ∈ L, i ∈ I (4.3)

xDl,i =
Dl,i∑
i′∈I Dl,i′

l ∈ L, i ∈ I (4.4)

xBl,i =
Bl,i∑
i′∈I Bl,i′

l ∈ L, i ∈ I (4.5)

Next, to calculate the cost, we use a modified version of the Underwood equation [103, 83]

to calculate energy demand, which is used as a proxy of the cost.

(
∑
i∈I

Fl,i)(1− q) =
∑
i∈I

αiFl,i

αi − ϕl,i′−1

l ∈ L, i′ ∈ I \ {A} (4.6)

V D
l ≥

∑
i∈I

αiDl,i

αi − ϕl,i′−1

l ∈ L, i′ ∈ I \ {A} (4.7)

V B
l ≥ −

∑
i∈I

αiBl,i

αi − ϕl,i′−1

l ∈ L, i′ ∈ I \ {A} (4.8)

Parameter q denotes the thermal state of the feed, which we assume as 1 (i.e., saturated

liquid); αi denotes the relative volatility, which can be calculated by the ratio of K -

value with respect to the least volatile (i.e., heaviest) component in the feed (i.e., αi =

Ki/Kheaviest ); ϕl,i denotes the Underwood root satisfying Eq. (4.6); and V D
l /V

B
l denotes

the molar vapor flow rates in the top and bottom sections, respectively. Eq. (4.6) has

|I| − 1 roots, and each root is bounded between αi−1 and αi (i.e., αi−1 > ϕl,i−1 > αi, i ∈

I \ {A}). We calculate the cost of a distillation column using the vapor flow rate,

CC
l = µHV B

l + µCV D
l l ∈ L (4.9)

where µH and µC include both capital and operating costs assuming that: (1) the

number of trays (indicative of the difficulty of the separation) and column diameter
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increase with the vapor flow rate; (2) the operational costs, which depend primarily on

utilities, are proportional to the vapor flow rates. More complex objective functions can

be readily considered. Eqs. (4.2)-(4.8) do not enforce thermodynamic constraints on

product compositions, so Eq. (4.1) is needed to enforce feasibility.

4.2.2 Distillation Network

An example distillation superstructure is shown in Figure 4.2. We briefly present the

corresponding model here while details can be found in appendix C (i.e., Eqs. (C.1)-

(C.22)). We define set SIN to denote inlets into the distillation network, represented as
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Figure 4.2: Distillation network superstructure with 2 inlet streams and 2 outlet streams.

Inlet streams can be sent to columns (orange) or outlets (blue). The distillate and bottom

streams of a column can be sent to other columns (green and light green) or outlets (red

and dark red). Splitters are represented as gray circle while mixers as white circles.

splitters with incoming flow F IN
s,i . We define set SOUT to denote outlets, represented



88

as mixers whose outgoing stream, with flow FOUT
s,i , can go to a final product sink as

well as be a recycle or purge stream. Inlet streams can be sent to columns or outlets.

We introduce Yl ∈ {0, 1} to denote whether column l is selected. When the column is

not selected (i.e., Yl = 0), stream flow rates associated with the column are set to 0.

The distillate/bottom stream of a column can be sent to other columns or outlets. For

each connection between two units (i.e., inlet-column, inlet-outlet, column-column, and

column-outlet), we introduce a binary variable to represent its selection in the optimal

solution (See appendix C). The objective is to maximize the profit of the system,

Profit =
∑

s∈SOUT

µP
s (
∑
i∈I

FOUT
s,i )− (

∑
i∈I

µM
i ψ

R,IT
r,i )−

∑
l∈L

CC
l − C̃O (4.10)

where µP
s denotes the price of outlet stream s; µM

i /ψ
R,IT
r,i denotes the cost/molar flow

rate of the raw material; and C̃O denotes the total cost of units other than distillation

columns (e.g., reactors).

4.3 Illustrative Examples

We use two case studies to show the applicability of the proposed approach. Synthesis

models are formulated using Eqs. (4.1)-(4.9) for distillation columns, Eqs. (C.1)-(C.22)

for the distillation network, Eqs. (C.23)-(C.25) for the reactor network, and Eq. (4.10)

for the objective function. All examples are solved using global optimization solver

BARON (21.1.13) [64] through GAMS (34.3.0) on a machine with an Intel i7-9700 pro-

cessor 3.00 GHz and 16 GB memory. We set the resource limits as 1000 s and 7200 s

for the first and the second examples, respectively.
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4.3.1 Ternary Mixture

We present the synthesis of a reactor-distillation system. Two reactors carry out different

reactions (i.e., R1: A+D→B and R2: A+2D→C), where component D is the limiting

reactant, and can be completely converted, in both reactions. The reactor effluents are

sent to a two-column distillation network to be separated into recycle streams (A > 80%

purity), final products (i.e., B and C with > 95% purity), and a purge stream. The

first reactor requires an A:D ratio of 1.1∼1.3 whereas the second reactor requires this

ratio to be between 1.3∼1.5. We present two solutions obtained with and without the

Rxn#1
A+D→B

Rxn#2
A+2D→C

A
B
−
BA

−
C

Recycle 2

Purge

Product 2

Product 1

Rxn#1
A+D→B

Rxn#2
A+2D→C

Product 2

Product 1

Rxn#1
A+D→B

Rxn#2
A+2D→C

Product 1

Product 2

(A)

(C) (D) Recycle 1

Product 1

Product 2

Rxn#1
A+D→B

Rxn#2
A+2D→C

A
−
B
C

B
−
C

Purge
Recycle 1

Recycle 2
(B)

Figure 4.3: (A), (B): best solution with the constraint to enforce reactor outlets to be

mixed before distillation network; (C), (D): best solution without the constraint. (red

empty circle: inlet stream (i.e., source); red filled circle: column feed; dark green triangle:

distillate stream; bright green triangle: bottom stream; blue square: outlet stream)
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constraint enforcing reactor effluents to be mixed before the distillation network. The

former is what has been typically proposed in the literature, whereas the latter allows

the identification of solutions where unnecessary mixing is avoided. The objective is

to maximize the profit. In the best solution, with profit/distillation cost of 7.60/13.64,

the two effluents are mixed, and the sharp splits between A and BC (i.e., split A/BC)

and B and C (i.e., split B/C) are selected, (See Figure 4.3A and 4.3B). In terms of

recycle streams, the reactor effluent from the second reactor (for R2) is mixed with the

distillate stream of the column carrying out the A/BC split. When the mixing constraint

is not used, each inlet is assigned to a different column; the split between components A

and B becomes non-sharp (AB/B) (See Figure 4.3C and 4.3D); and component C is

separated from A (A/C split) not from B (B/C split), resulting in an easier separation.

Thus, the cost is reduced significantly.

4.3.2 Quaternary Mixture

We study the synthesis of a reactor-distillation system potentially resulting in a qua-

ternary mixture to be separated using three columns. Two reactors carry out different

reactions (i.e., R1: A+B→C and R2: A+2B→D) with component B being the limiting

reactant in both reactions. The conversion of component B is 80% in both reactions.

Final products C and D have to meet 95% purity specifications. The first reactor re-

quires the A:B ratio to be between 1.1∼1.3 whereas the second reactor requires this

ratio to be between 1.3∼1.5. We start the solution process from a feasible solution with

a conventional direct sequence (See appendix C) for the distillation network.

In the best solution (See Figure 4.4A and 4.4B), reactor effluents are split: a
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Rxn#1
A+B→C

Rxn#2
A+2B→D
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Recycle 1

Purge

(A)

Product 2

Rxn#1
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A
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−
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B
−
C
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A
−
B
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Recycle 2

(B)

Product 2

Recycle 1

Figure 4.4: (A): best solution in quaternary diagram (B): process configuration of the

best solution; red empty circle: inlet stream (i.e., source); red filled circle: column feed;

dark green triangle: distillate stream; bright green triangle: bottom stream; blue square:

outlet stream

fraction is directly recycled and the remaining fraction is sent to the distillation network.

In the distillation network, each reactor effluent is assigned to a different column to

obtain the final products in the bottom stream (i.e., C and D, respectively), whereas

the distillate streams are sent to the next column to be separated into A, to be purged,

and B, to be recycled. To generate recycle streams to the first reactor, the effluent from

the first reactor, the distillate stream of the AB/C split column, and the bottom stream

of the A/B split column are mixed. This solution would not be readily found using the

graphical approach.
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Chapter 5

Heat Integration8

5.1 Motivation

The area of heat integration has received renewed attention over the last few years due

to an emphasis on the design of energy efficient and sustainable processes. Simulta-

neous synthesis of the process and heat exchanger network can lead to a more energy

efficient and sustainable process because the potential benefit from heat integration can

be incorporated when determining optimal unit processes and their designs/operations.

However, in the process synthesis problem, temperatures, flow rates and even stream

classifications can vary depending on the structure of the optimal process, which violate

assumptions in most existing Heat Exchanger Network Synthesis (HENS) models. Thus,

existing HENS models cannot be readily used for simultaneous synthesis of the process

and heat exchanger network.

Accordingly, in this work, we propose mixed-integer linear programming (MILP)

models for utility targeting and HENS, building upon some of the concepts introduced

in the transportation/transshipment model, addressing the aforementioned limitations.

Specifically, the proposed models can handle variable stream flow rates and temper-

atures, as well as unclassified streams, hence facilitating its integration with process

8The contents of this chapter appear in Ryu and Maravelias, Ind. Eng. Chem. Res. 2019
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synthesis models. On top of that, with discrete temperature grids, the models remain

linear, leading to significantly more effective integrated synthesis-HENS models. Fur-

thermore, the proposed HENS model yields a detailed HEN configuration, which is not

available in targeting models.

5.2 Model Formulation

The proposed models are formulated based on a discrete temperature grid framework

[6, 47]. The problem statement is as follows.

1. A set of process streams to be heated or cooled is given.

2. Process streams have variable inlet/outlet temperatures and flow rates. Also, the

classification of the streams may be undefined.

3. A range of stream inlet/outlet temperatures and flow rates are given.

4. Temperatures and costs of utilities are fixed and known.

5. Minimum temperature difference (∆Tmin) is given.

The objective for utility targeting is to calculate minimum utility cost, and the

objective for HENS is to find the optimal HEN that minimizes the total annualized cost

(i.e., operating + investment cost).

5.2.1 Projection of Temperature to Discrete Grid

First, the temperature grid needs to be constructed. For the base case, we consider an

uniform grid with the same length of intervals. After finding the highest temperature
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Figure 5.1: Hot/cold stream temperature grids

(e.g., high pressure steam), we can determine the temperature difference in each interval

(∆T grid) and the number of intervals so that all stream inlet/outlet temperatures can

be mapped onto the grid. The cold stream temperature grid is adjusted by the min-

imum temperature difference (∆Tmin) to guarantee thermodynamic feasibility of heat

exchanges. Since the selection of number, and secondarily size, of intervals affects so-

lution quality due to the projection of stream temperatures onto the discrete grid, it is

important to carefully determine the size/number of intervals to achieve accurate map-

ping. If this leads to a large number of intervals, a non-uniform grid, discussed later,

can be used. The temperature grids are illustrated in Figure 5.1. The set of interval

boundaries is defined as K, and the set of intervals as KI. The temperature of each

interval boundary (T̂H
k , T̂

C
k ) is given depending on the classification of the grid. Since

each interval boundary has its corresponding temperature, we use boundary and bound-

ary temperature interchangeably. Next, we project stream data onto the grid so that

feasibility is ensured. We define the set of streams as S. For each stream, we introduce
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twelve parameters for the projection. These parameters, at the end of this step, will be

used to generate subsets of interval boundaries onto which the inlet/outlet temperature

of a stream can be assigned to.

Six parameters are used for inlet temperatures. First, ϕH,IN,UP
s,k is set to 1 when T̂H

k is

the feasible boundary temperature closest to the upper bound on the inlet temperature

of stream s (T IN,UP
s ) as shown in Eq. (5.1). Similarly, ϕH,IN,LO

s,k is set to 1 if T̂H
k is the

closest temperature to the lower bound on the inlet temperature of stream s (T IN,LO
s ) as

shown in Eq. (5.2). Note that the direction of the inequality is opposite for the upper

bound and the lower bound.

ϕH,IN,UP
s,k =


1

if k = argmink′ ∥T̂H
k′ − T IN,UP

s ∥

s.t.T̂H
k′ ≤ T IN,UP

s

0 otherwise

s ∈ S, k ∈ K (5.1)

ϕH,IN,LO
s,k =


1

if k = argmink′ ∥T̂H
k′ − T IN,LO

s ∥

s.t.T̂H
k′ ≥ T IN,LO

s

0 otherwise

s ∈ S, k ∈ K (5.2)

Parameter ψH,IN
s,k is used to represent the feasibility of the assignment of the inlet tem-

perature of stream s onto the hot stream grid interval boundary k. The assignment is

possible only to the boundaries between the boundary with ψH,IN,UP
s,k = 1 and that with

ψH,IN,LO
s,k = 1. Then, parameter ψH,IN

s,k is calculated as follows:

ψH,IN
s,k = ϕH,IN,UP

s,k + ψH,IN
s,k−1 − ϕH,IN,LO

s,k−1 s ∈ S, k ∈ K (5.3)

In Figure 5.2, the inlet data of stream s are projected onto the grid, and (ϕH,IN,UP
s,k3 ,
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Figure 5.2: Projection of stream data onto the grids (5 intervals are selected for illus-

tration purposes.

ϕH,IN,LO
s,k5 ), (ϕC,IN,UP

s,k2 , ϕC,IN,LO
s,k4 ) are activated. Thus, interval boundaries (k3, k4, k5) are

available for the inlet temperature of stream s as a hot stream, and (k2, k3, k4) as

a cold stream, where ψH,IN
s,k , ψC,IN

s,k are activated. Remaining parameters for the cold

stream grid and outlet temperatures are determined similarly. The assignment onto

the cold stream grid is exactly the same, except T̂C
k is used instead of T̂H

k (See Ap-

pendix D.1 for more information). After the projection step, subsets of interval

boundary that the inlet/outlet temperature of each stream can be assigned to (i.e.,

KF,H,IN
s ,KF,H,OUT

s ,KF,C,IN
s ,KF,C,OUT

s ) are obtained, referred to as feasible mapping set

KF,H,IN
s = {k|ψH,IN

s,k = 1, k ∈ K} s ∈ S (5.4)

KF,H,OUT
s = {k|ψH,OUT

s,k = 1, k ∈ K} s ∈ S (5.5)

KF,C,IN
s = {k|ψC,IN

s,k = 1, k ∈ K} s ∈ S (5.6)
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KF,C,OUT
s = {k|ψC,OUT

s,k = 1, k ∈ K} s ∈ S (5.7)

5.2.2 Utility Targeting Model

Assignment of inlet/outlet temperature onto grid

For a simple analysis, utility targeting can be a powerful tool for the design of the plant.

The utility targeting model that we will propose below can be readily used to find the

minimum utility demand when there are unclassified streams and/or streams that have

variable temperatures and flow rates.

We introduce binary variables (UH
s , U

C
s ) for stream classification (hot, cold). In the

superstructure process synthesis problem, streams that are connected to a process unit

u ∈ U, are activated and classified if and only if the process unit is selected. We define

subset SU
u which includes the streams connected to unit u. If Y U

u denotes the selection

of process unit u, we have:

UH
s + UC

s = Y U
u s ∈ SU

u , u ∈ U (5.8)

We introduce binary variables (Y IN,H
s,k , Y OUT,H

s,k , Y IN,C
s,k , Y OUT,C

s,k ), which are set to 1 when

the inlet/outlet temperature of stream s is assigned to interval boundary k. We enforce

that the inlet/outlet temperature of a stream can be only assigned to a temperature

boundary in the feasible mapping set,

∑
k∈K Y

IN,H
s,k =


UH
s k ∈ KF,H,IN

s

0 otherwise

s ∈ S (5.9)
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∑
k∈K Y

IN,C
s,k =


UC
s k ∈ KF,H,IN

s

0 otherwise

s ∈ S (5.10)

∑
k∈K Y

OUT,H
s,k =


UH
s k ∈ KF,H,OUT

s

0 otherwise

s ∈ S (5.11)

∑
k∈K Y

OUT,C
s,k =


UC
s k ∈ KF,C,OUT

s

0 otherwise

s ∈ S (5.12)

where the summation of the binary variables in the feasible mapping set is equal to the

classification variable (UH
s /U

C
s ), otherwise 0. Then, we can calculate the inlet/outlet

temperature as follows:

T IN
s =

∑
k∈K(Y

IN,H
s,k T̂H

k + Y IN,C
s,k T̂C

k ) s ∈ S (5.13)

TOUT
s =

∑
k∈K(Y

OUT,H
s,k T̂H

k + Y OUT,C
s,k T̂C

k ) s ∈ S (5.14)

For the unclassified streams, the sign of the difference between the inlet and outlet

temperatures is determined by the classification of the stream,

T IN
s − TOUT

s ≤ ∆Tmax
s

2
(1− UC

s + UH
s ) s ∈ S (5.15)

T IN
s − TOUT

s ≥ ∆Tmax
s

2
(−1− UC

s + UH
s ) s ∈ S (5.16)

where parameter ∆Tmax
s is the maximum absolute difference between the inlet and outlet

temperatures of stream s.

Binary variable ZH
s,k/Z

C
s,k represents which temperature intervals are spanned by the

stream; they are activated when interval k ∈ KI is between boundaries that are selected
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Figure 5.3: Assignment of binary variables for inlet/outlet temperature and correspond-

ing spanned intervals

for the inlet and outlet temperature of stream s, which is illustrated in Figure 5.3.

ZH
s,k = Y IN,H

s,k−1 + ZH
s,k−1 − Y OUT,H

s,k−1 s ∈ S, k ∈ KI (5.17)

ZC
s,k = −Y IN,C

s,k−1 + ZC
s,k−1 + Y OUT,C

s,k−1 s ∈ S, k ∈ KI (5.18)

In the left side of Figure 5.3, stream s is determined as a hot stream with TH
k2/T

H
k4 as

its inlet/outlet temperature, so ZH
s,k3 and ZH

s,k4 are activated, meaning that interval k3

and k4 are spanned by the stream. In the left side of Figure 5.3, stream s becomes a

cold stream and span intervals k2, k3, and k4.

Calculation of flow rate, surplus heat, and heat requirement

We define a subset of process streams, SP, not including utility streams. The flow rate

of each process stream is disaggregated into three components (FH
s,k, F

C
s,k, F̃s,k), where

FH
s,k/F

C
s,k denotes the flow rate of process stream s as a hot/cold stream in the interval k

while F̃s,k is a slack variable. Note that we use flow rate and heat capacity of a stream

interchangeably because, in many cases, heat capacity is given for chemical plant stream.

Fs = FH
s,k + FC

s,k + F̃s,k s ∈ SP, k ∈ KI (5.19)
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When stream s spans interval k of the hot/cold stream grid, variables FH
s,k/F

C
s,k can be

nonzero (Eq. (5.20)/(5.21)), while F̃s,k is deactivated by Eq. (5.22)/(5.23).

FH
s,k ≤ δsZ

H
s,k s ∈ SP, k ∈ KI (5.20)

FC
s,k ≤ δsZ

C
s,k s ∈ SP, k ∈ KI (5.21)

F̃s,k ≤ δs(1− ZH
s,k) s ∈ SP, k ∈ KI (5.22)

F̃s,k ≤ δs(1− ZC
s,k) s ∈ SP, k ∈ KI (5.23)

Thus, the flow rate of stream s (i.e., Fs) becomes identical with either FH
s,k or FC

s,k due

to Eq. (5.19). On the other hand, if stream s does not span interval k, Fs = F̃s,k holds.

Parameters δs denotes the upper bound on flow rate of stream s. The heating/cooling

duty in each interval (i.e., QH
k /Q

C
k ) is calculated using the specific heat capacity (λs),

disaggregated flow rate (FH
s,k/F

C
s,k), and temperature change within the interval:

QH
k =

∑
s∈SP [(T̂H

k−1 − TH
k )FH

s,kλs] +QHU
k k ∈ KI (5.24)

QC
k =

∑
s∈SP [(T̂C

k−1 − TC
k )FC

s,kλs] +QCU
k k ∈ KI (5.25)

where QHU
k /QCU

k is hot/cold utility at each interval. Notably, with the discrete temper-

ature grid, Eqs. (5.24) and (5.25) are linear even when flow rates are variable.

Finally, the residual heat in each interval is calculated,

Rk = Rk−1 +QH
k −QC

k k ∈ KI (5.26)

The first interval does not have any residual heat from the interval above (i.e., R0 =

0), and the last interval does not have any residual heat into the interval below (i.e.,

R∥K∥ = 0).

Rk = 0 k = 0, ∥K∥ (5.27)
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The objective for utility targeting is to minimize the cost of utility usage,

C = µHU
∑

k∈KI QHU
k + µCU

∑
k∈KI QCU

k
(5.28)

where µHU/µCU is the parameter cost for the hot/cold utility.

5.2.3 Heat Exchanger Network Synthesis Model

Map heat exchange onto grid

The proposed framework can be extended to HENS in the presence of unclassified

streams with variable flow rates/temperatures. In HENS, temperatures at which streams

enter/exit heat exchangers need to be determined. We refer to the entry/exit of a stream

as the start/end of a heat exchanger. Binary variables V S,H
s,k,s′/V

S,C
s′,k′,s are introduced to

denote the start of a heat exchanger; V S,H
s,k,s′ = 1 if a heat exchanger between hot stream

s and cold s′ starts at interval k for the hot stream. Similarly, V S,C
s′,k′,s = 1 if a heat

exchanger between cold stream s′ and hot s starts at interval k′ for the cold stream.

Binary variables V S,H
s,k,s′/V

S,C
s′,k′,s are also introduced to denote the end of a heat exchanger.

To denote intervals spanned by a heat exchanger, binary variables XH
s,k,s′/X

C
s′,k′,s are

introduced,

XH
s,k,s′ = XH

s,k−1,s′ + V S,H
s,k,s′ − V E,H

s,k−1,s′ s, s′ ∈ S, k ∈ KI (5.29)

XC
s′,k′−1,s = XC

s′,k′,s + V S,C
s′,k′−1,s − V E,C

s′,k′,s s, s′ ∈ S, k ∈ KI (5.30)

where XH
s,k,s′/X

C
s′,k′,s is set to 1 when the exchanger between hot stream s and cold

stream s′ spans interval k/k′ of the hot/cold stream. For example, in Figure 5.3, a

heat exchanger starts at interval k2 and ends at interval k3 of the hot stream grid,

denoted by XH
s,k2,s′ = 1 and XH

s,k3,s′ = 1. Likewise, in the cold stream side, XC
s′,k′,s = 1 at
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Figure 5.4: Start, end, and spanning of heat exchanger

intervals k3, k4, and k5 because the exchanger starts at k5 and ends at k3. We ensure

that the number of matches between a pair of hot and cold streams are the same in both

sides, ∑
k∈KI V

S,H
s,k,s′ =

∑
k′∈KI V

S,C
s′,k′,s s, s′ ∈ S (5.31)

and that no heat exchanger starts and ends at the same interval.

V S,H
s,k,s′ + V E,H

s,k,s′ ≤ 1 s, s′ ∈ SP, k ∈ KI (5.32)

V S,C
s′,k′,s + V E,C

s′,k′,s ≤ 1 s, s′ ∈ SP, k ∈ KI (5.33)

Eqs. (5.32) and (5.33) are needed to ensure thermodynamic feasibility of heat exchange.

For utilities, these constraints are not needed because the start/end temperature is

already known.

Heat duty calculation

For HENS, instead of residual heat, we introduce available enthalpy (HH
s,k) and required

enthalpy (HC
s,k), and replace Eqs. (5.24) - (5.27) to Eqs. (5.34) and (5.35),

HH
s,k = (T̂H

k−1 − T̂H
k )λsF

H
s,k = ∆T gridλsF

H
s,k s ∈ SP, k ∈ KI (5.34)
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HC
s′,k′ = (T̂C

k′−1 − T̂C
k′ )λs′F

C
s′,k′ = ∆T gridλs′F

C
s′,k′ s′ ∈ SP, k′ ∈ KI (5.35)

where λs denotes the specific heat capacity of stream s; QEX
s,k,s′,k′ denotes the amount of

heat exchanged between stream s at interval k and stream s′ at interval k′. We define

the cumulative transferred heat Q̄H
s,k,s′ and cumulative received heat Q̄C

s′,k′,s,

Q̄H
s,k,s′ =

∑
k′≥kQ

EX
s,k,s′,k′ s, s′ ∈ S, k ∈ KI (5.36)

Q̄C
s′,k′,s =

∑
k≤k′ Q

EX
s,k,s′,k′ s, s′ ∈ S, k ∈ KI (5.37)

where Q̄H
s,k,s′ is the total amount of heat transferred from hot stream s at interval k to

cold stream s′; Q̄C
s′,k′,s is the total amount of heat received by cold stream s′ in interval k′

from hot stream s. Note that heat should be sent to the same interval or intervals below

while heat should be received from the same interval or intervals above. For unclassified

streams, additional constraints are imposed to prevent heat exchange hot-hot and cold-

cold streams (See section 5.2.3).

The cumulative transferred/received heat is (de)activated by binary variables for

interval spanning (i.e., XH
s,k,s′/X

C
s′,k′,s),

ϵXH
s,k,s′ ≤ Q̄H

s,k,s′ ≤ λsδs(T̂
H
k−1 − T̂H

k )XH
s,k,s′ s, s′ ∈ S, k ∈ KI (5.38)

ϵXC
s′,k′,s ≤ Q̄C

s′,k′,s ≤ λs′δs′(T̂
C
k′−1 − T̂C

k′ )X
C
s′,k′,s s, s′ ∈ S, k ∈ KI (5.39)

where ϵ is a lower bound on the cumulative heat. Eq. (5.38)/(5.39) enforces that

cumulative transferred/received heat is deactivated when the corresponding interval is

not spanned by the heat exchanger between hot stream s and cold stream s′, denoted

by XH
s,k,s′ = 0/XC

s′,k,s = 0. Finally, available/required enthalpy is satisfied through heat

exchange with process streams or utilities,

HH
s,k =

∑
s′ ̸=s Q̄

H
s,k,s′ s ∈ S, k ∈ KI (5.40)
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HC
s′,k′ =

∑
s ̸=s′ Q̄

C
s′,k′,s s′ ∈ S, k′ ∈ KI (5.41)

Forbidden matches

We ensure that heat exchange between hot-hot or cold-cold is forbidden. Stream s can

transfer heat from interval k to stream s′ only if stream s spans interval k as a hot

stream (i.e., ZH
s,k = 1) and stream s′ is a cold stream (i.e., UC

s′ = 1).

XH
s,k,s′ ≤ ZH

s,k s, s′ ∈ S, k ∈ KI (5.42)

XH
s,k,s′ ≤ UC

s′ s, s′ ∈ S, k ∈ KI (5.43)

Similarly, stream s′ can receive heat at interval k′ from stream s only if stream s′ spans

interval k′ as a cold stream (i.e., ZC
s′,k′ = 1) and stream s is a hot stream (i.e., ZH

s = 1),

XC
s′,k′,s ≤ ZC

s′,k′ s, s′ ∈ S, k′ ∈ KI (5.44)

XC
s′,k′,s ≤ UH

s s, s′ ∈ S, k ∈ KI (5.45)

Flow rates

Flow rates of streams in each heat exchanger need to be tracked if stream split, meaning

that a stream is split into multiple sub-streams and sent to different heat exchangers, is

considered. We introduce binary variables WH
s,k,s′/W

C
s′,k′,s to model stream split; when

hot stream s at interval k exchanges heat with multiple streams s′ and s′′, thenWH
s,k,s′ and

WH
s,k,s′′ are set to 1. Stream split can occur only when the stream spans the corresponding

interval,

WH
s,k,s′ ≤ XH

s,k,s′ s, s′ ∈ SP, k ∈ KI (5.46)

WC
s′,k′,s ≤ XC

s′,k′,s s, s′ ∈ SP, k′ ∈ KI (5.47)
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Then, we further decompose the disaggregated flow rate (FH
s,k/F

C
s′,k′) into the flow rate of

the stream in each heat exchanger (F I,H
s,k,s′/F

I,C
s′,k′,s) and the slack variable (F̃ SP,H

s,k,s′ /F̃
SP,C
s′,k′,s),

FH
s,k = F I,H

s,k,s′ + F̃ SP,H
s,k,s′ s, s′ ∈ SP, k ∈ KI (5.48)

FC
s′,k′ = F I,C

s′,k′,s + F̃ SP,C
s′,k′,s s, s′ ∈ SP, k′ ∈ KI (5.49)

where the flow rate in the heat exchanger can have a non-zero value when there is a

heat exchanger (i.e., XH
s,k,s′ = 1/XC

s′,k′,s = 1) and the slack variable is deactivated if the

stream is not split (i.e., WH
s,k,s′ = 0/WC

s′,k′,s = 0).

F I,H
s,k,s′ ≤ δsX

H
s,k,s′ s, s′ ∈ SP, k ∈ KI (5.50)

F I,C
s′,k′,s ≤ δs′X

C
s′,k′,s s, s′ ∈ SP, k′ ∈ KI (5.51)

δsW
H
s,k,s′ ≤ F̃ SP,H

s,k,s′ ≤ δs(1−XH
s,k,s′ +WH

s,k,s′) s, s′ ∈ SP, k ∈ KI (5.52)

δs′W
C
s′,k′,s ≤ F̃ SP,C

s′,k′,s ≤ δs′(1−XC
s′,k′,s +WC

s′,k′,s) s, s′ ∈ SP, k′ ∈ KI (5.53)

Parameter δs denotes a lower bound on the flow rate in the heat exchanger. When the

hot stream s has only one heat exchanger at interval k, which exchanges heat with cold

stream s′ (i.e., XH
s,k,s′ = 1 and WH

s,k,s′ = 0), the flow rate in the heat exchanger is equal

to the disaggregated flow rate (i.e., FH
s,k = F I,H

s,k,s′). On the other hand, if the stream

splits, the slack variable is enforced to be positive, making the flow rate in each heat

exchanger less than the disaggregated flow rate. When there is no heat exchanger (i.e.,

XH
s,k,s′/X

C
s′,k′,s = 0), then the slack variable is equal to the disaggregated flow rate.

We enforce flow rate balances between consecutive intervals,

F I,H
s,k,s′ = F I,H

s,k−1,s′ + F̃ S,H
s,k,s′ − F̃E,H

s,k−1,s′ s, s′ ∈ SP, k ∈ KI (5.54)

F I,C
s′,k′−1,s = F I,C

s′,k′,s + F̃ S,C
s′,k′−1,s − F̃E,C

s′,k′,s s, s′ ∈ SP, k′ ∈ KI (5.55)
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where slack variables (i.e., F̃ S,H
s,k,s′ , F̃

E,H
s,k,s′ , F̃

S,C
s′,k′,s, F̃

E,C
s′,k′,s) can have non-zero values when

there is a start/end of a heat exchanger.

F̃ S,H
s,k,s′ ≤ δsV

S,H
s,k,s′ s, s′ ∈ SP, k ∈ KI (5.56)

F̃E,H
s,k,s′ ≤ δsV

E,H
s,k,s′ s, s′ ∈ SP, k ∈ KI (5.57)

F̃ S,C
s′,k′,s ≤ δs′V

S,C
s′,k′,s s, s′ ∈ SP, k′ ∈ KI (5.58)

F̃E,C
s′,k′,s ≤ δs′V

E,C
s′,k′,s s, s′ ∈ SP, k′ ∈ KI (5.59)

When there is no change of the heat exchanger along the consecutive intervals (i.e., no

start/end of heat exchanger), then slack variables are deactivated, and flow rates are

consistent through intervals (i.e,. F I,H
s,k,s′ = F I,H

s,k−1,s′); otherwise, flow rates can change

because slack variables can have non-zero values. In Figure 5.5, hot stream s exchanges

Figure 5.5: Flow rate balance due to start/end of heat exchanger

heat with cold stream s′ at interval k2 and k3. The start of the heat exchanger at

interval k2 relaxes the equality between flow rates at intervals k1 and k2, so F I,H
s,k2,s′ can

have a greater value than F I,H
s,k1,s′ to start heat exchange. At interval k3, since there
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is no start/end of the heat exchanger, flow rates in the heat exchanger at k2 and k3

are consistent. Finally, due to the end of the heat exchanger at interval k4, F I,H
s,k4,s′ can

have a smaller value than F I,H
s,k3,s′ to end the heat exchanger. The same argument can be

applied to cold streams.

The flow rate balance in each interval can be expressed as follows:

FH
s,k + F̃ tot,H

s,k =
∑

s′∈S F
I,H
s,k,s′ s ∈ SP, k ∈ KI (5.60)

FC
s′,k′ + F̃ tot,C

s′,k′ =
∑

s∈S F
I,C
s′,k′,s s′ ∈ SP, k′ ∈ KI (5.61)

where dummy variables (F̃ tot,H
s,k /F̃ tot,C

s,k ) can have non-zero values when stream s ends

one heat exchanger and starts a new one in the same interval k.

F̃ tot,H
s,k ≤ δs

∑
s′∈S V

S,H
s,k,s′ s ∈ SP, k ∈ KI (5.62)

F̃ tot,H
s,k ≤ δs

∑
s′∈S V

E,H
s,k,s′ s ∈ SP, k ∈ KI (5.63)

F̃ tot,C
s′,k′ ≤ δs′

∑
s∈S V

S,C
s′,k′,s s′ ∈ SP, k′ ∈ KI (5.64)

F̃ tot,C
s′,k′ ≤ δs′

∑
s∈S V

E,C
s′,k′,s s′ ∈ SP, k′ ∈ KI (5.65)

For example, in Figure 5.6A, hot stream s ends one heat exchanger with stream s1

at interval k + 1 and starts a new one with stream s2 in the same interval. Then, the

summation in the right hand side of the Eq. (5.60) becomes twice of FH
s,k. In this case,

dummy variable F̃ tot,H
s,k can have a non-zero value to satisfy the flow rate balance.

Notably, we enforce that these dummy variables are deactivated when the stream is

split in an interval,

F̃ tot,H
s,k ≤ δs(1−WH

s,k,s′) s ∈ SP, k ∈ KI (5.66)
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Figure 5.6: (A): when a stream ends a heat exchanger and starts a new one with a

different stream in the same interval; (B): Feasible configurations without extension

F̃ tot,C
s′,k′ ≤ δs′(1−WC

s′,k′,s) s′ ∈ SP, k′ ∈ KI (5.67)

which excludes several configurations (See section 5.2.4). Eqs. (5.66) - (5.67) enforce

that stream splitting/mixing can only occur at the interval boundary as shown in Fig-

ure 5.6B, enforcing isothermal mixing. However, the model can be extended to consider

constrained non-isothermal mixing between split streams (See Section 5.2.4).

Next, the cumulative heat (Q̄H
s,k,s′/Q̄

C
s′,k′,s) can be calculated using the flow rate in

each heat exchanger,

Q̄H
s,k,s′ = λsF

I,H
s,k,s′(T̂

H
k−1 − T̂H

k )− Q̃D,H
s,k,s′ s, s′ ∈ SP, k ∈ KI (5.68)

Q̄C
s′,k′,s = λs′F

I,C
s′,k′,s(T̂

C
k′−1 − ĈH

k′ )− Q̃D,C
s′,k′,s s, s′ ∈ SP, k′ ∈ KI (5.69)

where slack variables Q̃D,H
s,k,s′ and Q̃

D,C
s′,k′,s can have non-zero values when there is a start

or an end of a heat exchanger in interval k and k′, respectively,

Q̃D,H
s,k,s′ ≤ ϵs(V

S,H
s,k,s′ + V E,H

s,k,s′) s, s′ ∈ SP, k ∈ KI (5.70)
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Q̃D,C
s′,k′,s ≤ ϵs′(V

S,C
s′,k′,s + V E,C

s′,k′,s) s, s′ ∈ SP, k′ ∈ KI (5.71)

Parameter ϵs denotes an upper bound on the cumulative heat of stream s. When slack

variables have non-zero values, the temperature change in the heat exchanger can be

less than the size of the interval; otherwise, the temperature change should be the same

as the size of the interval that the heat exchanger spans.

Temperature feasibility on the boundary interval

Temperature grids are shifted to introduce the minimum temperature difference (∆Tmin)

between hot and cold streams, which can ensure enough thermodynamic driving force for

heat exchange. However, if hot and cold streams exchange heat in the same interval, the

minimum temperature difference might not be guaranteed within the heat exchanger.

For example, in Figure 5.7, hot stream s and cold stream s′ exchange heat in intervals

k2∼k4. The heat exchanger starts at interval k2 in the hot stream grid and ends at the

interval k2, the same interval, in the cold stream grid. In this case, there is a range of

the outlet temperature of the cold stream that may violate the minimum temperature

difference. Likewise, at interval k4, the hot stream ends the heat exchange while the cold

stream starts, resulting in a range of the outlet temperature for the hot stream that may

violate the minimum temperature difference. To prevent these cases, the inlet/outlet

temperature of a stream in a heat exchanger can be calculated as follows,

T IN,H
s,k,s′ = T̂H

k +
Q̄H

s,k,s′

λsF
I,H

s,k,s′
s, s′ ∈ SP, k ∈ KI (5.72)

TOUT,H
s,k,s′ = T̂H

k−1 −
Q̄H

s,k,s′

λsF
I,H

s,k,s′
s, s′ ∈ SP, k ∈ KI (5.73)

T IN,C
s′,k,s = T̂C

k−1 −
Q̄C

s′,k,s

λs′F
I,C

s′,k,s
s, s′ ∈ SP, k ∈ KI (5.74)
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Figure 5.7: (A): Range of outlet temperature that violates minimum temperature dif-

ference; (B): Guaranteed minimum temperature difference with Eqs. (5.84) and (5.85)

TOUT,C
s′,k,s = T̂C

k +
Q̄C

s′,k,s

λs′F
I,C

s′,k,s
s, s′ ∈ SP, k ∈ KI (5.75)

and used in constraints to enforce the feasibility.

T IN,H
s,k,s′ ≥ TOUT,C

s′,k,s +∆Tmin s, s′ ∈ SP, k ∈ KI (5.76)

TOUT,H
s,k,s′ ≥ T IN,C

s′,k,s +∆Tmin s, s′ ∈ SP, k ∈ KI (5.77)

However, Eqs. (5.72) - (5.75) are nonlinear, increasing computational complexity of the

model significantly. By rearranging Eqs. (5.76) and (5.77) using Eqs. (5.72) - (5.75),

we can obtain Eqs. (5.78) and (5.79), respectively,

Q̄H
s,k,s′

λsF
I,H

s,k,s′
≥

Q̄C
s′,k,s

λs′F
I,C

s′,k,s
s, s′ ∈ SP, k ∈ KI (5.78)

Q̄H
s,k,s′

λsF
I,H

s,k,s′
≤

Q̄C
s′,k,s

λs′F
I,C

s′,k,s
s, s′ ∈ SP, k ∈ KI (5.79)

Notably, the term in the right hand side of Eq. (5.78) is upper bounded by the size of the

interval (i.e., T grid
k = (TH

k−1−TH
k ) = (TC

k−1−TC
k )) because it represents the temperature



111

change in an interval; thus, if the term in the left hand side is greater than T grid
k , Eq.

(5.78) will hold. Similarly, the term in the left hand side of Eq. (5.79) is upper bounded

by T grid
k , so if the term in the right hand side is greater than T grid

k , Eq. (5.79) will hold.

If
Q̄H

s,k,s′

λsF
I,H

s,k,s′
≥ T grid

k →
Q̄H

s,k,s′

λsF
I,H

s,k,s′
≥

Q̄C
s′,k′,s

λsF
I,C

s′,k′,s
(5.80)

If
Q̄C

s′,k′,s

λs′F
I,C

s′,k′,s
≥ T grid

k →
Q̄H

s,k,s′

λsF
I,H

s,k,s′
≤

Q̄C
s′,k′,s

λs′F
I,C

s′,k′,s
(5.81)

As a result, we can derive the following linear constraints,

λs′T
grid
k F I,C

s′,k,s ≤ Q̄C
s′,k,s s, s′ ∈ SP, k ∈ KI (5.82)

λsT
grid
k F I,H

s,k,s′ ≤ Q̄H
s,k,s′ s, s′ ∈ SP, k ∈ KI (5.83)

Finally, using binary variables, we enforce the above inequalities to be active only when

a heat exchanger ends and starts at the same interval,

λs′F
I,C
s′,k,sT

grid
k ≤ Q̄C

s′,k,s + ζ(2− V E,H
s,k,s′ − V S,C

s′,k,s) s, s′ ∈ SP, k ∈ KI (5.84)

λsF
I,H
s,k,s′T

grid
k ≤ Q̄H

s,k,s′ + ζ(2− V S,H
s,k,s′ − V E,C

s′,k,s) s, s′ ∈ SP, k ∈ KI (5.85)

where ζ is a parameter that relaxes inequalities when any of binary variables is 0. When

hot stream s ends a heat exchanger with stream s′ at interval k (i.e., V E,H
s,k,s′ = 1) while cold

stream s′ starts a heat exchanger with stream s at the same interval (i.e., V S,C
s′,k,s′ = 1),

Eq. (5.84) enforces the temperature change of cold stream s′ to be the same as the size

of the temperature grid; in other words, cold stream s′ should start the heat exchanger

at the interval boundary. Similarly, in the opposite case where a hot stream starts and a

cold stream ends in the same interval, Eq. (5.85) enforces the temperature change of the

hot stream to be the same as the size of the temperature grid. Effects of Eqs. (5.84) and
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(5.85) are illustrated in Figure 5.7B. Even though some solutions are excluded from

these constraints, the impact is not significant when a moderate grid size is used. Also,

to have a higher driving force to reduce the heat exchanger area, the optimal solution

tends to have a higher temperature difference than the minimum.

Area calculation and objective function

As discrete temperatures on the grids are known, we can calculate the log-mean temper-

ature difference between interval k and k′ (i.e., ∆T lm
k,k′). Using the log-mean temperature

difference, we calculate the heat exchanger area using a linear approximation,

As,s′ =
∑

k∈KI

∑
k′∈KI

QEX
s,k,s′ (hs,k+hs′,k′ )

hs,khs′,k′∆T lm
k,k′

s, s′ ∈ S (5.86)

where hs,k denotes the heat transfer coefficient of stream s in interval k. When a moder-

ate interval size is used (e.g., 5 - 10K), the approximation is sufficiently close (deviation

between 0.004 - 1.143%, See appendix D.2) to the calculation with the true log-mean

temperature difference of a heat exchanger.

Then, the number of heat exchangers between a pair of streams (NEX
s,s′ ) is calculated,

NEX
s,s′ =

∑
k∈KI V

S,H
s,k,s′ =

∑
k∈KI V

E,H
s,k,s′ =

∑
k′∈KI V

S,C
s′,k′,s =

∑
k′∈KI V

E,C
s′,k′,s s, s′ ∈ S

(5.87)

Further, to avoid cyclic matching (i.e., multiple matching between a pair of streams)

and to reduce the complexity of the resulting HEN, NEX
s,s′ is bounded,

NEX
s,s′ ≤ η s, s′ ∈ S (5.88)

where η can be set to 1 to avoid the cyclic matching. The objective is to minimize the

total cost of the HEN, which is calculated using hot/cold utility cost, exchanger area
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capital cost, and heat exchanger unit cost.

C = µH
∑

s∈SHU

∑
k

∑
s′ ̸=s Q̄

H
s,k,s′ + µC

∑
s′∈SCU

∑
k′
∑

s ̸=s′ Q̄
C
s′,k′,s

+µA
∑

s∈S
∑

s′∈SAs,s′ + µU
∑

s∈S
∑

s′∈SN
EX
s,s′

(5.89)

Parameter µH/µC is annual operating cost for hot/cold utility ($/kW − yr); µA is the

annualized capital cost of area ($/m2 − yr); and µU is the annualized fixed cost for the

heat exchanger unit ($/yr).

5.2.4 Extensions

Non-isothermal mixing

The model can be extended to handle general non-isothermal mixing of split streams,

which, in some cases, can be beneficial. However, we present non-isothermal mixing only

in the same interval because this can be readily introduced without additional variables

or constraints. By using Eqs. (5.90) and (5.91) instead of Eqs. (5.66) and (5.67),

non-isothermal mixing configurations in Figure 5.8A can be allowed.

F̃ tot,H
s,k ≤ δs(1−WH

s,k,s′ + V E,H
s,k,s′) s, s′ ∈ S, k ∈ K (5.90)

F̃ tot,C
s′,k′ ≤ δs′(1−WC

s′,k′,s + V E,C
s′,k′,s) s, s′ ∈ S, k′ ∈ K (5.91)

Note that non-isothermal mixing in the middle of the interval is allowed only if all the

split streams end in the same interval. This is illustrated in Figure 5.8A. In interval k1,

two of split streams are mixed at the boundary, which is feasible without the extension.

However, the mixing in interval k2 is allowed only if the extension is introduced, because

mixing occurs in the middle of the interval; Notably, all the split streams end in the same

interval k2.
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Figure 5.8: (A): Feasible configuration with relaxation for non-isothermal mixing; (B):

Configurations that cannot be found with relaxation for non-isothermal mixing

However, configurations illustrated in Figure 5.8B cannot be found even with the

extended model because they require non-zero dummy variables for the flow rate balance

(i.e., F̃ tot,H
s,k , F̃ tot,C

s′,k′ ) due to the repetitive flow rate calculation in the circled region, but

the dummy variables are deactivated due to the split stream that does not end in the

same interval. In the first configuration in Figure 5.8B, two streams are mixed in

interval k2, but there is another split stream which is not mixed (end) in that interval.

In this case, F̃ tot,H
s,k2 cannot have a non-zero value because the right-hand side of Eq.

(5.90) is 0 (WH
s,k2,s3 = 1, V E,H

s,k2,s3 = 0). The same is true in the second configuration in

Figure 5.8B; due to the streams that are not mixed in interval k2, F̃ tot,H
s,k2 is deactivated.

We note that since non-isothermal mixing can only occur in the same interval, the size

of the interval does affect the temperature range of such mixing.
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Non-uniform temperature grid

In some cases, many intervals are needed, although it is not computationally effective, to

map stream data onto the temperature grid accurately or to reduce the error of the linear

approximation of the heat exchanger area. To address this challenge, we propose to use

a non-uniform grid where the size of each interval can be adjusted, thereby considerably

reducing the number of intervals while mapping accurate stream information.

5.3 Illustrative Examples

We used GAMS 25.0.1, and the computing platform was a Dell OptiPlex 7010 with 3.40

GHz Intel® CPU and 8 GB of RAM. The MILP models are solved by OSIGUROBI,

and the MINLP models are solved by SCIP.

5.3.1 Simultaneous Process Synthesis and Utility Targeting

Here, we illustrate how the proposed utility targeting model can be seamlessly inte-

grated with a process synthesis/intensification model, and the computational efficiency

of the resulting integrated model. We compare the solution obtained by the proposed

targeting model against the solution obtained by a nonlinear targeting model [59]. Due

to nonlinear constraints in the process synthesis model (e.g., unit costs, mass balances),

the combined model is a MINLP model for both cases. Interestingly, while the proposed

targeting model has more variables than the nonlinear targeting model, it is easier to

solve when it is combined with process synthesis model.

A process from Kong et al. [59] with some modifications found in Li et al. [66] is

investigated (See Figure 5.9). There are 3 reactors and 3 separators. The objective
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is to maximize profit. The feed includes 2 kmol/s of A and 1 kmol/s of B. In the

first reaction, A and B react to form an intermediate C (A + B → C). Since the

stoichiometry of A and B is 1 in the first reaction, B is the limiting reactant. There are

two candidate catalysts, operating at different reactor temperatures, for this reaction, so

one important decision is the selectin of the catalyst/reactor system. The first catalyst

has to be operated at 340 K, while the second should be operated at 450 K. The second

catalyst yields higher conversion than the first (90% vs. 60%), but its capital cost is also

higher. Effluents from the reactors can be recycled directly to increase yield. After this

reaction, C is separated from A and B in the sharp distillation tower (SEP1). In the

following step, C is converted to product D (C → D) in reactor CSTR2. The reaction

reaches equilibrium. The operating temperature of CSTR2 is fixed at 450 K, and the

enthalpies of reaction in all the reactors are assumed to be negligible; these assumptions

are lifted later in section 5.3.4 to include variable temperature isothermal stream in the

HEN design. Finally, product D is separated from C in two consecutive distillation

towers (SEP2, SEP3). Only 60 % of C is separated in SEP2 and sharp distillation is

achieved in SEP3. Streams 2 and 7 can be either hot or cold streams depending on the

operating temperature of the reactor. The classification of these streams is determined

simultaneously by solving the optimization problem. The optimal solution is shown in

Figure 5.9, where unselected units are dimmed. Streams 1 and 12 are mixed with

recycling streams. While the temperature of the mixer outlet streams, 2 and 13, can

be mapped exactly on one of the temperatures of the discrete temperature grid, this

might lead to suboptimal solutions where some portion of the recycling stream is purged

to satisfy the energy balance. To address this, we allowed some deviation between the

temperature in the heat integration model (i.e., THI
s ) and that in the heat integration
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Figure 5.9: Problem configuration and its optimal solution for simultaneous process

synthesis and utility targeting

model (i.e., T PS
s ). This is achieved using slack variable T̃s,

THI
s = T PS

s + T̃s s ∈ S (5.92)

which is bounded in [−∆T grid/2,∆T grid/2]. We use a uniform grid with ∆T grid = 5K,

leading to 64 intervals. In the optimal solution, CSTR1b is selected, so stream 2 is cold

and stream 7 is hot. The integrated model using the proposed model requires 25.07 s,

while the one with the nonlinear model requires 14820 s. The optimal solution obtained

using the proposed model has a profit of $58.925 MM/year, employing 17.366 MW of

hot utility ($1.389 MM/year). The solution using the nonlinear model, has a profit equal

to $58.863 MM/year, with 18.135 MW of hot utility ($1.451 MM/year). Note that the

objective values are different because of the approximation of the temperature.

5.3.2 Cyclic Matching

When there is few streams to exchange heat, cyclic matching, where a pair of streams

might be matched multiple times, can be beneficial, and the proposed model can handle
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it. We adopt an example from Biegler et al. [11] with three streams with pre-determined

classifications. A grid with ∆T grid = 1K is used to map exact stream information,

leading to 220 intervals. Since there is only one hot stream, cyclic matching can be

promising. The maximum number of cyclic matching (η) is set to 2. The example is

Figure 5.10: Optimal structures from the proposed HENS model and reference. Flow

rates given in dark red, heat load (kW) and exchange area (m2) given in blue and green.

solved in 107.23 s with an objective function value of $78,399/yr (See Figure 5.10).

The solution has a cyclic matching between streams s1 and s3. However, since the model

only calculates the total area between a pair of streams (i.e., As,s′), the area for each heat

exchanger cannot be directly obtained. Nevertheless, it is also possible to calculate the

heat duty in each exchanger, thus area can be obtained using the information from the

solution. We compare the solution with previously obtained one [49]. Since a nonlinear

cost function with log-mean temperature is used in the previous paper, the comparison
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between the two optimal objective function values is conducted after calculating the area

cost using the original nonlinear function, referred to as adjusted cost. The adjusted

cost ($76,459/yr) has a good agreement with the reference value [49] ($76,327/yr).

5.3.3 Stream Splitting

This example is from Yee et al. [108]. Stream splitting is likely to occur in this example

because there is only one cold and multiple hot streams. We investigate the impact of

non-isothermal mixing changing the interval size. Figure 5.11 shows solution quality,

of both models, as a function of the interval size; ∆Tmin = 10K is used in all cases.

Non-isothermal mixing improves the solution quality considerably when a moderate

size interval (e.g., 10 K) is used, but the improvement becomes smaller when we have

a smaller interval. This is because using a smaller interval makes the range of the

non-isothermal mixing smaller. This result shows that when non-isothermal mixing is

expected, then it is better to use a moderate, rather than small, interval size. Non-

isothermal mixing is likely to lead to better solutions when, for example, there is a hot

stream with large flow rate and multiple cold streams, all with small flow rates, spanning

the same intervals.

In general, we can observe improvement of the optimal objective function value

with smaller intervals. This is from the two reasons: 1) better approximation achieved

through the linear area calculation (we are overestimating the area with a large size

interval) 2) more degree of freedom of mixing and splitting temperature with more

intervals. This improvement, however, is not observed in the solution with 1 K interval

with non-isothermal mixing. With 1 K interval, the optimal objective function value is
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Figure 5.11: Impact of interval sizes of the grid for non-isothermal mixing

worse than that with 2.5 K interval because non-isothermal mixing within 1 K intervals

does not lead to noticeable improvements even though the approximation is improved.

When we use ∆Tmin = 1,∆T grid = 1 to map exact temperature information, the op-

timal objective function values with and without the adjustment are $578,193/$579,547,

respectively, which are slightly inferior (1.4/1.6 %, respectively) to the reported value

($570,362, [49]) due to the limited range for non-isothermal mixing. The optimal solu-

tion without the adjustment is represented in Figure 5.12. The solution has a serial

stream splitting (i.e., splitting of the stream that is already split stream). Stream s6

splits at 290 K into s6a (13.33 kW/K) and s6b (4.67 kW/K) to exchange heat with s5

and s4. After exchanging heat with s5, s6a splits again into s6c (7.98 kW/K) and s6d

(5.36 kW/K) at 344 K to exchange heat with s1 and s3. Finally, all the split streams

are mixed non-isothermally, and the mixed stream becomes 456.6 K.
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Figure 5.12: Optimal heat exchanger network of the example in Section 5.3.3

5.3.4 Simultaneous Process and HEN Synthesis

We study simultaneous process and HEN synthesis. The overall process configuration

for this example is the same as the one in section 5.3.1, but a couple of important

modifications are made. First, the heat of reaction of reaction 2 in CSTR2 (exothermic)

is considerable (it was ignored previously), so an isothermal cooling duty for reactor

r1 is introduced. Second, the operating temperature of CSTR2 varies within 350 ∼

450 K, making streams 13 and 14 unclassified. Thus, the operating temperature of the

reactor affects not only yield but also heat exchanger design. All the streams except

the one representing the reactor duty are treated as unclassified streams. We use a

nonlinear cost function for heat exchangers (i.e., µU + µAA0.6) although we still use the

linear approximation to calculate the area. The number of heat exchangers for CSTR2

is limited to one to consider practical constraints. Note that this type of constraints

cannot be readily implemented in models that do not identify actual matching between

streams (e.g., area targeting models). The optimization problem is solved to 0.32 % gap

after 108,000 s, returning an objective function value of $59.502 MM/yr. The optimal
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Figure 5.13: Optimal process configuration found with simultaneous process and HEN

synthesis. Heat load (kW) and exchange area (m2) given in blue and green

solution is represented in Figure 5.13. The annualized cost of the HEN (area + unit)

is $0.215 MM/yr while that of utility is $0.339 MM/yr. There are seven heat exchangers

with total exchanger area of 1481.64 m2. The loads of hot and cold utilities are 3.50 and

2.95 MW, respectively. A 96.1 % total yield of product D from limiting reactant B is

obtained with recycling of unreacted reactants (components A and B by streams 8 and

11, component C by stream 20) to the reactors.

In the optimal solution, CSTR1b is selected, so stream 2 becomes a cold stream; it

exchanges heat with the reactor stream (r1) (exothermic reaction) and stream 7 that

needs to be cooled down before the separation (SEP1). The optimal temperature of

the CSTR2 is 450 K which is at the upper operating temperature bound; stream 13/14

is determined as cold/hot stream accordingly. Interestingly, the temperature is at the

upper bound despite the reaction 2 being exothermic, because the gain in the yield by

lowering the operating temperature of CSTR2 is outweighed by the gains in the HEN.

One thing to note is that the total yield can be increased by recycling even though the

single pass yield in the reactor is low due to the high temperature. This simple example
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shows the advantage of considering simultaneous process synthesis with HENS. Other

solution details can be found in the supporting information of the original work [82].

5.3.5 Non-uniform Grid

This example illustrates the advantage of using a non-uniform temperature grid. When

the size of the problem is medium (e.g., 10 ∼ 15 streams), the proposed model with

uniform temperature grid can be computationally expensive. By using a non-uniform

grid, we can reduce the number of intervals while preserving stream information. This

example has 15 streams with one hot and one cold utility. Streams 8 and 9 are un-

classified with variable inlet/outlet temperature; the range of the inlet temperature of

stream 8/9 is (110 ∼ 130)/(180 ∼ 280), while the range of the outlet temperature is

(40 ∼ 250)/(190 ∼ 220). In addition, streams 4, 7, 8, and 14 have variable flow rates.

Detailed parameters can be found in the supporting information of the original work

[82]. The non-uniform grid has 27 intervals, leading to a model with 209,564 variables,

of which 20,730 are discrete variables; and 138,519 constraints. The maximum size of

the intervals is 40 K and the minimum 5 K. The model is solved to 3.01 % optimality

gap in 40,000 s. The best solution is found after 19,749 s. The objective function value

is $1,163,923/yr, and the corresponding configuration is shown in Figure 5.14. Un-

classified streams (i.e., s8 and s9) are determined to be hot streams. The adjusted cost,

calculated using the log-mean temperature method based on the optimal configuration,

is $1,086,212/yr, which is 6.7 % lower than the cost calculated using the original cost

function.
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Figure 5.14: Optimal heat exchanger network with 15 streams. Streams 8 and 9 are

determined to be hot streams. Flow rates given in dark red, heat load (kW) and exchange

area (m2) given in blue and green.

5.3.6 Phase Changes

In this example, phase change during the heat exchange is modeled by decomposing

the stream into sub-streams corresponding to each phase (vapor, 2-phase, and liquid) as

previous works [59, 54]. Bubble/dew points are assumed to be fixed (assuming constant

stream pressure and composition). Since we can adjust the size of each interval, we can

exactly map bubble/dew point of the stream on the discrete temperature grid. A sub-

set of stream SPHC is defined to represent the streams that might have phase changes.

Streams in this subset are referred to as parent streams. Also, for each parent stream, we

generate three sub-streams (SSPHC
s ): vapor (vs), 2-phases (2ps), and liquid (ls). All the

sub-streams are considered as normal process streams. As shown in Figure 5.15, the set
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of temperature intervals KI in hot/cold stream grid is divided into three subsets depend-

ing on the relative location with respect to the bubble/dew point of the parent stream on

the grid. The subsets of the temperature interval (KV,H
s /KV,C

s ,K2P,H
s /K2P,C

s ,KL,H
s /KL,C

s )

denote the temperature range of each phase of parent stream s in the hot/cold stream

grids. We refer to these subsets of temperature interval as phase regions.

Figure 5.15: Phase regions in hot/cold stream temperature grid

The spanning of a sub-stream for a certain interval is determined by that of the

parent stream; thus, we can equate the binary variables for the interval spanning of the

parent stream to those of the sub-streams.

ZH
s,k = ZH

vs,k
k ∈ KV,H

s , s ∈ SPHC (5.93)

ZH
s,k = ZH

2ps,k
k ∈ K2P,H

s , s ∈ SPHC (5.94)

ZH
s,k = ZH

ls,k
k ∈ KL,H

s , s ∈ SPHC (5.95)

ZC
s,k = ZC

vs,k
k ∈ KV,C

s , s ∈ SPHC (5.96)

ZC
s,k = ZC

2ps,k
k ∈ K2P,C

s , s ∈ SPHC (5.97)
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ZC
s,k = ZC

ls,k
k ∈ KL,C

s , s ∈ SPHC (5.98)

Note that the equalities of the spanning variable between the parent stream and the

sub-streams are satisfied only in the corresponding phase region in Eqs. (5.93) - (5.98),

ensuring correct decomposition of the parent stream into the sub-streams.

Binary variables are introduced to denote the existence of a certain phase during the

heat exchange (ẐV,H
s , ẐV,C

s , Ẑ2P,H
s , Ẑ2P,C

s , ẐL,H
s , ẐL,C

s ). If a certain phase (i.e., V, 2-P, L)

appears during the heat exchange of parent stream s, the corresponding binary variable

for the sub-stream is activated (Eqs. (5.99) – (5.104)). In contrast, if the parent stream

does not span the phase region (i.e., ZH
s,k/Z

C
s,k = 0), the corresponding binary variable is

deactivated accordingly.

ZH
s,k ≤ ẐL,H

s ≤
∑

k Z
H
s,k s ∈ SPHC, k ∈ KL,H

s
(5.99)

ZC
s,k ≤ ẐL,C

s ≤
∑

k Z
C
s,k s ∈ SPHC, k ∈ KL,C

s
(5.100)

ZH
s,k ≤ ẐV,H

s ≤
∑

k Z
H
s,k s ∈ SPHC, k ∈ KV,H

s
(5.101)

ZC
s,k ≤ ẐV,C

s ≤
∑

k Z
C
s,k s ∈ SPHC, k ∈ KV,C

s
(5.102)

ZH
s,k ≤ Ẑ2P,H

s ≤
∑

k Z
H
s,k s ∈ SPHC, k ∈ K2P,H

s
(5.103)

ZC
s,k ≤ Ẑ2P,C

s ≤
∑

k Z
C
s,k s ∈ SPHC, k ∈ K2P,C

s
(5.104)

When phase change occurs, flow rate (i.e., heat duty) in each phase is different . We can

change the flow rate of the parent stream according to each phase using sub-streams. If a

sub-stream denoting a certain phase does not exist, then the flow rate of the sub-stream

is deactivated via Eqs. (5.105) – (5.107).

Fvs ≤ δvs(Ẑ
V,H
s + ẐV,C

s ) s ∈ SPHC (5.105)
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F2ps ≤ δ2ps(Ẑ
2P,H
s + Ẑ2P,C

s ) s ∈ SPHC (5.106)

Fls
≤ δls(Ẑ

L,H
s + ẐL,C

s ) s ∈ SPHC (5.107)

To illustrate this extension, a small example with 5 streams is considered. The bubble

point of stream s5 is 320 °C and its dew point is 335 °C. The inlet temperature of s5 is

between 207 and 405 °C and the outlet temperature between 330 and 340 °C, so it can

undergo phase change. In addition, it is an unclassified stream. We assume that the

ratio of specific heat capacities between liquid, 2-phase, and vapor is 2:4:1. The optimal

configuration is shown in Figure 5.16, where s5 is used as a cold stream undergoing

a phase change from liquid to 2-phases; vapor phase does not appear during the heat

exchange.

Figure 5.16: Optimal heat exchanger network with phase change
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Chapter 6

Conclusions and Future Works

6.1 Distillation Network Synthesis

We proposed a versatile and computationally efficient shortcut distillation column model

and a separation energy targeting model, which are well-suited for superstructure-based

process synthesis. They can seamlessly handle systems in the presence of undetermined

feeds, which can naturally appear in process synthesis problems. The proposed distilla-

tion column models can automatically identify adequate key components and calculate

the corresponding energy requirement of a separation task. Also, they can be readily

adopted as submodules in distillation network synthesis approaches. The proposed sep-

aration energy targeting model can calculate an energy target for the separation of a

mixture without designing the network. Henceforth, this targeting model can be effec-

tively used in a preliminary synthesis step to identify promising systems among multiple

alternatives. As a demonstration, we applied the proposed model into the bio-refinery

optimization for ethanol upgrading, which unveiled several promising ethanol upgrading

strategies. Also, the solution obtained with the proposed energy targeting model can

be used as a good starting point for more rigorous process synthesis/design. Potential

future works in this area include developing generalized column models and targeting

models that can handle non-ideal mixtures. One way is to extend existing shortcut
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approaches for non-ideal mixtures to consider the undetermined feed. Approaches with

data-driven surrogate models are also promising.

Next, we proposed a superstructure-based distillation network synthesis model with

extended modeling features. It can account for multiple undetermined sources and

unspecified outlets to facilitate the integration with reactor network synthesis mod-

els. Furthermore, bypass streams and thermal coupling can be considered to find more

energy/cost efficient distillation networks. Bypass streams can be utilized to avoid un-

necessary separations, and thermal coupling can be adopted to avoid re-mixing. Due to

its extended modeling capability, the proposed approach enabled seamless integration of

reactor and separation network synthesis and led to solutions that cannot be found using

existing models employed in a sequential approach. For future works, addressing large

scale problems would require the development of specialized solution methods. Also, in-

troducing various heat integration options between columns can be an interesting future

research topic.

In addition, we illustrated how simple graphically-inspired feasibility constraints can

be used in conjunction with superstructure-based approaches for distillation network

synthesis. This approach can allow the use of surrogate models for distillation columns,

to improve computational efficiency of superstructure-based approaches, while enforcing

approximate feasibility constraints of distillation tasks. An interesting future research

direction is the derivation of and integration with similar feasibility constraints for (1)

non-ideal mixtures and (2) liquid-liquid equilibrium.
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6.2 Heat Integration

We proposed mathematical programming models for 1) utility targeting and 2) heat ex-

changer network synthesis (HENS). By using a discrete temperature grid approach, we

were able to formulate linear models (with integer variables) even in the case where un-

classified streams with variable temperatures and flow rates are present. This approach

allows the formulation of computationally more tractable process synthesis models with

integrated HENS. Further, the HENS model can be extended to address non-isothermal

mixing of split streams, within a limited range, as well as phase changes during heat

exchange. To further reduce the computational cost, a non-uniform temperature grid

can be adopted. For future research, the comprehensive consideration of non-isothermal

mixing can be explored. Also, to tackle large scale problems, developing solution meth-

ods that are specialized in solving HENS model would be needed.
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Appendix A

Chapter 2 Appendix

A.1 Role of Inactive Roots9

We briefly illustrate the role of Eqs. (2.5) and (2.6) with inactive roots, while more

thorough discussion can be found in the works by Halvorsen et al. [44] and Gooty et

al. [101]. Let’s consider a saturated liquid feed with four components (I = {A,B,C,D};

(αA, αB, αC, αD) = {5, 2, 1.1, 1}; Fi = 0.25). From the feed equation, roots are calculated

as (ϕA, ϕB, ϕC) = (3.161, 1.466, 1.044). We need to achieve 90% recovery of component

B in the distillate stream and 70% recovery of component C in the bottom stream.

If we select B/C as the light/heavy key (only ϕB is active) with recoveries of 0.9/0.7

in the distillate/bottom stream, V 1 = V 2 = 0.97 and (DA, DB, DC, DD) = (0.25, 0.225,

0.075, 0) are calculated by Eqs. (2.2) and (2.3). Then, if we calculate Eqs. (2.5) and

(2.6) with one of inactive roots ϕC,

∑
i∈I

αiDi

αi − ϕC

=
5× 0.25

5− ϕC

+
2× 0.225

2− ϕC

+
1.1× 0.075

1.1− ϕC

= 2.252 > V 1 = 0.97 (A.1)

∑
i∈I

− αiBi

αi − ϕC

= −2× 0.025

2− ϕC

− 1.1× 0.175

1.1− ϕC

− 1× 0.188

1− ϕC

= 2.252 > V 2 = 0.97 (A.2)

Eqs. (2.5) and (2.6) are violated; this implies that the resulting component distributions

are not obtainable with the minimum vapor flow rate operating condition.

9The contents of this section appear in Ryu and Maravelias, Comp. & Chem. Engr. 2020
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On the other hand, if we select B/D as the light/heavy key (ϕB and ϕC are active)

with recoveries of 0.9/0.753, V 1 = V 2 = 0.837 and (DA, DB, DC, DD) = (0.25, 0.225,

0.075, 0.062) are calculated by Eqs. (2.2) and (2.3). These components distributions can

be obtained with the minimum vapor flow rate operating condition because the resulting

minimum vapor flow rates and component distributions satisfy Eqs. (2.5) and (2.6) for

all inactive roots (i.e., ϕA).

A.2 Reformulation of Eqs. (2.53) and (2.54)10

Eqs. (2.53) and (2.54) are reformulated as follows,

U
D

i,i′(1−
ϕi′

αi

) = Di,i′ i ∈ I, i′ ∈ IR (A.3)

U
B

i,i′(1−
ϕi′

αi

) = −Bi,i′ i ∈ I, i′ ∈ IR (A.4)

− 1

ω
Di,i′ ≤ U

D

i,i′ ≤
1

ω
Di,i′ i ∈ I, i′ ∈ IR (A.5)

− 1

ω
Bi,i′ ≤ U

B

i,i′ ≤
1

ω
Bi,i′ i ∈ I, i′ ∈ IR (A.6)

A.3 Column Model with Only Active Roots11

When only high recoveries of heavy/light key components (e.g., > 99%) are considered,

calculating inactive roots to check Eqs. (2.5) and (2.6) might be redundant because they

are implicitly satisfied for all inactive roots. In this case, Kong and Maravelias proposed

a column model to handle an undetermined feed, where only active roots are calculated

[61]. However, this model becomes computationally inefficient when the number of

10The contents of this section appear in Ryu and Maravelias, Comp. & Chem. Engr. 2020
11The contents of this section appear in Ryu and Maravelias, AIChE J. 2020
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components in the system increases. We briefly touch this model here and introduce

improvements we proposed, which dramatically improve computational efficiency. Major

difference of the previous model [61] fromM2 is that all Underwood roots are constrained

to be between the relative volatilities of the keys to calculate only active roots,

∑
i∈I

(αi + σ)Y HK
i ≤ ϕi′ ≤

∑
i∈I

(αi − σ)Y LK
i i′ ∈ IR (A.7)

where parameter σ is a small number (10−3 ∼ 10−2) to make the roots strictly between

the relative volatilities of the keys.

Then, binary variable Xi is defined, where Xi = 1 if and only if component i + 1 is

distributed (i.e., Zi+1 = 1) and has a positive molar flow rate in the feed (i.e., Yi+1 = 1),

Xi = Zi+1Yi+1 i ∈ IRD (A.8)

where the set IRD = IR\{i = n − 1} denotes the intervals between the Underwood

roots. Note that Eq. (A.8) can be reformulated as a set of linear constraints. Then, the

difference between adjacent Underwood roots, ∆i, is constrained as follows,

ϕi − ϕi+1 = ∆i i ∈ IRD (A.9)

ϵXi ≤ ∆i ≤ (α− α)Xi i ∈ IRD (A.10)

where ∆i is positive when Xi = 1; otherwise, it is equal to 0, making adjacent roots

identical. For instance, when components A and D are selected as the light and heavy

keys, respectively, but component C has zero flow, then XA = 1 (ZB = YB = 1) and

XB = 0 (ZC = 1, YC = 0) are enforced by Eq. (A.8); thus, ϕA − ϕB = ∆A ≥ ϵ and

ϕB −ϕC = ∆B = 0 are enforced by Eqs. (A.9) and (A.10) to ensure the existence of two

distinct roots (ϕA > ϕB = ϕC). Note that α can be set as the relative volatility of the

lightest component and α can be set as 1.
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With only Eqs. (A.7) ∼ (A.10), the Underwood roots are bounded only by the

relative volatilities of the heavy and light keys (i.e., Eq. (A.7)) and the relationships

between the roots (i.e., Eqs. (A.9) and (A.10)).

Consider a feed with 5 components, I = {A,B,C,D,E}, with positive component

molar flow rates, (Yi = 1, ∀i ∈ I). If component A/D is selected as the light/heavy key,

B and C are distributed components (ZB = ZC = 1). Binary variables XA and XB are

activated (XA = XB = 1) while XC = 0 (because ZD = 0), enforcing three distinct roots

with Eqs. (A.7) ∼ (A.10):

αA > ϕA > ϕB > ϕC = ϕD > αD > αE = 1 (A.11)

However, based on the Underwood equations, we know that the roots should satisfy

αA > ϕA > αB > ϕB > αC > ϕC = ϕD > αD > αE = 1 (A.12)

Accordingly, additional valid constraints are introduced, enforcing that if Xi = 1, the

relative volatility of component i+ 1 (αi+1) should be between ϕi and ϕi+1.

Xi = 1 → ϕi > αi+1 > ϕi+1 i ∈ IRD (A.13)

Eq. (A.13) can be re-written as follows,

ϕi ≥ (αi+1 + σ)Xi + α(1−Xi) i ∈ IRD (A.14)

ϕi+1 ≤ (αi+1 − σ)Xi + α(1−Xi) i ∈ IRD (A.15)

Eqs. (A.14) and (A.15) constrain each root depending on the key selection and the

existence of components in the feed, thereby enhancing the computational performance

of the model. In the previous example, since XA = 1 and XB = 1, ϕA > αB > ϕB and

ϕB > αC > ϕC are enforced by the valid root constraints, respectively.



135

Note that roots are correctly constrained even when some flow rates are zero. For

example, if FC = 0 (YC = 0) in the previous example, then XB = XC = 0 while XA = 1;

thus, only two distinct roots exist, and they should satisfy,

αA > ϕA > αB > ϕB = ϕC = ϕD > αD > αE = 1 (A.16)

where ϕB = ϕC is enforced because XB = 0. In Eqs. (A.14) and (A.15), XA = 1 enforces

ϕA > αB > ϕB while XB = 0 and XC = 0 lead to redundant constraints (i.e., ϕB ≥ α,

ϕC ≤ α and ϕC ≥ α, ϕD ≤ α). Note that root ϕC, which is identical with ϕB and ϕD, is

constrained by Eq. (A.15) on ϕB (i.e., αB > ϕB) and by Eq. (A.7) on ϕD (i.e., ϕD > αD).

A.4 Extension of Column Model with Only Active

Roots for Non-Sharp Splits12

We introduce an extension of the column model with only active roots to consider non-

sharp splits using constraints inspired from the Fenske equation [27].

A.4.1 Practical Feasibility of Non-sharp Splits

In the Underwood equations, we assume that the column has an infinite number of trays

and is operated at minimum vapor flow rates for the specified recoveries of the keys. We

refer to the design (i.e., vapor flow rates and the number of trays (equilibrium stages))

obtained from the Underwood equations for the specific keys and their recoveries as the

theoretical design. Note that there can be multiple theoretical designs with different key

selections to achieve a separation task. As the recoveries of LLKs/HHKs increase with

12The contents of this section appear in Ryu and Maravelias, AIChE J. 2020
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more trays, we can assume that they are perfectly recovered in the theoretical design,

which can significantly simplify the calculation of component distributions. We refer to

this assumption as the perfect recovery assumption.

However, a distillation column is typically designed with vapor flow rates between

1.1 and 1.5 times the minimum flow rates and a (finite) number of trays between 3 and

5 times the minimum number of trays, calculated by the Fenske equation [27] based on

the recoveries of the key components [56]. Accordingly, we refer to the design with 1.1

∼ 1.5 times the minimum vapor flow rates and 3 ∼ 5 times the minimum number of

trays based on the theoretical design as the practical design. Note that the theoretical

and practical designs should achieve the same recoveries of the key components.

It is desirable that the component distributions in the theoretical design can be

closely achieved in the corresponding practical design. If the component distributions

in the theoretical design are vastly different from those in the corresponding practical

design, then the desired separation task may not be achieved in practice. Henceforth, a

theoretical design is termed practically feasible if the predicted component distributions

can be closely achieved in the corresponding practical design. Conversely, a theoretical

design is termed practically infeasible if its corresponding practical design results in sig-

nificantly different component distributions. For non-sharp splits where the recoveries

of the keys are not high (e.g., < 0.8), perfect recoveries of non-distributed components

may not be achievable in the practical design. This is especially true when the relative

volatilities of the keys and those of the non-distributed components are close [56]. In this

case, other methods such as the Hengstebeck method [46] can be used to calculate com-

ponent distributions of LLKs/HHKs instead of using the perfect recovery assumption.
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However, the incorporation of such methods adds considerable complexity (and nonlin-

earities). Instead, we propose an approach to select adequate keys and their recoveries

to safely use the perfect recovery assumption.

For example, if we need 60 % recovery of component B in the distillate stream and

99 % recovery of component C in the bottom stream for a ternary mixture feed with

I = {A,B,C}, there are two options as shown in Figure A.1; the first option is to

A 1
ഥ𝐁 1
C 1

ഥ𝐀 1
B 1
C 1

A
B
C

1
0.6
0.01

A
B
C

0
0.4
0.99

A
B
C

0.8
0.6
0.01

A
B
C

0.2
0.4
0.99

𝑅𝐿𝐾 = 0.6
𝑅𝐻𝐾 = 0.99

𝑅𝐿𝐾 = 0.8
𝑅𝐻𝐾 = 0.99

(A) (B)

Figure A.1: Two options to recover 60 % of component B in the distillate stream and

99 % of component C in the bottom stream. The light/heavy key is shown as a bold

letter with over/under bar. RLK/RHK denotes the recovery of the light/heavy key; (A):

Component B/C is selected as the light/heavy key. Component A is perfectly recovered

in the distillate stream in the theoretical design, so the corresponding practical design

needs to achieve it; (B): A/C is selected as the light/heavy key. Component A can

be distributed into the distillate and bottom streams in the theoretical and practical

designs.

choose component B as the light key and C as the heavy key in the Underwood equa-

tions, resulting in the theoretical design with RLK = 0.6 and RHK = 0.99 (see Figure

A.1A). Also, component A (LLK) is perfectly recovered in the distillate stream. For

this theoretical design to be practically feasible, component A should be almost perfectly
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recovered in the distillate stream in the corresponding practical design. However, if the

relative volatility of component A (i.e., LLK) is very close to that of B (i.e., LK), the

perfect recovery of A may not be achievable in the corresponding practical design.

This can be addressed by changing the key selection from B/C to A/C in the Un-

derwood equations (see Figure A.1B), which allows A to appear in the bottom stream

in the theoretical design and its corresponding practical design. Note that if there is no

component A in the feed (i.e., FA = 0), it should not affect the practical feasibility of

the theoretical design.

Even though the recovery of component B in the distillate stream (DB/FB) is the

same in the two cases, the selection of the keys and their recoveries in the theoretical

designs are different depending on practical feasibility, which is affected by 1) the prox-

imity of the relative volatilities between the keys and non-distributed components and

2) the presence of components.

A.4.2 Practical Feasibility Constraints

To determine the practical feasibility of a theoretical design, we augment the Fenske

equation. Under the total reflux condition where all vapor stream from the top tray and

all liquid stream from the bottom tray are recycled back to the column, Fenske showed

that the logarithms of the recovery factors, defined as Di/Bi, of all components are on

a straight line with respect to the logarithms of the relative volatilities,

ln
Di

Bi

= m lnαi + b i ∈ I (A.17)

where m/b denotes the slope/intercept of the line. If the recovery of the light key (RLK)

and that of the heavy key (RHK) are specified, we can calculate the distributions of
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other components as follows,

ln
Di

Bi

= NMIN lnαi −
lnαLK ln [RHK/(1−RHK)] + lnαHK ln [RLK/(1−RLK)]

ln (αLK/αHK)
i ∈ I

(A.18)

where we refer to Eq. (A.18) as the Fenske equation. The slope of the line, NMIN , is the

minimum number of trays calculated in terms of the recoveries and relative volatilities

of the keys.

NMIN =
ln[RLK/(1−RLK)] + ln [RHK/(1−RHK)]

ln (αLK/αHK)
(A.19)

In Figure A.2, three different component distributions with the same recoveries of the

keys are shown based on the work of Stupin and Lockhart [96]. The x-axis denotes

the logarithm of the relative volatility, and the y-axis denotes the logarithm of the

recovery factor. The blue curve represents component distributions in the theoretical

design. ϕ̂LK+ is the Underwood root between the relative volatility of the light key

and that of the LLK adjacent to the light key (referred to as LLK1) while ϕ̂HK− is

the root between the relative volatility of the heavy key and that of the HHK adjacent

to the heavy key (referred to as HHK1). When the relative volatility of a component

approaches ϕ̂LK+/ϕ̂HK−, the logarithm of its recovery factor becomes ∞/−∞. Since the

relative volatilities of LLKs/HHKs are greater/less than ϕ̂LK+/ϕ̂HK−, they are perfectly

recovered in the distillate/bottom stream.

The red curve represents component distributions in a practical design based on the

theoretical design. The black line represents component distributions calculated by the

Fenske equation based on the recoveries of the keys. Notably, the recovery factor of a

LLK from the Fenske equation can be used as a lower bound on its recovery factor in

the practical design (DFS
LLK/B

FS
LLK ≤ DLLK/BLLK). Also, the recovery factor of a HHK
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Figure A.2: (Blue/Red) Component distributions in theoretical/practical design;

(Black): Component distributions from the Fenske equation. Recovery factors calcu-

lated by the Fenske equation are denoted with superscript FS ; (Orange/Green): Bound

for recovery factors of LLKs/HHKs.

from the Fenske equation can be used as an upper bound on its recovery factor in the

practical design (DFS
HHK/B

FS
HHK ≥ DHHK/BHHK). Similar arguments have been used to

develop heuristic rules for non-sharp splits. [5, 17, 68]

Then, if we introduce a bound for the recovery factors of LLKs/HHKs calculated by

the Fenske equation, we can indirectly introduce a lower bound, κ, on their recoveries

in the practical design. For example, in Figure A.2, we introduce the bound (i.e.,

κ/(1−κ), orange line) for the recovery factors of LLKs from the Fenske equation. Since

DFS
LLK1/B

FS
LLK1 ≤ DLLK1/BLLK1, if κ/(1 − κ) ≤ DFS

LLK1/B
FS
LLK1 holds as shown in Figure
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A.2, the following holds,

κ

1− κ
≤ DFS

LLK1

BFS
LLK1

≤ DLLK1

BLLK1

=
(DLLK1/FLLK1)

1− (DLLK1/FLLK1)
(A.20)

which implies, in the practical design, that DLLK1/FLLK1 > κ. Similarly, we introduce

the bound (i.e., (1− κ)/κ, green line) for the recovery factors of HHKs from the Fenske

equation. If (1 − κ)/κ ≥ DFS
HHK1/B

FS
HHK1 holds as shown in Figure A.2, the following

holds,

1− κ

κ
≥ DFS

HHK1

BFS
HHK1

≥ DHHK1

BHHK1

=
1− (BHHK1/FHHK1)

BHHK1/FHHK1

(A.21)

which implies BHHK1/FHHK1 > κ. Note that if these conditions are satisfied for LLK1

and HHK1, they are automatically satisfied for the components that are lighter than

LLK1 or heavier than HHK1. If Eqs. (A.20) and (A.21) hold with the parameter κ

sufficiently close to 1, the theoretical design is more likely to be practically feasible

because LLKs/HHKs can be almost perfectly recovered in the practical design.

Based on these criteria, two inequalities are introduced, which lead to designs that

are more likely to be implementable in practice,

ln
κ

1− κ
≤ (θLLKi,i′,i−m + 1)R̄LK + θLLKi,i′,i−mR̄

HK + µ(3− Y LK
i − Y HK

i′ − Yi−m)

1 < i < n, i < i′ ∈ I, 1 ≤ i−m ≤ i− 1 (A.22)

ln
1− κ

κ
≥ θHHK

i,i′,i′+mR̄
LK + (θHHK

i,i′,i′+m − 1)R̄HK − µ(3− Y LK
i − Y HK

i′ − Yi′+m)

1 < i′ < n, i < i′ ∈ I, i′ + 1 ≤ i′ +m ≤ n (A.23)

R̄LK = ln [RLK/(1−RLK)] (A.24)

R̄HK = ln [RHK/(1−RHK)] (A.25)
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where the parameter µ is used to relax the inequalities, and parameters θLLKi,i′,i−m and

θHHK
i,i′,i′+m are defined as follows,

θLLKi,i′,i−m =
ln (αi−m/αi)

ln (αi/αi′)
1 < i < n, i < i′ ∈ I, 1 ≤ i−m ≤ i− 1 (A.26)

θHHK
i,i′,i′+m =

ln (αi′+m/αi′)

ln (αi/αi′)
1 < i′ < n, i < i′ ∈ I, i′ + 1 ≤ i′ +m ≤ n (A.27)

where detailed derivations can be found in the supporting information of the original

work [84]. In Eq. (A.22), components i and i′ denote candidates for the light and

heavy keys, respectively; while i−m denotes a LLK when i is selected as the light key

(1 ≤ i−m ≤ i− 1). When Y LK
i = Y HK

i′ = Yi−m = 1, Eq. (A.22) enforces the recovery

of component i − m (LLK) in the practical design to be higher than κ; otherwise, it

becomes a redundant constraint. In Eq. (A.23), components i and i′ denote the light

and heavy key candidates, while i′ +m denotes a HHK (i′ + 1 ≤ i′ +m ≤ n). When

Y LK
i = Y HK

i′ = Yi′+m = 1, Eq. (A.23) enforces the recovery of component i′ +m (HHK)

in the practical design to be higher than κ.

Note that the parameter κ can be adjusted; if κ is closer to 1, the perfect recoveries of

LLKs/HHKs are more likely to be achieved in the practical design while the recoveries

of the keys are also more tightly constrained, leading to a smaller feasible space for

non-sharp splits. With the proposed approach, we can take the proximity of relative

volatilities into account instead of simply enforcing a fixed lower bound on the recoveries

of the keys (e.g., RHK , RLK > γ̄R).

The recoveries of the light and heavy keys (RLK , RHK) are constrained as follows,

Di = FiR
LK + D̂LK+

i − D̂LK−
i i ∈ I (A.28)

Bi = FiR
HK + B̂HK+

i − B̂HK−
i i ∈ I (A.29)
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where dummy variables D̂LK+
i , D̂LK−

i , B̂HK+
i , B̂HK−

i are introduced. Dummy variables

D̂LK+
i and D̂LK−

i are deactivated if component i is selected as the light key,

D̂LK+
i ≤ δDi (1− Y LK

i ) i ∈ I (A.30)

D̂LK−
i ≤ δDi (1− Y LK

i ) i ∈ I (A.31)

while B̂HK+
i and B̂HK−

i are deactivated when component i is selected as the heavy key.

B̂HK+
i ≤ δBi (1− Y HK

i ) i ∈ I (A.32)

B̂HK−
i ≤ δBi (1− Y HK

i ) i ∈ I (A.33)

When deactivated, Di = FiR
LK and Bi = FiR

HK are enforced in Eqs. (A.28) and

(A.29), respectively; if component i is not selected as the light key, D̂LK+
i and D̂LK−

i

can be positive, relaxing the equality between Di and FiR
LK . Similarly, if component

i is not selected as the heavy key, B̂HK+
i and B̂HK−

i can be positive, so the equality

between Bi and FiR
HK is relaxed.
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Appendix B

Chapter 3 Appendix13

B.1 Distillation Column Model

In the column model [84], the set of intervals between postulated components is defined

for each mixture node as IRjk = {i ∈ I|iLjk ≤ i ≤ iHjk − 1}, where interval i denotes the

interval between components i and i+1. Then, the Underwood root (ϕijk) is defined for

each interval (ϕijk ≥ ϕi+1,jk). For example, if node (1,1) has IC11 = {A,B,C,D}, there

are three intervals, IR11 = {A,B,C}, with three Underwood roots (ϕA11 ≥ ϕB11 ≥ ϕC11).

The Underwood roots satisfy the following,∑
i∈I

αiF
C
ijk

αi − ϕi′jk
= V 1jk − V 2jk i′ ∈ IRjk, (j, k) ∈ NDM (B.1)

The roots are constrained between the relative volatilities of the light and heavy keys,∑
i∈I

αiY
HK
ijk ≤ ϕi′jk ≤

∑
i∈I

αiY
LK
ijk i′ ∈ IRjk, (j, k) ∈ NDM (B.2)

to calculate only active roots which are required to calculate the minimum vapor flow

rates. Binary variable Zijk denotes whether component i is a distributed component.

Also, the correct number of distinct active roots is enforced by XR
ijk ∈ {0, 1} as follows,

ϵXR
ijk ≤ ϕijk − ϕi+1,jk ≤ (α− α)XR

ijk i ∈ IRD
jk (B.3)

XR
ijk = Yi+1,jkZi+1,jk i ∈ IRD

jk , (j, k) ∈ NDM (B.4)

13The contents of this chapter appear in Ryu and Maravelias, Chem. Eng. Sci. 2021
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where set IRD
jk = {i ∈ I|iLjk ≤ i ≤ iHjk − 2} denotes intervals between the Underwood

roots; ϵ denotes a lower bound on the absolute difference between adjacent roots; α/α is

the lowest/highest relative volatility (i.e., α = αA, α = 1). If component i+1 is present

and distributed, XR
ijk = 1 is enforced by Eq (B.4), and ϕijk − ϕi+1,jk ≥ ϵ is enforced by

Eq (B.3); if XR
ijk = 0, ϕijk − ϕi+1,jk = 0 is enforced by Eq. (B.3). Also, valid constraints

for the roots are introduced as follows,

ϕijk ≥ (αi+1 + σ)XR
ijk + α(1−XR

ijk) i ∈ IRD
jk , (j, k) ∈ NDM (B.5)

ϕi+1,jk ≤ (αi+1 − σ)XR
ijk + α(1−XR

ijk) i ∈ IRD
jk , (j, k) ∈ NDM (B.6)

where σ is a small number (10−3 ∼ 10−4) and α/α denotes a lower/upper bound on

relative volatilities (e.g., α = 1/α = αA can be set). For example, consider node (1,1)

with IC11 = {A,B,C,D} and YC11 = 0. Then, if component A/D is selected as the

light/heavy key (i.e., Y LK
A11 = 1 and Y HK

D11 = 1), components B and C are distributed

(i.e., ZB11 = 1 and ZC11 = 1). By Eq (B.4), XR
A11 = 1 and XR

B11 = 0 are enforced, so

ϕA11 − ϕB11 ≥ ϵ and ϕB11 − ϕC11 = 0 are enforced by Eq (B.3). Then, Eqs. (B.5) and

(B.6) enforce ϕA11 > αB and ϕB11 < αB, constraining the roots as αA > ϕA11 > αB >

ϕB11 = ϕC11 > 1.

The vapor flow rates are constrained as follows,

∑
i∈I

αiDijk

αi − ϕi′jk
≤ V 1jk i′ ∈ IRjk, (j, k) ∈ NDM (B.7)

∑
i∈I

−αiBijk

αi − ϕi′jk
≤ V 2jk i′ ∈ IRjk, (j, k) ∈ NDM (B.8)

where inequalities are used because some columns can be operated above its minimum

vapor flow rates due to thermal coupling [12]. Although not necessary, minimum recov-

eries of key components (γLKjk /γHK
jk for the light/heavy key) can be imposed for each
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column.

Dijk ≥ γLKjk FC
ijk − ζDijk(1− Y LK

ijk ) i ∈ I, (j, k) ∈ NDM (B.9)

Bijk ≥ γHK
jk FC

ijk − ζBijk(1− Y HK
ijk ) i ∈ I, (j, k) ∈ NDM (B.10)

B.2 Light and Heavy Key Candidates

There are two types of separation tasks depending on whether there are distributed

components or not. First, let’s consider a separation task with distributed components.

For example, in Figure B.1, top arc from node (1,1) (IC11 = {A,B,C,D,E}) to node (1,3)

(IC13 = {A,B,C}) and the bottom arc from node (1,1) to node (3,3) (IC33 = {C,D,E})

are active. Thus, in column (1,1), component B/D can be the light/heavy key while C

is distributed. However, if B is not present in the source (i.e., YB = 0), then it cannot

be chosen as the light key due to Eq. (3.35). In this case, the next heaviest component,

which is A, should be chosen as the light key. On the other hand, if YD = 0, D cannot

be chosen as the heavy key due to Eq. (3.36), so the next lightest component, which is

E, should be selected as the heavy key. Thus, depending on components present in the

source, the light/heavy key for one separation task can change. For the separation task

defined by an active top arc (j, k, j′, k′) ∈ ATS
jk and an active bottom arc (j, k, j′′, k′′) ∈

ABS
jk , the set of light/heavy key candidates (ILKj′k′j′′k′′/I

HK
j′k′j′′k′′) can be defined as follows,

ILKj′k′j′′k′′ = {i ∈ I|iLj′k′ ≤ i ≤ iLj′′k′′ − 1} (j′, k′, j′′, k′′) ∈ {(j′, k′, j′′, k′′)|iLj′′k′′ ≤ iHj′k′}

(B.11)

IHK
j′k′j′′k′′ = {i ∈ I|iHj′k′ + 1 ≤ i ≤ iHj′′k′′} (j′, k′, j′′, k′′) ∈ {(j′, k′, j′′, k′′)|iLj′′k′′ ≤ iHj′k′}

(B.12)
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where iLj′′k′′ ≤ iHj′k′ denotes there are distributed components. However, if there is no

distributed component (i.e., iLj′′k′′ > iHj′k′), the light/heavy key selection is simpler. For

example, in Figure B.1, top arc from node (1,1) to node (1,4) (IC14 = {A,B}) and

bottom arc from node (1,1) to node (3,3) (IC33 = {C,D,E}) are active, so component

B/C can be selected as the light/heavy key because the activation of nodes (1,4) and

(3,3) implies YB = 1 and YC = 1, respectively, by Eq. (3.17). Thus, when there is no

distributed component, the light/heavy key can be uniquely identified as follows,

ILKj′k′j′′k′′ = {i ∈ I|i = iHj′k′} (j′, k′, j′′, k′′) ∈ {(j′, k′, j′′, k′′)|iLj′′k′′ > iHj′k′} (B.13)

IHK
j′k′j′′k′′ = {i ∈ I|i = iLj′′k′′} (j′, k′, j′′, k′′) ∈ {(j′, k′, j′′, k′′)|iLj′′k′′ > iHj′k′} (B.14)
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Figure B.1: Light and heavy key candidates when active top and bottom arcs are given.

Light/heavy keys are represented in green/red while distributed components are repre-

sented in blue; (A): When there are distributed components between the distillate and

bottom streams. The light/heavy key is determined depending on whether component

B/D is present in the source. (B): When there is no distributed component. Component

B is present in the source, which is implied by the activation of node (1,4). Similarly,

component C is present, which is implied by the activation of node (3,3). Thus, the

light/heavy key is determined as B/C regardless of the presence of other components.
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Appendix C

Chapter 4 Appendix14

C.1 Distillation Network Model

We define ordered set I = {A,B, ...} to denote components in the system in decreasing

order of volatility. Sets SIN and SOUT are defined to denote inlets and outlets, respec-

tively. An inlet stream can be sent to columns and/or outlets,

∑
l∈L

EIC
s,l +

∑
s′∈SOUT

EIO
s,s′ = 1 s ∈ SIN (C.1)

where EIC
s,l and EIO

s,s′ denote the split fractions of inlet stream s to column l and outlet s′,

respectively. When the inlet stream is sent to column l, then the corresponding binary

variable Y IC
s,l is set to 1. Similarly, when the inlet stream is sent to an outlet s′, then

the corresponding binary variable Y IO
s,s′ is set to 1.

δICs,l Y
IC
s,l ≤ EIC

s,l ≤ Y IC
s,l s ∈ SIN, l ∈ L (C.2)

δIOs,s′Y
IO
s,s′ ≤ EIO

s,s′ ≤ Y IO
s,s′ s ∈ SIN, s′ ∈ SOUT (C.3)

Parameter δICj,l /δ
IO
s,s′ denotes the lower bound on the split fraction when the connection

is selected. Binary variable Yl is introduced to denote whether column l is selected or

not. When the column is not selected (i.e., Yl = 0), the corresponding feed stream is

14The contents of this chapter appear in Ryu and Maravelias, AIChE J. 2022
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deactivated,

δl,iYl ≤ Fl,i ≤ δl,iYl i ∈ I, l ∈ L (C.4)

where parameters δl,i and δl,i denote the lower and upper bounds, respectively, on the

component molar flow rate of the feed stream. The distillate/bottom stream can be sent

to other columns or outlets,

∑
l′∈L

EDC
l,l′ +

∑
s′∈SOUT

EDO
l,s′ = 1 l ∈ L (C.5)

∑
l′∈L

EBC
l,l′ +

∑
s′∈SOUT

EBO
l,s′ = 1 l ∈ L (C.6)

where EDC
l,l′ and EBC

l,l′ denote the split fractions of the distillate and bottom streams,

respectively, to column l′; EDO
l,s′ and EBO

l,s′ denote the split fractions of the distillate and

bottom stream, respectively, to outlet k. These split fractions are also constrained by

the corresponding binary variables (Y BC
l,l′ ,Y DC

l,l′ ,Y BO
l,s′ , and Y

DO
l,s′ ).

δBC
l,l′ Y

BC
l,l′ ≤ EBC

l,l′ ≤ Y BC
l,l′ l, l′ ∈ L (C.7)

δDC
l,l′ Y

DC
l,l′ ≤ EDC

l,l′ ≤ Y DC
l,l′ l, l′ ∈ L (C.8)

δBO
l,s′ Y

BO
l,s′ ≤ EBO

l,s′ ≤ Y BO
l,s′ l ∈ L, s′ ∈ SOUT (C.9)

δDO
l,s′ Y

DO
l,s′ ≤ EDO

l,s′ ≤ Y DO
l,s′ l ∈ L, s′ ∈ SOUT (C.10)

Material balances for column feed streams and network outlet streams are as follows,

∑
s∈SIN

F IC
s,l,i +

∑
l′∈L

(DDC
l′,l,i +BBC

l′,l,i) = Fl,i l ∈ L, i ∈ I (C.11)

∑
s∈SIN

F IO
s,s′,i +

∑
l∈L

(DDO
l,s′,i +BBO

l,s′,i) = FOUT
s′,i s′ ∈ SOUT, i ∈ I (C.12)
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F IC
s,l,i = EIC

s,l F
IN
s,i s ∈ SIN, l ∈ L, i ∈ I (C.13)

F IO
s,s′,i = EIO

s,s′F
IN
s,i s ∈ SIN, s′ ∈ SOUT, i ∈ I (C.14)

DDC
l,l′,i = EDC

l,l′ Dl,i l, l′ ∈ L, i ∈ I (C.15)

BBC
l,l′,i = EBC

l,l′ Bl,i l, l′ ∈ L, i ∈ I (C.16)

DDO
l,s′,i = EDO

l,s′ Dl,i l ∈ L, s′ ∈ SOUT, i ∈ I (C.17)

BBO
l,s′,i = EBO

l,s′ Bl,i l ∈ L, s′ ∈ SOUT, i ∈ I (C.18)

where F IC
s,l,i/F

IO
s,s′,i denotes the molar flow rate of the inlet stream to the column/outlet;

DDC
l′,l,i/B

BC
l′,l,i denotes the molar flow rate of the distillate/bottom stream to other columns;

DDO
l,s′,i/B

BO
l,s′,i denotes the molar flow rate of the distillate/bottom stream to outlets; and

F IN
s,i /F

OUT
s′,i denotes the component molar flow rate of the inlet/outlet stream. Specifi-

cations for purities (ρPs′,i) and recoveries (ρRs′,i) can be imposed on outlet streams,

FOUT
s′,i ≥ ρPs′,i

∑
i′∈I

FOUT
s′,i′ or FOUT

s′,i ≤ ρPs′,i
∑
i′∈I

FOUT
s′,i′ s′ ∈ SOUT, i ∈ ISs′ (C.19)

FOUT
s′,i ≥ ρRs′,i

∑
s∈SIN

F IN
s,i′ or FOUT

s′,i ≤ ρRs′,i
∑
s∈SIN

F IN
s,i s′ ∈ SOUT, i ∈ ISs′ (C.20)

where ISs′ denotes the set of components with specifications for the outlet stream associ-

ated with outlet s′. We also introduce constraints to limit the complexity of the optimal

solution. First, we do not allow recycle within the distillation network.

Y DC
l,l′ + Y BC

l,l′ = 0 l > l′, l, l′ ∈ L (C.21)

Y DC
l,l′ + Y BC

l,l′ = 0 l > l′, l, l′ ∈ L (C.22)

Also, we only allow the connection between columns either through the distillate stream

or through the bottom stream.

Y DC
l,l′ + Y BC

l,l′ ≤ 1 l, l′ ∈ L (C.23)
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C.2 Reactor Network Model

We define set R to denote reactors. The reactor inlet (FR,IN
r,i ) consists of the initial feed

(ψR,IT
r,i ) and the recycle stream (FOUT

s′,i ) from the distillation network,

FR,IN
r,i = ψR,IT

r,i +
∑

s′∈SOUT
r

FOUT
s′,i r ∈ R, i ∈ I (C.24)

where the set SOUT
r consists of outlet streams assigned for the recycle stream to reactor

r. Each reactor has a fixed conversion (ηr) based on the limiting reactant (iLr ),

FR,IN
r,i + νr,iηrF

R,IN
r,i=iLr

= FR,OUT
r,i r ∈ R, i ∈ I (C.25)

where FR,OUT
r,i denotes the component molar flow rate of the reactor outlet; and νr,i

denotes the stoichiometry. The cost of a reactor is proportional to its total inlet molar

flow rate,

CR
r = µR

r

∑
i∈I

FR,IN
r,i r ∈ R (C.26)

where µR
r denotes the annualized cost parameter for the reactor.
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Appendix D

Chapter 5 Appendix15

D.1 Projection of Stream Data onto Temperature

Grid

Similar to the hot stream inlet temperature projection, the rest of the temperature

ranges are projected onto the grid. Hot stream outlet temperature range is projected by

identical algorithm as that for the inlet temperature range. Information of cold stream

is projected onto the cold stream temperature grid instead with the same algorithm.

D.1.1 Hot Stream Outlet Preprocessing

ϕH,OUT,UP
s,k =


1

if k = argmink′ ∥T̂H
k′ − TOUT,UP

s ∥

s.t.T̂H
k′ ≥ TOUT,UP

s

0 otherwise

s ∈ S, k ∈ K (D.1)

ϕH,OUT,LO
s,k =


1

if k = argmink′ ∥T̂H
k′ − TOUT,LO

s ∥

s.t.T̂H
k′ ≤ TOUT,LO

s

0 otherwise

s ∈ S, k ∈ K (D.2)

15The contents of this chapter appear in Ryu and Maravelias, Ind. Eng. Chem. Res. 2019
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ψH,OUT
s,k = ϕH,OUT,UP

s,k + ψH,OUT
s,k−1 − ϕH,OUT,LO

s,k−1 s ∈ S, k ∈ K (D.3)

D.1.2 Cold Stream Inlet Preprocessing

ϕC,IN,UP
s,k =


1

if k = argmink′ ∥T̂C
k′ − T IN,UP

s ∥

s.t.T̂C
k′ ≤ T IN,UP

s

0 otherwise

s ∈ S, k ∈ K (D.4)

ϕC,IN,LO
s,k =


1

if k = argmink′ ∥T̂C
k′ − T IN,LO

s ∥

s.t.T̂C
k′ ≥ T IN,LO

s

0 otherwise

s ∈ S, k ∈ K (D.5)

ψC,IN
s,k = ϕC,IN,UP

s,k + ψC,IN
s,k−1 − ϕC,IN,LO

s,k−1 s ∈ S, k ∈ K (D.6)

D.1.3 Cold Stream Outlet Preprocessing

ϕC,OUT,UP
s,k =


1

if k = argmink′ ∥T̂C
k′ − TOUT,UP

s ∥

s.t.T̂C
k′ ≤ TOUT,UP

s

0 otherwise

s ∈ S, k ∈ K (D.7)

ϕC,OUT,LO
s,k =


1

if k = argmink′ ∥T̂C
k′ − TOUT,LO

s ∥

s.t.T̂C
k′ ≥ TOUT,LO

s

0 otherwise

s ∈ S, k ∈ K (D.8)
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Figure D.1: Potential error in linearized area calculation in boundary intervals

ψC,OUT
s,k = ϕC,OUT,UP

s,k + ψC,OUT
s,k−1 − ϕC,OUT,LO

s,k−1 s ∈ S, k ∈ K (D.9)

D.2 Error in Linear Approximation of Heat Exchanger

Area

The linear approximation of the area can over/underestimate the heat exchanger area

at the start/end (boundary intervals) of the heat exchanger. Since we only have discrete

temperatures on the grid, we cannot consider exact start/end temperature of the heat

exchanger for the area calculation if that heat exchanger starts/ends in the middle

of the temperature interval. In this case, driving force for that interval can be either

over/underestimated so that numerical error can occur as Figure D.1. For fully spanned

intervals, the linear approximation overestimates the area compared to method using

log-mean temperature. With 20 K intervals, up to 4.4 % overestimation is observed

compared to the log-mean temperature method. However, with 5 ∼ 10 degree intervals,

error is small enough (0.004 % ∼ 1.143 %).
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Table D.1: Approximation error of area calculation

Moderate High Low

Hot 420 K → 400K 620 K → 600 K 420 K → 400 K

Cold 290 K → 330 K 290 K → 330 K 350 K → 390 K

Size of interval (K) Area (m2) Error (%) Area (m2) Error (%) Area (m2) Error (%)

20 0.40404 0.67250 0.13348 0.07415 1.06667 4.40614

10 0.40202 0.16914 0.13341 0.01855 1.03333 1.14345

5 0.40151 0.04235 0.13339 0.00464 1.02460 0.28894

1 0.40135 0.00170 0.13338 0.00019 1.02180 0.01160
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